From f95e6bc382524d4dd4300678d7bcbb0cc1dc0182 Mon Sep 17 00:00:00 2001 From: GretaVilla Date: Tue, 7 Jun 2022 15:21:40 +0000 Subject: [PATCH] Commit main branch version 0.1.7 Commit main branch version 0.1.7 --- .gitignore | 10 + LICENSE | 29 + README.md | 464 + bctools/__init__.py | 2 + bctools/plots.py | 778 + bctools/thresholds.py | 372 + bctools/utilities.py | 368 + .../example_classification_model.ipynb | 24494 ++++++++++++++++ pyproject.toml | 3 + .../01-interactive-confusion-matrix-train.png | Bin 0 -> 191235 bytes ...2-interactive-confusion-matrix-testing.png | Bin 0 -> 162463 bytes .../03-interactive-confusion-line-chart.png | Bin 0 -> 135676 bytes .../04-interactive-amount-cost-line-chart.png | Bin 0 -> 59508 bytes resources/images/logo.png | Bin 0 -> 61395 bytes setup.cfg | 8 + setup.py | 53 + 16 files changed, 26581 insertions(+) create mode 100644 .gitignore create mode 100644 LICENSE create mode 100644 README.md create mode 100644 bctools/__init__.py create mode 100644 bctools/plots.py create mode 100644 bctools/thresholds.py create mode 100644 bctools/utilities.py create mode 100644 example-notebook/example_classification_model.ipynb create mode 100644 pyproject.toml create mode 100644 resources/images/01-interactive-confusion-matrix-train.png create mode 100644 resources/images/02-interactive-confusion-matrix-testing.png create mode 100644 resources/images/03-interactive-confusion-line-chart.png create mode 100644 resources/images/04-interactive-amount-cost-line-chart.png create mode 100644 resources/images/logo.png create mode 100644 setup.cfg create mode 100644 setup.py diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..9eb0ef9 --- /dev/null +++ b/.gitignore @@ -0,0 +1,10 @@ +*.amltmp +*.amlignore +*.pyc +.ipynb_checkpoints/* +bctools/.ipynb_checkpoints/* +example-notebook/.ipynb_checkpoints/* +example-notebook/.ipynb_aml_checkpoints/* +dist/* +binclass_tools.egg-info/* +test/* \ No newline at end of file diff --git a/LICENSE b/LICENSE new file mode 100644 index 0000000..1f6bc48 --- /dev/null +++ b/LICENSE @@ -0,0 +1,29 @@ +BSD 3-Clause License + +Copyright (c) 2022, Luca Zavarella +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + +1. Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +2. Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + +3. Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. diff --git a/README.md b/README.md new file mode 100644 index 0000000..2ecf357 --- /dev/null +++ b/README.md @@ -0,0 +1,464 @@ +# binclass-tools: Binary Classification Tools for Python At Your Fingertips + + + +A set of Python wrappers and interactive plots that facilitate the analysis of binary classification problems. + +--- + +The __binclass-tools__ package makes the following available to you: + +* Powerful interactive charts that simplify the analysis of a binary classifier's performance, including any amounts and costs associated with individual observations. + +* A set of functions that return the values of metrics useful for measuring the performance of a binary classifier, for each threshold value if dependent on it. + +* A set of functions to find the optimal threshold value calculated on both the most popular metrics associated with the binary classifier under analysis, and any costs associated with each of the 4 categories in the confusion matrix. + +* A set of generic wrappers that help the analyst in daily operations dealing with binary classifications. + +On [Towards Data Science](https://towardsdatascience.com/) you will find the following article describing the theory behind all the functions of the package and the path that led me to create a package for analyzing binary classifications that also included calculating optimal threshold values for specific metrics: + +[Finding the Best Classification Threshold for Imbalanced Classifications with the Interactive Confusion Matrix and Line Charts]() + +## Quick Start + +### Requirements and Installation + +The project is based on: +* Python 3.6+ +* A set of the most popular packages used for working with data +* Plotly for interactive plots + +If you do not have Python, install it first. Then, in your favorite conda or virtual environment, simply do: + +``` +pip install binclass-tools +``` + +or, if you want to install the development version directly from github: + + +``` +pip install git+https://github.com/lucazav/binclass-tools +``` + +### Example Usage + +Let's import both the usual libraries needed to work with the data and the binclass-tools one: + +```python +import numpy as np +import pandas as pd +import bctools as bc +``` + +In addition, since we will train a classifier on randomly generated data via RandomForest, let's also import some useful functions for the purpose: + +```python +from sklearn.ensemble import RandomForestClassifier +from sklearn.datasets import make_classification +from sklearn.model_selection import train_test_split +``` + +Let's then train our model that we will use as a classifier to analyse thanks to the functions of _binclass-tools_: + +```python +# Generate a binary imbalanced classification problem, with 80% zeros and 20% ones. +X, y = make_classification(n_samples=1000, n_features=20, + n_informative=14, n_redundant=0, + random_state=12, shuffle=False, weights = [0.8, 0.2]) + +# Train - test split +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, stratify = y, random_state=0) + +# Train a RF classifier +cls = RandomForestClassifier(max_depth=6, oob_score=True) +cls.fit(X_train, y_train) +``` + +Having trained the model, let's calculate the estimated probabilities of the predictions obtained from the training and testing datasets: + +```python +# Get prediction probabilities for the train set +train_predicted_proba = cls.predict_proba(X_train)[:,1] + +# Get prediction probabilities for the test set +test_predicted_proba = cls.predict_proba(X_test)[:,1] +``` + +Let's also set up a set of variables to pass as parameters in the subsequent binclass-tools functions we will use. Considering that we are going to do first an analysis of how the model performs on the training dataset in order to get also the optimal threshold values, these are the variables we will calculate: + +* The size of the step separating one threshold value from the other (always considering the extremes 0 and 1 inclusive). + +* The list of individual amounts associated with each of the observables in the test dataset (since the dataset is generated by random values, the absolute value of column 13 is considered as the amount column). + +* Which metrics to calculate the optimal threshold for (in our case all of them). + +* Which currency symbol to use. + +* The dictionary of costs associated with each of the 4 categories of the confusion matrix. It is possible to associate a single numerical value to be considered as the average cost for each observation in that category, or a list of values to be associated with each observation. Clearly, the length of the lists in the dictionary must all be the same length, equal to the number of observations in the dataset under analysis (in our case the test dataset). + +Specifically, you have this: + +```python +# set params for the train dataset +threshold_step = 0.05 +amounts = np.abs(X_train[:, 13]) +optimize_threshold = 'all' +currency = '$' + +# The function get_cost_dict can be used to define the dictionary of costs. +# It takes as input, for each class, a float or a list of floats. +# Lists must have coherent lenghts + +train_cost_dict = bc.get_cost_dict(TN = 0, FP = 10, FN = np.abs(X_train[:, 12]), TP = 0) +``` + +At this point we can visualize the _Interactive Confusion Matrix_ on the training dataset, including the optimal threshold for all the available metrics: + +```python +var_metrics_df, invar_metrics_df, opt_thresh_df = bc.confusion_matrix_plot( + true_y = y_train, + predicted_proba = train_predicted_proba, + threshold_step = threshold_step, + amounts = amounts, + cost_dict = train_cost_dict, + optimize_threshold = optimize_threshold, + #N_subsets = 70, subsets_size = 0.2, # default + #with_replacement = False, # default + currency = currency, + random_state = 123, + title = 'Interactive Confusion Matrix for the Training Set'); +``` + +Here the output: + +![Interactive Confusion Matrix for the Training Set](/resources/images/01-interactive-confusion-matrix-train.png) + +As you can see, the interactive confusion matrix plot also returns metric dataframes that can be used in your code if needed. One is the _threshold dependent metrics dataframe_: + +| | threshold | accuracy | balanced_accuracy | cohens_kappa | f1_score | matthews_corr_coef | precision | recall | +|---:|------------:|-----------:|--------------------:|---------------:|-----------:|---------------------:|------------:|---------:| +| 0 | 0 | 0.2025 | 0.5 | 0 | 0.3368 | 0 | 0.2025 | 1 | +| 1 | 0.05 | 0.3988 | 0.623 | 0.1168 | 0.4025 | 0.249 | 0.2519 | 1 | +| 2 | 0.1 | 0.7475 | 0.8417 | 0.4664 | 0.616 | 0.5515 | 0.4451 | 1 | +| 3 | 0.15 | 0.8988 | 0.9365 | 0.7358 | 0.8 | 0.7629 | 0.6667 | 1 | +| 4 | 0.2 | 0.9462 | 0.964 | 0.8479 | 0.8822 | 0.857 | 0.7931 | 0.9938 | +| 5 | 0.25 | 0.9812 | 0.9813 | 0.9431 | 0.955 | 0.9437 | 0.9298 | 0.9815 | +| 6 | 0.3 | 0.9875 | 0.983 | 0.9615 | 0.9693 | 0.9615 | 0.9634 | 0.9753 | +| 7 | 0.35 | 0.99 | 0.9822 | 0.9689 | 0.9752 | 0.9689 | 0.9812 | 0.9691 | +| 8 | 0.4 | 0.9825 | 0.9591 | 0.9443 | 0.9551 | 0.9454 | 0.9933 | 0.9198 | +| 9 | 0.45 | 0.9712 | 0.9313 | 0.9065 | 0.9241 | 0.9098 | 0.9929 | 0.8642 | +| 10 | 0.5 | 0.9612 | 0.9043 | 0.8708 | 0.8942 | 0.8782 | 1 | 0.8086 | +| 11 | 0.55 | 0.9388 | 0.8488 | 0.7862 | 0.8218 | 0.8048 | 1 | 0.6975 | +| 12 | 0.6 | 0.91 | 0.7778 | 0.666 | 0.7143 | 0.7066 | 1 | 0.5556 | +| 13 | 0.65 | 0.8838 | 0.713 | 0.542 | 0.5974 | 0.6097 | 1 | 0.4259 | +| 14 | 0.7 | 0.8675 | 0.6728 | 0.4573 | 0.5138 | 0.5445 | 1 | 0.3457 | +| 15 | 0.75 | 0.8438 | 0.6142 | 0.3207 | 0.3719 | 0.437 | 1 | 0.2284 | +| 16 | 0.8 | 0.8238 | 0.5648 | 0.192 | 0.2295 | 0.3258 | 1 | 0.1296 | +| 17 | 0.85 | 0.805 | 0.5185 | 0.0578 | 0.0714 | 0.1725 | 1 | 0.037 | +| 18 | 0.9 | 0.8012 | 0.5093 | 0.0292 | 0.0364 | 0.1218 | 1 | 0.0185 | +| 19 | 0.95 | 0.7975 | 0.5 | 0 | 0 | 0 | 1 | 0 | +| 20 | 1 | 0.7975 | 0.5 | 0 | 0 | 0 | 1 | 0 | + +The second is the _threshold invariant metrics dataframe_: + +| | invariant_metric | value | +|---:|:-------------------|--------:| +| 0 | roc_auc | 0.9992 | +| 1 | pr_auc | 0.9972 | +| 2 | brier_score | 0.0427 | + +The third and last one is a dataframe containing the _optimal threshold values_ for each implemented metric: + +| | optimized_metric | optimal_threshold | +|---:|:-------------------|--------------------:| +| 0 | kappa | 0.3 | +| 1 | mcc | 0.3 | +| 2 | roc | 0.25 | +| 3 | f1_score | 0.3 | +| 4 | f2_score | 0.25 | +| 5 | f05_score | 0.35 | +| 6 | cost | 0.35 | + +We borrowed the code for calculating optimal threshold values directly from the [GHOST repository](https://github.com/rinikerlab/GHOST), introducing more metrics and optimizing the calculations using parallelism. + +Once the threshold values of interest have been identified through the training data, the Interactive Confusion Matrix can be plotted for the testing dataset. Here we also avoid calculating the optimal thresholds, since it does not make sense to do so on a testing dataset: + +```python +# You can also analyze the test dataset. +# In this case there is no need to optimize the threshold value for any measure. +threshold_step = 0.05 +amounts = np.abs(X_test[:, 13]) +optimize_threshold = None +currency = '$' + +test_cost_dict = bc.get_cost_dict(TN = 0, FP = 10, FN = np.abs(X_test[:, 12]), TP = 0) + +var_metrics_df, invar_metrics_df, __ = bc.confusion_matrix_plot( + true_y = y_test, + predicted_proba = test_predicted_proba, + threshold_step = threshold_step, + amounts = amounts, + cost_dict = test_cost_dict, + optimize_threshold = optimize_threshold, + #N_subsets = 70, subsets_size = 0.2, # default + #with_replacement = False, # default + currency = currency, + random_state = 123); +``` + +Evidently, the Interactive Confusion Matrix plot will not present the table of optimal threshold values for the various metrics: + +![Interactive Confusion Matrix for the Training Set](/resources/images/02-interactive-confusion-matrix-test.png) + +As you can see from the code, this time the dataframes returned are only the first two. + +Should you need to have only the above dataframes available without generating the interactive confusion matrix plot, there are functions available specifically for this. You can get the threshold invariant metrics dataframe as following: + +```python +invar_metrics_df = bc.utilities.get_invariant_metrics_df(true_y = y_test, + predicted_proba = test_predicted_proba) +``` + +You can also get the threshold dependent metrics dataframe and the confusion matrix values for a specific threshold as following: + +```python +conf_matrix, metrics_fixed_thresh_df = bc.utilities.get_confusion_matrix_and_metrics_df( + true_y = y_test, + predicted_proba = test_predicted_proba, + threshold = 0.3 # default = 0.5 +) +``` + +Keep in mind that the confusion matrix values are returned in an array, not in a dataframe. + +Finally, the dataframe of the optimized thresholds can be also obtained directly with the following code: + +```python +threshold_values = np.arange(0.05, 1, 0.05) + +opt_thresh_df = bc.thresholds.get_optimized_thresholds_df( + optimize_threshold = ['Kappa', 'Fscore', 'Cost'], + threshold_values = threshold_values, + true_y = y_train, + predicted_proba = train_predicted_proba, + cost_dict = train_cost_dict, + + # GHOST parameters (these values are also the default ones) + N_subsets = 70, + subsets_size = 0.2, + with_replacement = False, + + random_state = 120) + +``` + +The `N_subset`, `subset_size`, and `with_replacement` parameters are specific to the GHOST algorithm used to find the optimal threshold values. For more details, you can refer directly to the [paper introducing the GHOST method](https://pubs.acs.org/doi/10.1021/acs.jcim.1c00160). + +If, on the other hand, you are interested in specifically optimizing a non-cost-based threshold (specifically, one of these: 'ROC', 'MCC', 'Kappa', 'F1'), you can use the following function: + +```python +opt_roc_threshold_value = bc.thresholds.get_optimal_threshold( + y_train, + train_predicted_proba, + threshold_values, + ThOpt_metrics = 'ROC', # default = 'Kappa' + + # GHOST parameters (these values are also the default ones) + N_subsets = 70, + subsets_size = 0.2, + with_replacement = False, + + random_seed = 120) +``` + +Keep in mind that if you choose _'Fscore'_ as the metric to optimize, you will be returned 3 optimal threshold values for metrics F1, F2 and F0.5 respectively. + +Specifically for cost optimization (minimization), you can use the following function: + +```python +opt_cost_threshold_value = bc.thresholds.get_cost_optimal_threshold( + y_train, + train_predicted_proba, + cost_dict = train_cost_dict, + + # GHOST parameters (these values are also the default ones) + N_subsets = 70, + subsets_size = 0.2, + with_replacement = False, + + random_seed = 120) +``` + +You could also be also interested in visualizing the trend of possible amounts or costs associated with each category of the confusion matrix as the threshold value changes. For this purpose there is the following function that generates an _Interactive Confusion Line Chart_: + +```python +amount_cost_df, total_amount = bc.confusion_linechart_plot( + true_y = y_test, + predicted_proba = test_predicted_proba, + threshold_step = threshold_step, + amounts = amounts, + cost_dict = test_cost_dict, + currency = currency); +``` + +Here the output: + +![Interactive Confusion Line Chart](/resources/images/03-interactive-confusion-line-chart.png) + +You can see that there are also black "diamonds" indicating the first threshold value in which there is a swap of the amount and cost curves. The curve swapping points can also be more than one. + +This function, in addition to generating the plot, also returns two output values: the total amount given by the sum of all categories and the dataframe of the amounts and costs for each category as the threshold changes: + +```python +print(f'total amount: {currency}{total_amount}') + +amount_cost_df +``` + +In addition to the result of the total amount ($374.24), here the amounts & costs dataframe: + +| | threshold | amount_TN | amount_FP | amount_FN | amount_TP | cost_TN | cost_FP | cost_FN | cost_TP | total_cost | +|---:|------------:|------------:|------------:|------------:|------------:|----------:|----------:|----------:|----------:|-------------:| +| 0 | 0 | 0 | 301.374 | 0 | 72.8675 | 0 | 1590 | 0 | 0 | 1590 | +| 1 | 0.05 | 48.9919 | 252.382 | 0 | 72.8675 | 0 | 1300 | 0 | 0 | 1300 | +| 2 | 0.1 | 139.883 | 161.491 | 0 | 72.8675 | 0 | 830 | 0 | 0 | 830 | +| 3 | 0.15 | 201.993 | 99.3817 | 0 | 72.8675 | 0 | 460 | 0 | 0 | 460 | +| 4 | 0.2 | 251.804 | 49.5706 | 0 | 72.8675 | 0 | 260 | 0 | 0 | 260 | +| 5 | 0.25 | 267.401 | 33.9731 | 5.73307 | 67.1344 | 0 | 160 | 3.47131 | 0 | 163.471 | +| 6 | 0.3 | 287.28 | 14.0945 | 7.87073 | 64.9967 | 0 | 70 | 10.5798 | 0 | 80.5798 | +| 7 | 0.35 | 295.033 | 6.34141 | 12.96 | 59.9075 | 0 | 20 | 15.8962 | 0 | 35.8962 | +| 8 | 0.4 | 301.374 | 0 | 15.0905 | 57.777 | 0 | 0 | 18.9167 | 0 | 18.9167 | +| 9 | 0.45 | 301.374 | 0 | 17.1228 | 55.7447 | 0 | 0 | 19.9586 | 0 | 19.9586 | +| 10 | 0.5 | 301.374 | 0 | 34.1608 | 38.7067 | 0 | 0 | 41.8435 | 0 | 41.8435 | +| 11 | 0.55 | 301.374 | 0 | 41.0564 | 31.811 | 0 | 0 | 49.1584 | 0 | 49.1584 | +| 12 | 0.6 | 301.374 | 0 | 47.5616 | 25.3058 | 0 | 0 | 54.6559 | 0 | 54.6559 | +| 13 | 0.65 | 301.374 | 0 | 58.7947 | 14.0727 | 0 | 0 | 64.8295 | 0 | 64.8295 | +| 14 | 0.7 | 301.374 | 0 | 58.7947 | 14.0727 | 0 | 0 | 64.8295 | 0 | 64.8295 | +| 15 | 0.75 | 301.374 | 0 | 66.5553 | 6.31212 | 0 | 0 | 69.3375 | 0 | 69.3375 | +| 16 | 0.8 | 301.374 | 0 | 71.3319 | 1.53555 | 0 | 0 | 75.9399 | 0 | 75.9399 | +| 17 | 0.85 | 301.374 | 0 | 71.3319 | 1.53555 | 0 | 0 | 75.9399 | 0 | 75.9399 | +| 18 | 0.9 | 301.374 | 0 | 72.8675 | 0 | 0 | 0 | 75.9666 | 0 | 75.9666 | +| 19 | 0.95 | 301.374 | 0 | 72.8675 | 0 | 0 | 0 | 75.9666 | 0 | 75.9666 | +| 20 | 1 | 301.374 | 0 | 72.8675 | 0 | 0 | 0 | 75.9666 | 0 | 75.9666 | + +Just as we have already seen with the other plots, the amount and cost dataframe can be obtained directly through a specific function. In particular, you can also choose not to report amounts, for example, if you only want to analyze costs: + +```python +# this function requires a list of thresholds, instead of the step, for example: +threshold_values = np.arange(0, 1, 0.05) + +# example without amounts +costs_df = bc.utilities.get_amount_cost_df( + true_y = y_test, + predicted_proba = test_predicted_proba, + threshold_values = threshold_values, + #amounts = amounts, + cost_dict = test_cost_dict) +``` + +It may be sometimes necessary to compare the performance of what is considered a gain (e.g., amount of TP because it escaped fraud) with what is considered a loss (amount of FN of fraud escaped from the model + fixed cost per FP representing the checking to be done on transactions that are classified as fraudulent but are not). This can be done through the _Interactive Amount-Cost Line Chart_: + +```python +amount_classes = ['TP', 'FP'] +cost_classes = 'all' + +total_cost_amount_df = bc.total_amount_cost_plot( + true_y = y_test, + predicted_proba = test_predicted_proba, + threshold_step = threshold_step, + amounts = amounts, + cost_dict = test_cost_dict, + amount_classes = amount_classes, + cost_classes = cost_classes, + currency = currency); +``` + +Here the resulting plot: + +![Interactive Amount-Cost Line Chart](/resources/images/04-interactive-amount-cost-line-chart.png) + +As in the other cases, this function returns a dataframe with the amount and cost values, both for each category in the confusion matrix and for selected aggregates of them, associated with each threshold: + +| | threshold | amount_TP | amount_FP | amount_sum | cost_TN | cost_FP | cost_FN | cost_TP | cost_sum | +|---:|------------:|------------:|------------:|-------------:|----------:|----------:|----------:|----------:|-----------:| +| 0 | 0 | 72.8675 | 301.374 | 374.242 | 0 | 1590 | 0 | 0 | 1590 | +| 1 | 0.05 | 72.8675 | 266.572 | 339.44 | 0 | 1380 | 0 | 0 | 1380 | +| 2 | 0.1 | 72.8675 | 152.006 | 224.874 | 0 | 770 | 0 | 0 | 770 | +| 3 | 0.15 | 72.8675 | 88.4092 | 161.277 | 0 | 430 | 0 | 0 | 430 | +| 4 | 0.2 | 72.5494 | 61.6009 | 134.15 | 0 | 290 | 0.221014 | 0 | 290.221 | +| 5 | 0.25 | 66.5301 | 31.6006 | 98.1307 | 0 | 160 | 4.472 | 0 | 164.472 | +| 6 | 0.3 | 65.3813 | 20.9625 | 86.3437 | 0 | 100 | 9.90665 | 0 | 109.907 | +| 7 | 0.35 | 60.9562 | 12.0418 | 72.998 | 0 | 30 | 18.0882 | 0 | 48.0882 | +| 8 | 0.4 | 57.8163 | 4.85876 | 62.6751 | 0 | 10 | 18.0989 | 0 | 28.0989 | +| 9 | 0.45 | 46.3113 | 0 | 46.3113 | 0 | 0 | 34.7334 | 0 | 34.7334 | +| 10 | 0.5 | 37.5392 | 0 | 37.5392 | 0 | 0 | 42.6685 | 0 | 42.6685 | +| 11 | 0.55 | 31.2279 | 0 | 31.2279 | 0 | 0 | 49.2799 | 0 | 49.2799 | +| 12 | 0.6 | 28.4496 | 0 | 28.4496 | 0 | 0 | 51.4823 | 0 | 51.4823 | +| 13 | 0.65 | 19.7851 | 0 | 19.7851 | 0 | 0 | 58.1733 | 0 | 58.1733 | +| 14 | 0.7 | 8.36888 | 0 | 8.36888 | 0 | 0 | 68.444 | 0 | 68.444 | +| 15 | 0.75 | 1.53555 | 0 | 1.53555 | 0 | 0 | 75.9399 | 0 | 75.9399 | +| 16 | 0.8 | 1.53555 | 0 | 1.53555 | 0 | 0 | 75.9399 | 0 | 75.9399 | +| 17 | 0.85 | 0 | 0 | 0 | 0 | 0 | 75.9666 | 0 | 75.9666 | +| 18 | 0.9 | 0 | 0 | 0 | 0 | 0 | 75.9666 | 0 | 75.9666 | +| 19 | 0.95 | 0 | 0 | 0 | 0 | 0 | 75.9666 | 0 | 75.9666 | +| 20 | 1 | 0 | 0 | 0 | 0 | 0 | 75.9666 | 0 | 75.9666 | + +You can also directly access the previous data with the already used `get_amount_cost_df()` function, excluding for example amounts to focus on costs: + +```python +# this function requires a list of thresholds, instead of the step, for example: +threshold_values = np.arange(0, 1, 0.05) + +# example without amounts +costs_df = bc.utilities.get_amount_cost_df( + true_y = y_test, + predicted_proba = test_predicted_proba, + threshold_values = threshold_values, + #amounts = amounts, + cost_dict = test_cost_dict) +``` + +Finally, there is also a function in this first release that simplifies the extraction of observations belonging to a specific category of the confusion matrix from a scored dataframe. If you want to extract, for example, all observations belonging to the TP category, this is the code you need: + +```python +# for example, if we want the True Positive data points with a 0.7 threshold: +confusion_category = 'TP' + +bc.get_confusion_category_observations_df( + confusion_category = confusion_category, + X_data = X_test, + true_y = y_test, + predicted_proba = test_predicted_proba, + threshold = 0.7 # default = 0.5 +) +``` + +You can find the complete code in the [sample notebook](/example-notebook/example_classification_model.ipynb) provided with the repository. + +## Content + +### Notebook: + +- **example-notebook/Example_classification_model.ipynb** +Example of how to use the binclass-tools library. + +### Dependencies: +If you are interested in using _binclass-tools_ in your own code/notebooks, you'll just need these packages: +- numpy +- pandas +- scikit-learn (>=0.22.1) +- matplotlib +- plolty + +## Authors +[Luca Zavarella](https://github.com/lucazav) and [Greta Villa](https://github.com/GretaVilla). + +## Acknowledgements + +## License + +This package is licensed under the [BSD-3-Clause](https://opensource.org/licenses/BSD-3-Clause) license. + + diff --git a/bctools/__init__.py b/bctools/__init__.py new file mode 100644 index 0000000..6e62aea --- /dev/null +++ b/bctools/__init__.py @@ -0,0 +1,2 @@ +from .plots import * +from .utilities import get_cost_dict, get_confusion_category_observations_df \ No newline at end of file diff --git a/bctools/plots.py b/bctools/plots.py new file mode 100644 index 0000000..36d6520 --- /dev/null +++ b/bctools/plots.py @@ -0,0 +1,778 @@ +#!/usr/bin/env python +# coding: utf-8 + +import numpy as np +import pandas as pd + +import plotly.graph_objects as go +from plotly.subplots import make_subplots + +from .utilities import _get_amount_matrix, _get_cost_matrix +from .utilities import get_amount_cost_df, get_invariant_metrics_df, get_confusion_matrix_and_metrics_df + +from .thresholds import get_optimized_thresholds_df + +def confusion_matrix_plot(true_y, predicted_proba, threshold_step = 0.01, + amounts = None, cost_dict = None, optimize_threshold = None, + N_subsets = 70, subsets_size = 0.2, with_replacement = False, + currency = '€', random_state = None, title = 'Interactive Confusion Matrix'): + + """ + Plots interactive and customized confusion matrix with plotly, + one for each threshold that can be selected with a slider, + displaying additional information (metrics, optimized thresholds). + + Returns three dataframes containing: + - metrics that depend on threshold + - metrics that don't depend on threshold, + - optimized thresholds (or empty) + + Plot is constituted by: + - table displaying metrics that vary based on the threshold selected: + Accuracy, Balanced Acc., F1, Precision, Recall, MCC, Cohen's K + - table displaying metrics that don't depend on threshold: + ROC auc, Pecision-Recall auc, Brier score + - when optimize_threshold is given: + table displayng thresholds optimized using GHOST method for any of the following metrics: + Kohen's Kappa, Matthew's Correlation Coefficient, ROC, F-beta scores (beta = 1, 0.5, 2) + and for minimal total cost + - confusion matrix (annotated heatmap) that varies based on the threshold selected + displayng for each class (based on given inputs): count and percentage on total, amount and percentage on total, cost + - slider that allows to select the threshold + + Parameters + ---------- + true_y: sequence of ints + True labels + predicted_proba: sequence of floats + predicted probabilities for class 1 + (e.g. output from model.predict_proba(data)[:,1]) + threshold_step: float, default=0.01 + step between each classification threshold (ranging from 0 to 1) below which prediction label is 0, 1 otherwise + each value will have a corresponding slider step + amounts: sequence of floats, default=None + amounts associated to each element of data + (e.g. fraud detection for online orders: amounts could be the orders' amounts) + cost_dict: dict, deafult=None + dict containing costs associated to each class (TN, FP, FN, TP) + with keys "TN", "FP", "FN", "TP" + and values that can be both lists (with coherent lenghts) and/or floats + (output from get_cost_dict) + necessary when optimizing threshold for minimal total costs + optimize_threshold: {'all', 'ROC', 'MCC', 'Kappa', 'Fscore', 'Cost'} + or list containing allowed values except 'all', default=None + metrics for which thresholds will be optimized + 'all' is equvalent to ['ROC', 'MCC', 'Kappa', 'Fscore'] if cost_dict=None, ['ROC', 'MCC', 'Kappa', 'Fscore', 'Cost'] otherwise + N_subsets: int, default=70 + Number of subsets used in GHOST optimization process + subsets_size: float or int, default=0.2 + Size of the subsets used in GHOST optimization process. + If float, represents the proportion of the dataset to include in the subsets. + If integer, it represents the actual number of instances to include in the subsets. + with_replacement: bool, default=False + If True, the subsets used in GHOST optimization process are drawn randomly with replacement, without otherwise. + currency: str, default='€' + currency symbol to be visualized. For unusual currencies, you can use their HTML code representation + (eg. Indian rupee: '₹') + random_state: int, default=None + Controls the randomness of the bootstrapping of the samples when optimizing thresholds with GHOST method + title: str, default='Interactive Confusion Matrix' + The main title of the plot. + + """ + if currency == '$': #correct dollar symbol for plotly in its HTML code + currency = '$' + + try: + n_of_decimals = len(str(threshold_step).rsplit('.')[1]) + except: + n_of_decimals = 4 + + threshold_values = list(np.arange(0, 1 + threshold_step, threshold_step)) #define thresholds array + n_data = len(true_y) + main_title = f"{title}
" + subtitle = "Total obs: " + '{:,}'.format(n_data) + + if amounts is not None: + amounts = list(amounts) + tot_amount = sum(amounts) + subtitle += "
Total amount: " + currency + '{:,.2f}'.format(tot_amount) + + # initialize annotation matrix + annotations_fixed = np.array([[["TN", "True Negative"], ["FP", "False Positive"]], + [["FN", "False Negative"], ["TP", "True Positive"]]]) + + # initialize figure + fig = make_subplots(rows=2, cols=3, + specs=[[{"type": "table"}, {"type": "table"}, {"type": "table"}], + [{"type": "heatmap", "colspan" : 3}, None, None]], + vertical_spacing=0.0, + horizontal_spacing = 0.01) + + # compute invariant metrics and create table with invariant metrics: + constant_metrics_df = get_invariant_metrics_df(true_y, predicted_proba) + fig.add_trace( + go.Table(header=dict(values=['Invariant Metric', 'Value']), + cells=dict(values=[constant_metrics_df['invariant_metric'], constant_metrics_df['value']]) + ), row=1, col=2) + + # create table with optimized thresholds or empty: + if optimize_threshold is not None: + + # compute optimized thresholds and create dataframe + optimal_thresholds_df = get_optimized_thresholds_df(optimize_threshold, threshold_values[1:-1], true_y, predicted_proba, + cost_dict, random_state) + fig.add_trace( + go.Table(header=dict(values=['Optimized Metric', 'Optimal Threshold']), + cells=dict(values=[optimal_thresholds_df['optimized_metric'], optimal_thresholds_df['optimal_threshold']]) + ), row=1, col=3) + else: + optimal_thresholds_df = None # needed for return statement + fig.add_trace(go.Table({}), row=1, col=3) + + # create dynamic titles dictionary (will be empty if cost is not given) + titles = {} + + # initialize dataframe to store metrics dependent on threshold + metrics_dep_on_threshold_df = pd.DataFrame() + + for threshold in threshold_values: + + titles[threshold] = '' #set empty title + + # get confusion matrix and metrics dep. on threshold + matrix, temp_metrics_df = get_confusion_matrix_and_metrics_df(true_y, predicted_proba, + threshold = threshold, normalize = None) + # concat to metrics_dep_on_threshold_df + temp_metrics_df['threshold'] = threshold + metrics_dep_on_threshold_df = pd.concat([metrics_dep_on_threshold_df, temp_metrics_df]) + + annotations = np.dstack((annotations_fixed, matrix/n_data)) # add count percentage to annotations matrix + + # define dynamic annotations and hover text + template = "%{z} (%{text[2]:.2~%})" # total count and perc. + + if amounts or cost_dict: + annotations_max_index = 2 + + if amounts: + amount_matrix = _get_amount_matrix(true_y, predicted_proba, threshold, amounts) + annotations = np.dstack((annotations, amount_matrix, amount_matrix/tot_amount)) # add amount matrix and perc. matrix + annotations_max_index += 2 + #add to template "Amount:" total and perc. + template += "
Amount: "+ currency + "%{text[3]:~s} (%{text[4]:.2~%})" + + if cost_dict: + cost_matrix = _get_cost_matrix(true_y, predicted_proba, threshold, cost_dict) + total_cost = cost_matrix.sum() + annotations = np.dstack((annotations, cost_matrix, cost_matrix/total_cost)) # add cost matrix and perc. matrix + annotations_max_index += 2 + #add to template "Cost:" total and perc. + template += "
Cost: "+ currency +\ + "%{text[" + str(annotations_max_index-1) + "]:~s} (%{text[" +str(annotations_max_index)+ "]:.2~%})" + # update title adding total cost + titles[threshold] += "
Total cost: " + currency + '{:,.2f}'.format(cost_matrix.sum()) + + # invert rows (for plotly.go plots compatibility) + matrix[[0, 1]] = matrix[[1, 0]] + annotations[[0, 1]] = annotations[[1, 0]] + + # table with metrics that depend on threshold + fig.add_trace( + go.Table(header=dict(values=['Variable Metric', 'Value']), + cells=dict(values=[temp_metrics_df[k].tolist() for k in temp_metrics_df.columns[:-1]]), + visible=False + ), + row=1, col=1) + + # annotated confusion matrix + fig.add_trace(go.Heatmap(z = matrix, + text = annotations, + texttemplate= "%{text[0]}
" + template, + name="threshold: " + str(round(threshold, n_of_decimals)), + hovertemplate = "%{text[1]}
Count: " + template, + x=['False', 'True'], + y=['True', 'False'], + colorscale = 'Blues', + showscale = False, + visible=False), row=2, col=1) + + # pivot metrics_dep_on_threshold_df + name_col = metrics_dep_on_threshold_df.columns[0] + value_col = metrics_dep_on_threshold_df.columns[1] + metrics_dep_on_threshold_df = metrics_dep_on_threshold_df.pivot(columns = name_col, values = value_col, index = 'threshold').reset_index('threshold').rename_axis(None, axis=1) + + # fig.data[0] is the constant metrcis table, fig.data[1] is the optimal threshold table, always visible + fig.data[2].visible = True # first variable metrics table + fig.data[3].visible = True # first confusion matrix + + # create and add slider + steps = [] + j = 2 # skip first and second trace (invariant metric table, opt. thresholds/empty table) + + for threshold in threshold_values: + step = dict(method="update", + args=[{"visible": [False] * len(fig.data)}, + {"title": dict(text = main_title + '' \ + + subtitle + titles[threshold] + '', + y = 0.965, yanchor = 'bottom')} + ], + label = str(round(threshold, n_of_decimals)) + ) + + step["args"][0]["visible"][0] = True # constant metric table always visible + step["args"][0]["visible"][1] = True # opt. thresholds/empty table always visible + step["args"][0]["visible"][j] = True # threshold related confusion matrix + step["args"][0]["visible"][j+1] = True # threshold related variable metrics table + steps.append(step) + j += 2 # add 2 to trace index (confusion matrix and variable metrics table) + + sliders = [dict(active=0, + currentvalue={"prefix": "Threshold: "}, + pad=dict(t= 50), + steps=steps)] + + fig.update_layout(height=600, + sliders=sliders, + title = dict(text = main_title + '' \ + + subtitle + titles[threshold_values[0]] + '', + y = 0.965, yanchor = 'bottom')) #first visible title + + fig.update_xaxes(title_text = "Predicted") + fig.update_yaxes(title_text = "Actual") + fig.show() + + return metrics_dep_on_threshold_df, constant_metrics_df, optimal_thresholds_df + +def confusion_linechart_plot(true_y, predicted_proba, threshold_step = 0.01, + amounts = None, cost_dict = None, currency = '€', + title = 'Interactive Confusion Line Chart'): + + """ + - Plots interactive and customized line-plots with plotly, one for each "confusion class" (TN, FP, FN, TP), + displayng amount and/or cost againts thresholds and additional information (intersection points, total cost) + - Returns a dataframe containing, for every threshold and depending on the inputs, + the amount and cost associated to each class (TN, FP, FN, TP) and the total cost + - Returns the value of the total amount + + Plot is constituted by: + - four linecharts, one for each class (TN, FP, FN, TP), with thresholds on x axis + and amounts and/or costs (depends on the given input) on y axis + - slider that moves markers in linecharts based on threshold selected + + Parameters + ---------- + true_y: sequence of ints + True labels + predicted_proba: sequence of floats + predicted probabilities for class 1 + (e.g. output from model.predict_proba(data)[:,1]) + threshold_step: float, default=0.01 + step between each classification threshold (ranging from 0 to 1) below which prediction label is 0, 1 otherwise + each value will have a corresponding slider step + amounts: sequence of floats, default=None + amounts associated to each element of data + (e.g. fraud detection for online orders: amounts could be the orders' amounts) + cost_dict: dict, deafult=None + dict containing costs associated to each class (TN, FP, FN, TP) + with keys "TN", "FP", "FN", "TP" + and values that can be both lists (with coherent lenghts) and/or floats + (output from get_cost_dict) + currency: str, default='€' + currency symbol to be visualized. For unusual currencies, you can use their HTML code representation + (eg. Indian rupee: '₹') + title: str, default='Interactive Confusion Line Chart' + The main title of the plot. + + Returns + ---------- + amount_cost_df: pandas dataframe + Dataframe containing variables: + - threshold + - if amounts is given: amounts relative to each class (TN, FP, FN, TP) + - if cost_dict is given: cost relative to each class (TN, FP, FN, TP) and total cost + + total_amounts: float + sum of the amounts (or None if amounts is None) + """ + + if currency == '$': + currency = '$' + + try: + n_of_decimals = len(str(threshold_step).rsplit('.')[1]) + except: + n_of_decimals = 4 + + threshold_values = list(np.arange(0, 1 + threshold_step, threshold_step)) + middle_x = (threshold_values[0] + threshold_values[-1])/2 + n_data = len(true_y) + main_title = f"{title}
" + subtitle = "Total obs: " + '{:,}'.format(n_data) + + if amounts is not None: + amounts = list(amounts) + tot_amount = sum(amounts) + subtitle += "
Total amount: " + currency + '{:,.2f}'.format(tot_amount) + + # Create labels for titles + label_lst = ["True Negative", "False Positive", "False Negative", "True Positive"] + + # get threshold-amount-cost dataframe (throws error if both cost_dict and amounts are None) + amount_cost_df = get_amount_cost_df(true_y, predicted_proba, threshold_values, amounts, cost_dict) + + # Create figure + fig = make_subplots( + rows=2, cols=2, + subplot_titles = label_lst, + shared_xaxes = True, + vertical_spacing=0.16, + specs=[[{"type": "scatter"}, {"type": "scatter"}], + [{"type": "scatter"}, {"type": "scatter"}]] + ) + + for annotation in fig['layout']['annotations']: + annotation['y'] = annotation['y'] + 0.04 #move subplots title up + + middle_y_lst = [] + + if (amounts is not None) and (cost_dict is not None): + static_charts_num = 12 + markers_num = 8 + unit_y_lst = [] + + titles = {threshold: "
Total cost: " + currency \ + + '{:,.2f}'.format(value) for threshold, value in zip(threshold_values, + list(amount_cost_df['total_cost']))} + + # Create amounts and cost line charts + for confusion_index, row_index, col_index, color1, color2 in zip(['TN', 'FP', 'FN', 'TP'], + [1, 1, 2, 2], + [1, 2, 1, 2], + ['blue', 'red', '#00CC96', '#AB63FA'], + ['rgb(128, 177, 211)', 'rgb(251, 128, 114)', + 'rgb(141, 211, 199)', 'rgb(190, 186, 218)']): + fig.add_trace( + go.Scatter(x = amount_cost_df['threshold'], + y = amount_cost_df['amount_' + confusion_index], + showlegend = False, + mode="lines", + line=dict(color=color1), + hovertemplate = "amount: " + currency + "%{y}"), + row=row_index, col=col_index) + + fig.add_trace( + go.Scatter(x = amount_cost_df['threshold'], + y = amount_cost_df['cost_' + confusion_index], + showlegend = False, + mode="lines", + line=dict(color=color2), + hovertemplate = "cost: " + currency + "%{y}"), + row=row_index, col=col_index) + + # Save middle points + middle_y_lst.append((max(fig.data[-2]['y'] + fig.data[-1]['y']) + min(fig.data[-2]['y'] + fig.data[-1]['y']))/2) + unit_y_lst.append((middle_y_lst[-1] - min(fig.data[-2]['y'] + fig.data[-1]['y']))/4) + + x_intersect = [] + y_intersect = [] + diff_cost_amount = list(amount_cost_df['amount_' + confusion_index] - amount_cost_df['cost_' + confusion_index]) + + for i in range(len(diff_cost_amount)-1): + if (diff_cost_amount[i] < 0) & (diff_cost_amount[i+1]>=0): + x_intersect.append(amount_cost_df.iloc[i+1]['threshold']) + y_intersect.append(amount_cost_df.iloc[i+1]['cost_' + confusion_index]) + + elif (diff_cost_amount[i] > 0) & (diff_cost_amount[i+1]<=0): + x_intersect.append(amount_cost_df.iloc[i+1]['threshold']) + y_intersect.append(amount_cost_df.iloc[i+1]['cost_' + confusion_index]) + + fig.add_trace( + go.Scatter(x=x_intersect, + y=y_intersect, + showlegend = False, + mode = "markers", + marker_symbol = 'diamond', + marker_size = 8, + marker=dict(color='black'), + hovertemplate = "%{x}", + ), + row = row_index, col = col_index) + + if x_intersect: + intercepts_str = 'Swaps: ' + intercepts_str += ", ".join(str(round(x, n_of_decimals)) for x in x_intersect) + fig.add_annotation(xref="x domain",yref="y domain",x=0.5, y=1.15, showarrow=False, + text=intercepts_str, row=row_index, col=col_index) + + # Create indicator markers + for threshold in threshold_values: + amount_cost_row = amount_cost_df.loc[amount_cost_df['threshold'] == threshold] + + if threshold > middle_x: + left_or_right = ' left' + else: + left_or_right = ' right' + + for confusion_index, row_index, col_index, middle_y, \ + unit_y, color1, color2 in zip(['TN', 'FP', 'FN', 'TP'], + [1, 1, 2, 2], + [1, 2, 1, 2], + middle_y_lst, + unit_y_lst, + ['blue', 'red','#00CC96', '#AB63FA'], + ['rgb(128, 177, 211)', 'rgb(251, 128, 114)', 'rgb(141, 211, 199)', 'rgb(190, 186, 218)']): + + y_point_amount, y_point_cost = float(amount_cost_row['amount_' + confusion_index]), float(amount_cost_row['cost_' + confusion_index]) + + if abs(y_point_amount - y_point_cost) < unit_y: + + if y_point_amount > y_point_cost: + textposition_cost = 'bottom' + left_or_right + textposition_amount = 'top' + left_or_right + + else: + textposition_cost = 'top' + left_or_right + textposition_amount = 'bottom' + left_or_right + + else: + + if y_point_cost < middle_y: + textposition_cost = 'top' + left_or_right + else: + textposition_cost = 'bottom' + left_or_right + + if y_point_amount < middle_y: + textposition_amount = 'top' + left_or_right + else: + textposition_amount = 'bottom' + left_or_right + + fig.add_trace( + go.Scatter(x = [threshold], + y = [y_point_amount], + showlegend = False, + mode = 'markers+text', + texttemplate = "amount: " + currency + "%{y}", + textposition = [textposition_amount], + hovertemplate = currency +'%{y}', + name = str(threshold), + marker = dict(color=color1), + marker_size = 8, + visible=False), + row = row_index, col = col_index) + + fig.add_trace( + go.Scatter(x = [threshold], + y = [y_point_cost], + showlegend = False, + mode = 'markers+text', + texttemplate = "cost: " + currency + "%{y}", + textposition = [textposition_cost], + hovertemplate = currency +'%{y}', + name = str(threshold), + marker = dict(color=color2), + marker_size = 8, + visible=False), + row = row_index, col = col_index) + + else: + static_charts_num = 4 + markers_num = 4 + if amounts is not None: + var_to_plot = 'amount' + titles = {threshold: '' for threshold in threshold_values} # set empty titles dict + else: + tot_amount = None + var_to_plot = 'cost' + titles = {threshold: "
Total cost: " + currency \ + + '{:,.2f}'.format(value) for threshold, value in zip(threshold_values, + list(amount_cost_df['total_cost']))} + + for confusion_index, row_index, col_index, color in zip([var_to_plot + '_TN', var_to_plot + '_FP', + var_to_plot + '_FN', var_to_plot + '_TP'], + [1, 1, 2, 2], + [1, 2, 1, 2], + ['blue', 'red', + '#00CC96', '#AB63FA']): + fig.add_trace( + go.Scatter(x = amount_cost_df['threshold'], + y = amount_cost_df[confusion_index], + showlegend = False, + mode="lines", + line=dict(color=color), + hovertemplate = var_to_plot + ": " + currency + "%{y}"), + row=row_index, col=col_index) + + for i in range(4): + middle_y_lst.append((max(fig.data[i]['y']) + min(fig.data[i]['y']))/2) + + # Create indicator markers + for threshold in threshold_values: + + if threshold > middle_x: + left_or_right = ' left' + else: + left_or_right = ' right' + + amount_cost_row = amount_cost_df.loc[amount_cost_df['threshold'] == threshold] + + for confusion_index, row_index, col_index, middle_y, color in zip([var_to_plot + '_TN', var_to_plot + '_FP', + var_to_plot + '_FN', var_to_plot + '_TP'], + [1, 1, 2, 2], + [1, 2, 1, 2], + middle_y_lst, + ['blue', 'red', '#00CC96', '#AB63FA']): + + y_point = float(amount_cost_row[confusion_index]) + + if y_point < middle_y: + textposition = 'top' + left_or_right + else: + textposition = 'bottom' + left_or_right + + fig.add_trace( + go.Scatter(x = [threshold], + y = [y_point], + showlegend = False, + mode = 'markers+text', + texttemplate = var_to_plot + ": " + currency + "%{y}", + textposition = textposition, + hovertemplate = currency +'%{y}', + name = str(threshold), + marker=dict(color=color), + marker_size = 8, + visible=False), + row = row_index, col = col_index) + + # if both amounts and cost are given, static_charts_num = 12 + # (4 linecharts for amount, 4 for cost, 4 for intercepts) from fig.data[0] to fig.data[11] + # if either amounts or cost is not given, static_charts_num = 4 + # there are just 4 linecharts from fig.data[0] to fig.data[3] + # line charts are always visible + + # make visible also the first line-chart markers to visualize (associated with the first threshold) + for i in range(markers_num): + fig.data[static_charts_num + i].visible = True + + steps = [] + j = static_charts_num + + for threshold in threshold_values: + step = dict( + method="update", + args=[{"visible": [False] * len(fig.data)}, + {"title": dict(text = main_title + '' \ + + subtitle + titles[threshold] + '', + y = 0.965, yanchor = 'bottom')} + ], + label = str(round(threshold, n_of_decimals)) + ) + step["args"][0]["visible"][:static_charts_num] = [True]*static_charts_num # line charts + step["args"][0]["visible"][j:j+markers_num] = [True]*markers_num # line chart markers + + j += markers_num + steps.append(step) + + sliders = [dict( + active=0, + currentvalue={"prefix": "Threshold: "}, + steps=steps, + pad=dict(t = 50))] + + fig.update_layout(sliders=sliders, + title = dict(text = main_title + '' \ + + subtitle + titles[threshold_values[0]] + '', + y = 0.965, yanchor = 'bottom'), #first visible title + margin={'t': 125}, + ) + + fig.update_layout(height=600, hovermode="x") + + # Update xaxis properties + fig.update_xaxes(title_text="Threshold", title_font_size=12, row=2, col=1) + fig.update_xaxes(title_text="Threshold", title_font_size=12, row=2, col=2) + + # Update yaxis properties + fig.update_yaxes(title_text="Amount/Cost", title_font_size=12, row=1, col=1) + fig.update_yaxes(title_text="Amount/Cost", title_font_size=12, row=2, col=1) + + fig.show() + + return amount_cost_df, round(tot_amount, 2) + +def total_amount_cost_plot(true_y, predicted_proba, threshold_step = 0.01, + amounts = None, cost_dict = None, + amount_classes = 'all', cost_classes = 'all', currency = '€', + title = 'Interactive Amount-Cost Line Chart'): + + """ + - Plots an interactive and customized line-plot with plotly, + displayng total amount and/or total cost for user-selected "confusion classes" (TN, FP, FN, TP) againts thresholds. + - Returns a dataframe containing, for every threshold and depending on the inputs, + the amount and cost associated to each class (TN, FP, FN, TP) and the total cost + - Returns the value of the total amount + + Plot is constituted by one linechart with thresholds on x axis + and total amounts and/or total costs (depends on the given input) on y axis + + Parameters + ---------- + true_y: sequence of ints + True labels + predicted_proba: sequence of floats + predicted probabilities for class 1 + (e.g. output from model.predict_proba(data)[:,1]) + threshold_step: float, default=0.01 + step between each classification threshold (ranging from 0 to 1) below which prediction label is 0, 1 otherwise + amounts: sequence of floats, default=None + amounts associated to each element of data + (e.g. fraud detection for online orders: amounts could be the orders' amounts) + cost_dict: dict, deafult=None + dict containing costs associated to each class (TN, FP, FN, TP) + with keys "TN", "FP", "FN", "TP" + and values that can be both lists (with coherent lenghts) and/or floats + (output from get_cost_dict) + amount_classes: {'all', 'TN', 'FP', 'FN', 'TP'} + or list containing allowed values except 'all' + the amount plotted is the sum of the amounts associated to data points belonging to the selected amount_classes + cost_classes: {'all', 'TN', 'FP', 'FN', 'TP'} + or list containing allowed values except 'all' + the total cost plotted is the sum of the costs associated to data points belonging to the selected cost_classes + currency: str, default='€' + currency symbol to be visualized. For unusual currencies, you can use their HTML code representation + (eg. Indian rupee: '₹') + title: str, default='Interactive Amount-Cost Line Chart' + The main title of the plot. + + Returns + ---------- + amount_cost_df: pandas dataframe + Dataframe containing variables: + - threshold + - if amounts/amount_classes are given: amounts relative to the user-selected classes and sum + - if cost_dict/cost_classes are given: cost relative to the user-selected classes and sum + + """ + + if currency == '$': + currency = '$' + + try: + n_of_decimals = len(str(threshold_step).rsplit('.')[1]) + except: + n_of_decimals = 4 + + threshold_values = list(np.arange(0, 1 + threshold_step, threshold_step)) + middle_x = (threshold_values[0] + threshold_values[-1])/2 + + supported_label = ["TN", "FP", "FN", "TP"] + + if amounts is not None: # if amount_classes not given or 'all', set to ["TN", "FP", "FN", "TP"] + amounts = list(amounts) + if (amount_classes is None) or (amount_classes == 'all'): + amount_classes = supported_label + elif amount_classes is not None: + raise TypeError("if amount_classes is given, amounts can't be None.") + + if cost_dict is not None: # if cost_classes not given or 'all', set to ["TN", "FP", "FN", "TP"] + if (cost_classes is None) or (cost_classes == 'all'): + cost_classes = supported_label + elif cost_classes is not None: + raise TypeError("if cost_classes is given, cost_dict can't be None.") + + # get threshold-amount-cost dataframe (throws error if both cost_dict and amounts are None) + amount_cost_df = get_amount_cost_df(true_y, predicted_proba, threshold_values, amounts, cost_dict) + + # Create figure + fig = go.Figure() + + var_num = 0 + subtitle = "" + col_lst = [] + + if amount_classes is not None: + var_num += 1 + + if isinstance(amount_classes, str): + amount_classes = [amount_classes] + + amount_col_lst = ['amount_' + amount_class for amount_class in amount_classes] + amount_cost_df['amount_sum'] = amount_cost_df[amount_col_lst].apply(sum, axis = 1) + col_lst += amount_col_lst + ['amount_sum'] + fig.add_trace( + go.Scatter(x = amount_cost_df['threshold'], + y = amount_cost_df['amount_sum'], + showlegend = False, + mode="lines", + hovertemplate = "total amount: " + currency + "%{y}")) + + subtitle += "Amount categories: " + subtitle += " + ".join(amount_classes) + subtitle += "
