-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmiller_rabin.py
118 lines (104 loc) · 3.52 KB
/
miller_rabin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import random
##from Rosetta Code
_mrpt_num_trials = 5 # number of bases to test
def is_probable_prime(n):
"""
Miller-Rabin primality test.
A return value of False means n is certainly not prime. A return value of
True means n is very likely a prime.
>>> is_probable_prime(1)
Traceback (most recent call last):
...
AssertionError
>>> is_probable_prime(2)
True
>>> is_probable_prime(3)
True
>>> is_probable_prime(4)
False
>>> is_probable_prime(5)
True
>>> is_probable_prime(123456789)
False
>>> primes_under_1000 = [i for i in range(2, 1000) if is_probable_prime(i)]
>>> len(primes_under_1000)
168
>>> primes_under_1000[-10:]
[937, 941, 947, 953, 967, 971, 977, 983, 991, 997]
>>> is_probable_prime(6438080068035544392301298549614926991513861075340134\
3291807343952413826484237063006136971539473913409092293733259038472039\
7133335969549256322620979036686633213903952966175107096769180017646161\
851573147596390153)
True
>>> is_probable_prime(7438080068035544392301298549614926991513861075340134\
3291807343952413826484237063006136971539473913409092293733259038472039\
7133335969549256322620979036686633213903952966175107096769180017646161\
851573147596390153)
False
"""
assert n >= 2
# special case 2
if n == 2:
return True
# ensure n is odd
if n % 2 == 0:
return False
# write n-1 as 2**s * d
# repeatedly try to divide n-1 by 2
s = 0
d = n-1
while True:
quotient, remainder = divmod(d, 2)
if remainder == 1:
break
s += 1
d = quotient
assert(2**s * d == n-1)
# test the base a to see whether it is a witness for the compositeness of n
def try_composite(a):
if pow(a, d, n) == 1:
return False
for i in range(s):
if pow(a, 2**i * d, n) == n-1:
return False
return True # n is definitely composite
for i in range(_mrpt_num_trials):
a = random.randrange(2, n)
if try_composite(a):
return False
return True # no base tested showed n as composite
def _try_composite(a, d, n, s):
if pow(a, d, n) == 1:
return False
for i in range(s):
if pow(a, 2**i * d, n) == n-1:
return False
return True # n is definitely composite
def is_prime(n, _precision_for_huge_n=16):
if n in _known_primes or n in (0, 1):
return True
if any((n % p) == 0 for p in _known_primes):
return False
d, s = n - 1, 0
while not d % 2:
d, s = d >> 1, s + 1
# Returns exact according to http://primes.utm.edu/prove/prove2_3.html
if n < 1373653:
return not any(_try_composite(a, d, n, s) for a in (2, 3))
if n < 25326001:
return not any(_try_composite(a, d, n, s) for a in (2, 3, 5))
if n < 118670087467:
if n == 3215031751:
return False
return not any(_try_composite(a, d, n, s) for a in (2, 3, 5, 7))
if n < 2152302898747:
return not any(_try_composite(a, d, n, s) for a in (2, 3, 5, 7, 11))
if n < 3474749660383:
return not any(_try_composite(a, d, n, s) for a in (2, 3, 5, 7, 11, 13))
if n < 341550071728321:
return not any(_try_composite(a, d, n, s) for a in (2, 3, 5, 7, 11, 13, 17))
# otherwise
return not any(_try_composite(a, d, n, s)
for a in _known_primes[:_precision_for_huge_n])
_known_primes = [2, 3]
_known_primes += [x for x in range(5, 1000, 2) if is_prime(x)]