-
-
Notifications
You must be signed in to change notification settings - Fork 59
/
soft_palettegen.go
185 lines (162 loc) · 5.66 KB
/
soft_palettegen.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
// Largely inspired by the descriptions in http://lab.medialab.sciences-po.fr/iwanthue/
// but written from scratch.
package colorful
import (
"fmt"
"math"
"math/rand"
)
// The algorithm works in L*a*b* color space and converts to RGB in the end.
// L* in [0..1], a* and b* in [-1..1]
type lab_t struct {
L, A, B float64
}
type SoftPaletteSettings struct {
// A function which can be used to restrict the allowed color-space.
CheckColor func(l, a, b float64) bool
// The higher, the better quality but the slower. Usually two figures.
Iterations int
// Use up to 160000 or 8000 samples of the L*a*b* space (and thus calls to CheckColor).
// Set this to true only if your CheckColor shapes the Lab space weirdly.
ManySamples bool
}
// Yeah, windows-stype Foo, FooEx, screw you golang...
// Uses K-means to cluster the color-space and return the means of the clusters
// as a new palette of distinctive colors. Falls back to K-medoid if the mean
// happens to fall outside of the color-space, which can only happen if you
// specify a CheckColor function.
func SoftPaletteEx(colorsCount int, settings SoftPaletteSettings) ([]Color, error) {
// Checks whether it's a valid RGB and also fulfills the potentially provided constraint.
check := func(col lab_t) bool {
c := Lab(col.L, col.A, col.B)
return c.IsValid() && (settings.CheckColor == nil || settings.CheckColor(col.L, col.A, col.B))
}
// Sample the color space. These will be the points k-means is run on.
dl := 0.05
dab := 0.1
if settings.ManySamples {
dl = 0.01
dab = 0.05
}
samples := make([]lab_t, 0, int(1.0/dl*2.0/dab*2.0/dab))
for l := 0.0; l <= 1.0; l += dl {
for a := -1.0; a <= 1.0; a += dab {
for b := -1.0; b <= 1.0; b += dab {
if check(lab_t{l, a, b}) {
samples = append(samples, lab_t{l, a, b})
}
}
}
}
// That would cause some infinite loops down there...
if len(samples) < colorsCount {
return nil, fmt.Errorf("palettegen: more colors requested (%v) than samples available (%v). Your requested color count may be wrong, you might want to use many samples or your constraint function makes the valid color space too small", colorsCount, len(samples))
} else if len(samples) == colorsCount {
return labs2cols(samples), nil // Oops?
}
// We take the initial means out of the samples, so they are in fact medoids.
// This helps us avoid infinite loops or arbitrary cutoffs with too restrictive constraints.
means := make([]lab_t, colorsCount)
for i := 0; i < colorsCount; i++ {
for means[i] = samples[rand.Intn(len(samples))]; in(means, i, means[i]); means[i] = samples[rand.Intn(len(samples))] {
}
}
clusters := make([]int, len(samples))
samples_used := make([]bool, len(samples))
// The actual k-means/medoid iterations
for i := 0; i < settings.Iterations; i++ {
// Reassing the samples to clusters, i.e. to their closest mean.
// By the way, also check if any sample is used as a medoid and if so, mark that.
for isample, sample := range samples {
samples_used[isample] = false
mindist := math.Inf(+1)
for imean, mean := range means {
dist := lab_dist(sample, mean)
if dist < mindist {
mindist = dist
clusters[isample] = imean
}
// Mark samples which are used as a medoid.
if lab_eq(sample, mean) {
samples_used[isample] = true
}
}
}
// Compute new means according to the samples.
for imean := range means {
// The new mean is the average of all samples belonging to it..
nsamples := 0
newmean := lab_t{0.0, 0.0, 0.0}
for isample, sample := range samples {
if clusters[isample] == imean {
nsamples++
newmean.L += sample.L
newmean.A += sample.A
newmean.B += sample.B
}
}
if nsamples > 0 {
newmean.L /= float64(nsamples)
newmean.A /= float64(nsamples)
newmean.B /= float64(nsamples)
} else {
// That mean doesn't have any samples? Get a new mean from the sample list!
var inewmean int
for inewmean = rand.Intn(len(samples_used)); samples_used[inewmean]; inewmean = rand.Intn(len(samples_used)) {
}
newmean = samples[inewmean]
samples_used[inewmean] = true
}
// But now we still need to check whether the new mean is an allowed color.
if nsamples > 0 && check(newmean) {
// It does, life's good (TM)
means[imean] = newmean
} else {
// New mean isn't an allowed color or doesn't have any samples!
// Switch to medoid mode and pick the closest (unused) sample.
// This should always find something thanks to len(samples) >= colorsCount
mindist := math.Inf(+1)
for isample, sample := range samples {
if !samples_used[isample] {
dist := lab_dist(sample, newmean)
if dist < mindist {
mindist = dist
newmean = sample
}
}
}
}
}
}
return labs2cols(means), nil
}
// A wrapper which uses common parameters.
func SoftPalette(colorsCount int) ([]Color, error) {
return SoftPaletteEx(colorsCount, SoftPaletteSettings{nil, 50, false})
}
func in(haystack []lab_t, upto int, needle lab_t) bool {
for i := 0; i < upto && i < len(haystack); i++ {
if haystack[i] == needle {
return true
}
}
return false
}
const LAB_DELTA = 1e-6
func lab_eq(lab1, lab2 lab_t) bool {
return math.Abs(lab1.L-lab2.L) < LAB_DELTA &&
math.Abs(lab1.A-lab2.A) < LAB_DELTA &&
math.Abs(lab1.B-lab2.B) < LAB_DELTA
}
// That's faster than using colorful's DistanceLab since we would have to
// convert back and forth for that. Here is no conversion.
func lab_dist(lab1, lab2 lab_t) float64 {
return math.Sqrt(sq(lab1.L-lab2.L) + sq(lab1.A-lab2.A) + sq(lab1.B-lab2.B))
}
func labs2cols(labs []lab_t) (cols []Color) {
cols = make([]Color, len(labs))
for k, v := range labs {
cols[k] = Lab(v.L, v.A, v.B)
}
return cols
}