" + + if cost_classes is not None: + var_num += 1 + + if isinstance(cost_classes, str): + cost_classes = [cost_classes] + + cost_col_lst = ['cost_' + cost_class for cost_class in cost_classes] + amount_cost_df['cost_sum'] = amount_cost_df[cost_col_lst].apply(sum, axis = 1) + col_lst += cost_col_lst + ['cost_sum'] + fig.add_trace( + go.Scatter(x = amount_cost_df['threshold'], + y = amount_cost_df['cost_sum'], + showlegend = False, + mode="lines", + hovertemplate = "total cost: " + currency + "%{y}")) + + subtitle += "Cost categories: " + subtitle += " + ".join(cost_classes) + + intercepts_str = '' + + if var_num == 2: + diff_cost_amount = list(amount_cost_df['amount_sum'] - amount_cost_df['cost_sum']) + x_intersect = [] + y_intersect = [] + + for i in range(len(diff_cost_amount)-1): + if (diff_cost_amount[i] < 0) & (diff_cost_amount[i+1]>=0): + x_intersect.append(amount_cost_df.iloc[i+1]['threshold']) + y_intersect.append(amount_cost_df['cost_sum'].iloc[i+1]) + + elif (diff_cost_amount[i] > 0) & (diff_cost_amount[i+1]<=0): + x_intersect.append(amount_cost_df.iloc[i+1]['threshold']) + y_intersect.append(amount_cost_df['cost_sum'].iloc[i+1]) + + fig.add_trace( + go.Scatter(x=x_intersect, + y=y_intersect, + showlegend = False, + mode = "markers", + marker_symbol = 'diamond', + marker_size = 8, + marker=dict(color='black'), + hovertemplate = "%{x}")) + + if x_intersect: + intercepts_str = 'Swaps at thresholds: ' + intercepts_str += ", ".join(str(round(x, n_of_decimals)) for x in x_intersect) + + fig.update_layout(title = dict(text = f"{title}
" + subtitle + \ + '
' + intercepts_str, + y = 0.965, yanchor = 'bottom'), + margin={'t': 120}, + ) + + fig.update_layout(height=600, hovermode="x unified") + + # Update axis properties + fig.update_xaxes(title_text="Threshold") + fig.update_yaxes(title_text="Amount/Cost") + + fig.show() + + return amount_cost_df[['threshold'] + col_lst] + + diff --git a/bctools/thresholds.py b/bctools/thresholds.py new file mode 100644 index 0000000..e163ea9 --- /dev/null +++ b/bctools/thresholds.py @@ -0,0 +1,372 @@ +#!/usr/bin/env python +# coding: utf-8 + +import pandas as pd +import numpy as np +import os +import warnings + +from sklearn import metrics +from sklearn.model_selection import train_test_split +from sklearn.utils import resample + +from itertools import repeat +from multiprocessing import Pool + +def get_optimized_thresholds_df(optimize_threshold, threshold_values, true_y, predicted_proba, + cost_dict = None, + N_subsets = 70, subsets_size = 0.2, with_replacement = False, + random_state = None): + + """ + Returns a dataframe with optimal decision thresholds, for given metrics, computed with GHOST method. + + Parameters + ---------- + optimize_threshold: {'all', 'ROC', 'MCC', 'Kappa', 'Fscore', 'Cost'} + or list containing allowed values except 'all' + metrics for which thresholds will be optimized + 'all' is equvalent to ['ROC', 'MCC', 'Kappa', 'Fscore'] if cost_dict=None, ['ROC', 'MCC', 'Kappa', 'Fscore', 'Cost'] otherwise + threshold_values: list of three floats + List of decision thresholds to screen for classification + true_y: sequence of ints + True labels + predicted_proba: sequence of floats + predicted probabilities for class 1 + random_state: int, default=None + Controls the randomness of the bootstrapping of the samples when optimizing thresholds with GHOST method + + Returns + ---------- + optimal_thresholds_df: pandas dataframe + Dataframe containing optimal thresholds + """ + + threshold_names_lst = [] + threshold_array = np.array([]) + supported_metrics = ['Kappa', 'MCC', 'ROC', 'Fscore', 'Cost'] + + if optimize_threshold == 'all': + if cost_dict: + optimize_threshold = supported_metrics + else: + optimize_threshold = supported_metrics[:-1] + + if isinstance(optimize_threshold, str): + optimize_threshold = [optimize_threshold] + + for metric_name in optimize_threshold: + if metric_name not in supported_metrics: + raise ValueError(f"Metric {metric_name} not supported. Supported metrics: {str(supported_metrics)}") + if metric_name == 'Cost': + if cost_dict is None: + raise TypeError("To optimize threshold for cost, cost_dict argument must not be None") + + for metric_name in optimize_threshold: + + if metric_name == 'Fscore': + threshold_names_lst.append('f1_score') + threshold_names_lst.append('f2_score') + threshold_names_lst.append('f05_score') + else: + threshold_names_lst.append(metric_name.lower()) + + if metric_name == 'Cost': + threshold_array = np.append(threshold_array, + np.round(get_cost_optimal_threshold(true_y, predicted_proba, + threshold_values, cost_dict, + N_subsets = N_subsets, subsets_size = subsets_size, + with_replacement = with_replacement, + random_seed = random_state), + 5)) + else: + threshold_array = np.append(threshold_array, + np.round(get_optimal_threshold(true_y, predicted_proba, + threshold_values, ThOpt_metrics = metric_name, + N_subsets = N_subsets, subsets_size = subsets_size, + with_replacement = with_replacement, + random_seed = random_state), + 5)) + + threshold_array = np.ravel(threshold_array) + optimal_thresholds_df = pd.DataFrame(zip(threshold_names_lst, threshold_array), columns = ['optimized_metric', 'optimal_threshold']) + return optimal_thresholds_df + +def get_optimal_threshold(labels, probs, thresholds, + ThOpt_metrics = 'Kappa', N_subsets = 70, + subsets_size = 0.2, with_replacement = False, random_seed = None): + + """ Optimize the decision threshold based on subsets of the given set (GHOST method). + The threshold that maximizes the chosen metric on the subsets is chosen as optimal. + + Parameters + ---------- + labels: sequence of ints + True labels + probs: sequence of floats + predicted probabilities for class 1 + (e.g. output from cls.predict_proba(data)[:,1]) + thresholds: list of floats + List of decision thresholds to screen for classification + ThOpt_metrics: str {'ROC', 'MCC', 'Kappa', 'Fscore'}, default='Kappa' + metric for which thresholds will be optimized + N_subsets: int, default=70 + Number of subsets used in the optimization process + subsets_size: float or int, default=0.2 + Size of the subsets used in the optimization process. + If float, represents the proportion of the dataset to include in the subsets. + If integer, it represents the actual number of instances to include in the subsets. + with_replacement: bool, default=False + If True, the subsets are drawn randomly with replacement, without otherwise. + random_seed: int, default=None + Controls the randomness of the bootstrapping of the samples + + Returns + ---------- + if ThOpt_metrics == Fscore, + opt_thresh_f1, opt_thresh_f2, opt_thresh_fpoint5: floats + Optimal decision thresholds for f-beta scores (beta=1, beta=2, beta=0.5) + + otherwise: + opt_thresh: float + Optimal decision threshold + """ + + supported_metrics = ['Kappa', 'MCC', 'ROC', 'Fscore'] + + if ThOpt_metrics not in supported_metrics: + raise ValueError(f"Metric {ThOpt_metrics} not supported. Supported metrics: {str(supported_metrics)}") + + # seeding + np.random.seed(random_seed) + random_seeds = np.random.randint(N_subsets*10, size=N_subsets) + + df_preds = pd.DataFrame({'labels':labels,'probs':probs}) + thresh_names = [str(x) for x in thresholds] + for thresh in thresholds: + df_preds = pd.concat([df_preds, pd.Series([1 if x>=thresh else 0 for x in probs], name=str(thresh))], axis=1) + + n = max(os.cpu_count()-1, 1) + + if ThOpt_metrics == 'ROC': + sensitivity_accum = [] + specificity_accum = [] + pool = Pool(n) + + # Calculate sensitivity and specificity for a range of thresholds and N_subsets + for i in range(N_subsets): + if with_replacement: + if isinstance(subsets_size, float): + Nsamples = int(df_preds.shape[0]*subsets_size) + elif isinstance(subsets_size, int): + Nsamples = subsets_size + df_subset = resample(df_preds, n_samples = Nsamples, stratify=labels, random_state = random_seeds[i]) + labels_subset = list(df_subset['labels']) + else: + df_tmp, df_subset, labels_tmp, labels_subset = train_test_split(df_preds, labels, test_size = subsets_size, + stratify = labels, random_state = random_seeds[i]) + + result = pool.starmap(_compute_sensitivity_specificity, + zip(repeat(labels_subset), [list(df_subset[threshold]) for threshold in thresh_names])) + result_array = np.array(result) + sensitivity_accum.append(result_array[:, 0]) + specificity_accum.append(result_array[:, 1]) + pool.close() + + # determine the threshold that provides the best results on the training subsets + median_sensitivity, std_sensitivity = _helper_calc_median_std(sensitivity_accum) + median_specificity, std_specificity = _helper_calc_median_std(specificity_accum) + roc_dist_01corner = (2*median_sensitivity*median_specificity)/(median_sensitivity+median_specificity) + opt_thresh = thresholds[np.argmax(roc_dist_01corner)] + + return opt_thresh + + elif ThOpt_metrics == 'Fscore': + recall_accum = [] + precision_accum = [] + pool = Pool(n) + + # Calculate sensitivity and specificity for a range of thresholds and N_subsets + for i in range(N_subsets): + if with_replacement: + if isinstance(subsets_size, float): + Nsamples = int(df_preds.shape[0]*subsets_size) + elif isinstance(subsets_size, int): + Nsamples = subsets_size + df_subset = resample(df_preds, n_samples = Nsamples, stratify=labels, random_state = random_seeds[i]) + labels_subset = list(df_subset['labels']) + else: + df_tmp, df_subset, labels_tmp, labels_subset = train_test_split(df_preds, labels, test_size = subsets_size, + stratify = labels, random_state = random_seeds[i]) + + result = pool.starmap(_compute_precision_recall, + zip(repeat(labels_subset), [list(df_subset[threshold]) for threshold in thresh_names])) + result_array = np.array(result) + precision_accum.append(result_array[:, 0]) + recall_accum.append(result_array[:, 1]) + pool.close() + + # determine the threshold that provides the best results on the training subsets + median_precision, std_precision = _helper_calc_median_std(precision_accum) + median_recall, std_recall = _helper_calc_median_std(recall_accum) + f1 = (2*median_precision*median_recall)/(median_precision+median_recall) + opt_thresh_f1 = thresholds[np.argmax(f1)] + f2 = (5*median_precision*median_recall)/(4*median_precision+median_recall) + opt_thresh_f2 = thresholds[np.argmax(f2)] + fpoint5 = (1.25*median_precision*median_recall)/(0.25*median_precision+median_recall) + opt_thresh_fpoint5 = thresholds[np.argmax(fpoint5)] + + return opt_thresh_f1, opt_thresh_f2, opt_thresh_fpoint5 + + else: + score_accum = [] + pool = Pool(n) + for i in range(N_subsets): + if with_replacement: + if isinstance(subsets_size, float): + Nsamples = int(df_preds.shape[0]*subsets_size) + elif isinstance(subsets_size, int): + Nsamples = subsets_size + df_subset = resample(df_preds, replace=True, n_samples = Nsamples, stratify=labels, random_state = random_seeds[i]) + labels_subset = df_subset['labels'] + else: + df_tmp, df_subset, labels_tmp, labels_subset = train_test_split(df_preds, labels, test_size = subsets_size, + stratify = labels, random_state = random_seeds[i]) + result = pool.starmap(_get_metric_function(ThOpt_metrics), + zip(repeat(labels_subset), [list(df_subset[threshold]) for threshold in thresh_names])) + score_accum.append(result) + pool.close() + + # determine the threshold that provides the best results on the training subsets + y_values_median, y_values_std = _helper_calc_median_std(score_accum) + opt_thresh = thresholds[np.argmax(y_values_median)] + + return opt_thresh + +def get_cost_optimal_threshold(labels, probs, thresholds, cost_dict, + N_subsets = 70, subsets_size = 0.2, + with_replacement = False, random_seed = None): + + """ Optimize the decision threshold for minimal cost based on subsets of the given set (GHOST method). + + Parameters + ---------- + labels: sequence of ints + True labels + probs: sequence of floats + predicted probabilities for class 1 + (e.g. output from cls.predict_proba(data)[:,1]) + thresholds: list of floats + List of decision thresholds to screen for classification + cost_dict: dict + dict containing costs associated to each class (TN, FP, FN, TP) + with keys "TN", "FP", "FN", "TP" + and values that can be both lists (with coherent lenghts) and/or floats + (output from get_cost_dict) + N_subsets: int, default=70 + Number of subsets used in the optimization process + subsets_size: float or int, default=0.2 + Size of the subsets used in the optimization process. + If float, represents the proportion of the dataset to include in the subsets. + If integer, it represents the actual number of instances to include in the subsets. + with_replacement: bool, default=False + If True, the subsets are drawn randomly with replacement, without otherwise. + random_seed: int, default=None + Controls the randomness of the bootstrapping of the samples + + Returns + ---------- + opt_thresh: float + Optimal decision threshold + """ + + # seeding + np.random.seed(random_seed) + random_seeds = np.random.randint(N_subsets*10, size=N_subsets) + + df_preds_costs = pd.DataFrame({'labels':labels,'probs':probs, + 'cost_TN':cost_dict['TN'], + 'cost_FP':cost_dict['FP'], + 'cost_FN':cost_dict['FN'], + 'cost_TP':cost_dict['TP']}) + + thresh_names = [str(x) for x in thresholds] + for thresh in thresholds: + df_preds_costs = pd.concat([df_preds_costs, pd.Series([1 if x>=thresh else 0 for x in probs], name=str(thresh))], axis=1) + + n = max(os.cpu_count()-1, 1) + + score_accum = [] + pool = Pool(n) + for i in range(N_subsets): + if with_replacement: + if isinstance(subsets_size, float): + Nsamples = int(df_preds.shape[0]*subsets_size) + elif isinstance(subsets_size, int): + Nsamples = subsets_size + df_subset = resample(df_preds_costs, replace=True, n_samples = Nsamples, stratify=labels, random_state = random_seeds[i]) + labels_subset = df_subset['labels'] + else: + df_tmp, df_subset, labels_tmp, labels_subset = train_test_split(df_preds_costs, labels, test_size = subsets_size, + stratify = labels, random_state = random_seeds[i]) + + result = pool.starmap(_get_total_cost, + zip(repeat(labels_subset), + [df_subset[[threshold, 'cost_TN', 'cost_FP', 'cost_FN', 'cost_TP']] for threshold in thresh_names])) + score_accum.append(result) + pool.close() + + # determine the threshold that provides the best results on the training subsets + y_values_median, y_values_std = _helper_calc_median_std(score_accum) + opt_thresh = thresholds[np.argmin(y_values_median)] + + return opt_thresh + +def _get_metric_function(metric_name): + # Returns the scikit function relative to the metric_name + if metric_name == 'Kappa': + return metrics.cohen_kappa_score + elif metric_name == 'MCC': + return _MCC_wrapper + +def _MCC_wrapper(labels, preds): + # Wraps scikit matthews_corrcoef function suppressing zerodivision warnings + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + return metrics.matthews_corrcoef(labels, preds) + +def _precision_score_wrapper(labels, preds): + # Wraps scikit precision_score function with parameter zero_division = 1 + return metrics.precision_score(labels, preds, zero_division = 1) + +def _recall_score_wrapper(labels, preds, pos_label=1): + # Wraps scikit recall_score function with parameter zero_division = 1 + return metrics.recall_score(labels, preds, pos_label=pos_label, zero_division = 1) + +def _compute_sensitivity_specificity(labels, preds): + # Computes sensitivity (recall) and specificity through wrapped scikit functions + return [_recall_score_wrapper(labels, preds), + _recall_score_wrapper(labels, preds, pos_label=0)] + +def _get_total_cost(true_y, prediction_data_df): + # Computes total cost + y_pred = prediction_data_df.iloc[:,0] + cost_TN = sum(prediction_data_df[(true_y == 0) & (y_pred == 0)]['cost_TN']) + cost_FP = sum(prediction_data_df[(true_y == 0) & (y_pred == 1)]['cost_FP']) + cost_FN = sum(prediction_data_df[(true_y == 1) & (y_pred == 0)]['cost_FN']) + cost_TP = sum(prediction_data_df[(true_y == 1) & (y_pred == 1)]['cost_TP']) + + return cost_TN + cost_FP + cost_FN + cost_TP + +def _compute_precision_recall(labels, preds): + # Computes precision and recall through wrapped scikit functions + return [_precision_score_wrapper(labels, preds), + _recall_score_wrapper(labels, preds)] + +def _helper_calc_median_std(specificity): + # Calculate median and std of the columns of a pandas dataframe + arr = np.array(specificity) + y_values_median = np.median(arr,axis=0) + y_values_std = np.std(arr,axis=0) + return y_values_median, y_values_std + diff --git a/bctools/utilities.py b/bctools/utilities.py new file mode 100644 index 0000000..3469026 --- /dev/null +++ b/bctools/utilities.py @@ -0,0 +1,368 @@ +#!/usr/bin/env python +# coding: utf-8 + +import pandas as pd +import numpy as np +import warnings + +from sklearn import metrics + +def get_cost_dict(TN = 0, FP = 0, FN = 0, TP = 0): + + """ + Creates dictionary of "confusion classes" costs + (confusion classes are: True Negative TN, False Positive FP, False Negative FN and True Positive TP) + + Parameters + ---------- + TN: float or sequence of floats, default=0 + cost associated to true negative predictions + FP: float or sequence of floats, default=0 + cost associated to false positive predictions + FN: float or sequence of floats, default=0 + cost associated to false negative predictions + TP: float or sequence of floats, default=0 + cost associated to true positive predictions + + Returns + ---------- + cost_dict: dict, default=None + dict containing keys: "TN", "FP", "FN", "TP" + and values corresponding to lists (with coherent lenghts) and/or floats + """ + confusion_class_lenghts = [] + + if (hasattr(TN, '__iter__')) and (len(TN) == 1): + TN = TN[0] + + if (hasattr(FP, '__iter__')) and (len(FP) == 1): + FP = FP[0] + + if (hasattr(FN, '__iter__')) and (len(FN) == 1): + FN = FN[0] + + if (hasattr(TP, '__iter__')) and (len(TP) == 1): + TP = TP[0] + + for confusion_class in [TN, FP, FN, TP]: + + if hasattr(confusion_class, '__iter__'): + + confusion_class = list(confusion_class) + confusion_class_lenghts.append(len(confusion_class)) + it = iter(confusion_class_lenghts) + the_len = next(it) + if not all(l == the_len for l in it): + raise ValueError('not all list-like confusion classes data have same length') + + # build cost_dict + cost_dict = {'TN' : TN, + 'FP' : FP, + 'FN' : FN, + 'TP' : TP} + + return cost_dict + +def get_confusion_category_observations_df(confusion_category, X_data, true_y, predicted_proba, threshold = 0.5): + + """ Returns X (features) dataframe of data points related to a chosen "confusion category", + based on given true label, predicted probabilities and decision threshold + (confusion category is either True Negative TN, False Positive FP, False Negative FN, True Positive TP) + + Parameters + ---------- + confusion_category: str {'TN', 'FP', 'FN', 'TP'} + confusion category is either True Negative TN, False Positive FP, False Negative FN, True Positive TP + X_data: sequence of features (nd.array or list or pandas object) + set of features + true_y: sequence of ints + True labels for X_data + predicted_proba: sequence of floats + predicted probabilities for the class '1' of the X_data set + (e.g. output from cls.predict_proba(X_data)[:,1]) + threshold: float, default=0.5 + classification threshold below which prediction label is 0, 1 otherwise + + Returns + ---------- + X_filtered_df: pandas DataFrame + X DataFrame of features for data points in chosen confusion category + """ + + if confusion_category not in ['TN', 'FP', 'FN', 'TP']: + raise ValueError("confusion_class must be one of {'TN', 'FP', 'FN', 'TP'}") + + X_df = pd.DataFrame(X_data) + true_y_array = np.squeeze(np.array(true_y)) + predicted_proba_array = np.squeeze(np.array(predicted_proba)) + + if confusion_category == 'TN': + X_filtered_df = X_df[(true_y_array == 0) & (predicted_proba < threshold)] + + elif confusion_category == 'FP': + X_filtered_df = X_df[(true_y_array == 0) & (predicted_proba >= threshold)] + + elif confusion_category == 'FN': + X_filtered_df = X_df[(true_y_array == 1) & (predicted_proba < threshold)] + + else: #'TP' + X_filtered_df = X_df[(true_y_array == 1) & (predicted_proba >= threshold)] + + return X_filtered_df + +def get_amount_cost_df(true_y, predicted_proba, threshold_values, amounts = None, cost_dict = None): + + """ + For each threshold, computes relative amounts and/or cost for each class (TN, FP, FN, TP) + + Parameters + ---------- + true_y: sequence of ints + True labels + predicted_proba: sequence of floats + predicted probabilities for class 1 + (e.g. output from model.predict_proba(data)[:,1]) + threshold_values: sequence of floats + list of classification thresholds below which prediction label is 0, 1 otherwise + amounts: sequence of floats, default=None + amounts associated to each element of data + cost_dict: dict, default=None + dict containing keys: "TN", "FP", "FN", "TP" + and values corresponding to lists (with coherent lenghts) and/or floats + (output from get_cost_dict) + Returns + ---------- + amount_cost_per_threshold_df: pandas dataframe + Dataframe containing variables: + - threshold + - if amounts is given: amounts relative to each class (TN, FP, FN, TP) + - if cost_dict is given: cost relative to each class (TN, FP, FN, TP) and total cost + + """ + if (amounts is not None) and (cost_dict is not None): #both cost and amounts + amount_TN = [] + amount_FP = [] + amount_FN = [] + amount_TP = [] + + cost_TN = [] + cost_FP = [] + cost_FN = [] + cost_TP = [] + + for threshold in threshold_values: + amount_matrix = _get_amount_matrix(true_y, predicted_proba, threshold, amounts) + amount_TN.append(amount_matrix[0,0]) + amount_FP.append(amount_matrix[0,1]) + amount_FN.append(amount_matrix[1,0]) + amount_TP.append(amount_matrix[1,1]) + + cost_matrix = _get_cost_matrix(true_y, predicted_proba, threshold, cost_dict) + cost_TN.append(cost_matrix[0,0]) + cost_FP.append(cost_matrix[0,1]) + cost_FN.append(cost_matrix[1,0]) + cost_TP.append(cost_matrix[1,1]) + + amount_cost_per_threshold_df = pd.DataFrame(zip(threshold_values, + amount_TN, amount_FP, amount_FN, amount_TP, + cost_TN, cost_FP, cost_FN, cost_TP), + columns = ['threshold', + 'amount_TN', 'amount_FP', 'amount_FN', 'amount_TP', + 'cost_TN', 'cost_FP', 'cost_FN', 'cost_TP']).sort_values(by='threshold') + + amount_cost_per_threshold_df['total_cost'] = amount_cost_per_threshold_df[['cost_TN', 'cost_FP', + 'cost_FN', 'cost_TP']].apply(sum, axis = 1) + elif amounts is not None: # only amounts + total_amount = sum(amounts) + amount_TN = [] + amount_FP = [] + amount_FN = [] + amount_TP = [] + + for threshold in threshold_values: + amount_matrix = _get_amount_matrix(true_y, predicted_proba, threshold, amounts) + amount_TN.append(amount_matrix[0,0]) + amount_FP.append(amount_matrix[0,1]) + amount_FN.append(amount_matrix[1,0]) + amount_TP.append(amount_matrix[1,1]) + + amount_cost_per_threshold_df = pd.DataFrame(zip(threshold_values, + amount_TN, amount_FP, amount_FN, amount_TP), + columns = ['threshold', + 'amount_TN', 'amount_FP', + 'amount_FN', 'amount_TP']).sort_values(by='threshold') + + + elif cost_dict is not None: # only cost + cost_TN = [] + cost_FP = [] + cost_FN = [] + cost_TP = [] + + for threshold in threshold_values: + cost_matrix = _get_cost_matrix(true_y, predicted_proba, threshold, cost_dict) + cost_TN.append(cost_matrix[0,0]) + cost_FP.append(cost_matrix[0,1]) + cost_FN.append(cost_matrix[1,0]) + cost_TP.append(cost_matrix[1,1]) + + amount_cost_per_threshold_df = pd.DataFrame(zip(threshold_values, + cost_TN, cost_FP, cost_FN, cost_TP), + columns = ['threshold', + 'cost_TN', 'cost_FP', 'cost_FN', 'cost_TP']).sort_values(by='threshold') + + amount_cost_per_threshold_df['total_cost'] = amount_cost_per_threshold_df[['cost_TN', 'cost_FP', + 'cost_FN', 'cost_TP']].apply(sum, axis = 1) + + else: # no cost or amount + raise TypeError("cost_dict and amounts can't be both None.") + + return amount_cost_per_threshold_df + + +def get_invariant_metrics_df(true_y, predicted_proba): + + """ + Computes following metrics (based on non-thresholded predicted probabilities): + ROC auc macro, ROC auc weighted, Pecision-Recall auc, Brier score + + Parameters + ---------- + true_y: sequence of ints + True labels + predicted_proba: sequence of floats + predicted probabilities for class 1 + (e.g. output from model.predict_proba(data)[:,1]) + + Returns + ---------- + metrics_df: pandas dataframe + Dataframe containing computed metrics + """ + + metrics_names = ['roc_auc', 'pr_auc', 'brier_score'] + metrics_lst = [] + metrics_lst.append(round(metrics.roc_auc_score(true_y, predicted_proba), 4)) + metrics_lst.append(round(metrics.average_precision_score(true_y, predicted_proba), 4)) + metrics_lst.append(round(metrics.brier_score_loss(true_y, predicted_proba), 4)) + + metrics_df = pd.DataFrame(zip(metrics_names, metrics_lst), columns = ['invariant_metric', 'value']) + return metrics_df + +def get_confusion_matrix_and_metrics_df(true_y, predicted_proba, threshold = 0.5, normalize = None): + + """ + Compute 2x2 Confusion Matrix and following metrics (based on thresholded predicted probabilities): + Accuracy, Balanced accuracy, F1 score, Precision, Recall, Matthews corr. coeff, Cohen's Kappa + + Parameters + ---------- + true_y: sequence of ints + True labels + predicted_proba: sequence of floats + predicted probabilities for class 1 + (e.g. output from model.predict_proba(data)[:,1]) + threshold: float, default=0.5 + classification threshold below which prediction label is 0, 1 otherwise + normalize: {‘true’, ‘pred’, ‘all’}, default=None + normalizes confusion matrix over the true (rows), predicted (columns) conditions or all the population. + If None, confusion matrix will not be normalized + + Returns + ---------- + cf_matrix: 2x2 np.array + confusion matrix + metrics_df: pandas dataframe + Dataframe containing metrics + """ + + y_pred = [int(x >= threshold) for x in predicted_proba] + cf_matrix = metrics.confusion_matrix(true_y, y_pred, normalize = normalize) + + metrics_names = ['accuracy', 'balanced_accuracy', 'f1_score', 'precision', 'recall', "cohens_kappa", 'matthews_corr_coef'] + metrics_lst = [] + metrics_lst.append(round(metrics.accuracy_score(true_y, y_pred), 4)) + metrics_lst.append(round(metrics.balanced_accuracy_score(true_y, y_pred), 4)) + metrics_lst.append(round(metrics.f1_score(true_y, y_pred, zero_division = 0), 4)) + metrics_lst.append(round(metrics.precision_score(true_y, y_pred, zero_division = 1), 4)) + metrics_lst.append(round(metrics.recall_score(true_y, y_pred, zero_division = 1), 4)) + metrics_lst.append(round(metrics.cohen_kappa_score(true_y, y_pred), 4)) + + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + metrics_lst.append(round(metrics.matthews_corrcoef(true_y, y_pred), 4)) + + metrics_df = pd.DataFrame(zip(metrics_names, metrics_lst), columns = ['threshold_dependent_metric', 'value']) + + return cf_matrix, metrics_df + +def _get_amount_matrix(true_y, predicted_proba, threshold, amounts): + + """ + Compute Amount Matrix to annotate custom plotly confusion matrix plot + + Parameters + ---------- + true_y: sequence of ints + True labels + predicted_proba: sequence of floats + predicted probabilities for class 1 + (e.g. output from model.predict_proba(data)[:,1]) + threshold: float + classification threshold below which prediction label is 0, 1 otherwise + amounts: sequence of floats + amounts associated to each element of data + (e.g. fraud detection: amount could be the associated order amount for each order) + + Returns + ---------- + amount_matrix: np.array + matrix with amount values for each class (TN, FP, FN, TP) + """ + prediction_data_df = pd.DataFrame(zip(true_y, predicted_proba, amounts), columns = ['true_y', 'predicted_proba', 'amounts']) + + amount_TP = sum(prediction_data_df[(prediction_data_df['true_y'] == 1) & (prediction_data_df['predicted_proba'] >= threshold)]['amounts']) + amount_FP = sum(prediction_data_df[(prediction_data_df['true_y'] == 0) & (prediction_data_df['predicted_proba'] >= threshold)]['amounts']) + amount_TN = sum(prediction_data_df[(prediction_data_df['true_y'] == 0) & (prediction_data_df['predicted_proba'] < threshold)]['amounts']) + amount_FN = sum(prediction_data_df[(prediction_data_df['true_y'] == 1) & (prediction_data_df['predicted_proba'] < threshold)]['amounts']) + + amount_matrix = np.array([[amount_TN, amount_FP], + [amount_FN, amount_TP]]) + return amount_matrix + +def _get_cost_matrix(true_y, predicted_proba, threshold, cost_dict): + + """ + Compute Cost Matrix to annotate custom plotly confusion matrix plot: + + Parameters + ---------- + true_y: sequence of ints + True labels + predicted_proba: sequence of floats + predicted probabilities for class 1 + (e.g. output from model.predict_proba(data)[:,1]) + threshold: float + classification threshold below which prediction label is 0, 1 otherwise + cost_dict: dict + dict containing keys: "TN", "FP", "FN", "TP" + and values corresponding to lists (with same lenght) and/or floats + (output from get_cost_dict) + Returns + ---------- + cost_matrix: np.array + matrix with cost values for each class (TN, FP, FN, TP) + """ + prediction_data_df = pd.DataFrame(zip(true_y, predicted_proba), columns = ['true_y', 'predicted_proba']) + + for confusion_class in ['TN', 'FP', 'FN', 'TP']: + prediction_data_df['cost_' + confusion_class] = cost_dict[confusion_class] + + cost_TN = sum(prediction_data_df[(prediction_data_df['true_y'] == 0) & (prediction_data_df['predicted_proba'] < threshold)]['cost_TN']) + cost_FP = sum(prediction_data_df[(prediction_data_df['true_y'] == 0) & (prediction_data_df['predicted_proba'] >= threshold)]['cost_FP']) + cost_FN = sum(prediction_data_df[(prediction_data_df['true_y'] == 1) & (prediction_data_df['predicted_proba'] < threshold)]['cost_FN']) + cost_TP = sum(prediction_data_df[(prediction_data_df['true_y'] == 1) & (prediction_data_df['predicted_proba'] >= threshold)]['cost_TP']) + + cost_matrix = np.array([[cost_TN, cost_FP], + [cost_FN, cost_TP]]) + return cost_matrix diff --git a/example-notebook/example_classification_model.ipynb b/example-notebook/example_classification_model.ipynb new file mode 100644 index 0000000..232ac09 --- /dev/null +++ b/example-notebook/example_classification_model.ipynb @@ -0,0 +1,24494 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "ec3442ef", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import sys\n", + "import inspect\n", + "\n", + "import numpy as np\n", + "import pandas as pd" + ] + }, + { + "cell_type": "markdown", + "id": "20da98b1", + "metadata": {}, + "source": [ + "### Create dataset for classification and train random forest model" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "5eb9da27", + "metadata": { + "gather": { + "logged": 1648913050060 + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None,\n", + " criterion='gini', max_depth=6, max_features='auto',\n", + " max_leaf_nodes=None, max_samples=None,\n", + " min_impurity_decrease=0.0, min_impurity_split=None,\n", + " min_samples_leaf=1, min_samples_split=2,\n", + " min_weight_fraction_leaf=0.0, n_estimators=100,\n", + " n_jobs=None, oob_score=True, random_state=None,\n", + " verbose=0, warm_start=False)" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.ensemble import RandomForestClassifier\n", + "from sklearn.datasets import make_classification\n", + "from sklearn.model_selection import train_test_split\n", + "\n", + "# Generate a binary imbalanced classification problem, with 80% zeros and 20% ones.\n", + "X, y = make_classification(n_samples=1000, n_features=20,\n", + " n_informative=14, n_redundant=0,\n", + " random_state=12, shuffle=False, weights = [0.8, 0.2])\n", + "\n", + "# Train - test split\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, stratify = y, random_state=0)\n", + "\n", + "# Train a RF classifier\n", + "cls = RandomForestClassifier(max_depth=6, oob_score=True)\n", + "cls.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "86722304", + "metadata": {}, + "outputs": [], + "source": [ + "# Get prediction probabilities for the train set\n", + "train_predicted_proba = cls.predict_proba(X_train)[:,1]\n", + "\n", + "# Get prediction probabilities for the test set\n", + "test_predicted_proba = cls.predict_proba(X_test)[:,1] " + ] + }, + { + "cell_type": "markdown", + "id": "5424ab6b", + "metadata": { + "tags": [] + }, + "source": [ + "## Import bctools package" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "3c7d52de", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import bctools as bc" + ] + }, + { + "cell_type": "markdown", + "id": "833fb21b", + "metadata": {}, + "source": [ + "### MAIN PARAMETERS\n", + " \n", + "- **true_y**: true labels for target class \\\n", + " Type: iterable (list, array, series...) \n", + " \n", + " \n", + "- **predicted_proba**: predicted probabilities for class 1 \\\n", + " Type: iterable (list, array, series...) \\\n", + " (e.g. output from model.predict_proba(data)[:,1]) \n", + " \n", + " \n", + "- **threshold_step**: step between each classification threshold \\\n", + " Type: iterable (list, array, series...), default = 0.01\n", + " \n", + "\n", + "- **amounts**: amount associated with each data point \\\n", + " Type: iterable (list, array, series...), default = None \n", + " \n", + "\n", + "- **cost_dict**: dictionary with cost associated to each class in TN, FP, FN, TP \\\n", + " Type: dictionary with keys: \"TN\", \"FP\", \"FN\", \"TP\" and values that can be both lists (with coherent lenghts) and/or floats,\\\n", + " default = None \\\n", + " (output from bc.get_cost_dict()) \n", + " \n", + " \n", + "- **optimize_threshold**: metrics to be used for threshold optimization using GHOST method \\\n", + " Type: {'all', 'ROC', 'MCC', 'Kappa', 'Fscore', 'Cost'} or list containing any combination of the allowed values (except 'all'), default = None \\\n", + " If 'Cost' is explicitely passed, *cost_dict* must be given and the threshold will be optimized to minimize the total cost\\\n", + " 'all' is equivalent to ['ROC', 'MCC', 'Kappa', 'Fscore', 'Cost'] if *cost_dict* is given, \\\n", + " ['ROC', 'MCC', 'Kappa', 'Fscore'] otherwise\n", + "\n", + "\n", + "- **N_subsets**: Number of subsets used in the optimization process \\\n", + " Type: int, default = 70. Ignored when *optimize_threshold* = None.\n", + "\n", + "\n", + "- **subsets_size**: Size of the subsets used in the optimization process. If float, it represents the proportion of the dataset, if int, the actual number of instances \\\n", + " Type: int or float, default = 0.2. Ignored when *optimize_threshold* = None.\n", + "\n", + "\n", + "- **with_replacement**: whether subsets used in the optimization process are randomly drawn with replacement or without \\\n", + " Type: bool, default = False. Ignored when *optimize_threshold* = None.\n", + "\n", + "\n", + "- **currency**: currency symbol to be visualized in plots\\\n", + " Type: str, default = '€'\n", + " \n", + "\n", + "- **random_state**: controls randomness of threshold optimization bootstrap method \\\n", + " Type: int, default = None" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "7aedaf7c", + "metadata": {}, + "outputs": [], + "source": [ + "# set params for the train dataset\n", + "threshold_step = 0.05\n", + "amounts = np.abs(X_train[:, 13])\n", + "optimize_threshold = 'all'\n", + "currency = '$' " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "2ac95faf", + "metadata": {}, + "outputs": [], + "source": [ + "# The function get_cost_dict can be used to define the dictionary of costs.\n", + "# It takes as input, for each class, a float or a list of floats. \n", + "# Lists must have coherent lenghts \n", + "\n", + "train_cost_dict = bc.get_cost_dict(TN = 0, FP = 10, FN = np.abs(X_train[:, 12]), TP = 0)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "f9b8ee1c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + " \n", + " " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "cells": { + "values": [ + [ + "roc_auc", + "pr_auc", + "brier_score" + ], + [ + 0.999, + 0.9965, + 0.0426 + ] + ] + }, + "domain": { + "x": [ + 0.33666666666666667, + 0.6633333333333333 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Invariant Metric", + "Value" + ] + }, + "type": "table" + }, + { + "cells": { + "values": [ + [ + "kappa", + "mcc", + "roc", + "f1_score", + "f2_score", + "f05_score", + "cost" + ], + [ + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.35, + 0.35 + ] + ] + }, + "domain": { + "x": [ + 0.6733333333333333, + 1 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Optimized Metric", + "Optimal Threshold" + ] + }, + "type": "table" + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.2025, + 0.5, + 0.3368, + 0.2025, + 1, + 0, + 0 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": true + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.0", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.0", + "0.0", + "0.0", + "0", + "0.0" + ], + [ + "TP", + "True Positive", + "0.2025", + "268.7178398929784", + "0.1774276534164848", + "0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.0", + "0.0", + "0.0", + "0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.7975", + "1245.8027814343134", + "0.8225723465835135", + "6380", + "1.0" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": true, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 0, + 162 + ], + [ + 0, + 638 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.4225, + 0.6379, + 0.4122, + 0.2596, + 1, + 0.1337, + 0.2676 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.05", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.0", + "0.0", + "0.0", + "0", + "0.0" + ], + [ + "TP", + "True Positive", + "0.2025", + "268.7178398929784", + "0.1774276534164848", + "0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.22", + "309.9196058490176", + "0.20463214662432958", + "0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.5775", + "935.8831755852963", + "0.6179401999591843", + "4620", + "1.0" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 0, + 162 + ], + [ + 176, + 462 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.7338, + 0.8331, + 0.6034, + 0.432, + 1, + 0.4469, + 0.5364 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.1", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.0", + "0.0", + "0.0", + "0", + "0.0" + ], + [ + "TP", + "True Positive", + "0.2025", + "268.7178398929784", + "0.1774276534164848", + "0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.53125", + "809.5673909124494", + "0.5345370538454348", + "0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.26625", + "436.23539052186396", + "0.28803529273807865", + "2130", + "1.0" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 0, + 162 + ], + [ + 425, + 213 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.875, + 0.9216, + 0.7642, + 0.6183, + 1, + 0.6854, + 0.7221 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.15", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.0", + "0.0", + "0.0", + "0", + "0.0" + ], + [ + "TP", + "True Positive", + "0.2025", + "268.7178398929784", + "0.1774276534164848", + "0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.6725", + "1052.917860168611", + "0.6952152683440228", + "0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.125", + "192.88492126570256", + "0.12735707823949088", + "1000", + "1.0" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 0, + 162 + ], + [ + 538, + 100 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.9538, + 0.971, + 0.8975, + 0.8141, + 1, + 0.868, + 0.8757 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.2", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.0", + "0.0", + "0.0", + "0", + "0.0" + ], + [ + "TP", + "True Positive", + "0.2025", + "268.7178398929784", + "0.1774276534164848", + "0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.75125", + "1183.3346828565907", + "0.7813262270536409", + "0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.04625", + "62.468098577723275", + "0.041246119529873115", + "370", + "1.0" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 0, + 162 + ], + [ + 601, + 37 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.9875, + 0.9876, + 0.9697, + 0.9524, + 0.9877, + 0.9618, + 0.9621 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.25", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.0025", + "2.579495698949552", + "0.0017031763467762729", + "2.7536678364800915", + "0.03327547779418424" + ], + [ + "TP", + "True Positive", + "0.2", + "266.1383441940289", + "0.17572447706970856", + "0.0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.7875", + "1230.1561951624542", + "0.8122412978995103", + "0.0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.01", + "15.64658627185923", + "0.010331048684003316", + "80.0", + "0.9667245222058157" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 2, + 160 + ], + [ + 630, + 8 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.9862, + 0.973, + 0.9655, + 0.9809, + 0.9506, + 0.9569, + 0.9571 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.3", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.01", + "15.252130722982853", + "0.010070599573359526", + "7.1308905208355995", + "0.1920473875204845" + ], + [ + "TP", + "True Positive", + "0.1925", + "253.46570916999565", + "0.16735705384312535", + "0.0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.79375", + "1238.8365116099683", + "0.8179726932501439", + "0.0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.00375", + "6.966269824344757", + "0.004599653333369382", + "30.0", + "0.8079526124795154" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 8, + 154 + ], + [ + 635, + 3 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.985, + 0.9676, + 0.962, + 0.987, + 0.9383, + 0.9527, + 0.9532 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.35", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.0125", + "18.06121108924241", + "0.01192536492069282", + "8.12593998232949", + "0.28891265456140214" + ], + [ + "TP", + "True Positive", + "0.19", + "250.65662880373606", + "0.16550228849579202", + "0.0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.795", + "1240.496967335978", + "0.8190690505414395", + "0.0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.0025", + "5.305814098335182", + "0.0035032960420738786", + "20.0", + "0.7110873454385978" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 10, + 152 + ], + [ + 636, + 2 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.9775, + 0.9467, + 0.9416, + 0.9932, + 0.8951, + 0.9277, + 0.9296 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.4", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.02125", + "34.618078780570805", + "0.022857449606881047", + "15.250460986117393", + "0.6039676263535164" + ], + [ + "TP", + "True Positive", + "0.18125", + "234.0997611124077", + "0.15457020380960382", + "0.0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.79625", + "1244.8727790372325", + "0.8219582893141805", + "0.0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.00125", + "0.9300023970808013", + "0.0006140572693330294", + "10.0", + "0.3960323736464836" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 17, + 145 + ], + [ + 637, + 1 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.9725, + 0.9321, + 0.9272, + 1, + 0.8642, + 0.9103, + 0.914 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.45", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.0275", + "42.698553505431406", + "0.028192784504981704", + "24.40925360287121", + "1.0" + ], + [ + "TP", + "True Positive", + "0.175", + "226.01928638754714", + "0.1492348689115032", + "0.0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.7975", + "1245.8027814343134", + "0.8225723465835135", + "0.0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 22, + 140 + ], + [ + 638, + 0 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.9562, + 0.892, + 0.8789, + 1, + 0.784, + 0.8527, + 0.8621 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.5", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.04375", + "67.14642524209565", + "0.04433510134926385", + "48.25563070111821", + "1.0" + ], + [ + "TP", + "True Positive", + "0.15875", + "201.5714146508829", + "0.13309255206722106", + "0.0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.7975", + "1245.8027814343134", + "0.8225723465835135", + "0.0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 35, + 127 + ], + [ + 638, + 0 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.9325, + 0.8333, + 0.8, + 1, + 0.6667, + 0.7613, + 0.784 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.55", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.0675", + "94.12346640429236", + "0.06214736536357261", + "77.4889963745236", + "1.0" + ], + [ + "TP", + "True Positive", + "0.135", + "174.59437348868624", + "0.11528028805291234", + "0.0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.7975", + "1245.8027814343134", + "0.8225723465835135", + "0.0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 54, + 108 + ], + [ + 638, + 0 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.915, + 0.7901, + 0.7344, + 1, + 0.5802, + 0.688, + 0.7241 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.6", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.085", + "115.46521459259161", + "0.07623878669370662", + "115.47616920510775", + "1.0" + ], + [ + "TP", + "True Positive", + "0.1175", + "153.25262530038697", + "0.1011888667227783", + "0.0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.7975", + "1245.8027814343134", + "0.8225723465835135", + "0.0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 68, + 94 + ], + [ + 638, + 0 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.905, + 0.7654, + 0.6935, + 1, + 0.5309, + 0.6435, + 0.6887 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.65", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.095", + "127.547973958661", + "0.08421672981044036", + "132.7247827351504", + "1.0" + ], + [ + "TP", + "True Positive", + "0.1075", + "141.1698659343176", + "0.09321092360604459", + "0.0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.7975", + "1245.8027814343134", + "0.8225723465835135", + "0.0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 76, + 86 + ], + [ + 638, + 0 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.875, + 0.6914, + 0.5536, + 1, + 0.3827, + 0.4972, + 0.5752 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.7", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.125", + "160.88392641030188", + "0.10622762354289146", + "187.88283993461098", + "1.0" + ], + [ + "TP", + "True Positive", + "0.0775", + "107.83391348267665", + "0.07120002987359343", + "0.0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.7975", + "1245.8027814343134", + "0.8225723465835135", + "0.0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 100, + 62 + ], + [ + 638, + 0 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.8438, + 0.6142, + 0.3719, + 1, + 0.2284, + 0.3207, + 0.437 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.75", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.15625", + "212.50777676738176", + "0.14031355781814603", + "254.8918574904134", + "1.0" + ], + [ + "TP", + "True Positive", + "0.04625", + "56.21006312559674", + "0.037114095598338843", + "0.0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.7975", + "1245.8027814343134", + "0.8225723465835135", + "0.0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 125, + 37 + ], + [ + 638, + 0 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.8262, + 0.571, + 0.2486, + 1, + 0.142, + 0.2088, + 0.3414 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.8", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.17375", + "231.69273146213726", + "0.15298090247136192", + "280.4781339411015", + "1.0" + ], + [ + "TP", + "True Positive", + "0.02875", + "37.02510843084126", + "0.02444675094512297", + "0.0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.7975", + "1245.8027814343134", + "0.8225723465835135", + "0.0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 139, + 23 + ], + [ + 638, + 0 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.815, + 0.5432, + 0.1591, + 1, + 0.0864, + 0.1311, + 0.2649 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.85", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.185", + "246.02120610486662", + "0.16244163508929893", + "303.2016861580427", + "1.0" + ], + [ + "TP", + "True Positive", + "0.0175", + "22.696633788111896", + "0.014986018327185957", + "0.0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.7975", + "1245.8027814343134", + "0.8225723465835135", + "0.0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 148, + 14 + ], + [ + 638, + 0 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.8012, + 0.5093, + 0.0364, + 1, + 0.0185, + 0.0292, + 0.1218 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.9", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.19875", + "265.380305616536", + "0.17522396319963096", + "328.47283016273883", + "1.0" + ], + [ + "TP", + "True Positive", + "0.00375", + "3.337534276442422", + "0.0022036902168538824", + "0.0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.7975", + "1245.8027814343134", + "0.8225723465835135", + "0.0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 159, + 3 + ], + [ + 638, + 0 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.7975, + 0.5, + 0, + 1, + 0, + 0, + 0 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.95", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.2025", + "268.7178398929784", + "0.1774276534164848", + "334.14171075190933", + "1.0" + ], + [ + "TP", + "True Positive", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.7975", + "1245.8027814343134", + "0.8225723465835135", + "0.0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 162, + 0 + ], + [ + 638, + 0 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.7975, + 0.5, + 0, + 1, + 0, + 0, + 0 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 1.0", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.2025", + "268.7178398929784", + "0.1774276534164848", + "334.14171075190933", + "1.0" + ], + [ + "TP", + "True Positive", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.7975", + "1245.8027814343134", + "0.8225723465835135", + "0.0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 162, + 0 + ], + [ + 638, + 0 + ] + ] + } + ], + "layout": { + "autosize": true, + "sliders": [ + { + "active": 0, + "currentvalue": { + "prefix": "Threshold: " + }, + "pad": { + "t": 50 + }, + "steps": [ + { + "args": [ + { + "visible": [ + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Training Set
