forked from nka77/DAHiTra
-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo.py
92 lines (65 loc) · 2.86 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from argparse import ArgumentParser
import utils
import torch
from models.basic_model import CDEvaluator
import os
"""
quick start
sample files in ./samples
save prediction files in the ./samples/predict
"""
import warnings
warnings.filterwarnings("ignore")
def get_args():
# ------------
# args
# ------------
parser = ArgumentParser()
parser.add_argument('--project_name', default='BIT_LEVIR', type=str)
parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU')
parser.add_argument('--checkpoint_root', default='checkpoints', type=str)
parser.add_argument('--output_folder', default='samples/predict', type=str)
# data
parser.add_argument('--num_workers', default=0, type=int)
parser.add_argument('--dataset', default='CDDataset', type=str)
parser.add_argument('--data_name', default='quick_start', type=str)
parser.add_argument('--batch_size', default=1, type=int)
parser.add_argument('--split', default="demo", type=str)
parser.add_argument('--img_size', default=256, type=int)
# model
parser.add_argument('--n_class', default=2, type=int)
parser.add_argument('--net_G', default='base_transformer_pos_s4_dd8_dedim8', type=str,
help='base_resnet18 | base_transformer_pos_s4_dd8 | base_transformer_pos_s4_dd8_dedim8|')
parser.add_argument('--checkpoint_name', default='best_ckpt.pt', type=str)
args = parser.parse_args()
return args
if __name__ == '__main__':
args = get_args()
utils.get_device(args)
device = torch.device("cuda:%s" % args.gpu_ids[0]
if torch.cuda.is_available() and len(args.gpu_ids)>0
else "cpu")
args.checkpoint_dir = os.path.join(args.checkpoint_root, args.project_name)
os.makedirs(args.output_folder, exist_ok=True)
log_path = os.path.join(args.output_folder, 'log_vis.txt')
data_loader = utils.get_loader(args.data_name, img_size=args.img_size,
batch_size=args.batch_size,
split=args.split, is_train=False)
model = CDEvaluator(args)
model.load_checkpoint(args.checkpoint_name)
model.eval()
for i, batch in enumerate(data_loader):
name = batch['name']
print(batch['A'].shape, batch['B'].shape)
'''batch_A = batch['A']
im256 = 256
batch_A = batch_A.unfold(2,im256,im256).unfold(3,im256,im256).squeeze()
batch_A_tmp = torch.zeros([16,3,im256,im256])
print(batch_A_tmp.shape, batch_A.shape)
for i in range(4):
for j in range(4):
batch_A_tmp[i*j,:,:,:] = batch_A[:,i,j,:,:]
print(batch_A_tmp.shape, batch_A.shape)'''
print('process: %s' % name)
score_map = model._forward_pass(batch)
model._save_predictions()