diff --git a/dev/archimedeans/index.html b/dev/archimedeans/index.html index 5f879208..1582f9ad 100644 --- a/dev/archimedeans/index.html +++ b/dev/archimedeans/index.html @@ -6,4 +6,4 @@ ϕ⁻¹(C::MyAC{d},x) τ(C::MyAC{d}) τ⁻¹(::MyAC{d},τ) -radial_dist(C::MyAC{d})

Available Archimedean copulas

Independence

Copulas.IndependentCopulaType

IndependentCopula{d,T}

Constructor

IndependentCopula(d, θ)

The Independant Copula in dimension $d$ is the simplest copula, that has the form :

\[C(\mathbf{x}) = \prod_{i=1}^d x_i.\]

It happends to be an Archimedean Copula, with generator :

\[\phi(t) = \exp{-t}\]

source

Clayton

Copulas.ClaytonCopulaType
ClaytonCopula{d,T}

Fields:

  • θ::Real - parameter

Constructor

ClaytonCopula(d, θ)

The Clayton copula in dimension $d$ is parameterized by $\theta \in [-1,\infty)$ when $d=2$ and $\theta \in [0,\infty)$ if $d>2$. It is an Archimedean copula with generator :

\[\phi(t) = \left(1+\mathrm{sign}(\theta)*t\right)^{-1\frac{1}{\theta}}\]

source

Frank

Copulas.FrankCopulaType
FrankCopula{d,T}

Fields:

  • θ::Real - parameter

Constructor

FrankCopula(d, θ)

The Frank copula in dimension $d$ is parameterized by $\theta \in [0,\infty)$. It is an Archimedean copula with generator :

\[\phi(t) = -\frac{\log\left(1+e^{-t}(e^{-\theta-1})\right)}{ heta}\]

source

Gumbel

Copulas.GumbelCopulaType
GumbelCopula{d,T}

Fields:

  • θ::Real - parameter

Constructor

GumbelCopula(d, θ)

The Gumbel copula in dimension $d$ is parameterized by $\theta \in [1,\infty)$. It is an Archimedean copula with generator :

\[\phi(t) = \exp{-t^{\frac{1}{θ}}}\]

source

Ali-Mikhail-Haq

Copulas.AMHCopulaType
AMHCopula{d,T}

Fields:

  • θ::Real - parameter

Constructor

AMHCopula(d, θ)

The AMH copula in dimension $d$ is parameterized by $\theta \in [0,1)$. It is an Archimedean copula with generator :

\[\phi(t) = 1 - \frac{1-\theta}{e^{-t}-\theta}\]

source

Joe

Copulas.JoeCopulaType
JoeCopula{d,T}

Fields:

  • θ::Real - parameter

Constructor

JoeCopula(d, θ)

The Joe copula in dimension $d$ is parameterized by $\theta \in [1,\infty)$. It is an Archimedean copula with generator :

\[\phi(t) = 1 - \left(1 - e^{-t}\right)^{\frac{1}{\theta}}\]

source
+radial_dist(C::MyAC{d})

Available Archimedean copulas

Independence

Copulas.IndependentCopulaType

IndependentCopula{d,T}

Constructor

IndependentCopula(d, θ)

The Independant Copula in dimension $d$ is the simplest copula, that has the form :

\[C(\mathbf{x}) = \prod_{i=1}^d x_i.\]

It happends to be an Archimedean Copula, with generator :

\[\phi(t) = \exp{-t}\]

source

Clayton

Copulas.ClaytonCopulaType
ClaytonCopula{d,T}

Fields:

  • θ::Real - parameter

Constructor

ClaytonCopula(d, θ)

The Clayton copula in dimension $d$ is parameterized by $\theta \in [-1,\infty)$ when $d=2$ and $\theta \in [0,\infty)$ if $d>2$. It is an Archimedean copula with generator :

\[\phi(t) = \left(1+\mathrm{sign}(\theta)*t\right)^{-1\frac{1}{\theta}}\]

source

Frank

Copulas.FrankCopulaType
FrankCopula{d,T}

Fields:

  • θ::Real - parameter

Constructor

FrankCopula(d, θ)

The Frank copula in dimension $d$ is parameterized by $\theta \in [0,\infty)$. It is an Archimedean copula with generator :

\[\phi(t) = -\frac{\log\left(1+e^{-t}(e^{-\theta-1})\right)}{ heta}\]

source

Gumbel

Copulas.GumbelCopulaType
GumbelCopula{d,T}

Fields:

  • θ::Real - parameter

Constructor

GumbelCopula(d, θ)

The Gumbel copula in dimension $d$ is parameterized by $\theta \in [1,\infty)$. It is an Archimedean copula with generator :

\[\phi(t) = \exp{-t^{\frac{1}{θ}}}\]

source

Ali-Mikhail-Haq

Copulas.AMHCopulaType
AMHCopula{d,T}

Fields:

  • θ::Real - parameter

Constructor

AMHCopula(d, θ)

The AMH copula in dimension $d$ is parameterized by $\theta \in [0,1)$. It is an Archimedean copula with generator :

\[\phi(t) = 1 - \frac{1-\theta}{e^{-t}-\theta}\]

source

Joe

Copulas.JoeCopulaType
JoeCopula{d,T}

Fields:

  • θ::Real - parameter

Constructor

JoeCopula(d, θ)

The Joe copula in dimension $d$ is parameterized by $\theta \in [1,\infty)$. It is an Archimedean copula with generator :

\[\phi(t) = 1 - \left(1 - e^{-t}\right)^{\frac{1}{\theta}}\]

source
diff --git a/dev/ellipticals/index.html b/dev/ellipticals/index.html index bddf8ba9..61159060 100644 --- a/dev/ellipticals/index.html +++ b/dev/ellipticals/index.html @@ -1,6 +1,6 @@ Elliptical Copulas · Copulas.jl

Elliptical Copulas

Details about the elliptical Copulas

Generic Elliptical copulas

explain how we could define a generic elliptical copulas, and methods that are related to them.

Missing docstring.

Missing docstring for EllipticalCopula. Check Documenter's build log for details.

Available elliptical copulas

Gaussian

Copulas.GaussianCopulaType
GaussianCopula{d,MT}

Fields:

  • Σ::MT - covariance matrix

Constructor

GaussianCopula(Σ)

The Gaussian Copula is the copula of a Multivariate normal distribution. It is constructed as :

\[C(\mathbf{x}; \boldsymbol{\Sigma}) = F_{\Sigma}(F_{\Sigma,i}^{-1}(x_i),i\in 1,...d)\]

where $F_{\Sigma}$ is a cdf of a gaussina random vector and F_{\Sigma,i} is the ith marignal cdf, while `$\Sigma$ is the covariance matrix.

It can be constructed in Julia via:

C = GaussianCopula(Σ)

The random number generation works as expected:

rand(C,1000)
 # or
-Random.rand!(C,u)

And yo can fit the distribution via :

fit(GaussianCopula,data)
source

Student's T

Copulas.TCopulaType
TCopula{d,MT}

Fields:

  • df::Int - number of degree of freedom
  • Σ::MT - covariance matrix

Constructor

TCopula(df,Σ)

The Student's T Copula is the copula of a Multivariate Student distribution. It is constructed as :

\[C(\mathbf{x}; \boldsymbol{n,\Sigma}) = F_{n,\Sigma}(F_{n,\Sigma,i}^{-1}(x_i),i\in 1,...d)\]

where $F_{n,\Sigma}$ is a cdf of a multivariate student random vector with covariance matrix $\Sigma$ and $n$ degrees of freedom. and F_{n,\Sigma,i} is the ith marignal cdf.

It can be constructed in Julia via:

C = TCopula(n,Σ)

The random number generation works as expected:

rand(C,1000)
+Random.rand!(C,u)

And yo can fit the distribution via :

fit(GaussianCopula,data)
source

Student's T

Copulas.TCopulaType
TCopula{d,MT}

Fields:

  • df::Int - number of degree of freedom
  • Σ::MT - covariance matrix

Constructor

TCopula(df,Σ)

The Student's T Copula is the copula of a Multivariate Student distribution. It is constructed as :

\[C(\mathbf{x}; \boldsymbol{n,\Sigma}) = F_{n,\Sigma}(F_{n,\Sigma,i}^{-1}(x_i),i\in 1,...d)\]

where $F_{n,\Sigma}$ is a cdf of a multivariate student random vector with covariance matrix $\Sigma$ and $n$ degrees of freedom. and F_{n,\Sigma,i} is the ith marignal cdf.