Total obs: 800
Total amount: $1,514.52
Total cost: $6,380.00
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.0", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Training Set
Total obs: 800
Total amount: $1,514.52
Total cost: $4,620.00
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.05", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Training Set
Total obs: 800
Total amount: $1,514.52
Total cost: $2,130.00
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.1", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + false, + false, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Training Set
Total obs: 800
Total amount: $1,514.52
Total cost: $1,000.00
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.15", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Training Set
Total obs: 800
Total amount: $1,514.52
Total cost: $370.00
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.2", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Training Set
Total obs: 800
Total amount: $1,514.52
Total cost: $82.75
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.25", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Training Set
Total obs: 800
Total amount: $1,514.52
Total cost: $37.13
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.3", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Training Set
Total obs: 800
Total amount: $1,514.52
Total cost: $28.13
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.35", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Training Set
Total obs: 800
Total amount: $1,514.52
Total cost: $25.25
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.4", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Training Set
Total obs: 800
Total amount: $1,514.52
Total cost: $24.41
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.45", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Training Set
Total obs: 800
Total amount: $1,514.52
Total cost: $48.26
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.5", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Training Set
Total obs: 800
Total amount: $1,514.52
Total cost: $77.49
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.55", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Training Set
Total obs: 800
Total amount: $1,514.52
Total cost: $115.48
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.6", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Training Set
Total obs: 800
Total amount: $1,514.52
Total cost: $132.72
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.65", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Training Set
Total obs: 800
Total amount: $1,514.52
Total cost: $187.88
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.7", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Training Set
Total obs: 800
Total amount: $1,514.52
Total cost: $254.89
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.75", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Training Set
Total obs: 800
Total amount: $1,514.52
Total cost: $280.48
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.8", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Training Set
Total obs: 800
Total amount: $1,514.52
Total cost: $303.20
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.85", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Training Set
Total obs: 800
Total amount: $1,514.52
Total cost: $328.47
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.9", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Training Set
Total obs: 800
Total amount: $1,514.52
Total cost: $334.14
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.95", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Training Set
Total obs: 800
Total amount: $1,514.52
Total cost: $334.14
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "1.0", + "method": "update" + } + ] + } + ], + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "Interactive Confusion Matrix for the Training Set
Total obs: 800
Total amount: $1,514.52
Total cost: $6,380.00
", + "y": 0.965, + "yanchor": "bottom" + }, + "xaxis": { + "anchor": "y", + "autorange": true, + "domain": [ + 0, + 1 + ], + "range": [ + -0.5, + 1.5 + ], + "title": { + "text": "Predicted" + }, + "type": "category" + }, + "yaxis": { + "anchor": "x", + "autorange": true, + "domain": [ + 0, + 0.5 + ], + "range": [ + -0.5, + 1.5 + ], + "title": { + "text": "Actual" + }, + "type": "category" + } + } + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAABb8AAAJYCAYAAABCY5tXAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQn4FlXZ/0+9vYCJIi6IJClmKhGmoriCGyiCK2qapWDuK7mEwPtXM3sBMTXccUnQMhVFDXELN3BFUBMVQRMNRdxFCQEr/9c9r+fp/A6zn5l5nmfmM9fVZT+eOdvnPjP3Od+5555vfPXVV18pDghAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBAiQh8A/G7RNZkKBCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIOARQPxmIkAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgEDpCCB+l86kDAgCEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQQv5kDEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgUDoCiN+lMykDggAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAcRv5gAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQiUjgDid+lMyoAgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAA8Zs5kCuBN95aqI4bepFa+N5HavOu31NXjv6Fat9utVzbbJbK//3vr9RDj89S1/7hHvXyvDe9bm/zo83U2PNPUe1WXzWXYVx8zUR1/c1TvLrPH3qUGti/Vy7tlLHSvNm9/+Gn6uob71b3PTJDffb5P9S3vvVfauSwY9SAPts1BE5z/OPHDvPmapmPrO5dWdVTZtaMDQIQgAAEIAABCEAAAhCAAAQgkBcBxO+YZCfdO12dPeZ637NFnPr1mT9Xbdq0ilnbf04z621WMTJMFGs04UcE5+dfek3ddf90Ne3pF9WHHy/2RMZNN+qs+u22rdp3jx3U2mu2S2zHNAUenzFbnTTid+qf//xXrXjeDwjyFnCTcDDnhpTzu45EED75f8aql+fO96p2udZcxds82S39YpkaPupaNXXarBYIi7wnRN2LXPklmRtyrtleVNk8xPis7l1Z1RPFIMnvXyxbrh58bKa6Z+pTatZf56rlK75UrVv9t/rhZl1Ur203V7vssIX63gbfUd/85jeSVKvMsbpcq4ka5WQIQAACEIAABCAAAQhAAAIQgEAIAcTvmNMD8TsYVNGiWEyTrXSaCIxjr7tD/eGOvwRWkbf4rBv+8st/qt+MvUndfs9jatVvt1EXnXui2qlnd/WNbyQTm9KyaIRytvgtHK4Zc6ba4ocb17r3p7seUr/53U21v10EtUaepy/O+Zs6+owL1T+WLlN77bat+tUZg1XbVVcp1EyI34Xirltj8xcsUsNHXqNmz3kj8/sg4nfdzErDEIAABCAAAQhAAAIQgAAEIBBAAPE74dQwBSIXIU43GyU4JexeXU5vZFFRA/nXv/6lrvnDPeryG+70/ql7143UsJMPU9036+L9PevFeV6k6TfUNwpJzbJs2Qp1zm9/r6ZMfVpttvF31ZWjT1Prrt2+LvarV6O2+C39kDQsZ582SLX67295UflnnHelmvnXuaUXv5/966tq8JDR3jhlXh5+0B6FmyXqXlTP69y8XgRMkRHxhRsixwZXfPlPdf4lE5TYWt54GXriT9QBe+2kvr1KGyUPB5+c+bK66Orb1Bqrt011H0T8ztF4VA0BCEAAAhCAAAQgAAEIQAACqQggfifEFiV+mwKRCJpvLVikbv3zI+rNBYtUt002VEOOOVDtsPUPvQjfsNf6zdf4P/rkM3XznVPVPX95Sr397geeaPHDTbuonx7YV+2589bqv/7rv7xRmH0775dHemLqZddPUp8s/lyNG3OG6rTu2uq2ex5VD02fpea98baXV1iOLt9dz3vV/acH9FHrd1qnBRFpe+I9j6oHHn1WzfvbAu+3Tb7XWfXt1UPtt+dOauz1t3sCrn10Wnctr832a6ymThz2OyWRrTqq+oMPP1XHnXWRkpQWu+24lRr9P8d60c9yLFj4vjr+rIs9Xttu1VVd8quTvfzXX331lZrz2t/V9X+a4gk00vfVV1tV7bB1N3XMT/f2BOSwQ/qu25S+iW2+32X9FkU+/uQzdfVNf1YnDNqvlpf87YUfqOv+NEU98sTznhgrqQF6/GhTdeSP+6ntenSrpQUQxuY4h51ymJp07zQvtcDy5SvU7jttpU477sdK2vYTfXVHtN2DhEbTxkcdNkCdfuzBXlERtcSuk+6bXktjIHy6b7aROnifndVuO27pzZMwgTOPsYbZxI+D9PnqC05XP/rB99S9Dz+jfvnrq1pUYT5wEkE0zny2hVOzwqB5ev5ZP1d33POYuuuBJ9TB++zicbbZiWh41/2Pq19dNN5LXdP1+xuoy/93iOrYYU1PSDz3whu8Mcj1KpHc+/fbyTeyP+g+YI5V7Dt12kz1x0lT1Utz53vtrb/eOmrvvturww7oo9Zqv3ptWGZ911x4hvrgo8Xq2j/eo1Zvu2qgoBnnXpTk3qY7I+k1Jk5+VN15/+Mt7h8H7NVL/XifXVSb1vFSRcUVv6PG/u57H6s/3PGgenHOG2r+39/1uqmvE7Hn7r16eA9e5LCvaf29AnPe9t9tW3Xo/rurm25/UE17+q+qdetWav89d1THHbGvJyBnWY/U9elnS7y25I0RuR/JvXi7Lbuqex56Wsn9K+qBrDkmmadyj954w++0uMakDfkuwM9/0r92H4xjR/MBjn3dm/eqhC6X0yEAAQhAAAIQgAAEIAABCEAAAk4EEL8T4ksifvtV3WHtNdS4C87wRIs4gtPTz72izvrNOE/o8DtEqD3hiH1XEjZFeFmy9AtPJPMT+PzqEhHk8pFDVOdOHbyfo9q+5sIz1d0PPJ5Y/F7126vUog9F9L7uol96wrgcpuD5/35xuPrJ/rsrHbUtwrSZH1uPQcSrS847SW231Q8CrfnnB5/0XvWX46cD+6izTvpJ7aFBUCEZ/2nnXlF7SGCfZ7I3RaWg+vr07qFGDT9GLXr/49pHQO1z04jfIgye/7sbPSHW7zAFsSDxO6+xSkRp0GGKiL2329w7TfKwS9Tz0YcNUEN/c7V65rk5qt+uPdX9j8zwfjfHEsVcz+d11lyjFmVv98Xv2pAHHCKAfv6PL7zTtXDnx07m5lU3/lldNeFu79z99tzRi9y+8fYHa/8m4/nlCYcEzrco8fvfX/3bS/1y9wNP+KLcsHNH7yOpWsQ061uz/eqeKCpHWEqfOPeiqBzc5r1N2vvbmwvV6b+6Qr3+5ju+/RZWco2HzRFdMI347Tf2R554IfDbDdLWaccerI76SX/vIUUc8Ttobg/6cT91xnEHezbPqp4PPvpU/fLXVysRmYOOKPH78yVLPZvIA0Q55N6516491TZbbObl+5brQT9M1W3EtaN8tFe/vWD3D/E70GT8AAEIQAACEIAABCAAAQhAAAI5E0D8Tgg4ifg9ctjRqv/u26l//fvf3qvkEr0th/nKflgk7uLP/qFO+9XlngAoeYBHnPozteYaqyn5dxE773v4mZqwvdEGnVpEpkqk6hEH76n+++soRmlXRJhRl/1R7dN3B08olt8kQvXGiQ+qy34/yevbqBHHeh99NNuWyNVTfj5Q/ezAvl7k8zvvfqiuvfkeL+p0mx9t1kLEtz88FyT8PPjYs56wLMepRx2ojv3Z3urLf/6rJoqLoCcRwCLEv/DS6+rYob/18iGffdoR6sD+vb1oWokEH3L2pWrhex9FRjxKBLyI53LESSthfmhRBKIx/+84teM23dW773+k/mfUdZ4AJX24YuQvvFzd5jil75f86iS1cZf11TuLPvDGOee1t1rYyhTztAArNtRHkshvM190j8038fKHr7PWGp5tRdR+4eW/qROP2M/7IKvffMt7rEGXmJ0ioW/vrdWZv77Km+MD9+rtRdzLeOQByC/Oudyrxha/485nKRuWtsO03yYbra8uPu9kteH667aI1A66VoWzFqdlTuy167bqsaf/6j00kevjwnOO9+wRdphRs7ZQaOY9l2t3+Ck/VW1XbaPuvO9x7z4gD4T0gxURks1xXvyrk1SfXltFPuiRviVJexJ1bzPTa2z5w++rUSOO8SLV5cOKV46/S13/p3u960cefAmjqCON+O03dnmAIBHfh+63m1p3nfbqq6+Uen3+2+q0X13hvW0ifZVrWt42iSNa77DND72o/vU6rKVmv/qG+sU5l3lvtJgPGrKqx5wH0s/zzzrKm6NyHzzl/431HqpFid/CWRicc+HvAx8k/mT/3dRPB/b13iZIakfSnkTNZH6HAAQgAAEIQAACEIAABCAAgaIJIH4nJJ5E/DaFYLPc8Yfvq045aqDXcpjg9NzseerI0y7wFSnMbut2osQrKSOvrz/x7Evq4cefU6+/udBLM6LTn8jvWpg32zbTj/jhiisqmoKQKbjq+j/6ZHEtItqMzjaF6yBzRX2oMqn4bY7fTs0iKQfO/e0NXle0UBkkcJminYh9N1xyltqq+yYqS/HbTOkifdKpELbs/n21Rbfvq3XWalcTcf3mSN5jDbKZLZSdfuyP1YjR13oPe/QhkcEbd/lOLaLUFvfizmepL808Nfsedn35ReXaEdlht5og8VvE4vMuGl+L+pZ0PTtv9yOvKonoPn7YJerlufNbPFhJm5s76v4R54GMvreJkCzpi+T+EnbEzd2dRvy2H8RJPyR9kojfDz3+nBf9LHbT6U/k96SiddCbCPLQTh7eyRyII35H1dNxnTVbvL1gzoOkgrMweOb5Od5DCPnWgd8h9+Tfnn2C+mzJ0kR2TNqXhO6X0yEAAQhAAAIQgAAEIAABCEAAAokJIH4nRJaF+G1GdoYJTmE5VM1uxxW/o15flzq1GGW2HRVNmEZUFAFGPkB56fV3ePm+rxlzpnrj7+96KQnMiGpbtAwyV5T4nTTtyeMzZntCvBz2+P3mwBfLl6+U27x9u9VaiNxSl7ZVluJ3WFoYYSmCpETWB+X8znusQTbzE8oefvL5Wp5vnbZk0Qcf+4rfSeazPY/ivqFg9j1KHJac/Gf977hakTOOP0QdeUg/3zzfNpMg8Vvedhgx6lo1dfosr4jZbzvtS1TKnKhbXdT44ojf+t4Wltfe7EeR4ndU+iTpV1bit/k2h4v4reuR7zXoD+Ta88BFcJb59eaCd9Vzs19Tf5k2s4UYfv3FQ1WHtdYITNHkZ0eXvkTNT36HAAQgAAEIQAACEIAABCAAAQikIYD4nZBakeK3GZF75CF7qTOO/3GokBYlXpnRz0cctIeXFmXtNdupyX95qpYH1y/y2458tpGlEb+lDjNi+cf77qo++nixF5FpR5qb/RZBJiy3d5A543zw0vzQm0SD6qh7STlz/tCfq1XatPaqTxv5bYpWWYrfUq88THj3/Y/VM8+94nF9+vk5tQ8MmnnVoyK/8xhrkE38hDKJND35f8Z60cw6Hc7MF+f6it9J5rP0Ie081f0Pu74kr/WQsy/zUmfoQ9LlXPqbU2Kl9Ygb+W3O/0aM/Nbitxn5bc+phLdc7/QsIr/NPklE9ohTf+qJ3ZJu6aThLT/KKw+ushCtJZVRFvXY4rc5D5IIznKu3O8lr3nbVVdpYQp5i+LsMb/30mnJId9R2GSjzrXI7zh2TNKXNPOAMhCAAAQgAAEIQAACEIAABCAAgaQEEL8TEsta/DZzXx+y765q2Ck/9T62J4edi/nM4w9Re+3W0/tA3Jdf/lO9Nv8d9cdJf/GEDDvnt19EpSn+/e7XJ6vdd+qhVnz5pRp/6/21nN+6nHxg84zzrlQz/zrXi8QeeuJP1IEDens5v9/74BN1zR8mq71239YT9uT/j73uDq/PZ55wiBp0cD/1zW9+w/s7SPixBS3JRy25i+V/+kOX2jQSmXzSiN95v3XvupGXs7v7Zl28SGb5gJu8wi+5rc887hAvr7XfIVGfF151q7rp9ge9n8165O/Zr85XF4+7TX355b/UlaN/4f1Xi7BJc36b0aO2aJcm8ls+zilpYCQFhpmfXQuNkrpgytSnvDzGXb67npfLXYT8X55/tXry2Zc8++l0K1nn/I4z1qBLLK5QFvQWQpL5LH1IO091/+Pm/D5owM7eh1sbIee3X+qPIHuE3YukTJLIb8mDPlwi1qfN8ubfCUfs5+Vul1zaci0uWPiBunHiA2pAn+29vO5RRxbitznfJHXMb4Ydrdq3a+t9kFNyyos43qiR33J/N+evzv2+Wttv/9+Hif93nJcGJ+otHc3gW9/6lvc2yM7bb+ExkNznL7z8mid+Cwf9zQXJ+53Ejm+/+4E6YdglStqR3PmX/e8QL9c7BwQgAAEIQAACEIAABCAAAQhAoF4EEL9jkjeFL7uIKTgkEYikHjtfs65bi1aesPGbcUrEaL/DfL0+KvL7gUefVUN/c3VoDnFTNI9qW/fRFKd1H3W/2q+xmm86EH2eiIS//PVVtaGZH7rU/xgnXUGU6CN1LfnHF2r05TerO++bHmh1U/yS8cvHKs2c6GbBEwbtp044Yl9PhI+T81vKxhW//Zjandbid1R6nP323NF7oCAPTYLmSJ5jDYLtKn4nnc8u81TG4MdO5uZVN/5ZXTXhbm+YMieOPmyAuu7mKbV/M/kHsQj74KX5QU2/8nZu8bQ5v6PuRUnvbXHS0sQV57MQv+Ujvmeef5X3QCjoaGTxW95GkQdy5tsFYb7Ib4xx0tHIwz75sPBeu/b03jRKYkfzoYfZvv0R15hul9MgAAEIQAACEIAABCAAAQhAAALOBBC/YyLMS/yWdBVPznxJXTn+bvXS3PmeMC2pSC7731O9KEQ5PvrkMzXxnkfVw9OfU3PfWOCdIwJF9802Uv1331b16dXDe4U9SvwWoe6eqU97EYQioEhEpkQQSmTeZb+f5LVlR4xL9Pmk+6YpERpFHJNDooulzZ8d2Nfrq653/G33187ptmkX9dtzjlcSmXjisJVTCmjsZnS7/NtBe++s/t+Qw73oZfMQTnNe+7v6011T1YznX1USYSiH9L3nlpupfffYUW3V/fueEB12/PvfX6nnX3pN/emuh9SzL7zqPVQQDj/ctIuS1/r77drTG5M+3l74gbruT1PUI088750rke89frSpOvLH/dR2PbpFRrinjfy2bSVRlMf8dG/vA3TnX3Kj1z0tKEm/bvvzI2r6M7PV3L/93YsQ1/0cuFcvtXuvHrW3CcLmSF5jDbKHq/iddD67zFMZg83ugL12Unfd/7j61UXjvWtyh21+6H0kUKKbRQQ898IbvAhwOcwHJX48wsRvOX/Fl/9UU6fNVH+cNLV2n5C5v3ff7dVhB/RREqGrj7Tid9S9KKn4Lf2RVBp33fe4uu+RZ9RLr86vzc0fbtbFu4fs3XcHteYaq0XehbMQv6WRhe99pC4Zd5uXXkmuk44d1vRy4k+c/Kh6ed6bDR35Lf2Xa3Ts9XcoeZAjc6znll1Vv116qisn3KUWvf+xkgct554x2Lv+/Q65//3trXfUXx6b2eJ+IffATTfqrHbZYQu1X7+d1Hc6rt2ieBI7eoyvmej1UR4cSl9k/sv9iwMCEIAABCAAAQhAAAIQgAAEIFA0AcTvoonTHgQgAAEIQCAhAXm75H9GX68G9u+ldti6m/cmhwjg8pbBuJsme7XZKaMSNsHpEIAABCAAAQhAAAIQgAAEIACB0hFA/C6dSRkQBCAAAQiUjYCZWslvbPL9hQvPOV6ts9YaZRs644EABCAAAQhAAAIQgAAEIAABCKQmgPidGh0FIQABCEAAAsUQ+MfSZer6r1MwvfH3d71UOzpdSb/dtlUH772zl2aKAwIQgAAEIAABCEAAAhCAAAQgAIH/EED8ZjZAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBA6QggfpfOpAwIAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEEL+ZAxCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIFA6AojfpTMpA4IABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAHEb+YABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIlI4A4nfpTMqAIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAPGbOQABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAKlI4D4XTqTMiAIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhBA/GYOQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAQOkIIH43oEmXLVuhzvnt79V2W3VTA/v3StxD1/KJG6QABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAIEGI4D4HcMgk+6drs4ec33gmecPPSpQpE4jRKcpY3bOtXwMJLVTbDY2izfeWqiOG3qRWvjeR14ZP1YXXzNRXX/zFO/3zbt+T105+heqfbvVknSDcyEAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEItCCA+J1wQoiYO2L0dWrksKPVRht0iiydRohOU6Ye4rcI3xMnP1oTq7XQPXLEMWqbH22mPln8uTpx2O/U6ccf7Pu39FnqePq5l9Wvz/y5atOm1Up/RwLmBAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACPgQQvxNOiyDx24yA7rTuWmrcmDM8cdyMapamBvTZzhN6Z899Qw0eMrrWulkmjvitz5ky9WmvDl2vCMj6t403/I565IkX1Itz/uadM37sME+EluPZv77aon2/8h07rKVOP/bgQEIyNjn0OXa/bWFbzjXL2OK4/J704UJC83E6BCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgUBECiN8JDe0nzoqQfPHVE2sR0Obfq7RuHSt/t4jCi97/yBPG5YjK+W0Lz+bfWoRe8M4Hvn365NPPW0Svy/lX3ni3OvKQfl66EV0+SvzWkd5rr7mG147Ue+FVt6iRw4/x6hHx+823F7UQ0E1B/Ivly9WIUdeqX55waC2K3k8QT2giTocABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgoBC/E04CW/z2i9I2/63/bttGCtnShSSCuZ8Ab/5bp3XXXqlNU1Rea43VvTzcOj1JQgQtTrcj282c3rZALwVN8Xvhex+ulEIG8dvFGpSFAAQgAAEIQAACEIAABCAAAQhAAAIQgAAENAHE74RzISvx205bIt3QH3uMihZPI377pSQxP+IZ9tHOIERx0p4Q+Z1wgnE6BCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgkAkBxO+EGLMQv/3SihQZ+a3zfuuhS9sjRl5by1MeB0lQXnIzsvveh59p8TFLqZec33Hocg4EIAABCEAAAhCAAAQgAAEIQAACEIAABCDgSgDxOyHBpDm/Jfe1HSHtl9pDznn2+Ve93NlRkd+2iGz/7SdMiyg9cfKjXv2vv/mOknzgA/v38kYfJOhH5fw2+yzj1OM6eJ9dvLrtcfqN2/4opt9HMhOaiNMhAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCJDzO+kc8BO/pQ4RbXUakU7rrtUiilp/GHLhex+pAX228z5qOXvuG2rwkNG15o86bEAi8dtOm6LrbdOmVe2DlVOmPl2rX6dUMUXqF+f8rfb7+LHDlI4Ij/vBSy26X3/zlFo9dvoUc+xykl96FTNvuNnPpLbhfAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACmgCR38wFCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQKB0BxO/SmZQBQQACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAOI3cwACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAARKRwDxu3QmZUAQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCCA+M0cgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgdIRQPwunUkZEAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCCB+MwcgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCECgdAQQv0tnUgYEAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACiN/MAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACECgdAcTv0pmUAUEAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgADiN3MAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAESkcA8bt0JmVAEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQggPjdgHNg2bIV6pzf/l5tt1U3NbB/rwbsYX279MdJU1X/3bdV7dutVt+O0DoEIAABCEAAAhCAAAQgAAEIQAACEIAABCDQsAQQv2OYZtK909XZY64PPPP8oUcFitRphOw0ZWIMo66nZDmmKPH72b++qiZOflT9+syfqzZtWoWO28+2ndZdS40bc4baaINOtbJvvLVQXXjVLWrk8GMCRXc557ihF6m9dt9OnX7swYHtfrL4c3XisN+pF+f8rcU5Rx02oFbO7lfYHKurYWkcAhCAAAQgAAEIQAACEIAABCAAAQhAAAINSgDxO6FhROAcMfo6NXLY0S3E0aBq0oi+acokHEbhp2cxJhG1Bw8Z3aLvpihs/j6gz3axxe+nn3s58FwtaC987yO1edfvqStH/8JX/BZBe8Soa9Uni5eonlt2jSV+n378wWqbH222ki1kHCNGXlsT4HUfRo44xvf8wo1JgxCAAAQgAAEIQAACEIAABCAAAQhAAAIQaAICiN8JjRQkfpuRumbk8MXXTFTX3zyl1ooWZWfPfaOFkGuWiSMUB9Urkc66/MYbfkc98sQLtQjj8WOHqenPzK71x4w0lg7a4rKcr8VZ+e3iqyfWxF+7jzqaWcY34bb7lYjFcThIu5LipWOHtUIFY7P9ex96xkt78vqb76gF73ywUtS92CJM0DZNHvdce/xmHXrsImYLXzniRH4Hid8vz52vVmnTuvZwJc58SDiNOR0CEIAABCAAAQhAAAIQgAAEIAABCEAAAqUvq91XAAAgAElEQVQngPid0MR+4rctjJp/r9K6daz83SJmL3r/Iy8CWQvCcXN+a/H14H128YRgLZaKMKwjlbU4ryOl7Whie1z233HF787fWacWRR1nTLqvUeK3KVLfce+00JzfcQVt4WynFwmK7g4Sv03hWx4UyJjjit9m2pOwtCZ2GwmnLKdDAAIQgAAEIAABCEAAAhCAAAQgAAEIQKCSBBC/E5rdFoX9onLNf+u/27axxO80grnZdVN09etTlHjtJ9qa/xZV3k+gdR2TOT4zT3ZY+hEtaMeN/LbNbwr2Zr5wP/Hbb8xxxG+7zbC0JnEfDiScxpwOAQhAAAIQgAAEIAABCEAAAhCAAAQgAIHSE0D8TmjirMRvLWpOmfp0rQda1I0TLW7motYV6DQmZRS/baFfp5Lxi5hOEvntJ0T75XT3E7/9bKDrixLo/UR3+TczXYq2o/x7nI93JpzKnA4BCEAAAhCAAAQgAAEIQAACEIAABCAAgVITQPxOaN4sxG+/aN4kUdJ+kcJlj/w2zfTHSVNrOb8nTn50JWHYVfy+8Kpb1Mjhx7T4sGVYzm9bmLdF7DhTTOy34foda/nLdVT5NltuFpo/PE7dnAMBCEAAAhCAAAQgAAEIQAACEIAABCAAgSoSQPxOaPWkOb/bt1ttpTzQQekynn3+VS9Hd1Tkty3E2kJpmsjvqJzffjnABw8ZrXTkdVTaEz8Ogj5uWg8RtCWfuOTV1uK3fMzzzbcXrSQOB4nfdm50+fuGW+9XJx6xnzI/FOqXfzyt+O03PnMswkDqHjHyWjVuzBneRy71w40TBu2/0sc8E05XTocABCAAAQhAAAIQgAAEIAABCEAAAhCAQGUJIH4nNL2f+C1VmB9O7LTuWjUhU34z02MM6LOdF6k8e+4bSsRjfUjKkrjit5SRSGGd+kNSbIgwrEXbNOK3FmHNPo0fO8wTm/Vhtnnofrupz/+xVOmPcsYRv/04SN3n/Pb3tb4HmSMszYsuIyKy2X/5d81bxO2gvOVm6hmdOkbX6dduWEoTO+d3UJS/2U97vtgf4dR9MceScNpyOgQgAAEIQAACEIAABCAAAQhAAAIQgAAEKkcA8btyJm/+AevIb4kmT3LYqUWSlOVcCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAoLkIIH43l73orVK1tCdJxG+JTB8x6lr1yxMO9VKLcEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAALlJoD4XW77MjoIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAApUkgPhdSbMzaAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAAC5SaA+F1u+zI6CEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAKVJID4XUmzM2gIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAuUmgPhdbvsyOghAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAAClSSA+F1JszNoCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAALlJoD4XW77MjoIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAApUkgPhdSbMzaAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAAC5SaA+F1u+zI6CEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAKVJID4XUmzM2gIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAuUmgPjdgPZdtmyFOue3v1fbbdVNDezfqwF7GN4l6f/tUx5TBw3YWbVp06rp+k+HIQABCEAAAhCAAAQgAAEIQAACEIAABCAAgeYngPgdw4aT7p2uzh5zfeCZ5w89KlCkTiNkpykTYxiRpzz711fVxVdPVFeO/oVq3261yPODTogSv6WdwUNGe8U7rbuWGjfmDLXRBp18q/tk8efqxGG/Uy/O+Vvtd5u3fc7mXb+30hguvmaiuv7mKV4dfr/7NR5VxhyHlB8/dpja5kebpeZGQQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQCA7AojfCVm+8dZCNWL0dWrksKMDBVuzyjRCdpoyCYfhe3oW4rffgwJTFBZBedH7H6lfn/nzWFHhwnvq9Fnq2J/t4/VZC92nH3+wJzTrvw/eZ5faAwi7DenT08+9XGvT/tsPRlQZex4knRdZ2Is6IAABCEAAAhCAAAQgAAEIQAACEIAABCAAgWACiN8JZ0eQyGmKvmY0sxk9LE0N6LOdJ8LOnvtGLfpZ/t0sE1f8Nuv2Kz9l6tPe6HSbOgWJLVAfddgAtf+eO6rjhl6kFr73UY2IFq39BOYwwXj4KT9V0rakPbn34WdU5++s4wnVwu7Cq25RI4cfkzqy3GbjZw9TxJd+SuS4Fsvl7yih2hbY/coIezlOP/Zg779xbZZwunE6BCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgkJIA4ndCcFFiq6QLMcXXVVq3jpW/24xWli5F5fy2o5ulTTlEZLaFWfNvO7pbhN4bbr1fnXjEfp4g75f2JK74rduRuvxyfovoftvkR9RHHy+uiey2MB9lDuEvIv3IEcfUUozohwA6HYr8veH6Hb1IcOn7iFHXql+ecGgtUt9P3DbbjVPGbEOXtblHjYXfIQABCEAAAhCAAAQgAAEIQAACEIAABCAAgfwIIH4nZGuL334Rv+a/9d9t20ghW7qQRDAPi1z2+838t48+/UyNGHmtb55t17QnWpiW6HE/UdsW7DUnGX9UGhQzv7ad89tsV+oyc3r78YgSv6PKdN90I1+bIn4nvJg4HQIQgAAEIAABCEAAAhCAAAQgAAEIQAACORJA/E4INyvxWwu/OjWJKdpGRYu7iN/yYUk7FYtOb+IqfmuU9th0/X7icNI206Q9IfI74STndAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIlIAA4ndCI2YhfmsBt2OHtWo5o4uK/Bbx2zwkFcnEyY+qK0f/Qr3+5ju+aU8SIvLyX+u0J5Lz+823F3nj9PvQZFLxW/oi9eg6/cqbkd0bb/gdcn4nNSDnQwACEIAABCAAAQhAAAIQgAAEIAABCECgBAQQvxMaMWnOb8kBbkc8+6XdkHOeff5VT4SOivyWLqfN+S3Csf4ApdRjiseffPq5GjH6OjVy2NG1/NhyTtyc39f8YbLq06uH6rTu2jXx+8ob726Rf1s+PnnwPrt4+bj9HgLYOb2lv3LI+X590eefMGj/2jmmoC/8bdHd/ttvfFFl7HkQ9RHNhNOM0yEAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAFHAojfCQEGiZwilp495nqvtk7rrtUip7ZfLmz5uOTgIaNrrR912IBE4redWsRs0/7NzL9t58e2+2qmRNHpSuKK32Zebj2wqPzcMm6JCteHLTrb/ZXzouo0c37res1x2b8HjS+sjNRrj1fzSjilOB0CEIAABCAAAQhAAAIQgAAEIAABCEAAAhDIgQDidw5Qq16lmfakTZtWsXFo0V4iw7f50Waxy3EiBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAGbAOI3cyJzAmnFb4nyvvCqW9TI4ccoSVfCAQEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAgLQHE77TkKAcBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAINSwDxu2FNQ8cgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAgLQHE77TkKAcBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAINSwDxu2FNQ8cgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAgLQHE77TkKAcBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAINSwDxu2FNQ8cgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAgLQHE77TkKAcBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAINSwDxu2FNQ8cgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAgLQHE77TkKAcBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAINSwDxu2FNQ8cgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAgLQHE77TkKAcBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAINSwDxu2FNQ8cgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAgLQHE77Tkvi73zMtvO9ZAcQhAwCSwbbf1FdcVcwIC2RKQ6yrtwfWYlhzlIOBPAD/HzIBA9gTS+jl8XPa2oMZqE8DHVdv+jD4fAml9XD69ac5aEb8d7caCyREgxSFgEWDBxJSAQPYEXBZM+Lns7UGN1SaAn6u2/Rl9PgTS+jl8XD72oNbqEsDHVdf2jDw/Aml9XH49ar6aEb8dbcaCyREgxSGA+M0cgEDuBFwWTPi53M1DAxUjgDBQMYMz3EIIpPVz+LhCzEMjFSKAj6uQsRlqYQTS+rjCOtgEDSF+OxqJBZMjQIpDAPGbOQCB3Am4LJjwc7mbhwYqRgBhoGIGZ7iFEEjr5/BxhZiHRipEAB9XIWMz1MIIpPVxhXWwCRpC/HY0EgsmR4AUhwDiN3MAArkTcFkw4edyNw8NVIwAwkDFDM5wCyGQ1s/h4woxD41UiAA+rkLGZqiFEUjr4wrrYBM0hPjtaCQWTI4AKQ4BxG/mAARyJ+CyYMLP5W4eGqgYAYSBihmc4RZCIK2fw8cVYh4aqRABfFyFjM1QCyOQ1scV1sEmaAjx29FILJgcAX5dfMWKL9X4m+9UXTfdWPXafqvQSt9d9IG67qY71NGHH6jW67hOi3OT1JNNz9PVEjaGdDWWpxQLpuax5cS7H/Q6e/B+ezRPpyvaU5cFE36uuElT1muqrONKOzPwc2nJFVtu7uvz1cQ7H1RDTviZWq3tqsU2TmuJCaT1c/i4xKi9Ai73dZeyQb2d/tRzas7c19Xgww5QrVr9d7pBZVCKPZ5S+Lh4Eykv3cK13jyuTz8iaduJGl9ZfXdaHxdvNlbjLMRvRztXdcEU5Nj1zWjnnbZRm27cJTbdqJuYWVFe4rfuw/sffNJio/P5kn+osVf9wetCnA1QnBs5C6PgqcGCKfZl43yi63UcZ647d5IKMiHgsmCqkp+TBfMFl1zvMV9rzTXU6ScNWukhayYGCagkq2sqjgigx3rkzwa2eOgsZW/4wyRl/7tfl+P6sqzGlSf7IuvGzxVHO2juyfx/7PFnQ4Wysm6gi6NfbEtp/VxVfJzp38Qy222zeWyh2O9e73JfdymbRvxmj1f8tVjG60rPo6effbEG9KzTjoqtedhrsyT6RxILhtUr1/LFV0xQH338qW+VMp4XX37N+y3v4Ka094EobmX13Wl9XJK5U/ZzEb8dLVzGG3scJEE3Hbmh3nrnfeqoww/MLUomb/F7yT++UNts1b0mBoijeva52Wrp0mWZid9xGFf1HESB4izveh2nXbQUN0Ja0gRcFkxV83NlWDTHFb9vu/MBtVrbb9d8tjzsvf6mO9TnS5aqXXbq6fQmFldfMAH8XHGzI+h6Fv/VscPaoXO8DPeC4kjXv6W0fq4KPk7m8nUT7mjxQFeugbnz5sfa28R90FnPWRDm9/R6lz1eMRYqo4/Tc6h9+zVqorAWkvftv1vkeknIx1mbZWGhKHFYtxF0XRe1v0vbTtT4yuq70/q4LOZUWepA/Ha0ZBUWTEmesMtNfdH7H3pOQUeP6fLmk1G52S37Ypn6YtkyJU9Pjzh0PzXvb/NraU90tPUbby7wipvRCfpGvWHnTuqR6TO83/fao7fXpt/N0Ix02GjDzoGLPF12y81/oJ5/8RX1k4MGeHX/6fYpSv7tgYeeqJW1n/zqCDm/qIqD9ttTXXndLd4YpA45Dj9kH3X3fY+0SN1i8grrp+OUbfjiZVwwNTJ0v4WYeR3bEQL6WpMxmYsWewHl9xaIOceTRBw1Mr9m6ZvLgqlqfs5eNOu5vf02P1I3T5zSwuf4bRzM8i/MnutFUcfxg+JHxH/KoaNt5Bq778Fp3r+ZkejaR2q/IhE8+pqS/29G9QT5Ex35Kr+3bt3a27jJNbp8+XIlvtdMQ+bnR1u3auWlK7MjoOTtKXn1fJU2bTwfLfcMfehx2T4+TpR5s1xrcfqJn4tDKZtz9Fw7+IA9atF5+iHPIQfspdq2/bb3dp/fetO8lqU3cp5Zjy2g2/M6SURgNqOtdi1p/VzZfVyQUGT/u7030z5H/ut3rzejQ4P2Zpt3+37tbaqg9aO9X/Tb12k/Y/sK00fa+0XzamCPV+y9oYw+LkhQ9fMTcddmJx51qLr9zw/U1ltyLcx64SXPWC++NM/7r47E1mtB068EaS1R4rCeDWHit6nTmOtPe02s15j2mtC8VoP6GXTP0Wltg3yq3/jsNsqopaT1ccVe/Y3dGuK3o33KvmAKwxMmdnX57vpq2pMzVe8dtvbyrskNSV4v1WlD5GY3Y+aLtQgE+yYmjkQOSZ2ib3ySSkU25/ZTVnNjI+2aucPtSAdT1LPHZop1snmXo8M67ZX8f/mvzvuob+76ya+5iZKbtf0UU/dP6tB56Gx2Np83//6OknbsnOaO07UpipdxwdTI4KNE62efe0mt32ldby7qa+/oQQd612YS8dvvHhAVddfI3Jqtby4Lpqr5OT/xW8Tknltv7onStphmC2D67217dE/kB2VOmdeUtDNj5my1+y7bedNNfvvkk089P7J8xQpPiNN+RX43fV+c6CItfh+47x7qjj8/qOS/D0+foXbr1dP7W4vfYX7Ub+OkNyD2A2/po8lP+3TxvX99aa7aZqsfNttllbq/+LnU6FIVtNdlZsqT+X9/O3C9mUT89lur5v0mZCoYJS6U1s+V3ceFRW2b+yJ7b2b6EXmoan9vyV4Dip/UEbB6vaj9pt2HoIhP8zwtugftt+x1ZZzIb/E77PHyvwmU0ccFzVm/h6lx12a2/iFz+M/3PlzTR+z1lDnHxYpBWovWKqK+pRYmfps6jX0vMNfE0g87Kt5kIr+bvlDafHvhe96aL+yeY69rzT1olN5D5Hf+13iztoD47Wi5si+YovCYm/6wlCdRi56oJ5RhIpspGOy3164tBADbUYX10RS/O3Xs4L36/e1V2ngR4AsXvV8Tv5csWeq7ANRCXpD4bUYL+S3uohxUlC3K8nsZF0yNbpu417FflJAWtKIehtkftI2Tb7XRuTVT/9KKAjLGqvm5oMhv/ZFl+60Gcy6LKC2+QyJK7YeXUX7QFr/t+ZVEiEsifouY/sys2V56L0n5JaK9eb2G+VE/f+jXtllHWTclSe4H+LkktNzPtdd+YSlPguaq9CIs8tue12m/geM+2urWkNbPld3Hhe19zPu1vJGq13TyX9Nnyd9R4rf5u/2Q2O+hsdmW/H+/B0h+bcp+y/ZTUj6u+M0eL/97RBl9XJDfMOe2zC3bT5jzUtZa5kdZ/cRv83fbr4Stn9JoC3HTnpjrXL8HYX71aF7yIMBOuaRnYNiD6bAHblF6T1nXmWl9XP5XfPO0gPjtaKuyL5ii8Jg3Q7mhyyHR2XrRZL56bb4yY9/s/MRv+1U2/bpcUKSZvC7udzPUrwnpsQS9BmNvVEwnZ95EZbPv96EI/XpPWvE76UdCo2zTrL+XccHU6LYIu479Pu7iN9fjiN9megRhQuqT4maGy4Kpan4uqfhtRrh8tmRJi4/o6UgV/WGhMD/oJ37bqbS0/4oS4pKK39I/HZljRwzZvlja1v1IK35HfWiwuCujPi3h54rlbgc3SDo7CWxYre2qXkeC1ptJHjjZ16oeIalPirN1Wj9Xdh+XJPLbFKTt6M28xW+/B61B+y0tfpt7p7jit35zUQctscfL/hoto49LEvltBrzZe6wsxe+gNaZ+ayIqsC5L8TtMGwlK7RolfttvT+k3Vfz0HvNtYsTv7K/pstSI+O1oybIvmKLw6IXR/gN2V9OfnKX67LK9b3qEqIg3v4hS/Xq3pE1xifyOm1ohLErHXhiFvcqaVvyOclBRtijL72VcMDW6bYKuY/s1NtfIbx7w1G8mpBUFpMdV83NJxW8tnomvkYewkuNUNtd2mqAoP2iL33a6kSRCXFLxW/ysPvyu8yA/GvQw2tzc+Y1LpxHT4mP9roz6tIyfK5673jTL9Sm5is28+kHrzSTXHG8zFW9Tu8W0fq7sPi5Jzm9T/C4y8tvPZ8V5W9fcOyURv825wx4v+2u3jD4uSFCN8hN5RX7rYDydirLekd9x03yZOkmU+B30wI3I7+yv2arUiPjtaOmyL5ji4JEbl3wUQY5DBu7l5fi2N8T2Jj4q8tv83Rbg7LrDbvZ2u9LHhx59WvXcunst4sfe8PsJdKZjs3N+S3kzf5W9+PL72JI9BjtvnZlnOY4NynROGRdMzWAfv+vY3jDZr6Sa16k9z3UUnI56s+e41G3mqmsGRs3cx7SiAOL3qiv5M78HpXJP/9Md96pvfvMb6qjDD/T8S1I/GCUSm9eQnJskBYPf3A0S6/y+wWG/sqr9qF8/otKe2PcRO7d5M19ncfuOn4tLKrvztJAm6ezMdV7YetNv7afFNv1wS+c4tue19FzKyyEPwzjyJ5DWz1VhL+e3H5K5P3fe/BbfYzLF77A1nu2vbH+XJO1JUPSpvf8L22/Jb5KuSw79fSVzxsUNcGKPl811WkYfFzQfzVz3UfM+KD2W9iv2+iks7Yn95p15jRcd+R12ra6++v+9YaX9YFzxW1/TOue/GVDil/PbDKqw723ZzOr615LWx9W/543TA8RvR1tUYcEUhUiLXGFf4O6y4fpeNTpnapT4bb7GIzfw1VdvqzbbZCMvUsd+xUfq1QKbX3SD/Sqq+bXxNAsjETXsVBDmq+zml4klrcNB++2prrzuFhWU81vnhTVfuy3jF4qj5pH+vYwLprhjr+d5Qdexef3oa3GXnXp66Y38nthfcMn13jB27dVTfbFsWQuRwXztTc6x7xn1HH/Z23ZZMFXJz9nz/fSTBnlTw4w+8dtE+y38tTigU29F+UFbTLD9zA9/8H21dOkyT6iQI0z8NssG+ZO44re0FeZHzetafLF8TCws8lvqs/141e4F+Lni77j6mpD5qT++bs9Fe73p9xaIfrVb1nertGmjNtxg/Vq6P3P9J3VXeS1XvIWVSuvnquLj7Pu4nXrOTv9j/27f6+UNCjn03ixtzm+/1Fp6rxa23zJ/k2t3826beOtOF/GbPV42V25ZfZxfKkgztZXtA+y9jr02O/GoQ9Xtf36g9oHxJOK3zFXz2jHXmEWL3zLOoGtVfjNTopj3lbDIbwmmtHmG6T0mC7l/mA/2spnV9a8lrY+rf88bpweI3462qMqCyRETxSEQm0BZF0yxAXAiBHIg4LJgws/lYBCqrDQB/Fylzc/gcyKQ1s/h4/7PIEE5jXMyF9WWmEBVfZzf294lNjNDK5hAWh9XcDcbujnEb0fzsGByBEhxCFgEqrpgYiJAIE8CLgsm/FyelqHuKhLAz1XR6ow5bwJp/Rw+DvE777lZtfqr6uMQv6s204sdb1ofV2wvG7s1xG9H+7BgcgRIcQggfjMHIJA7AZcFE34ud/PQQMUIVFUYqJiZGW7BBNL6OXxcwYaiudITwMeV3sQMsA4E0vq4OnS1YZtE/HY0DQsmR4AUhwDiN3MAArkTcFkw4edyNw8NVIwAwkDFDM5wCyGQ1s/h4woxD41UiAA+rkLGZqiFEUjr4wrrYBM0hPjtaCQWTI4AKQ4BxG/mAARyJ+CyYMLP5W4eGqgYAYSBihmc4RZCIK2fw8cVYh4aqRABfFyFjM1QCyOQ1scV1sEmaAjx29FILJgcAVIcAojfzAEI5E7AZcGEn8vdPDRQMQIIAxUzOMMthEBaP4ePK8Q8NFIhAvi4ChmboRZGIK2PK6yDTdAQ4rejkVgwOQKkOAQQv5kDEMidgMuCCT+Xu3looGIEEAYqZnCGWwiBtH4OH1eIeWikQgTwcRUyNkMtjEBaH1dYB5ugIcRvRyOxYHIESHEIIH4zByCQOwGXBRN+Lnfz0EDFCCAMVMzgDLcQAmn9HD6uEPPQSIUI4OMqZGyGWhiBtD6usA42QUOI345GYsHkCJDiEED8Zg5AIHcCLgsm/Fzu5qGBihFAGKiYwRluIQTS+jl8XCHmoZEKEcDHVcjYDLUwAml9XGEdbIKGEL8djcSCyREgxSGA+M0cgEDuBFwWTPi53M1DAxUjgDBQMYMz3EIIpPVz+LhCzEMjFSKAj6uQsRlqYQTS+rjCOtgEDSF+OxqJBZMjQIpDAPGbOQCB3Am4LJjwc7mbhwYqRgBhoGIGZ7iFEEjr5/BxhZiHRipEAB9XIWMz1MIIpPVxhXWwCRpC/G4CI9FFCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQSEYA8TsZr5XO/nDxcscaKA4BCJgE1m7XWnFdMScgkC0Bua7SHlyPaclRDgL+BPBzzAwIZE8grZ/Dx2VvC2qsNgF8XLXtz+jzIZDWx+XTm+asFfHb0W4smBwBUhwCFgEWTEwJCGRPwGXBhJ/L3h7UWG0C+Llq25/R50MgrZ/Dx+VjD2qtLgF8XHVtz8jzI5DWx+XXo+arGfHb0WYsmBwBUhwCiN/MAQjkTsBlwYSfy908NFAxAggDFTM4wy2EQFo/h48rxDw0UiEC+LgKGZuhFkYgrY8rrINN0BDit6ORWDA5AqQ4BBC/mQMQyJ2Ay4IJP5e7eWigYgQQBipmcIZbCIG0fg4fV4h5aKRCBPBxFTI2Qy2MQFofV1gHm6AhxG9HI7FgcgRIcQggfjMHIJA7AZcFE34ud/PQQMUIIAxUzOAMtxACaf0cPq4Q89BIhQjg4ypkbIZaGIG0Pq6wDjZBQ4jfjkZiweQIkOIQQPxmDkAgdwIuCyb8XO7moYGKEUAYqJjBGW4hBNL6OXxcIeahkQoRwMdVyNgMtTACaX1cYR1sgoYQv2MQACoAACAASURBVB2NxILJESDFIYD4zRyAQO4EXBZM+LnczUMDFSOAMFAxgzPcQgik9XP4uPzNc+/UJ9WsF+eooScdrlq3bpV/g7RQVwL4uLrip/GSEkjr40qKI9WwEL9TYftPIRZMjgApDgHE70LnwOLPlqhh51+uXpk332t37Mgz1BbdNvHtw/LlK9SYK25SUx+bUfvdPl82NBdcNsH7vc/OPVtsbMbdeKe6+Y77a2XPOmWQ6t9nh9rf9u/yg31OoXBK3JjLggk/V+KJwdDqQgBhoDjsth+L8jG2j7TPN33eDzbpokaffbJqt3pbX79m+8TiRl3NltL6OXxc/vMF8Tt/xo3UAj6uftZI6vPYq9XPVklbTuvjkrZT5vMRvx2ty4LJESDFIYD4Xdgc0AuiHpt39UTotxa8q0ZdOkENP3WQ2qDzeiv1Q0SAW+76ixp8yAAvUueFl+epUZfcoMace6p3vvw9bvyk2uZfFlByHHfEAUraGn/rFHXo/n09YUDaGnrepWr4aUfWxHbz/MIgVLQhlwUTfq6ik4Zh50YAYSA3tCtVbPoZLWwfN3ig70NfPx9p+i0/n/f+hx/XHvqaAp90RB4ed1h7Tc8ncuRPIK2fw8flbxvE7/wZN1IL+Lj6WSOpz2OvVj9bJW05rY9L2k6Zz0f8drQuCyZHgEopO8rGjpQJisKxn2wedmA/b4NhC2qyWZn8wHRvc7Js+Qov6rVP757qtrv/4nVehLz7H3m6FqHacZ01a+Ke/O7XTr9dt1tJNLQ3Re5kqlkDC6b87C4C9JXjb1cjhhzpCdL2Rj+qZVs4kGutc6d1a9HcYdeAX1uI31HEs/vdZcGEn8vODvqBU9/ePdWl192qdOTop4s/9x4OLfrgYxXHB8UR08wIVRmB+dZGmJ+UB11R0a/ZEalmTfi5Yuwu83jk2BvUiYMPqj3gDfM7fj5Mny8PgUXM1g+PZQTmA+Q12q3mrS9NYZ11YTF21q2k9XP4uPztZIvf8veEWyZ7+y197eg3Es19oO0zpad6vyf/X67PpUu/UEuWfuG9pWj7TzOq1f4t/1FXtwV8XH1sn9Tn2b1kr1Yfu8VtNa2Pi1t/Fc5D/Ha0MgsmR4BKedGjckjqBb3h3mfP3p6gZv8tN+WnZs5W22/dfaWImkefmOX9uzzBlEOLA37id6f11qlF6kgbD017Vg3ce1evnCyUdCSP/G1H7pjtaOEvqYjoTq28NbBgys+2YRv7OGKaudHv2GGtUCHAjiT3i7iLetUuPxLVq9llwYSfy26+6Dcgduvds+aj7GvDfMNCX2dm9Kj2QWF5U8Un3fPg42rvPXby3toQoWHyA9N839KQ0fn5Se2Htd/dZcce2YGoeE34uWImgN/bTWERqH4+Up8/5OhD1djrbmkhfpvXbpfOnVYSv6PeriqGQnVaSevn8HH5zxHzupvz+pu1oCT9VmHQPtD2mX5BGA9Pm1ELWjLbkYCnoP0decfztTk+Ll++QbUn9Xl2PezV6mO3uK2m9XFx66/CeYjfjlZmweQI0Ke4GZUTFDUTtqGIE/kd9MqrFgF0KgeJxgtKC2FG0cp5ZkRt9lSqUyMLpvxsbQpceuEfN/rafsCj/95nz16118eTXJf2KP3SouRHono1uyyY8HPZzRe/a8T2c+a11m3TLqGpieL2zG43zE+KMGGmM4rbBufFJ4Cfi8/K5Uz7bSepK0z89tv4m+c/NH1mi4/2+Qlx0oZ+mIz47WK95GXT+jl8XHLWSUvo66hv723VhFvvWSlXvlmf6Z/8riHzd9uXhV1zvImR1Grpz8fHpWfnUjKpz7PbitoTsldzsY572bQ+zr3l8tSA+O1oSxZMjgC/Lm5HgOpX2vzEOinid3PXPUkjfks7Q0ZcVBuM+Sp6kKhtin8L3/1QLVj4HnkdM5gOLJgygBhQRdrIbz3XzehTv7cdgjYd5tsUYdE2dhqV/EhUr2aXBRN+Lrv5EiR+69Rc5kMpebNIxO+0D1b1JkVSqchhvvIdJX7b/cmOADUJAfxcMfMgTRScvR6Unuo1qd9HoM3ryk4XJGX9PopZzOir10paP4ePy3+umGm4/D46G7QPDLqG9Z7L9mV22oeg/Z35kdr8R1+9FvBx9bF5Gp9n6ifmNyyCRsBerT621WvH+rVejpYRvx3tyILJEaCVZkQ2/kVHfod9xC8s8ltGLmWvHj/JgxD00UB3QtWqgQVTfvZOk/PbT/g2F0pROb/jCt9SJwuq/GyfVhSQHuHnsrNLUZHfdnQOkd/Z2TCLmvBzWVCMrsM1/6n2S9v26Ob7gUy5riZNeUSdeORBXnoh+5A14jOzXiYwItpUmZyR1s/h4zLBH1qJTr31q6HHqmtuulOZbw3a68SsIr8/+ezz0I+05z/q6raAj6uP7dP6PPZq9bFX0lbT+rik7ZT5fMRvR+uyYHIE+LXgJbXIa6K20OaXA1zytw3ou2OLXNxmflPztVSpV3J2y2F+8DLsg0RmbtQ2rVsFtmN+FMzMIe5OpNo1sGDKz/52tLYtiPnl2Lc/8GX2zo4ktyNwwl6fs3Pt83p4fnaXml0WTPi57GzjN8/t6y4s57edyzuoZ3Y79kNeM5VDkJ80v71h5k3NjkZ1a8LPFWd70w/ZaUrsa8/uVdIUKWZ5fFpxNtYtpfVz+Lj8bWXn4jY/Dmteo/Y+0L6Ooh7khgVQ2d++yH/U1W0BH1c/24f5POlV2MMmu9fs1epnR7+W0/q4xhpFfXuD+O3InwWTI8CvU5gMPe9SJa9my+uj7du3U1t237RFzkT9u7SmX5ezXy/1ey1V6vvxfn3VK6/NDxS/7ddYe27VTS1ZsrSWjy6oHemLX95jdyLVroEFU772t+fz2JFn1CLabCHATpuge6avNfnbfJW1z849W3xIVjY3r8yb32JA+hwtuE19bEbtd7Mv+VKoXu0uCyb8XHbzJUgQM681M42CtBzmg8J6Zr5G3nWTLt6p+g0l0+/ZflIe7NrXvt9r6tlRqV5N+LnibG6v8cy57Cd+mz7N9HX2tWhfp/K7ed2Q7qQ4G+uW0vo5fFz+trIfJJlvJ7VffTUVtA/0W4eaa0U7XYq5Do3a3+U/6uq2gI+rn+3DfJ70yhS/5aOw7NXqZ6ukLaf1cUnbKfP5iN+O1mXB5AiwyYtHvfLa5MOrS/dZMNUFO42WnIDLggk/V/LJwfAKJ4CfKxw5DVaAQFo/h49r3MkR9QZF1Af6Gndk5e4ZPq7c9mV09SGQ1sfVp7eN2Srit6NdWDA5Amzy4uQozt6ALJiyZ0qNEHBZMOHnGm/+2NFuZg+JOG08e9k9ws81vo3oYfMRSOvn8HGNa2vE78a1TVjP8HHNaTd63dgE0vq4xh5Vsb1D/HbkzYLJESDFIWARYMHElIBA9gRcFkz4ueztQY3VJoCfq7b9GX0+BNL6OXxcPvag1uoSwMdV1/aMPD8CaX1cfj1qvpoRv5vPZvQYAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIgggfjtOEaIFHAFSHAIWAaIFmBIQyJ6AS7QAfi57e1BjtQng56ptf0afD4G0fg4fl489qLW6BPBx1bU9I8+PQFofl1+Pmq9mxG9Hm7FgcgRIcQggfjMHIJA7AZcFE34ud/PQQMUIIAxUzOAMtxACaf0cPq4Q89BIhQjg4ypkbIZaGIG0Pq6wDjZBQ4jfjkZiweQIkOIQQPxmDkAgdwIuCyb8XO7moYGKEUAYqJjBGW4hBNL6OXxcIeahkQoRwMdVyNgMtTACaX1cYR1sgoYQvx2NxILJESDFIYD4zRyAQO4EXBZM+LnczUMDFSOAMFAxgzPcQgik9XP4uELMQyMVIoCPq5CxGWphBNL6uMI62AQNIX47GokFkyNAikMA8Zs5AIHcCbgsmPBzuZuHBipGAGGgYgZnuIUQSOvn8HGFmIdGKkQAH1chYzPUwgik9XGFdbAJGkL8djQSCyZHgBSHAOI3cwACuRNwWTDh53I3Dw1UjADCQMUMznALIZDWz+HjCjEPjVSIAD6uQsZmqIURSOvjCutgEzSE+O1opLIsmBZ/tkQNO/9yddzggWqLbpskovLCy/PUuPGT1OizT1btVm+bqGweJ9879Uk168U5auhJh6vWrVvl0QR15kiABVOOcKm6sgRcFkxl8XOVNT4DbzgC+LmGMwkdKgGBtH4OH1cC4zOEhiKAj2soc9CZkhBI6+NKMvxMhoH47YixLAsmxG/HiUDxzAiwYMoMZSYVycOkCy6b4NXVZ+eeoQ+V3lrwrhp63qVq0Qcf19r+wSZdGubBWCZAmrQSlwVTWfxck5qObpeQAH4uP6MuX75CjbniJjX1sRleI2edMkj177NDYIN6/fvKvPm+59t+bezIM1oEiYS1Z/pP3YHDDuynjjvigPwAVLjmtH4OH1fhScPQcyGAj8sFa6xKk/rAcTfeqW6+4/5a3bbPtH+P41djdZSTEhNI6+MSN1TiAojfjsYty4IJ8dtxIlA8MwIsmDJD6VyR/VaHLIDkCNq4i0gw6tIJavipg9QGnddzbp8KsiPgsmAqi5/LjiY1QcCNAH7OjV9YadNPRa1ttUjQY/OunkCuhe7hpx3pCdx2efGJoy65QY0591TPx9nl7X7xJmJ+dvarOa2fw8cVaydaKz8BfFz9bJzUB46/dYo6dP++3tv7tg+UUUTt/eo30uq1nNbHVY9U8IgRvx1nQ1kWTHqBv0X3TWtP/8woTzsyxvzNFsjsSBczSkZuoEuXfqGWLP3Ci8rpuM6atU2EmCIoAifqKab9VDIqQlWb3Y7osSNyZGxDRlzknW721a+fO/bcfKXUMdKvzp3W9TZVehPU9turqLvue0xJW+JsJN2Mjjiy++3XjvTFTutSJsfEgsnxppRhcXP+SrVRKY4QvzOEn3FVLgumsvi5jJE6V6evl769e6pLr7vVq8/0Qba/jIpglfJR/lfO0Q+v5Hqe/MD02tscURGwzgOmghoB/Fw+k0Hm8MixN6gTBx9UewAbtj7y82nm+bZ4bYvd8vuChe8FPhBG/M7HzkG1pvVz+Lhi7WS2pv3gpt/7rrc30n5w2x7davsve29m+jnz7cKgPVv9RlfdlvFx9bF9Uh9o99LvgW6ZNIb6WCW7VtP6uOx60Pw1IX472rAsCyZT/JaNsX3zkwWFHGYkzD579vZEXXPz0KZ1K3XPg4+rvffYycu3LQuUyQ9Mq6U9kBvow9Nm1ARvc2OwbPkKTwjW9Uofnpo5W22/dXfvFdYOa6/pbTDsG7vdRpLNxqNPzFJdvtvJ2yTZTzvtCB/5fdny5apjh7V9+7ll900jxW9JH2E+DAjjqm1i85B2zM1d2QRHFkyON6WMivstgKLmmv0wiZQnGRkjg2pcFkxl8XMZYMy0Cn297Na7Z823md/esP1lVONyzUb53yDxO8j/7rJjj6hm+T0FAfxcCmgxivj5qLA1oZ/4bZ7/0PSZocEGduCFHdBhP4wi5UkMIzqcktbP4eMcoDsW1X5w0KH7tHj7QvtF+5q293xzX39TtWndWn3y2ect3srQe7ZNN97QsYcUT0MAH5eGmnuZpD7QbtHvbamotCjuvaaGuATS+ri49VfhPMRvRyuXZcHkd7ML2zCYTwHDokHtm7D99NCMPJvz+pu+H870u5HriNTde23tCeP6lVUxZxLx2zS/LfYFPekMGm+Qw7Ajv8M+xBmXqxltFBV55DjFCy/Ogqlw5L4N6uthnz171fKbRonfdkUyn9//8GM+PtsAJnVZMJXFzzWAGVp0Ici3aYHaNdomC//baMzK0h/8XD6WlDl/5fjb1YghR9Y+wB62Joxa+y56/6OVUnnp63LwIQO89afpI21hzhylHdCQD4Fq15rWz+Hj6jdvbD9lX5Pm31033nClPZ/uuau/rB+BcraMj6uPXZP6QL99m16D+o3ALy1KfUZazVbT+rhq0vIfNeK342woy4LJbwNgvxJtP/nTESy2GGxHf5qRMFHit/kKtjaN30f05Dd5BVyL3/bmw04LEmRmO52Krlci2u2UD7oOm4v+97TidxhXPx7SnnZupx//U3XNTXe22Hw5Tum6F2fBVHcTeB1IE/lt99xvEdYYo6teL1wWTGXxc41m9aAIHZ1GIc1mPmv/22jMytIf/Fw+lkwT9WamStC9MiO0/T5aGbT+jMoxXrZghXysmL7WtH4OH5eeuWvJNOK3uefT7Qft2Vz7R/l0BPBx6bi5lkrjA81rKE7AEteaq5XSl0/r49K3WL6SiN+ONi3Lgikq+kU+hmDeEIMilD9d/Lkaet6lSn8sKIvIszABzU+gixv5rcvqdCr1iPy2I2PjRn7LtJVzX5+/QK2+2qqliqxlweR4U8qweNKc34jfGcLPuCqXBVNZ/FzGSJ2ryzry247IycL/Og+SCnwJ4OfymRiu+U712kryDUuaP/uQdeKVN9yuBg7Y1UuXZ/tIv/bNOhC/87G7rjWtn8PH5WuXsNrTiN/m276mcCf/P+iD7PUbYTVbxsfVx+5pfWCSN3URv+tjW2k1rY+rX48br2XEb0eblGXBFPaamWwATFHWFo3NyG8Rv0ddOkENP3WQtzGw82aHRX7bOUelTw9Ne1YN6Ltji5zfYjJZLM3/+0Il+UhNsVt+k9dQ5QhLLyK/22K3/Uqq3Xedn7tL504tcn7b/dSLMjuPnZ8oH8bV7o9uZ+Deu3rj09FKcT6C5jjNCy3OgqlQ3KGN2W912NevvVgyc+hrEYHNSGPY02XBVBY/1xiW+E8v7E1/lFgd1X+7vO3DwnxlkP/V/iaqbX5PRgA/l4xXkrNNPxX0Rl5QdFtU8ITfGnbUJTf4fsdG+mzm4I+KCk8yRs71J5DWz+Hj6jejkojfsh+1Uwvpdaed89v8plL9RlfdlvFx9bN9Uh8Y9pahrT0kTX9ZPwrlbDmtjysnjXSjQvxOx61WqiwLJr0of2Xe/NrYTFHVfJVa0pi0b99OyYcX5Qm7n0B28x33e/V03aSL918thoeJ3/KBTPuVbd0HOz2JmUrF/E3+fbutu6slS7+IFL+lX/aXwWVc+379IU/53Xzd1WwzqJ/mv/fZuadq++1VlHxsRdKo+G2qwrhK+0Ht6N/s3JaO07khirNgaggz1DphXgMyp82HSrb4bb8+bp/fWCOrVm9cFkxl8XONZnG/lF7mB5HTpD0x02jZ/tf2lT/er6965bX5tWs6zN80Grtm7w9+Lj8L2utFO0DA9lumj/P7IKV5TfkFG5jl7Y8822ntyhaskJ8V09Wc1s/h49LxzqJUUvFb2jSvK/OaC9qzZdFP6khGAB+XjFeWZyfxgTrwwdR/pC96/yb/X4IKpz42o9ZFc52aZb+pK5pAWh8XXXN1zkD8drQ1CyZHgBRPTUAWeXKIsF6mgwVTmazJWBqFgMuCCT+XjxWJoMmHazPUip9rBivRx2YjkNbP4eOazdL0t9EJ4OMa3UL0rxkJpPVxzTjWvPqM+O1IlgWTI8Aci/t9pEg3Z0Zx59iF3KqOyiuZW8MFVMyCqQDINFE5Ai4LJvxcPtMlqfhtR5GavbIjTvPpMbVmRQA/lxVJ6oHAfwik9XP4OGYRBLIlgI/Llie1QUAIpPVx0PsPAcRvx9nAgskRIMUhYBFgwcSUgED2BFwWTPi57O1BjdUmgJ+rtv0ZfT4E0vo5fFw+9qDW6hLAx1XX9ow8PwJpfVx+PWq+mhG/m89m9BgCEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQiCCB+O04RogUcAVIcAhYBogWYEhDInoBLtAB+Lnt7UGO1CeDnqm1/Rp8PgbR+Dh+Xjz2otboE8HHVtT0jz49AWh+XX4+ar2bEb0ebsWByBEhxCCB+MwcgkDsBlwUTfi5389BAxQggDFTM4Ay3EAJp/Rw+rhDz0EiFCODjKmRshloYgbQ+rrAONkFDiN+ORmLB5AiQ4hBA/GYOQCB3Ai4LJvxc7uahgYoRQBiomMEZbiEE0vo5fFwh5qGRChHAx1XI2Ay1MAJpfVxhHWyChhC/HY3EgskRIMUhgPjNHIBA7gRcFkz4udzNQwMVI4AwUDGDM9xCCKT1c/i4QsxDIxUigI+rkLEZamEE0vq4wjrYBA0hfjsaiQWTI0CKQwDxmzkAgdwJuCyY8HO5m4cGKkYAYaBiBme4hRBI6+fwcYWYh0YqRAAfVyFjM9TCCKT1cYV1sAkaQvx2NBILJkeAFIcA4jdzAAK5E3BZMOHncjcPDVSMAMJAxQzOcAshkNbP4eMKMQ+NVIgAPq5CxmaohRFI6+MK62ATNIT47WgkFkyOAL8uvnz5CjXmipvU1MdmqD4791RDTzpctW7dKpvKqaWpCLBgaipz0dkmIeCyYMLPRRv53qlPqlkvzontu95a8K4adekENfzUQWqDzutFN8AZpSKAnyuVORlMgxBI6+fwcQ1iQLpRGgL4uNKYkoE0EIG0Pq6BhlD3riB+O5qABZMjwK+LBwkHiz9bokaOvUGdOPggBIJsUDd8LSyY8jWRXFPDzr9cvTJvvtfQ2JFnqC26bRLY6Lgb71Q333F/7XfzfBHwhp53qVr0wcfe734PrsxzOq6zphpz7qm1a9kuf9Ypg1T/PjvkC6CitbssmPBz0ZMG8TuaEWf8hwB+Lr/ZYAZTSCtRfiXu+fo8qVMHaLzw8jw1ZMRFtcEk9YH5UahmzWn9HD6umvOFUedHAB+XH9uomuP6NF2Pvc+zfab9exy/GtVHfk9HIK2PS9daOUshfjvalQWTI8Cvi8uNVY7jjjjA+69547YFs2xapJZGJcCCKT/L6Ouqx+ZdPZE5KvpUhPJb7vqLGnzIAO9NDPt8Efw6rbd2TTy3r+Ow+rUIf9zggV55++/8KFSzZpcFE34ues4kFb+ja+SMMhPAz+VnXdMPxfErcc4PejvR9IH6nA5rr1lby0b52PwoVLPmtH4OH1fN+cKo8yOAj8uPbVTNcXyarkP81vhbp6hD9++r2q3e1tvnSVDT8NOODNzbRbXP7/kRSOvj8utR89WM+O1oMxZMjgCVUmFPHNNGfpt1muK5/TT0sAP71TYpZhnz37Wo0fbbq6i77ntM6d/MiJ8fbNJFjT77ZM9xcLgRYMHkxi+stCxqrhx/uxox5EhvrtpieFTLUUKCKQBKXZLKaJ89e/lGltuiQNK+RPWV31sScFkw4eeiZ5PM/ceemuWd+PTMl7z/6rck9HXTp3dPddvdf/F++8VxP1ETbru3RdoTqeOCyyZ4v5sRpEE+KOpaN9/KMH2a6btM/xj0loZf//UbHEF9jiZW7TPwc/nY32/NaD+UNVuOe77U0bnTul7RsPRGSXxgPgSqXWtaP4ePa4x5E+TrwvyM/TZj1JsejTHS8vcCH1cfG8f1aUG989uLhfnQ+oyyuq2m9XHVJbbyyBG/HWcDCyZHgF8XD7qxphG/ZWM/+YHpLV5LlWa6bryhJ8aZUTmPPjFLbb91d/XQ9Jm1DY2ca56nF11mugdpY9QlN9RSOMg5Cxa+VxPSs6FSzVpYMOVnd5m348ZPavGgJsmixp73Zk/tqDd7Q2ILevK3tP3wtBnedSSHKcznR6GaNbssmPBz0XNGfMCEWybXfIJ5rUlpSTXUab11an7J7y2KyQ9Mq12bWmyTNzT8fFBYj/S1qB88yd/3PPi42nuPndSc199s4bukH8uWL1cdO6zt9VG/iWFe62u0W22l/kv70q+gPkcTq/YZ+Ll87O8XaR32Vkac800fGfWGh1/EnU4x5ucD86FQ3VrT+jl8XGPMmaD9lrlulWvs/Q8/9nzpsuUrPN+0z569vbcZxdc9NXO22mXHHo0xoAr3Ah9XH+PH8WlhPfMLcopKi1KfkVaz1bQ+rpq0/EeN+O04G1gwOQL8uniW4re9Idc9DHr91O8ppylcPDHjxZUiffzSOyDcZTMXWDBlw9GvFvvBkBag5b865ZBfOTMi1C9HuF4YmdGqQVHm5sMn6c/V4yepTz5Z7OUNJ2InP9u7LJjwc9F2sUUxcwPRpXOnFsKy1Gb6o44d1vIeuOp0RPK7ea2aD2fjfAhat60FAbP3Qb7WfjBm+sUde26+Uv+D/Kb54DmaWnXPwM/lY3vb70grUeK3vXYzz5drzwxsCKvLvobi+MB8KFS31rR+Dh/XGHPG7/oKS6f3yWefrxTQ0RgjoRf4uPrMgaQ+0O5lVECUX1qU+oy0mq2m9XHVpIX4nYvdWTBlgzVL8VsLevojfVqQW/T+R76RpXaUnBYm9IYoSPw2PwIoZUh9ks1cYMGUDccg8dsl8jtJ2hO/680UBz5d/HmL6zFMsMuPSHVqdlkw4eei54m9aTf9Slzxe+pjM1o0pH1XUvFb+zAz7Yl+aGVGlJuNBT0Yk1QPYeJ3UJ/jiPTRVMt7Bn4uH9smjXqLOl9yodprPem5/WFLv7ei/EQIv7ev8iFRzVrT+jl8XGPMlyDxW/yQ/hi6+UawiN88cG0M29m9wMfVxy5RPi1sbWa+VRF1nnlN1mek1Ww1rY+rJi3E71zszoIpG6xZi9+6V2Z0WrdNu6hRl05okWNVzksb+c2NPxvbs2DKh6Nfra45v6XOIPFMC276oZH8PXLsDerEwQepDTqv53XHFNgk/YK9aYmKOCiOVPlaclkw4eei50MWkd9B+fGjUi1E9c4U3OQDtnLYb3qkjfwO6nNUn6r+O8JAPjMgab7TpOf7XYtB6cD86vZ7yJQPiWrWmtbP4eMaY74Q+d0YdsiiF/i4LCgmryOpT9MtxBW+o/aByXtMiSQE0vq4JG2U/VzSnjhamAWTI8Cvi2cpfkse7y7f7eQJbqawvXuvrVvk8jbzoEpknc5d2qZ1q5VyftsfOPLb7Ey65xG1e+9t+Oil45RgweQIMKS4/aDHjhCwo6/l9+lPP69+dnB/r1b7dbc/TLxX9dpuy5q4bS+ezL+lvJnawa6LyO/87C41MiT+jAAAIABJREFUuyyY8HPRtrE37ebfOi+pzqetryXzYaydrsv2T2Ef2bN7J9fSQ9OeVQP33tX7yRS25y9Y2CLnt/wmh45O16lS/HJ+m/2XMmF9JvI7fM7g56KvqbRn+OXdNueun5+StuSBUJK3m2SOR0Vyh/nAtOOjXDCBtH4OH9cYsyrOw6WwnN+272uMUVWzF/i4+tndxQdGrSeDUsjWb7TVajmtj6sWpfDRIn47zgYWTI4Avy5ui99apDNfqbZfMw1qWTYjQ0ZcVPv5sAP71aLc7I/wmb+ZH3Qw/z0o6i6snWyoVLMWFkz52t2+Bswc3rYA7Xcd2h9+Na81+xq1y5vXlRblzPLk/M7P9i4LJvxctF30h7r0mWYaLD9BLejV1Asum1BrTF8PSSO/7euu4zpr1j7EqUVr3Y75m5nb3/z3MEHQHjfXcPRckTPwc/E4pTnLnv/2nLTF76jzzT7Y16L9ITA517x2onxgmvFRBvG7rHMgyNeZfsZeZ5p+S7jggxpjduDj6meHKJ/m9wDJ/DCz9FxfZ/L/JXDJ1GP8vv1Uv9FWq2WXvVy1SAWPFvHbcSYgCjgCpDgELAIsmJgSEMiegMuCCT+XvT2osdoE8HPVtj+jz4dAWj+Hj8vHHtRaXQL4uOranpHnRyCtj8uvR81XM+K3o81YMDkCTFjcjlq1i9uRpQmr5/QGIMCCqQGMQBdKR8BlwYSfa6zpYEdbm72zo7wbq+f0RhPAzzEXIJA9gbR+Dh+XvS2osdoE8HHVtj+jz4dAWh+XT2+as1bEb0e7sWByBEhxCFgEWDAxJSCQPQGXBRN+Lnt7UGO1CeDnqm1/Rp8PgbR+Dh+Xjz2otboE8HHVtT0jz49AWh+XX4+ar2bE7+azGT2GAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACBCAKI345ThGgBR4AUh4BFgGgBpgQEsidAtED2TKkRAhCAAASanwB7uea3ISNoLALs5RrLHvSmHATYy7nbEfHbkSELJkeAFIcA4jdzAAK5E2DBlDtiGoAABCAAgSYkwF6uCY1GlxuaAOJ3Q5uHzjUpAfZy7oZD/HZkyILJESDFIYD4zRyAQO4EWDDljpgGIAABCECgCQmwl2tCo9HlhiaA+N3Q5qFzTUqAvZy74RC/HRmyYHIESHEIIH4zByCQOwEWTLkjpgEIQAACEGhCAuzlmtBodLmhCSB+N7R56FyTEmAv5244xG9HhiyYHAFSHAKI38wBCOROgAVT7ohpAAIQgAAEmpAAe7kmNBpdbmgCiN8NbR4616QE2Mu5Gw7x25EhCyZHgBSHAOI3cwACuRNgwZQ7YhqAAAQgAIEmJMBergmNRpcbmgDid0Obh841KQH2cu6GQ/x2ZMiCyRFgQcWXL1+hxlxxk+qxeVfVv88Oga2+8PI8NW78JDX67JNVu9XbFtQ7mjEJsGBiPkAgewIsmLJnSo0QgAAEIND8BNjLZWPDtxa8q4aed6la9MHH6qxTBoXut7JpkVoalQB7uUa1DP1qZgLs5dyth/jtyJAFkyPAgoojfhcEOoNmWDBlADGkisWfLVHDzr9cvTJvvnfW2JFnqC26beJbQl83Ux+bUfvdPv/eqU+qCy6b4P3eZ+eeauhJh6vWrVt5f4+78U518x3318ramyH7dzmRDVM+9mfBlA9XaoUABCAAgeYmwF7O3X5h+ywRxa8cf7saMeRIAovcUTdFDezl6mcme+8Wta9ir1Y/WyVtmb1cUmIrn4/47ciQBZMjQIpDwCLAgim/KWFvTmRDMurSCWr4qYPUBp3XW6lhEcpvuesvavAhAzxBW96MGHXJDWrMuad659tvSsgCSo7jjjhASVvjb52iDt2/r7fZ0RFBw087sia2m+fnN2pqFgIsmJgHEIAABCAAgZUJsJdznxU6sOK4wQNrazwz2OIHm3ThrVp3zE1TA3u5+pnK3Fv5XZdmz9ir1c9OaVpmL5eGWssyiN+ODFkwOQL8Ojp06dIv1JKlXyiJMO24zpo1cU2iSme9OEe1/fYq6q77HlOHHdjPE9bColftJ55SRsQ7M+2JXV5HrM55/c0WaU/C2hHnEtRvdyrVrYEFU362t6Nv4r4RoXtkL6LkGujcad3aq61haYP82kL8zs/Wds0smIpjTUsQgAAEINA8BNjLudnK3iuZ+zipOU3kd9A+TQIx7N90ZGuSPZsuE/b2ohuVapdmL1cf+8s1MHLsDerEwQfVgpqS7LXYq9XHbnFbZS8Xl1TweYjfjgxZMDkC/Fr8fnjajJUEb0mf8ND0mV5KBTPVgl7c7LNnb090MxdVbVq38kTuDmuv6Ynkcjz6xCy1VffN1Njrbqnl/LZFu0n3PKJ2772Nmr9gYU381nXpPOF25KrUEdRvnfbBnU71amDBlJ/N/cTpJIsiM1K8Y4e1VsqjHxZJ7hd9EPWqXX4kqlczC6bq2ZwRQwACEIBANAH2ctGMos4IizBNI34H7dOkH5K6T+8BRax7auZstf3W3VusSaP2bFKPCN+TH5hWi0i324waM78HE2AvV5/Z4bcP04GEZlrKoN6xV6uP3eK2yl4uLinEb3dSATWwYHJHa4tv5o375bnzvchv84ZtC3j6KeU+e/ZS7VdfzTeNg/kkc/deW68kkOtRmHV/uvjzleoy+2r3W8pOfmB6i76606leDSyY8rO53xyNK37b0QDmdadzhoeJ31Ht+KVFyY9E9WpmwVQ9mzNiCEAAAhCIJsBeLppR1BlZit96fWkGMvnt0ySlnj781p9heza/CFf2cVFWjv87e7n4rLI80+9BUxLxm71altbIvi72cu5Mifx2ZMiCyRHg15HfUouO1DZf2QkSv4eMuGilhiU6XMRvv4+q2IucoFfmbPHbrkscyIKF73l9Rfx2t71fDSyY8uEqtaaN/PbbiPhtHILEb7lW3v/w48gHQ0Td5Gd7Fkz5saVmCEAAAhBoXgLs5dxtl6X4Lb0J26f5BRoFiX5Beza/D7pLu/aH293JVLMG9nL1sbtL5Dd7tfrYLEmr7OWS0PI/F/HbkSELJkeAPuJ3nMjvoAjrIPEt6ivk+qN/n3z2eS3tCZHf7rZNUwMLpjTU4pVJk/M7LAInTs7vuIspGQHidzw7pjmLBVMaapSBAAQgAIGyE2Av527hrMVvs0fm3s7cp2UR+S1vDeu3F90pUIMmwF6uPnMhbc5v9mr1sVfSVtnLJSW28vmI344MWTA5AvQRv82Iar9Xdeyc39IDiWiVo+vGG7ZIaSLC3T0PPq767rxtLee3pD2Rf9t7j52U5OYOWlTZ+cP98sdJmzpindfl3OeC1MCCKRuOfrXYD4Hsh0X2tRX1QUw7ktx+GyLs9Tlp66Fpz6qBe+/qdTUsZUp+RKpTMwum6tiakUIAAhCAQHwC7OXiswo6M0vxW+/d/PZpa7RbrUXOb72WHNB3xxb7v6g9m4zDzvltt+tOpbo1sJern+3NvVdQDm/zbVz2avWzVdKW2cslJYb47U7MqoEFkztS+6N35itnQXmq7NfhfrBJl9oHS+zfDjuwnxp8yIAWH0Kx29Qf1LTFvKgvhyN+u9vfroEFU/ZMzRrD5rTfx2SHnnepWvTBxy06JdeUfugj16h8lFYO89q129EV6HPkb/k47dTHZtTqNj9smy+F6tXOgql6NmfEEIAABCAQTYC9XDSjqDP8RDa/daC5fgyrM2ifJmW0sK3XpmedMkj177PDSqlSzDVlkMBnrmGlbl1X1Hj5PZwAe7n6zRA7pY89p80o72XLV3gPk16ZN79Fh9mr1c9+YS2zl3O3C5HfjgxZMDkC9In8dq+RGpqZAAumZrYefW9UAiyYGtUy9AsCEIAABOpJgL1cPenTdhkJsJcro1UZU70JsJdztwDityNDFkyOABG/3QGWrAYWTCUzKMNpCAIsmBrCDHQCAhCAAAQajAB7uWINYkdu260TfV2sPfJojb1cHlSps+oE2Mu5zwDEb0eGLJgcAVIcAhYBFkxMCQhkT4AFU/ZMqRECEIAABJqfAHu55rchI2gsAuzlGsse9KYcBNjLudsR8dudITVAