forked from CompVis/stable-diffusion
-
Notifications
You must be signed in to change notification settings - Fork 16
/
inpainting_example_overfit.yaml
107 lines (100 loc) · 2.85 KB
/
inpainting_example_overfit.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
model:
base_learning_rate: 1.0e-06
target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
params:
linear_start: 0.0015
linear_end: 0.0205
num_timesteps_cond: 1
log_every_t: 100
timesteps: 1000
first_stage_key: image
cond_stage_key: masked_image # 4 channels
cond_stage_trainable: false
image_size: 128 # feature map size for 512x512 images
channels: 3
concat_mode: true # there will be no context_dim specified in unet,
monitor: val/loss_simple_ema
# scale_factor: 0.18215
ckpt_path: "models/ldm/inpainting_big/model_compvis.ckpt"
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 64 # unused
in_channels: 7 # image, masked image, mask
out_channels: 3 # RGB FINAL IMAGE
model_channels: 256
attention_resolutions:
- 8
- 4
- 2
num_res_blocks: 2
channel_mult:
- 1
- 2
- 3
- 4
num_heads: 8
resblock_updown: true
use_checkpoint: True # gradient checkpointing
first_stage_config:
target: ldm.models.autoencoder.VQModelInterface
params:
embed_dim: 3
n_embed: 8192
monitor: val/rec_loss
ddconfig:
attn_type: none # concat mode
double_z: false
z_channels: 3
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity # NO TRAIN FOR AUTOENCODER
cond_stage_config: __is_first_stage__
data:
target: main_inpainting.DataModuleFromConfig
params:
batch_size: 2
num_workers: 5
wrap: false
train:
target: ldm.data.inpainting_dataset.InpaintingTrain
params:
csv_file: data/INPAINTING/example_df.csv
data_root: data/INPAINTING/custom_inpainting
size: 512
validation:
target: ldm.data.inpainting_dataset.InpaintingValidation
params:
csv_file: data/INPAINTING/example_df.csv
data_root: data/INPAINTING/custom_inpainting
size: 512
lightning:
find_unused_parameters: False
callbacks:
image_logger:
target: main_inpainting.ImageLogger
params:
disabled: False
batch_frequency: 750
max_images: 4
increase_log_steps: True
log_first_step: True
log_images_kwargs:
use_ema_scope: False
plot_progressive_rows: True
plot_diffusion_rows: True
N: 4
unconditional_guidance_scale: 1.0
unconditional_guidance_label: [""]
ddim_steps: 50 # todo check these out for inpainting,
ddim_eta: 0.0 # todo check these out for inpainting,