It can be constructed in Julia via:

C = TCopula(n,Σ)

The random number generation works as expected:

rand(C,1000)
 # or
-Random.rand!(C,u)

And yo can fit the distribution via :

fit(TCopula,data)

Except that currently it does not work since fit(Distributions.MvTDist,data) does not dispatch.

source
+Random.rand!(C,u)

And yo can fit the distribution via :

fit(TCopula,data)

Except that currently it does not work since fit(Distributions.MvTDist,data) does not dispatch.

source diff --git a/dev/index.html b/dev/index.html index becc7497..9b96552d 100644 --- a/dev/index.html +++ b/dev/index.html @@ -19,4 +19,4 @@ ϕ⁻¹(C::ClaytonCopula,t) = sign(C.θ)*(t^(-C.θ)-1) # Inverse Generator τ(C::ClaytonCopula) = C.θ/(C.θ+2) # θ -> τ τ⁻¹(::Type{ClaytonCopula},τ) = 2τ/(1-τ) # τ -> θ -radial_dist(C::ClaytonCopula) = Distributions.Gamma(1/C.θ,1) # Radial distribution

The Archimedean API is modular:

Dev Roadmap

Urgent things

Next

Maybe later

Contributions are welcome

Do not hesitate to open an issue to discuss :)

source
Copulas.EmpiricalCopulaType
EmpiricalCopula{d,MT}

Fields:

  • u::MT - the matrix of observations.

Constructor

EmpiricalCopula(u;pseudos=true)

The EmpiricalCopula in dimension $d$ is parameterized by a pseudo-data matrix wich should have shape (d,N). Its expression is given as :

\[C(\mathbf x) = \frac{1}{N}\sum_{i=1}^n \mathbf 1_{\mathbf u_i \le \mathbf x}\]

This function is very practical, be be aware that this is not a true copula (since $\mathbf u$ are only pseudo-observations). The constructor allows you to pass dirctly pseudo-observations (the default) or will compute them for you. You can then compute the cdf of the copula, and sample it through the standard interface.

source
Base.randMethod

Generate independent stable random numbers.

:param α: characteristic exponent (0.1 to 2.0) :param β: skew (-1 to +1) :param scale: scale parameter :param loc: location parameter (mean for α > 1, median/mode when β=0)

This implementation is based on the method in J.M. Chambers, C.L. Mallows and B.W. Stuck, "A Method for Simulating Stable Random Variables," JASA 71 (1976): 340-4. McCulloch's MATLAB implementation (1996) served as a reference in developing this code.

source
+radial_dist(C::ClaytonCopula) = Distributions.Gamma(1/C.θ,1) # Radial distribution

The Archimedean API is modular:

Dev Roadmap

Urgent things

Next

Maybe later

Contributions are welcome

Do not hesitate to open an issue to discuss :)

source
Copulas.EmpiricalCopulaType
EmpiricalCopula{d,MT}

Fields:

  • u::MT - the matrix of observations.

Constructor

EmpiricalCopula(u;pseudos=true)

The EmpiricalCopula in dimension $d$ is parameterized by a pseudo-data matrix wich should have shape (d,N). Its expression is given as :

\[C(\mathbf x) = \frac{1}{N}\sum_{i=1}^n \mathbf 1_{\mathbf u_i \le \mathbf x}\]

This function is very practical, be be aware that this is not a true copula (since $\mathbf u$ are only pseudo-observations). The constructor allows you to pass dirctly pseudo-observations (the default) or will compute them for you. You can then compute the cdf of the copula, and sample it through the standard interface.

source
Base.randMethod

Generate independent stable random numbers.

:param α: characteristic exponent (0.1 to 2.0) :param β: skew (-1 to +1) :param scale: scale parameter :param loc: location parameter (mean for α > 1, median/mode when β=0)

This implementation is based on the method in J.M. Chambers, C.L. Mallows and B.W. Stuck, "A Method for Simulating Stable Random Variables," JASA 71 (1976): 340-4. McCulloch's MATLAB implementation (1996) served as a reference in developing this code.

source
diff --git a/dev/search/index.html b/dev/search/index.html index 23b2a253..5587c8de 100644 --- a/dev/search/index.html +++ b/dev/search/index.html @@ -1,2 +1,2 @@ -Search · Copulas.jl

Loading search...

    +Search · Copulas.jl

    Loading search...