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBAgxFA/HY0CNECjgApDgGLANECTAkIZE+AaIHsmVIjBCAAAQg0PwH2cs1vQ0bQWATYyzWWPehNOQiwl3O3I+K3I0MWTI4AKQ4BxG/mAARyJ8CCKXfENAABCEAAAk1IgL1cExqNLjc0AcTvhjYPnWtSAuzl3A2H+O3IkAWTI0CKQwDxmzkAgdwJsGDKHTENQAACEIBAExJgL9eERqPLDU0A8buhzUPnmpQAezl3wyF+OzJkweQIkOIQQPxmDkAgdwIsmHJHTAMQgAAEINCEBNjLNaHR6HJDE0D8bmjz0LkmJcBezt1wiN+ODFkwOQKkOAQQv5kDEMidAAum3BHTAAQgAAEINCEB9nJNaDS63NAEEL8b2jx0rkkJsJdzNxzityNDFkyOACkOAcRv5gAEcifAgil3xDQAAQhAAAJNSIC9XBMajS43NAHE74Y2D51rUgLs5dwNh/jtyJAFkyPABiw+7sY7vV4dd8QB6oWX56lx4yep0WefrNqt3rYBe1u+LrFgKp9NGVH9CbBgqr8N6AEEIAABCDQeAfZy2djkrQXvqqHnXaoWffCxOuuUQap/nx2yqZhamo4Ae7mmMxkdbgIC7OXcjYT47ciQBZMjwAYsjvhdX6OwYKov/ySty0bnyvG3qxFDjuThUBJwdTiXBVMdoNMkBCAAAQg0PAH2cu4mWr58hRpzxU2qx+Zda6K3BBANGXFRrfI+O/dUQ086XLVu3cq9QWpoaALs5epnHn0tTn1shteJqAdRonvcfMf9tQ7b59u/x6mzfqMvd8vs5dzti/jtyJAFkyPABiyO+F1fo7Bgqi//OK0v/myJGnb+5eqVefPVDzbpwpsRcaDV+RwWTHU2AM1DAAIQgEBDEmAv524WvS48bvBAtUW3TbwK7536pOq03tre31qQ67D2mt6btRzlJsBern72NXUMv+vS7Jlcl+NvnaIO3b+vF8Sk394YftqRtevYrK9+o6JlIcBezn0eIH47MmTB5AgwQXG5IY+6dILq27unuvS6W2uiW5vWrbxoA78nnPbTz8MO7OctusxX86QL+t/l/yN+JzBKDqeyYMoBak5VEvmdE9gcqmXBlANUqoQABCAAgaYnwF7OzYRmQITU1HGdNdWYc09VG3Rer0XFIobPenFOrOhvu04zatz+TUeq2v8+duQZLQS8pUu/UEuWfuHtF3UZ6dMFl03w+klkuts8MEuzl8uOZZKa5BoYOfYGdeLgg2rXXxLx2u8NjiTlk/SVc5MTYC+XnJldAvHbkSELJkeACYprwXq33j1rUQN2JIF50+/YYS1PFDejDB59Ypbafuvu6qmZs1WX73byHIP9lBPxO4FRcjiVBVMOUHOqEvE7J7A5VMuCKQeoVAkBCEAAAk1PgL2cuwmjIkylhSQimpzbudO6tRQqk+55RO3eexuvo/Lm4T579vZ+k32g7Olkb2emXfHb2z08bUYLUV6E78kPTKu9vWi36U6lujWwl6uP7XWg4PBTB9XE7zQPncw3OKLSotRnpNVslb2cu90Rvx0ZsmByBJiguN8N3e/f9OKl26ZdvEhx0wH4NWc/5UT8TmCUHE5lwZQD1JyqRPzOCWwO1bJgygEqVUIAAhCAQNMTYC/nbsIo8Vvyf48bPylWmrywFClB9QTtB2Vk8savLbwH5Sif/MD0WJHp7sTKXQN7ufrY129flkT8jnpA5ZcWpT4jrWar7OXc7Y747ciQBZMjwATFg8Rv/WVxsyp5nU3E76CP8dnpUKSsfgUO8TuBUXI4lQVTDlBzqhLxOyewOVTLgikHqFQJAQhAAAJNT4C9nLsJw8RvEaxHXXKDbyqUoJaDUptIXX4CdZDot2Dhe6Hit06ZqftB6hP3uSA1sJfLhmPSWlwiv0X/eP/DjyMf/vCGRFKrZHc+ezl3lojfjgxZMDkCTFA8SPwOErj9zpfm7IgCIr8TGKGAU1kwFQA5oyYQvzMCWUA1LJgKgEwTEIAABCDQdATYy7mbLEj8TiN8270x93OffPa5bwR52sjvffbsVcsL7k6BGjQB9nL1mQtpc37HFb5lVIjf9bGtfqhUv9bL0TLit6MdWTA5AkxQ3G9h4/dqnJw3/+8La/nfdM5vOfeeBx9XfXfeVo297hbVY/OuXr44vWDT+eOI/E5glBxOZcGUA9ScqkT8zglsDtUifucAlSohAAEIQKDpCbCXczehn/idJNWJ2QO9X9t7j51U69atvG8z6TSWa7RbrUXOb2n3oWnPqgF9d2zxnaew7znptuyc33a77lSqWwN7ufrZ3tQx/K5LW+gOS3Wir6+Be+/qDSgosLB+o61Wy+zl3O2N+O3IkAWTI8AExaMiufWra+ZXxu3X5g47sJ/3+pssyIaMuMhrXc5v376d2vfrj6cgficwSg6nsmDKAWrGVdrXlVSvr62Mm6K6jAiwYMoIJNVAAAIQgECpCLCXczdnkMh28x33t6jc3KOFtWp/ZG/syDNqEdpa2F70wcdeFTptpb02NcsECXwigF9w2YRaV3Rd7kSqXQN7ufrZ307tas9pU/xetnyF9zDplXnzW3RYp/+Rf5QPyZrpgczrqn6jrGbL7OXc7Y747ciQBZMjQIpDwCLAgokpAYHsCbBgyp4pNUIAAhCAQPMTYC/X/DZkBI1FgL1cY9mD3pSDAHs5dzsifjsyZMHkCJDiEED8Zg5AIHcCLJhyR0wDEIAABCDQhATYyxVrNDty226d6Oti7ZFHa4jfeVClzqoTYC/nPgMQvx0ZsmByBEhxCCB+MwcgkDsBFky5I6YBCEAAAhBoQgLs5ZrQaHS5oQkgfje0eehckxJgL+duOMRvd4bUAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAg1GAPHb0SBECzgCpDgELAJECzAlIJA9AaIFsmdKjRCAAAQg0PwE2Ms1vw0ZQWMRYC/XWPagN+UgwF7O3Y6I344MWTA5AqQ4BBC/mQMQyJ0AC6bcEdMABCAAAQg0IQH2ck1oNLrc0AQQvxvaPHSuSQmwl3M3HOK3I0MWTI4AKQ4BxG/mAARyJ8CCKXfENAABCEAAAk1IgL1cExqNLjc0AcTvhjYPnWtSAuzl3A2H+O3IkAWTI0CKQwDxmzkAgdwJsGDKHTENQAACEIBAExJgL9eERqPLDU0A8buhzUPnmpQAezl3wyF+OzJkweQIkOIQQPxmDkAgdwIsmHJHTAMQgAAEINCEBNjLNaHR6HJDE0D8bmjz0LkmJcBezt1wiN+ODFkwOQKkOAQQv5kDEMidAAum3BHTAAQgAAEINCEB9nJNaDS63NAEEL8b2jx0rkkJsJdzNxzityNDFkzpAN479Uk168U5auhJh6vWrVulqyTDUm8teFeNunSCGn7qILVB5/UyrJmqkhJgwZSUGOdDIJoAC6ZoRpwBAQhAAALVI8BeLp3Nly9focZccZOa+tgM1Wfnng2zp0s3GkplSYC9XJY0qQsC/0eAvZz7TED8dmTIgikdQMTvdNyqUIoFU3NYWa7hCy6b4HWWTU/j24wFU+PbiB5CAAIQgEDxBNjLpWPut5d74eV5asiIi7wKf7BJFzX67JNVu9Xben+b60bd4mEH9lPHHXFAug5QqmEJsJern2nMh1LSi7NOGaT699khsEP2dWmfP+7GO9XNd9zfonxUnfUbfblbZi/nbl/Eb0eGLJjSAUT8TsetCqVYMDW+lWVzM278pNqmRhZGcrCBaVzbsWBqXNvQMwhAAAIQqB8B9nLp2NtrP/stWnuv12h7v3SjplQcAuzl4lDK5xzzulz82f9n797DrCju/I9/n2d/gUlUYIgIEryAia4h0SgXjQaj8RYQxLuuSTZoggZ+KiosOizIg5BBCaioP1DxQmJkEbwhAqtmo9H1Ei664BKjUYjKokYTQE0cTfZ5fs+3TB3r1PS5dfXMdJ9+n39k5nRVV72qB09/pvj2B3L59Bvl/FGnyNf679vqhBqUL7x7hZx10rHml1RRx3OP1zbrFKdX7uXiqBW3IfwONOQDk4j/G0b3t/jubwvd79sPQDt/7rPywKpfmVWY2zy+8Bdzud9aap9/+cuH8sFfPjT/1K5Xj+4ya+pFhXIl7jn990ott/+BTb+eOO16+f5ZI8xvS0v1af8nccwRg2XJskflrXf+VLQLttI8/d+2ugaBl2Zmm/OBKf1Lpz8Pe/TuWdhJ4Ifh6Z9B/kbIB6b8rTkzRgABBBCoLMC9XGUj/wh/N6juBNXXG1vfLmyEqBSG13JWe1+m91n6cu8p3d3m7n2f28b9vn/vpv3Z+0j+VWMtq1L6WO7lknGstRe9tpvn3iFjR51WlItoP9VsULL5y4AD9i/c4xF+17oKbXc893LhtoTfgYZ5/8Bk/5Lcbdfuhb9UH39qnXx94FflP55cW6jrbT5Y/L87xR5nP1zYsNcNzxo6dyo61v+LXP8S/uUTq4s+qNj64S++8ntZ/vCThbpz2q++on7b6S69+wGtW9ddiv7Hoef/jyfWyCnDjzJN9Px/ePdP5hwtH31sfqPae/ce5ms7T/s/jUrzfOiR/5Thx33D1D3XY5c//ETRPxEMvDwz2ZwPTOletqgPRtTMT/ea6ej4wJT+NWKECCCAAALtL5D3e7m44n4o5n/t7yL1N/xUW/LEfu4ccfwQcz+nX9v7J73vm3ntHYV7Qv082vLRR9Jrt12Ldrzq/aA9Tu/z3Hs3++wp/z7M3+gR1ymP7biX65hVj7ofq+VfXNhfGDVdck4hO4n6RVe5MiodM/N8nJV7ufB1JvwONMz7B6ZSoVdUQOYG3E+t3lD0wEvtZ97Ce2TSuHNk+473Wz180v0A4n+40n5t4K2Be5wA2c7jR6NOMeUcSv3zIL1c3Hno1/4/J3L/J+P+AkA/XJX750cEiJ/8MPKBKfAvpTZu7t+E6Om4dtsYPYHu+cCUACJdIIAAAgjUnUDe7+XiLmhU+O3+q8By9zz2vRHHH1G2HrGOrdyxpXal+v8i0b0vPXzwAa3u3Urdt7obquI65bEd93Ids+punuLW2rebBO0vevzR2Z+x37y8uWyN8KhwvGNmms+zci8Xvu6E34GGef/AFPWXrJKWCshswF0p/NaSI/afttklsg9XKBd+61/q7m8oq30Qn/tP46LauP+kTsdjH+ISFX77Ybz7Pxzfxf9nfNWWaQm8bFPdnA9MqV6ews+2+0/iCL/TvWb2l0rpHyUjRAABBBBAoH0F8n4vF1e71p3f/nl0s5BbJqXcOPz7Jfsvh0vtznbvxWzgZ48tF35rOU33Ve19ZFzDem3HvVzHrGzozu+oXwL5M+FfRHTM2nIvl4w74XegY94/MLXVzm8bktvfWrrLVCn8tsdW8xe4Pdb9TebWN98t+jDm/lO5vfbYPbGd341ddjF1xe0/LSJA/GQ1+MAU+JdSOzSn5nc7ICd8CnYLJAxKdwgggAACdSGQ93u5uIvo34/5YXal+5pawm93jO6u7sUPPGre8usZx935bUurxDWhHfdyHXkNhNb81rFX+rkk/O64FeZeLtye8DvQMO8fmPya324dNrcEiV/H268/5e4g94/VJdL3N7++VY48fIDZ2e1+0HF/u//M2hek7569zUMeag2/Z17/U2m66PumrXsO/wOUWxNOx+GWPYmqb+fu/Hbn/dYf/lhU3sUP2QMvzcw2J/xO/9L5PxM8DCX9a8YHpvSvESNEAAEEEGh/gbzfy8UV9z/7lXvApZ7Dfc5RuZIo/nj8Zy+5n0E3v7G1qOa3fdZT3z16m/szW1Ylqua3X+LSr/nt3tOWKhcR167e23Ev13Er7P5cRv2c+c8u018gjTrzBPP8Mb/EkP+zV+kXWh0363ycmXu58HUm/A405APTp7XYtE6UvtwHmLglSNzvlwu/dbe3Da7tPz9zy4GUC7/1wSfjJs0prGq1D1Px/zJ3Q339H4I+rNOOZfDB/eWDD/5iHkxpw287d/3almfRP/sPd7HlUuyOdtdn/337mv5sAB94aWa2OR+YsrF07rXNPwtN/5rxgSn9a8QIEUAAAQTaX4B7uXjmURsf3DKR5e55/PulciMod0/o32u594tuqRT3++WCd/++zb2ni6eUz1bcy3Xcuvs/L/417IbffrlY/+fS70vftyWHOm6G+T0z93Lha0/4HWjIB6ZAwIw3r7RzoZYnLGecIrHh84EpMUo6QqAgwAcmLgYEEEAAAQRaC3Avx1WBQLIC3Msl60lvCKgA93Lh1wHhd6AhH5gCAduhufsE46jTVbs7PKot4XfyC8gHpuRN6REBPjBxDSCAAAIIIED4nbZrwH+YpT8+dl+nbcUqj4d7ucpGHIFArQLcy9Uq1vp4wu9AQ8LvQECaI+AJ8IGJSwKB5AX4wJS8KT0igAACCGRfgHu57K8hM0iXAPdy6VoPRlMfAtzLha8j4Xe4IT0ggAACCCCAAAIIIIAAAggggAACCCCAAAIIpEyA8DtwQdgtEAhIcwQ8AXYLcEkgkLwAuwWSN6VHBBBAAIHsC3Avl/01ZAbpEuBeLl3rwWjqQ4B7ufB1JPwONOQDUyAgzREg/OYaQKDNBfjA1ObEnAABBBBAIIMC3MtlcNEYcqoFCL9TvTwMLqMC3MuFLxzhd6AhH5gCAWmOAOE31wACbS7AB6Y2J+YECCCAAAIZFOBeLoOLxpBTLUD4nerlYXAZFeBeLnzhCL8DDfnAFAhIcwQIv7kGEGhzAT4wtTkxJ0AAAQQQyKAA93IZXDSGnGoBwu9ULw+Dy6gA93LhC0f4HWjIB6ZAQJojQPjNNYBAmwvwganNiTkBAggggEAGBbiXy+CiMeRUCxB+p3p5GFxGBbiXC184wu9AQz4wBQLSHAHCb64BBNrYt2ydAAAgAElEQVRcgA9MbU7MCRBAAAEEMijAvVwGF40hp1qA8DvVy8PgMirAvVz4whF+Bxrygak6wNfeeFNmXv9Tabro+7LXHrtX14ijYgl89NHHMuv/3Sm/+NVqOeabg2Xi//2edO7cKVZfHdGID0wdoc45612AD0z1vsLMDwEEEEAgjgD3cnHUaINAaQHu5bg6EEhegHu5cFPC70BDPjCJ3Pyz+43i+f98svnvjvc+kMun3yjnjzpFvtZ/X/M9wu/AC62G5it/8bSs2/Bi5kJvO0U+MNWw2B14qF5nV9/wUzOCLP6SpQPpOuTUfGDqEHZOigACCCCQcgHu5VK+QDUMz78nraEphyYowL1cgpg1duVugtOml134fRl2zGEle3Hv56KO15+pRff+e1H7Sn3WOGQOr1KAe7kqococRvgdaMgHJsLvwEso8eZZ/+DHB6bEL4nEO/yvjS/LzQvvk6umXCBdu+zc6hdgiZ+QDoMF+MAUTEgHCCCAAAJ1KMC9XP0satbvgeplJbiX67iVdH8GojYkuiPToHzh3SvkrJOONfdzUcfzM9Vxa+mfmXu58LUg/A40zOoHJv0t36+eWWdm/+za/zb/nds8Xn69bmPht3v6tbtze+K06+Wtd/5kjj371G+bnd4ago2bNKegqDtAuzd2lSUPPFr4nv52sP9+fU3Zk2OPGCzX33p3UR/2QLevL+/b1wRrDZ07mRIeI44fYsaiO8jnLbxHJo07x/wlrfN4Y+vbZiz6XtQYq1li97ee9ty2/6jdrXYnu52Ptpl08Shpvm6hHHPEYFmy7JP5z5p6UcUyL/Z/NL95ebNpY3+b6n/fXQ89Lmrnrf4PzP3tbBZ/M8sHpmqu2I49Rj8I7dG7Z2EngR+Gd+zoOHuUAB+YuC4QQAABBBBoLZDVe7l6WUv3/q9Xj+6Feyf3vs79vn8PZO9h9b/+PWnWSj/Wy5pyL9cxK6nZQfPcO2TsqNMK+UMt4bXdNT7ggP0L93i1tO+YWefnrNzLha814XegYVY/MGlw+tPFywsfMGyQagNWv3TG40+tk7579jZ/kdoPI02XnGMC6WrLnmgw/a0jBpug2v/Non7wmXntHUXjsaG2G7T547TvHT1kYFFIrn95P/TIf8rw475Rsd619rn84ScKu1hfeuX30tC5s2x77/1Wu1v/8O6fTDmRt/7wRxO02/noZWTn1Hv3HlWXHLFtRhx/hPmfjI77mbUvyNcHftXMx/7Pxzf3x+waZf1/UnxgCvxLqY2bR30woqxRG6Mn0D0fmBJApAsEEEAAgboTyOq9XD0shH//p58nWz76SHrttmtRCU33OJ23uxFK22x+fascefgA/iViSi4K7uU6ZiGi7sdqKYfq5w06C7/sSRY31nXMaiR/Vu7lwk0JvwMNs/qByf+L0N+5WW4npx9+VRt+uw+8tH3YHd1+H+4O781vbJXlDz8pF/3wTLl90YOy5xd6ybvbdsioM0+QeXfcI6eccJR067qL+ZBkQ+RqlzUqyLNto8Zk56DH+A/wrPRPi6LGVMo56n9edjw6bzcY1361HzXSYF53f+vL1mCv1iItx/GBKS0rET0O/2dXjyL8Tvea6ej4wJT+NWKECCCAAALtL5DVe7n2l0r+jKU27Pj3R+79Wu/ddy3aMOWOKusbgJIX7pgeuZfrGHf/X8jrKKoJv91/bV4u3I4Kxztmpvk8K/dy4etO+B1omNUPTLWG3/7DE5TN/uWYVPjtP0zBlh/ZvuN98xv+/3vO6bLql8/ISUO/Kbfceb98/4wT5KdLVphQXEuU+GVP/DIhUUsdFeTZ4/zSDu4/JdJjkgq/bWjduXOnwhBL/c9Ld8Pb8PsXv1pdNCX70EHC78AfapqXFWDndzYvED4wZXPdGDUCCCCAQNsKZPVerm1V2qd3/17LntXd1GPvj6L+JbAe75arJPxun3WrdBbC70pCbfN+6M7vcpsCS+UjbTMTeo0S4F4u/Log/A40zOoHplrCb1t3e7ddu5vdxG2189utIewui55Pd3jrju/PfrbBlAexH270uKgdztXWIM7yzm+7a96/hLP+wY8PTIF/KbVDc2p+twNywqfgA1PCoHSHAAIIIFAXAlm9l6sH/Dg7v/U+0H25fWT9Hqge1lTnwL1cx6xkaM1vHbX7PLWoWZT6hVXHzDhfZ+VeLny9Cb8DDbP6gSlO+G3rT/t1qv2+qtkZ6u+49mu+6bLc99BjcvQRg8yubv2L9pdPrC7UBLcPR3EfDvkfT6yRU4YfZVa02vDb/iXv1vy29c215rdbh1zH4Nb8TmLnt2+pX+s8Tjj2cFPaxP7CoVLNb7fGOTu/A3+oaV5RwP/54majIlmHH8AHpg5fAgaAAAIIIJBCgazey6WQsuYh+fd/+rW++u7Ru6icpXuc3p/pS587pS/3M2g1JR5qHiQNahYg/K6ZLLEG7s9DVElWN89o+ehjWfzAo+Zfleu/sCiVS9h8hTKXiS1TrI64l4vFVtSI8DvQMKsfmGoJvzV89p/E3djYVU78+0Ma3TpRtvTGi6/8vvDEbQ2o++/Xt6hMSFS5Efccuixnn/rtwq5u/5+/+b/Z9Muy+E8Fr7TM7sMc3H8+Zx+wqe3t3PR/DlF/+cep+a39+uVa3EBf65j/5uXNZvh+GRd3bPp+qTI0leaetvf5wJS2FYkeT6mfjWyMPn+j5ANT/tacGSOAAAIIVBbI6r1c5Zll4wj386R7/+beH5X6vn9/FnVP6paVzIZI9kfJvVzHraGfifg1vN3wW382yj3QMqrsbTVlZTtu9vV9Zu7lwteX8DvQkA9MgYA0R8AT4AMTlwQCyQvwgSl5U3pEAAEEEMi+APdy2V9DZpAuAe7l0rUejKY+BLiXC19Hwu9AQz4wBQK2cXN/d7R7ulp3h9c6VHf3QVRbd2d7rX3X8/F8YKrn1WVuHSXAB6aOkue8CCCAAAJpFuBeLs2rw9iyKMC9XBZXjTGnXYB7ufAVIvwONOQDUyAgzRHwBPjAxCWBQPICfGBK3pQeEUAAAQSyL8C9XPbXkBmkS4B7uXStB6OpDwHu5cLXkfA73JAeEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBFImQPidsgVhOAgggAACCCCAAAIIIIAAAggggAACCCCAAALhAoTf4Yb0gAACCCCAAAIIIIAAAggggAACCCCAAAIIIJAyAcLvlC0Iw0EAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIFyD8DjekBwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGUCRB+p2xBGA4CCCCAAAIIIIAAAggggAACCCCAAAIIIIBAuADhd7ghPSCAAAIIIIAAAggggAACCCCAAAIIIIAAAgikTIDwO2ULwnAQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEwgUIv8MN6QEBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgZQKE3ylbEIaDAAIIIIAAAggggAACCCCAAAIIIIAAAgggEC5A+B1uSA8IIIAAAggggAACCCCAAAIIIIAAAggggAACKRMg/E7ZgjAcBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgXABwu9wQ3pAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQSJkA4XfKFoThIIAAAggggAACCCCAAAIIIIAAAggggAACCIQLEH6HG9IDAggggAACCCCAAAIIIIAAAggggAACCCCAQMoECL8DF6Tlb4Ed0BwBBBBAAAEEEEAgVwKNgy7I1XyZLAIIIIAAAggggEB8gQ+fvzF+Y1oK4XfgRUD4HQhIcwQQQAABBBBAIGcChN85W3CmiwACCCCAAAIIBAgQfgfgiRB+h/GJEH6HCtIeAQQQQAABBBDIlwDhd77Wm9kigAACCCCAAAIhAoTfIXqE32F6QvgdDEgHCCCAAAIIIIBAzgQIv3O24EwXAQQQQAABBBAIECD8DsBj53cYnrZm53e4IT0ggAACCCCAAAJ5EiD8ztNqM1cEEEAAAQQQQCBMgPA7zI+a32F+hN+BfjRHAAEEEEAAAQTyJkD4nbcVZ74IIIAAAggggEB8AcLv+HbakvA7zI/wO9CP5ggggAACCCCAQN4ECL/ztuLMFwEEEEAAAQQQiC9A+B3fjvA7zM60puxJAoh0gQACCCCAAAII5EiA8DtHi81UEUAAAQQQQACBQAHC7zBAdn6H+RF+B/rRHAEEEEAAAQQQyJsA4XfeVpz5IoAAAggggAAC8QUIv+PbaUvC7zA/wu9AP5ojgAACCCCAAAJ5EyD8ztuKM18EEEAAAQQQQCC+AOF3fDvC7zA705qyJwkg0gUCCCCAAAIIIJAjAcLvHC02U0UAAQQQQAABBAIFCL/DANn5HeZH+B3oR3MEEEAAAQQQQCBvAoTfeVtx5osAAggggAACCMQXIPyOb6ctCb/D/Ai/A/1ojgACCCCAAAII5E2A8DtvK858EUAAAQQQQACB+AKE3/HtCL/D7Exryp4kgEgXCCCAAAIIIIBAjgQIv3O02EwVAQQQQAABBBAIFCD8DgNk53eYH+F3oB/NEUAAAQQQQACBvAkQfudtxZkvAggggAACCCAQX4DwO76dtiT8DvMj/A70ozkCCCCAAAIIIJA3AcLvvK0480UAAQQQQAABBOILEH7HtyP8DrMzrSl7kgAiXSCAAAIIIIAAAjkSIPzO0WIzVQQQQAABBBBAIFCA8DsMkJ3fYX6E34F+NEcAAQQQQAABBPImQPidtxVnvggggAACCCCAQHwBwu/4dtqS8DvMj/A70I/mCCCQPYHt27ZJ08TxsmXLG5GDHzhosFw8/l/kujk/kbVrVkuXrl1lxsxZ0rdvP7FtteHMWXOkW2Nj9gAYMQIIIBAoQPgdCEhzBBDIpMDZJwyW65rOkF12aiga/8d//V+Zs/AR2b1HNxl10tdbze3FTW/JwafOyOScGTQCCCCQhADhd5gi4XeYH+F3oB/NEUAg2wKbN2+SyU0TzSRswK1/bmlpkaubp5vwW19Dhw2XsReOI/zO9nIzegQQSEiA8DshSLpBAIFMCdjwu3Onz5iw+8p5K4rGP3/qd0z4vfUP2+UHU35m3rtt+j9L7926yWOrX5Jh59+QqfkyWAQQQCApAcLvMEnC7zA/wu9AP5ojgEC2BSqF3y+//JJ02aWLvPf+eyYcb+zWaHaN64ud39lee0aPAALxBQi/49vREgEEsitQa/j9+OqXZeXNF8pRg/crBOL6PV4IIIBA3gQIv8NWnPA7zI/wO9CP5gggkG2BasLvc394ntx+6y2y7777yfljL5BpU/6V8Dvby87oEUAgUIDwOxCQ5gggkEmBkPCb0ieZXHIGjQACCQkQfodBEn6H+RF+B/rRHAEEsi1QTfitO75XPbRcVq18yNQCv+fuxYTf2V52Ro8AAoEChN+BgDRHAIFMCpSq+f3+n1vk4plLZMjAL5Use7LwgWdkzLS7MjlvBo0AAgiEChB+hwkSfof5EX4H+tEcAQSyLVBt+O2WO9ESKFoKhbIn2V57Ro8AAvEFCL/j29ESAQSyK1Dtzm9/hgTf2V1zRo4AAskIEH6HORJ+h/kRfgf60RwBBLItUG343bdvP3lw2f2y4KZ5ZsJ9+uxB+J3tpWf0CCAQIED4HYBHUwQQyKxAteG3feAl9b0zu9QMHAEEEhYg/A4DJfwO8yP8DvSjOQIIZFuglvB7+7Zt5mGXW7a8Qfid7WVn9AggEChA+B0ISHMEEMikAOF3JpeNQSOAQAoECL/DFoHwO8yP8DvQj+YIIJBtgVrCb53pc+vWytTJTYTf2V52Ro8AAoEChN+BgDRHAIFMChB+Z3LZGDQCCKRAgPA7bBEIv8P8CL8D/WiOAAIIIIAAAgjkTYDwO28rznwRQAABBBBAAIH4AoTf8e20JeF3mB/hd6AfzRFAAAEEEEAAgbwJEH7nbcWZLwIIIIAAAgggEF+A8Du+HeF3mJ1p3fK3BDqhCwQQQAABBBBAAIHcCBB+52apmSgCCCCAAAIIIBAsQPgdRsjO7zA/wu9AP5ojgAACCCCAAAJ5EyD8ztuKM18EEEAAAQQQQCC+AOF3fDttSfgd5kf4HehHcwQQQAABBBBAIG8ChN95W3HmiwACCCCAAAIIxBcg/I5vR/gdZmdaU/YkAUS6QACBTAq0tLTI1c3TzdgvmzRFGhoaEp/HvBvmygsb1svMWXOkW2Nj4v3TIQIIINARAoTfHaHOORFAoL0Ejhy8r9w2/Z/N6X4w5Wfy+OqX2+vUbXKelTdfKIcf9EWZs/ARuXLeijY5B50igAAC5QQIv8OuD3Z+h/kRfgf60RwBBNIj8OCy+2XBTfPMgAYOGlwx0Nbjt7z+uoy9cFxhEtu3bZOmieNly5Y3zPemzZgpBw8YaP68efMmmdw0Ud7bsaNV/xpy99lzTzlx5MmtQMq9lx49RoIAAghUL0D4Xb0VRyKAQDICV4w9QcaPOk46feYf5OO//m9RkPvcvZNl/369Cida+MAzMmbaXYWv3fff/3OLXDxziSxasbrkwDQs7rVrVzn41BnmGPfcbqOtf9heCMfdc7jfjzqJP157jB23nv+owfsVNX1x01tmPGefMFiuazpDdtmpQfy5+ON2Oyj3XjIrRC8IIIBAaQHC77Crg/A7zI/wO9CP5gggkA6B59atNcG33WGtgbO+3GDbHamG3M0zpsmYCy6Svn37mbfsTvCDBgw0IbaG3bOaZ8jESZPNMdrnoYcdbsJw98963D1LFsuF4y6N3D2u55p77WwZd8kEdn+n43JhFAggEChA+B0ISHMEEKhJQMPnC84+Sm5c9FirncsaBk849zi59OolZoe2f6yGvvvt3bMQUvtf+wPR/mZNOEVuWfpk2V3SGmC/9e4OGXb+DeL2qf3prvEdH7QUwvNKk9Uxn3f6EJk4+z4Typcbo76nL3te+2cd9/SLTpQp1z8YGezrbvZ5U86WxavWsPu70oLwPgIIJC5A+B1GSvgd5kf4HehHcwQQSIeAv7vaD8P9Uer7y5fdX7Q7XEPs+TdeL5MmTzUhtRuGH3f8ULlh7jVy2hlnmSBcd43rS0NyNwgvpVHNMemQZBQIIIBAZQHC78pGHIEAAskI2BIkjzz9YtFu7lK9253R9z76vDleQ2p92V3c86d+R0499qCSu7/1/eMO279suRM3rNa+dSe2PZ9+XekcrT6XOkG6vlcu/Nb5/HrDZjM3Pc8hB/Q1c3ND8VI21RyTzKrRCwIIIFAsQPgddkUQfof5EX4H+tEcAQQ6XsDfsa0j8ndt+6N0w2v7XlRg7u4gj9r53di9e9ld37bvqBIrHS/HCBBAAIF4AoTf8dxohQACtQu4ZT5s63JlRTQQ1ja2vrUtWfLqG++YkNjdsR01mmoCYrcPP2zXPsvtVPfP6e/61vf9sie25Il9T//r7vz++YO/Lrvr256zmmC/9hWiBQIIIFBZgPC7slG5Iwi/w/wIvwP9aI4AAh0vYMPvESNPLqrP7ZYs8UcZtRM7aje4G35H1fy+fcHNphSKvqZObjL/HTpseKtyK9r3s08/VbIMS8crMgIEEECgegHC7+qtOBIBBMIE/HDY7gT3y4q4dbndmt/2+IbOn5HuXXdqVSfbH527szpq5FFhtb+7vJbwu1IYb8P1tRtfM4F3VM3v7554iBnqs+s3FeqiR/2CQMd11tBBMnb6osw/xDPsqqI1Agi0twDhd5g44XeYH+F3oB/NEUCg4wXi7PwuFX67dcN1ZuVqh9ta36PPGyMLbplvSqLsvntvubp5urhBvPZD+N3x1wkjQACB5AQIv5OzpCcEECgvEBU2lysrElX2xNbm1jPpruqB/fcqWfakXPhtg/SXfv+2CaLtK2p3ejUP1qy2PEq5h1W6tb619rktiRIVqhN+89OGAAIdJUD4HSZP+B3mR/gd6EdzBBBIh0CtNb+jyp6Uq/mttb39lw3Q+/Xbp+jhmaWCdXZ+p+NaYRQIIBAuQPgdbkgPCCBQnUDUAygrle+wwe+s2x42D59064VX2pVdruxJtWG1W4u71CxLBelRx5cLv+14/blGzYPwu7prjqMQQCB5AcLvMNPcht8tLR/LFbNvl0MP7i+nDBsSW7Hlb7Gb0hABBBBIjYBfr7vcjm0ddFSJE38Hebm64XbX94XjLjUG9mGYpXZ+88DL1FwqDAQBBBIQIPxOAJEuEECgagENs7vu3GAeQqkvDbTt7msNdId+4yvy9bOvNu/Z8ieLVqwuPPDStn189csVd36XCtarDaujwvWo3ealgnQ9z9Sxw2XavIdMaZKomuIWzt31rfN1d61H7fyupp551YvCgQgggEANAoTfNWBFHFoX4fe2He/L2Muvkw0vvlo0xekTf1Ay2Cb8DrtwaI0AAvUnoLu5tWyJvgYOGiyXTZoiDQ0NkRPdvm1b0W5te5B+v2nieNmy5Q3zrWkzZhbqiNtjNCS3YXffvv3Mt9164H7Nb+1z7rWzZdwlE6RbY2P9wTMjBBDInQDhd+6WnAkj0KECNnjuvVs3Mw73AZD+e/p+VM1v27ZSOZKonebapwbH++3d0wTwGkq7L7feeFT/fvhdLtDWfjW43r9fr8IpHlv9UlGZFfuGX6LFLb/i1/xWp3lTzpbFq9bIlfNWdOh6cnIEEMifAOF32JrXVfh96Y9Ol0EH/mNVIoTfVTFxEAIIIFBSQMPyLa+/3uYPofRLsrAkCCCAQNYFCL+zvoKMHwEEygmUKzOSVbl6nFNW14JxI5BHAcLvsFWv+/D7vpVPypRZtxWUFs693ATkfvjt7x4/4ZhD5coJ50pDQyfx37N9aKeUPQm7AGmNAALZFbBlTnQG5XaJh8xQg+8XNqyXmbPmsOs7BJK2CCCQKgHC71QtB4NBAIGEBexucu02aqd3wqdr8+40+D78oC/KnIWPsOu7zbU5AQIIRAkQfoddF3UdfmvAfc+KX8lpJ3zThNgahC9d/rjMu+pi+WznzkU1v6+5Zans3adXoUzKXff9QoYdfYjR1ZIqp4840ry36bWt8pP5i6W5abQ0dt2F8Dvs+qM1AggggAACCCCQOwHC79wtORNGAAEEEEAAAQRiCxB+x6YzDesq/HZrfrs7ty2RBteTrrpVmi//ofTuuWsh/B72rUPMn3vt9nm59LzTi0TXrP+tXHPTUhOYm7D77w/K1DDc7CDngZdhVyCtEUAAAQQQQACBnAkQfudswZkuAggggAACCCAQIED4HYBXb+F3VM1vDbzPnzhHtr79RyPVu+fn5eZZ44vCb93R7Zc2sQ/L1PB71LirWikXyqcQfoddgbRGAAEEEEAAAQRyJkD4nbMFZ7oIIIAAAggggECAAOF3AF69h982+G6eNNrs0i6181vDb/flHvfH7e+ZUim2/rfPzc7vsAuQ1ggggAACCCCAQN4ECL/ztuLMFwEEEEAAAQQQiC9A+B3fTlvWVdkTf+e3G2L326u36C7uSc0LWu381rInbm1wt11jt12Kan4rmvajL8qehF18tEYAgXwKPLjsfunTZw85eMDAYIC2fiBmW/cfDEAHCCCQSQHC70wuG4NGIFcCV4w9QYZ+4yvy9bOvzuS89SGV++3ds6YHbs6f+h0ZddLXZeEDz8iYaXdlct520GefMFiuazpDtry9XQ4+dUam58LgEUBAhPA77Cqo6/BbafRBlrctWmGUvrp/P/Nfv+a37vx2j9NjbFkT/bNfEuWA/ff5tAY4ZU/CrkBaI4BAkYAGwwtumifTZsxMJBxOmlfH9/y6tXLZpCnS0NAQq/tS4fdz69bK1MlNpk8Nx2fOmiPdGhtLnkOPX77s/qKxbN+2TZomjpctW94w7VxH9z2/fx3Tltdfl7EXjmt1Pg3A++y5p5w48uRY86URAggg4AsQfnNNIJBtARuSPrb6JRl2/g2pm4wNPu999PnYIW6l8FvD5V67dq0YrD5372TZv1+vglEpMz3f+FHHyVPPv1Iwtd/r9Jl/KLR//88tcvHMJbJoxWrx33f7rjX8VrNZE06RW5Y+KVfO+yQ/0Jc7fvfcRw7eV26b/s/Se7duhWPLhebVHu+e78VNbxV8dT5HDd7PnMudZ6lx63Hl3kvdRcuAEECgrADhd9gFUhfhdxhBWGvKnoT50RoBBD4VaGlpkRvmXmO+sdPndooMYjvaKyT89oNpnYsNpzdv3iSzmmfIxEmTpW/fflLpPGp1dfN0GTHy5MIvCez3Dhow0ATVUX3qOfU97d/+Wcc199rZMu6SCZFhe6X3O3pNOD8CCGRPgPA7e2vGiBFwBTSg1FfXnRtq2lncXoqh4bcfWLshrA3+dS7u96PmpoHvNZedIbNvf6QorNbg2t1Z7YbYbrCr37/g7KPkxkWPFQXSei5/jv7XtYbfUWG+34f7de8e3WTCucfJpVcvkcdXvyzqomOYs/CRVmO14610vL2u/J3a2u/0i06UKdc/aJjtn9VRx6SvUr+E0XEdckDfir+kaK9rk/MggEA8AcLveG62FeF3mJ8QfgcC0hwBBAoCGtbes2SxDB8xUu64bYFMmjy1EMbq7uN33vmDvPXmm2ZXc5euXWXyFdNkyeJFsnbNavP1jJmzTHCsr3I7oLUvfdldzu4O6pYPPzQ7p486+hhZ9sB98t6OHTJw0GCzu/rNN7fK5KaJ5nv6cndP2/GV2hFug/3TzjhLXtiw3rTVl87FhtHuzms/uPYvE31//o3XFxn53/PDcB3joYcdbsJynfOzTz9lDNwgvNTl6LblkkUAAQRCBQi/QwVpj0DHCdggUnf5nn/GkKKdwjasfXfbB9K3z65mkBoQ/3rDZlNOw37thpvujt6tf9heCNP94NfuHH7k6RdNcKxBaUOn/yOdO/0fs/v447/+byF4LbXbWs81sP9ehZ3TUYo2TH12/SZT9uSGux4rCnltm2p3frvnsHN46fdvF8Jauzv531Ez9ooAACAASURBVFaulVOO+Zq475ULv0v52PZRwfXhB30xMpz2be2Y/TBag+RTjz0o0q/WXzj4x2vfxx22f+QvU3SuZw0dJGOnLzJDmzflbFm8ao288to7RUF41Hq6wbmG5bwQQCCbAoTfYetG+B3mR/gd6EdzBBD4VMCGsMcdP7TVrma/9rR+/dRTTxYCbzfQjtoBraH1+H+53AS/1YTfvXbf3QTe+tId1nY3dakd2ZXCb3f39BNPPN6q5rc/Jhvej/7R2MjyL254XbhBWbfWlIxxy6W4/boht/3zEUccWXbXt+27XFkUrmEEEECgVgHC71rFOB6B9Ai4O2k1HH3r3R2tynTY0h12R/Orb7xjdt76ga0fpmp/djf5EQO/VLTrOSr83mePHoUw19+VrPWe/bIn1YTfOgYN6998Z3vZmt9xwu9yu7XvXrXGlBHxw28thWLLnrhlR/SK0LFaA/36vNOHyMTZ95ld5q7HmUMHlQyWtV2pgNhfP3+93auyXFAfdfX6x7u/BLHH2zIqpXZ+f/fEQ8yh5UrvlAr20/MTxUgQQKAaAcLvapRKH0P4HeZH+B3oR3MEEPhEwN0ZHVX2ww+H/RDa/Vp3aLslRLR/t3014bcbOrs1ryuVIym3ntrPqpUPmUP8muZ+Xe1K4XfUbu2oGuDuXKNqfmsQr6+vHnBgYVe73enu1jSPCtu5dhFAAIG4AoTfceVoh0DHC9hwWHdf++G1H2hWKs3h7yx22+tM3ZIfUeG3HmN3kbs7h7UkR1T4XY1etWVN4oTf7nz9+UTtCvfH6/5ywJYa0Z3YnTt9xgTkUTW/n3r+Vfn2N/qX3e3u7qzWfu3Ljqmh82eke9edxA/f/ePc4L6cddRc/WDdL6Pi1/z++YO/Luz61nIqtq56VN1x95qt5hrgGAQQSJ8A4XfYmhB+h/kRfgf60RwBBD4R8INbv+xHreG3XxLE3bncUeG3XWv7UE/9WkN2LXtS687vUuF3uZ3f/rXm7kZf9POfFUqiRD3gkvCbn1QEEEhSgPA7SU36QqD9BDQkdXcX++F2nPDb3TnuPqBQZ9UR4bfVdOtwu+VY7Pu1ht9+cG3tdtmp9QPUyz0U0/p/ca8ekWuxduNrZid0qQdERl0tpcJvP5CO2jlvg+wdH7RUVVe71PH+uSr9MsAtT2NLoui/FnCvTztXwu/2+zuCMyHQVgKE32GyhN9hfoTfgX40RwCBTwTcXdGuSalwOIs7v93wW2t+N3bvbmqcXzjuUnnk4VVSS83vqDC6Us1v/1orVWamVLBua4RzzSKAAAKhAoTfoYK0R6BjBKJKU+hI7IMf44Tf2t7u3k7Dzm83/Naa303X3V+oMX3lvBUF+FrCbz/4jlq9SmGvtnF/+TBk4JdalTJxd5bboHr6TSvl4u99S2yt9KhzR5U9iSoXUqrOeGjwrWPyPcuVK3HH6zrojn/3YZh2roTfHfP3BWdFIEkBwu8wTcLvMD/C70A/miOAwKcPp/TrW7u7wW9fcLOhsg+pLBd+63Fap7tHj93M8RoKuzW/3bb2WP2v1vi2D7wsVfZEx+Tvrta21dT81t3V544+3wTdGn7rwy5t4O3vdK9UXiXqgZdRtc798i/2enN3fXdrbDTjtw/DjNr5zQMv+UlFAIEkBQi/k9SkLwTaR6BUOOsGsrob2d2tXansiV/awg2J/dIlthyJLWsR9TBG+8BEFfHrZ9uAtdIDL59ZdJms+s//Nqgafuufo3YTR4Xfdr5297X24Y+z1GpF+d5z3fmy4eUtYkN3ty+7M13re2sJGv/c1dRAt2Mp98BLW4Ndy6G4O7+3vrM90tj26Y+nUrjvz6fcwzXtrm/d4e7uWo/a+c0DL9vn7wfOgkBbCxB+hwkTfof5EX4H+tEcAQQ+KXkSFShrQNs8Y5qMueAiWfXQckNVTfittard+tbazq2xbUPitWtWS5euXWXkSafIi7/ZWFX47bbVANs+XLJS+O22s2s+dNjwwnzMzdG6tTJ1cpN52+076hqx/Y0YeXLRAzHLzdvtxw+z3XZ+zW8/KOeaRQABBEIFCL9DBWmPQPsLlHqgoRuc6kMiawm/dRbubnK/vIhbf3vzlnelc6f/U9jBXC78tvWwR530dQNly4hU88BLf3e7X+faHZNdBffBjFpr3IbfpUqbRJVRiQqH/XOV83HnaV3327un/GDKz0Q9/HDZv4Kiwnw7pt67dTOHuxZuWRi3L/uvAPzwu9Lx2oc734//+r+Fh5m6/UeVaHHXzK/57T6gtf1/ajgjAggkJUD4HSZJ+B3mR/gd6EdzBBDIn4Du6tZw++ABA4MmH/WAy6AOSzSO2gneFuehTwQQyI8A4Xd+1pqZIpBVAQ1Zdef318++OqtTqGncbr11t7xLTZ2k7OB6nFPKiBkOAu0mQPgdRk34HeZH+B3oR3MEEMifQFLht8ppMP3ChvWFHehJa7Z1/0mPl/4QQCAbAoTf2VgnRolAngXyFn7rWvulZbK8/nbn+Za3t1f1IM4sz5WxI5AHAcLvsFUm/A7zI/wO9KM5AggggAACCCCQNwHC77ytOPNFAAEEEEAAAQTiCxB+x7fTloTfYX6E34F+NEcAAQQQQAABBPImQPidtxVnvggggAACCCCAQHwBwu/4doTfYXamdcvfEuiELhBAAAEEEEAAAQRyI0D4nZulZqIIIIAAAggggECwAOF3GCE7v8P8CL8D/WiOAAIIIIAAAgjkTYDwO28rznwRQAABBBBAAIH4AoTf8e20JeF3mB/hd6AfzRFAoH4EFt5+q3zzqG9J3779gibV0tIiVzdPN31cNmmKNDQ0BPUX1ZgHWSZOSocIIFCDAOF3DVgcigACqRB4ZtFlsuo//1uunLeiQ8az8uYLZb+9e8oPpvxMHl/9clVj0Id2jh91nDz1/Csy7PwbqmrTngc9d+9k6dOzm1w8c4ksWrG6PU/NuRBAIGMChN9hC0b4HeZH+B3oR3MEEIgnoOHtqpUPFRoPHDQ4KCjW/vQ19sJx8QYkIqXC7weX3S8Lbppn+q1mnHr8ltdfLxrLc+vWytTJTaaPPn32kJmz5ki3xkbz9ebNm2Ry00R5b8eOVv3rvPrsuaecOPLkVvMq915sBBoigAACVQgQfleBxCEI5FhAQ9H9+/UqCGz9w/aaQl+fTvvT18GnzoitWir8PnLwvnLb9H+W3rt1M30/tvqlkkGzDaM7feYfzLH+vM4+YbBc13SG7LLTJxsfXtz0VmHMtYbfdlyPPP2ijJl2V9G8dRznnT5EJs6+ryh0rjSX+VO/I6NO+rrp6/0/txSF1u7c/Hmp/1vv7oh0Kfde7MWiIQII1J0A4XfYkhJ+h/kRfgf60RwBBGoTKLUrWgNjDYUPHjCwtg7/fnRI+O2Gz9pdl65dZcbMWWYHuIbWGnzbsLrSebZv2ybNM6bJmAsuKuwg1/5nNc+QiZMmm+/pXJ9ft7YQ9mufhx52uJm7+2dtd8+SxXLhuEsjd4/rueZeO1vGXTKhEKTHwqMRAgggUKMA4XeNYByOQE4EbPiq03V3OGvw+9rWP7UKcatlCQm//cD647/+r8xZ+IjZAW7H+9Lv365qZ7U/D3dcfl/+17WG3xpUH3fY/kWObrjuh9dq6Y7HHnvvo88bd3W44Oyj5MZFj5m5++PRtr/esNkc6/5Z2501dJCMnb4ocse6nmf6RSfKlOsfZPd3tRc0xyGQQwHC77BFJ/wO8yP8DvSjOQII1Cbgh8lRrd0w2g2i9Vh3F7Z+PW3GTNOF3VWtf7a7s1s+/FCaJo6XocNHRO6c1mPdAPmB++81ZU9e2LC+EMT7u6srjV/fX77s/qJd7P5OcDcM33333nLD3GvktDPOKgTjOi7d6e0G4aWUqzmmthXiaAQQQKCyAOF3ZSOOQCCPAhrYnnrsQWXLYLhhtBtEq5cGskcN3q9At/CBZ8yf7W5l/bPdldy7Rzezy3rtxtdKBtduMHvhd44yZU8OPbBfIYjX8/XatWvsHeVugGzHY8NmHasbRvths359+EFfLATx/vVSbkd11M5vneusCafILUufLJR28c/vztUNw59Y+zuZN+VsWbxqTSEY1/FoqRU3CC91TVdzTB5/HpgzAgh8KkD4HXY1EH6H+RF+B/rRHAEEahOoZue0BtajfzTW7ITWMHnOT64yO7H1Nf/G62XS5Klmp7OGyJtefUWOPuY4ExTryy17osF2pfDb3V29eNHPi2p+213qBw0YWAjP/V3c/uw16NaXW6bEH5sdl51j1M7vxu7dy+76tueNKrFS24pwNAIIIFC7AOF37Wa0QCAPApV2aPu7kTUs1+/pTmx9uaU8NJw9YN8+ctrFNxeFyNbR9lUu/HZ3Lc+8+ORWNb/98ix+GF9uzezO7h0ftBSVNtHwXkP7J9f+riiMdsPvM4cOarWr2z2X9u2G0f44osJvf2e3tnHPec1lZ5hubOkYfy2idn6/+c72sru+7bhCf4mQh58N5ohA3gUIv8OuAMLvMD/C70A/miOAQG0ClepU+zur3QBay6LYINx/KGWlUL3UKG3/a9esLip3osfb90aMPLlQjqVS+B21E9ufsx9+R9X8vn3BzaYUir7srvahw4a3qmmuXs8+/VRQrfPaVpCjEUAAARHCb64CBBCIEqhU/9nfGe6WBtGyKDYI9x9KWSlUL7Uabg1sP9iOqqmtIe7A/ntVfICjDc392tg2gNbxaN3vqJrfTz3/qnz7G/3LnqNSKZFS4bdfB9wPv9263VFlUfThmlrP3M5LA3MthaIvu/venZN113U95IC+sXfQ89OEAAL1L0D4HbbGhN9hfoTfgX40RwCB2gQqhdRRZUPc8Ngte+I+OLJSv9WM0n0Ip5ZT+XL/r8jVzdOllp3fpcJvPb/dle6H3/7Y7G700eeNkQW3zDclUbQ8io7FDeK1HeF3NSvLMQggkLQA4XfSovSHQH0IVAqpo+pYu4G5W/bErWldqd9q9Nxd3roz++5Va8yDLt0HSvqBcKV+/bInbtkRf2e4O7dyD9XUc8YNv92a3tpPLTu//bnaXfMzblopk380zJRE0fIovpm2I/yudKXwPgIIEH6HXQOE32F+hN+BfjRHAIHaBKqpme0+YDKq9Ig9oxt4JxF+L7z9VlP2ZNuf/lTYTV1rze+osiflan77O9h1bjZA79dvn6KHZ0YF64TftV1/HI0AAskIEH4n40gvCNSbQKWa3+V2fmt9afflBt5JhN/PLLrMlD3ZvUe3wi5lf6d6VN3scmvk7sD+4l49isq2+OHzxB8cb3aVT79ppVz8vW8Vhe7+OeKUPQmp+e3vtNfx2DIofvmWqPrehN/19pPMfBBIXoDwO8y05vB72473Zezl18mGF1+teOYD9t9H5l11sTR23aXisVk9oOVvWR0540YAgSwK2DBbx37ZpCnS0NBgpqEBse7k1sDXrdPt1vzWUFpfWgtcX27gre2fX7e2qM9qa37/6rFfyqhzfyg2/F710HLps+eepm63H9ZXCtmjdq77pVKixmrX0q1Brt+zD8MstfObB15m8aeAMSOQfQHC7+yvITNAoC0E7G5n7fsHU34mj69+2ZxGdyBrWRMNUt2HVLo1vzWU1teYaXeZ/5Z7WKS+X23N76Hf+Ip8/eyrxYbfJx19kNjyH+75NQCOeiilWwbF9mHDYh1j150bzFz9B3BG7fzeb++eRce6D8f016PWB176ZlFlTdyd4f5c3fO7tdLNZ+6/Pwyz1M5vHnjZFj9N9IlAfQkQfoetZ83hd9jp6q814Xf9rSkzQiALAm6JER3vwEGDC8G1WwO7S9eu5mGXukPa/b7fxgbdW7a8Ueir5cMPKz7w0m1n3fRBlO4DK91SK+44o5y1v+YZ02TMBReZMduXhuK2drdbrsXtQ38xYMNu29ads1/zW88199rZMu6SCeYBoLwQQACB9hIg/G4vac6DQDYF/AdJurWxNVi1taXdOtzu93XWbhsb5Godbft9P2yOknLb2ff9kiOlSq3o8X4NcA3Lbe1rf4z6tT+HqJrf9pcC9thFK1YXAn93DlElYqLm457DrXGufflzdcfvlpVxzxu169ydl1/zu1KJlmxewYwaAQSSFiD8DhMl/A7zo+xJoB/NEUCgfgTszu+oUiS1zNIvc1JL21qOrfTw0Fr64lgEEECgFgHC71q0OBYBBNIg4O/aTsOYyo0h6oGcaRxzpYecpnHMjAkBBNpfgPA7zDw4/N702lY5f+Ic2fr2H1uNhLInYYtDawQQQCBLAkmF36VKuyRpocH3CxvWy8xZc9j1nSQsfSGAQFUChN9VMXEQAgikSCBr4bfS2R3XTz3/ivg10dNAq8F3n57d5OKZS0R3sPNCAAEESgkQfoddG0Hhd0vLx3LF7Nvl0IP7y9f67yN33fcL+ZcxZ0lDQye55palMuSQr8qgA/8xbIQpb03Zk5QvEMNDAAEEEEAAAQRSJkD4nbIFYTgIIIAAAggggECKBQi/wxYnKPzWh19OmrnABN76+sn8xdLcNNo84HLN+t/K0uWPy5UTzjVheL2+CL/rdWWZFwIIIIAAAggg0DYChN9t40qvCCCAAAIIIIBAPQoQfoetamLhd2O3XWTmDXdJ04XfMeG3lkNxw/CwYaa3NeF3eteGkSGAAAIIIIAAAmkUIPxO46owJgQQQAABBBBAIJ0ChN9h6xIUfrtlT04ZNsSUOtm7Ty/RP9+38kl59rmN7PwOWx9aI4AAAggggAACCNSZAOF3nS0o00EAAQQQQAABBNpQgPA7DDco/PZPrWVQxl5+nWx48VXp3fPzcvOs8dJvr95hI0x5a3Z+p3yBGB4CCCCAAAIIIJAyAcLvlC0Iw0EAAQQQQAABBFIsQPgdtjiJht9hQ8lma8LvbK4bo0YAAQQQQAABBDpKgPC7o+Q5LwIIIIAAAgggkD0Bwu+wNSP8DvMTwu9AQJojgAACCCCAAAI5EyD8ztmCM10EEEAAAQQQQCBAgPA7AE9EgsJvt8xJ1DAO2H8fmXfVxeYBmPX6Ivyu15VlXggggAACCCCAQNsIEH63jSu9IoAAAggggAAC9ShA+B22qkHhd6lT64MwfzJ/sXznlGOo+R22PrRGAAEEEEAAAQQQqDMBwu86W1CmgwACCCCAAAIItKEA4XcYbpuE3zqk+1Y+Kb/f8pZcet7pYSNMeWt2fqd8gRgeAggggAACCCCQMgHC75QtCMNBAAEEEEAAAQRSLED4HbY4bRZ+b3ptq9n93dw0mrInYWtEawQQQAABBBBAAIE6EiD8rqPFZCoIIIAAAggggEAbCxB+hwETfof58cDLQD+aI4AAAggggAACeRMg/M7bijNfBBBAAAEEEEAgvgDhd3w7bdlm4fc1tyw1I6PsSdgC0RoBBBBAAAEEEECgvgQIv+trPZkNAggggAACCCDQlgKE32G6QeH3th3vy9jLr5MNL77aahQnHHOoXDnhXGlo6BQ2wpS3puZ3yheI4SGAAAIIIIAAAikTIPxO2YIwHAQQQAABBBBAIMUChN9hixMUfoeduj5aE37XxzoyCwQQQAABBBBAoL0ECL/bS5rzIIAAAggggAAC2Rcg/A5bw6DwW3d+T5q5QP5lzFnSb6/eRSNZs/63snT543W/+5vwO+wCpDUCCCCAAAIIIJA3AcLvvK0480UAAQQQQAABBOILEH7Ht9OWbRZ+b3ptq/xk/mJpbhotjV13CRtlilsTfqd4cRgaAggggAACCCCQQoHnNm9P4agYEgIIIIAAAggggEAaBQ77Urc0DiszY2qz8Pu+lU/Ks89tZOd3Zi4FBooAAggggAACCCDQHgKE3+2hzDkQQAABBBBAAIH6ECD8DlvHWOG37uo+f+Ic2fr2H0uevXfPz8vNs8a3KocSNtz0tWbnd/rWhBEhgAACCCCAAAJpFiD8TvPqMDYEEEAAAQQQQCBdAoTfYesRK/y2pyxX8ztsWNlpTfidnbVipAgggAACCCCAQBoECL/TsAqMAQEEEEAAAQQQyIYA4XfYOgWF32Gnro/WhN/1sY7MAgEEEEAAAQQQaC8Bwu/2kuY8CCCAAAIIIIBA9gUIv8PWMDj8vuaWpfLWH/5YVNu7peVjuWL27XLowf3llGFDwkaY8taE3ylfIIaHAAIIIIAAAgikTIDwO2ULwnAQQAABBBBAAIEUCxB+hy1OUPhtQ+7TRxwpgw78x6KRrFn/W1m6/HEeeBm2PrRGAAEEEEAAAQQQqDMBwu86W1CmgwACCCCAAAIItKEA4XcYblD4Xa7mtz4U8yfzF0tz02hp7LpL2ChT3Jqd3yleHIaGAAIIIIAAAgikUIDwO4WLwpAQQAABBBBAAIGUChB+hy1MUPjNzm8Rwu+wC5DWCCCAAAIIIIBA3gQIv/O24swXAQQQQAABBBCIL0D4Hd9OWwaF39qBljeZ1LxAbp41Xvrt1duMRnd9nz9xjoz5/knU/A5bH1ojgAACCCCAAAII1JkA4XedLSjTQQABBBBAAAEE2lCA8DsMNzj8dsPurW//sTCahXMvb1UHPGyo6WzNzu90rgujQgABBBBAAAEE0ipA+J3WlWFcCCCAAAIIIIBA+gQIv8PWJJHw2x+C1gIfe/l15tvzrrqYmt9ha0RrBBBAAAEEEEAAgToSIPyuo8VkKggggAACCCCAQBsLEH6HAScafmsJlFHjrjIj6t3z80WlUMKGmd7W7PxO79owMgQQQAABBBBAII0ChN9pXBXGhAACCCCAAAIIpFOA8DtsXRIJv6+5ZanctmhFYSR5KXmiEyb8DrsAaY0AAggggAACCORNgPA7byvOfBFAAAEEEEAAgfgChN/x7bRl7PDbljbZ8OKrZgQaeH9x7y+YcieX/uj0XNT7JvwOu/hojQACCCCAAAII5FGA8DuPq86cEUAAAQQQQACBeAKE3/HcbKtY4Xepmt72+4TfYYtCawQQQAABBBBAAIH6FSD8rt+1ZWYIIIAAAggggEDSAoTfYaJB4fceX+ghV044VxoaOplREH6HLQatEUAAAQQQQAABBOpfgPC7/teYGSKAAAIIIIAAAkkJEH6HScYKv92gW8ue2IdbNnbbhbInYetBawQQQCATAi0tLXJ183RZu2Z1q/FOmzFT+vXbR5omjpctW96QPn32kJmz5ki3xkbZvHmTTG6aKPvuu59cNmmKNDQ0ZGK+DBIBBBBIUoDwO0lN+kIAgSwIvPKb/5I7b/xxyaEOPf0c+cqAw+SOa6fKu29vLTpu15695ZxLpsnOXbplYaqMEQEEEEhcgPA7jDR2+O2elgdehi0CrRFAAIGsCbjht4bdBw8YWDSF7du2FcJvfWP0j8bKiSNPJvzO2kIzXgQQaBMBwu82YaVTBBDIiMCzj62UVUvvkC/1P0jOHD1ePtOpsxn5B+9tN+H3X/78gYwad4X0/MJeUurYjEyVYSKAAAKJCBB+hzEmEn7bIaxZ/1sZNe4q8+UJxxxaVBIlbJjpbd3yt/SOjZEhgAACbSVQbfj93vvvSZdduphh6O7vbdu3sfO7rRaFfhFAIDMChN+ZWSoGigACbSBQS/j99v+8JgvnXmlGYQPxNhgSXSKAAAKpFiD8DlueRMNvO5RSD8QMG2o6WxN+p3NdGBUCCLStQLXht47itDPPkuvm/ESGDhsuQ4ePIPxu26WhdwQQyIAA4XcGFokhIoBAmwnECb8/t9POlD5psxWhYwQQSLsA4XfYCrVJ+B02pGy1JvzO1noxWgQQSEagVM3vLl27yoyZs6SxW6Mpe6KvqdN/LDfPu1FefvklOfeH58ntt95Cze9kloFeEEAgowKE3xldOIaNAAKJCNQSfttjBw45Vkb803mJnJ9OEEAAgawJEH6HrRjhd5ifEH4HAtIcAQQyKVDLzm+33ImWQNFSKDzwMpPLzqARQCAhAcLvhCDpBgEEMilQKfz2H3hJ8J3JZWbQCCCQoADhdxgm4XeYH+F3oB/NEUAgmwK1ht/dGhtl3g1zZdXKh8yEBw4aLJdNmiINDQ3ZBGDUCCCAQIAA4XcAHk0RQCDzApXCb/eBl5mfLBNAAAEEEhAg/A5DJPwO8yP8DvSjOQIIZFMgTvi9efMmU+/7vR07CL+zueyMGgEEEhIg/E4Ikm4QQCCTAoTfmVw2Bo0AAh0oQPgdhk/4HeZH+B3oR3MEEMimQJzwW2f64LL7ZcFN8wi/s7nsjBoBBBISIPxOCJJuEEAgkwKE35lcNgaNAAIdKED4HYZP+B3mR/gd6EdzBBBAAAEEEEAgbwKE33lbceaLAAIIIIAAAgjEFyD8jm+nLQm/w/wIvwP9aI4AAggggAACCORNgPA7byvOfBFAAAEEEEAAgfgChN/x7Qi/w+xM65a/JdAJXSCAAAIIIIAAAgjkRoDwOzdLzUQRQAABBBBAAIFgAcLvMEJ2fof5EX4H+tEcAQQQQAABBBDImwDhd95WnPkigAACCCCAAALxBQi/49tpS8LvMD/C70A/miOAAAIIIIAAAnkTIPzO24ozXwQQQAABBBBAIL4A4Xd8O8LvMDvTmrInCSDSBQIIZFKgpaVFrm6ebsZ+2aQp0tDQkPg85t0wV17YsF5mzpoj3RobE++fDhFAAIGOECD87gh1zokAAu0l8NePP5K7F8wxpztz9Hj5TKfO7XXqNjnPs4+tlF+tuldGjbtCen5hrzY5B50igAAC5QQIv8OuD3Z+h/kRfgf60RwBBNIj8OCy+2XBTfPMgAYOGlwx0Nbjt7z+uoy9cFxhEtu3bZOmieNly5Y3zPemzZgpBw8YaP68efMmmdw0Ud7bsaNV/xpy99lzTzlx5MmtQMq9lx49RoIAAghUL0D4Xb0VRyKAQHICGuK+89YWGfFP57Xq9JXf/JfceeOPzfd37dlbzrlkmuzcpZu439f3vtT/oIqBtn8eG4b/buPzhfN+74J/lS9++WuFr7XNqqV3mK8rnaPSmNy+W7hbNAAAIABJREFU7AkGDjnWzPuD97bLHddOlXff3lo0Tz2unE+595JbIXpCAAEEogUIv8OuDMLvMD/C70A/miOAQDoEnlu31gTfdoe1Bs76coNtd6QacjfPmCZjLrhI+vbtZ96yO8EPGjDQhNgads9qniETJ002x2ifhx52uAnD3T/rcfcsWSwXjrs0cve4nmvutbNl3CUT2P2djsuFUSCAQKAA4XcgIM0RQKAmATcstiGw24G+r8GzDbzd9zT01TBcg2obYnftvmtkgK7tNFy+e8FsGX7W6MIuaf3eYyuWyLdP/b7ZBa7nu3fhDYWd1P75l//bLWYIUSG9fr/SmPR97TNq17m+p69Djxpm+rF/1jE+cOc8Oel7Y03o77907st+Pl+GHH8yu79ruvo4GAEEkhAg/A5TJPwO8yP8DvSjOQIIpEPA313th+H+KPX95cvuL9odriH2/Buvl0mTp5qQ2g3Djzt+qNww9xo57YyzTBCuu8b1pSG5G4SX0qjmmHRIMgoEEECgsgDhd2UjjkAAgeQFonYvR4XV5c5cLljWdho66zHlyp3Y3ddDTz/HhOoadvfo1ccE0raPUmF81Nj8MZUbo55r/wMHm/PqWF9cv9qE7G4QXmr+1RyT/KrRIwIIICBC+B12FRB+h/kRfgf60RwBBDpewN+xrSPyd237o3TDa/teVGDu7iCP2vnd2L172V3ftu+oEisdL8cIEEAAgXgChN/x3GiFAAJhAlHh99v/85osnHul/OWD9wqdR+0Ot29Wsytbj7VBdtSI9ZxLbr1WzvjhJdK9Ry9TH1zDaNvGfb+aGtv+mPyyJ+58onZ+f2XAYWV3fds5VBPsh60QrRFAAIFoAcLvsCuD8DvMj/A70I/mCCDQ8QI2/B4x8uSi+txuyRJ/lFE7saN2g7vhd1TN79sX3GxKoehr6uQm89+hw4a3KreifT/79FMly7B0vCIjQAABBKoXIPyu3oojEUAgOYGo8NsPdO2u7EFHHN8qwC5XHsWO0t1ZHTVyWzrFht32aw2+bQ3wWsLvSmPy5xNV8/u/1z1thtp33/6FXwRE1R3XcT358P0y8rtjMv8Qz+SuKnpCAIH2ECD8DlMm/A7zI/wO9KM5Agh0vECcnd+lwm+3brjOrFztcFvre/R5Y2TBLfNNSZTdd+8tVzdPFzeI134Ivzv+OmEECCCQnADhd3KW9IQAAtULVBN+a29RZUP8Ot2lzlou/I6qGe6H4dpvteF3tWMq97BKt9a31iW3JVH8Uix2XITf1V9vHIkAAskJEH6HWRJ+h/kRfgf60RwBBNIhUGvN76iyJ+Vqfmttb/9lA/R+/fYpenhmqWCdnd/puFYYBQIIhAsQfocb0gMCCNQuUKrsyUOLF8iZoycUHvToH1dtyGyDc/2vX/ak3MMy49T8rnVM77y1JfIBmrYMyoDDjzblV+wO9Kj63uz8rv2aowUCCCQjQPgd5kj4HeZH+B3oR3MEEEiHgF+vu9yObR1xVIkTfwd5ubrhdtf3heMuNQD2YZildn7zwMt0XCeMAgEEkhEg/E7GkV4QQKA2gajw2w+l/YdRVior4o8gqi521O5ut51/jqga3mueeFjOuWSaCejLjUnP9cwvV8jXv3WCKU3iz8c9r7vrW/t1d61H7fzmgZe1XW8cjQACyQkQfodZ1l34vW3H+zL28utkw4uvRspMn/gDOWXYkDA1p3XL3xLrio4QQACBDhXQ3dxatkRfAwcNlssmTZGGhobIMW3ftq1ot7Y9SL/fNHG8bNnyhvnWtBkzC3XE7TEaktuwu2/ffubbbj1wv+a39jn32tky7pIJ0q2xsUONODkCCCCQhADhdxKK9IEAAtUKaFh8540/Ljr8exf8a6HGtlsHWw8aevo5hZ3bGgKvffLRoraf27mLjBp3hUQ9jFL7unvBbBl+1ujC+1EP1TSfN4ccW9iN7T6k0q+3re+54XelMfnvu/NxJ+KXaHEd/DFoqL7s5/NlyPEnR8672rXgOAQQQCCOAOF3HLVP29Rd+O1y2CD80h+dLoMO/McwqRKtCb/bhJVOEUAgAwIalm95/fU2fwilX5IlAzQMEQEEECgrQPjNBYIAAvUsUK7GdlbnXY9zyupaMG4E8ihA+B226rkLv6+5Zan8+c8fyvt//ous+MWzojvBf7/lLaN46Xmnm/+uWf9bWbr8cblywrnS0NBJ/N3kC+deXgjTCb/DLkBaI4BAdgVsmROdQbld4iEz1OD7hQ3rZeasOez6DoGkLQIIpEqA8DtVy8FgEEAgYQFb5kS7PXP0eFN+JMsvDb5/terekrvdszw3xo4AAtkQIPwOW6dcht+r/uNZuXnWeOm3V2+jp4F4qfD7w48+MmVUTh9xpCmXsum1rfKT+YuluWm0NHbdhZrfYdcfrRFAAAEEEEAAgdwJEH7nbsmZMAIIIIAAAgggEFuA8Ds2nWmYy/DbDborhd8vvLRJrrlpqcy76uJPwu6Wj+WK2bebMFxLqbDzO+wCpDUCCCCAAAIIIJA3AcLvvK0480UAAQQQQAABBOILEH7HtyP8/rtduZ3fGn6PGndVK2Vb+oTwO+wCpDUCCCCAAAIIIJA3AcLvvK0480UAAQQQQAABBOILEH7HtyP8rjL8dut/+9yE32EXIK0RQAABBBBAAIG8CRB+523FmS8CCCCAAAIIIBBfgPA7vh3h99/t7lv5pDz73EbzgEt9aVkTfenXfs1v/b4+EFNflD0Ju/hojQAC+RR4cNn90qfPHnLwgIHBAG39QMy27j8YgA4QQCCTAoTfmVw2Bo1ArgT0IY+79uwtX/zy13Iz77f/5zVZOPdK+ebQU+XQo4Zlft7L/+0W+f3LG+WcS6bJzl26ZX4+TACBPAsQfoetPjW/RQp1vFf84lnp3fPz8v0zvi0bXnzVhN8NDZ1k2473zUMv9Xv6OmD/fT6tAf63sAWgNQIIIOAKaDC84KZ5Mm3GzETC4aR1dXzPr1srl02aIg0NDbG6LxV+P7durUyd3GT61HB85qw50q2xseQ59Pjly+4vGsv2bdukaeJ42bLlDdPOdXTf8/vXMW15/XUZe+G4VufTALzPnnvKiSNPjjVfGiGAAAK+AOE31wQC2RbQYHjV0jvkexf8ayrDYQ1xl9x6rZzxw0uk5xf2ioUdFX7/9eOP5O4Fc+R3G58v9Okb+McMPf2cQpD8wXvb5Y5rp8q7b2817QcOOVZG/NN5kePzj7UHaSDvhrl63N0LZsvws0a3mquGv2uffNQ09dv5J7Xj1tDbD/yjzlHt+Ox5ajnejkXbnjl6vHymU2exwfxfPnhPvtT/oML39RidZ49efSID+3LvxbowaIQAAh0iQPgdxl7X4XcYTXWtKXtSnRNHIYBAZYGWlha5Ye415sCdPrdTZBBbuZe2PSIk/PaDaR2pDac3b94ks5pnyMRJk6Vv335S6TxqdXXzdBkx8uTCLwns9w4aMNAE1VF96jn1Pe3f/lnHNffa2TLukgmRYXul99tWnN4RQKAeBQi/63FVmVNeBDSYXPbz+Wa6nT/7uZLhbUd6hITfUSGtDbj1vcdWLJFvn/p9E8i+8pv/knsX3iCjxl1hgmcb2mp47O+c9t8rd2wpOw3k33lrizF3Q/bP7dylMAbbVo/V8dnw2P/aP4ceq8fY4/X9Sufw+3DHV836Rx3vntMNuTXE3v/AwSaYd/+sa/3kw/fLyO+OMWviv3TNHrhznpz0vbHs/q5mUTgGgZQKEH6HLQzhd5ifEH4HAtIcAQQKAhrW3rNksQwfMVLuuG2BTJo8tRDG6u7jd975g7z15ptmV3OXrl1l8hXTZMniRbJ2zWrz9YyZs0xwrK9yO6C1L33ZXc7uDuqWDz80O6ePOvoYWfbAffLejh0ycNBgs7v6zTe3yuSmieZ7+nJ3T9vxldoRboP90844S17YsN601ZfOxYbR7s5rP7j2LxN9f/6N1xcZ+d/zw3Ad46GHHW7Ccp3zs08/ZQzcILzU5ei25ZJFAAEEQgUIv0MFaY9AxwnYsHHwN4fKow/cKWeOnlAIFTXM3Pjc02Zwr7/6kvmvBscvrl9d2IHs75R2dye7O6H9sFbP+9DiBeZ8+tId1Ace8k155pcrxN0NrO+V2p2t59rxp3eLAl5X0gb7Q44/WTa/vNHsltaX7tSOKgNig3Ld3a2hbLnw1z9W+9Xx6KvU7m93bKV2eJf6vt+3htu6W79UCZByO6TL7S63Y6zmmGrmY8ehx9rwXv+sv3DRddFfMqizvnRN3CC81E9FNcd03E8UZ0YAgWoECL+rUSp9DOF3mB/hd6AfzRFA4FMBG8Ied/zQVrua/drT+vVTTz1ZCLzdQDtqB7SG1uP/5XIT/FYTfvfafXcTeOtLd1jb3dSldmRXCr/d3dNPPPF4q5rf/phseD/6R2Mjy7+44bUV1O9pyRi3XIrbrxty2z8fccSRZXd9277LlUXhGkYAAQRqFSD8rlWM4xFIj4ANHgccfrQJmd0yGfrer1bdW9iF7JdHKbcbWWeo/XXtvqsJg6sJvxt37WmCbNvW7rgutfO7Uvjt7hL+73VPV6z57Z/HDfJ1TP6ObNejV5+9S5YriVrtUsF6qdDZlgn58kGHGM9y4bYb+keViakm2E5i17cb2PvrH7Xze5eujWV3fVvHWseWnp82RoIAAlaA8DvsWiD8DvMj/A70ozkCCHwi4O6Mjir74YfDfgjtfq07tN0SItq/276a8NsNnd2a15XKkZRbT+1n1cqHzCF+TXO/rnal8Dtqt3ZUDXB3rlE1vzWI19dXDziwsKvd7nR3a5pHhe1cuwgggEBcAcLvuHK0Q6BjBfyQtFJpDX+3sft154bPmrDbLRHivq/hs1u2I2rnt91xrSpuuBtS9sQNsMvVNC9VxsT/ZcCaJx4u7La249Lxvvv2/5St+e2udLnwudR7dnwf/uUD2bL5d2VrflcqDVIp/K70vn/VRh3vB9RRv/zQh3G6u/z//d6fmlIo+rrzxh+b/0bVUdfrSP/1QTU77Dv2J4yzI4BAKQHC77Brg/A7zI/wO9CP5ggg8ImAH9z6ZT9qDb/9kiDuzuWOCr/tWtuHeurXGrJr2ZNad36XCr/L7fz2rzV3N/qin/+sUBIl6gGXhN/8pCKAQJIChN9JatIXAu0n4NeF9kNmP7CsJvx2w2I34O6o8Ntq2l3a+rX70Er92gbLdpe6+z13Pm6pE3+nd1QfpVayXHmUcmVP3IdA6nzcIN49V2j4XUv5Fj1v1PH+rnk7Pv/hlvb7tvzOt08bJf9+z0JTEqV7j16t/jWCHk/43X5/R3AmBNpKgPA7TJbwO8yP8DvQj+YIIPCJgLsr2jUpFQ5ncee3nZeOXWt+N3bvbmqcXzjuUnnk4VVSS83vqDC6Us1v/1orVWamVLBua4RzzSKAAAKhAoTfoYK0R6BjBEoFlDYcjhN+p23nt5XVuWjNb7+0RrnQ2i8t4gbT2q+tWb5zl27mNJUeQqnHVNrFHhV+2zH6v1hYcuu1csYPLzF1s91XSNmTSuPzr9Rqj69kY8ug+L9UiKrvTfjdMX9fcFYEkhQg/A7TJPwO8yP8DvSjOQIIfPpwSr++tbsb/PYFNxsq+5DKcuG3Hqd1unv02M0cr6GwW/PbbWuP1f9qjW/7wMtSZU+i6mpr22pqfuvu6nNHn2+Cbg2/9WGXNvD2d7pXKq8S9cDLqFrnfvkXe725u767NTaa8duHYUbt/OaBl/ykIoBAkgKE30lq0hcC7SMQ9cBGPbO7G3zdU/9RVKqk3M5vDYDd3ci2DIrdTe231VDz9y9vNCVE9KUPvCxV9qTUWKup+f3YiiXy7VO/LzoXDb/1YZfvvLXFlMzwS5348jrmexfeUFTz3JZu+ajlQzPmQUccb+qk+yG6HbN93/ZdaVd1uZ3f7sM9y+381nPFfeBlufFFeVeaj513ufDb7voe+d0x5nD7MMxSO7954GX7/B3BWRBoSwHC7zBdwu8wP8LvQD+aI4DAJyVP/HId6qIBbfOMaTLmgotk1UPLDVU14bfWqnbrW2s7t8a2DYnXrlktXbp2lZEnnSIv/mZjVeG321YDbPtwyUrht9vOrvnQYcML89HvqcPUyU3mbbfvqGvE9jdi5MlFD8QsN2+3Hz/Mdtv5Nb/9oJxrFgEEEAgVIPwOFaQ9Au0v4IfRdgRu+Lr55Y01hd/ah7ub3K/X7L539In/JL/b+JycOXqCOXW58Fvfd8uW2NrdlcJvG0j/buPzBWB3TPYhklp32n25x7jn1fBcw3q709tv77aLCr9Lmeu5o8bqlgjx3/fH4l9Bfkmbas5Rbnx2bd0AvtLx7phKhd9Ru9RdV/8aqlTSpf1/kjgjAgjEESD8jqP2aRvC7zA/wu9AP5ojgED+BGzZk4MHDAyafNQDLoM6LNE4aid4W5yHPhFAID8ChN/5WWtmikBWBWzZEy3LkodXVKmUeph3uR3t9TA/5oBAXgQIv8NWmvA7zI/wO9CP5gggkD+BpMJvldNg+oUN6ws70JPWbOv+kx4v/SGAQDYECL+zsU6MEoE8C+Qt/Na1tjuovzn0VFOaJesvt1SO3X2f9TkxfgTyKkD4HbbyhN9hfoTfgX40RwABBBBAAAEE8iZA+J23FWe+CCCAAAIIIIBAfAHC7/h22pLwO8yP8DvQj+YIIIAAAggggEDeBAi/87bizBcBBBBAAAEEEIgvQPgd347wO8zOtG75WwKd0AUCCCCAAAIIIIBAbgQIv3Oz1EwUAQQQQAABBBAIFiD8DiNk53eYH+F3oB/NEUAAAQQQQACBvAkQfudtxZkvAggggAACCCAQX4DwO76dtiT8DvMj/A70ozkCCNSPwMLbb5VvHvUt6du3X9CkWlpa5Orm6aaPyyZNkYaGhqD+ohrzIMvESekQAQRqECD8rgGLQxFAoG4FHn3gLjlg0Dek5xf2CprjXz/+SO5eMMf0cebo8fKZTp2D+otqzMMjEyelQwQQqEGA8LsGrIhDCb/D/Ai/A/1ojgAC8QQ0vF218qFC44GDBgcFxdqfvsZeOC7egESkVPj94LL7ZcFN80y/1YxTj9/y+utFY3lu3VqZOrnJ9NGnzx4yc9Yc6dbYaL7evHmTTG6aKO/t2NGqf51Xnz33lBNHntxqXuXei41AQwQQQKAKAcLvKpA4BAEEEhXQ8Hbtk48W+vxS/4OCgmLtT18j/um82OMsFX4/+9hKWbX0DtNvNePU4995a0vRWF75zX/JnTf+2PSxa8/ecs4l02TnLt3M12//z2uycO6V8pcP3mvVv86rR68+cuhRw1rNq9x7sRFoiAACCFQhQPhdBVKZQwi/w/wIvwP9aI4AArUJlNoVrYGxhsIHDxhYW4d/Pzok/HbDZ+2uS9euMmPmLLMDXENrDb5tWF3pPNu3bZPmGdNkzAUXFXaQa/+zmmfIxEmTzfd0rs+vW1sI+7XPQw873Mzd/bO2u2fJYrlw3KWRu8f1XHOvnS3jLplQCNJj4dEIAQQQqFGA8LtGMA5HAIHYAqV2RWtgrKHwF7/8tVh9h4TfbvisJ//czl1k1LgrzA5wDa01+LZhdaXzfPDedrl7wWwZftbowg5y7X/JrdfKGT+8xHxP56r92l3h2uf+Bw42c3f/rO2efPh+GfndMZG7x/VcD9w5T0763thCkB4Lj0YIIIBAjQKE3zWCeYcTfof5EX4H+tEcAQRqE/DD5KjWbhjtBtF6rLsLW7+eNmOm6cLuqtY/293ZLR9+KE0Tx8vQ4SMid07rsW6A/MD995qyJy9sWF8I4v3d1ZXGr+8vX3Z/0S52fye4G4bvvntvuWHuNXLaGWcVgnEdl+70doPwUsrVHFPbCnE0AgggUFmA8LuyEUcggEAyAn6YHNWrG0a7QbQe6+7C1q+/d8G/mi7srmr9s92d/VHLh3LHtVNl0BHHR+6c1mPdAPmZX64wZU82v7yxEMT7u6srjV/f1zG65U78neBuGN69Ry9Z9vP5MuT4kwvBuI5Ld3q7QXgp/WqOSWbl6AUBBBD4VIDwO+xqIPwO8yP8DvSjOQII1CZQzc5pDaxH/2is2QmtYfKcn1xldmLra/6N18ukyVPNTmcNkTe9+oocfcxxJijWl1v2RIPtSuG3u7t68aKfF9X8trvUDxowsBCe+7u4/dlr0K0vt0yJPzY7LjvHqJ3fjd27l931bc8bVWKlthXhaAQQQKB2AcLv2s1ogQAC8QSq2TmtgfXQ088xO6E1TL534Q1mJ7a+Hlq8QM4cPcHsdNYQ+c03NsvXDj3SBMX6csueaLBdKfx2d1c/vvKeoprfdpe6jsOWHfF3cfsKGnTryy1T4o/NjsvOMWrn9y5dG8vu+rbnjSqxEm9laIUAAghUL0D4Xb1V1JGE32F+hN+BfjRHAIHaBCrVqfZ3VrsBtJZFsUG4/1DKSqF6qVHa/teuWV1U7kSPt++NGHlyoRxLpfA7aie2P2c//I6q+X37gptNKRR92V3tQ4cNb1XTXL2effqpoFrnta0gRyOAAAIihN9cBQgg0F4ClepU+zur3QBay6LYINx/KGWlUL3U/Gz/v9v4fFG5Ez3evqdBti3HUin8jtqJ7c/ZD7+jan7/+70/NaVQ9GV3tQ8ccmyrmubq9eL61UG1zttr7TkPAgjUjwDhd9haEn6H+RF+B/rRHAEEahOoFFJHlQ1xw2O37In74MhK/VYzSvchnFpO5cv9vyJXN0+XWnZ+lwq/9fx2V7offvtjs7vRR583RhbcMt+URNHyKDoWN4jXdoTf1awsxyCAQNIChN9Ji9IfAgiUEqgUUkeVDXHDY7fsifvgyEr9VrMi7kM4tZzKXl/cX+5eMMcE39Xu/C4Vfuv57a50P/z2x2Z3o3/7tFHy7/csNCVRtDyKjsUN4rUd4Xc1K8sxCCCQtADhd5go4XeYH+F3oB/NEUCgNoFqama7D5iMKj1iz+gG3kmE3wtvv9WUPdn2pz8VdlPXWvM7quxJuZrf/g52nZsN0Pv126fo4ZlRwTrhd23XH0cjgEAyAoTfyTjSCwIIVBaopma2+4DJqNIj9ixu4J1E+P3oA3eZsifv79hW2E1da83vqLIn5Wp++zvYdW42QO/VZ++ih2dGBeuE35WvOY5AAIHkBQi/w0wJv8P8CL8D/WiOAAK1CdgwW1tdNmmKNDQ0mA40INad3Br4unW63ZrfGkrrS2uB25BY/6s7qrX98+vWFvVZbc3vXz32Sxl17g/Fht+rHlouffbc09Tt9sP6SiF71M51v1RK1FitoluDXL9nH4ZZauc3D7ys7frjaAQQSEaA8DsZR3pBAIHKAjbM1iP9h0LqTm4NfN063W7Nbw2l9WVLkLiBtwbMeqzbZ7U1vzes+U859qTviA2/Vz/xsPTo1cfssvbD+kohe9TOdb9UStRYrZxbg1y/Zx+GWWrnNw+8rHzNcQQCCCQvQPgdZkr4HeZH+B3oR3MEEIgn4JYY0R4GDhpcCK7dGthdunY1D7vUHdLu9/02NujesuWNQl8tH35Y8YGXbjs7E30QpfvASrfUijvOqJlrf80zpsmYCy4yY7YvDcVt7W63XIvbh/5iwIbdtq07Z7/mt55r7rWzZdwlE8wDQHkhgAAC7SVA+N1e0pwHAQSsgFtiRL/3pf4HFYJrtwb253buYh52qTuk3e/7bWzQ/e7bWwt9fdTyYcUHXrrt7Nj0QZTuAyvdUivuOKNWU/u7e8FsGX7WaDNm+9JQ3Nbudsu1uH3oLwZs2G3bunP2a37ruR64c56c9L2x5gGgvBBAAIH2EiD8DpMm/A7zI/wO9KM5AgjUj4Dd+R1ViqSWWfplTmppW8uxlR4eWktfHIsAAgjUIkD4XYsWxyKAQL0K2J3fUaVIapmzX+aklra1HFvp4aG19MWxCCCAQC0ChN+1aLU+lvA7zI/wO9CP5gggUD8CSYXfpUq7JCmlwfcLG9bLzFlz2PWdJCx9IYBAVQKE31UxcRACCNS5QFLhd6nSLknyafD9+5c3yjmXTGPXd5Kw9IUAAlUJEH5XxVTyIMLvMD/C70A/miOAAAIIIIAAAnkTIPzO24ozXwQQQAABBBBAIL4A4Xd8O21J+B3mR/gd6EdzBBBAAAEEEEAgbwKE33lbceaLAAIIIIAAAgjEFyD8jm9H+B1mZ1q3/C2BTugCAQQQQAABBBBAIDcChN+5WWomigACCCCAAAIIBAsQfocRsvM7zI/wO9CP5ggggAACCCCAQN4ECL/ztuLMFwEEEEAAAQQQiC9A+B3fTlsSfof5EX4H+tEcAQQQQAABBBDImwDhd95WnPkigAACCCCAAALxBQi/49sRfofZmdaUPUkAkS4QQAABBBBAAIEcCRB+52ixmSoCCCCAAAIIIBAoQPgdBsjO7zA/wu9AP5ojgAACCCCAAAJ5EyD8ztuKM18EEEAAAQQQQCC+AOF3fDttSfgd5kf4HehHcwQQQAABBBBAIG8ChN95W3HmiwACCCCAAAIIxBcg/I5vR/gdZmdaU/YkAUS6QAABBBBAAAEEciRA+J2jxWaqCCCAAAIIIIBAoADhdxggO7/D/Ai/A/1ojgACCCCAAAII5E2A8DtvK858EUAAAQQQQACB+AKE3/HttCXhd5gf4XegH80RQAABBBBAAIG8CRB+523FmS8CCCCAAAIIIBBfgPA7vh3hd5idaU3ZkwQQ6QIBBBBAAAEEEMiRAOF3jhabqSKAAAIIIIAAAoEChN9hgOz8DvMj/A70ozkCCCCAAAIIIJA3AcLvvK0480UAAQQQQAABBOILEH7Ht9OWhN9hfoTfgX40RwABBBBAAAEE8iZA+J23FWe+CCCAAAIIIIBAfAHC7/h2hN9hdqY1ZU8SQKQLBBBAAAEEEEAgRwKE3zlabKaKAAIIIIAAAggEChB+hwGy8zvMj/A70I/mCCCAAAIIIIBA3gQIv/O24swXAQQQQAABBBCIL0BGPJ6jAAAgAElEQVT4Hd9OWxJ+h/nRGgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCCFAoTfKVwUhoQAAggggAACCCCAAAIIIIAAAggggAACCCAQJkD4HeZHawQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEUChB+p3BRGBICCCCQZYGWlo/litm3y6EH95dThg3J8lQYOwIIIIAAAggggAACCCCAAAIIZFiA8DvDi8fQEUAAgbYW2LbjfRl7+XWy4cVXi041feIPSgbbhN9tvSr0jwACCCCAAAIIpFvgmluWym2LVkQO8oRjDpUrJ5wrDQ2d0j0JRocAAgggUBcChN91sYxMAgEEEGgbARt+X/qj02XQgf9Y1UkIv6ti4iAEEEAAAQQQQCAXAhqE6+vS807PxXyZJAIIIIBAugQIv9O1HowGAQQQSJVAufD7vpVPypRZtxXGu3Du5SYg98Nvf/e4u9vHf8/2kSoEBoMAAggggAACCCAQW8APv/Uz5LPPbZRddvqcLF72S/nB2SfI3n16me/ZHeGbXtsqP5m/WJqbRktj113Mud3Pnuwej70cNEQAAQRyJ0D4nbslZ8IIIIBA9QKlwm8NuO9Z8Ss57YRvmn+yqjcjS5c/LvOuulg+27lzUc1vveHRGxpb//uu+34hw44+xAxCS6qcPuJI817UTU71I+VIBBBAAAEEEEAAgTQKRIXfuoHC3fRgA/FS4bf7WVPDcP/zZRrnzZgQQAABBNIhQPidjnVgFAgggEAqBaJqfkfttNHgetJVt0rz5T+U3j13LYTfw751iPlzr90+3+qfuq5Z/1u55qalJjDXmxi7Y1zD8GpLrKQSjUEhgAACCCCAAAIIFARK7fx2636XC7/9jRXasX6O1I0X1A7nQkMAAQQQqCRA+F1JiPcRQACBHAuUK3uigff5E+fI1rf/aIR69/y83DxrfFH4rTu6/QDdPixTb1pGjbuqlS6lT3J8wTF1BBBAAAEEEKg7gaTC7xW/eLbIhtIndXepMCEEEECgTQQIv9uElU4RQACB+hAoFX7b4Lt50mizS7vUzm9b6sRquMf9cft77Nipj8uEWSCAAAIIIIAAAiUFkgq/+deBXGQIIIAAAnEECL/jqNEGAQQQyIlAufDbljnpt1dv809PJzUvaLXzW8ueuLXB3fC7sdsuRTW/lVT70RdlT3JygTFNBBBAAAEEEKh7gWrCb78cnrZZ8/xvC+Xx/Jrf/vNn6h6RCSKAAAIIxBYg/I5NR0MEEECg/gXKlT3Rm5LbFq0wCF/dv5/5r1/zW3d+u8fpMW5ZE78kygH771O4yal/XWaIAAIIIIAAAgjUv0A14bcquJ8Zmy78jjy15gVpbhptng2jLw3A9UGZ9mVL6dW/IDNEAAEEEAgRIPwO0aMtAggggAACCCCAAAIIIIAAAggggAACCCCAQCoFCL9TuSwMCgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBEgPA7RI+2CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAqkUIPxO5bIwKAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEQAcLvED3aIoAAAggggAACCCCAAAIIIIAAAggggAACCKRSgPA7lcvCoBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRCBAi/Q/RoiwACCCCAAAIIIIAAAggggAACCCCAAAIIIJBKAcLvVC4Lg0IAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIESD8DtGjLQIIIIAAAggggAACCCCAAAIIIIAAAggggEAqBQi/U7ksDAoBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgRIDwO0SPtggggAACCCCAAAIIIIAAAggggAACCCCAAAKpFCD8TuWyMCgEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBEAHC7xA92iKAAAIIIIAAAggggAACCCCAAAIIIIAAAgikUoDwO5XLwqAQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEQgQIv0P0aIsAAggggAACCCCAAAIIIIAAAggggAACCCCQSgHC71Quy/9v7/5j7ajqBIAf6loKFGqtLbWALRRZiBHQlaXuhqhJ/9jYNesSm2U1WRFEBDfB8KNbm2A2kJSmSgP/IL8XNxuD1pgYUtQEFGNcS3AJsktqkELLj1JaS3lAoRSpm3PNPKfD3Dt37szc9+6dz/sH+t7MOWc+53vPnPnec8/VKAIECBAgQIAAAQIECBAgQIAAAQIECBCoIiD5XUXPuQQIECBAgAABAgQIECBAgAABAgQIECAwLQUkv6dlt2gUAQIECBAgQIDAOAjsnXglXLr6hnD5l1eGs844dcou6Qf3/iJsfvixcM2VF4RZs2ZOWTtUTIAAAQIECBAgQGCYApLfw9RWFwECBAgQIECAwJQLbLh1Y7jjO5sOaceFn10RLv/Sytrblk1+xyT0xnseCDet+2qYO+fonvU99Jvfhg03b+zr2KKGS34XCfk7AQIECBAgQIDAOApIfo9jr7omAgQIECBAgACBrgIx+b1z157JVdBJgvqsD51aewK8yspvyW9BTIAAAQIECBAgQKCagOR3NT9nEyBAgAABAgQIjJhANvkdm59ekf2zXz7S2SLk75f/Tbhk9YbO1d114+rOtiVPbt8RLl51fdjxwp7O7/NWjOetLE/Oz1uBnS3z9NOWhn/7ynnhqmtvnqwnW1cs5+r1d0zKJ+Unv8iWGX+/Yvky256MWKxqLgECBAgQIECAQDUBye9qfs4mQIAAAQIECBAYMYF+kt8xsZxNbMeE8pp1t4e1q78YTlq8KOzffyB8/Zt3hoUL5k2uGO+2qjzZ8zub/E6S1GvXXDS5J/hPHngovP/E48Kel17O3fakqIy8Mm17MmJBqrkECBAgQIAAAQK1CEh+18KoEAIECBAgQIAAgVERyCaok2TxJZ//dDj3k+d0VoHnfTlkPG/J8Qs7xyQ/6a1J9r70yiHJ8XhM3p7f6bJjmfEnb7/xvG1PYnlrrrstXHXJeZ0EfPKTLievTMnvUYlO7SRAgAABAgQIEKhTQPK7Tk1lESBAgAABAgQITHuBvG1Jrl114WRSOy9RnKzy3nTf5rddX9ymJH6B5RPbnnvbSu1eye9YUFw5vvJTH59c9Z0uPC/5nbedSXJOXKl+6b/8Q6fMZR/+wCFJesnvaR+WGkiAAAECBAgQINCAgOR3A6iKJECAAAECBAgQmL4CeduepFvbK/mdTSpnk9Ub73ngkH21m0h+p7deySonSfpsQl3ye/rGo5YRIECAAAECBAg0JyD53ZytkgkQIECAAAECBKahwCDJ73gZvbYoiX/vtk3JpatvCN32/O5VZlzl/Y1v3R3Wfu2iMHfO0R3JbDK9W/Lbyu9pGHiaRIAAAQIECBAgMHQBye+hk6uQAAECBAgQIEBgKgUGTX7H5Pb5l60L6S1SYjL6P7774852I/Enu+VIssXKXTeu7mxtkl2BnZSZ/D2WkXzhZfz/i1ddH9Jfhpkk4X90/+Zwy/orJvf9juU889zuzlYn2SR8slXKhz74/kNWpU9lH6ibAAECBAgQIECAwDAEJL+HoawOAgQIECBAgACBaSMwaPI7XkDentvZZHhc6f3olq2d693w718Jd333x11XfsdjkgR4ApTsIR5Xe8dk+dXr7+j8Ke7pnXwxZvr38W+Ljp13SDI8/fcVy5eFWGZs0zVXXhBmzZo5bfpCQwgQIECAAAECBAg0KSD53aSusgkQIECAAAECBAgQIECAAAECBAgQIEBgSgQkv6eEXaUECBAgQIAAAQIECBAgQIAAAQIECBAg0KSA5HeTusomQIAAAQIECBAgQIAAAQIECBAgQIAAgSkRkPyeEnaVEiBAgAABAgQIECBAgAABAgQIECBAgECTApLfTeoqmwABAgQIECBAgAABAgQIECBAgAABAgSmREDye0rYVUqAAAECBAgQIECAAAECBAgQIECAAAECTQpIfjepq2wCBAgQIECAAAECBAgQIECAAAECBAgQmBIBye8pYVcpAQIECBAgQIAAAQIECBAgQIAAAQIECDQpIPndpK6yCRAgQIAAAQIECBAgQIAAAQIECBAgQGBKBCS/p4RdpQQIECBAgAABAgQIECBAgAABAgQIECDQpIDkd5O6yiZAgAABAgQIECBAgAABAgQIECBAgACBKRGQ/J4SdpUSIECAAAECBAgQIECAAAECBAgQIECAQJMCkt9N6iqbAAECBAgQIECAAAECBAgQIECAAAECBKZEQPJ7SthVSoAAAQIECBAgQIAAAQIECBAgQIAAAQJNCkh+N6mrbAIECBAgQIAAAQIECBAgQIAAAQIECBCYEgHJ74bZf3DvL8Lmhx8L11x5QZg1a2ZjtVWpZ8OtGzvtuvxLK9/Wvr0Tr4RLV98QLv/yynDWGac21n4FEyBAgAABAgQIECBAgAABAgQIECBAoE4Bye8Kmkli+NEtW3NLuXbVhZ3ftzH5nbW568bVPZPnZY+v0G1OJUCAAAECBAgQIECAAAECBAgQIECgBQKS3zV1crcV0lVWZJdpWpV66l75vX//gfD1b94Zln34A+HcT54Tnty+I6xZd3tYu/qL4aTFi952WWWPL+PiWAIECBAgQIAAAQIECBAgQIAAAQIE2ikg+V1Tvxclv48+6shw9w9/2qktWQWdnLNi+bLw7e/9uPO3W9ZfERYd+55O8njTfZs7v4sryGMSOf7ERPLFq64PO17Y0/n3hZ9d0dmuJEl+59UTj+u1sjqb/M7WkW5z/P94/M5de7pu5RLP/8a37g5rv3ZRmDvn6JBNbmfJyx5fU5cphgABAgQIECBAgAABAgQIECBAgACBMRaQ/K6pc3slv69ef8dkwvuh3/w2bLh5Y7hp3Vc7Ncf9tE84bv5kIjlJFC9cMK+T1I7lrrnutnDVJedNJsVXfurjnS1E4rHf3/Tz8JkVHwv3/vTB0K2eIw4//G0rsWMCfe2aizrlpJPfyXXEOmLCPe+6ipLf6WuMye8kYR7/m7eveNnja+oyxRAgQIAAAQIECBAgQIAAAQIECBAgMMYCkt81dW7Ryu/kCy/Tq5yT5Hf6yyTztgiJyeYlxy8Mn/jbMzvJ8iQxnW56dtuTdD17X3rlbduOpBPe6f/PJqIH+cLLWMbGex44ZGV4r61Vyh5fU5cphgABAgQIECBAgAABAgQIECBAgACBMRaQ/K6pc+tMfqe3NUmal2x9kt2SJNlCpSj5nd6GJJYZj9/27M7OSuxs8juduB40+Z2sbrfyu6YAUwwBAgQIECBAgAABAgQIECBAgAABAqUEJL9LcXU/uM7kdzZR3a3W9Crtn/3ykbD54ccmV1tP5crvsnt4lz2+pi5TDAECBAgQIECAAAECBAgQIECAAAECYywg+V1T59aV/M7u+R2bF5PDv3vqufDXHzo13Hv/g+Fz5y7vtLrf5Hey53eyj3iyerzXnt/JViyxjvMvWze5Z3mst2jP7+wXXGa3csnuK150fE1dpBgCBAgQIECAAAECBAgQIECAAAECBFokIPldU2fXlfyOzUmSwZvu29xp3aJj54Vb1l8x+YWX2d+ftHhRZxuTbiu/49YjSfse3bK1U2ayXUqSzI7/Tb6MMkl4x9+tWL4sPPPc7pDel7wo+R3P61VfNvlddHxNXaQYAgQIECBAgAABAgQIECBAgAABAgRaJCD53aLOdqkECBAgQIAAAQIECBAgQIAAAQIECBBoi4Dkd1t62nUSIECAAAECBAgQIECAAAECBAgQIECgRQKS3y3qbJdKgAABAgQIECBAgAABAgQIECBAgACBtghIfrelp10nAQIECBAgQIAAAQIECBAgQIAAAQIEWiQg+d2iznapBAgQIECAAAECBAgQIECAAAECBAgQaIuA5Hdbetp1EiBAgAABAgQIECBAgAABAgQIECBAoEUCkt8t6myXSoAAAQIECBAgQIAAAQIECBAgQIAAgbYISH63paddJwECBAgQIECAAAECBAgQIECAAAECBFokIPndYGe//Or+sO/1N8KBN9/q1DLzne8IRx1xeDhm9qwGa1U0AQIECBAgQIAAAQIECBAgQIAAAQIECEh+1xwDBw/+MTyzc2/YsWsizJgxI8w+cmaYOfMvOrW8eeCt8Mprb4SDBw+GRQvmhBMWzg0zZhxWcwsUR4AAAQIECBAgQIAAAQIECBAgQIAAAQKS3zXGwJ6X9oXHt+0Kc2YfEY6dP6eT+M77efW1A+GF3RNh4tXXwylLFoR57zqqxlYoigABAgQIECBAgAABAgQIECBAgAABAgQkv2uKged3T4StT/8+LF08P7x7Tn/J7Bcn9oWt23eHpe97T3jv/Dk1tUQxBAgQIECAAAECBAgQIECAAAECBAgQICD5XUMMxBXfW7buDKedvKjrau9u1cRV4Fue2BFOW7rQCvAa+kIRBAgQIECAAAECBAgQIECAAAECBAgQiAKS3xXjIO7x/eCj28KS4+f1veI7W2VcAb7t2T3h7NOX2AO8Yn84nQABAgQIECBAgAABAgQIECBAgAABApLfNcTA9h0vhn2vHehsd1LlJ25/ctSRM8PiRe+uUoxzCRAgQIAAAQIECBAgQIAAAQIECBAgQMDK7+ox8KtHngqnnLiw9HYn2Zrj9iePP7UzfPTME6s3SgkECBAgQIAAAQIECBAgQIAAAQIECBBouYBtTyoEwMuv7g9bnnwhnHna8RVK+fOp//N/T4c33ngzhMNqKU4hBAgQIECAAAECBAgQIECAAAECBAhMU4FPnH3KNG3Z+DRL8rtCXz6/eyLsnXi98pYnSRN+t31XmDN7Vlgw75gKrXIqAQIECBAgQIAAAQIECBAgQIAAAQLTXeC/H94aJMCb7SXJ7wq+cb/vA394K7zvvfXs0/308y+GGYcdFo5fOLdCq5xKgAABAgQIECBAgAABAgQIECBAgMB0F5D8br6HJL8rGEt+V8BzKgECBAgQIECAAAECBAgQIECAAIEWC0h+N9/5kt8VjOO2Jy9OvBZOXrygQil/PvWJ7bvDMbMPt+1JLZoKIUCAAAECBAgQIECAAAECBAgQIDB9BSS/m+8bye8Kxr7wsgKeUwkQIECAAAECBAgQIECAAAECBAi0XMCe380GgOR3Rd9fPfJUOOXEhWH2kTMrlfTqawfC40/tDB8988RK5TiZAAECBAgQIECAAAECBAgQIECAAAECBEKQ/K4YBXHf732vHQhLF8+vVNLW7bvDUUfODIsX1fPlmZUa42QCBAgQIECAAAECBAgQIECAAAECBAiMuIDkd8UOPHjwj+HBR7eFJcfPC++ec9RApb04sS9se3ZPOPv0JWHGjMMGKsNJBAgQIECAAAECBAgQIECAAAECBAgQIPBnAcnvGqJhz0v7wpatO8NpJy8qvf1J3O5kyxM7wmlLF4Z57xoseV7DJSiCAAECBAgQIECAAAECBAgQIECAAAECYyUg+V1Tdz6/eyJsffr3ne1P+l0BHld8x+1Olr7vPeG98+fU1BLFECBAgAABAgQIECBAgAABAgQIECBAgIDkd40xEFeAP75tV5gz+4hw7Pw5XVeBx9XeL+yeCBOvvh5OWbLAiu8a+0BRBAgQIECAAAECBAgQIECAAAECBAgQiAKS3zXHQdwD/Jmde8OOXRNhxowZ4egjDw/vnPmOTi0HDvwhxMT3wYMHw6IFc8IJC+fa47tmf8URIECAAAECBAgQIECAAAECBAgQIEBA8rvhGHj51f1h3+tvhANvvtWpaeY73xGOOuLwcMzsWQ3XrHgCBAgQIECAAAECBAgQIECAAAECBAi0W8DK73b3v6snQIAAAQIECBAgQIAAAQIECBAgQIDAWApIfo9lt7ooAgQIECBAgAABAgQIECBAgAABAgQItFtA8rvd/e/qCRAgQIAAAQIECBAgQIAAAQIECBAgMJYCkt9j2a0uigABAgQIECBAgAABAgQIECBAgAABAu0WkPweQv9/5CMfCb/+9a+HUNP0rYJBCG03aPv1x1dn2w3afv1iwGtADIgBMfCnuWrb7wdtv34x4DUgBsSAGBADYkAMDDODKfk9BG0TXC9qA7sYEANiQAyIATEgBsSA5LcYEANiQAyIATEgBsSAGBhCMjZVheT3ELwlvz3sGtjEgBgQA2JADIgBMSAGPOyKATEgBsSAGBADYkAMiIEhJGMlv4eLLPntYdfAJgbEgBgQA2JADIgBMeBhVwyIATEgBsSAGBADYkAMDDcva+X3ELwlvz3sGtjEgBgQA2JADIgBMSAGPOyKATEgBsSAGBADYkAMiIEhJGNTVUh+D8Fb8tvDroFNDIgBMSAGxIAYEANiwMOuGBADYkAMiAExIAbEgBgYQjJW8nu4yJLfHnYNbGJADIgBMSAGxIAYEAMedsWAGBADYkAMiAExIAbEwHDzslZ+D9dbbQQIECBAgAABAgQIECBAgAABAgQIECAwBAHJ7yEgq4IAAQIECBAgQIAAAQIECBAgQIAAAQIEhisg+T1cb7URIECAAAECBAgQIECAAAECBAgQIECAwBAEJL+HgKwKAgQIECBAgAABAgQIECBAgAABAgQIEBiugOT3cL3VRoAAAQIECBAgQIAAAQIECBAgQIAAAQJDEJD8HgKyKggQIECAAAECBAgQIECAAAECBAgQIEBguAKS38P1VhsBAgQIECBAgAABAgQIECBAgAABAgQIDEFA8rsm5B/c+4tw9fo7OqWtWL4sXHPlBWHWrJldSy97fE3NrK2Y/fsPhK9/886w6b7NnTKvXXVhOPeT53Qtv9fxeydeCZeuviE8umXr5PmLjp0Xbll/RThp8aLa2tx0QYP06ZPbd4RvfOvusPZrF4W5c45uuom1ll82BpLKo9O2Z3eGy7+08pD2bLh1Y7jjO5sO+V1RXNV6QTUU9tBvfhvOv2xdp6TTT1sablr31a79Gvv+4lXXhx0v7Onr+Bqa10gRZeI+28fZ/m1bDGTHvqKYaaQDayi0TAxk4z57v2xbDKT5E5tLPv/pnvfTGrqs9iLKxEC68mTMvOvG1eGsM07t/CldVnLshZ9d8bZ7Ru0XUWOB2dd2+vryqmlb3BfN+9oYAzEuyswhagzX2ooapP3p2E+/zrP3in7mVbVdSE0FlZkn570mRvGay4x9ea/zeM3J3LBtMRCvPes3ave+vGsouv9l+zn9bCAGinMsNQ1XtRZTZhyIFWf7OR0zRfOFWhvecGFl8j6DzqsbvoSRL17yu4YujJO9DTdvnEx0xYlc/Mkm95Kqyh5fQxNrLyJ9jcmgdPmXV04+vGYr7HV8P+fXfgE1F1i2T9MD+agmvMrGQPqhKG8yV/S6qbnLai8u3tDWrLs9rF39xc6bNvGmtfnhx7q+ERY9nnlu92SSK17/zl17Ct84q73hFQosE/fxIfCm//xh+MI//V3nDYFkorN2zUWT40bbY6AoZip0VWOnlomB2Ih4jSccN79rn7ctBpKOSU/8R/FNvzJzoPRcKHmzMJv87jV2NhbMNRWcJLyWffgDnfE9e2/Iq6ZtcV807xvFsTDdr4PEQHYsrSkch1ZM2TlQbFivuO/ndTO0ixuworLz5Gw13RaLDNicxk8bJO7TjYrjwprrbgtXXXJeZx7dthjI+mX/3XgH1lBB2RjI3guy/257DOQ9K9XQTY0WUTUG4r1wzdrbJhdBFs0XGr2Ymgovm/cp+2xVUzNbUYzkdw3dHCc3S45fOJnEKprAlj2+hibWWkR2clI0gS06fhwGtUH7tMw7gLV2YsXCivq0V/G9Vn7H87q9aVSxyY2fnr2ushO2onGj8QsYoIJB4z5WlTepH/UEkBj408rFdCK0KKyySa42xkAynv7rF/4xfHvjT0KSNC2ymy5/H2QcSO59qy7957DmuttD+s3zUU98Zu/r/SQw2hb3RfO+tsVA3pxqury++21H2ftfvFdsvOeBrm/4l51D9dvOYR1XZZ4c2ziKMTHI2Jfuj7IxNKy+HLSesjGQNy6O2r2hbAxkX+dlE6eD9s2wzisbA3lz6HGPgez9PhsDRfOFYfVlHfX0m/cZZF5dR/vaUIbkd8Veznuo6TVhK3t8xeY1cnre9fV6UCk6/vU33jhk25NR2/KkSp/2Owg20pEVCi3q06Itf/rZ9mTUVj9mJydlb9aj9rBfJe6TB7u43VE66VW0LUqFkB3KqVVjYNRW/1eNgeT8hQvmTb7p1bYYSI8TH/zLkzrbiY1S8nuQGEjfP+a+6+jO/T+b/E62kYsv3FH72PcgD69tjftku7vsvC+7HcK4x0DeR/tH7ZrL3v/ytrxIfwIkazJqn5KsMk+O496orfqObR5k7EsmZ3lJwjbGQPK6iK+Fk5ccd8hK+KFMZCtWMkgMxLHjR/dv7qz0jT/p7UDbFgN5fqP2fFg2BvKuL+9TM93mCxVDdqin95P3GWRePdSLGPHKJL8rdmASoCs/9fHJj3H3k/zu9/iKzWvk9LwXblHyO7uvda/j49/iapBe+yU3cmEDFlo2BtLV9DMIDtisRk8rGwPpxvQzoR/Fj3ll36Utk/wexRVOVeI+xkPRSoY2xUDysDNqD/dVYiBJ9vX6joxxj4GsXz8rhBsd2AcovGwMZBMcReNk8vc4Z+r1vSIDNL2xU/JWtBaNd9l5Qfw+iPSWUI01tqaCq9z/kkRft3lfG2IgGzOjeM1lYyBvZVv6o+7Z0By1N4erzJNHcdV3kvzOrubvd+zr59mgDTGQPA9Ez//d8uRIvvlbNgbi+Hf9zd8Le16c6HwPUq/FT+MeA3lzolFMfpeJgbxn4F7jxqjlicrmfcrOq2uaxrWmGMnvil1d9t2ZssdXbF4jp5ddzVD2+FGb9FXp01FOfqf3t04eXvvZp7WfCW6SHE1vJ9RIMNdYaNlVT0nVo5jgi22vEvf9Tl6zD8c1dlcjRQ0aA/vhXiEAAAWFSURBVEljym4Z0shFlCi0Sgwk1RRN6sc5BtJ7AGbZR+WTL2VjIG+Fa3Lt3b4Uq997RonQbfTQsque8hozznGfd71F875xj4G8N0yKxsZGg3iAwsve/7IxXvTm36jNl8s++6TJ+00YD9BNjZ4y6NjX7wKQcY+B7DiY9+m4RjuwhsLLxkC2T4ve+Bv3GIhdkP6OrKRLRumTQGVjIMkhpD/xF3/XbR5cNF+oIYwbK6Kf+C07r26ssWNasOR3DR1bdl+essfX0MRaiyi7f1Udx9d6AQ0UNmif9jMINtDcykWW7dN0hf0+xI7aw/8gexWOauI76c9B4r7fxHesow0xkH5tjOKEbpAYSF9z0RjYphgoSv5UHrgbKqBKDBSt/E4eivK2ymrocioXm43pQfq1TXEfwYvGvn7nDZU7r6YCysZAt1XCoxT3ZedA2ePzVruVuVfU1HW1FTPoPLnfRHBtDa2xoLJxn55Lxv8v+s6fovlCjZdSS1FlY6DKpwVqaXANhZSNgbKflBr3GMjrgjgfOOfsD07uMFBDNzVaRNkYyDYm3gvijgGfO3d554tvsz9F84VGL65i4f3Gb5V5dcUmjv3pkt81dHHRN7Jmkz1Fx9fQpMaLSK9KyD685r1r2+v46BF/zjrj1M5/R221S2xzUZ92+4hOv4Ng4x06QAW9+jQW1y3JmfcQG2Pm3vsf7Nzo4s8oTv6zbc7GcTYGRvEas2FSFPfZGOi1mqmNMRBj4oTj5h8y9o3Slk/9jH3ZGLj1v+4Jy8/5q8kJbfrv8fsfxn0c6PWG1yBJ0gGG7tpPKRoHen1ENTt/iAbf3/Tz8JkVHwvxuyP6SY7XfkEVC8z2Y3asz8ZAG8e+XvO+yD/uMZCdJ2dXeI5i3BfNgbJxn/13dhz5yQMPhfefeNwh94oYG0UJ0oov31pPL/uslMydR+06E7SyY1/RfL9tMVA0LtQanA0VVjYG8u6H8XtAkq3Oxj0Gej0vj2pOpCgGilb3Z58VxyFPlLzcuuV9xjFX2NAQU7lYye/KhH8qIP3FLdk9TPOSgL2Or6lJjRaTDGyb7tvcqSf90ZS8Qa3X8cmNL+7zFX9Gbd/bBLpXn2Yf/vM+7j5KH2mK19yrT/Nu5nkf40o+5p4tK57f7SPwjQZ2xcLT15iN42wMpOMlXe2oXXe/Y1/2i22Ta07Gy/jv+GV/yZjShhhow9iXN6E7/7J1kyGfvl+2YRwYx+R30RyoTPI7uXfc8Z1NkzEyKlvApMfx7D0+74v8kj292xD3eW/+xn3Nu8374rgxzjGQN0/Oxswoxn2vOVDe2Jc+Pvulp9k5Y6/vh6g4dWvs9LLPSqO29Vke3CBjX7cveW5jDGTnhaP2bBhjokwMxOOz/Zwe+8Y9BvKel9PPVaPY/0Ux0G2RZHLPz977xuFZqSjvM465wsZurBULlvyuCOh0AgQIECBAgAABAgQIECBAgAABAgQIEJh+ApLf069PtIgAAQIECBAgQIAAAQIECBAgQIAAAQIEKgpIflcEdDoBAgQIECBAgAABAgQIECBAgAABAgQITD8Bye/p1ydaRIAAAQIECBAgQIAAAQIECBAgQIAAAQIVBSS/KwI6nQABAgQIECBAgAABAgQIECBAgAABAgSmn4Dk9/TrEy0iQIAAAQIECBAgQIAAAQIECBAgQIAAgYoCkt8VAZ1OgAABAgQIECBAgAABAgQIECBAgAABAtNPQPJ7+vWJFhEgQIAAAQIECBAgQIAAAQIECBAgQIBARQHJ74qATidAgAABAgQIECBAgAABAgQIECBAgACB6Scg+T39+kSLCBAgQIAAAQIECBAgQIAAAQIECBAgQKCigOR3RUCnEyBAgAABAgQIECBAgAABAgQIECBAgMD0E/h/gso4DBpPJ2kAAAAASUVORK5CYII=", + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot confusion matrix and get variable metrics dataframe, invariant metric dataframe and optimized thresholds dataframe.\n", + "\n", + "# cost_dict and amounts, if not given, are set to None and won't be visualized.\n", + "# also optimize_threshold, if not given, is set to None: threshold won't be optimized \n", + "# and the third table (Optimized metric - Optimal threshold) won't be visualized,\n", + "# the optimized thresholds dataframe returned will be None.\n", + "\n", + "# WARNING: threshold optimization could take a while\n", + "\n", + "var_metrics_df, invar_metrics_df, opt_thresh_df = bc.confusion_matrix_plot(\n", + " true_y = y_train, \n", + " predicted_proba = train_predicted_proba, \n", + " threshold_step = threshold_step, \n", + " amounts = amounts, \n", + " cost_dict = train_cost_dict, \n", + " optimize_threshold = optimize_threshold, \n", + " #N_subsets = 70, subsets_size = 0.2, # default\n", + " #with_replacement = False, # default\n", + " currency = currency,\n", + " random_state = 123,\n", + " title = 'Interactive Confusion Matrix for the Training Set');" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "2e95785a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
thresholdaccuracybalanced_accuracycohens_kappaf1_scorematthews_corr_coefprecisionrecall
00.000.20250.50000.00000.33680.00000.20251.0000
10.050.42250.63790.13370.41220.26760.25961.0000
20.100.73380.83310.44690.60340.53640.43201.0000
30.150.87500.92160.68540.76420.72210.61831.0000
40.200.95380.97100.86800.89750.87570.81411.0000
50.250.98750.98760.96180.96970.96210.95240.9877
60.300.98620.97300.95690.96550.95710.98090.9506
70.350.98500.96760.95270.96200.95320.98700.9383
80.400.97750.94670.92770.94160.92960.99320.8951
90.450.97250.93210.91030.92720.91401.00000.8642
100.500.95620.89200.85270.87890.86211.00000.7840
110.550.93250.83330.76130.80000.78401.00000.6667
120.600.91500.79010.68800.73440.72411.00000.5802
130.650.90500.76540.64350.69350.68871.00000.5309
140.700.87500.69140.49720.55360.57521.00000.3827
150.750.84380.61420.32070.37190.43701.00000.2284
160.800.82620.57100.20880.24860.34141.00000.1420
170.850.81500.54320.13110.15910.26491.00000.0864
180.900.80120.50930.02920.03640.12181.00000.0185
190.950.79750.50000.00000.00000.00001.00000.0000
201.000.79750.50000.00000.00000.00001.00000.0000
\n", + "
" + ], + "text/plain": [ + " threshold accuracy balanced_accuracy cohens_kappa f1_score \\\n", + "0 0.00 0.2025 0.5000 0.0000 0.3368 \n", + "1 0.05 0.4225 0.6379 0.1337 0.4122 \n", + "2 0.10 0.7338 0.8331 0.4469 0.6034 \n", + "3 0.15 0.8750 0.9216 0.6854 0.7642 \n", + "4 0.20 0.9538 0.9710 0.8680 0.8975 \n", + "5 0.25 0.9875 0.9876 0.9618 0.9697 \n", + "6 0.30 0.9862 0.9730 0.9569 0.9655 \n", + "7 0.35 0.9850 0.9676 0.9527 0.9620 \n", + "8 0.40 0.9775 0.9467 0.9277 0.9416 \n", + "9 0.45 0.9725 0.9321 0.9103 0.9272 \n", + "10 0.50 0.9562 0.8920 0.8527 0.8789 \n", + "11 0.55 0.9325 0.8333 0.7613 0.8000 \n", + "12 0.60 0.9150 0.7901 0.6880 0.7344 \n", + "13 0.65 0.9050 0.7654 0.6435 0.6935 \n", + "14 0.70 0.8750 0.6914 0.4972 0.5536 \n", + "15 0.75 0.8438 0.6142 0.3207 0.3719 \n", + "16 0.80 0.8262 0.5710 0.2088 0.2486 \n", + "17 0.85 0.8150 0.5432 0.1311 0.1591 \n", + "18 0.90 0.8012 0.5093 0.0292 0.0364 \n", + "19 0.95 0.7975 0.5000 0.0000 0.0000 \n", + "20 1.00 0.7975 0.5000 0.0000 0.0000 \n", + "\n", + " matthews_corr_coef precision recall \n", + "0 0.0000 0.2025 1.0000 \n", + "1 0.2676 0.2596 1.0000 \n", + "2 0.5364 0.4320 1.0000 \n", + "3 0.7221 0.6183 1.0000 \n", + "4 0.8757 0.8141 1.0000 \n", + "5 0.9621 0.9524 0.9877 \n", + "6 0.9571 0.9809 0.9506 \n", + "7 0.9532 0.9870 0.9383 \n", + "8 0.9296 0.9932 0.8951 \n", + "9 0.9140 1.0000 0.8642 \n", + "10 0.8621 1.0000 0.7840 \n", + "11 0.7840 1.0000 0.6667 \n", + "12 0.7241 1.0000 0.5802 \n", + "13 0.6887 1.0000 0.5309 \n", + "14 0.5752 1.0000 0.3827 \n", + "15 0.4370 1.0000 0.2284 \n", + "16 0.3414 1.0000 0.1420 \n", + "17 0.2649 1.0000 0.0864 \n", + "18 0.1218 1.0000 0.0185 \n", + "19 0.0000 1.0000 0.0000 \n", + "20 0.0000 1.0000 0.0000 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
invariant_metricvalue
0roc_auc0.9990
1pr_auc0.9965
2brier_score0.0426
\n", + "
" + ], + "text/plain": [ + " invariant_metric value\n", + "0 roc_auc 0.9990\n", + "1 pr_auc 0.9965\n", + "2 brier_score 0.0426" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
optimized_metricoptimal_threshold
0kappa0.25
1mcc0.25
2roc0.25
3f1_score0.25
4f2_score0.25
5f05_score0.35
6cost0.35
\n", + "
" + ], + "text/plain": [ + " optimized_metric optimal_threshold\n", + "0 kappa 0.25\n", + "1 mcc 0.25\n", + "2 roc 0.25\n", + "3 f1_score 0.25\n", + "4 f2_score 0.25\n", + "5 f05_score 0.35\n", + "6 cost 0.35" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# the three dataframes returned\n", + "display(var_metrics_df, invar_metrics_df, opt_thresh_df)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "b56550be", + "metadata": {}, + "outputs": [], + "source": [ + "# You can also analyze the test dataset.\n", + "# In this case there is no need to optimize the threshold value for any measure.\n", + "threshold_step = 0.05\n", + "amounts = np.abs(X_test[:, 13])\n", + "optimize_threshold = 'all'\n", + "currency = '$'\n", + "\n", + "test_cost_dict = bc.get_cost_dict(TN = 0, FP = 10, FN = np.abs(X_test[:, 12]), TP = 0)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "8303ae71", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "cells": { + "values": [ + [ + "roc_auc", + "pr_auc", + "brier_score" + ], + [ + 0.9713, + 0.9175, + 0.0772 + ] + ] + }, + "domain": { + "x": [ + 0.33666666666666667, + 0.6633333333333333 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Invariant Metric", + "Value" + ] + }, + "type": "table" + }, + { + "cells": { + "values": [ + [ + "kappa", + "mcc", + "roc", + "f1_score", + "f2_score", + "f05_score", + "cost" + ], + [ + 0.3, + 0.4, + 0.3, + 0.4, + 0.2, + 0.4, + 0.4 + ] + ] + }, + "domain": { + "x": [ + 0.6733333333333333, + 1 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Optimized Metric", + "Optimal Threshold" + ] + }, + "type": "table" + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.205, + 0.5, + 0.3402, + 0.205, + 1, + 0, + 0 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": true + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.0", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.0", + "0.0", + "0.0", + "0", + "0.0" + ], + [ + "TP", + "True Positive", + "0.205", + "72.86745537208714", + "0.1947068966519799", + "0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.0", + "0.0", + "0.0", + "0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.795", + "301.37432355334465", + "0.8052931033480204", + "1590", + "1.0" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": true, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 0, + 41 + ], + [ + 0, + 159 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.37, + 0.6038, + 0.3942, + 0.2455, + 1, + 0.097, + 0.2257 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.05", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.0", + "0.0", + "0.0", + "0", + "0.0" + ], + [ + "TP", + "True Positive", + "0.205", + "72.86745537208714", + "0.1947068966519799", + "0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.165", + "54.5467065616779", + "0.14575258464808236", + "0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.63", + "246.8276169916668", + "0.6595405186999381", + "1260", + "1.0" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 0, + 41 + ], + [ + 33, + 126 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.6, + 0.7484, + 0.5062, + 0.3388, + 1, + 0.2882, + 0.4103 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.1", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.0", + "0.0", + "0.0", + "0", + "0.0" + ], + [ + "TP", + "True Positive", + "0.205", + "72.86745537208714", + "0.1947068966519799", + "0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.395", + "131.95000175794513", + "0.3525795600288561", + "0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.4", + "169.42432179539952", + "0.4527135433191643", + "800", + "1.0" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 0, + 41 + ], + [ + 79, + 80 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.765, + 0.8522, + 0.6357, + 0.4659, + 1, + 0.4942, + 0.5729 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.15", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.0", + "0.0", + "0.0", + "0", + "0.0" + ], + [ + "TP", + "True Positive", + "0.205", + "72.86745537208714", + "0.1947068966519799", + "0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.56", + "201.4503160105346", + "0.5382892219809428", + "0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.235", + "99.92400754281005", + "0.2670038813670776", + "470", + "1.0" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 0, + 41 + ], + [ + 112, + 47 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.85, + 0.8785, + 0.717, + 0.5846, + 0.9268, + 0.6219, + 0.6525 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.2", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.015", + "2.0005780977462937", + "0.005345683486997619", + "5.979009492207711", + "0.021664725528252642" + ], + [ + "TP", + "True Positive", + "0.19", + "70.86687727434084", + "0.18936121316498228", + "0.0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.66", + "244.5318358200174", + "0.6534060321168492", + "0.0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.135", + "56.8424877333273", + "0.1518870712311713", + "270.0", + "0.9783352744717474" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 3, + 38 + ], + [ + 132, + 27 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.91, + 0.8891, + 0.7955, + 0.7447, + 0.8537, + 0.7381, + 0.7409 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.25", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.03", + "7.486198698122663", + "0.02000364235018854", + "9.90664676341642", + "0.07625973735938409" + ], + [ + "TP", + "True Positive", + "0.175", + "65.38125667396447", + "0.17470325430179137", + "0.0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.735", + "272.4184414787458", + "0.7279209773450379", + "0.0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.06", + "28.95588207459878", + "0.07737212600298239", + "120.0", + "0.9237402626406158" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 6, + 35 + ], + [ + 147, + 12 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.925, + 0.8895, + 0.8193, + 0.8095, + 0.8293, + 0.772, + 0.7721 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.3", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.035", + "8.033847777827688", + "0.02146699868971189", + "11.436406307633218", + "0.1250749758160442" + ], + [ + "TP", + "True Positive", + "0.17", + "64.83360759425945", + "0.17323989796226802", + "0.0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.755", + "281.06648097675094", + "0.7510291389266668", + "0.0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.04", + "20.307842576593828", + "0.05426396442135393", + "80.0", + "0.8749250241839558" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 7, + 34 + ], + [ + 151, + 8 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.92, + 0.8411, + 0.7838, + 0.8788, + 0.7073, + 0.7354, + 0.7419 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.35", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.06", + "15.090451925531804", + "0.04032273459382685", + "18.91665102794109", + "0.32107478442673043" + ], + [ + "TP", + "True Positive", + "0.145", + "57.77700344655533", + "0.15438416205815303", + "0.0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.775", + "289.9992099023209", + "0.7748980104118833", + "0.0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.02", + "11.375113651023785", + "0.03039509293613714", + "40.0", + "0.6789252155732697" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 12, + 29 + ], + [ + 155, + 4 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.93, + 0.8474, + 0.8056, + 0.9355, + 0.7073, + 0.7639, + 0.775 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.4", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.06", + "15.090451925531804", + "0.04032273459382685", + "18.91665102794109", + "0.4860811639305616" + ], + [ + "TP", + "True Positive", + "0.145", + "57.77700344655533", + "0.15438416205815303", + "0.0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.785", + "296.2801442025236", + "0.7916811026637354", + "0.0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.01", + "5.094179350820981", + "0.013612000684284918", + "20.0", + "0.5139188360694384" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 12, + 29 + ], + [ + 157, + 2 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.92, + 0.8139, + 0.7647, + 0.963, + 0.6341, + 0.719, + 0.7417 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.45", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.075", + "20.449524840031142", + "0.05464254925986162", + "26.541711980570135", + "0.7263401341098311" + ], + [ + "TP", + "True Positive", + "0.13", + "52.41793053205599", + "0.1400643473921183", + "0.0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.79", + "297.985566670654", + "0.796238109829069", + "0.0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.005", + "3.3887568826906", + "0.009054993518951329", + "10.0", + "0.2736598658901689" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 15, + 26 + ], + [ + 158, + 1 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.89, + 0.7317, + 0.6333, + 1, + 0.4634, + 0.5786, + 0.638 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.5", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.11", + "32.3379239843765", + "0.0864091766483931", + "36.51271105083246", + "1.0" + ], + [ + "TP", + "True Positive", + "0.095", + "40.529531387710634", + "0.10829772000358681", + "0.0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.795", + "301.37432355334465", + "0.8052931033480204", + "0.0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 22, + 19 + ], + [ + 159, + 0 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.875, + 0.6951, + 0.5614, + 1, + 0.3902, + 0.5044, + 0.5807 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.55", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.125", + "39.28510651078162", + "0.10497253038819389", + "46.89785726845953", + "1.0" + ], + [ + "TP", + "True Positive", + "0.08", + "33.58234886130552", + "0.08973436626378602", + "0.0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.795", + "301.37432355334465", + "0.8052931033480204", + "0.0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 25, + 16 + ], + [ + 159, + 0 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.86, + 0.6585, + 0.4815, + 1, + 0.3171, + 0.4247, + 0.5192 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.6", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.14", + "44.417826782676855", + "0.11868751508774542", + "51.48228951704443", + "1.0" + ], + [ + "TP", + "True Positive", + "0.065", + "28.449628589410278", + "0.07601938156423449", + "0.0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.795", + "301.37432355334465", + "0.8052931033480204", + "0.0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 28, + 13 + ], + [ + 159, + 0 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.835, + 0.5976, + 0.3265, + 1, + 0.1951, + 0.2782, + 0.402 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.65", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.165", + "58.042549841214466", + "0.1550937204495801", + "63.12448167214795", + "1.0" + ], + [ + "TP", + "True Positive", + "0.04", + "14.82490553087267", + "0.03961317620239978", + "0.0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.795", + "301.37432355334465", + "0.8052931033480204", + "0.0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 33, + 8 + ], + [ + 159, + 0 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.825, + 0.5732, + 0.2553, + 1, + 0.1463, + 0.2142, + 0.3463 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.7", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.175", + "59.65460157187306", + "0.1594012345258741", + "65.07540726526575", + "1.0" + ], + [ + "TP", + "True Positive", + "0.03", + "13.21285380021408", + "0.03530566212610582", + "0.0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.795", + "301.37432355334465", + "0.8052931033480204", + "0.0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 35, + 6 + ], + [ + 159, + 0 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.82, + 0.561, + 0.2174, + 1, + 0.122, + 0.1809, + 0.3153 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.75", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.18", + "62.096735533989744", + "0.16592678591975865", + "67.2225223778225", + "1.0" + ], + [ + "TP", + "True Positive", + "0.025", + "10.770719838097396", + "0.028780110732221267", + "0.0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.795", + "301.37432355334465", + "0.8052931033480204", + "0.0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 36, + 5 + ], + [ + 159, + 0 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.795, + 0.5, + 0, + 1, + 0, + 0, + 0 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.8", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.205", + "72.86745537208714", + "0.1947068966519799", + "75.9665774440284", + "1.0" + ], + [ + "TP", + "True Positive", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.795", + "301.37432355334465", + "0.8052931033480204", + "0.0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 41, + 0 + ], + [ + 159, + 0 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.795, + 0.5, + 0, + 1, + 0, + 0, + 0 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.85", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.205", + "72.86745537208714", + "0.1947068966519799", + "75.9665774440284", + "1.0" + ], + [ + "TP", + "True Positive", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.795", + "301.37432355334465", + "0.8052931033480204", + "0.0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 41, + 0 + ], + [ + 159, + 0 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.795, + 0.5, + 0, + 1, + 0, + 0, + 0 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.9", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.205", + "72.86745537208714", + "0.1947068966519799", + "75.9665774440284", + "1.0" + ], + [ + "TP", + "True Positive", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.795", + "301.37432355334465", + "0.8052931033480204", + "0.0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 41, + 0 + ], + [ + 159, + 0 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.795, + 0.5, + 0, + 1, + 0, + 0, + 0 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 0.95", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.205", + "72.86745537208714", + "0.1947068966519799", + "75.9665774440284", + "1.0" + ], + [ + "TP", + "True Positive", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.795", + "301.37432355334465", + "0.8052931033480204", + "0.0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 41, + 0 + ], + [ + 159, + 0 + ] + ] + }, + { + "cells": { + "values": [ + [ + "accuracy", + "balanced_accuracy", + "f1_score", + "precision", + "recall", + "cohens_kappa", + "matthews_corr_coef" + ], + [ + 0.795, + 0.5, + 0, + 1, + 0, + 0, + 0 + ] + ] + }, + "domain": { + "x": [ + 0, + 0.32666666666666666 + ], + "y": [ + 0.5, + 1 + ] + }, + "header": { + "values": [ + "Variable Metric", + "Value" + ] + }, + "type": "table", + "visible": false + }, + { + "colorscale": [ + [ + 0, + "rgb(247,251,255)" + ], + [ + 0.125, + "rgb(222,235,247)" + ], + [ + 0.25, + "rgb(198,219,239)" + ], + [ + 0.375, + "rgb(158,202,225)" + ], + [ + 0.5, + "rgb(107,174,214)" + ], + [ + 0.625, + "rgb(66,146,198)" + ], + [ + 0.75, + "rgb(33,113,181)" + ], + [ + 0.875, + "rgb(8,81,156)" + ], + [ + 1, + "rgb(8,48,107)" + ] + ], + "hovertemplate": "%{text[1]}
Count: %{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "name": "threshold: 1.0", + "showscale": false, + "text": [ + [ + [ + "FN", + "False Negative", + "0.205", + "72.86745537208714", + "0.1947068966519799", + "75.9665774440284", + "1.0" + ], + [ + "TP", + "True Positive", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ] + ], + [ + [ + "TN", + "True Negative", + "0.795", + "301.37432355334465", + "0.8052931033480204", + "0.0", + "0.0" + ], + [ + "FP", + "False Positive", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ] + ] + ], + "texttemplate": "%{text[0]}
%{z} (%{text[2]:.2~%})
Amount: $%{text[3]:~s} (%{text[4]:.2~%})
Cost: $%{text[5]:~s} (%{text[6]:.2~%})", + "type": "heatmap", + "visible": false, + "x": [ + "False", + "True" + ], + "xaxis": "x", + "y": [ + "True", + "False" + ], + "yaxis": "y", + "z": [ + [ + 41, + 0 + ], + [ + 159, + 0 + ] + ] + } + ], + "layout": { + "autosize": true, + "sliders": [ + { + "active": 0, + "currentvalue": { + "prefix": "Threshold: " + }, + "pad": { + "t": 50 + }, + "steps": [ + { + "args": [ + { + "visible": [ + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Testing Set
Total obs: 200
Total amount: $374.24
Total cost: $1,590.00
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.0", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Testing Set
Total obs: 200
Total amount: $374.24
Total cost: $1,260.00
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.05", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Testing Set
Total obs: 200
Total amount: $374.24
Total cost: $800.00
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.1", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + false, + false, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Testing Set
Total obs: 200
Total amount: $374.24
Total cost: $470.00
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.15", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Testing Set
Total obs: 200
Total amount: $374.24
Total cost: $275.98
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.2", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Testing Set
Total obs: 200
Total amount: $374.24
Total cost: $129.91
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.25", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Testing Set
Total obs: 200
Total amount: $374.24
Total cost: $91.44
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.3", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Testing Set
Total obs: 200
Total amount: $374.24
Total cost: $58.92
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.35", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Testing Set
Total obs: 200
Total amount: $374.24
Total cost: $38.92
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.4", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Testing Set
Total obs: 200
Total amount: $374.24
Total cost: $36.54
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.45", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Testing Set
Total obs: 200
Total amount: $374.24
Total cost: $36.51
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.5", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Testing Set
Total obs: 200
Total amount: $374.24
Total cost: $46.90
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.55", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Testing Set
Total obs: 200
Total amount: $374.24
Total cost: $51.48
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.6", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Testing Set
Total obs: 200
Total amount: $374.24
Total cost: $63.12
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.65", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Testing Set
Total obs: 200
Total amount: $374.24
Total cost: $65.08
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.7", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Testing Set
Total obs: 200
Total amount: $374.24
Total cost: $67.22
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.75", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Testing Set
Total obs: 200
Total amount: $374.24
Total cost: $75.97
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.8", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Testing Set
Total obs: 200
Total amount: $374.24
Total cost: $75.97
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.85", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Testing Set
Total obs: 200
Total amount: $374.24
Total cost: $75.97
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.9", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Testing Set
Total obs: 200
Total amount: $374.24
Total cost: $75.97
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.95", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true + ] + }, + { + "title": { + "text": "Interactive Confusion Matrix for the Testing Set
Total obs: 200
Total amount: $374.24
Total cost: $75.97
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "1.0", + "method": "update" + } + ] + } + ], + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "Interactive Confusion Matrix for the Testing Set
Total obs: 200
Total amount: $374.24
Total cost: $1,590.00
", + "y": 0.965, + "yanchor": "bottom" + }, + "xaxis": { + "anchor": "y", + "autorange": true, + "domain": [ + 0, + 1 + ], + "range": [ + -0.5, + 1.5 + ], + "title": { + "text": "Predicted" + }, + "type": "category" + }, + "yaxis": { + "anchor": "x", + "autorange": true, + "domain": [ + 0, + 0.5 + ], + "range": [ + -0.5, + 1.5 + ], + "title": { + "text": "Actual" + }, + "type": "category" + } + } + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAABb8AAAJYCAYAAABCY5tXAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQn4HtPZ/0/fvk2CLGKXSokqIo0ixJrYEktCEZRqSVRbu9QWkfevqvpGpEWDIpZKaKktKEE0tgQlETSWSKpCQ4TYpVl0+1/31Jn3PCezn5n5zfPMZ66rl+b3zNk+95m5z/nOPfd84d///ve/FQcEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAoIUIfAHxu4WsyVAgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEDAI4D4zUSAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACBliOA+N1yJmVAEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQggPjNHIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAIGWI4D43XImZUAQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCCA+M0cgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgZYjgPjdciZlQBCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIID4zRwolMBrbyxUx464SC185321Zc+vqivG/Eh17dKp0DabpfJ//evf6qHHZ6lrfnOvemne6163t/vG5mrc+SerLp1XK2QYF199m7rupsle3eePOEYNGdSvkHZasdKi2b373kfqqhvuVvc/MkN98unf1H//9xfV6JE/UIMH7FAJnOb4J4wb6c3Vuh/Ll3+mfvyLX6vJU5/yUMCl7jOC8UMAAhCAAAQgAAEIQAACEIBA1Qggfie0yKT7pqtzxl4XeLaIUz8943uqQ4d2CWv7v9PMeptVjIwSxaomfovg/NyLf1Z3PTBdTXtqtnrvg489kXGzjburffbYXn1zr53UWmt0SW3HLAUen/GCOnHUL9U//vFPv3jRDwiKFnDTcDDnhpQLuo5EED7pf8apl+bO96p2udZcxdsi2S1dtlydfcE1auq0WQ0Iy7wnxN2LXPmlmRtyrtleXNkiRecoLlUUv//973+rV19/S0m/H378WfXm24s9fBusv7bqs+Wmao9dtlHbb7OF6rTaKnFYV/q97DmQuoMUgAAEIAABCEAAAhCAAAQgAAEIWAQQvxNOCcTvcFDNIoiIwDju2jvUb+74Q+hgihafdcN///s/1M/G3ahuv/cxtdqqHdRF556gdunbW33hC19IOCOb/zRb/BYOV489Q2319U38wd1810PqZ7+80f93W4rfRRKfPecv6vun/1z9belyte8e26ufnD5MdcwgTrr0EfE7mF4cFxfmeZf95z//qW64/UH1y2tub3ioZreT9aFKs9zr8+ZKfRCAAAQgAAEIQAACEIAABCDQvAQQv1PazhRCXIQ43WwzCSthqJpBEBFR6Orf3Ksuv/5Obxi9e26sRp50hOq9eQ/v37Nmz/MiTb+gvlBKahYzYnTzTb6irhhzqlp3ra4pZ2Nzn26L3zIaScNyzqlDVbsv/bcXlX/6eVeoZ/40t+XF75l/ekUNGz7GG6fMyyMP2at048bdi9ryOrcjrLOKt1mgxnHJUmdRZZ5/8VX1wxG/8B6ibP31r6nzzjha9fjK+l5zb779rppwywPqjvumqXNPG5Yp5VFbzoGimFEvBCAAAQhAAAIQgAAEIAABCLQ2AcTvlPaNE79NcUAEzTcWLFK3/P4R9fqCRarXphup4T84WO207de9CN+o1/rN1/jf//ATddOdU9W9f/ij9wq7pOn4+mY91HcOHqj23nVb9cUvftEbhdm388482hNTL7tukvrw40/V+LGnq27rrqVuvfdR9dD0WWrea296eYXlEHGk3/Zbqu8cNEBt0G3tBiLS9m33PqqmPDpTzfvLAu+3Tb/aXQ3s10cdsPcuatx1t/v5bs2C3dZd02uz6+qd1Akjf6kkslVHVS9+7yN17FkXKUlpscfO26gx//NDL/pZjgUL31XHnXWxx2v7bXqqS35ykpf/Wl7ln/Pnv6rrbp6snnzmJa/vnTutpnbatpf6wXf2UyIgRx3Sd92m9E1s87UeGzQU+eDDT9RVN/5eHT/0AD8v+ZsLF6trb56sHnniOU+Mbd/uS6rPNzZTR39rH7VDn17qv/7rP5Hawtgc58iTj1CT7pumHnzsGbVixWdqz122Uace+y0lbQeJvroj2u5hIpNp42OOGKxO++GhXtHP/v4Pz66T7p+uZv1prlrx2d89Pr0331gduv+uao+dt/bmSZSQV8RYo2wSxEH6fNWFp6lvbPFVdd/DT6szf3plQxXmAycRRJPMZ1s4TTJPzz/re+qOex9Td015Qh26/24eZ5vdQfvuou564HH1k4smeFG2Pb+2obr8f4er9dZZQ8lbBuf+/HpvDHK9SiT3gfvsEhjZH3YfMMcq9p067Rn120lT1Ytz53vtSRqL/QbuqI44aIBas2tnf1hmfVf//HS1+P2P1TW/vVd17rha6IOdJPeiNPc23Zlly1eo2+55VN35wOMN94+D9u2nvrX/bqpD+2SpotKI30nvl5ICacbzc9TNdz6kZjz/indPkev765v3UIP23EENGdTfe1imc+TbcznqWk1zP9D1yj3u6efmqPE33qOefWGeWnWVDt7bIDL2h5941jstLr2LOUePPmxfdfpx32qYc9LGI08+54nj+w/cyaszyb01yTW08YbdUnpTTocABCAAAQhAAAIQgAAEIAABCBRPAPE7JeM04ndQ1eustboaf+HpnoCcRHB66tmX1Vk/G+8Jr0GHCLXHH/XNlYTN1Tt3VEuWLvNEsiAhOqiuTTb6srp89HDVvds63s9xbV/98zPU3VMeTy1+r7bqKur8SyZ6YqKI3tdedKYnjMthCp7/70dHqm8fuKfSUdsiTJv5sfUYRDC95LwT1Q7bbBFqzd8/+KQ6e/TV3u/fGTJAnXXit/2HBmGFZPynnvsr/yGBfZ7J3hS7wuob0L+PuuDsH6hF737gfwTUPjeL+C3C1Pm/vMETYoMOU0QNE7+LGqsIeGGHKX7332FL7zTJwy5Rz98/YrAa8bOr1NPPzlH77N5XPfDIDO93cyxxzPV8XnuN1Rs+Smj2J+jaEAFUIs8//dsy71T9kCGInczNK2/4vbpy4t3euQfsvbMXuS2pJ/TfZDxnHn9Y6HyLE7//9e9/ealf7p7yRCDKjbqv530kVcYrh1nfGl07K3moI0dUSp8k96K4HNzmvU3a+8vrC9VpP/mVl3866BBWco1HzRFdLqn4HXfP0tes1Gu+CWL3T7O6/pYHnMXvuPuBjF8EaPNBSliZOPH7wcdmevcsfUiO71133Ept/fVNvId9nTqu2lB10nvrVltsEnsNIX6H3ur4AQIQgAAEIAABCEAAAhCAAATakADid0r4acTv0SO/70UQ/vNf/1IXXXWrF70th/nKflQk7sef/E2d+pPLPQFQ8gCPOuW7ao3VOyn5u4id9z/8tC9si/Bg1iWRqkcdurf60pf+2x+hiIUXXPZbL+JPhGL5TSJUb7jtQXXZryd5510w6ofeRx/NtiVy9eTvDVHfPXigFxn51tvvqWtuuteLOt3uG5s3iG22OGNHQF4x5kdeVLUp0pxyzMHqh9/dT/39H//0RXER9CQCWIR481X+c049Sh08qL8XTSuR4MPPuVQtfOf92A8hSgS8iOdyJEkrYX5oUcT1sf/vWLXzdr3V2+++r/7ngmuVpKmQPvxq9I+86ExznNL3S35yotqkxwbqrUWLPTFqzp/faLCVKeZpAdYUj9JEfpv5okXskvzha6+5umdbEQOff+kv6oSjDvA+yBo034oea9glZorfImoP7L+tOuOnV3pzfMi+/b2IexmPPAD50Y8v96qxxe+k81nKRqVsMO236cYbqIvPO0lttMG6DVGzYdeqcNbitMyJfXffXj321J+8hyZyffz8x8d59og6zLQnZkS/lDHznsu1e/bJ31EdV+ug7rz/ce8+IA+E9IMVEVLNcV78kxPVgH7bxD7okXbi0nuY9cbd2yRSXT/gkvQbF4z6gRepLm8kXDHhLnXdzfd51488+BJGcUcS8TvN/bJduy+p40de4r2F8ZUvr6su/dnJnjgsufiff+lVNeWxmerEYQd696o0XPT9L+39wLwGhcuIE76tDh7cX33pv7+ofnHlLd7DFDnixG950HHG+Vd6PiPokOvpuCO/6b+1kvbeStqTuJnK7xCAAAQgAAEIQAACEIAABCBQNQKI3yktkkb8NoUKs5yIDycfM8RrOUpYkVffjz71wsgPl5mCSJxII+dKGoInZr6oHn78WfXq6wu9NCM6/Yn8roV5s20z/UgQrqSiohl5aoo9uv73P/zYj4g2o7NN4TrMXHEfqkwrfpvjt1OzyEcqz/3F9V5XtFAZJvKbop2IWtdfcpbapvemXiqDH//i117UvKv4baZ0kT7JWwU7bN1Tbd37a2qrXl9Ta6/ZxRdxg+ZI0WMNs5ktfp/2w2+pUWOuaRDuJDJ4kx5f9vNh23n2k85n6UOWeWr2Per6Wvz+R+rMn17lPRTRhx2RHXWrCRO/RSw+76IJftS3pOvZdYdveFWJ0HncyEvUS3PnN8yhrAJl3P0jyQMZfW+TtEWSvkjuL1FH0tzdScTvNPfLDb+8njrpf8Z57OQQYV4eYknKk+222txLEaVTGmXhkvZ+YNrfvt+ktedHnyxRN9w2Rd1818OBb63IfeinZ37Pe0sh7b01bV9SuldOhwAEIAABCEAAAhCAAAQgAAEI5E4A8Tsl0jzEbzOyM0pYMQWRqG5qkT1OpIlLQyBtaDHKbDvuw55ZREV5zV/SDlx63R1e6pOrx56hXvvr2+qcsdc1RFTbomUYhzjxO23ak8dnvOAJ8XLY4w+aA8tWrFgpt7lEjdqinbZVnuJ3VOoCEbpEkJTI+rCc30WPNcxmtvj90zO+px5+8jk/z7dOW7Jo8QeB4nea+WzPo6RvKJh9j7u+JCf/Wf873i9y+nGHqaMP2ycwz7fNJEz8ltzMoy64Rk2dPssrYvbbTvsSlzIn7lYXN74k4re+t0XltTf7kaf4neZ+ue2Wmym5J8iDBXnAYB8SdS1viEgkfRYuScRv055R99usgrPcFyTfu7x1It9JuHfqH30xXN4kOn/E97yUPWE5zTUT896atS9xc4/fIQABCEAAAhCAAAQgAAEIQAACRRFA/E5Jtkzx24xkDPp4md31OJHGjPI76pC9vLQoa63RRd3zhz96orMcQZHfdiSi3W4W8VvqMCOWv/XN3dX7H3ysHnr82YYPXcp5Zr+vu3hEZG7vMHMm+eClREyKEPS9bw9S8//6th91r4WiVTq096rPGvltil15it9SrzxMePvdD9TTz77scX3quTn+BwbNvOpxkd9FjDXMJkHi9ydLlvoRuTodzjOz5waK32nms/Qh6zzV/Y+6viSv9fBzLvM+1KoPSZcj6TSSpPVIGvltzv8qRn5r8duM/LbnVMpbrnd62sjvJPdLqVe+pSD32Rfnvu59KFZ/TFR+k+8I7LXrdqWL3zavNILz1b+5x3vjQ8R9+aiyeUgKpGNOG+v9ST4ULClxJtzygJ8OKsm9NU1fstiZMhCAAAQgAAEIQAACEIAABCAAgbwJIH6nJJq3+G3mvj7sm7urkSd/x/vYnhx2LuYzjjtM7btHXy8aUXLT/nn+W+q3k/6gjvn2IGXn/A6KqDSFi1/+9CS15y591Gd//7sngOic37qciEKnn3eFeuZPc71IbJ2DVnJ+v7P4QyUiy757bu8Je/L/x117h9fnM44/TA09dB8/ZUBYBKQtaEk+asldLP/TH7rUppHI5BNH/dL7rXfPjb2IzN6b9/AimT9dslQ9/dwcL7f1Gcce5uW1DjokCvLnV96ibvw8d65Zj5z/wivz1cXjb1V///s/leQll//qtAhpc36bkZJ5RH7LxzklDYxEqJr52bXQOGv2PDV56h/V4QfsoXp8ZX0vl7sI+Weef5V6cuaLnv10upW8c34nGWvYJRYkfgfZLywqNs18lj5knae6/0lzfh8yeFfvw61VyPkdlyPatE3UvUjOSxP5LXnQz5aI9WmzvPl3/FEHeLnbu3RezfuA7YKFi73UHIMH7OjldY87kojfae6X0p7kHT90v93U5pt8xbtvyPU1+tLfeA+35NDfP8jCJW3k95tvL/ZzkJv3m78tW67GXPZb/2O2cfYUG0289QG134Ad1XeGDFRf6/Fl734gH28df8Pv1fW33O+NTT9YkhRYae6tUddQnA35HQIQgAAEIAABCEAAAhCAAAQg0BYEEL8TUjeFL7uImRYjjUAk9dj5mnXdWuQQUfesn433IhSDDjNfdFzk95RHZ6oRP7sqMoe4KZrHta37aIrTuo+6X11X7xSYDkSfJyLhmT+90h+a+aFL/ceotB76nLjULHLekr8tU2Muv0ndef/0UKubYq6MXz5WaeZENwseP/QAdfxR3/RE+LRiV1zkdxBTu9Na/I5L9yC5feWBQlQKhyLHGgbbVfxOO59d5qmMIej6krkpqSOunHi3N0yZE98/YrC69qbJ/t9M/mEsoj54aX5QM6i8nVs8a3Ru3L0o7b0tSVqaODFXjzeJ+C3nxt2z9H1JzpW0RvKx3KDD/FBpFi5p7wf6Hnf59XdGeqQ4XqaNwiqSN3nOO2OYWqNrZ+9BhKSfko8By8PFoMO8t0ZdQ+YHexO6VU6DAAQgAAEIQAACEIAABCAAAQgUTgDxOyHiosRvSVfx5DMvqism3O2/ci+pSC7731OUCLFyvP/hJ+q2ex9VD09/Vs19bYEnUkh0YO/NN1aD9txeDejXR3VcbZXY1/NF6Lh36lNeBKykJZCIzP0H7uR97M2O/NZYJJpy0v3TlAiNIgLJIdHF0uZ3Dx7opU3R9U649QH/nF6b9VC/+PFxqlPHVSPFbzNaU+o+ZL9d1f8bfqQXrWgewmnOn/+qbr5rqprx3CtKIiXlkL733Xpz9c29dlbb9P6aJ0RHHf/617/Vcy/+Wd1810Nq5vOveA8VhMPXN+uhJN3APrv39cakjzcXLlbX3jxZPfLEc965Evne5xubqaO/tY/aoU+v2Aj3rJHftq023XgD9YPv7KckLcj5l9zgdU+L39KvW3//iJr+9Atq7l/+6kWw6n4O2bef2rNfH/9tgqgHJEWNNcweruJ32vnsMk9lDDa7g/bdxYvI/clFE7xrcqftvq5+cc7xXnSzCNbn/vx6LwJcDvNBSRCPKPFbzv/s7/9QU6c9o347aap/n5C5v9/AHdURBw1Qa3bt7FebVfyOuxelFb+lQ/JB0rvuf1zd/8jT6sVX5vtzUz4sKfeQ/QbupNZYvVPsXTip+J30finn3T3lCSVR3fNee9N7wKXvAxI1feC+uyid5igLl7Tit7bxfQ89pSbeNsW7j8p96MhD9lJvLXrPu77NNzjCgEmEt6Q+uucPT6pX/vxX/z4pdW319U3UwYN2VTv02cK/H0g9ae6tUdfQV768bqwdOQECEIAABCAAAQhAAAIQgAAEIFA2AcTvsonTHgQgAAEIQMAiIA9SZr/8FzXssH3UBuuv4/0659U31Ijzr/IeVsoDxcv/d7haZ63VYQcBCEAAAhCAAAQgAAEIQAACEIBAQgKI3wlBcRoEIAABCECgKAJRbxdJ1PdPTh+mDtxnl5U+ZFlUf6gXAhCAAAQgAAEIQAACEIAABCDQCgQQv1vBiowBAhCAAASamoB8XPi6myerl+e94X/jQdKVbLfV5t4Hb7fqtQnCd1NbmM5DAAIQgAAEIAABCEAAAhCAQFsQQPxuC+q0CQEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAoUSQPwuFC+VQwACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAQFsQQPxuC+q0CQEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAoUSQPwuFC+VQwACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAQFsQQPxuC+q0CQEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAoUSQPwuFC+VQwACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAQFsQQPxuC+q0CQEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAoUSQPwuFC+VQwACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAQFsQQPxuC+q0CQEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAoUSQPwuFG+2ypcv/0z9+Be/Vjts00sNGdQvdSWu5VM3SAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhUjgPidwCCT7puuzhl7XeiZ5484JlSkziJEZyljds61fAIk/ikXX32buu6myf6/J4wbqbb7xub+v197Y6E6dsRFauE773t/C2Jl1rFlz6+qK8b8SHXt0ilNNzgXAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgEADAcTvlBNCxNxRY65Vo0d+X228YbfY0lmE6Cxl2kL8locCt93zqC9Wz/zTK2rU6GvU+LGne2w+/PhTdcLIX6rTjjvUE8Ttf0ufpY6nnn1J/fSM76kOHdqt9O9YwJwAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQCCAAOJ3ymkRJn6b0eHd1l3TF4DtyOjBA3bwhN4X5r6mhg0f47dulkkifutzJk99yqtD1ysCsv5tk42+rB554nk1e85fvHPMqGwRqs32g8qvt86a6rQfHhpKaNpTs1Xvnj38KG1b3LaFbalIeMgh9QaJ4WkfLqQ0H6dDAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACNSGA+J3S0EHirAjJF191W0MEtP73Ku3bJ8rfLaLwonff94RxOeJyfpsisi0qa/F7wVuLA/v04UefNkSvy/lX3HC3OvqwfTwhW5ePE79tdDYbEb9ff3NRg4BuCuLLVqxQoy64Rp15/OF+FH2QIJ7SRJwOAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQEAhfqecBLbAGxSlbf5t0B7bxwrZ0gVTQI8TzIMEePNv3dZda6U2TVF5zdU7e3m4R4/6QUN+7pQoGk7X9R+6/25+/nNboJcCpvi98J33Vkohg/jtYgXKQgACEIAABCAAAQhAAAIQgAAEIAABCEAAApoA4nfKuZCX+G2nLZFu6I89FiF+2yK9/RHPqI92xiHSgvV2W2++UpQ3kd9x9PgdAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQKIIA4ndKqnmI30FpRcqM/JaPT5qH/aHKNEiEh0SRHz/0QD/iW5cn53cakpwLAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEI5EkA8TslzbQ5vyWHtp3+Iyi1h5wz87lXvBzdcZHf0uUkOb932KaXL0iLEH3bPY969b/6+ltK8oEPGdTPG32YoB+X81t/NNP8kKaJ0x5n0LhtgTxIME9pIk6HAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIEDO77RzIEj8ljrMNCLd1l1TjR97uv8RRx0dvfCd99XgATt4H7V8Ye5ratjwMX7zxxwxOJX4badN0fV26NDO/2Dl5KlP+fXrlCoixmsRevacv/i/mwJ20g9eigB/3U2TV0IoYznth4f6wrpEhsvY5QhKr2LWY/YzrW04HwIQgAAEIAABCEAAAhCAAAQgAAEIQAACEICAJkDkN3MBAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEWo4A4nfLmZQBQQACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAOI3cwACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAARajgDid8uZlAFBAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAA4jdzAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABFqOAOJ3y5mUAUEAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgADiN3MAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEWo4A4nfLmZQBQQACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAOI3cwACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAARajgDid8uZlAFBAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAA4jdzAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABFqOAOJ3y5mUAUEAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgADidwXnwPLln6kf/+LXaodteqkhg/pVsIdt26XfTpqqBu25verapVPbdoTWIQABCEAAAhCAAAQgAAEIQAACEIAABCAAgcoSQPxOYJpJ901X54y9LvTM80ccEypSZxGys5RJMIw2PSXPMYWJ3xdffZu67qbJ/jgHD9hB/fSM76kOHdqpDz/+VJ0w8pdq9py/rMQhyH6vvbFQHTviIrXvnjuo0354aCQ7u90J40aq7b6x+UpldB+6f3ltv19tahQahwAEIAABCEAAAhCAAAQgAAEIQAACEIBACxNA/E5pXBFFR425Vo0e+X218YbdYktnEX2zlIntSBufkMeYZv7pFTVs+JiGkWjhWuq/4oa71dGH7eNHhIsoLUeYeC1i9KgLrlFnHn94gy313z/8eInqu3XPSPFbHozcds+j6ooxP/LalT6OGn2NGj/29IY69fg//uRvqkvn1RC/23g+0jwEIAABCEAAAhCAAAQgAAEIQAACEIBA6xNA/E5p4zDx24wO77bumr74GRaN/MLc1xqEXLNMEqE4KspZl99koy+rR5543o92lojk6U+/4EdHH3PE4AZh1xaXzQhm+e3iq27zRV67jzqqWaKtJ976gFr4zvsqCQfBLyle1ltnzUiR2Wz/voee9tKevPr6W2rBW4tDo+7FJk89+1Ko0BwkjutxnHbcoR6rKPFcfpv21GzVu2cPX3A3y+vob5OVlInqU8rpyOkQgAAEIAABCEAAAhCAAAQgAAGFj7vaAAAgAElEQVQIQAACEIBACAHE75RTI0j8toVh89+rtG+fKH+3CLGL3n3fE2q1IJw057cWXA/dfzdPCNZiqwjDOiJZi/M6Ulqn9Rg96gdeig57XPa/k4rfZkqPJGPSfY0Tv00h+477psXm/I6rN8iOtnAdFzkeNHXseu2HBHGCfMrpyOkQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAA4nc+cyBO3JRWTMFz0B7bJxK/swjm5ohMoTYocjxOvA4Ses2/xZUPinh2HZM5PjNn95Y9v+qL+rZVzfPMnN/2efZ4g/qfVvwOewhhPsRA/M7nOqQWCEAAAhCAAAQgAAEIQAACEIAABCAAAQjEESDyO46Q9Xte4rcWqCdPfcpvQYu6SaLFdeS2pBfRh05j0ority306w9bRn1sNExotoV8qTuIp24zSmzX52jhe7utN/fTt0R9ZNNMCZNyCnI6BCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgkIAA4ncCSOYpeYjfQSk50kRJ2ylLpH+tHvlt2uC3k6b6Ob/lY5OSKqZDh3YrWVI4/fzK36nRZ//Az8mdJJ+6rihp5Le2x/FDDwzNP67rJPI75QXH6RCAAAQgAAEIQAACEIAABCAAAQhAAAIQyEgA8TsluLQ5v7t26dQgTEtzYSk2Zj73ipfOIy7y245ctqOOs0R+x+X8DsoBPmz4GKUjr+PSngRxEBZxublN0VjyiUt+ci1+y8c8X39zkRdpLf2Tv595/OG+EG7mHNfieFDUd9gUsMXvsIcWwsH8OGjUlEL8TnnBcToEIAABCEAAAhCAAAQgAAEIQAACEIAABDISQPxOCS5I/JYq9Acl5f/bKS3MlBo6D/ULc19TIprqQ1KWJBW/pYwIszr1h6TlEGFYfzQyi/gtdYowbPbJFnTNNg8/YA/16d+WKp3POon4HcRB2v3xL37t9z3MHFFpXqRMUBoZO+e3nZM7zvRJxG+TiVmfTkFjt4H4HUed3yEAAQhAAAIQgAAEIAABCEAAAhCAAAQgkA8BxO98OFJLiQR05LdEk3NAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEAgigPjNvGg6AojfTWcyOgwBCEAAAhCAAAQgAAEIQAACEIAABCAAgdIJIH6XjpwGIQABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAoGgCiN9FE6Z+CEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQKJ0A4nfpyGkQAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEiiaA+F00YeqHAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACB0gkgfpeOnAYhAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCECgaAKI30UTpn4IQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhAonQDid+nIaRACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAASKJoD4XTRh6ocABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAIHSCSB+l46cBiEAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQKBoAojfRROmfghAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACECidAOJ36cjjG1y+/DP141/8Wu2wTS81ZFC/+AIVO0P6f/vkx9Qhg3dVHTq0q1jv6A4EIAABCEAAAhCAAAQgAAEIQAACEIAABCBQBwKI3wmsPOm+6eqcsdeFnnn+iGNCReosQnaWMgmGEXvKzD+9oi6+6jZ1xZgfqa5dOsWeH3ZCEvH74qtvUxttsF6suK9ZTJ76VENzgwfsoH56xvc8cf3Djz9VJ4z8pZo95y/eOcccMVid9sNDG86X9q67abL3ty17fjXRGOPKCK9hw8f47UwYN1Jt943NM3OjIAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIJAfAcTvlCxfe2OhGjXmWjV65PfVxht2iy2dRcjOUia2IwlOyEP8DnpQYIrCpqAc9dBAdzeOhRa+D91/N09I1+evt86avgAufXrq2Zd8sdz+dxCauDL2PEg7LxKYg1MgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABBwKI3ynhhYmcpujbbd011fixp3viuCn2SlM6YvmFua81RA2bZeIEX91ls+6g8jpa2oySlrK2QC2R0gfuvbM6dsRFauE77/tEtGhtC8xhyLRgfPbJ31HStqQ9ue/hp1X3L6/dEBGddHzSTty5QYK9+TepQ6LCTzvuUL8PcUK1Hm9UGWEvh44wj+tnymnG6RCAAAQgAAEIQAACEIAABCAAAQhAAAIQgIAjAcTvlACDhFNbgDX/vUr79onyd4uYuujd973oZDnicn6b50vqD2lTDkm7YQuz5r/tvorQe/0tD6gTjjpAiSAflPYkqfit25G6onJ+pxGKg9KemGlNgsRv00ZdV++kRl1wjTrz+MP9SP0gcducBvJ7XJmgtC0295RTi9MhAAEIQAACEIAABCAAAQhAAAIQgAAEIACBHAkgfqeEaYvfQUKu+bdBe2wfK2RLF9II5lGRy0G/mX97/6NP1KjR1/iR6ebwXdOeSDs6etyONjfbSSN+2+axhXjd5uhRPwiM7JbydpqaOPE7iKFZpvdmGwfaFPE75cXE6RCAAAQgAAEIQAACEIAABCAAAQhAAAIQKJAA4ndKuHmJ30ERzfpDjHHR4i7id1AqFp3exFX81ijtsdkfgnQRv6UNOx+3/eFJOUez9MRvIr9TznJOhwAEIAABCEAAAhCAAAQgAAEIQAACEIBA8xNA/E5pwzzE76CPMpYV+W1/pFOE5NvueVRdMeZH6tXX3wpMe5ISkZenW6c9kZzfr7+5yM+NLXXlIX7bdZp9NMXxZStWkPM7rQE5HwIQgAAEIAABCEAAAhCAAAQgAAEIQAACLUAA8TulEdPm/O7apdNKObiD0m5IyoyZz73iidBxkd/S5aw5v0UYNj9AaYruH3706UopQqStpDm/r/7NPWpAvz6q27pr+eL3FTfcrTbaYD01ZFA/n3SU+G2nMZH+LXhrsV8+KM2JaUI5307rYkeK2/8OGl9cGXsexH1EM+U043QIQAACEIAABCAAAQhAAAIQgAAEIAABCEDAkQDid0qAYSKniKXnjL3Oq63bums25NQOyoUtH5ccNnyM37p8xDGN+G2nFjHbtH8z82+bfQnqq4jq19002euXTleSVPwOSj9y/ohjGoRvs349ePMcW3S2+2v2S5c32et0J/LQwTzMdu1zwsYXVUbqtsdrp3dJObU4HQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEMiRAOJ3jjCp6j8EzLQnHTq0S4xFi/aH7r+b//HKxIU5EQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEICAQQDxm+mQO4Gs4rdEef/8yt+p0Wf/QNmR27l3kgohAAEIQAACEIAABCAAAQhAAAIQgAAEIACBliaA+N3S5mVwEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAATqSQDxu552Z9QQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABFqaAOJ3S5uXwUEAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQqCcBxO962p1RQwACEIAABCAAAQhAAAIQgAAEIAABCEAAAhBoaQKI3y1tXgYHAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQKCeBBC/62l3Rg0BCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAoKUJIH63tHkZHAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACBehJA/K6n3Rk1BCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAIGWJoD43dLmZXAQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABOpJAPG7nnZn1BCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEWpoA4ndLm5fBQQACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCoJwHE73ranVFDAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEGhpAojfjuZ9+qU3HWugOAQgYBLYvtcGiuuKOQGBfAnIdZX14HrMSo5yEAgmgJ9jZkAgfwJZ/Rw+Ln9bUGO9CeDj6m1/Rl8Mgaw+rpjeNGetiN+OdmPB5AiQ4hCwCLBgYkpAIH8CLgsm/Fz+9qDGehPAz9Xb/oy+GAJZ/Rw+rhh7UGt9CeDj6mt7Rl4cgaw+rrgeNV/NiN+ONmPB5AiQ4hBA/GYOQKBwAi4LJvxc4eahgZoRQBiomcEZbikEsvo5fFwp5qGRGhHAx9XI2Ay1NAJZfVxpHWyChhC/HY3EgskRIMUhgPjNHIBA4QRcFkz4ucLNQwM1I4AwUDODM9xSCGT1c/i4UsxDIzUigI+rkbEZamkEsvq40jrYBA0hfjsaiQWTI0CKQwDxmzkAgcIJuCyY8HOFm4cGakYAYaBmBme4pRDI6ufwcaWYh0ZqRAAfVyNjM9TSCGT1caV1sAkaQvx2NBILJkeAFIcA4jdzAAKFE3BZMOHnCjcPDdSMAMJAzQzOcEshkNXP4eNKMQ+N1IgAPq5GxmaopRHI6uNK62ATNIT47WgkFkyOAD8v/tlnf1cTbrpT9dxsE9Vvx20iK3170WJ17Y13qO8febBaf721G85NU08+Pc9WS9QYstXYOqVYMDWPLW+7+0Gvs4cesFfzdLqmPXVZMOHnyps0rXpNteq4ss4M/FxWcuWWm/vqfHXbnQ+q4cd/V3XquFq5jdNaagJZ/Rw+LjVqr4DLfd2lbFhvp//xWTVn7qtq2BEHqXbtvpRtUDmUYo+nFD4u2UQqSrdwrbeI6zOISNZ24sbXqr47q49LNhvrcRbit6Od67pgCnPs+ma06y7bqc026ZGYbtxNzKyoKPFb9+HdxR82bHQ+XfI3Ne7K33hdSLIBSnIjZ2EUPjVYMCW+bJxPdL2Ok8x1505SQS4EXBZMdfJzsmC+8JLrPOZrrrG6Ou3EoSs9ZM3FICGV5HVNJREB9FiP/u6QhofOUvb630xS9t+DupzUl+U1riLZl1k3fq482mFzT+b/Y4/PjBTKWnUDXR79clvK6ufq4uNM/yaW2WG7LRMLxUH3epf7ukvZLOI3e7zyr8VWvK70PHpq5mwf6FmnHpNY87DXZmn0jzQWjKpXruWLfzVRvf/BR4FVynhmv/Rn77eig5uy3gfiuLWq787q49LMnVY/F/Hb0cKteGNPgiTspiM31FvuvF8dc+TBhUXJFC1+L/nbMrXdNr19MUAc1cxnX1BLly7PTfxOwriu5yAKlGd51+s466KlvBHSkibgsmCqm59rhUVzUvH71junqE4dV/V9tjzsve7GO9SnS5aq3Xbp6/QmFldfOAH8XHmzI+x6Fv+13jprRc7xVrgXlEe67VvK6ufq4ONkLl878Y6GB7pyDcydNz/R3ibpg862nAVRfk+vd9njlWOhVvRxeg517bq6LwprIfmbg/aIXS8J+SRrszwsFCcO6zbCruuy9ndZ24kbX6v67qw+Lo851Sp1IH47WrIOC6Y0T9jlpr7o3fc8p6Cjx3R588mo3OyWL1uuli1fruTp6VGHH6Dm/WW+n/ZER1u/9voCr7gZnaBv1Bt176YemT7D+33fvfp7bQbdDM1Ih4036h66yNNlt95yC/Xc7JfVtw8Z7NV98+2TlfxtykNP+GXtJ786Qi4oquKQA/ZWV1z7O28MUoccRx62v7r7/kcaUreYvKL66ThlK1+8FRdMVYYetBAzr2M7QkBfazImc9FiL6CC3gIx53iaiKMq82uWvrksmOrm5+xFs57bO273DXXTbZMbfE7QxsEs//wLc70o6iR+UPyI+E85dLSNXGP3PzjN+5sZia59pPYrEsGjryn5/2ZUT5g/0ZGv8nv79u29jZtcoytWrFDie800ZEF+tH27dl66MjsCSt6eklfPV+nQwfPRcs/Qhx6X7eOTRJk3y7WWpJ/4uSSU8jlHz7VDD9rLj87TD3kOO2hf1bHjqt7bfUHrTfNalt7IeWY9toBuz+s0EYH5jLbetWT1c63u48KEIvvv9t5M+xz5b9C93owODdubbdnra/7bVGHrR3u/GLSv037G9hWmj7T3i+bVwB6v3HtDK/q4MEE1yE8kXZudcMzh6vbfT/HXW3ItzHr+Rc9Ys1+c5/1XR2LrtaDpV8K0ljhxWM+GKPHb1GnM9ae9JtZrTHtNaF6rYf0Mu+fotLZhPjVofHYbrailZPVx5V791W4N8dvRPq2+YIrCEyV29fjKBmrak8+o/jtt6+VdkxuSvF6q04bIzW7GM7P9CAT7JiaORA5JnaJvfJJKRTbn9lNWc2Mj7Zq5w+1IB1PUs8dminWyeZdjnbW7Kvn/8l+d91Hf3PWTX3MTJTdr+ymm7p/UofPQ2exsPq//9S0l7dg5zR2na1MUb8UFU5XBx4nWM599UW3QbV1vLupr7/tDD/auzTTid9A9IC7qrsrcmq1vLgumuvm5IPFbxOS+227pidK2mGYLYPrf2/fpncoPypwyrylpZ8YzL6g9d9vBm27y24cffuT5kRWffeYJcdqvyO+m70sSXaTF74O/uZe64/cPKvnvw9NnqD369fX+rcXvKD8atHHSGxD7gbf00eSnfbr43j+9OFdtt83Xm+2yytxf/FxmdJkK2usyM+XJ/L++GbreTCN+B61Vi34TMhOMFi6U1c+1uo+Lito290X23sz0I/JQ1f7ekr0GFD+pI2D1elH7TbsPYRGf5nladA/bb9nryiSR3+J32OMVfxNoRR8XNmeDHqYmXZvZ+ofM4d/f97Cvj9jrKXOOixXDtBatVcR9Sy1K/DZ1GvteYK6JpR92VLzJRH43faG0+ebCd7w1X9Q9x17XmnvQOL2HyO/ir/FmbQHx29Fyrb5gisNjbvqjUp7ELXrinlBGiWymYHDAvrs3CAC2o4rqoyl+d1tvHe/V71VX6eBFgC9c9K4vfi9ZsjRwAaiFvDDx24wWClrcxTmoOFu0yu+tuGCqum2SXsdBUUJa0Ip7GGZ/0DZJvtWqc2um/mUVBWSMdfNzYZHf+iPL9lsN5lwWUVp8h0SU2g8v4/ygLX7b8yuNEJdG/BYx/elZL3jpvSTll4j25vUa5UeD/GFQ22YdrbopSXM/wM+loeV+rr32i0p5EjZXpRdRkd/2vM76DRz30da3hqx+rtV9XNTex7xfyxupek0n/zV9lvw7Tvw2f7cfEgc9NDbbkv8f9AApqE3Zb9l+SsonFb/Z4xV/j2hFHxfmN8y5LXPL9hPmvJS1lvlR1iDx2/zd9itR66cs2kLStCfmOjfoQVhQPZqXPAiwUy7pGRj1YDrqgVuc3tOq68ysPq74K755WkD8drRVqy+Y4vCYN0O5ocsh0dl60WS+em2+MmPf7ILEb/tVNv26XFikmbwuHnQz1K8J6bGEvQZjb1RMJ2feRGWzH/ShCP16T1bxO+1HQuNs06y/t+KCqeq2iLqOgz7uEjTXk4jfZnoEYULqk/JmhsuCqW5+Lq34bUa4fLJkScNH9HSkiv6wUJQfDBK/7VRa2n/FCXFpxW/pn47MsSOGbF8sbet+ZBW/4z40WN6V0TYt4efK5W4HN0g6Owls6NRxNa8jYevNNA+c7GtVj5DUJ+XZOqufa3Uflyby2xSk7ejNosXvoAetYfstLX6be6ek4rd+c1EHLbHHy/8abUUflyby2wx4s/dYeYrfYWtM/dZEXGBdnuJ3lDYSlto1Tvy2357Sb6oE6T3m28SI3/lf061SI+K3oyVbfcEUh0cvjA4cvKea/uQsNWC3HQPTI8RFvAVFlOrXuyVtikvkd9LUClFROvbCKOpV1qzid5yDirNFq/zeigumqtsm7Dq2X2NzjfzmAU/bzYSsooD0uG5+Lq34rcUz8TXyEFZynMrm2k4TFOcHbfHbTjeSRohLK36Ln9VH0HUe5kfDHkabm7ugcek0Ylp8bLsro21axs+Vz11vmuX6lFzFZl79sPVmmmuOt5nKt6ndYlY/1+o+Lk3Ob1P8LjPyO8hnJXlb19w7pRG/zbnDHi//a7cVfVyYoBrnJ4qK/NbBeDoVZVtHfidN82XqJHHid9gDNyK/879m61Ij4rejpVt9wZQEj9y45KMIchw2ZF8vx7e9IbY38XGR3+bvtgBn1x11s7fblT4+9OhTqu+2vf2IH3vDHyTQmY7Nzvkt5c38VfbiK+hjS/YY7Lx1Zp7lJDZopXNaccHUDPYJuo7tDZP9Sqp5ndrzXEfB6ag3e45L3WauumZg1Mx9zCoKIH6vtpI/C3pQKvf0m++4T/3Xf31BHXPkwZ5/SesH40Ri8xqSc9OkYAiau2FiXdA3OOxXVrUfDepHXNoT+z5i5zZv5ussad/xc0lJ5XeeFtIknZ25zotabwat/bTYph9u6RzH9ryWnkt5OeRhGEfxBLL6uTrs5YL2QzL3586b3/A9JlP8jlrj2f7K9ndp0p6ERZ/a+7+o/Zb8Jum65NDfVzJnXNIAJ/Z4+Vynrejjwuajmes+bt6HpcfSfsVeP0WlPbHfvDOv8bIjv6Ou1c6d//OGlfaDScVvfU3rnP9mQElQzm8zqMK+t+Uzq9u+lqw+ru17Xp0eIH472qIOC6Y4RFrkivoCd4+NNvCq0TlT48Rv8zUeuYF37txRbb7pxl6kjv2Kj9SrBbag6Ab7VVTza+NZFkYiatipIMxX2c0vE0tah0MO2Ftdce3vVFjOb50X1nztthW/UBw3j/TvrbhgSjr2tjwv7Do2rx99Le62S18vvVHQE/sLL7nOG8bu/fqqZcuXN4gM5mtvco59z2jL8bd62y4Lpjr5OXu+n3biUG9qmNEnQZvooIW/Fgd06q04P2iLCbaf+foWX1NLly73hAo5osRvs2yYP0kqfktbUX7UvK7FF8vHxKIiv6U+24/X7V6Anyv/jquvCZmf+uPr9ly015tBb4HoV7tlfbdKhw5qow038NP9mes/qbvOa7nyLaxUVj9XFx9n38ft1HN2+h/7d/teL29QyKH3Zllzfgel1tJ7taj9lvmbXLtb9trUW3e6iN/s8fK5clvVxwWlgjRTW9k+wN7r2GuzE445XN3++yn+B8bTiN8yV81rx1xjli1+yzjDrlX5zUyJYt5XoiK/JZjS5hml95gs5P5hPtjLZ1a3fS1ZfVzb97w6PUD8drRFXRZMjpgoDoHEBFp1wZQYACdCoAACLgsm/FwBBqHKWhPAz9Xa/Ay+IAJZ/Rw+7j8GCctpXJC5qLaFCdTVxwW97d3CZmZoJRPI6uNK7malm0P8djQPCyZHgBSHgEWgrgsmJgIEiiTgsmDCzxVpGequIwH8XB2tzpiLJpDVz+HjEL+Lnpt1q7+uPg7xu24zvdzxZvVx5fay2q0hfjvahwWTI0CKQwDxmzkAgcIJuCyY8HOFm4cGakagrsJAzczMcEsmkNXP4eNKNhTNtTwBfFzLm5gBtgGBrD6uDbpa2SYRvx1Nw4LJESDFIYD4zRyAQOEEXBZM+LnCzUMDNSOAMFAzgzPcUghk9XP4uFLMQyM1IoCPq5GxGWppBLL6uNI62AQNIX47GokFkyNAikMA8Zs5AIHCCbgsmPBzhZuHBmpGAGGgZgZnuKUQyOrn8HGlmIdGakQAH1cjYzPU0ghk9XGldbAJGkL8djQSCyZHgBSHAOI3cwAChRNwWTDh5wo3Dw3UjADCQM0MznBLIZDVz+HjSjEPjdSIAD6uRsZmqKURyOrjSutgEzSE+O1oJBZMjgApDgHEb+YABAon4LJgws8Vbh4aqBkBhIGaGZzhlkIgq5/Dx5ViHhqpEQF8XI2MzVBLI5DVx5XWwSZoCPHb0UgsmBwBUhwCiN/MAQgUTsBlwYSfK9w8NFAzAggDNTM4wy2FQFY/h48rxTw0UiMC+LgaGZuhlkYgq48rrYNN0BDit6ORWDA5AqQ4BBC/mQMQKJyAy4IJP1e4eWigZgQQBmpmcIZbCoGsfg4fV4p5aKRGBPBxNTI2Qy2NQFYfV1oHm6AhxG9HI7FgcgRIcQggfjMHIFA4AZcFE36ucPPQQM0IIAzUzOAMtxQCWf0cPq4U89BIjQjg42pkbIZaGoGsPq60DjZBQ4jfjkZiweQIkOIQQPxmDkCgcAIuCyb8XOHmoYGaEUAYqJnBGW4pBLL6OXxcKeahkRoRwMfVyNgMtTQCWX1caR1sgoYQv5vASHQRAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAE0hFA/E7Ha6Wz3/t4hWMNFIcABEwCa3Vpr7iumBMQyJeAXFdZD67HrOQoB4FgAvg5ZgYE8ieQ1c/h4/K3BTXWmwA+rt72Z/TFEMjq44rpTXPWivjtaDcWTI4AKQ4BiwALJqYEBPIn4LJgws/lbw9qrDcB/Fy97c/oiyGQ1c/h44qxB7XWlwA+rr62Z+TFEcjq44rrUfPVjPjtaDMWTI4AKQ4BxG/mAAQKJ+CyYMLPFW4eGqgZAYSBmhmc4ZZCIKufw8eVYh4aqREBfFyNjM1QSyOQ1ceV1sEmaAjx29FILJgcAVIcAojfzAEIFE7AZcGEnyvcPDRQMwIIAzUzOMMthUBWP4ePK8U8NFIjAvi4GhmboZZGIKuPK62DTdAQ4rejkVgwOQKkOAQQv5kDECicgMuCCT9XuHlooGYEEAZqZnCGWwqBrH4OH1eKeWikRgTwcTUyNkMtjUBWH1daB5ugIcRvRyOxYHIESHEIIH4zByBQOAGXBRN+rnDz0EDNCCAM1MzgDLcUAln9HD6uFPPQSI0I4ONqZGyGWhqBrD6utA42QUOI345GYsHkCJDiEED8Zg5AoHACLgsm/Fzh5qGBmhFAGKiZwRluKQSy+jl8XPHmuW/qk2rW7DlqxIlHqvbt2xXfIC20KQF8XJvip/EWJZDVx7UojkzDQvzOhO3/CrFgcgRIcQggfrfpHHj+pcNzbG8AACAASURBVHlq+KiLvD5ssWkPNeack1SXzh0D+/TGgrfViPMuVYsWfxB6vmxwLrxsovf7gF37Nmx0xt9wp7rpjgca6j7r5KFq0ICd2pRBHRp3WTDh5+owQxhjmQQQBoqjvWLFZ2rsr25UUx+b4TUS52M+/mSJGnn+5erlefNXOt/2ebrXtm+T866YcLsaNfzoBv9p+sMkfSmOSj1qzurn8HHFzw/E7+IZV6kFfFx1rJHWJ+K3qmM7uydZfVx1R1R+zxC/HZmzYHIESHEIWARYMJU3JWTDfsGlE9XZpwxVG3ZfX8VtTkQoX/j2e75YLWL2u+994Avc8vv4CZN8AV1+l+PYow7y/mv/u7yR0pLLggk/x/yBQL4E8HP58jRrM/2MFraPHTZEbdVr05Ua1aJAny17en5Ni91nn3p04Pnaj3Xvtq53vimc2w+Ppe4Jt0xWhx840BPE4/pSHJH61JzVz+Hjip8jcevL4ntAC2USwMeVSTu6rbQ+Eb9VHdshfudvC8RvR6YsmBwBKtWweZDa7IiasKgc+0nmEQfv44lstsAmgtw9U6Z7At3yFZ95ET4D+vdVt979B6/zY889RT3wyFN+ROp6a6/h/U3EQDmC2tln9x0aREM5zxb+3MnUswYWTOXZXTYjCxa+44vTthge15MgsVuLAkHXBOJ3HNHifs8qCkiP8HP52UVfYwP791WXXnuL/7bFRx9/6r9VkcQH6QdKUT2zo3fGjT7dF/Si/KS8kh4VDZsfjfrWhJ8rxvYyb0ePu16dMOwQfw0X5XeC1m1R54dFeIf93RylLbQXQ6DetWb1c/i44ueNLX7Lvyf+7h5vv7V6l04Nb1+Y+0DbZ0pP9X5P/r9cr0uXLlNLli7z3vaw/af5xqH9W/Gjrm8L+Lhq2D6tT7R7jd+qhh11L7L6uGqNom17g/jtyJ8FkyPAz0VjqUWicvSGe/+9+zdE1eh/y034j8+8oHbctrf3Wus6a63hC3ePPjHL+7s8sZRDiwNB4ne39df2o1WlzYemzVRD9tvdK2dGs8q/o9rRQh/OwX0emDd2rqv8eEbVZG/y00ammZsZfa3oCDr5ty2m22lP4l5HL4dCPVpxWTBxPeY3R3Rk6R79+/o+yr7uxGddcMn1niiw3jprhvqgqLyp4pPuffBxtd9eu3j5VeVavWfKtNC3MoL8pO13d9u5T34gal4TwkAxEyDoAW5UxGmQ+B11vvgw8wGvHkUS8TtJVHkxVOpTa1Y/h48rfo6Y19WcV1/3g5LEP8l1GLYPtH2m7S/lmnx42gw/aMlsRwKewvZ35B0v1ub4uGL5Jq09rU+068VvJSVdznlZfVw5vWuOVhC/He3EgskRYEBxU5ALi6aOilBNEvkd9gqsdMdsU6LxzLQQZnfNzY6cF5TvMX86rV8jC6bybGxv5NOI3/Y1qB8A7b93Pz+6NOo6ZUFVnp2lJZcFE34uP1sFXRO2nzMfpvbarEeoD0rTq6AHUVI+6CGxCBNm+qI07XBuMgL4uWSc0p4VJEJHidlBPi/s/CiBO+o38y0KHvimtWi687P6OXxcOs5ZztbX1cD+26uJt9wb+X0Zcx8X5DPN3+09X9S6kzd0s1guWxl8XDZueZdK6xN1+/itvC2RT31ZfVw+rbdGLYjfjnZkweQI8PPidkSofqXNjEYzn9JHbTSyiN/mR/+kSzp3Y5SobYp9kgfZTB+RD5V61sKCqTy7Z438DhKug95+iEujEhZFVx6B+rTksmDCz+U3T8LEb52aS/s5fW2I+J31waq+TvUHas1XvqP8pB2Vl9/oqUkTwM8VMxeyRLnZ6z/pmZlWQf4d93ZfksjvuDqKIVKvWrP6OXxc8fPETMMV9BAobB8Ydk3rPVfQOtZMfRS2vwv7sHvxJOrRAj6uGnbO4hPNnuO3qmFHc+1YrR41X28Qvx1txoLJEaCVZkQ2/mVHfpuvmEue76SR3zJyOfeqCZM8CPqjge5E6l0DC6by7J8l53dUxLYtZsdF2SB+l2frrKKA9BA/l5+dyor8tq9TIr/zs2EeNeHn8qC4ch2u+U2lRvFL2/fp1fDByzhflkT8lrptn1sMhfrWmtXP4eOKnzM69dZPRvxQXX3jncp8S9BMN2nvA10ivz/85FM/hZi9v0P8Ltbm+Lhi+SatPQ+fiN9KSrv487L6uOJ71jwtIH472ooFkyPAzzcaUou8fq2fMOpc3kE5wCV/2+CBOzfkQTXzmz40/Rk1a/YcL6e3HJKzWw7zg5dm2hN7U2PmRu3Qvl1oO+ZHwcwc4u5E6l0DC6by7G9vKuzXveMENLunQR/A1Ne2nVs/Liq8PAr1aMllwYSfy2+OBM17289F5fy2c3mH9cxux37IG5Sv3/aT5rc3zLyp+dGob034ueJsbwZQBKU1sYU2sydBKU+SRL4Fid/S9u/u+oMadthgL+++fZ0XR6C+NWf1c/i44ueMnYt75PmXK70XM69Zex9o+7K4B7lRAVT2ty+KH3V9W8DHVcf2UT4xSGfBb1XHdnZPsvq46o6o/J4hfjsyZ8HkCPDzj+KNOO9SJa9my2vZXbt2UVv33szPRWq/uq1flzPzUUkv9GuqeuGkv/r9rQMGqpf/PD9U/DbPl3r6btNLLVmy1M9HF9aOnBuU59idSL1rYMFUrv3NV0J1uh8dEWOL3+Zrq2Yvx40+3Y+SM88ZsGtf/8Oy9nUm5c1y5Y66fq25LJjwc/nNl7CHPqafM9OTSMtRPiiqZ+Zr5D037eGdqt9QivKTItSF+d38SNS7Jvxccfa3fY2dYsEWv02fZac7kV4myRn+8rz5/oDMOvjIc3F2Dqo5q5/DxxVvp6jgiq6dO6mwfaDti+y1o32NRa077f1d8aOubwv4uOrYPsonBj2UxW9Vx3Z2T7L6uOqOqPyeIX47MmfB5AiwyYvLomzS5EfUCUcf4kX2cLgTYMHkzpAaIJDnggk/x3yCQL4E8HP58qQ2CAiBrMIAPq668yfuLUE753d1R1KvnuHj6mVvRlsOgaw+rpzeNUcriN+OdmLB5AiwyYuTszh/A7Jgyp8pNULAZcGEn6ve/LEjc8we2m9wVK/39Ag/xxyAQP4Esvo5fFz+tsirRsTvvEiWWw8+rlzetFYPAll9XD3oJBsl4ncyTqFnsWByBEhxCFgEWDAxJSCQPwGXBRN+Ln97UGO9CeDn6m1/Rl8Mgax+Dh9XjD2otb4E8HH1tT0jL45AVh9XXI+ar2bE7+azGT2GAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACBGAKI345ThGgBR4AUh4BFgGgBpgQE8ifgEi2An8vfHtRYbwL4uXrbn9EXQyCrn8PHFWMPaq0vAXxcfW3PyIsjkNXHFdej5qsZ8dvRZiyYHAFSHAKI38wBCBROwGXBhJ8r3Dw0UDMCCAM1MzjDLYVAVj+HjyvFPDRSIwL4uBoZm6GWRiCrjyutg03QEOK3o5FYMDkCpDgEEL+ZAxAonIDLggk/V7h5aKBmBBAGamZwhlsKgax+Dh9XinlopEYE8HE1MjZDLY1AVh9XWgeboCHEb0cjsWByBEhxCCB+MwcgUDgBlwUTfq5w89BAzQggDNTM4Ay3FAJZ/Rw+rhTz0EiNCODjamRshloagaw+rrQONkFDiN+ORmLB5AiQ4hBA/GYOQKBwAi4LJvxc4eahgZoRQBiomcEZbikEsvo5fFwp5qGRGhHAx9XI2Ay1NAJZfVxpHWyChhC/HY3EgskRIMUhgPjNHIBA4QRcFkz4ucLNQwM1I4AwUDODM9xSCGT1c/i4UsxDIzUigI+rkbEZamkEsvq40jrYBA0hfjsaqVUWTB9/skSNPP9ydeywIWqrXpumovL8S/PU+AmT1JhzTlJdOndMVbaIk++b+qSaNXuOGnHikap9+3ZFNEGdBRJgwVQgXKquLQGXBVOr+LnaGp+BV44Afq5yJqFDLUAgq5/Dx7WA8RlCpQjg4yplDjrTIgSy+rgWGX4uw0D8dsTYKgsmxG/HiUDx3AiwYMoNZS4VycOkCy+b6NU1YNe+kQ+V3ljwthpx3qVq0eIP/La32LRHZR6M5QKkSStxWTC1ip9rUtPR7RYkgJ8rzqgrVnymxv7qRjX1sRleI2edPFQNGrBTaIN6/fvyvPmR54+/4U7Vvdu6DXXJ326644GV6h43+nQvkMT0n/qkIw7eRx171EHFAahxzVn9HD6uxpOGoRdCAB9XCNZMlab1iWYj4uOef2Eu+7hM5PMvlNXH5d+T5q0R8dvRdq2yYEL8dpwIFM+NAAum3FA6V2S/1SGLIDnCNu4ifl9w6UR19ilD1Ybd13dunwryI+CyYGoVP5cfTWqCgBsB/Jwbv6jSpp+KW9tqUaDPlj09UVs/wD371KP9tyBNATtOSJfyV0y4XY0afrT3JiRvIhZn56Cas/o5fFy5dqK11ieAj6uOjdP4RFv4loe7BDFVx5ZZfVx1RtD2PUH8drRBqyyY9AZhq96b+VEsZpSnHRlj/mYLZHaki46AEdRyA166dJlasnSZF5Wz3tprqLHnnuILZWEROHFPLe3om7gIVW12O1LVjsiRsQ0fdZF3utnXoH7u3HfLlVLHmJFCehPUcdVV1F33P6akrcMPHOiV0RFHdr+D2pG+2Gld4kRJx2leanEWTKXijmzMjnSLS3GE+F0d29k9cVkwtYqfq5p19PUysH9fdem1t3jdM32Q7S/jhDcpH+d/5Rz98Equ53umTPff5kgaAVs1js3YH/xcMVaTOTx63PXqhGGH+OvKqPVRkE8LOz8o8tsehX0O4ncxdg6rNaufw8eVayezNe0HN/vqV7y9kfaD2/fp5e+/7L2Z6edMYS5sz9Z2o6tvy/i4atg+rU/UvZZrbMHCd5Rch1VKbVsNqm3Xi6w+ru16XL2WEb8dbdIqCyZT/JaNsR0NIwsKOeQ1Tn3u/nv39yJlzM1Dh/bt1L0PPq7222sXL9+23DzvmTLNf11GNgYPT5vhC97mxmD5is88IVjXK3344zMvqB237e29wrrOWmt4m3b7Rm63kWaz8egTs1SPr3TzNkl2xI+M64JLrvf7Kr8vX7FCrbfOWoH93Lr3ZrHit6SPMB8GRHG1OWse0o65uWs1wZEFk+NNKafi9j1Aqo2ba/bDJKIFcjJGDtW4LJhaxc/lgDHXKvT1skf/vr5vM7+9YfvLuMblmo3zv2Hid5j/3W3nPnHN8nsGAvi5DNASFAnyUVFrwiDxO+z8OPHbjvqW7toPo0h5ksCIDqdk9XP4OAfojkW1Hxx6+P4Nb19ov2hf0/aeb+6rr6sO7durDz/5NHDPttkmGzn2kOJZCODjslDLv0xan6j9lg6ym/Pq64jf+Zslc41ZfVzmBluwIOK3o1FbZcEU9Gpo1IbBjIyJiga1b7p2RI0ZeRZ2gw26cetNyJ79tvWEcf3Kqn3TTvPBS1vsC4v+CRtvEMOgyO+oD3Em5aqfyMrDAPP/O07nShRnwVQJM/gPwPbfu5//+nec+G33XObzu+99wMdnK2BSlwVTq/i5CpihoQthvk0L1K5v9OThf6vGrFX6g58rxpJhAnTYR9DTrH3jxO+43+2AhmII1LvWrH4OH9d288b2U/Y1af675yYbrbTn0z139ZdtR6A1W8bHVcOuaX2i/UZg3Bu/1RhlfXqR1cfVh1D8SBG/4xlFntEqC6agDYB9A7RTi+gIFvvGaEd/mulC4sRv8xVsDT7oI3rym7wCrsVvU6BLE/ltp1PR9UpEe9hGxuai+5lV/I7iGsRD2tPO7LTjvqOuvvFOZY7fcUq3eXEWTG1uAq8DWSK/7Z4HLbqqMbr69cJlwdQqfq5qVg+LyJFXTeXBZpbNfN7+t2rMWqU/+LliLJklys1MlaB7FRShHSVuJxUIWi1YoRgrZq81q5/Dx2Vn7loyi/gdtOeJe/jk2k/KpyOAj0vHq6iz0/rEoI80S994k7coC6WrN6uPS9dKa5+N+O1o31ZZMMVFv0y4ZXJDBGdYhPJHH3+qRpx3qdIfC8oj8ixKQAsS6JKK37qsTqfSFpHfdmRs0shvmbZy7qvzF6jOnVZrqchaFkyON6Uci6fN+Y34nSP8nKtyWTC1ip/LGalzdXlHftupu/Lwv86DpIJAAvi5YiZG1vymZm/E70meU0nzZ/+9e7d1vdQM5hG0Dg0bHeJ3MXbXtWb1c/i4Yu0SVXsW8dt821fXneVhcduNuvVbxsdVw8auPjHpg91qjLb1e5HVx7U+meQjRPxOzirwzFZZMEW9ZiYbAHNRYYvG5o1RxO8LLp2ozj5lqJdH286bHRX5becclT49NG2mGjxw54ac32IIWSzN/+tCJflITbFbfpM0KHJEpReR3+0NS1AuczPnt87P3aN7t4ac33Y/9aLMzmMXJMpHcbX7o9sZst/u3vh0tFKSj6A5TvNSi7NgKhV3ZGP2ose+fu2HN2YOfamYzUh1bOmyYGoVP1cda/ynJ/amP06sjuu/Xd72v1G+Msz/an8T1za/pyOAn0vHK83Zpt8JeyMvLB1XXLq/IPE7TBywc/AH9SXNuDg3nkBWP4ePi2db1BlpxG/Zj9o5v/W60875bX5Tqai+U284AXxcdWZHlE+MS8eF+F0dO0pPsvq4ao2ibXuD+O3Iv1UWTPrm9/K8+T4RU1Q1X6WWNCZdu3ZR8uFFeTU7SCC76Y4HvHp6btrD+68Ww6PEb8nPbb+yrftgpycxU6mYv8nfd9i2t1qydFms+C39sr8MLuP65ucf8pTfzdd/zDbD+mn+fcCufVXHVVdR8rEViRQK2lRFcdXiiETSL1r8gcfRtskVE25Xo4Yfrbp07ug4k6tTnAVTdWxhXwMyp82HSrb4bb8+bp9frZHVqzcuC6ZW8XNVs3hQSi/zg8hZHh6ZabRs/2v7ym8dMFC9/Of5/jUd5teqxq0V+oOfK86K9nrRDhCw/Za5zgtKd2K/Bm6uBeMEbTutXasFKxRnxWw1Z/Vz+LhsvPMolVb8ljbN68pMxxC2Z8ujn9SRjgA+Lh2vIs+O8omI30WSz7/urD4u/540b42I3462Y8HkCJDimQnIIk8O+xXczBVWpCALpooYgm60FAGXBRN+rpipEJT2pJiWqLVqBPBzVbMI/WkFAln9HD6uFazPGKpEAB9XJWvQl1YhkNXHtcr48xgH4rcjRRZMjgALLB720QZp0ozcKbALhVUdlMOrsMZKrpgFU8nAaa4WBFwWTPi5YqZIWvHbjiI1e8XHiIqxUVG14ueKIku9dSaQ1c/h4+o8axh7EQTwcUVQpc66E8jq4+rOzRw/4rfjbGDB5AiQ4hCwCLBgYkpAIH8CLgsm/Fz+9qDGehPAz9Xb/oy+GAJZ/Rw+rhh7UGt9CeDj6mt7Rl4cgaw+rrgeNV/NiN/NZzN6DAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAjEEEL8dpwjRAo4AKQ4BiwDRAkwJCORPwCVaAD+Xvz2osd4E8HP1tj+jL4ZAVj+HjyvGHtRaXwL4uPranpEXRyCrjyuuR81XM+K3o81YMDkCpDgEEL+ZAxAonIDLggk/V7h5aKBmBBAGamZwhlsKgax+Dh9XinlopEYE8HE1MjZDLY1AVh9XWgeboCHEb0cjsWByBEhxCCB+MwcgUDgBlwUTfq5w89BAzQggDNTM4Ay3FAJZ/Rw+rhTz0EiNCODjamRshloagaw+rrQONkFDiN+ORmLB5AiQ4hBA/GYOQKBwAi4LJvxc4eahgZoRQBiomcEZbikEsvo5fFwp5qGRGhHAx9XI2Ay1NAJZfVxpHWyChhC/HY3EgskRIMUhgPjNHIBA4QRcFkz4ucLNQwM1I4AwUDODM9xSCGT1c/i4UsxDIzUigI+rkbEZamkEsvq40jrYBA0hfjsaiQWTI0CKQwDxmzkAgcIJuCyY8HOFm4cGakYAYaBmBme4pRDI6ufwcaWYh0ZqRAAfVyNjM9TSCGT1caV1sAkaQvx2NBILJkeAnxdfseIzNfZXN6qpj81QA3btq0aceKRq375dPpVTS1MRYMHUVOais01CwGXBhJ+LN/J9U59Us2bPSey73ljwtrrg0onq7FOGqg27rx/fAGe0FAH8XEuZk8FUhEBWP4ePq4gB6UbLEMDHtYwpGUiFCGT1cRUaQpt3BfHb0QQsmBwBfl48TDj4+JMlavS469UJww5BIMgHdeVrYcFUrInkmhp5/uXq5XnzvYbGjT5dbdVr09BGx99wp7rpjgf838POf/6leWr4qIsa6jMfakkFZ508VA0asJNXl/1bkr4US6a1a3dZMOHn4ucG4nc8I874PwL4ueJmQ5TfCWo16nx5SDXivEvVosUfNBTVQRoTbpnc4B/1SdpP2v7T9IHFEahvzVn9HD6uvnOGkRdDAB9XDNcstab1ibKevfCyiX5T+K0s1Ispk9XHFdOb5qwV8dvRbiyYHAF+Xlw2CHIce9RBKwlj6629hhp77imI3/mgrnwtLJiKM5FeAPXZsqcnQsdFn4pQ/ru7/qCGHTbYexMj7HwtfNsCtnlda9H92GFDPLHdrlvquOCS67nWCzK/y4IJPxdvlLTid3yNnNHKBPBzxVk3yu8EtZrl/O7d1vUf5Jp1io+8YsLtatTwo1WH9u2UiOOHHzhQdenc0fOfIqSfferRkQ+ciyPT+jVn9XP4uNafG4ywXAL4uHJ5R7WWxsfJPtH0W/berTqjqmdPsvq4etIKHjXit+NsYMHkCFApFRUZkzXy26zTFM/tp59HHLyPL7ibZcy/a1Gj46qrqLvuf0zp30zBb4tNe6gx55zkbXA43AiwYHLjF1Xa3JjLXLXF8LiWgxZBus4Tjz5UXTBugjLFbfutDfshl9keC6w4+m6/uyyY8HPx7MVPPPbHWd6JTz3zovdfHf2p5/aA/n3VrXf/wfvtR8d+W0289b6GtCdmtI2Z/ivMB8Vd62bEqunTTN9l+kczytX8e1D/9QPpsD7HE6v3Gfi5YuwftGaM8ztp/JTtQ+1RSFthwnhaf1sModauNaufw8dVY16E+booP2O/zUiUajVsiY+rhh3S+kS71/itathR9yKrj6vWKNq2N4jfjvxZMDkC/Lx42OYki/gtG/t7pkz3c6/Kv+XouclGXl7xddZawxe8H31iltpx297qoenP+Pla5VzzPL3oMtM92FGqcs6Che/49eZDpZ61sGAqzu4yb8dPmNTwoCZKGLB7Ys97MxJ89S6dvHQqWvwOihKPio6Ni0Ivjko9anZZMOHn4ueIzO2Jv7vHf3PBvNaktFwb3dZf2/dL9nyX8vdMmeZfm6aIFuSDonqkNyv7793PizCVf9/74ONqv712UXNefb3hDQvpx/IVK9R666zVcP2a17q+ts3+S/tRfY4nVu8z8HPF2D8PvxPlp6LE7ThhnAe8xdjcrDWrn8PHFW+bJC2E7bfMdatcg+++94HnS5ev+MzzW/vv3d97E0N83R+feUHttnOfJM1xToEE8HEFwk1RdVqfaFfNG0spYJdwalYfV0LXmqYJxG9HU7FgcgT4efE8xW97Q657GCauBT3VNIWLJ2bMXulDZnZ/4zY9+VCqRy0smIqzs/1gSFpKIn6bEaFmNKsZMWdv7IOuiTBRgciC4myua3ZZMOHn4u1jz23zeujRvVuDsCy1mf5ovXXW9B646nRE8rt5rZoPZ5N8CFq3rQUBs/dh17v9YMy8Jnfuu+VK/Q/zm+aD53hq9T0DP1eM7dP4HX0d6jQl+s29MD8Vt86LEsaT+tpiqNSn1qx+Dh9XjTkSdO0F7bf0x6I//OTTlQI6qjESeoGPq8YcSOsTda/NNyp4m6IatpReZPVx1RlB2/cE8dvRBiyYHAEWIH7rTYb+SJ9+fXzRu+/7uRjN9CR2lJy9IQoTv82PAEoZUp/kMxdYMOXDMagW18hvU9Dr2rlT4IfApF0RyOV3vUHZsPv6XneCNjb6+jPfyCiOQH1rdlkw4efi5409t02/klT8nvrYjIaGtO9KK35rH2amPTE/wBeUliHswZicGyV+h/U5iUgfT7V1z8DPFWPbtFFuSc+Pe0Ab5FvNEZrRqlwbxdjeRRjAxxVnkzQ1h4nfps8y3wgW8ZsHrmkIl3cuPq481lEtJfVxYXXE+b5qjLI+vXDZy9WHUvRIEb8dZwILJkeAnxfPM/Lb7JF50+61WY+VxDg5N2vkd1hex3yI1LcWFkzF2d4157f0LCy6LeiDlnG5VBG+i7O1XbPLggk/F2+nPCK/dZoSuzXXj2mawpx8wFYO/XFp3VbWyO+wPscTq/cZ+Lli7J82v2nS86PE7ThxAOG7GFsH1ZrVz+HjyrNRVEtEflfDDnn0Ah+XB0X3OpL6uLjrktSu7rbIo4asPi6PtlulDsRvR0uyYHIEWID4LXm8e3ylm5JoU3NTsme/bRtyeZt5UCWyTudb7dC+3Uo5v2fNnuPnapUu27mP5W+T7n1E7dl/Oz566TglWDA5Aowobm/S7YgAO12C/D79qefUdw8d5NUalfstKJ9p1BfG4wSD4ijUs2aXBRN+Ln7O2Jt28986L6nOh6+vJfPNCDtdl+2fbB8U1SO5Fh+aNlMN2W937zRTuJu/YGFDzm/9TQwdna5TpQTl/Db7L/VG9Zno1ug5g5+Lv6aynhHld6ROW4yOOz/OV0UJ40nSimUdJ+VWJpDVz+HjqjGbgsRve78VlfPb9n3VGFU9e4GPq47do3ycve+Tf0uQxLDDBitZx0Wl0avOCOvTk6w+rj6E4keK+B3PKPIMFkyOAD8vbm8Q9GbDfKVavwIet6mWhdLwURf5HTvi4H38KDf7q+Dmb9IHncrE/HtY1F1UO/lQqWctLJiKtbt9DZgfcrUXOUHXoXm+2dMg8dsub+aNM/OIm/WY116xJOpVu8uCCT8XP1f0h7r0mWYarKBrI+xV1Asvm+g3pq+XtJHf9nW33tpr+B/icT28JQAAIABJREFU1KK1bsf8zbwmzb9HfajPHje5IePnipyBn0vGKctZUX4nSPyOOz/q+ou6Nmxfq8eSdC2bZex1L5PVz+HjqjFzwq4108/Y14+9lsQHVcOW+Lhq2EF6EeXjgsRtUw+R8lxT1bFlVh9XnRG0fU8Qvx1twILJESDFIWARYMHElIBA/gRcFkz4ufztQY31JoCfq7f9GX0xBLL6OXxcMfag1voSwMfV1/aMvDgCWX1ccT1qvpoRvx1txoLJEWDK4mGRNLoaokZTAq3g6SyYKmgUutT0BFwWTPi5apnfjrY2e2dHeVer5/RGE8DPMRcgkD+BrH4OH5e/Laix3gTwcfW2P6MvhkBWH1dMb5qzVsRvR7uxYHIESHEIWARYMDElIJA/AZcFE34uf3tQY70J4OfqbX9GXwyBrH4OH1eMPai1vgTwcfW1PSMvjkBWH1dcj5qvZsTv5rMZPYYABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAIEYAojfjlOEaAFHgBSHgEWAaAGmBATyJ0C0QP5MqRECEIAABJqfAHu55rchI6gWAfZy1bIHvWkNAuzl3O2I+O3IkAWTI0CKQwDxmzkAgcIJsGAqHDENQAACEIBAExJgL9eERqPLlSaA+F1p89C5JiXAXs7dcIjfjgxZMDkCpDgEEL+ZAxAonAALpsIR0wAEIAABCDQhAfZyTWg0ulxpAojflTYPnWtSAuzl3A2H+O3IkAWTI0CKQwDxmzkAgcIJsGAqHDENQAACEIBAExJgL9eERqPLlSaA+F1p89C5JiXAXs7dcIjfjgxZMDkCpDgEEL+ZAxAonAALpsIR0wAEIAABCDQhAfZyTWg0ulxpAojflTYPnWtSAuzl3A2H+O3IkAWTI0CKQwDxmzkAgcIJsGAqHDENQAACEIBAExJgL9eERqPLlSaA+F1p89C5JiXAXs7dcIjfjgxZMDkCLKn4ihWfqbG/ulH12bKnGjRgp9BWn39pnho/YZIac85JqkvnjiX1jmZMAiyYmA8QyJ8AC6b8mVIjBCAAAQg0PwH2cvnY8I0Fb6sR512qFi3+QJ118tDI/VY+LVJLVQmwl6uqZehXMxNgL+duPcRvR4YsmBwBllQc8bsk0Dk0w4IpB4gpqpAHPsNHXeSV2GLTHpEPfsyNTdj59019Ul142USvvgG79lUjTjxStW/fzvv3+BvuVDfd8UBD79ggpTCWw6ksmBzgURQCEIAABFqWAHs5d9NG7bNk7XjFhNvVqOFHE1jkjropamAvVx0z6Wtz6mMzvE6l2XfJvu35F+YSFFgRc7KXczcE4rcjQxZMjgApDgGLAAum8qaEbEguuHSiOvuUoWrD7usrEa5nzZ7TIFibvRGhfOHb7/nRPLIoeve9D/zz7Tcn5Hc5jj3qIF/8Nv9d3khpiQUTcwACEIAABCCwMgH2cu6z4uNPlqiR51+ujh02RG3Va1OvQv23l+fNjw2ucO8BNVSJAHu56ljD3IsFXadhPdUBS3GBUdUZaev3hL2cu40Rvx0ZsmByBPh5NOjSpcvUkqXLlDyVXG/tNdTYc09pEOM6rrqKuuv+x9QRB+/jCWnmgkp6MG706f5iy37CKWWGHTa4Ie2JXV5HqM559fWGtCdR7YhTCOu3O5X61sCCqTzbi9i9YOE7vjhti+FxPQkSu7t3W9cXx+PE8Lj6+T0/AiyY8mNJTRCAAAQg0DoE2Mu52dLeK5n7OKk5S+R32D5N3iS0f9ORrGn2bLpM1NuKblTqXZq9XDXsL9fE6HHXqxOGHeLpKnLYgUlBPdX7w+379CIdbDVM6fWCvZy7MRC/HRmyYHIE+PlN+OFpM1YSvCVdwkPTn/FSKJjitl7c7L93f09kMxdVHdq380TuddZawxf0Hn1iltqm9+Zq3LW/83N+y43fFOkm3fuI2rP/dmr+goX+TV7XpfOE65QPZ596tCe0Sx1h/dZpHtzp1K8GFkzl2dxeAKWJCJBempHi8m87r74tpttpT9K8elceldZsiQVTa9qVUUEAAhCAgBsB9nJu/KR01Poxi/gdtk+TtiTCXO8BJeDpj8+8oHbctnfDGjRuz6bXsPdMmeandLDbdKdS3xrYy1XD9kFBTXFv+Zq/20GB1RhVfXvBXs7d9ojfjgxZMDkCDHgCad6oX5o7f6U0DHY0qY703n/vfqpr504NaRx078xcdHv223YlgVyfZ9b90cefrlSXKRbawqGUvWfK9NCUEe6k6lEDC6by7Gwv9NOI3/aCyrwO9SuvUZHk9sakvFHXsyUWTPW0O6OGAAQgAIFoAuzl3GdInuK3Xk+agUxB+7QunTv6HQ9ab0bt2YJylLOPc58Hugb2cvmxdKkp6MFTlPhtXwO25uLSF8q6E2Av584Q8duRIQsmR4AB4rf5ik6Y+K0/0Ge2LtHhIn4HfVTFXuSEvTJni992XWaaCMRvd9sH1cCCqRiuQbVmjfwOEq6DNhJxaVSIsinP1iyYymNNSxCAAAQg0DwE2Mu52ypP8Vt6E7VPCwo0ChP5dGo/e71rp8jUBOwPtbuTqWcN7OWqYfe0kd9mGiBzBOT9roY92cu52wHx25EhCyZHgBkjv8MirMPEtrivkOuP/n34yad+2hMiv91tm6UGFkxZqGUrkyXnd1TEti1mx0UMIH5ns1uWUiyYslCjDAQgAAEItDoB9nLuFs5b/DZ7ZO7tzH1aHpHf8tawflvRnQI1aALs5aoxF7Lm/Na9j9vHVWOU9ekFezl3WyN+OzJkweQIMED8Np/OB72aY+f8lh7IzVmOnpts1JDSRETvex98XA3cdXs/57ekPZG/7bfXLkpyc4ctquz84UH546RN+QCn7gNpT9znAwsmd4ZJa7AfFtnXmz3n4yK5oz5wKdftQ9NmqiH77e51L66upGPgvGQEWDAl48RZEIAABCBQLwLs5dztnaf4rfduQfu01bt0asj5rdeWgwfu3LD/i9uzyYhlzWvm/LbbdadS3xrYy1XH9qauYl+nQZqK2XPE7+rYUXrCXs7dHojfjgxZMDkC/Fz8vumOB/yKzFfOwvJS2a/Dma/j2L8dcfA+athhgxs+hGJ/eE9/UNO+ycd9ORzx293+dg0smPJnGlWjzHmdRsh+rc3ePIS9Dmd+kNY8x7yWg14xNcuVO+r6tcaCqX42Z8QQgAAEIBBPgL1cPKO4M4LEb3sPJXXInkwHDUXVGbZPkzJ6bbpo8QdeFfrj6Wn2bLpte13Lh9jjLJ3sd/ZyyTiVcZa9/zLnOOJ3GRbIrw32cu4sEb8dGbJgcgQYEPntXiM1NDMBFkzNbD36XlUCLJiqahn6BQEIQAACbUmAvVxb0qftViTAXq4VrcqY2poAezl3CyB+OzJkweQIEPHbHWCL1cCCqcUMynAqQYAFUyXMQCcgAAEIQKBiBNjLlWsQO3Lbbp3o63LtUURr7OWKoEqddSfAXs59BiB+OzJkweQIkOIQsAiwYGJKQCB/AiyY8mdKjRCAAAQg0PwE2Ms1vw0ZQbUIsJerlj3oTWsQYC/nbkfEb3eG1AABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIVI4D47WgQogUcAVIcAhYBogWYEhDInwDRAvkzpUYIQAACEGh+Auzlmt+GjKBaBNjLVcse9KY1CLCXc7cj4rcjQxZMjgApDgHEb+YABAonwIKpcMQ0AAEIQAACTUiAvVwTGo0uV5oA4nelzUPnmpQAezl3wyF+OzJkweQIkOIQQPxmDkCgcAIsmApHTAMQgAAEINCEBNjLNaHR6HKlCSB+V9o8dK5JCbCXczcc4rcjQxZMjgApDgHEb+YABAonwIKpcMQ0AAEIQAACTUiAvVwTGo0uV5oA4nelzUPnmpQAezl3wyF+OzJkweQIkOIQQPxmDkCgcAIsmApHTAMQgAAEINCEBNjLNaHR6HKlCSB+V9o8dK5JCbCXczcc4rcjQxZMjgApDgHEb+YABAonwIKpcMQ0AAEIQAACTUiAvVwTGo0uV5oA4nelzUPnmpQAezl3wyF+OzJkweQIsILFx99wp9erY486SD3/0jw1fsIkNeack1SXzh0r2NvW6xILptazKSNqewIsmNreBvQAAhCAAASqR4C9XD42eWPB22rEeZeqRYs/UGedPFQNGrBTPhVTS9MRYC/XdCajw01AgL2cu5EQvx0ZsmByBFjB4ojfbWsUFkxtyz9N67LRuWLC7WrU8KN5OJQGXBucy4KpDaDTJAQgAAEIVJ4Aezl3E61Y8Zka+6sbVZ8te/qitwQQDR91kV/5gF37qhEnHqnat2/n3iA1VJoAe7nqmEdfm1Mfm+F1Ku7BlOggN93xgD+AuPOrM9LW7wl7OXcbI347MmTB5AiwgsURv9vWKCyY2pZ/ktY//mSJGnn+5erlefPVFpv24M2IJNDa+BwWTG1sAJqHAAQgAIFKEmAv524WvS48dtgQtVWvTb0K75v6pOq2/lrev7UAt85aa3hv1nK0NgH2ctWxr6lrBF2nZk/lOp1wy2R1+IEDvaAm/TbH2ace7V/X1RlZ/XrCXs7d5ojfjgxZMDkCTFFcbsAXXDpRDezfV1167S2+6NahfTsv2iDoiab9tPOIg/fxFl3mq3nSBf13+f+I3ymMUsCpLJgKgFpQlUR+FwS2gGpZMBUAlSohAAEIQKDpCbCXczOhGRAhNa239hpq7LmnqA27r99QsYjhs2bPSRT9bddpRo3bv+nIVPvv40af7gt2srdbunSZWrJ0mbdf1GWkTxdeNtHrJ5HpbvPALM1eLj+WLjXJNTF63PXqhGGH+NejqXPE1R30RkdcGX4vjgB7OXe2iN+ODFkwOQJMUVwL1nv07+tHDdiRBOZNfr111vREcTPK4NEnZqkdt+2t/vjMC6rHV7p5jsB+qon4ncIoBZzKgqkAqAVVifhdENgCqmXBVABUqoQABCAAgaYnwF7O3YRxEaXSQhrRTc7t3m1dP4XKpHsfUXv2387rqLx5uP/e/b3fZB8oezrZ25lpV4L2dg9Pm9Egyovwfc+Uaf7bi3ab7lTqWwN7uWrYXgcOnn3KUF/8zvIQynyjoxojq2cv2Mu52x3x25EhCyZHgCmKB93Ag/6mFy+9NuvhRYqbN/yg5uynmojfKYxSwKksmAqAWlCViN8FgS2gWhZMBUClSghAAAIQaHoC7OXcTRgnfkv+7/ETJiVKkxeVIiWsnrD9oIxM3vi1hfewHOX3TJmeKDLdnVhr18Berhr2DdqnpRG/0zywqsaIW7sX7OXc7Yv47ciQBZMjwBTFw8Rv/WVxsyp5nU3E77CP8dnpUKSsfgUO8TuFUQo4lQVTAVALqhLxuyCwBVTLgqkAqFQJAQhAAAJNT4C9nLsJo8RvEawvuOT6wFQoYS2HpTaRuoIE6jCRb8HCdyLFb50yU/eD1Cfuc0FqYC+XD0fXWlwiv0UPefe9D3gY5GqEHMuzl3OHifjtyJAFkyPAFMXDxO8wgTvofGnOjigg8juFEUo4lQVTCZBzagLxOyeQJVTDgqkEyDQBAQhAAAJNR4C9nLvJwsTvLMK33RtzP/fhJ58GRpBnjfzef+9+fMjP3fwr1cBergCoGarMmvMb4TsD7BKKsJdzh4z47ciQBZMjwBTFgxY2Qa/GyXnz/7rQz/+mc37Lufc++LgauOv2aty1v1N9tuzp5YvTCzadP47I7xRGKeBUFkwFQC2oSsTvgsAWUC0LpgKgUiUEIAABCDQ9AfZy7iYMEr/TpDoxe6D3a/vttYtq376d920mncZy9S6dGnJ+S7sPTZupBg/cueE7T1Hfc9Jt2Tm/7XbdqdS3BvZy1bG9qWvY16mtgUivSXVSHdvZPWEv524bxG9HhiyYHAGmKB4Xya1fXTO/Mm6/NnfEwft4r7/Jgmz4qIu81uX8rl27qG9+/vEUxO8URingVBZMBUDNuUr7upLq9bWVc1NUlxMBFkw5gaQaCEAAAhBoKQLs5dzNGSR+y37qpjseaKjc3KNFtWqXHTf6dD9CWwvbixZ/4FWh01baa1OzTJigJwL4hZdN9Lui63InUu8a2MtVx/52qldzjtvid9D+TkZCOqBq2JO9nLsdEL8dGbJgcgRIcQhYBFgwMSUgkD8BFkz5M6VGCEAAAhBofgLs5ZrfhoygWgTYy1XLHvSmNQiwl3O3I+K3I0MWTI4AKQ4BxG/mAAQKJ8CCqXDENAABCEAAAk1IgL1cuUazI7ft1om+LtceRbSG+F0EVeqsOwH2cu4zAPHbkSELJkeAFIcA4jdzAAKFE2DBVDhiGoAABCAAgSYkwF6uCY1GlytNAPG70uahc01KgL2cu+EQv90ZUgMEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhUjADit6NBiBZwBEhxCFgEiBZgSkAgfwJEC+TPlBohAAEIQKD5CbCXa34bMoJqEWAvVy170JvWIMBezt2OiN+ODFkwOQKkOAQQv5kDECicAAumwhHTAAQgAAEINCEB9nJNaDS6XGkCiN+VNg+da1IC7OXcDYf47ciQBZMjQIpDAPGbOQCBwgmwYCocMQ1AAAIQgEATEmAv14RGo8uVJoD4XWnz0LkmJcBezt1wiN+ODFkwOQKkOAQQv5kDECicAAumwhHTAAQgAAEINCEB9nJNaDS6XGkCiN+VNg+da1IC7OXcDYf47ciQBZMjQIpDAPGbOQCBwgmwYCocMQ1AAAIQgEATEmAv14RGo8uVJoD4XWnz0LkmJcBezt1wiN+ODFkwOQKkOAQQv5kDECicAAumwhHTAAQgAAEINCEB9nJNaDS6XGkCiN+VNg+da1IC7OXcDYf47ciQBVM2gPdNfVLNmj1HjTjxSNW+fbtsleRY6o0Fb6sLLp2ozj5lqNqw+/o51kxVaQmwYEpLjPMhEE+ABVM8I86AAAQgAIH6EWAvl83mK1Z8psb+6kY19bEZasCufSuzp8s2GkrlSYC9XJ40qQsC/yHAXs59JiB+OzJkwZQNIOJ3Nm51KMWCqTmsLNfwhZdN9DrLpqf6NmPBVH0b0UMIQAACECifAHu5bMyD9nLPvzRPDR91kVfhFpv2UGPOOUl16dzR+7e5btQtHnHwPurYow7K1gFKVZYAe7nqmMZ8SCW9OuvkoWrQgJ0SdXD8DXeq51+Y23AdJyrISYUQYC/njhXx25EhC6ZsABG/s3GrQykWTNW3smxuxk+Y5C+GZHEkBxuY6tqOBVN1bUPPIAABCECg7Qiwl8vG3l772W/R2nu9qu39so2aUkkIsJdLQqmcc8zr9ONPlqiR51+ujh02RG3Va9PIDki5m+54YKWHWOX0mlaCCLCXc58XiN+ODFkwKWU/UTSf4usbp2A2/64XQB1XXUXddf9jnhXGjT7dvxFHPaWUOpcuXaaWLF3mvWq33tprqLHnnuKnKzHbtH8LM7e9YJN/jzjvUjX08P29p6NhdWonMqB/X3Xr3X9QixZ/0BAFGzdOOwrCZOA4NZu2OAum6ptOrofu3db1IwdsMbz6I6hfD1kw1c/mjBgCEIAABOIJsJeLZ2SfYe6L5DeJJpVjwcJ3/ECIODE8Tat6Xyb7LHtPaUabm/s+s4z5d3vvJvXpfSRvNaaxSvi57OXy4ehai8z10eOuVycMO6RBJ5F6owKW5DqQa3n7Pr0agp1c+0N5NwLs5dz4SWnEb0eGdV8waZF6nbXW8G+ijz4xS+24bW/10PRn/Lze3sLiVzcqfZ5eXGix1xTPOrRv13CufeOWBdfD02Y0LFR0/vA5r76u7pky3c87J/XKEfd001ygrd6lU4OjkPYfmjZTDdlvd68uaf/d9z7w2li+4rP/z96dR1lVnXkff9bqFa2OQlGKgogD2HEIHX2VQaPRaGJUwFmxbZMoUVGhRRQIWjSERaALRUBRXxxQQ4zy0qA4gtHY0WhQA6gNNnGIggNBHBk0sTT2Wu96ttnXfXedO519b9U593zvP0Lds/fZ+7NP4T2/2vUc8xPUHrvsZP5u59l3//1MMFhqng89+ns5/pjvmLrneuyDjzyZ+V8t4gNT4D9KNW5uv+ftNa6no2Z+jdGr0D0fmKqASBcIIIAAAnUnkPV7ubgL6u/89v/u7zL1N/yUW/LEfu484djDzf2c/t3eP+l937RrfpG7J9TPo62ffSbdd+6at8NV7wftcXqf59672WdP+fdh/kaPuE5ZbMe9XDJWPer+rNRvYLjv6/eX+5u+yZhVdkfBvVz42hN+Bxpm/QNTodArKiBzA+5ly1fnPfBS+5kz724ZP+onsnnLx20ePul+APE/XGm/NvDWwD1OgGzncdHQU80/8sV+Hcidh14+/q8Puf/TcH8AoB+uiv26EQHil9+MfGAK/Eepxs39mxDC7xqDV6l7PjBVCZJuEEAAAQTqSiDr93JxFzMq/HZ/K7DYPY9974RjjyhZf7jYsYXK7vm/kejelx42YP82926F7lvdDVVxnbLYjnu5ZKy6m6+4tfftpkH7gx87WjdT0ff4zd5krKMdBfdy4etB+B1omPUPTFH/qCppoYDMBtylwm8tOWJ/tc0ukX1AQ7HwW/+hdn8Vr9wH8bm/GhfVxv2VOh2PfYhLVPjth/Hu/2B8F//X+Mot0xJ42Sa6OR+YEr08ue9tdn4ne5380fGBKV3rxWgRQAABBNpHIOv3cnGVK9357Z/HllYo53kx/v2S/c3hQruz/RBPz22PLRZ+azlN91XufWRcw3ptx71cMla20p3fUQ+ldXMPG6AnY3bZGwX3cuFrTvgdaJj1D0y12vltQ/Kof2RLhd92SaN+il9oue2HqubLfiIb3vkgr2ad+6tye+y2S95PQaPC73J3fjd17mTqius59df42Pn95erwgSnwH6V2aE7N73ZArvIp+MBUZVC6QwABBBCoC4Gs38vFXUT/fswPs0vd11QSfrtjdHejLrjvN+YtP0CPu/PbllaJa0I77uWSdA3Erflt58DO7ySt5pcZCa8wAcLvMD/J+gcmv+a3W4fNLUHi1/H26025O8j9Y3WJ9P11b22QIw/ra35y737QcX+6/8zKF6XX7j3MQx0qDb+nXfdLab7kHNPWPYf/D79bE84Pv6Pq27k7v915b3zvw7zyLn7IHnhpprY54Xfyl87/nij0a6fJn0l2RsgHpuysNTNFAAEEEChfIOv3cuVL5R/pf/Yr9oBLbek+56hYSRR/PP6zl9zPoOve3pBX89s+66nXbj1MaRNbViWq5rdf4tKv+e3e0/rlIeKaZaUd93LJWWn3+9T/vitVfojwOznrqCPhXi58PQi/Aw35wCS5OtZ/fHWd0XQfYOKWIHG/Xiz81t3eNri2v37mlgMpFn7rgxlGjZ+ZW9VyH6bif2BzQ/2h/zLYPIDTjmXAQX3kk0/+ah5MacNvO3f9uy3Pon/2f33IlkuxO9pdn/327mX6swF84KWZ2uZ8YErH0rnXNr8Wmvw14wNT8teIESKAAAIItL8A93LxzKM2PrhlIovd8/j3S8VGUOye0L/Xcu8X3VIp7teLBe/+fZt7TxdPKZutuJdLzrr73z/uNU34nZx1Kmck3MuVo1T8GMLvQEM+MAUCprx5qZ0LpZ6onPLp12T4fGCqCSudZlyAD0wZvwCYPgIIIIBApAD3clwYCFRXgHu56nrSGwIqwL1c+HVA+B1oyAemQMB2aG4Dand3tnvacneHRw2V8Lv6C8gHpuqb0iMCfGDiGkAAAQQQQKCtAPdyHXtV+A+z9EfD7uuOXZ84Z+deLo4abRAoLsC9XPgVQvgdaMgHpkBAmiPgCfCBiUsCgeoL8IGp+qb0iAACCCCQfgHu5dK/hswgWQLcyyVrPRhNfQhwLxe+joTf4Yb0gAACCCCAAAIIIIAAAggggAACCCCAAAIIIJAwAcLvwAVht0AgIM0R8ATYLcAlgUD1BdgtUH1TekQAAQQQSL8A93LpX0NmkCwB7uWStR6Mpj4EuJcLX0fC70BDPjAFAtIcAcJvrgEEai7AB6aaE3MCBBBAAIEUCnAvl8JFY8iJFiD8TvTyMLiUCnAvF75whN+BhnxgCgSkOQKE31wDCNRcgA9MNSfmBAgggAACKRTgXi6Fi8aQEy1A+J3o5WFwKRXgXi584Qi/Aw35wBQISHMECL+5BhCouQAfmGpOzAkQQAABBFIowL1cCheNISdagPA70cvD4FIqwL1c+MIRfgca8oEpEJDmCBB+cw0gUHMBPjDVnJgTIIAAAgikUIB7uRQuGkNOtADhd6KXh8GlVIB7ufCFI/wONOQDUyAgzREg/OYaQKDmAnxgqjkxJ0AAAQQQSKEA93IpXDSGnGgBwu9ELw+DS6kA93LhC0f4HWjIB6byAN98+x2Zdt0vpfmSc2SP3XYprxFHxRL47LPPZfr//ZU89rvlcvR3B8i4f/uxbLvtNrH66ohGfGDqCHXOWe8CfGCq9xVmfggggAACcQS4l4ujRhsECgtwL8fVgUD1BbiXCzcl/A405AOTyM133GsULzz7FPPfLVs/kSum3CAXDj1V/k+fvc3XCL8DL7QKmi997Gl5bvVLqQu97RT5wFTBYnfgoXqdXXX9L80I0vhDlg6k65BT84GpQ9g5KQIIIIBAwgW4l0v4AlUwPP+etIKmHFpFAe7lqogZ2JW7KU67unzkOTLo6EPL6lW/n/77xVfkyokXS2Pn7ctqw0G1E+BeLtyW8DvQkA9MhN+Bl1DVm6f9gx8fmKp+SVS9w/9e86rcPG9x7sNQ2q+5qgMlsEM+MCVwURgSAggggECHC3Av1+FLULUB8Hm0apRBHXEvF8RX1cbu90TUBsVCJ9N28+/5tXxz716E31VdkfidcS8X3862JPwONEzrBybdtfm7Z54zs3925f+Y/85uGSN/eG6N+YfO/t3duT1u8nWy8f2PzHtnnXac2emtIdio8TNziroDdIemRll4329yX9OfMPbZp5cpe/KDIwbIdbeuW5AHAAAgAElEQVT+Z14f9kC3L/sPbcO225gSHicce7jZRa47yOfMu1vGj/qJ+QmkzuPtDe+aseh7UWMsZ4ndXazuP/KFdrfanex2Ptpm/KVDpeXaeXL0EQNk4f1fzn/6pEtKlnmx/yP646vrTBv7E1n/67o+dj30uKixzfvPJbn1c/sqxyApx/CBKSkrUXgc+oFotx7dcjsH/DA8+TPI3gj5wJS9NWfGCCCAAAKlBdJ6L1d6Zuk4wr3/677TDrl7J/e+zv26fw9k71n1v/49adpKP6ZjxUqPknu50kbtcYRmCS2zfyEjhp6eyyPK+QGRzVcO7tsnb7NTe4yZcxQW4F4u/Oog/A40TOsHJv1H7ZcLHsx9wLBBqg1Y/dIZTyx7Tnrt3sP8w2k/jDRf9hMTxpZb9kSD6e8dMcAE1f5PHvWDz7RrfpE3Hhtqu0GbP0773vcP75cXkuuv+Dz06O/l+GO+U7Letfb54CNP5n6q+cprb0jDttvKpq0ft9nd+t4HH5lyIhvf+9AE7XY+ehnZOfXYZaeyS47YNicce4QJEnXcz6x8Ub7d71tmPn3338983Tf3x+walfM/tcDLvqbN+cBUU97gzu2vz9lrUzukrFEwa8074ANTzYk5AQIIIIBACgXSei+XQuo2Q/bv//TzZOtnn0n3nbvmldB0j9NO3I1Q2mbdWxvkyMP6trknrQejNM6Be7lkrFrU/Vmp8qju+y+99gbhdzKW0oyCe7nwxSD8DjRM6wcm/x8+f+dmsZ2cfvhVbvjtPvDS9mF3dPt9uDu81729QR585Cm55Px/kdvnPyC779pdPti0RYb+y2CZ84u75dTBR0mXxk7mQ5INkctd1qggz7aNGpOdgx7jP8Czkl8lsuco5Bz1Pys7Hp23G4xrX9qPGmkwr7u/9WVrsJdrkZTj+MCUlJWIHof/vUv4nez1sqPjA1M61olRIoAAAgi0r0Ba7+XaV6k2Zyu0Yce/P3Lv13rs0jVvw5Q7srRvAKqNcvv3yr1c+5tHndH/jXk9plj47eYJ2267jckX3DKXyZhVdkfBvVz42hN+Bxqm9QNTpeG3/7AEZbPlOaoVfttyK3ZJbPmRzVs+Nj/h/7efDJGHf/uMnDzwu3LLr+6Vc84YLL9cuMSE4loCxS974pcJiVrqqCDPHueXdnB/dUiPqVb4bUNr/Z+MfRX6n5Xuhrfh92O/W543JfvQQcLvwG9qmhcVYOd3Oi8QPjClc90YNQIIIIBAbQXSei9XW5X26d2/17Jn9UM4/XrUbwLr191ylYTf7bNupc5C+F1KqH3er3Tnt1tS1R0hdb/bZ71KnYV7uVJCpd8n/C5tVPSItH5gqiT8tnW3d+66g9lNXKud324NYRddz6c7vHXH9z/+Y4MpA2I/3OhxUTucy/1JZZp3fttd8/4FmvYPfnxgCvxHqR2aU/O7HZCrfAo+MFUZlO4QQAABBOpCIK33cvWAH2fnt94Hui+3j7TfA9XDmuocuJdLxkrGrfltR19unpKM2db/KLiXC19jwu9Aw7R+YIoTftsav36dar+vcnaG+juu/ZpvuiyLH3pcvn9Ef7OrWz/M/PbJ5bma4PbhKO7DIf/ryRVy6vFHmRWt5B9rv362rW+uNb/dOuQ6BrfmdzV2fvuW+nedx+AfHGZKm9gfOJSq+e3WOGfnd+A3Nc1LCvjfX9xslCTr8AP4wNThS8AAEEAAAQQSKJDWe7kEUlY8JP/+T/+ur1679cgrZ+kep/dn+tLnTunL/Qxaqp5xxQOkQSwBwu9YbDVp5H5/+CVa/RzCH0AleUpNBk+neQLcy4VfEITfgYZp/cBUSfit4bP/JO6mpkY58e8PabT/cP7x1XViS2/oAxLsE7c1oO6zT6+8MiFR5Ubcc+iynHXacbld3f6vv/k/yfTLsvhPBS+1zPo/Blt2xf3VHvfXf+zctDxJ1K8Rxan5rePyy7W4gb7WMVdXffllXPxfTSpUhqbU3JP2Ph+YkrYi0eMp9L2RjtFnb5R8YMremjNjBBBAAIHSAmm9lys9s3Qc4X6edO/f3PujQl/XGbr3Z1H3pG5ZyXSIpH+U3MslZw39jMTmBTpCwu/krFM5I+Ferhyl4scQfgca8oEpEJDmCHgCfGDikkCg+gJ8YKq+KT0igAACCKRfgHu59K8hM0iWAPdyyVoPRlMfAtzLha8j4XegIR+YAgFr3LzQgxv0tJXuDq90qO7ug6i27s72Svuu5+P5wFTPq8vcOkqAD0wdJc95EUAAAQSSLMC9XJJXh7GlUYB7uTSuGmNOugD3cuErRPgdaMgHpkBAmiPgCfCBiUsCgeoL8IGp+qb0iAACCCCQfgHu5dK/hswgWQLcyyVrPRhNfQhwLxe+joTf4Yb0gAACCCCAAAIIIIAAAggggAACCCCAAAIIIJAwAcLvhC0Iw0EAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIFyD8DjekBwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGECRB+J2xBGA4CCCCAAAIIIIAAAggggAACCCCAAAIIIIBAuADhd7ghPSCAAAIIIIAAAggggAACCCCAAAIIIIAAAggkTIDwO2ELwnAQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEwgUIv8MN6QEBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgYQKE3wlbEIaDAAIIIIAAAggggAACCCCAAAIIIIAAAgggEC5A+B1uSA8IIIAAAggggAACCCCAAAIIIIAAAggggAACCRMg/E7YgjAcBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgXABwu9wQ3pAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQSJgA4XfCFoThIIAAAggggAACCCCAAAIIIIAAAggggAACCIQLEH6HG9IDAggggAACCCCAAAIIIIAAAggggAACCCCAQMIECL8TtiAMBwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBcgPA73JAeEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBImQPgduCCtXwR2QHMEEEAAAQQQQACBTAk09b84U/NlsggggAACCCCAAALxBT594Yb4jWkphN+BFwHhdyAgzRFAAAEEEEAAgYwJEH5nbMGZLgIIIIAAAgggECBA+B2AJ0L4HcYnQvgdKkh7BBBAAAEEEEAgWwKE39lab2aLAAIIIIAAAgiECBB+h+gRfofpCeF3MCAdIIAAAggggAACGRMg/M7YgjNdBBBAAAEEEEAgQIDwOwCPnd9heNqand/hhvSAAAIIIIAAAghkSYDwO0urzVwRQAABBBBAAIEwAcLvMD9qfof5EX4H+tEcAQQQQAABBBDImgDhd9ZWnPkigAACCCCAAALxBQi/49tpS8LvMD/C70A/miOAAAIIIIAAAlkTIPzO2oozXwQQQAABBBBAIL4A4Xd8O8LvMDvTmrInVUCkCwQQQAABBBBAIEMChN8ZWmymigACCCCAAAIIBAoQfocBsvM7zI/wO9CP5ggggAACCCCAQNYECL+ztuLMFwEEEEAAAQQQiC9A+B3fTlsSfof5EX4H+tEcAQQQQAABBBDImgDhd9ZWnPkigAACCCCAAALxBQi/49sRfofZmdaUPakCIl0ggAACCCCAAAIZEiD8ztBiM1UEEEAAAQQQQCBQgPA7DJCd32F+hN+BfjRHAAEEEEAAAQSyJkD4nbUVZ74IIIAAAggggEB8AcLv+HbakvA7zI/wO9CP5ggggAACCCCAQNYECL+ztuLMFwEEEEAAAQQQiC9A+B3fjvA7zM60puxJFRDpAgEEEEAAAQQQyJAA4XeGFpupIoAAAggggAACgQKE32GA7PwO8yP8DvSjOQIIIIAAAgggkDUBwu+srTjzRQABBBBAAAEE4gsQfse305aE32F+hN+BfjRHAAEEEEAAAQSyJkD4nbUVZ74IIIAAAggggEB8AcLv+HaE32F2pjVlT6qASBcIIIAAAggggECGBAi/M7TYTBUBBBBAAAEEEAgUIPwOA2Tnd5gf4XegH80RQAABBBBAAIGsCRB+Z23FmS8CCCCAAAIIIBBfgPA7vp22JPwO8yP8DvSjOQIIpE9g86ZN0jxujKxf/3bk4Pv1HyCXjvmpXDvzalm5Yrl0bmyUqdOmS69evcW21YbTps+ULk1N6QNgxAgggECgAOF3ICDNEUAglQJnDR4g1zafIZ22a8gb/+d/+1+ZOe9R2WWnLjL05G+3mdtLazfKQadNTeWcGTQCCCBQDQHC7zBFwu8wP8LvQD+aI4BAugXWrVsrE5rHmUnYgFv/3NraKle1TDHht74GDjpeRowcRfid7uVm9AggUCUBwu8qQdINAgikSsCG39tu8zUTdv98zpK88d846Ycm/N7w3mY5b+Id5r3bppwtPXbuIo8vf0UGXXh9qubLYBFAAIFqCRB+h0kSfof5EX4H+tEcAQTSLVAq/H711Vekc6fOsvXjrSYcb+rSZHaN64ud3+lee0aPAALxBQi/49vREgEE0itQafj9xPJXZenNI+WoAfvkAnH9Gi8EEEAgawKE32ErTvgd5kf4HehHcwQQSLdAOeH3uedfILffeovsvfc+cuGIi2XyxH8n/E73sjN6BBAIFCD8DgSkOQIIpFIgJPym9Ekql5xBI4BAlQQIv8MgCb/D/Ai/A/1ojgAC6RYoJ/zWHd8PP/SgPLz0IVML/O7/XED4ne5lZ/QIIBAoQPgdCEhzBBBIpUChmt8f/6VVLp22UA7v942CZU/m3feMDJ98VyrnzaARQACBUAHC7zBBwu8wP8LvQD+aI4BAugXKDb/dcidaAkVLoVD2JN1rz+gRQCC+AOF3fDtaIoBAegXK3fntz5DgO71rzsgRQKA6AoTfYY6E32F+hN+BfjRHAIF0C5Qbfvfq1VseuP9emXvTHDPhnj13I/xO99IzegQQCBAg/A7AoykCCKRWoNzw2z7wkvreqV1qBo4AAlUWIPwOAyX8DvMj/A70ozkCCKRboJLwe/OmTeZhl+vXv034ne5lZ/QIIBAoQPgdCEhzBBBIpQDhdyqXjUEjgEACBAi/wxaB8DvMj/A70I/mCCCQboFKwm+d6fPPrZRJE5oJv9O97IweAQQCBQi/AwFpjgACqRQg/E7lsjFoBBBIgADhd9giEH6H+RF+B/rRHAEEEEAAAQQQyJoA4XfWVpz5IoAAAggggAAC8QUIv+PbaUvC7zA/wu9AP5ojgAACCCCAAAJZEyD8ztqKM18EEEAAAQQQQCC+AOF3fDvC7zA707r1iyp0QhcIIIAAAggggAACmREg/M7MUjNRBBBAAAEEEEAgWIDwO4yQnd9hfoTfgX40RwABBBBAAAEEsiZA+J21FWe+CCCAAAIIIIBAfAHC7/h22pLwO8yP8DvQj+YIIIAAAggggEDWBAi/s7bizBcBBBBAAAEEEIgvQPgd347wO8zOtKbsSRUQ6QIBBFIp0NraKle1TDFjv3z8RGloaKj6POZcP1teXL1Kpk2fKV2amqrePx0igAACHSFA+N0R6pwTAQQ6SuBnIwbLmKHHyLIXXpNBF17fUcMo+7xpG2/ZE+NABBBIrQDhd9jSsfM7zI/wO9CP5gggkByBB+6/V+beNMcMqF//ASUDbT1+/VtvyYiRo3KT2LxpkzSPGyPr179tvjZ56jQ5qG8/8+d169bKhOZxsnXLljb9a8jdc/fd5cSTTmkDUuy95OgxEgQQQKB8AcLv8q04EgEEaiew9OaR0r1roxx02tTcSc4aPECubT5DOm331aaGz//2vzJz3qPy8zlLzHHP3zNB9uvd3fx5w3ub5byJd8gTy1+NHOiRA/aW26acLY8+/ZIMn3yXOUbPe9SAfdoc//jyV0w47o/Bfr2QRFR/L63dmJuXO9559z2TG4eG3BcMOVzGzVgs85csz+u+2Hu1WxF6RgABBKIFCL/DrgzC7zA/wu9AP5ojgEAyBJ5/bqUJvu0Oaw2c9eUG2+5INeRumTpZhl98ifTq1du8ZXeCH9i3nwmxNeye3jJVxo2fYI7RPg859DAThrt/1uPuXrhARo4aHbl7XM81+5oZMuqysez+TsblwigQQCBQgPA7EJDmCCAQJHDjpB/K0JO/bfpwQ2L9uw2e7/nNC7mQ2D2ZBs377NnNBN760mB7yyeteQG6e7ye65hD9ysakOs5p489VW5Z9JQ8ufJPps9X3njXBOF2F7aG0zY89yfvjskP4bX9mQP7y4gp8+WIft/I/VmP01D8D6vXFe1Xz5WG3epBFwSNEUAg8QKE32FLRPgd5kf4HehHcwQQSIaAv7vaD8P9Uer7D95/b97ucA2xb7zhOhk/YZIJqd0w/JhjB8r1s2fJ6WecaYJw3TWuLw3J3SC8kEY5xyRDklEggAACpQUIv0sbcQQCCNReoNjO76jwOyoY13D7tB8cKJdOW9hm97TOQAPmjR9sKRogu+OI6k/70Je7Q93VKRZ+a38H79/LtNXxT7nkRJl43QPyT3vslBeER2m7wXmhne21XyXOgAACCIgQfoddBYTfYX6E34F+NEcAgY4X8Hds64j8Xdv+KN3w2r4XFZi7O8ijdn437bBD0V3ftu+oEisdL8cIEEAAgXgChN/x3GiFAALVFSin7Ilb8iQq/NaA+OKzjpIb5j+eK4tiR6klT+ZMPEsWPLyizXv2GHfXt5ZViQq/i4Xb2o9f9sTdzV5o5/esy88ouutb+/XHVl19ekMAAQTKFyD8Lt8q6kjC7zA/wu9AP5ojgEDHC9jw+4STTsmrz+2WLPFHGbUTO2o3uBt+R9X8vn3uzaYUir4mTWg2/x046Pg25Va072efXlawDEvHKzICBBBAoHwBwu/yrTgSAQRqJxAVfvtn02P69dkjt7Pb34VdLPx2d1r7NbXtefwxRAXspcJvd8y2/co1b+Z2m/s1v995f7PZ9T31pqVmJ3iPnbuIX9dc+ywnvK/d6tAzAggg8JUA4XfY1UD4HeZH+B3oR3MEEOh4gTg7vwuF327dcJ1Zsdrhttb3sAuGy9xbbjQlUXbZpYdc1TJF3CBe+yH87vjrhBEggED1BAi/q2dJTwggEF+gnPDb3/0c9UDMj//SGln2pFT4XSg4d2uS29n5tcmLzbrUvGytb+3DlkSJqk1O+B3/2qIlAghUV4DwO8yT8DvMj/A70I/mCCCQDIFKa35HlT0pVvNba3v7Lxug9+69V97DMwsF6+z8Tsa1wigQQCBcgPA73JAeEEAgXKBUSKxnKFX6w62p7Y+oVHhcqpa37a/Ugyn98xabl1sGZdx5x0r3ro2mHnhUfe9S4w9fAXpAAAEEyhMg/C7PqdBRmQ2/W1s/l5/NuF0OOaiPnDro8NiKrV/EbkpDBBBAIDECfr3uYju2ddBRJU78HeTF6obbXd8jR402BvZhmIV2fvPAy8RcKgwEAQSqIED4XQVEukAAgWCBqJBYw2x9DZ98l/lvsZIjxUqe2MEVeuBlOW0LnV/7bNy+Qc6beIc5zaQRx8vkOQ+JPpQyqmyKC+UG6W5wH7XzmwdeBl9idIAAAlUSIPwOg6yL8HvTlo9lxBXXyuqXXs/TmDLuvILBNuF32IVDawQQqD8B3c2tZUv01a//ALl8/ERpaGiInOjmTZvydmvbg/TrzePGyPr1b5svTZ46LVdH3B6jIbkNu3v16m2+7NYD92t+a5+zr5khoy4bK12amuoPnhkhgEDmBAi/M7fkTBiBRAlElRWZd98zJvDWwHfM0GNkm6/9gxmzX9LEfb9QuRN3soXKidw25Wx55Y13c3W53TbuAyyjyp244bcG3m5Nb+3n8eWvRPYbtUvdto2q+a3j0NegC69P1PoxGAQQyJ4A4XfYmtdV+D36oiHS/4B9yxIh/C6LiYMQQACBggIalq9/662aP4TSL8nCkiCAAAJpFyD8TvsKMn4EEChXQEuHaND96NMv5XaTl9u2I4/TkP+CIYfLuBmLpdDDOjtyfJwbAQSyJUD4HbbedR9+L176lEycfltOad7sK0xA7off/u7xwUcfIj8fe640NGwj/nu2D+2UsidhFyCtEUAgvQK2zInOoNgu8ZAZavD94upVMm36THZ9h0DSFgEEEiVA+J2o5WAwCCBQYwG7W3zZC6+lYhd12sZb4+WjewQQSIAA4XfYItR1+K0B991LfienD/6uCbE1CF/04BMy58pL5R+33Tav5vesWxbJnj2758qk3LX4MRn0/YONrpZUGXLCkea9tW9ukKtvXCAtzcOkqbET4XfY9UdrBBBAAAEEEEAgcwKE35lbciaMAAIIIIAAAgjEFiD8jk1nGtZV+O3W/HZ3blsiDa7HX3mrtFxxvvTo1jUXfg/63sHmz9133lFGXzAkT3TFqpdl1k2LTGBuwu6/PyhTw3Czg5wHXoZdgbRGAAEEEEAAAQQyJkD4nbEFZ7oIIIAAAggggECAAOF3AF69hd9RNb818L5w3EzZ8O6HRqpHtx3l5ulj8sJv3dHtlzaxD8vU8HvoqCvbKOfKpxB+h12BtEYAAQQQQAABBDImQPidsQVnuggggAACCCCAQIAA4XcAXr2H3zb4bhk/zOzSLrTzW8Nv9+Ue9+HmraZUiq3/7XOz8zvsAqQ1AggggAACCCCQNQHC76ytOPNFAAEEEEAAAQTiCxB+x7fTlnVV9sTf+e2G2L336CG6i3t8y9w2O7+17IlbG9xt19SlU17Nb0XTfvRF2ZOwi4/WCCCQTYEH7r9XevbcTQ7q2y8YoNYPxKx1/8EAdIAAAqkUIPxO5bIxaAQyJbD05pHy5oaPZPjkuzIz73p70OXz90yQnt26yKXTFsr8Jcszs45MFIF6FCD8DlvVug6/lUYfZHnb/CVG6Vv79Tb/9Wt+685v9zg9xpY10T/7JVH232+vr2qAU/Yk7AqkNQII5AloMDz3pjkyeeq0qoTD1ebV8b3w3Eq5fPxEaWhoiNV9ofD7+edWyqQJzaZPDcenTZ8pXZqaCp5Dj3/w/nvzxrJ50yZpHjdG1q9/27RzHd33/P51TOvfektGjBzV5nwagPfcfXc58aRTYs2XRggggIAvQPjNNYFAugU0GD5qwD4y775nEhkOa4h78VlHyQ3zH5efz/nyXrjSV6HwWwPV/Xp3z3XnG1gbPWDDe5vlvIl3yBPLX807vR7TvWujHHTa1KLDcvvSAx9f/ooMuvB608Z/z3bkHmO/duOkH8rQk79ddL2OHLC33DblbHn06Zfy1tQ9z+d/+1+ZOe/RnKlt02PnLuZUUed2Jxg15pfWbsw5FLO1wfw2X/uHNq7abuMHW3I27jmLvVfpNcHxCCDQcQKE32H2dRF+hxGEtabsSZgfrRFA4CuB1tZWuX72LPOF7b6+XWQQ29FeIeG3H0zrXGw4vW7dWpneMlXGjZ8gvXr1llLnUaurWqbICSedkvshgf3agX37maA6qk89p76n/ds/67hmXzNDRl02NjJsL/V+R68J50cAgfQJEH6nb80YMQJWQAPPORPPMn9t/fyLkgFuR8iFhN9nDR4g1zafIZ22+2qTgw249b2x5x4jo69aaAJt/zwaMp/2gwNzO401eNWXDbltCK1fc0PfKCN1nnX5GTLj9kfNrmU7rnt+80LkDxz0/eljT5VbFj2VF/i75yz2wwo97phD98sL6/35FJtfqfHpHDX83mfPbpE/EChlq5Z/WL3OzN39s67BmQP7y4gp89v8kEHPqf1OueREmXjdA+z+7ohvRs6JQJUECL/DIAm/w/yE8DsQkOYIIJAT0LD27oUL5PgTTpJf3DZXxk+YlAtjdffx+++/Jxvfecfsau7c2CgTfjZZFi6YLytXLDd/nzptugmO9VVsB7T2pS+7y9ndQd366adm5/RR3z9a7r9vsWzdskX69R9gdle/884GmdA8znxNX+7uaTu+QjvCbbB/+hlnyourV5m2+tK52DDa3XntB9f+ZaLv33jDdXlG/tf8MFzHeMihh5mwXOf87NPLjIEbhBe6HN22XLIIIIBAqADhd6gg7RHoOAEbNi558n/kXwf1k3EzFudCRQ039997VzO4Hbtsb/6rgevB+/fK7Zb2A1h3t68bCPtBqZ73giGHm/PpSwPqNa9tkIO+uYe4u4H1Pd3BbHcj2zHY0LRx+4bI8FWPs8H+godXyCEH9DZlT/S1R48dIncV+4Gvv8vYD4vtqpW789tdZbvL+pU33o0cS1Sf1uzmhU/JyB8eJYWCcz1P1A7pqDWwO+pfe/P9NmG7H/b7V2mx8Ns/1rX9z4dXmB+46LroTn7tR1+6C94Nwgt9V5RzTMd9R3FmBBAoR4DwuxylwscQfof5EX4H+tEcAQS+ErAh7DHHDmyzq9mvPa1/X7bsqVzg7QbaUTugNbQe89MrTPBbTvjdfZddTOCtL91hbXdTF9qRXSr8dndPP/nkE21qfvtjsuH9sItGRJZ/ccNrK6hf05IxbrkUt1835LZ/PuKII4vu+rZ9FyuLwjWMAAIIVCpA+F2pGMcjkBwBGzxOv+2RNmUy9L3DDvynXGkMvzyKH366f9cZami95ZNWs1O6nPD747+0miDbtrXBcKGd3xqCFgu/3V3CPzrx4JI1vzXc1jZaCuTJlX8y43fD6ULjiBN+27Ifugvcr0MetevbPbcG1frDgkLhtxv6u2VibABtncedd2yuXEvU3EqF237Zk2K7311bHVPUzu933t9cdNe3/a6J452c7zhGggACKkD4HXYdEH6H+RF+B/rRHAEEvhRwd0ZHlf3ww2E/hHb/rju03RIi2r/bvpzw2w2d3ZrXpcqRFFtP7efhpQ+ZQ/ya5n5d7VLhd9Ru7aga4O5co2p+axCvr2/tf0BuV7vd6e7WNI8K27l2EUAAgbgChN9x5WiHQMcK+CFpsTBby4IUK5ux4f3NbcJi93gNn90SGVE7v90w1925HFL2xN2JXqhMiFt/2jT6mUoAACAASURBVB4TVTO7GuG3W4alUE1tP9z1w/BSJUmKlQZRj247dpIdGrcTt+a3ux72YZKlwm/36rVjWrnmzbyd7FG22i6q5reWhdFSKPrSmub6igrU9brS3z4oVWO9Y7+7ODsCCBQTIPwOuz4Iv8P8CL8D/WiOAAJfCvjBrV/2o9Lw2y8J4u5c7qjw2661fain/l1Ddi17UunO70Lhd7Gd3/615u5Gn3/nHbmSKFEPuCT85jsVAQSqKUD4XU1N+kKg/QT8utB+uOuHn+WE3+4DFt1AtaPCb6vp7lIuFDr7pTlqufO7UNmTqIDdDYr9qyMq0C8UfvuhursbW/v1HypaSfit7YvtyC4V2NvyO1NvWioTLhpkSqLY3ff+QzsJv9vv3wjOhECtBAi/w2QJv8P8CL8D/WiOAAJfCri7ol2TQuFwGnd+u+G31vxu2mEHU+N85KjR8ugjD0slNb+jwuhSNb/9a61QmZlCwbqtEc41iwACCIQKEH6HCtIegY4RcHdFuyOw4XCc8NstE5KEnd9u+K01v0uV1nB3nNey5nehsLhUnW1tVypILlT2xJ+P289TK/9Ucc1v/6otVY4kqg657cOWQfHHEVXfm/C7Y/694KwIVFOA8DtMk/A7zI/wO9CP5ggg8NXDKf361u5u8Nvn3myo7EMqi4XfepzW6d5pp53N8RoKuzW/3bb2WP2v1vi2D7wsVPYkqq62ti2n5rfurj532IUm6NbwWx92aQNvf6d7qfIqUQ+8jKp17pd/sdebu+u7S1OTGb99GGbUzm8eeMl3KgIIVFOA8LuamvSFQPsIFApQ3d3gWhPaLVVSbOe3lsrQ8LNfnz3k0mkLxZZBsTW//bYaavbs1sUcqy+/hrUblBYaazk1v8eee4yMvmqh6Fw0/NaHXXbv2mhKZuhu44Hf+Wf59llXmTH4dbijxqzH+eU2okJfvwyI/t2ORUvIRJUJKbe8S6nwW8dY6IGXdn10vaLqcNv5RZ3D9dbjJo04XibPeUjc+djSNaVs3avc7voeMWW++bJ9GGahnd888LJ9/o3gLAjUUoDwO0yX8DvMj/A70I/mCCDwZckTv1yHumhA2zJ1sgy/+BJ5+KEHDVU54bfWqnbrW2s7t8a2DYlXrlgunRsb5aSTT5WX/rimrPDbbasBtn24ZKnw221n13zgoONz8zE3Hc+tlEkTms3bbt9R14jt74STTsl7IGaxebv9+GG2286v+e0H5VyzCCCAQKgA4XeoIO0RaH8BP9i1I3DrSx9yQO+Kwm/z+eeeCbJf7+6mO79es/ves6vWyjf22FnGzVhsji0Wfuv7btkSW+qjVPhtS4v02LlLDtgdU9T7fhkR97wb3ttsHsipYa++1NDWprYnsO2jwm1/p71bfqVQGZSoK6Oc8NsvaWP7ccfg1vzW930PvzyM713OfFz7qBItUbvU3TIv/jVUrJ55+38XcUYEEIgrQPgdV+7LdoTfYX6E34F+NEcAgewJ6K5uDbcP6tsvaPJRD7gM6rBA46id4LU4D30igEB2BAi/s7PWzBSBtApoiK07v4dPviutU6ho3FEP7Kyog4QeXKx0SkKHzLAQQCBCgPA77LIg/A7zI/wO9KM5AghkT6Ba4bfKaTD94upVuR3o1dasdf/VHi/9IYBAOgQIv9OxTowSgSwLZC381rW2O6iXvfCaDLrw+tQvv1sqR8u28EIAgfQKEH6HrR3hd5gf4XegH80RQAABBBBAAIGsCRB+Z23FmS8CCCCAAAIIIBBfgPA7vp22JPwO8yP8DvSjOQIIIIAAAgggkDUBwu+srTjzRQABBBBAAAEE4gsQfse3I/wOszOtW7+oQid0gQACCCCAAAIIIJAZAcLvzCw1E0UAAQQQQAABBIIFCL/DCNn5HeZH+B3oR3MEEEAAAQQQQCBrAoTfWVtx5osAAggggAACCMQXIPyOb6ctCb/D/Ai/A/1ojgAC9SMw7/Zb5btHfU969eodNKnW1la5qmWK6ePy8ROloaEhqL+oxjzIsuqkdIgAAhUIEH5XgMWhCCCQCIFn5l8uD//+f+Tnc5Z0yHj0AZz77NlNzpt4hzyx/NWyxpD0B1jyQMqylpGDEEBARAi/wy4Dwu8wP8LvQD+aI4BAPAENbx9e+lCucb/+A4KCYu1PXyNGjoo3IBEpFH4/cP+9MvemOabfcsapx69/6628sTz/3EqZNKHZ9NGz524ybfpM6dLUZP6+bt1amdA8TrZu2dKmf51Xz913lxNPOqXNvIq9FxuBhggggEAZAoTfZSBxCAIZFtBQdL/e3XMCG97bXFHo69Npf/o66LSpsVWLhd8aMl8w5HAZN2OxzF+yvOA5bBi9zdf+IXfMx39plUunLTTtzho8QK5tPkM6bfflxofHl78igy683vy50vD7yAF7y21TzpZHn35Jhk++K29MhcZr2/TYuUub8+sXbpz0Qxl68rfNe+649e/u3Pz1Uv+NH2zJzcUdTLH3Yi8WDRFAoO4ECL/DlpTwO8yP8DvQj+YIIFCZQKFd0RoYayh8UN9+lXX496NDwm83fNbuOjc2ytRp080OcA2tNfi2YXWp82zetElapk6W4RdfkttBrv1Pb5kq48ZPMF/Tub7w3Mpc2K99HnLoYWbu7p+13d0LF8jIUaMjd4/ruWZfM0NGXTY2F6THwqMRAgggUKEA4XeFYByOQEYEbPiq03V3OGvw++aGj9qEuOWyhITffmD9+d/+V2bOe9TsAHfDaj8Mjhqb9nXxWUfJDfMfb7OD3M79lTfeNSGxPa+G4hpeVxp+a1B9zKH75TmWGq/rZI+95zcvmPP7Y/fHo23/sHqdOdb9s7Y7c2B/GTFlfuSOdT3PlEtOlInXPVD0BwflrjXHIYBAfQoQfoetK+F3mB/hd6AfzRFAoDIBP0yOau2G0W4Qrce6u7D175OnTjNd2F3V+me7O7v100+ledwYGXj8CZE7p/VYN0C+7957TNmTF1evygXx/u7qUuPX9x+8/968Xez+TnA3DN9llx5y/exZcvoZZ+aCcR2X7vR2g/BCyuUcU9kKcTQCCCBQWoDwu7QRRyCQRQENbE/7wYG5ndCFAuQxQ48R3T3tBtF6rAayRw3YJ9ds3n3PmD/b3cr6Z7srucdOXcwu65Vr3ozckazHusHsyB8eZcqeHHJA7zZBfCU7vwuF31Fzd8NoP2zWvx924D/lgnjfqtiO6qjx6lynjz1Vbln0VC6Y98/fvWtjbve8G4Y/ufJPMmfiWbLg4RWmrY5NXxriu0F4oWu6nGOy+P3AnBFA4CsBwu+wq4HwO8yP8DvQj+YIIFCZQDk7pzWwHnbRCLMTWsPkmVdfaXZi6+vGG66T8RMmmZ3OGiKvff01+f7Rx5igWF9u2RMNtkuF3+7u6gXz78yr+W13qR/Yt18uPPd3cfuz16BbX26ZEn9sdlx2jlE7v5t22KHorm973qgSK5WtCEcjgAAClQsQflduRgsEsiBQaoe2vxtZA2P9mu7E1pdbekTD2f337imnX3qzCWD15ZY9sX0VC7/dXcvTLj2lYM3vSsJvG9zreNzd4lHhtxt4jzvv2FzN738Z2L/Nrm73+tBd5G4Y7V87UeON2pXunn/W5WfkGfprEbXz+533Nxfd9W3Hpedxg/UsXOvMEQEEKhMg/K7Myz+a8DvMj/A70I/mCCBQmUCpOtX+zmo3gNayKDYI9x9KWSpULzRK2//KFcvzyp3o8fa9E046JVeOpVT4HbUT25+zH35H1fy+fe7NphSKvuyu9oGDjm9T01y9nn16WVCt88pWkKMRQAABEcJvrgIEEIgSKFX/2Q+I3VIhWhbFBuH+QylLheqFVsOtge3vMnfblBt+++fRcTVu32BKk9id6LbMiB4bFX4ve+F1Oe47fYruji9VSqRQ+O3XLffDb7dud1RZFBvs2931GphrKRR92d33L63d2Kb2uq7rwfv3CqrJzncUAgjUtwDhd9j6En6H+RF+B/rRHAEEKhMoFVJHlQ1xw2O37In74MhS/ZYzSvchnFpO5Zt9/lmuapkilez8LhR+6/ntrnQ//PbHZnejD7tguMy95UZTEkXLo+hY3CBe2xF+l7OyHIMAAtUWIPyutij9IVAfAqVC6qg61m5g7pY9cXdVl+q3HD33IZxaTsV9iGTc8Ntv5z5Q0o7JhsXu3NwHYUaNPW747ZdkqWTntz8Ou2t+6k1LZcJFg0xJFC2PEvUQTsLvcq5AjkEg2wKE32HrT/gd5kf4HehHcwQQqEygnJrZ7gMmo0qP2DO6gXc1wu95t99qyp5s+uij3G7qSmt+R5U9KVbz29/BrnOzAXrv3nvlPTwzKlgn/K7s+uNoBBCojgDhd3Uc6QWBehMoVfO72M5vrS/tvtzAuxrh9zPzLzdlT3bZqUubXcrVCr/99XRLiWgQ3a/PHjLlpqVy6Y+/J48+/VLBB4DGKXsSUvPb32mv87Bjf2rln/JqiUfV9yb8rrfvZOaDQPUFCL/DTCsOvzdt+VhGXHGtrH7p9ZJn3n+/vWTOlZdKU2Onksem9YDWL9I6csaNAAJpFLBhto798vETpaGhwUxDA2Ldya2Br1un2635raG0vrQWuL7cwFvbv/Dcyrw+y635/bvHfytDzz1fbPj98EMPSs/ddzd1u/2wvlTIHrVz3S+VEjVWu5ZuDXL9mn0YZqGd3zzwMo3fBYwZgfQLEH6nfw2ZAQK1ELBlRrRvLQXyxPJXzWk0+NWyJhqkug+pdGt+ayitL7sju9jDIvW4cmt+D/zOP8u3z7pKbPh98vcPFLf8h/ZVKPy2gfWl0xbK/CXL5e5rL5TVr66PfKCk7xn1gMt99uxWsESK377SB15qe9csqqyJuzPcH597frdWuvnM/feHYRba+c0DL2vx3USfCNSXAOF32HpWHH6Hna7+WhN+19+aMiME0iDglhjR8fbrPyAXXLs1sDs3NpqHXeoOaffrfhsbdK9f/3aur9ZPPy35wEu3nXXTB1G6D6x0S62444xy1v5apk6W4RdfYsZsXxqK29rdbrkWtw/9wYANu21bd85+zW891+xrZsioy8aaB4DyQgABBNpLgPC7vaQ5DwLpFHBLjOgMbA1pDcM1WLW1pd063O7X/TY2yO20XUOuL1tju9gDL912VtItORL1vlvT2g+//bIm7ry0f7e0iV8b2w+b7Xw1VHdLsNhxRpWIKTVet8a59uOXV3HH75aVca+yqF3n7tr48ypVoiWdVzCjRgCBagsQfoeJEn6H+VH2JNCP5gggUD8Cdud3VCmSSmbplzmppG0lx5Z6eGglfXEsAgggUIkA4XclWhyLAAJJELA7v6NKfCRhfP4YbJBdrDxKEsZd6iGnSRgjY0AAgY4XIPwOW4Pg8HvtmxvkwnEzZcO7H7YZCWVPwhaH1ggggECaBKoVfhcq7VJNCw2+X1y9SqZNn8mu72rC0hcCCJQlQPhdFhMHIYBAggTSFn4rnd1xveyF18SviZ4EWg2+e3brIrYsTBLGxBgQQCCZAoTfYesSFH63tn4uP5txuxxyUB/5P332krsWPyY/HX6mNDRsI7NuWSSHH/wt6X/AvmEjTHhryp4kfIEYHgIIIIAAAgggkDABwu+ELQjDQQABBBBAAAEEEixA+B22OEHhtz78cvy0uSbw1tfVNy6QluZh5gGXK1a9LIsefEJ+PvZcE4bX64vwu15XlnkhgAACCCCAAAK1ESD8ro0rvSKAAAIIIIAAAvUoQPgdtqpVC7+bunSSadffJc0jf2jCby2H4obhYcNMbmvC7+SuDSNDAAEEEEAAAQSSKED4ncRVYUwIIIAAAggggEAyBQi/w9YlKPx2y56cOuhwU+pkz57dRf+8eOlT8uzza9j5HbY+tEYAAQQQQAABBBCoMwHC7zpbUKaDAAIIIIAAAgjUUIDwOww3KPz2T61lUEZcca2sful16dFtR7l5+hjpvUePsBEmvDU7vxO+QAwPAQQQQAABBBBImADhd8IWhOEggAACCCCAAAIJFiD8DlucqobfYUNJZ2vC73SuG6NGAAEEEEAAAQQ6SoDwu6PkOS8CCCCAAAIIIJA+AcLvsDUj/A7zE8LvQECaI4AAAggggAACGRMg/M7YgjNdBBBAAAEEEEAgQIDwOwBPRILCb7fMSdQw9t9vL5lz5aXmAZj1+iL8rteVZV4IIIAAAggggEBtBAi/a+NKrwgggAACCCCAQD0KEH6HrWpQ+F3o1PogzKtvXCA/PPVoan6HrQ+tEUAAAQQQQAABBOpMgPC7zhaU6SCAAAIIIIAAAjUUIPwOw61J+K1DWrz0KXlj/UYZfcGQsBEmvDU7vxO+QAwPAQQQQAABBBBImADhd8IWhOEggAACCCCAAAIJFiD8DlucmoXfa9/cYHZ/tzQPo+xJ2BrRGgEEEEAAAQQQQKCOBAi/62gxmQoCCCCAAAIIIFBjAcLvMGDC7zA/HngZ6EdzBBBAAAEEEEAgawKE31lbceaLAAIIIIAAAgjEFyD8jm+nLWsWfs+6ZZEZGWVPwhaI1ggggAACCCCAAAL1JUD4XV/ryWwQQAABBBBAAIFaChB+h+kGhd+btnwsI664Vla/9HqbUQw++hD5+dhzpaFhm7ARJrw1Nb8TvkAMDwEEEEAAAQQQSJgA4XfCFoThIIAAAggggAACCRYg/A5bnKDwO+zU9dGa8Ls+1pFZIIAAAggggAAC7SVA+N1e0pwHAQQQQAABBBBIvwDhd9gaBoXfuvN7/LS58tPhZ0rvPXrkjWTFqpdl0YNP1P3ub8LvsAuQ1ggggAACCCCAQNYECL+ztuLMFwEEEEAAAQQQiC9A+B3fTlvWLPxe++YGufrGBdLSPEyaGjuFjTLBrQm/E7w4DA0BBBBAAAEEEEigwMp1mxI4KoaEAAIIIIAAAgggkESB73yjKYnDSs2YahZ+L176lDz7/Bp2fqfmUmCgCCCAAAIIIIAAAu0hQPjdHsqcAwEEEEAAAQQQqA8Bwu+wdYwVfuuu7gvHzZQN735Y8Ow9uu0oN08f06YcSthwk9eand/JWxNGhAACCCCAAAIIJFmA8DvJq8PYEEAAAQQQQACBZAkQfoetR6zw256yWM3vsGGlpzXhd3rWipEigAACCCCAAAJJECD8TsIqMAYEEEAAAQQQQCAdAoTfYesUFH6Hnbo+WhN+18c6MgsEEEAAAQQQQKC9BAi/20ua8yCAAAIIIIAAAukXIPwOW8Pg8HvWLYtk43sf5tX2bm39XH4243Y55KA+cuqgw8NGmPDWhN8JXyCGhwACCCCAAAIIJEyA8DthC8JwEEAAAQQQQACBBAsQfoctTlD4bUPuISccKf0P2DdvJCtWvSyLHnyCB16GrQ+tEUAAAQQQQAABBOpMgPC7zhaU6SCAAAIIIIAAAjUUIPwOww0Kv4vV/NaHYl594wJpaR4mTY2dwkaZ4Nbs/E7w4jA0BBBAAAEEEEAggQKE3wlcFIaEAAIIIIAAAggkVIDwO2xhgsJvdn6LEH6HXYC0RgABBBBAAAEEsiZA+J21FWe+CCCAAAIIIIBAfAHC7/h22jIo/NYOtLzJ+Ja5cvP0MdJ7jx5mNLrr+8JxM2X4OSdT8ztsfWiNAAIIIIAAAgggUGcChN91tqBMBwEEEEAAAQQQqKEA4XcYbnD47YbdG979MDeaebOvaFMHPGyoyWzNzu9krgujQgABBBBAAAEEkipA+J3UlWFcCCCAAAIIIIBA8gQIv8PWpCrhtz8ErQU+4oprzZfnXHkpNb/D1ojWCCCAAAIIIIAAAnUkQPhdR4vJVBBAAAEEEEAAgRoLEH6HAVc1/NYSKENHXWlG1KPbjnmlUMKGmdzW7PxO7towMgQQQAABBBBAIIkChN9JXBXGhAACCCCAAAIIJFOA8DtsXaoSfs+6ZZHcNn9JbiRZKXmiEyb8DrsAaY0AAggggAACCGRNgPA7ayvOfBFAAAEEEEAAgfgChN/x7bRl7PDbljZZ/dLrZgQaeP/TnruaciejLxqSiXrfhN9hFx+tEUAAAQQQQACBLAoQfmdx1ZkzAggggAACCCAQT4DwO56bbRUr/C5U09t+nfA7bFFojQACCCCAAAIIIFC/AoTf9bu2zAwBBBBAAAEEEKi2AOF3mGhQ+L3brjvJz8eeKw0N25hREH6HLQatEUAAAQQQQAABBOpfgPC7/teYGSKAAAIIIIAAAtUSIPwOk4wVfrtBt5Y9sQ+3bOrSibInYetBawQQQCAVAq2trXJVyxRZuWJ5m/FOnjpNevfeS5rHjZH169+Wnj13k2nTZ0qXpiZZt26tTGgeJ3vvvY9cPn6iNDQ0pGK+DBIBBBCopgDhdzU16QsBBNIg8PofV8mdN/xHwaEeN2So9Ol7mPzymknywbsb8o7r2q2HnHPZZNm+c2MapsoYEUAAgaoLEH6HkcYOv93T8sDLsEWgNQIIIJA2ATf81rD7oL798qawedOmXPitbwy7aISceNIphN9pW2jGiwACNREg/K4JK50igEBKBP7w+FL59aJ58o0+B8qQYaPla9tsa0b+ydYtJvz+618+kbNHTZRuu+4hhY5NyVQZJgIIIFAVAcLvMMaqhN92CCtWvSxDR11p/jr46EPySqKEDTO5rVu/SO7YGBkCCCBQK4Fyw++tH2+Vzp06m2Ho7u9Nmzex87tWi0K/CCCQGgHC79QsFQNFAIEaCFQSfr/75zfljtlTzChsIF6DIdElAgggkGgBwu+w5alq+G2HUuiBmGFDTWZrwu9krgujQgCB2gqUG37rKE7/lzPl2plXy8BBx8vA408g/K7t0tA7AgikQIDwOwWLxBARQKBmAnHC769vtz2lT2q2InSMAAJJFyD8DluhmoTfYUNKV2vC73StF6NFAIHqCBSq+d25sVGmTpsuTV2aTNkTfU2a8h9y85wb5NVXX5Fzz79Abr/1Fmp+V2cZ6AUBBFIqQPid0oVj2AggUBWBSsJve2y/w38gg/91WFXOTycIIIBA2gQIv8NWjPA7zE8IvwMBaY4AAqkUqGTnt1vuREugaCkUHniZymVn0AggUCUBwu8qQdINAgikUqBU+O0/8JLgO5XLzKARQKCKAoTfYZiE32F+hN+BfjRHAIF0ClQafndpapI518+Wh5c+ZCbcr/8AuXz8RGloaEgnAKNGAAEEAgQIvwPwaIoAAqkXKBV+uw+8TP1kmQACCCBQBQHC7zBEwu8wP8LvQD+aI4BAOgXihN/r1q019b63btlC+J3OZWfUCCBQJQHC7ypB0g0CCKRSgPA7lcvGoBFAoAMFCL/D8Am/w/wIvwP9aI4AAukUiBN+60wfuP9emXvTHMLvdC47o0YAgSoJEH5XCZJuEEAglQKE36lcNgaNAAIdKED4HYZP+B3mR/gd6EdzBBBAAAEEEEAgawKE31lbceaLAAIIIIAAAgjEFyD8jm+nLQm/w/wIvwP9aI4AAggggAACCGRNgPA7ayvOfBFAAAEEEEAAgfgChN/x7Qi/w+xM69YvqtAJXSCAAAIIIIAAAghkRoDwOzNLzUQRQAABBBBAAIFgAcLvMEJ2fof5EX4H+tEcAQQQQAABBBDImgDhd9ZWnPkigAACCCCAAALxBQi/49tpS8LvMD/C70A/miOAAAIIIIAAAlkTIPzO2oozXwQQQAABBBBAIL4A4Xd8O8LvMDvTmrInVUCkCwQQSKVAa2urXNUyxYz98vETpaGhoerzmHP9bHlx9SqZNn2mdGlqqnr/dIgAAgh0hADhd0eoc04EEGgvgb99/pksmjvLnG7IsNHytW22ba9TxzrPu39+U+6YPUWOGHiqHHzUoFh90AgBBBCopQDhd5guO7/D/Ai/A/1ojgACyRF44P57Ze5Nc8yA+vUfUDLQ1uPXv/WWjBg5KjeJzZs2SfO4MbJ+/dvma5OnTpOD+vYzf163bq1MaB4nW7dsadO/htw9d99dTjzplDYgxd5Ljh4jQQABBMoXIPwu34ojEUCg/QSKhdYaEC9ZcKucMWysbN+5seig/vD4Uvlg459l8L8OM8fZfv+05oVcux9d/O+y1zcPyP1d2/x60Tzz92/0ObBoaG7D6r9+sjXXvmu3HnLOZZPN2Ny+jhsyNBdof7J1iyycO0MGn3m+dNt1j7w5VDK/9lsRzoQAAgh8KUD4HXYlEH6H+RF+B/rRHAEEkiHw/HMrTfBtd1hr4KwvN9h2R6ohd8vUyTL84kukV6/e5i27E/zAvv1MiK1h9/SWqTJu/ARzjPZ5yKGHmTDc/bMed/fCBTJy1OjI3eN6rtnXzJBRl41l93cyLhdGgQACgQKE34GANEcAgaoLuAG1Gz5rYPzLaybJB+9uEDdgLjSAqIBZv/a7JQvlmNPONrvAX//jKlk873o5e9REE0Lr33+96Be58HrJ/5trurfhuX8uDarvvvUaOf38y9qE2HquB341R0788QjTzP7ZhuL6tUK7uzU0L/Z+1dHpEAEEEChTgPC7TKgChxF+h/kRfgf60RwBBJIh4O+u9sNwf5T6/oP335u3O1xD7BtvuE7GT5hkQmo3DD/m2IFy/exZcvoZZ5ogXHeN60tDcjcIL6RRzjHJkGQUCCCAQGkBwu/SRhyBAALtK6CBc9fuu5qTahjtlyspd2e0ttUQuVi5ExuoHzfkJ2b3tz23DaX9MNyXKBZ+63u/f+Q+OfFHF5lmD9x5k3zn2JNlu05d8oLwKF23bdJLtbTv1cHZEECgowUIv8NWgPA7zI/wO9CP5ggg0PEC/o5tHZG/a9sfpRte2/eiAnN3B3nUzu+mHXYouuvb9h1VYqXj5RgBAgggEE+A8DueG60QQKA2Au5Oaw2uQ8LvcnZPu+H1Djt1N/XBNQS34XexcFsF/LIn7o70Qju/1zy3zOAVq+ldrCxKbeTpFQEEEChPgPC7PKdCRxF+h/kRfgf60RwBBDpewIbfJ5x0Sl59brdkiT/KqJ3YpdivhAAAIABJREFUUbvB3fA7qub37XNvNqVQ9DVpQrP578BBx7cpt6J9P/v0soJlWDpekREggAAC5QsQfpdvxZEIIFBbAb8+d2j4rUH6vgcMyKvn7c7AllexYbf9u4bStgZ4qfDbF9Fzbvnog9xuc7/md5++h+V2fWv5lZVP/cZ04dcd17HYneJ+TfDargK9I4AAAsUFCL/DrhDC7zA/wu9AP5ojgEDHC8TZ+V0o/HbrhuvMitUOt7W+h10wXObecqMpibLLLj3kqpYp4gbx2g/hd8dfJ4wAAQSqJ0D4XT1LekIAgTABDY5tGOz25D90styyJ8XCbxt0N+7Qtc3DMCvZ+e3PuNTY7G70PffukyuJ8tH7G9s8wJPwO+xaojUCCNROgPA7zJbwO8yP8DvQj+YIIJAMgUprfkeVPSlW81tre/svG6D37r1X3sMzCwXr7PxOxrXCKBBAIFyA8DvckB4QQKA2AqE7vwuVPYkKvu0MKq35XUn47ZZBeXf9G7l65J+1trapAU74XZtril4RQCBcgPA7zJDwO8yP8DvQj+YIIJAMAb9ed7Ed2zriqBIn/g7yYnXD7a7vkaNGGwD7MMxCO7954GUyrhNGgQAC1REg/K6OI70ggED1BULD76gHXvqlTvxR+w+4dGuQ67E6ppVPPirnXDZZtu/cKKuefUK679ZLbGkS/3i3fzeMdx9oGbXzmwdeVv96okcEEKiOAOF3mGPdhd+btnwsI664Vla/9HqkzJRx58mpgw4PU3Nat35Rta7oCAEEEOhQAd3NrWVL9NWv/wC5fPxEaWhoiBzT5k2b8nZr24P0683jxsj69W+bL02eOi1XR9weoyG5Dbt79eptvuzWA/drfmufs6+ZIaMuGytdmpo61IiTI4AAAtUQIPyuhiJ9IIBALQT88Ft3Tv/ymknywbsbcqfrd/gPcmVL/DFEPTTSf0ClbeP249bp9kuu+OG3huV33vAfuVP7x9s3osJs9zx+ze9yHtZZC3P6RAABBEoJEH6XEir+ft2F3+50bRA++qIh0v+AfcOkCrQm/K4JK50igEAKBDQsX//WWzV/CKVfkiUFNAwRAQQQKCpA+M0FggAC9SzgP0QzDXMtVTc8DXNgjAggUL8ChN9ha5u58HvWLYvkL3/5VD7+y19lyWPPiu4Ef2P9RqM4+oIh5r8rVr0six58Qn4+9lxpaNhG/N3k82ZfkQvTCb/DLkBaI4BAegVsmROdQbFd4iEz1OD7xdWrZNr0mez6DoGkLQIIJEqA8DtRy8FgEECgygK2zIl2O2TYaPnaNttW+QzV7c7uTD9i4Kly8FGDqts5vSGAAAJVECD8DkPMZPj98H89KzdPHyO99+hh9DQQ11dU+P3pZ5+ZMipDTjjSlEtZ++YGufrGBdLSPEyaGjtR8zvs+qM1AggggAACCCCQOQHC78wtORNGAAEEEEAAAQRiCxB+x6YzDTMZfrtBd6nw+8VX1sqsmxbJnCsv/TLsbv1cfjbjdhOGaykVdn6HXYC0RgABBBBAAAEEsiZA+J21FWe+CCCAAAIIIIBAfAHC7/h2hN9/tyu281vD76GjrmyjbEufEH6HXYC0RgABBBBAAAEEsiZA+J21FWe+CCCAAAIIIIBAfAHC7/h2hN9lht9u/W+fm/A77AKkNQIIIIAAAgggkDUBwu+srTjzRQABBBBAAAEE4gsQfse3I/z+u93ipU/Js8+vMQ+41JeWNdGX/t2v+a1f1wdi6ouyJ2EXH60RQCCbAg/cf6/07LmbHNS3XzBArR+IWev+gwHoAAEEUilA+J3KZWPQCGRK4A+PL5Wu3XaVvb55QGbmXW8Pvlzy/+bKG6+ukXMumyzbd27MzDoyUQTqUYDwO2xVqfktkqvjveSxZ6VHtx3lnDOOk9UvvW7C74aGbWTTlo/NQy/1a/raf7+9vqoB/kXYAtAaAQQQcAU0GJ570xyZPHVaVcLhauvq+F54bqVcPn6iNDQ0xOq+UPj9/HMrZdKEZtOnhuPTps+ULk1NBc+hxz94/715Y9m8aZM0jxsj69e/bdq5ju57fv86pvVvvSUjRo5qcz4NwHvuvruceNIpseZLIwQQQMAXIPzmmkAg3QIaDP960Tz50cX/nshwWEPcu2+9Rk4//zLptusesbCjwm8bDv/1k615fX6jz4EyZNhoeeu1l+XOG/4j9579+te22bbgGDSgXfnUb8z7Xbv1aBPUuuf8+vad5exRE82c7Br4HR83ZKgcfNQgiRprVP+2/d8+/0wWzZ1l2vqB/ydbt8jCuTNk8Jnn53nq1395zST54N0Npht77nLA/WC6lO1H72+UO2ZPEbX3XbWvrt13NWP3X8XeK2ecHIMAAskQIPwOW4e6Dr/DaMprTdmT8pw4CgEESgu0trbK9bNnmQO3+/p2kUFs6V5qe0RI+O0H0zpSG06vW7dWprdMlXHjJ0ivXr2l1HnU6qqWKXLCSafkfkhgv3Zg334mqI7qU8+p72n/9s86rtnXzJBRl42NDNtLvV9bcXpHAIF6FCD8rsdVZU5ZEdCQ9IE7bzLTbfjHr8vgfx2WuKmHhN9+oKuTKxbyu+GqG5jbMLlxh64FjfT41/+4ygTnGpD7f69kHn5AXUlbnaOOQ89vx6Jfs3P405oXxA3e3fc0KHfD9lOHjiz5AxEb+BcL4/Ucrq3+ed8DBpi+3T/rPH//yH1y4o8uMob+S10e+NUcOfHHI9j9nbjvVAaEQPkChN/lW0UdSfgd5ieE34GANEcAgZyAhrV3L1wgx59wkvzitrkyfsKkXBiru4/ff/892fjOO2ZXc+fGRpnws8mycMF8Wbliufn71GnTTXCsr2I7oLUvfdldzu4O6tZPPzU7p4/6/tFy/32LZeuWLdKv/wCzu/qddzbIhOZx5mv6cndP2/EV2hFug/3TzzhTXly9yrTVl87FhtHuzms/uPYvE33/xhuuyzPyv+aH4TrGQw49zITlOudnn15mDNwgvNDl6LblkkUAAQRCBQi/QwVpj0DHCdiwccB3j5Pf3HennDFsbC5U1PB0zfPPmMG9/for5r8aHL+8anlud7MfJLs7n/sd/oNcUBwVBC9ZcKs5n750x/H+Bx8hz/52ad5uYH1PdzBrYGtf9px6ri0ffZAX8LqSNtj/zrEnm3IZWvZEXx+8++fIXcVqYccUVVbDn4O/ajoefdkfIGgA/etFvzC7v7dtaCi4Eztq9fVcH2z8c66vSsPvYjuko3Z+u2O1c/fnU2ycGmTbuUbZubZqoT9w0XWxu961bw3d3SC80HdFOcd03HcUZ0YAgXIECL/LUSp8DOF3mB/hd6AfzRFA4CsBG8Iec+zANrua/drT+vdly57KBd5uoB21A1pD6zE/vcIEv+WE39132cUE3vrSHdZ2N3WhHdmlwm939/STTz7Rpua3PyYb3g+7aERk+Rc3vLaC+jUtGeOWS3H7dUNu++cjjjiy6K5v23exsihcwwgggEClAoTflYpxPALJEdCQVV8HHfb9NuGsvvfkw4vblOaw4XOxnc7ap4bWdqd0OeF3U9duJsi2bd1dyFFlT0qF3+4u4TXPLStZ87tUSY1SYbAt9fHNAw82obXbX9QO9EJlVKLCab+MSKmSJ2647F9t5YbfpcJ+930tEVMs/PZto3Z+b9/YpeiubzsP/wcDyfluYiQIIFCuAOF3uVLRxxF+h/kRfgf60RwBBL4UcHdGR5X98MNhP4R2/647tN0SItq/276c8NsNnd2a16XKkRRbT+3n4aUPmUP8muZ+Xe1S4XfUbu2oGuDuXKNqfmsQr69v7X9Able73enu1jSPCtu5dhFAAIG4AoTfceVoh0DHCrg7o+0O3GJlO/zdwVE7m21grTNz39fw2e3b3Qmsx+rO7+OG/CRXYsMNSyvd9eyqujvRi5U7KbXrO2pntL96tqzIp3/9RNav+1NezW+//2JlVMoJd4sF/6VKg0SF3zacd9egWPjtl1Up5hNl64b59ocAj95zhymFoi9ba9397QHrrefS3z5IYomejv2O5uwIpEeA8DtsrQi/w/wIvwP9aI4AAl8K+MGtX/aj0vDbLwni7lzuqPDbrrV9qKf+XUN2LXtS6c7vQuF3sZ3f/rXm7kaff+cduZIoUQ+4JPzmOxUBBKopQPhdTU36QqD9BPwA0w+Z/fCznPDbfcCiG3p2VPhtNd0HSvoPcrRBtBvcu6ug81487/rcDvhCK+TvbtZzrnzyUVP25C8fb25TUiUqMC436C8W1scJv3VOOh73AZ/6tajwWb9e6AGd/o70UrbW0pbfOfb0ofLI3fNMSZQdduoeWSqG8Lv9/o3gTAjUSoDwO0yW8DvMj/A70I/mCCDwpYC7K9o1KRQOp3Hntxt+a83vph12MDXOR44aLY8+8rBUUvM7KowuVfPbv9YKlZkpFKzbGuFcswgggECoAOF3qCDtEegYAXdXtDsCGw7HCb+TtvPbzss+vDKqtEaxXcvlBt825PXDf1uuZbtOXWTh3Bky+MzzTZ1rGzb7D6UsVVrFDYsL1Sf3d/T7V1fUzu+oK7CS2tqFDMvZMa/ntufq1nPPPKeoMRB+d8y/F5wVgWoKEH6HaRJ+h/kRfgf60RwBBL56OKVf39rdDX773JsNlX1IZbHwW4/TOt077bSzOV5DYbfmt9vWHqv/1Rrf9oGXhcqeRNXV1rbl1PzW3dXnDrvQBN0afuvDLm3g7e90L1VeJeqBl1G1zv3yL/Z6c3d9d2lqMuO3D8OM2vnNAy/5TkUAgWoKEH5XU5O+EGgfgagyF34g+/yy/8orVVJs57c+5NDd6Wwf8GhrfvttNdTUh1Dqrmh9FSt7Umis5dT8/t2ShXLMaWeLzkUfeKkPu3QfJFlsZ3Kp4Nadr87fH0+x93XOWhPd/WFBsV3fq559Qrrv1isXnJcKySt94KV/1UWVPCnmHWVV6a7vE390kRmGrVdeaOd3JaF8+3w3cRYEEKhUgPC7UrH84wm/w/wIvwP9aI4AAl+WPPHLdaiLBrQtUyfL8IsvkYcfetBQlRN+a61qt761tnNrbNuQeOWK5dK5sVFOOvlUeemPa8oKv922GmDbh0uWCr/ddnbNBw46Pjcf/Zo6TJrQbN52+466Rmx/J5x0St4DMYvN2+3HD7Pddn7Nbz8o55pFAAEEQgUIv0MFaY9A+wsUCnbdXcEaTrt1ukuF3zoLdze5XzLDfe97J54pf1rzgpwxbKyZfLHwW993y2zY2t2lwm8bvup57MsfU7G61lE747++fee8B4DasiYafvvnK1QCxI7HHUupoNgvSVLoYZl2nn5JG/16lIfbj2scVe6k0vC71AMz7Zj8h3O69cD9cZQq6dL+30mcEQEE4ggQfsdR+6oN4XeYH+F3oB/NEUAgewK6q1vD7YP69guafNQDLoM6LNA4aid4Lc5DnwggkB0Bwu/srDUzRSCtArbsie60zsIrqgxLPcy72I72epgfc0AgKwKE32ErTfgd5kf4HehHcwQQyJ5AtcJvldNg+sXVq3I70KutWev+qz1e+kMAgXQIEH6nY50YJQJZFsha+K1rbXdQHzHwVNFa5Gl/uaVydKc9LwQQSK8A4XfY2hF+h/kRfgf60RwBBBBAAAEEEMiaAOF31lac+SKAAAIIIIAAAvEFCL/j22lLwu8wP8LvQD+aI4AAAggggAACWRMg/M7aijNfBBBAAAEEEEAgvgDhd3w7wu8wO9O69YsqdEIXCCCAAAIIIIAAApkRIPzOzFIzUQQQQAABBBBAIFiA8DuMkJ3fYX6E34F+NEcAAQQQQAABBLImQPidtRVnvggggAACCCCAQHwBwu/4dtqS8DvMj/A70I/mCCBQPwLzbr9VvnvU96RXr95Bk2ptbZWrWqaYPi4fP1EaGhqC+otqzIMsq05KhwggUIEA4XcFWByKAAJ1K/DYfXfJt/p/R7rtukfQHP/2+WeyaO4s08eQYaPla9tsG9RfVGMeHll1UjpEAIEKBAi/K8CKOJTwO8yP8DvQj+YIIBBPQMPbh5c+lGvcr/+AoKBY+9PXiJGj4g1IRAqF3w/cf6/MvWmO6beccerx6996K28szz+3UiZNaDZ99Oy5m0ybPlO6NDWZv69bt1YmNI+TrVu2tOlf59Vz993lxJNOaTOvYu/FRqAhAgggUIYA4XcZSByCAAJVFdDwduVTv8n1+Y0+BwYFxdqfvgb/67DY4ywUfv/h8aXy60XzTL/ljFOP/2Djn/PG8vofV8mdN/yH6aNrtx5yzmWTZfvOjebv7/75Tblj9hT56ydb2/Sv8+rafVc5+KhBbeZV7L3YCDREAAEEyhAg/C4DqcghhN9hfoTfgX40RwCBygQK7YrWwFhD4YP69qusw78fHRJ+u+Gzdte5sVGmTptudoBraK3Btw2rS51n86ZN0jJ1sgy/+JLcDnLtf3rLVBk3foL5ms71hedW5sJ+7fOQQw8zc3f/rO3uXrhARo4aHbl7XM81+5oZMuqysbkgPRYejRBAAIEKBQi/KwTjcAQQiC1QaFe0BsZdu+0qe33zgFh9h4TfbvisJ//69p3l7FETzQ5wDa1/vegXubC61Hk+2bpFFs6dIYPPPD+3g1z7v/vWa+T08y8zX9O5ar92V7j2ue8BA8zc3T9ru98/cp+c+KOLIneP67ke+NUcOfHHI3JBeiw8GiGAAAIVChB+VwjmHU74HeZH+B3oR3MEEKhMwA+To1q7YbQbROux7i5s/fvkqdNMF3ZXtf7Z7s5u/fRTaR43RgYef0Lkzmk91g2Q77v3HlP25MXVq3JBvL+7utT49f0H7783bxe7vxPcDcN32aWHXD97lpx+xpm5YFzHpTu93SC8kHI5x1S2QhyNAAIIlBYg/C5txBEIIFAdAT9MjurVDaPdIFqPdXdh699/dPG/my7srmr9s92d/Vlrq/zymknS74hjIndO67FugPzsbx8yZU/eeHVNLoj3d1eXGr++r2N0y534O8HdMHyHnbrLA3feJN859uRcMK7j0p3ebhBeSL+cY6qzcvSCAAIIfCVA+B12NRB+h/kRfgf60RwBBCoTKGfntAbWwy4aYXZCa5g88+orzU5sfd14w3UyfsIks9NZQ+S1r78m3z/6GBMU68ste6LBdqnw291dvWD+nXk1v+0u9QP79suF5/4ubn/2GnTryy1T4o/NjsvOMWrnd9MOOxTd9W3PG1VipbIV4WgEEECgcgHC78rNaIEAAvEEytk5rYH1cUN+YnZCa5i8eN71Zie2vpYsuFXOGDbW7HTWEHnj2+vkgEOONEGxvtyyJxpslwq/3d3Vv1t6d17Nb7tLXcdhy474u7h9BQ269eWWKfHHZsdl5xi183v7xi5Fd33b80aVWIm3MrRCAAEEyhcg/C7fKupIwu8wP8LvQD+aI4BAZQKl6lT7O6vdAFrLotgg3H8oZalQvdAobf8rVyzPK3eix9v3TjjplFw5llLhd9RObH/OfvgdVfP79rk3m1Io+rK72gcOOr5NTXP1evbpZUG1zitbQY5GAAEERAi/uQoQQKC9BErVqfZ3VrsBtJZFsUG4/1DKUqF6ofnZ/v+05oW8cid6vH1Pg2xbjqVU+B21E9ufsx9+R9X8fvSeO0wpFH3ZXe39Dv9Bm5rm6vXyquVBtc7ba+05DwII1I8A4XfYWhJ+h/kRfgf60RwBBCoTKBVSR5UNccNjt+yJ++DIUv2WM0r3IZxaTuWbff5ZrmqZIpXs/C4Ufuv57a50P/z2x2Z3ow+7YLjMveVGUxJFy6PoWNwgXtsRfpezshyDAALVFiD8rrYo/SGAQCGBUiF1VNkQNzx2y564D44s1W85K+I+hFPLqez+T/vKormzTPBd7s7vQuG3nt/uSvfDb39sdjf6sacPlUfunmdKomh5FB2LG8RrO8LvclaWYxBAoNoChN9hooTfYX6E34F+NEcAgcoEyqmZ7T5gMqr0iD2jG3hXI/yed/utpuzJpo8+yu2mrrTmd1TZk2I1v/0d7Do3G6D37r1X3sMzo4J1wu/Krj+ORgCB6ggQflfHkV4QQKC0QDk1s90HTEaVHrFncQPvaoTfj913lyl78smWzbnd1JXW/I4qe1Ks5re/g13nZgP0bj33zHt4ZlSwTvhd+prjCAQQqL4A4XeYKeF3mB/hd6AfzRFAoDIBG2Zrq8vHT5SGhgbTgQbEupNbA1+3Trdb81tDaX1pLXAbEut/dUe1tn/huZV5fZZb8/t3j/9Whp57vtjw++GHHpSeu+9u6nb7YX2pkD1q57pfKiVqrFbRrUGuX7MPwyy085sHXlZ2/XE0AghUR4DwuzqO9IIAAqUFbJitR/oPhdSyJhr4unW63ZrfGkrry5YgcQNvDZj1WLfPcmt+v7ji93L0yT8UG36vfPJR6dp9V7PL2g/rS4XsUTvX/VIpUWO1cm4NcvOZ+u8Pwyy085sHXpa+5jgCAQSqL0D4HWZK+B3mR/gd6EdzBBCIJ+CWGNEe+vUfkAuu3RrYnRsbzcMudYe0+3W/jQ26169/O9dX66eflnzgpdvOzkQfROk+sNItteKOM2rm2l/L1Mky/OJLzJjtS0NxW7vbLdfi9qE/GLBht23rztmv+a3nmn3NDBl12VjzAFBeCCCAQHsJEH63lzTnQQABK+CWGNGvfaPPgbng2q2B/fXtO5uHXeoOaffrfhsbdH/w7oZcX5+1tpZ84KXbzo7tuCFD8x5Y6ZZacccZtZra38K5M2TwmeebMduXhuK2drdbrsXtQ38wYMNu29ads1/zW8/1wK/myIk/HmEeAMoLAQQQaC8Bwu8wacLvMD/C70A/miOAQP0I2J3fUaVIKpmlX+akkraVHFvq4aGV9MWxCCCAQCUChN+VaHEsAgjUq4Dd+R1ViqSSOftlTippW8mxpR4eWklfHIsAAghUIkD4XYlW22MJv8P8CL8D/WiOAAL1I1Ct8LtQaZdqSmnw/eLqVTJt+kx2fVcTlr4QQKAsAcLvspg4CAEE6lygWuF3odIu1eTT4PuNV9fIOZdNZtd3NWHpCwEEyhIg/C6LqeBBhN9hfoTfgX40RwABBBBAAAEEsiZA+J21FWe+CCCAAAIIIIBAfAHC7/h22pLwO8yP8DvQj+YIIIAAAggggEDWBAi/s7bizBcBBBBAAAEEEIgvQPgd347wO8zOtG79ogqd0AUCCCCAAAIIIIBAZgQIvzOz1EwUAQQQQAABBBAIFiD8DiNk53eYH+F3oB/NEUAAAQQQQACBrAkQfmdtxZkvAggggAACCCAQX4DwO76dtiT8DvMj/A70ozkCCCCAAAIIIJA1AcLvrK0480UAAQQQQAABBOILEH7HtyP8DrMzrSl7UgVEukAAAQQQQAABBDIkQPidocVmqggggAACCCCAQKAA4XcYIDu/w/wIvwP9aI4AAggggAACCGRNgPA7ayvOfBFAAAEEEEAAgfgChN/x7bQl4XeYH+F3oB/NEUAAAQQQQACBrAkQfmdtxZkvAggggAACCCAQX4DwO74d4XeYnWlN2ZMqINIFAggggAACCCCQIQHC7wwtNlNFAAEEEEAAAQQCBQi/wwDZ+R3mR/gd6EdzBBBAAAEEEEAgawKE31lbceaLAAIIIIAAAgjEFyD8jm+nLQm/w/wIvwP9aI4AAggggAACCGRNgPA7ayvOfBFAAAEEEEAAgfgChN/x7Qi/w+xMa8qeVAGRLhBAAAEEEEAAgQwJEH5naLGZKgIIIIAAAgggEChA+B0GyM7vMD/C70A/miOAAAIIIIAAAlkTIPzO2oozXwQQQAABBBBAIL4A4Xd8O21J+B3mR/gd6EdzBBBAAAEEEEAgawKE31lbceaLAAIIIIAAAgjEFyD8jm9H+B1mZ1pT9qQKiHSBAAIIIIAAAghkSIDwO0OLzVQRQAABBBBAAIFAAcLvMEB2fof5EX4H+tEcAQQQQAABBBDImgDhd9ZWnPkigAACCCCAAALxBQi/49tpS8LvMD9aI4AAAggggAACCCCAAAIIIIAAAggggAACCCRQgPA7gYvCkBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTCBAi/w/xojQACCCCAAAIIIIAAAggggAACCCCAAAIIIJBAAcLvBC4KQ0IAAQTSLNDa+rn8bMbtcshBfeTUQYeneSqMHQEEEEAAAQQQQAABBBBAAAEEUixA+J3ixWPoCCCAQK0FNm35WEZcca2sfun1vFNNGXdewWCb8LvWq0L/CCCAAAIIIIBAsgVm3bJIbpu/JHKQg48+RH4+9lxpaNgm2ZNgdAgggAACdSFA+F0Xy8gkEEAAgdoI2PB79EVDpP8B+5Z1EsLvspg4CAEEEEAAAQQQyISABuH6Gn3BkEzMl0kigAACCCRLgPA7WevBaBBAAIFECRQLvxcvfUomTr8tN955s68wAbkffvu7x93dPv57to9EITAYBBBAAAEEEEAAgdgCfvitnyGffX6NdNru67Lg/t/KeWcNlj17djdfszvC1765Qa6+cYG0NA+TpsZO5tzuZ092j8deDhoigAACmRMg/M7ckjNhBBBAoHyBQuG3Btx3L/mdnD74u+ZXVvVmZNGDT8icKy+Vf9x227ya33rDozc0tv73XYsfk0HfP9gMQkuqDDnhSPNe1E1O+SPlSAQQQAABBBBAAIEkCkSF37qBwt30YAPxQuG3+1lTw3D/82US582YEEAAAQSSIUD4nYx1YBQIIIBAIgWian5H7bTR4Hr8lbdKyxXnS49uXXPh96DvHWz+3H3nHdv8quuKVS/LrJsWmcBcb2LsjnENw8stsZJINAaFAAIIIIAAAgggkBMotPPbrftdLPz2N1Zox/o5UjdeUDucCw0BBBBAoJQA4XcpId5HAAEEMixQrOyJBt4XjpspG9790Aj16Laj3Dx9TF74rTu6/QDdPixTb1qGjrqyjS6lTzJ8wTF1BBBAAAEEEKg7gWqF30tAKvvFAAAgAElEQVQeezbPhtIndXepMCEEEECgJgKE3zVhpVMEEECgPgQKhd82+G4ZP8zs0i6089uWOrEa7nEfbt7Kjp36uEyYBQIIIIAAAgggUFCgWuE3vx3IRYYAAgggEEeA8DuOGm0QQACBjAgUC79tmZPee/Qwv3o6vmVum53fWvbErQ3uht9NXTrl1fxWUu1HX5Q9ycgFxjQRQAABBBBAoO4Fygm//XJ42mbFCy/nyuP5Nb/958/UPSITRAABBBCILUD4HZuOhggggED9CxQre6I3JbfNX2IQvrVfb/Nfv+a37vx2j9Nj3LImfkmU/ffbK3eTU/+6zBABBBBAAAEEEKh/gXLCb1VwPzM2j/yhLFvxorQ0DzPPhtGXBuD6oEz7sqX06l+QGSKAAAIIhAgQfofo0RYBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgkQKE34lcFgaFAAIIIIAAAggggAACCCCAAAIIIIAAAgggECJA+B2iR1sEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBRAoQfidyWRgUAggggAACCCCAAAIIIIAAAggggAACCCCAQIgA4XeIHm0RQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEilA+J3IZWFQCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAiEChN8herRFAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQSKQA4Xcil4VBIYAAAggggAACCCCAAAIIIIAAAggggAACCIQIEH6H6NEWAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIJEChN+JXBYGhQACCCCAAAIIIIAAAggggAACCCCAAAIIIBAiQPgdokdbBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgUQKEH4nclkYFAIIIIAAAggggAACCCCAAAIIIIAAAggggECIAOF3iB5tEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBIpQPidyGVhUAgggAACCCCAAAIIIIAAAggggAACCCCAAAIhAoTfIXq0RQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEikAOF3IpeFQSGAAAIIIIAAAggggAACCCCAAAIIIIAAAgiECBB+h+jRFgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCCRAoTfiVwWBoUAAggggAACCCBQDwKbtnwsI664VkZfNET6H7Bvh01p8dKn5Nnn18jPx54rDQ3bdNg4ODECCCCAAAIIIIAAAu0pQPjdntqcCwEEEEAAAQQQQKDDBWbdskhum78kbxznnTVYRl8wpOpj88NvDaEXPfiEzLnyUmlq7FT0fCtWvSyzblpU1rGlBk74XUqI9xFAAAEEEEAAAQTqUYDwux5XlTkhgAACCCCAAAIIFBTQ8Hvjex/mdkHbgLr/gftWPQAP2flN+M1FjAACCCCAAAIIIIBAmADhd5gfrRFAAAEEEEAAAQRSJuCH3zp8d0f248v+25QIOf7oQ2X4FbPM7ObNvsKULVn75ga5cNxM2fDuh+brUTvGo3aW2/ZRO7D9Pvffby+5/N/OlJ9OuSl3Hv9c2s/E6bfl5G3/9gt+n/r1wUcfQtmTlF2rDBcBBBBAAAEEEEAgTIDwO8yP1ggggAACCCCAAAIpEygn/NZg2Q+2NVAef+Wt0nLF+dJ7jx7S2vq5/GzG7dJ95x1zO8YL7Sq3Nb/98NuG1C3jh+Vqgj/yxAr5Rq9d5cPNW/9/e3cbc0dVJwD8UNdSoFCxttQCtrzIQoyKri6YDVETPmxozLpEsq4mK4qosJtgQEltotloUhoUol9URFzcbAxaY2JIURNwMWbXEl2i7JoapFDeSqEWeITyUqRuzjXzOB3m3rlz58x9nrnze7705Zk558zv/O+ZM/977rml255UlVFWpm1POhakmkuAAAECBAgQIJBEQPI7CaNCCBAgQIAAAQIEuiJQTFBnyeJLPvDucP555wxWgZd9OWQ8b/0JawbHZD/5rUmeePKpQ5Lj8ZiyPb/zZccy40/ZfuNl257E8jZddX345CXvHSTgs598OWVlSn53JTq1kwABAgQIECBAIKWA5HdKTWURIECAAAECBAgseoGybUk+d+VF80ntskRxtsp7263bX3J9cZuS+AWW9+x6+CUrtUclv2NBceX4Be96x/yq73zhZcnvsu1MsnPiSvVL/+nvBmWe/ebXHZKkl/xe9GGpgQQIECBAgAABAi0ISH63gKpIAgQIECBAgACBxStQtu1JvrWjkt/FpHIxWb315tsP2Ve7jeR3fuuVonKWpC8m1CW/F288ahkBAgQIECBAgEB7ApLf7dkqmQABAgQIECBAYBEKTJL8jpcxaouS+Pth25RcuvGLYdie36PKjKu8P/+Vm8LmT10cjl1x9ECymEwflvy28nsRBp4mESBAgAABAgQITF1A8nvq5CokQIAAAQIECBBYSIFJk98xuX3hZVtCfouUmIz+t2//cLDdSPwpbjmSbbFy45c2DrY2Ka7AzsrMfh/LyL7wMv79o1deE/Jfhpkl4X9w2/Zw3dVXzO/7Hct58OG9g61Oikn4bKuUN73+tYesSl/IPlA3AQIECBAgQIAAgWkISH5PQ1kdBAgQIECAAAECi0Zg0uR3vICyPbeLyfC40vuuHTsH13vtv/5zuPHbPxy68jsekyXAM6BsD/G42jsmyz999Q2DX8U9vbMvxsz/f/zd2uNWHpIMz/9+w7lnh1hmbNNnP/GhsGzZ0kXTFxpCgAABAgQIECBAoE0Bye82dZVNgAABAgQIECBAgAABAgQIECBAgAABAgsiIPm9IOwqJUCAAAECBAgQIECAAAECBAgQIECAAIE2BSS/29RVNgECBAgQIECAAAECBAgQIECAAAECBAgsiIDk94Kwq5QAAQIECBAgQIAAAQIECBAgQIAAAQIE2hSQ/G5TV9kECBAgQIAAAQIECBAgQIAAAQIECBAgsCACkt8Lwq5SAgQIECBAgAABAgQIECBAgAABAgQIEGhTQPK7TV1lEyBAgAABAgQIECBAgAABAgQIECBAgMCCCEh+Lwi7SgkQIECAAAECBAgQIECAAAECBAgQIECgTQHJ7zZ1lU2AAAECBAgQIECAAAECBAgQIECAAAECCyIg+b0g7ColQIAAAQIECBAgQIAAAQIECBAgQIAAgTYFJL/b1FU2AQIECBAgQIAAAQIECBAgQIAAAQIECCyIgOT3grCrlAABAgQIECBAgAABAgQIECBAgAABAgTaFJD8blNX2QQIECBAgAABAgQIECBAgAABAgQIECCwIAKS3wvCrlICBAgQIECAAAECBAgQIECAAAECBAgQaFNA8rtNXWUTIECAAAECBAgQIECAAAECBAgQIECAwIIISH63zP69W34att/56/DZT3woLFu2tLXamtRz7de2Dtp1+UcueEn7nph7Kly68Yvh8o9dEN76xtNba7+CCRAgQIAAAQIECBAgQIAAAQIECBAgkFJA8ruBZpYYvmvHztJSPnflRYP/72Pyu2hz45c2jkye1z2+Qbc5lQABAgQIECBAgAABAgQIECBAgACBHghIfifq5GErpJusyK7TtCb1pF75/dxzB8JnvvCNcPabXxfOP++ccO/9u8OmLV8Pmzd+OJy8bu1LLqvu8XVcHEuAAAECBAgQIECAAAECBAgQIECAQD8FJL8T9XtV8vvoo44MN33/x4PaslXQ2Tkbzj07fPM7Pxz87rqrrwhrj3vVIHm87dbtg/+LK8hjEjn+xETyR6+8Jux+dN/g3xe9b8Ngu5Is+V1WTzxu1MrqYvK7WEe+zfHv8fg9j+0bupVLPP/zX7kpbP7UxeHYFUeHYnK7SF73+ERdphgCBAgQIECAAAECBAgQIECAAAECBGZYQPI7UeeOSn5/+uob5hPeP//Vb8K1X90avrzl44Oa437aJx6/aj6RnCWK16xeOUhqx3I3XXV9+OQl751Pil/wrncMthCJx35320/Ceza8Pdzy4zvCsHqOOPzwl6zEjgn0zZsuHpSTT35n1xHriAn3suuqSn7nrzEmv7OEefyzbF/xuscn6jLFECBAgAABAgQIECBAgAABAgQIECAwwwKS34k6t2rld/aFl/lVzlnyO/9lkmVbhMRk8/oT1oR3/s2Zg2R5lpjON7247Um+nieefOol247kE975vxcT0ZN84WUsY+vNtx+yMnzU1ip1j0/UZYohQIAAAQIECBAgQIAAAQIECBAgQGCGBSS/E3VuyuR3fluTrHnZ1ifFLUmyLVSqkt/5bUhimfH4XQ/tGazELia/84nrSZPf2ep2K78TBZhiCBAgQIAAAQIECBAgQIAAAQIECBCoJSD5XYtr+MEpk9/FRPWwWvOrtP/zv34Ztt/56/nV1gu58rvuHt51j0/UZYohQIAAAQIECBAgQIAAAQIECBAgQGCGBSS/E3VuquR3cc/v2LyYHP7tfQ+Hv37T6eGW2+4I7z//3EGrx01+Z3t+Z/uIZ6vHR+35nW3FEuu48LIt83uWx3qr9vwufsFlcSuX4r7iVccn6iLFECBAgAABAgQIECBAgAABAgQIECDQIwHJ70SdnSr5HZuTJYO33bp90Lq1x60M1119xfwXXhb//+R1awfbmAxb+R23Hsnad9eOnYMys+1SsmR2/DP7Msos4R3/b8O5Z4cHH94b8vuSVyW/43mj6ismv6uOT9RFiiFAgAABAgQIECBAgAABAgQIECBAoEcCkt896myXSoAAAQIECBAgQIAAAQIECBAgQIAAgb4ISH73paddJwECBAgQIECAAAECBAgQIECAAAECBHokIPndo852qQQIECBAgAABAgQIECBAgAABAgQIEOiLgOR3X3radRIgQIAAAQIECBAgQIAAAQIECBAgQKBHApLfPepsl0qAAAECBAgQIECAAAECBAgQIECAAIG+CEh+96WnXScBAgQIECBAgAABAgQIECBAgAABAgR6JCD53aPOdqkECBAgQIAAAQIECBAgQIAAAQIECBDoi4Dkd1962nUSIECAAAECBAgQIECAAAECBAgQIECgRwKS3y129u+ffi7sf/b5cOCFFwe1LH35y8JRRxwejlm+rMVaFU2AAAECBAgQIECAAAECBAgQIECAAAECkt+JY+DgwT+GB/c8EXY/NheWLFkSlh+5NCxd+heDWl448GJ46pnnw8GDB8Pa1SvCiWuODUuWHJa4BYojQIAAAQIECBAgQIAAAQIECBAgQIAAAcnvhDGw78n94e5dj4UVy48Ix61aMUh8l/08/cyB8OjeuTD39LPhtPWrw8pXHJWwFYoiQIAAAQIECBAgQIAAAQIECBAgQIAAAcnvRDHwyN65sPOB34VT1q0Kr1wxXjL78bn9Yef9e8Mpr3lVePWqFYlaohgCBAgQIECAAAECBAgQIECAAAECBAgQkPxOEANxxfeOnXvCGaeuHbrae1g1cRX4jnt2hzNOWWMFeIK+UAQBAgQIECBAgAABAgQIECBAgAABAgSigOR3wziIe3zfcdeusP6ElWOv+C5WGVeA73poXzjrDevtAd6wP5xOgAABAgQIECBAgAABAgQIECBAgAABye8EMXD/7sfD/mcODLY7afITtz856silYd3aVzYpxrkECBAgQIAAAQIECBAgQIAAAQIECBAgYOV38xj42S/vC6edtKb2difFmuP2J3fftye87cyTmjdKCQQIECBAgAABAgQIECBAgAABAgQIEOi5gG1PGgTA759+Luy499Fw5hknNCjlz6f+z/89EJ5//oUQDktSnEIIECBAgAABAgQIECBAgAABAgQIEFikAu8867RF2rLZaZbkd4O+fGTvXHhi7tnGW55kTfjt/Y+FFcuXhdUrj2nQKqcSIECAAAECBAgQIECAAAECBAgQILDYBf77zp1BArzdXpL8buAb9/s+8IcXw2tenWaf7gceeTwsOeywcMKaYxu0yqkECBAgQIAAAQIECBAgQIAAAQIECCx2Acnv9ntI8ruBseR3AzynEiBAgAABAgQIECBAgAABAgQIEOixgOR3+50v+d3AOG578vjcM+HUdasblPLnU++5f284Zvnhtj1JoqkQAgQIECBAgAABAgQIECBAgAABAotXQPK7/b6R/G5g7AsvG+A5lQABAgQIECBAgAABAgQIECBAgEDPBez53W4ASH439P3ZL+8Lp520Jiw/cmmjkp5+5kC4+7494W1nntSoHCcTIECAAAECBAgQIECAAAECBAgQIECAQAiS3w2jIO77vf+ZA+GUdasalbTz/r3hqCOXhnVr03x5ZqPGOJkAAQIECBAgQIAAAQIECBAgQIAAAQIdF5D8btiBBw/+Mdxx166w/oSV4ZUrjpqotMfn9oddD+0LZ71hfViy5LCJynASAQIECBAgQIAAAQIECBAgQIAAAQIECPxZQPI7QTTse3J/2LFzTzjj1LW1tz+J253suGd3OOOUNWHlKyZLnie4BEUQIECAAAECBAgQIECAAAECBAgQIEBgpgQkvxN15yN758LOB3432P5k3BXgccV33O7klNe8Krx61YpELVEMAQIECBAgQIAAAQIECBAgQIAAAQIECEh+J4yBuAL87l2PhRXLjwjHrVoxdBV4XO396N65MPf0s+G09aut+E7YB4oiQIAAAQIECBAgQIAAAQIECBAgQIBAFJD8ThwHcQ/wB/c8EXY/NheWLFkSjj7y8PDypS8b1HLgwB9CTHwfPHgwrF29Ipy45lh7fCf2VxwBAgQIECBAgAABAgQIECBAgAABAgQkv1uOgd8//VzY/+zz4cALLw5qWvryl4Wjjjg8HLN8Wcs1K54AAQIECBAgQIAAAQIECBAgQIAAAQL9FrDyu9/97+oJECBAgAABAgQIECBAgAABAgQIECAwkwKS3zPZrS6KAAECBAgQIECAAAECBAgQIECAAAEC/RaQ/O53/7t6AgQIECBAgAABAgQIECBAgAABAgQIzKSA5PdMdquLIkCAAAECBAgQIECAAAECBAgQIECAQL8FJL+n0P9vectbwi9+8Ysp1LR4q2AQQt8N+n798dXZd4O+X78Y8BoQA2JADPxprtr3+0Hfr18MeA2IATEgBsSAGBAD08xgSn5PQdsE14vawC4GxIAYEANiQAyIATEg+S0GxIAYEANiQAyIATEgBqaQjM1VIfk9BW/Jbw+7BjYxIAbEgBgQA2JADIgBD7tiQAyIATEgBsSAGBADYmAKyVjJ7+kiS3572DWwiQExIAbEgBgQA2JADHjYFQNiQAyIATEgBsSAGBAD083LWvk9BW/Jbw+7BjYxIAbEgBgQA2JADIgBD7tiQAyIATEgBsSAGBADYmAKydhcFZLfU/CW/Pawa2ATA2JADIgBMSAGxIAY8LArBsSAGBADYkAMiAExIAamkIyV/J4usuS3h10DmxgQA2JADIgBMSAGxICHXTEgBsSAGBADYkAMiAExMN28rJXf0/VWGwECBAgQIECAAAECBAgQIECAAAECBAhMQUDyewrIqiBAgAABAgQIECBAgAABAgQIECBAgACB6QpIfk/XW20ECBAgQIAAAQIECBAgQIAAAQIECBAgMAUBye8pIKuCAAECBAgQIECAAAECBAgQIECAAAECBKYrIPk9XW+1ESBAgAABAgQIECBAgAABAgQIECBAgMAUBCS/p4CsCgIECBAgQIAAAQIECBAgQIAAAQIECBCYroDk93S91UaAAAECBAgQIECAAAECBAgQIECAAAECUxCQ/E6E/L1bfho+ffUNg9I2nHt2+OwnPhSWLVs6tPS6xydqZrJinnvuQPjMF74Rtt26fVDm5668KJx/3jlDyx91/BNzT4VLN34x3LVj5/z5a49bGa67+opw8rq1ydrcdkGT9Om99+8On//KTWHzpy4Ox644uu0mJi2/bgxklUenXQ/tCZd/5IJD2nPt17aGG7617ZD/q4qrpBeUoLCf/+o34cLLtgxKesMZp4Qvb/n40H6Nff/RK68Jux/dN9bxCZrXShF14r7Yx8X+7VsMFMe+qphppQMTFFonBopxX7xf9i0G8vyZzSUfePfI+2mCLkteRJ0YyFeejZk3fmljeOsbTx/8Kl9WduxF79vwkntG8otIWGDxtZ2/vrJq+hb3VfO+PsZAjIs6c4iE4ZqsqEnan4/9/Ou8eK8YZ16V7EISFVRnnlz2mujiNdcZ+8pe5/Gas7lh32IgXnvRr2v3vrJrqLr/Ffs5/2wgBqpzLImGq6TF1BkHYsXFfs7HTNV8IWnDWy6sTt5n0nl1y5fQ+eIlvxN0YZzsXfvVrfOJrjiRiz/F5F5WVd3jEzQxeRH5a8wGpcs/dsH8w2uxwlHHj3N+8gtIXGDdPs0P5F1NeNWNgfxDUdlkrup1k7jLkhcXb2ibtnw9bN744cGbNvGmtf3OXw99Iyx6PPjw3vkkV7z+PY/tq3zjLHnDGxRYJ+7jQ+CX//374YP/8LeDNwSyic7mTRfPjxt9j4GqmGnQVa2dWicGYiPiNZ54/Kqhfd63GMg6Jj/x7+KbfnXmQPm5UPZmYTH5PWrsbC2YExWcJbzOfvPrBuN78d5QVk3f4r5q3tfFsTDfr5PEQHEsTRSOUyum7hwoNmxU3I/zupnaxU1YUd15crGaYYtFJmxO66dNEvf5RsVxYdNV14dPXvLewTy6bzFQ9Cv+u/UOTFBB3Rgo3guK/+57DJQ9KyXoplaLaBoD8V64afP184sgq+YLrV5MosLr5n3qPlslamYvipH8TtDNcXKz/oQ180msqgls3eMTNDFpEcXJSdUEtur4WRjUJu3TOu8AJu3EhoVV9emo4ket/I7nDXvTqGGTWz+9eF11J2xV40brFzBBBZPGfayqbFLf9QSQGPjTysV8IrQqrIpJrj7GQDae/ssH/z58c+uPQpY0rbJbLL+fZBzI7n1XXvqPYdNVXw/5N8+7nvgs3tfHSWD0Le6r5n19i4GyOdVieX2P24669794r9h68+1D3/CvO4cat53TOq7JPDm2sYsxMcnYl++PujE0rb6ctJ66MVA2Lnbt3lA3Boqv87qJ00n7Zlrn1Y2Bsjn0rMdA8X5fjIGq+cK0+jJFPePmfSaZV6doXx/KkPxu2MtlDzWjJmx1j2/YvFZOL7u+UQ8qVcc/+/zzh2x70rUtT5r06biDYCsd2aDQqj6t2vJnnG1Purb6sTg5qXuz7trDfpO4zx7s4nZH+aRX1bYoDUJ2Kqc2jYGurf5vGgPZ+WtWr5x/06tvMZAfJ17/lycPthPrUvJ7khjI3z+OfcXRg/t/MfmdbSMXX7hd+9j3JA+vfY37bLu74ryvuB3CrMdA2Uf7u3bNde9/ZVte5D8BUjTp2qckm8yT47jXtVXfsc2TjH3Z5KwsSdjHGMheF/G1cOr64w9ZCT+ViWzDSiaJgTh2/OC27YOVvvEnvx1o32KgzK9rz4d1Y6Ds+so+NTNsvtAwZKd6+jh5n0nm1VO9iI5XJvndsAOzAL3gXe+Y/xj3OMnvcY9v2LxWTi974VYlv4v7Wo86Pv4urgYZtV9yKxc2YaF1YyBfzTiD4ITNavW0ujGQb8w4E/oufsyr+C5tneR3F1c4NYn7GA9VKxn6FAPZw07XHu6bxECW7Bv1HRmzHgNFv3FWCLc6sE9QeN0YKCY4qsbJ7PdxzjTqe0UmaHprp5StaK0a74rzgvh9EPktoVprbKKCm9z/skTfsHlfH2KgGDNdvOa6MVC2si3/UfdiaHbtzeEm8+QurvrOkt/F1fzjjn3jPBv0IQay54Ho+b877u3km791YyCOf9d89Tth3+Nzg+9BGrX4adZjoGxO1MXkd50YKHsGHjVudC1PVDfvU3denWga15tiJL8bdnXdd2fqHt+wea2cXnc1Q93juzbpa9KnXU5+5/e3zh5ex9mndZwJbpYczW8n1EowJyy07qqnrOouJvhi25vE/biT1+LDccLuaqWoSWMga0zdLUNauYgahTaJgayaqkn9LMdAfg/AIntXPvlSNwbKVrhm1z7sS7HGvWfUCN1WD6276qmsMbMc92XXWzXvm/UYKHvDpGpsbDWIJyi87v2vGONVb/51bb5c99knTz5uwniCbmr1lEnHvnEXgMx6DBTHwbJPx7XagQkKrxsDxT6teuNv1mMgdkH+O7KyLunSJ4HqxkCWQ8h/4i/+37B5cNV8IUEYt1bEOPFbd17dWmNntGDJ7wQdW3dfnrrHJ2hi0iLq7l+V4vikF9BCYZP26TiDYAvNbVxk3T7NVzjuQ2zXHv4n2auwq4nvrD8niftxE9+xjj7EQP610cUJ3SQxkL/mqjGwTzFQlfxpPHC3VECTGKha+Z09FJVtldXS5TQuthjTk/Rrn+I+gleNfePOGxp3XqIC6sbAsFXCXYr7unOg4vFlq93q3CsSdV2yYiadJ4+bCE7W0IQF1Y37/Fwy/r3qO3+q5gsJLyVJUXVjoMmnBZI0OEEhdWOg7ielZj0GyrogzgfOOev18zsMJOimVouoGwPFxsR7Qdwx4P3nnzv44tviT9V8odWLa1j4uPHbZF7dsIkzf7rkd4IurvpG1mKyp+r4BE1qvYj8qoTiw2vZu7ajjo8e8eetbzx98GfXVrvENlf16bCP6Iw7CLbeoRNUMKpPY3HDkpxlD7ExZm657Y7BjS7+dHHyX2xzMY6LMdDFayyGSVXcF2Ng1GqmPsZAjIkTj191yNjXpS2fxhn7ijHwtf+4OZx7zl/NT2jzv4/f/zDr48CoN7wmSZJOMHQnP6VqHBj1EdXi/CEafHfbT8J7Nrw9xO+OGCc5nvyCGhZY7MfiWF+MgT6OfaPmfZF/1mOgOE8urvDsYtxXzYGKcV/8d3Ec+dHtPw+vPen4Q+4VMTaqEqQNX75JT6/7rJTNnbt2nRla3bGvar7ftxioGheSBmdLhdWNgbL7YfwekGyrs1mPgVHPy13NiVTFQNXq/pyyE2gAAAKdSURBVOKz4izkibKX27C8zyzmClsaYhoXK/ndmPBPBeS/uKW4h2lZEnDU8Yma1Gox2cC27dbtg3ryH00pG9RGHZ/d+OI+X/Gna/veZtCj+rT48F/2cfcufaQpXvOoPi27mZd9jCv7mHuxrHj+sI/AtxrYDQvPX2MxjosxkI+XfLVdu+5xx77iF9tm15yNl/Hf8cv+sjGlDzHQh7GvbEJ34WVb5kM+f7/swzgwi8nvqjlQneR3du+44Vvb5mOkK1vA5Mfx4j2+7Iv8sj29+xD3ZW/+xn3Nh8374rgxyzFQNk8uxkwX437UHKhs7MsfX/zS0+KccdT3QzScurV2et1npa5tfVYGN8nYN+xLnvsYA8V5YdeeDWNM1ImBeHyxn/Nj36zHQNnzcv65qov9XxUDwxZJZvf84r1vFp6VqvI+s5grbO3G2rBgye+GgE4nQIAAAQIECBAgQIAAAQIECBAgQIAAgcUnIPm9+PpEiwgQIECAAAECBAgQIECAAAECBAgQIECgoYDkd0NApxMgQIAAAQIECBAgQIAAAQIECBAgQIDA4hOQ/F58faJFBAgQIECAAAECBAgQIECAAAECBAgQINBQQPK7IaDTCRAgQIAAAQIECBAgQIAAAQIECBAgQGDxCUh+L74+0SICBAgQIECAAAECBAgQIECAAAECBAgQaCgg+d0Q0OkECBAgQIAAAQIECBAgQIAAAQIECBAgsPgEJL8XX59oEQECBAgQIECAAAECBAgQIECAAAECBAg0FJD8bgjodAIECBAgQIAAAQIECBAgQIAAAQIECBBYfAKS34uvT7SIAAECBAgQIECAAAECBAgQIECAAAECBBoKSH43BHQ6AQIECBAgQIAAAQIECBAgQIAAAQIECCw+gf8HTg3Xwa6M9RYAAAAASUVORK5CYII=", + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "var_metrics_df, invar_metrics_df, __ = bc.confusion_matrix_plot(\n", + " true_y = y_test, \n", + " predicted_proba = test_predicted_proba, \n", + " threshold_step = threshold_step, \n", + " amounts = amounts, \n", + " cost_dict = test_cost_dict, \n", + " optimize_threshold = optimize_threshold, \n", + " #N_subsets = 70, subsets_size = 0.2, # default\n", + " #with_replacement = False, # default\n", + " currency = currency,\n", + " random_state = 123,\n", + " title = 'Interactive Confusion Matrix for the Testing Set');" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "fd3e069f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
thresholdaccuracybalanced_accuracycohens_kappaf1_scorematthews_corr_coefprecisionrecall
00.000.2050.50000.00000.34020.00000.20501.0000
10.050.3700.60380.09700.39420.22570.24551.0000
20.100.6000.74840.28820.50620.41030.33881.0000
30.150.7650.85220.49420.63570.57290.46591.0000
40.200.8500.87850.62190.71700.65250.58460.9268
50.250.9100.88910.73810.79550.74090.74470.8537
60.300.9250.88950.77200.81930.77210.80950.8293
70.350.9200.84110.73540.78380.74190.87880.7073
80.400.9300.84740.76390.80560.77500.93550.7073
90.450.9200.81390.71900.76470.74170.96300.6341
100.500.8900.73170.57860.63330.63801.00000.4634
110.550.8750.69510.50440.56140.58071.00000.3902
120.600.8600.65850.42470.48150.51921.00000.3171
130.650.8350.59760.27820.32650.40201.00000.1951
140.700.8250.57320.21420.25530.34631.00000.1463
150.750.8200.56100.18090.21740.31531.00000.1220
160.800.7950.50000.00000.00000.00001.00000.0000
170.850.7950.50000.00000.00000.00001.00000.0000
180.900.7950.50000.00000.00000.00001.00000.0000
190.950.7950.50000.00000.00000.00001.00000.0000
201.000.7950.50000.00000.00000.00001.00000.0000
\n", + "
" + ], + "text/plain": [ + " threshold accuracy balanced_accuracy cohens_kappa f1_score \\\n", + "0 0.00 0.205 0.5000 0.0000 0.3402 \n", + "1 0.05 0.370 0.6038 0.0970 0.3942 \n", + "2 0.10 0.600 0.7484 0.2882 0.5062 \n", + "3 0.15 0.765 0.8522 0.4942 0.6357 \n", + "4 0.20 0.850 0.8785 0.6219 0.7170 \n", + "5 0.25 0.910 0.8891 0.7381 0.7955 \n", + "6 0.30 0.925 0.8895 0.7720 0.8193 \n", + "7 0.35 0.920 0.8411 0.7354 0.7838 \n", + "8 0.40 0.930 0.8474 0.7639 0.8056 \n", + "9 0.45 0.920 0.8139 0.7190 0.7647 \n", + "10 0.50 0.890 0.7317 0.5786 0.6333 \n", + "11 0.55 0.875 0.6951 0.5044 0.5614 \n", + "12 0.60 0.860 0.6585 0.4247 0.4815 \n", + "13 0.65 0.835 0.5976 0.2782 0.3265 \n", + "14 0.70 0.825 0.5732 0.2142 0.2553 \n", + "15 0.75 0.820 0.5610 0.1809 0.2174 \n", + "16 0.80 0.795 0.5000 0.0000 0.0000 \n", + "17 0.85 0.795 0.5000 0.0000 0.0000 \n", + "18 0.90 0.795 0.5000 0.0000 0.0000 \n", + "19 0.95 0.795 0.5000 0.0000 0.0000 \n", + "20 1.00 0.795 0.5000 0.0000 0.0000 \n", + "\n", + " matthews_corr_coef precision recall \n", + "0 0.0000 0.2050 1.0000 \n", + "1 0.2257 0.2455 1.0000 \n", + "2 0.4103 0.3388 1.0000 \n", + "3 0.5729 0.4659 1.0000 \n", + "4 0.6525 0.5846 0.9268 \n", + "5 0.7409 0.7447 0.8537 \n", + "6 0.7721 0.8095 0.8293 \n", + "7 0.7419 0.8788 0.7073 \n", + "8 0.7750 0.9355 0.7073 \n", + "9 0.7417 0.9630 0.6341 \n", + "10 0.6380 1.0000 0.4634 \n", + "11 0.5807 1.0000 0.3902 \n", + "12 0.5192 1.0000 0.3171 \n", + "13 0.4020 1.0000 0.1951 \n", + "14 0.3463 1.0000 0.1463 \n", + "15 0.3153 1.0000 0.1220 \n", + "16 0.0000 1.0000 0.0000 \n", + "17 0.0000 1.0000 0.0000 \n", + "18 0.0000 1.0000 0.0000 \n", + "19 0.0000 1.0000 0.0000 \n", + "20 0.0000 1.0000 0.0000 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
invariant_metricvalue
0roc_auc0.9713
1pr_auc0.9175
2brier_score0.0772
\n", + "
" + ], + "text/plain": [ + " invariant_metric value\n", + "0 roc_auc 0.9713\n", + "1 pr_auc 0.9175\n", + "2 brier_score 0.0772" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# the two dataframes returned\n", + "display(var_metrics_df, invar_metrics_df)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "c00e0cec", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
invariant_metricvalue
0roc_auc0.9713
1pr_auc0.9175
2brier_score0.0772
\n", + "
" + ], + "text/plain": [ + " invariant_metric value\n", + "0 roc_auc 0.9713\n", + "1 pr_auc 0.9175\n", + "2 brier_score 0.0772" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# the invariant metric dataframe can be obtained directly with \n", + "# the function get_invariant_metrics_df from the utilities module\n", + "\n", + "bc.utilities.get_invariant_metrics_df(true_y = y_test, \n", + " predicted_proba = test_predicted_proba)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "0c029219", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[151, 8],\n", + " [ 7, 34]])" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
threshold_dependent_metricvalue
0accuracy0.9250
1balanced_accuracy0.8895
2f1_score0.8193
3precision0.8095
4recall0.8293
5cohens_kappa0.7720
6matthews_corr_coef0.7721
\n", + "
" + ], + "text/plain": [ + " threshold_dependent_metric value\n", + "0 accuracy 0.9250\n", + "1 balanced_accuracy 0.8895\n", + "2 f1_score 0.8193\n", + "3 precision 0.8095\n", + "4 recall 0.8293\n", + "5 cohens_kappa 0.7720\n", + "6 matthews_corr_coef 0.7721" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# for a specific threshold, \n", + "# the confusion matrix and a dataframe containing the list of metrics visualized in the first table of\n", + "# the interactive confusion matrix plot, can be obtained directly with\n", + "# the function get_confusion_matrix_and_metrics_df from the utilities module\n", + "\n", + "conf_matrix, metrics_fixed_thresh_df = bc.utilities.get_confusion_matrix_and_metrics_df(\n", + " true_y = y_test, \n", + " predicted_proba = test_predicted_proba,\n", + " threshold = 0.3 # default = 0.5\n", + ")\n", + "\n", + "display(conf_matrix, metrics_fixed_thresh_df)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "291a9a46", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
optimized_metricoptimal_threshold
0kappa0.25
1f1_score0.25
2f2_score0.25
3f05_score0.35
4cost0.35
\n", + "
" + ], + "text/plain": [ + " optimized_metric optimal_threshold\n", + "0 kappa 0.25\n", + "1 f1_score 0.25\n", + "2 f2_score 0.25\n", + "3 f05_score 0.35\n", + "4 cost 0.35" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# the optimized thresholds dataframe can be obtained directly with \n", + "# the function get_optimized_thresholds_df from the thresholds module\n", + "\n", + "# this function requires a list of thresholds instead of the step, for example:\n", + "threshold_values = np.arange(0.05, 1, 0.05) # will generate an array of values from 0 to 1 with step 0.05\n", + "\n", + "# in this case, we will optimize thresholds using the train dataset \n", + "# (best practice would be using a validation dataset different from both train and test)\n", + "\n", + "# to otpimize for minimal cost, we need a train_cost_dict \n", + "train_cost_dict = bc.get_cost_dict(TN = 0, FP = 10, \n", + " FN = np.abs(X_train[:, 12]), TP = 0)\n", + "\n", + "bc.thresholds.get_optimized_thresholds_df(optimize_threshold = ['Kappa', 'Fscore', 'Cost'], \n", + " threshold_values = threshold_values, \n", + " true_y = y_train, \n", + " predicted_proba = train_predicted_proba,\n", + " cost_dict = train_cost_dict, \n", + " N_subsets = 70, subsets_size = 0.2, with_replacement = False, # default\n", + " random_state = 120)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "534ced79", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.25" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# to directly optimize a threshold for one specific metric in {'ROC', 'MCC', 'Kappa', 'F1'}, \n", + "# the function get_optimal_threshold from the thresholds module can be used:\n", + "\n", + "# if ThOpt_metrics = Fscore, 3 values will be returned (optimal threshold for beta = 1, for beta = 2 and for beta = 0.5)\n", + "\n", + "bc.thresholds.get_optimal_threshold(y_train, \n", + " train_predicted_proba, \n", + " threshold_values, \n", + " ThOpt_metrics = 'ROC', # default = 'Kappa'\n", + " N_subsets = 70, subsets_size = 0.2, with_replacement = False, # defaults\n", + " random_seed = 120)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "b744cfe1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.35000000000000003" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# to directly optimize a threshold for minimal cost, \n", + "# the function get_cost_optimal_threshold from the thresholds module can be used (cost_dict must be given):\n", + "\n", + "bc.thresholds.get_cost_optimal_threshold(y_train, \n", + " train_predicted_proba, \n", + " threshold_values, \n", + " cost_dict = train_cost_dict,\n", + " N_subsets = 70, subsets_size = 0.2, with_replacement = False, # defaults\n", + " random_seed = 120)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "c892d14a", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "hovertemplate": "amount: $%{y}", + "line": { + "color": "blue" + }, + "mode": "lines", + "showlegend": false, + "type": "scatter", + "x": [ + 0, + 0.05, + 0.1, + 0.15000000000000002, + 0.2, + 0.25, + 0.30000000000000004, + 0.35000000000000003, + 0.4, + 0.45, + 0.5, + 0.55, + 0.6000000000000001, + 0.65, + 0.7000000000000001, + 0.75, + 0.8, + 0.8500000000000001, + 0.9, + 0.9500000000000001, + 1 + ], + "xaxis": "x", + "y": [ + 0, + 54.5467065616779, + 131.95000175794513, + 201.4503160105346, + 244.5318358200174, + 272.4184414787458, + 281.06648097675094, + 289.9992099023209, + 296.2801442025236, + 297.985566670654, + 301.37432355334465, + 301.37432355334465, + 301.37432355334465, + 301.37432355334465, + 301.37432355334465, + 301.37432355334465, + 301.37432355334465, + 301.37432355334465, + 301.37432355334465, + 301.37432355334465, + 301.37432355334465 + ], + "yaxis": "y" + }, + { + "hovertemplate": "cost: $%{y}", + "line": { + "color": "rgb(128, 177, 211)" + }, + "mode": "lines", + "showlegend": false, + "type": "scatter", + "x": [ + 0, + 0.05, + 0.1, + 0.15000000000000002, + 0.2, + 0.25, + 0.30000000000000004, + 0.35000000000000003, + 0.4, + 0.45, + 0.5, + 0.55, + 0.6000000000000001, + 0.65, + 0.7000000000000001, + 0.75, + 0.8, + 0.8500000000000001, + 0.9, + 0.9500000000000001, + 1 + ], + "xaxis": "x", + "y": [ + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ], + "yaxis": "y" + }, + { + "hovertemplate": "%{x}", + "marker": { + "color": "black", + "size": 8, + "symbol": "diamond" + }, + "mode": "markers", + "showlegend": false, + "type": "scatter", + "x": [], + "xaxis": "x", + "y": [], + "yaxis": "y" + }, + { + "hovertemplate": "amount: $%{y}", + "line": { + "color": "red" + }, + "mode": "lines", + "showlegend": false, + "type": "scatter", + "x": [ + 0, + 0.05, + 0.1, + 0.15000000000000002, + 0.2, + 0.25, + 0.30000000000000004, + 0.35000000000000003, + 0.4, + 0.45, + 0.5, + 0.55, + 0.6000000000000001, + 0.65, + 0.7000000000000001, + 0.75, + 0.8, + 0.8500000000000001, + 0.9, + 0.9500000000000001, + 1 + ], + "xaxis": "x2", + "y": [ + 301.37432355334465, + 246.8276169916668, + 169.42432179539952, + 99.92400754281005, + 56.8424877333273, + 28.95588207459878, + 20.307842576593828, + 11.375113651023785, + 5.094179350820981, + 3.3887568826906, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "cost: $%{y}", + "line": { + "color": "rgb(251, 128, 114)" + }, + "mode": "lines", + "showlegend": false, + "type": "scatter", + "x": [ + 0, + 0.05, + 0.1, + 0.15000000000000002, + 0.2, + 0.25, + 0.30000000000000004, + 0.35000000000000003, + 0.4, + 0.45, + 0.5, + 0.55, + 0.6000000000000001, + 0.65, + 0.7000000000000001, + 0.75, + 0.8, + 0.8500000000000001, + 0.9, + 0.9500000000000001, + 1 + ], + "xaxis": "x2", + "y": [ + 1590, + 1260, + 800, + 470, + 270, + 120, + 80, + 40, + 20, + 10, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "%{x}", + "marker": { + "color": "black", + "size": 8, + "symbol": "diamond" + }, + "mode": "markers", + "showlegend": false, + "type": "scatter", + "x": [ + 0.5 + ], + "xaxis": "x2", + "y": [ + 0 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "amount: $%{y}", + "line": { + "color": "#00CC96" + }, + "mode": "lines", + "showlegend": false, + "type": "scatter", + "x": [ + 0, + 0.05, + 0.1, + 0.15000000000000002, + 0.2, + 0.25, + 0.30000000000000004, + 0.35000000000000003, + 0.4, + 0.45, + 0.5, + 0.55, + 0.6000000000000001, + 0.65, + 0.7000000000000001, + 0.75, + 0.8, + 0.8500000000000001, + 0.9, + 0.9500000000000001, + 1 + ], + "xaxis": "x3", + "y": [ + 0, + 0, + 0, + 0, + 2.0005780977462937, + 7.486198698122663, + 8.033847777827688, + 15.090451925531804, + 15.090451925531804, + 20.449524840031142, + 32.3379239843765, + 39.28510651078162, + 44.417826782676855, + 58.042549841214466, + 59.65460157187306, + 62.096735533989744, + 72.86745537208714, + 72.86745537208714, + 72.86745537208714, + 72.86745537208714, + 72.86745537208714 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "cost: $%{y}", + "line": { + "color": "rgb(141, 211, 199)" + }, + "mode": "lines", + "showlegend": false, + "type": "scatter", + "x": [ + 0, + 0.05, + 0.1, + 0.15000000000000002, + 0.2, + 0.25, + 0.30000000000000004, + 0.35000000000000003, + 0.4, + 0.45, + 0.5, + 0.55, + 0.6000000000000001, + 0.65, + 0.7000000000000001, + 0.75, + 0.8, + 0.8500000000000001, + 0.9, + 0.9500000000000001, + 1 + ], + "xaxis": "x3", + "y": [ + 0, + 0, + 0, + 0, + 5.979009492207711, + 9.90664676341642, + 11.436406307633218, + 18.91665102794109, + 18.91665102794109, + 26.541711980570135, + 36.51271105083246, + 46.89785726845953, + 51.48228951704443, + 63.12448167214795, + 65.07540726526575, + 67.2225223778225, + 75.9665774440284, + 75.9665774440284, + 75.9665774440284, + 75.9665774440284, + 75.9665774440284 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "%{x}", + "marker": { + "color": "black", + "size": 8, + "symbol": "diamond" + }, + "mode": "markers", + "showlegend": false, + "type": "scatter", + "x": [], + "xaxis": "x3", + "y": [], + "yaxis": "y3" + }, + { + "hovertemplate": "amount: $%{y}", + "line": { + "color": "#AB63FA" + }, + "mode": "lines", + "showlegend": false, + "type": "scatter", + "x": [ + 0, + 0.05, + 0.1, + 0.15000000000000002, + 0.2, + 0.25, + 0.30000000000000004, + 0.35000000000000003, + 0.4, + 0.45, + 0.5, + 0.55, + 0.6000000000000001, + 0.65, + 0.7000000000000001, + 0.75, + 0.8, + 0.8500000000000001, + 0.9, + 0.9500000000000001, + 1 + ], + "xaxis": "x4", + "y": [ + 72.86745537208714, + 72.86745537208714, + 72.86745537208714, + 72.86745537208714, + 70.86687727434084, + 65.38125667396447, + 64.83360759425945, + 57.77700344655533, + 57.77700344655533, + 52.41793053205599, + 40.529531387710634, + 33.58234886130552, + 28.449628589410278, + 14.82490553087267, + 13.21285380021408, + 10.770719838097396, + 0, + 0, + 0, + 0, + 0 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "cost: $%{y}", + "line": { + "color": "rgb(190, 186, 218)" + }, + "mode": "lines", + "showlegend": false, + "type": "scatter", + "x": [ + 0, + 0.05, + 0.1, + 0.15000000000000002, + 0.2, + 0.25, + 0.30000000000000004, + 0.35000000000000003, + 0.4, + 0.45, + 0.5, + 0.55, + 0.6000000000000001, + 0.65, + 0.7000000000000001, + 0.75, + 0.8, + 0.8500000000000001, + 0.9, + 0.9500000000000001, + 1 + ], + "xaxis": "x4", + "y": [ + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "%{x}", + "marker": { + "color": "black", + "size": 8, + "symbol": "diamond" + }, + "mode": "markers", + "showlegend": false, + "type": "scatter", + "x": [ + 0.8 + ], + "xaxis": "x4", + "y": [ + 0 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "blue", + "size": 8 + }, + "mode": "markers+text", + "name": "0.0", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": true, + "x": [ + 0 + ], + "xaxis": "x", + "y": [ + 0 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(128, 177, 211)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.0", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": true, + "x": [ + 0 + ], + "xaxis": "x", + "y": [ + 0 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "red", + "size": 8 + }, + "mode": "markers+text", + "name": "0.0", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": true, + "x": [ + 0 + ], + "xaxis": "x2", + "y": [ + 301.37432355334465 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(251, 128, 114)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.0", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": true, + "x": [ + 0 + ], + "xaxis": "x2", + "y": [ + 1590 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#00CC96", + "size": 8 + }, + "mode": "markers+text", + "name": "0.0", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": true, + "x": [ + 0 + ], + "xaxis": "x3", + "y": [ + 0 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(141, 211, 199)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.0", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": true, + "x": [ + 0 + ], + "xaxis": "x3", + "y": [ + 0 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#AB63FA", + "size": 8 + }, + "mode": "markers+text", + "name": "0.0", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": true, + "x": [ + 0 + ], + "xaxis": "x4", + "y": [ + 72.86745537208714 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(190, 186, 218)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.0", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": true, + "x": [ + 0 + ], + "xaxis": "x4", + "y": [ + 0 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "blue", + "size": 8 + }, + "mode": "markers+text", + "name": "0.05", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.05 + ], + "xaxis": "x", + "y": [ + 54.5467065616779 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(128, 177, 211)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.05", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.05 + ], + "xaxis": "x", + "y": [ + 0 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "red", + "size": 8 + }, + "mode": "markers+text", + "name": "0.05", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.05 + ], + "xaxis": "x2", + "y": [ + 246.8276169916668 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(251, 128, 114)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.05", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.05 + ], + "xaxis": "x2", + "y": [ + 1260 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#00CC96", + "size": 8 + }, + "mode": "markers+text", + "name": "0.05", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.05 + ], + "xaxis": "x3", + "y": [ + 0 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(141, 211, 199)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.05", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.05 + ], + "xaxis": "x3", + "y": [ + 0 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#AB63FA", + "size": 8 + }, + "mode": "markers+text", + "name": "0.05", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.05 + ], + "xaxis": "x4", + "y": [ + 72.86745537208714 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(190, 186, 218)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.05", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.05 + ], + "xaxis": "x4", + "y": [ + 0 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "blue", + "size": 8 + }, + "mode": "markers+text", + "name": "0.1", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.1 + ], + "xaxis": "x", + "y": [ + 131.95000175794513 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(128, 177, 211)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.1", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.1 + ], + "xaxis": "x", + "y": [ + 0 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "red", + "size": 8 + }, + "mode": "markers+text", + "name": "0.1", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.1 + ], + "xaxis": "x2", + "y": [ + 169.42432179539952 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(251, 128, 114)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.1", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.1 + ], + "xaxis": "x2", + "y": [ + 800 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#00CC96", + "size": 8 + }, + "mode": "markers+text", + "name": "0.1", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.1 + ], + "xaxis": "x3", + "y": [ + 0 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(141, 211, 199)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.1", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.1 + ], + "xaxis": "x3", + "y": [ + 0 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#AB63FA", + "size": 8 + }, + "mode": "markers+text", + "name": "0.1", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.1 + ], + "xaxis": "x4", + "y": [ + 72.86745537208714 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(190, 186, 218)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.1", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.1 + ], + "xaxis": "x4", + "y": [ + 0 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "blue", + "size": 8 + }, + "mode": "markers+text", + "name": "0.15000000000000002", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.15000000000000002 + ], + "xaxis": "x", + "y": [ + 201.4503160105346 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(128, 177, 211)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.15000000000000002", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.15000000000000002 + ], + "xaxis": "x", + "y": [ + 0 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "red", + "size": 8 + }, + "mode": "markers+text", + "name": "0.15000000000000002", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.15000000000000002 + ], + "xaxis": "x2", + "y": [ + 99.92400754281005 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(251, 128, 114)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.15000000000000002", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.15000000000000002 + ], + "xaxis": "x2", + "y": [ + 470 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#00CC96", + "size": 8 + }, + "mode": "markers+text", + "name": "0.15000000000000002", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.15000000000000002 + ], + "xaxis": "x3", + "y": [ + 0 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(141, 211, 199)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.15000000000000002", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.15000000000000002 + ], + "xaxis": "x3", + "y": [ + 0 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#AB63FA", + "size": 8 + }, + "mode": "markers+text", + "name": "0.15000000000000002", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.15000000000000002 + ], + "xaxis": "x4", + "y": [ + 72.86745537208714 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(190, 186, 218)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.15000000000000002", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.15000000000000002 + ], + "xaxis": "x4", + "y": [ + 0 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "blue", + "size": 8 + }, + "mode": "markers+text", + "name": "0.2", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.2 + ], + "xaxis": "x", + "y": [ + 244.5318358200174 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(128, 177, 211)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.2", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.2 + ], + "xaxis": "x", + "y": [ + 0 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "red", + "size": 8 + }, + "mode": "markers+text", + "name": "0.2", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.2 + ], + "xaxis": "x2", + "y": [ + 56.8424877333273 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(251, 128, 114)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.2", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.2 + ], + "xaxis": "x2", + "y": [ + 270 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#00CC96", + "size": 8 + }, + "mode": "markers+text", + "name": "0.2", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.2 + ], + "xaxis": "x3", + "y": [ + 2.0005780977462937 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(141, 211, 199)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.2", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.2 + ], + "xaxis": "x3", + "y": [ + 5.979009492207711 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#AB63FA", + "size": 8 + }, + "mode": "markers+text", + "name": "0.2", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.2 + ], + "xaxis": "x4", + "y": [ + 70.86687727434084 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(190, 186, 218)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.2", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.2 + ], + "xaxis": "x4", + "y": [ + 0 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "blue", + "size": 8 + }, + "mode": "markers+text", + "name": "0.25", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.25 + ], + "xaxis": "x", + "y": [ + 272.4184414787458 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(128, 177, 211)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.25", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.25 + ], + "xaxis": "x", + "y": [ + 0 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "red", + "size": 8 + }, + "mode": "markers+text", + "name": "0.25", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.25 + ], + "xaxis": "x2", + "y": [ + 28.95588207459878 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(251, 128, 114)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.25", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.25 + ], + "xaxis": "x2", + "y": [ + 120 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#00CC96", + "size": 8 + }, + "mode": "markers+text", + "name": "0.25", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.25 + ], + "xaxis": "x3", + "y": [ + 7.486198698122663 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(141, 211, 199)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.25", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.25 + ], + "xaxis": "x3", + "y": [ + 9.90664676341642 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#AB63FA", + "size": 8 + }, + "mode": "markers+text", + "name": "0.25", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.25 + ], + "xaxis": "x4", + "y": [ + 65.38125667396447 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(190, 186, 218)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.25", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.25 + ], + "xaxis": "x4", + "y": [ + 0 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "blue", + "size": 8 + }, + "mode": "markers+text", + "name": "0.30000000000000004", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.30000000000000004 + ], + "xaxis": "x", + "y": [ + 281.06648097675094 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(128, 177, 211)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.30000000000000004", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.30000000000000004 + ], + "xaxis": "x", + "y": [ + 0 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "red", + "size": 8 + }, + "mode": "markers+text", + "name": "0.30000000000000004", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.30000000000000004 + ], + "xaxis": "x2", + "y": [ + 20.307842576593828 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(251, 128, 114)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.30000000000000004", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.30000000000000004 + ], + "xaxis": "x2", + "y": [ + 80 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#00CC96", + "size": 8 + }, + "mode": "markers+text", + "name": "0.30000000000000004", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.30000000000000004 + ], + "xaxis": "x3", + "y": [ + 8.033847777827688 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(141, 211, 199)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.30000000000000004", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.30000000000000004 + ], + "xaxis": "x3", + "y": [ + 11.436406307633218 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#AB63FA", + "size": 8 + }, + "mode": "markers+text", + "name": "0.30000000000000004", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.30000000000000004 + ], + "xaxis": "x4", + "y": [ + 64.83360759425945 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(190, 186, 218)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.30000000000000004", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.30000000000000004 + ], + "xaxis": "x4", + "y": [ + 0 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "blue", + "size": 8 + }, + "mode": "markers+text", + "name": "0.35000000000000003", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.35000000000000003 + ], + "xaxis": "x", + "y": [ + 289.9992099023209 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(128, 177, 211)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.35000000000000003", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.35000000000000003 + ], + "xaxis": "x", + "y": [ + 0 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "red", + "size": 8 + }, + "mode": "markers+text", + "name": "0.35000000000000003", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.35000000000000003 + ], + "xaxis": "x2", + "y": [ + 11.375113651023785 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(251, 128, 114)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.35000000000000003", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.35000000000000003 + ], + "xaxis": "x2", + "y": [ + 40 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#00CC96", + "size": 8 + }, + "mode": "markers+text", + "name": "0.35000000000000003", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.35000000000000003 + ], + "xaxis": "x3", + "y": [ + 15.090451925531804 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(141, 211, 199)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.35000000000000003", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.35000000000000003 + ], + "xaxis": "x3", + "y": [ + 18.91665102794109 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#AB63FA", + "size": 8 + }, + "mode": "markers+text", + "name": "0.35000000000000003", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.35000000000000003 + ], + "xaxis": "x4", + "y": [ + 57.77700344655533 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(190, 186, 218)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.35000000000000003", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.35000000000000003 + ], + "xaxis": "x4", + "y": [ + 0 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "blue", + "size": 8 + }, + "mode": "markers+text", + "name": "0.4", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.4 + ], + "xaxis": "x", + "y": [ + 296.2801442025236 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(128, 177, 211)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.4", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.4 + ], + "xaxis": "x", + "y": [ + 0 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "red", + "size": 8 + }, + "mode": "markers+text", + "name": "0.4", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.4 + ], + "xaxis": "x2", + "y": [ + 5.094179350820981 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(251, 128, 114)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.4", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.4 + ], + "xaxis": "x2", + "y": [ + 20 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#00CC96", + "size": 8 + }, + "mode": "markers+text", + "name": "0.4", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.4 + ], + "xaxis": "x3", + "y": [ + 15.090451925531804 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(141, 211, 199)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.4", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.4 + ], + "xaxis": "x3", + "y": [ + 18.91665102794109 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#AB63FA", + "size": 8 + }, + "mode": "markers+text", + "name": "0.4", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.4 + ], + "xaxis": "x4", + "y": [ + 57.77700344655533 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(190, 186, 218)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.4", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.4 + ], + "xaxis": "x4", + "y": [ + 0 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "blue", + "size": 8 + }, + "mode": "markers+text", + "name": "0.45", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.45 + ], + "xaxis": "x", + "y": [ + 297.985566670654 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(128, 177, 211)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.45", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.45 + ], + "xaxis": "x", + "y": [ + 0 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "red", + "size": 8 + }, + "mode": "markers+text", + "name": "0.45", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.45 + ], + "xaxis": "x2", + "y": [ + 3.3887568826906 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(251, 128, 114)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.45", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.45 + ], + "xaxis": "x2", + "y": [ + 10 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#00CC96", + "size": 8 + }, + "mode": "markers+text", + "name": "0.45", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.45 + ], + "xaxis": "x3", + "y": [ + 20.449524840031142 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(141, 211, 199)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.45", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.45 + ], + "xaxis": "x3", + "y": [ + 26.541711980570135 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#AB63FA", + "size": 8 + }, + "mode": "markers+text", + "name": "0.45", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.45 + ], + "xaxis": "x4", + "y": [ + 52.41793053205599 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(190, 186, 218)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.45", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.45 + ], + "xaxis": "x4", + "y": [ + 0 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "blue", + "size": 8 + }, + "mode": "markers+text", + "name": "0.5", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.5 + ], + "xaxis": "x", + "y": [ + 301.37432355334465 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(128, 177, 211)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.5", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.5 + ], + "xaxis": "x", + "y": [ + 0 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "red", + "size": 8 + }, + "mode": "markers+text", + "name": "0.5", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.5 + ], + "xaxis": "x2", + "y": [ + 0 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(251, 128, 114)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.5", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.5 + ], + "xaxis": "x2", + "y": [ + 0 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#00CC96", + "size": 8 + }, + "mode": "markers+text", + "name": "0.5", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.5 + ], + "xaxis": "x3", + "y": [ + 32.3379239843765 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(141, 211, 199)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.5", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.5 + ], + "xaxis": "x3", + "y": [ + 36.51271105083246 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#AB63FA", + "size": 8 + }, + "mode": "markers+text", + "name": "0.5", + "showlegend": false, + "textposition": [ + "bottom right" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.5 + ], + "xaxis": "x4", + "y": [ + 40.529531387710634 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(190, 186, 218)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.5", + "showlegend": false, + "textposition": [ + "top right" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.5 + ], + "xaxis": "x4", + "y": [ + 0 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "blue", + "size": 8 + }, + "mode": "markers+text", + "name": "0.55", + "showlegend": false, + "textposition": [ + "bottom left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.55 + ], + "xaxis": "x", + "y": [ + 301.37432355334465 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(128, 177, 211)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.55", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.55 + ], + "xaxis": "x", + "y": [ + 0 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "red", + "size": 8 + }, + "mode": "markers+text", + "name": "0.55", + "showlegend": false, + "textposition": [ + "bottom left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.55 + ], + "xaxis": "x2", + "y": [ + 0 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(251, 128, 114)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.55", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.55 + ], + "xaxis": "x2", + "y": [ + 0 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#00CC96", + "size": 8 + }, + "mode": "markers+text", + "name": "0.55", + "showlegend": false, + "textposition": [ + "bottom left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.55 + ], + "xaxis": "x3", + "y": [ + 39.28510651078162 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(141, 211, 199)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.55", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.55 + ], + "xaxis": "x3", + "y": [ + 46.89785726845953 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#AB63FA", + "size": 8 + }, + "mode": "markers+text", + "name": "0.55", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.55 + ], + "xaxis": "x4", + "y": [ + 33.58234886130552 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(190, 186, 218)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.55", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.55 + ], + "xaxis": "x4", + "y": [ + 0 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "blue", + "size": 8 + }, + "mode": "markers+text", + "name": "0.6000000000000001", + "showlegend": false, + "textposition": [ + "bottom left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.6000000000000001 + ], + "xaxis": "x", + "y": [ + 301.37432355334465 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(128, 177, 211)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.6000000000000001", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.6000000000000001 + ], + "xaxis": "x", + "y": [ + 0 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "red", + "size": 8 + }, + "mode": "markers+text", + "name": "0.6000000000000001", + "showlegend": false, + "textposition": [ + "bottom left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.6000000000000001 + ], + "xaxis": "x2", + "y": [ + 0 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(251, 128, 114)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.6000000000000001", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.6000000000000001 + ], + "xaxis": "x2", + "y": [ + 0 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#00CC96", + "size": 8 + }, + "mode": "markers+text", + "name": "0.6000000000000001", + "showlegend": false, + "textposition": [ + "bottom left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.6000000000000001 + ], + "xaxis": "x3", + "y": [ + 44.417826782676855 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(141, 211, 199)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.6000000000000001", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.6000000000000001 + ], + "xaxis": "x3", + "y": [ + 51.48228951704443 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#AB63FA", + "size": 8 + }, + "mode": "markers+text", + "name": "0.6000000000000001", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.6000000000000001 + ], + "xaxis": "x4", + "y": [ + 28.449628589410278 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(190, 186, 218)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.6000000000000001", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.6000000000000001 + ], + "xaxis": "x4", + "y": [ + 0 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "blue", + "size": 8 + }, + "mode": "markers+text", + "name": "0.65", + "showlegend": false, + "textposition": [ + "bottom left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.65 + ], + "xaxis": "x", + "y": [ + 301.37432355334465 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(128, 177, 211)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.65", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.65 + ], + "xaxis": "x", + "y": [ + 0 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "red", + "size": 8 + }, + "mode": "markers+text", + "name": "0.65", + "showlegend": false, + "textposition": [ + "bottom left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.65 + ], + "xaxis": "x2", + "y": [ + 0 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(251, 128, 114)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.65", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.65 + ], + "xaxis": "x2", + "y": [ + 0 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#00CC96", + "size": 8 + }, + "mode": "markers+text", + "name": "0.65", + "showlegend": false, + "textposition": [ + "bottom left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.65 + ], + "xaxis": "x3", + "y": [ + 58.042549841214466 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(141, 211, 199)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.65", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.65 + ], + "xaxis": "x3", + "y": [ + 63.12448167214795 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#AB63FA", + "size": 8 + }, + "mode": "markers+text", + "name": "0.65", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.65 + ], + "xaxis": "x4", + "y": [ + 14.82490553087267 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(190, 186, 218)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.65", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.65 + ], + "xaxis": "x4", + "y": [ + 0 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "blue", + "size": 8 + }, + "mode": "markers+text", + "name": "0.7000000000000001", + "showlegend": false, + "textposition": [ + "bottom left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.7000000000000001 + ], + "xaxis": "x", + "y": [ + 301.37432355334465 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(128, 177, 211)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.7000000000000001", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.7000000000000001 + ], + "xaxis": "x", + "y": [ + 0 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "red", + "size": 8 + }, + "mode": "markers+text", + "name": "0.7000000000000001", + "showlegend": false, + "textposition": [ + "bottom left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.7000000000000001 + ], + "xaxis": "x2", + "y": [ + 0 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(251, 128, 114)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.7000000000000001", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.7000000000000001 + ], + "xaxis": "x2", + "y": [ + 0 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#00CC96", + "size": 8 + }, + "mode": "markers+text", + "name": "0.7000000000000001", + "showlegend": false, + "textposition": [ + "bottom left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.7000000000000001 + ], + "xaxis": "x3", + "y": [ + 59.65460157187306 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(141, 211, 199)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.7000000000000001", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.7000000000000001 + ], + "xaxis": "x3", + "y": [ + 65.07540726526575 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#AB63FA", + "size": 8 + }, + "mode": "markers+text", + "name": "0.7000000000000001", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.7000000000000001 + ], + "xaxis": "x4", + "y": [ + 13.21285380021408 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(190, 186, 218)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.7000000000000001", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.7000000000000001 + ], + "xaxis": "x4", + "y": [ + 0 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "blue", + "size": 8 + }, + "mode": "markers+text", + "name": "0.75", + "showlegend": false, + "textposition": [ + "bottom left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.75 + ], + "xaxis": "x", + "y": [ + 301.37432355334465 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(128, 177, 211)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.75", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.75 + ], + "xaxis": "x", + "y": [ + 0 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "red", + "size": 8 + }, + "mode": "markers+text", + "name": "0.75", + "showlegend": false, + "textposition": [ + "bottom left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.75 + ], + "xaxis": "x2", + "y": [ + 0 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(251, 128, 114)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.75", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.75 + ], + "xaxis": "x2", + "y": [ + 0 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#00CC96", + "size": 8 + }, + "mode": "markers+text", + "name": "0.75", + "showlegend": false, + "textposition": [ + "bottom left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.75 + ], + "xaxis": "x3", + "y": [ + 62.096735533989744 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(141, 211, 199)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.75", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.75 + ], + "xaxis": "x3", + "y": [ + 67.2225223778225 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#AB63FA", + "size": 8 + }, + "mode": "markers+text", + "name": "0.75", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.75 + ], + "xaxis": "x4", + "y": [ + 10.770719838097396 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(190, 186, 218)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.75", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.75 + ], + "xaxis": "x4", + "y": [ + 0 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "blue", + "size": 8 + }, + "mode": "markers+text", + "name": "0.8", + "showlegend": false, + "textposition": [ + "bottom left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.8 + ], + "xaxis": "x", + "y": [ + 301.37432355334465 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(128, 177, 211)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.8", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.8 + ], + "xaxis": "x", + "y": [ + 0 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "red", + "size": 8 + }, + "mode": "markers+text", + "name": "0.8", + "showlegend": false, + "textposition": [ + "bottom left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.8 + ], + "xaxis": "x2", + "y": [ + 0 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(251, 128, 114)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.8", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.8 + ], + "xaxis": "x2", + "y": [ + 0 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#00CC96", + "size": 8 + }, + "mode": "markers+text", + "name": "0.8", + "showlegend": false, + "textposition": [ + "bottom left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.8 + ], + "xaxis": "x3", + "y": [ + 72.86745537208714 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(141, 211, 199)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.8", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.8 + ], + "xaxis": "x3", + "y": [ + 75.9665774440284 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#AB63FA", + "size": 8 + }, + "mode": "markers+text", + "name": "0.8", + "showlegend": false, + "textposition": [ + "bottom left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.8 + ], + "xaxis": "x4", + "y": [ + 0 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(190, 186, 218)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.8", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.8 + ], + "xaxis": "x4", + "y": [ + 0 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "blue", + "size": 8 + }, + "mode": "markers+text", + "name": "0.8500000000000001", + "showlegend": false, + "textposition": [ + "bottom left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.8500000000000001 + ], + "xaxis": "x", + "y": [ + 301.37432355334465 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(128, 177, 211)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.8500000000000001", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.8500000000000001 + ], + "xaxis": "x", + "y": [ + 0 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "red", + "size": 8 + }, + "mode": "markers+text", + "name": "0.8500000000000001", + "showlegend": false, + "textposition": [ + "bottom left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.8500000000000001 + ], + "xaxis": "x2", + "y": [ + 0 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(251, 128, 114)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.8500000000000001", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.8500000000000001 + ], + "xaxis": "x2", + "y": [ + 0 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#00CC96", + "size": 8 + }, + "mode": "markers+text", + "name": "0.8500000000000001", + "showlegend": false, + "textposition": [ + "bottom left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.8500000000000001 + ], + "xaxis": "x3", + "y": [ + 72.86745537208714 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(141, 211, 199)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.8500000000000001", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.8500000000000001 + ], + "xaxis": "x3", + "y": [ + 75.9665774440284 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#AB63FA", + "size": 8 + }, + "mode": "markers+text", + "name": "0.8500000000000001", + "showlegend": false, + "textposition": [ + "bottom left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.8500000000000001 + ], + "xaxis": "x4", + "y": [ + 0 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(190, 186, 218)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.8500000000000001", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.8500000000000001 + ], + "xaxis": "x4", + "y": [ + 0 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "blue", + "size": 8 + }, + "mode": "markers+text", + "name": "0.9", + "showlegend": false, + "textposition": [ + "bottom left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.9 + ], + "xaxis": "x", + "y": [ + 301.37432355334465 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(128, 177, 211)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.9", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.9 + ], + "xaxis": "x", + "y": [ + 0 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "red", + "size": 8 + }, + "mode": "markers+text", + "name": "0.9", + "showlegend": false, + "textposition": [ + "bottom left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.9 + ], + "xaxis": "x2", + "y": [ + 0 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(251, 128, 114)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.9", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.9 + ], + "xaxis": "x2", + "y": [ + 0 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#00CC96", + "size": 8 + }, + "mode": "markers+text", + "name": "0.9", + "showlegend": false, + "textposition": [ + "bottom left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.9 + ], + "xaxis": "x3", + "y": [ + 72.86745537208714 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(141, 211, 199)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.9", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.9 + ], + "xaxis": "x3", + "y": [ + 75.9665774440284 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#AB63FA", + "size": 8 + }, + "mode": "markers+text", + "name": "0.9", + "showlegend": false, + "textposition": [ + "bottom left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.9 + ], + "xaxis": "x4", + "y": [ + 0 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(190, 186, 218)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.9", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.9 + ], + "xaxis": "x4", + "y": [ + 0 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "blue", + "size": 8 + }, + "mode": "markers+text", + "name": "0.9500000000000001", + "showlegend": false, + "textposition": [ + "bottom left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.9500000000000001 + ], + "xaxis": "x", + "y": [ + 301.37432355334465 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(128, 177, 211)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.9500000000000001", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.9500000000000001 + ], + "xaxis": "x", + "y": [ + 0 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "red", + "size": 8 + }, + "mode": "markers+text", + "name": "0.9500000000000001", + "showlegend": false, + "textposition": [ + "bottom left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.9500000000000001 + ], + "xaxis": "x2", + "y": [ + 0 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(251, 128, 114)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.9500000000000001", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.9500000000000001 + ], + "xaxis": "x2", + "y": [ + 0 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#00CC96", + "size": 8 + }, + "mode": "markers+text", + "name": "0.9500000000000001", + "showlegend": false, + "textposition": [ + "bottom left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.9500000000000001 + ], + "xaxis": "x3", + "y": [ + 72.86745537208714 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(141, 211, 199)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.9500000000000001", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.9500000000000001 + ], + "xaxis": "x3", + "y": [ + 75.9665774440284 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#AB63FA", + "size": 8 + }, + "mode": "markers+text", + "name": "0.9500000000000001", + "showlegend": false, + "textposition": [ + "bottom left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.9500000000000001 + ], + "xaxis": "x4", + "y": [ + 0 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(190, 186, 218)", + "size": 8 + }, + "mode": "markers+text", + "name": "0.9500000000000001", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 0.9500000000000001 + ], + "xaxis": "x4", + "y": [ + 0 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "blue", + "size": 8 + }, + "mode": "markers+text", + "name": "1.0", + "showlegend": false, + "textposition": [ + "bottom left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 1 + ], + "xaxis": "x", + "y": [ + 301.37432355334465 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(128, 177, 211)", + "size": 8 + }, + "mode": "markers+text", + "name": "1.0", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 1 + ], + "xaxis": "x", + "y": [ + 0 + ], + "yaxis": "y" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "red", + "size": 8 + }, + "mode": "markers+text", + "name": "1.0", + "showlegend": false, + "textposition": [ + "bottom left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 1 + ], + "xaxis": "x2", + "y": [ + 0 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(251, 128, 114)", + "size": 8 + }, + "mode": "markers+text", + "name": "1.0", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 1 + ], + "xaxis": "x2", + "y": [ + 0 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#00CC96", + "size": 8 + }, + "mode": "markers+text", + "name": "1.0", + "showlegend": false, + "textposition": [ + "bottom left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 1 + ], + "xaxis": "x3", + "y": [ + 72.86745537208714 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(141, 211, 199)", + "size": 8 + }, + "mode": "markers+text", + "name": "1.0", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 1 + ], + "xaxis": "x3", + "y": [ + 75.9665774440284 + ], + "yaxis": "y3" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "#AB63FA", + "size": 8 + }, + "mode": "markers+text", + "name": "1.0", + "showlegend": false, + "textposition": [ + "bottom left" + ], + "texttemplate": "amount: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 1 + ], + "xaxis": "x4", + "y": [ + 0 + ], + "yaxis": "y4" + }, + { + "hovertemplate": "$%{y}", + "marker": { + "color": "rgb(190, 186, 218)", + "size": 8 + }, + "mode": "markers+text", + "name": "1.0", + "showlegend": false, + "textposition": [ + "top left" + ], + "texttemplate": "cost: $%{y}", + "type": "scatter", + "visible": false, + "x": [ + 1 + ], + "xaxis": "x4", + "y": [ + 0 + ], + "yaxis": "y4" + } + ], + "layout": { + "annotations": [ + { + "font": { + "size": 16 + }, + "showarrow": false, + "text": "True Negative", + "x": 0.225, + "xanchor": "center", + "xref": "paper", + "y": 1.04, + "yanchor": "bottom", + "yref": "paper" + }, + { + "font": { + "size": 16 + }, + "showarrow": false, + "text": "False Positive", + "x": 0.775, + "xanchor": "center", + "xref": "paper", + "y": 1.04, + "yanchor": "bottom", + "yref": "paper" + }, + { + "font": { + "size": 16 + }, + "showarrow": false, + "text": "False Negative", + "x": 0.225, + "xanchor": "center", + "xref": "paper", + "y": 0.45999999999999996, + "yanchor": "bottom", + "yref": "paper" + }, + { + "font": { + "size": 16 + }, + "showarrow": false, + "text": "True Positive", + "x": 0.775, + "xanchor": "center", + "xref": "paper", + "y": 0.45999999999999996, + "yanchor": "bottom", + "yref": "paper" + }, + { + "showarrow": false, + "text": "Swaps: 0.5", + "x": 0.5, + "xref": "x2 domain", + "y": 1.15, + "yref": "y2 domain" + }, + { + "showarrow": false, + "text": "Swaps: 0.8", + "x": 0.5, + "xref": "x4 domain", + "y": 1.15, + "yref": "y4 domain" + } + ], + "autosize": true, + "hovermode": "x", + "margin": { + "t": 125 + }, + "sliders": [ + { + "active": 0, + "currentvalue": { + "prefix": "Threshold: " + }, + "pad": { + "t": 50 + }, + "steps": [ + { + "args": [ + { + "visible": [ + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Line Chart
Total obs: 200
Total amount: $374.24
Total cost: $1,590.00
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.0", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Line Chart
Total obs: 200
Total amount: $374.24
Total cost: $1,260.00
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.05", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Line Chart
Total obs: 200
Total amount: $374.24
Total cost: $800.00
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.1", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Line Chart
Total obs: 200
Total amount: $374.24
Total cost: $470.00
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.15", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Line Chart
Total obs: 200
Total amount: $374.24
Total cost: $275.98
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.2", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Line Chart
Total obs: 200
Total amount: $374.24
Total cost: $129.91
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.25", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Line Chart
Total obs: 200
Total amount: $374.24
Total cost: $91.44
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.3", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Line Chart
Total obs: 200
Total amount: $374.24
Total cost: $58.92
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.35", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Line Chart
Total obs: 200
Total amount: $374.24
Total cost: $38.92
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.4", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Line Chart
Total obs: 200
Total amount: $374.24
Total cost: $36.54
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.45", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Line Chart
Total obs: 200
Total amount: $374.24
Total cost: $36.51
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.5", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Line Chart
Total obs: 200
Total amount: $374.24
Total cost: $46.90
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.55", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Line Chart
Total obs: 200
Total amount: $374.24
Total cost: $51.48
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.6", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Line Chart
Total obs: 200
Total amount: $374.24
Total cost: $63.12
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.65", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Line Chart
Total obs: 200
Total amount: $374.24
Total cost: $65.08
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.7", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Line Chart
Total obs: 200
Total amount: $374.24
Total cost: $67.22
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.75", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Line Chart
Total obs: 200
Total amount: $374.24
Total cost: $75.97
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.8", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Line Chart
Total obs: 200
Total amount: $374.24
Total cost: $75.97
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.85", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Line Chart
Total obs: 200
Total amount: $374.24
Total cost: $75.97
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.9", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false + ] + }, + { + "title": { + "text": "Interactive Confusion Line Chart
Total obs: 200
Total amount: $374.24
Total cost: $75.97
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "0.95", + "method": "update" + }, + { + "args": [ + { + "visible": [ + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + true, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + false, + true, + true, + true, + true, + true, + true, + true, + true + ] + }, + { + "title": { + "text": "Interactive Confusion Line Chart
Total obs: 200
Total amount: $374.24
Total cost: $75.97
", + "y": 0.965, + "yanchor": "bottom" + } + } + ], + "label": "1.0", + "method": "update" + } + ] + } + ], + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "Interactive Confusion Line Chart
Total obs: 200
Total amount: $374.24
Total cost: $1,590.00
", + "y": 0.965, + "yanchor": "bottom" + }, + "xaxis": { + "anchor": "y", + "autorange": true, + "domain": [ + 0, + 0.45 + ], + "matches": "x3", + "range": [ + -0.06210702085236811, + 1 + ], + "showticklabels": false, + "type": "linear" + }, + "xaxis2": { + "anchor": "y2", + "autorange": true, + "domain": [ + 0.55, + 1 + ], + "matches": "x4", + "range": [ + -0.06210702085236813, + 1 + ], + "showticklabels": false, + "type": "linear" + }, + "xaxis3": { + "anchor": "y3", + "autorange": true, + "domain": [ + 0, + 0.45 + ], + "range": [ + -0.06210702085236811, + 1 + ], + "title": { + "font": { + "size": 12 + }, + "text": "Threshold" + }, + "type": "linear" + }, + "xaxis4": { + "anchor": "y4", + "autorange": true, + "domain": [ + 0.55, + 1 + ], + "range": [ + -0.06210702085236813, + 1 + ], + "title": { + "font": { + "size": 12 + }, + "text": "Threshold" + }, + "type": "linear" + }, + "yaxis": { + "anchor": "x", + "autorange": true, + "domain": [ + 0.58, + 1 + ], + "range": [ + -29.580890318909297, + 318.7930190203054 + ], + "title": { + "font": { + "size": 12 + }, + "text": "Amount/Cost" + }, + "type": "linear" + }, + "yaxis2": { + "anchor": "x2", + "autorange": true, + "domain": [ + 0.58, + 1 + ], + "range": [ + -162.62670524314956, + 1752.6267052431494 + ], + "type": "linear" + }, + "yaxis3": { + "anchor": "x3", + "autorange": true, + "domain": [ + 0, + 0.42 + ], + "range": [ + -7.456371759809114, + 80.35725898107248 + ], + "title": { + "font": { + "size": 12 + }, + "text": "Amount/Cost" + }, + "type": "linear" + }, + "yaxis4": { + "anchor": "x4", + "autorange": true, + "domain": [ + 0, + 0.42 + ], + "range": [ + -7.452952318625643, + 80.32040769071278 + ], + "type": "linear" + } + } + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAABb8AAAJYCAYAAABCY5tXAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQeYFdXZgL+tLGUpgoKIghgVo2jUoEQlsWCiIGowa4+NohANBgWBRJOoPxBUhGiwASIRLESsoElQiajBoKgoAaMiCCJt6WX7/s+ZZa6zw9w69dx953l4YO895TvvNwvDe89+J6e2trZWuCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACWUQgB/mdRdlkKRCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIGAQQH5zI0AAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgEDWEUB+Z11KWRAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQggv7kHIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAIOsIIL+zLqUsCAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABJDf3AMQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCCQdQSQ31mXUhYEAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACyG/uAV8JrFi1Vq4ffp+sXV8qxx51mEwae7O0alHs65y6DF5TUyuvv/2BPPbkK7L0fyuNsLsd10Um3nWTtGje1JdljH90lkyZOccY+67h/aRvrx6+zOP1oIs+Xi7XDBlrDNu7Z3e589brpKio0OtpfBlvy7YdMnjEBFmy7Eu+B3whzKAQgAAEIAABCEAAAhCAAAQgAAEIQMCZAPI7xTtj9twFcvu4KY6t3cg467g6yUgrCKtQnTZxhCFwzStq8lsJ5w8//VxeeG2BvLVwiWzavE3y8/PkyM4Hyzlnnizn//QUabNfixTvCnfN3v7PJ/KrUROkqqo6NpDfHxBESX5b7432bVvLI+Nukc4d2ztCjaL8rqiskoUf/Feem/Mv+c9Hy2X7jl3SqLBAjulyqPz83B7S88c/lOKmjSVs+R32/O6+S+gNAQhAAAIQgAAEIAABCEAAAhCAAAQyJ4D8TpEd8js+qETyO0W8gTTbvadMJk5+Tp587p9x5/NbPpsTV1ZWyd0T/yp/e+Vf0rRJkdz3+8Fy2kldJScnJxAWUZgkHfkdhXitMWzesl1+f+80eeOdxXFDMz8U21NeHurOb+R31O4e4oEABCAAAQhAAAIQgAAEIAABCEAgKALI7zRJWyW4mx3f5rTZvvM7Tby+Na+urpZHn3xFHnz8eWOOrkd1lhE3Xi5duxxqfP3Bkv+Jkvg5khNIaZaysgq5496pMmfeQunyvUNk0tjfSNs2rXxbfxQH1lV+q9zdNWG6vPDa2wbWn3Q/Tob96jLpeFBbqaislAXvLZFxf3lKju96uFGeBfkdxbuPmCAAAQhAAAIQgAAEIAABCEAAAhBoCASQ32lmOZn8tu6CVkJz1ep18sxLb8rK1evk6CM6yZABF8kpPzzG2OFrbWsPw1o+pHTLdpn5/Dx55Z//ljXfbjTKdBxz5KFyxUVny89+8kPJy8szultj++Owaw2Z+sCU2UbZBVVSon3bNvLsK/Pl9QUfyP9WrDHKNKjr0EMOlB4nHytX/LyndGi/f71Q1NyzXpkvf5+/SP735WrjvSMOO1jO7nGiXPCz02TilL8ZAtd+mWUsWrUs3mfX68ZNW+X62+6TDZu2ypmnniBjfzvQ2P2srtVrN8gNt403eJ18wlFy/x9uNOpf19bWyrLPv5YpT82Rd99fasTevLipnPLDo2XAFecZAjnRpWI351SxqdwcfmiHel3Ubt6H//qSDLr6glhd8jVrN8rkp+bIm+98aJRIUWUtTjzuSLn24nOk+4lHS25u3U5t++7aETddLrPnviX/+Nf7Ul5eIWeddoL85vqLRc1tlb7x8h5vN701x/0u7y1DB5YYQ6gSHCqvs19dIB98/JmUV1QafLp26SwlfX4iZ556vHGfJPqwxY+1JspJOvLb2tb6oZN1Pbf/5ipp3qyJTHvmNaOGeqeD28nAK/vIeT27x75HVDx7yspl1svz5fnX3q53T6tSJRf3OV2KGiWuJW4tV3P8MYfL+D/8Sg5o07LeUr9avU6ef3WBDL7qgn3kd6J7Qw2i5Ho636eJvu9/d/Mv5e4JfzVq7tsvLz68S/OvT5pDAAIQgAAEIAABCEAAAhCAAAQgAIFACSC/08Sdjvx2GlpJskf+dIshkFOR3wsX/1duu/sRQ7w6XUrUDrrq/H3EZsvmzWTn7j1GPWknEe001vc6HSQPjh4iB7c/wHg72dyP3nOrvPj3t9OW302bNJa77n/CELFKek++b5hxEKC65r7xngy78yHjz0rcXXbhWWLu2lZi2lof21yDkrz3//FX0v2E78fN5kv/eFdGjn7UeP+Kvj3ltl9dVk+IOnVU6//N7/8S+5DA3sbK3iq/4wXR88cnypiRA2Tdhs2xQ0Dtbc0PPdKR3/adyPYx48lia415v9bapHHdhxpOl9fy22kO9UHRX0bfbJSUUdeXK9fK0D/8Rb5Y+Y1jTBf87FTjvksUt/pASd2L6lI/PfDLX/w04d8i6dwbat5k7e3fp9a/k+zf98jvhKnhTQhAAAIQgAAEIAABCEAAAhCAAASynADyO80EpyO/R4/oL73O6i7VNTVy38PPGru31WWVjol24m7bvkt+84cH5b3Fy+TcM0+WUb++UvZrWSzqdVV24dU33ouJbXVQoHUstSP4qpKfSUFBfmyFSqqNeWCG9Dn7FEMUq/dUHezps/4hD0ydbbQbM2qgceijdW4lEG+6rq9cedHZxs7nb77dJI/NfEXOO/tHxuGWiWp+x6s3/I9/LTLEsrp+3e8iGXjleVJZVR2T4mrX7sN/GmqI+I8+/UIGDr9Xdu0uE7W796JePzZ2v6ud4ENu/7OxqzXZLtZ0haXalX7jbyfK0s++MnZQj/vd9XJqt67y7YZS+e2YyaIOYLSKVes6Vez3/+FX8r1DO8g36zYa61z2+ap6ubKWPXE67DEd+b1k2ZfS/5Z7DD4nHnuEUT98/9Ytjdwqqf3R0i+NHchFRYWOO7/9Xmu8bzGv5be6R68q+alxj86YPU/+9JenjKnNHfJqd7z5oYvasT1m1ADpcOD+xi75SdNekClPzTVyqj6MsR7aao1ftf3jfdPkxb+/Y7ysfoJAlT1JdKV7b6TzfarmTeX7fvCICaLuk6Bq2qf51yrNIQABCEAAAhCAAAQgAAEIQAACEICALwSQ32liTUd+W0uXWPvd8Mvz5aZ+fY2ZE8nvxZ/8T679zZ8cdztbwzbnSaV+uCr58M6iT+WNtxfLFyvXGmVGzPInakxTzFvntpYfccKVify2Cldz/NIt22I7oq27s63iOl66kkm9dOW3df320izqkMrf3/u4EYopVuNJfqvkVmL18ftvkxO6HmGUtjBrfruV39aSLiom9VMF3Y8/yqg5/YOjD5f9W7eIHaTpdI/4vdZ4OfNafls/VFIfTlwzZKwxtdrN/ftbrpFv15caJXXUPZ/oso5jb+dWflvv03j3hpoz1e/TZH+HqPc58DLNv+RpDgEIQAACEIAABCAAAQhAAAIQgEDWEEB+p5lKL+S3tVZzImFtFXiJwkxVficr+aDmMMWfde5ku6ozkd+qhrc6gPLPU54zSp88Ou5WWfH1t3L7uCn1dlSrmBKVhzG5JJPf6ZY9UXWdrx9+nzG8ff1O90C8Qw2tglONZebKS/mdqCyMEu7qwxa1sz5ezW+/1xrv3g1Kfpv5W7t+U9xyM9YYE8lv1S7dD1JS+WDEem+k832K/E7zL3CaQwACEIAABCAAAQhAAAIQgAAEINCgCCC/00x3kPLbuiP32kvOlVtuuDi2g9cp7GQ7v63S7qpf/NQoi9Jmvxby8j//bUhnq/xOtBvYPncm8luNYd2xfPH5Z0jp5m3y+tuL6x10aZeNU8YPT1jbO146Uznwcuv2nTJl5hy57rJe8tXX38Z23auSM3cNv04aFzUyhs9057dVcHopv9W46sOEbzdslvcW/9fguvDDZbHDHK111ZPt/PZjrfFyErT8Xrdxc2znt32d6fw1kMqBl+pg2ufmvCXXX9lnnwMvJ4292ThQNd4HI+l8nyK/08kcbSEAAQhAAAIQgAAEIAABCEAAAhBoaASQ32lm3Gv5ba19fcn5Z8iIm66Qwr11uu21mG+94RI598yTjMP4Kiur5POvvpEZs/8p/S7rJfaa3067V62SesKdN8pZp50oFZWVMu2Z12I1v81+6oDNW/44Sd7/+DNjJ/bwwZfJRb1/bNRTXr9xizz65Mty7lknG7WR1Z8nTn7OIHnroEvk6pJzJDc3x/g6UckFq/xT9ajVYZbql3nQpZkaq2zselRn45DBrl0ONXYy79i5W977cJlR2/rW6y8x6lo7XWp39D0PPSN//ds/jLet46ivP1n+lYx/5FmprKwWJSfV75nW/I5X2kLNk8nOb3U4pyoDo0puWOuzmz9B8MGS/8mcef+WSy84Uw495ECjlrsS+cPueljeXfSpkT+z3IqT/HZT8zuVtUZFftfU1sjIMY/JvLc+MJgMuuoC40DVFs2bGoeqrl67UabP+rv07vkjo3Z6vGvHrj3y2zGPGR/UqEvV/B72q8uk40FtjXHe/WCpjH1gpnQ96lC589br0pbf6XyfqvmTfeilvkfUIZ/vvr9U9mvVXB78vyFy3PfrDpjlggAEIAABCEAAAhCAAAQgAAEIQAAC2UwA+Z1idq2Cyd7FWhYjnYMK1Tj2es3m2KYkVVL3trsfESWjnS5rvehkEuzv8xfJ8LsfTlhD3CrNk81txmiV02aMZlytWhZLosP25r7xngy786HY0qwHXZovJirrYbZJVppFtdu5a4+MfXCmPP/qgrhZt8pctX51WKW1Jrq146CrL5BBV51vSPh0S1sk2/ntxNQetCm/k5XHUTWv1QcK6kOTePeIn2uNB9u68zteG6eSJdZcx1tPvLI9qZQUsdbqjxfXug2b5fZ7phofLiSLPd2SOOl+nyb7vlffP/c9MkueePa1eqGm8j2T4l+PNIMABCAAAQhAAAIQgAAEIAABCEAAApEkgPxOMS1+yW9VruLd9z+VSdNelE8/+8oQ06oUyQP/92tRIlZdpVu2y6xX5ssbCxbLZytWG22aFzeVrl06S6+zTpaePU6UZk0bJ90BqiTYK/MWGju1V65eZ+x+7XP2KdLhwP332fltYlG7gme/+pYoIadEvbrU7mI155UXnW3Eao477dnXYm2OPvJQufeOG6S4WZOE8tu661iN/YvzfiK/G/JLY/ey9VKcln3+tTz1wjz5z4fLRZWVUJeK/aTju8j5Pz1VTuh6uCGiE101NbXy4aefy1MvvC6LPlpufKigOBxz5KGiSmGcc8ZJxprMa83ajTL5qTny5jsfGm3VzvcTjztSrr34HOl+4tFJd7hnWvPbnqsjOneQAVecJ9t37pa77p9uhGfKbxXXsy+9KQve+0Q++/JrY4e4GWffc3vIWT1OjP00QSJR6tda4+UjDPmtYlGHSb7w6tvy6pvvyafLv4rxOqbLocZ9fd7Zp8h+LYuT/s1QUVllyO+Zz78unyxfYXxIYnI/r+eP5MzTTpDipo3T/mAk3e/TZPJbLUT9JICqsa9+QsC850v6nC7DBl1qxMwFAQhAAAIQgAAEIAABCEAAAhCAAASykQDyOxuzypogAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCDRwAsjvBn4DsHwIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAtlIAPmdjVllTRCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEGjgB5HcDvwFYPgQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACBbCSA/M7GrLImCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAINnADyu4HfACwfAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgEA2EkB+Z2NWWRMEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQZOAPndwG8Alg8BCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAIBsJIL+zMausCQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBAAyeA/G7gNwDLhwAEIAABCEAAAhCAAAQgAAEIQAACEIAABCCQjQSQ39mYVdYEAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQKCBE0B+N/AbgOVDAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEMhGAsjvCGa1rKxC7rh3qnQ/4Wjp26tH2hG67Z/2hHSAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIBAxAsjvFBIye+4CuX3clLgt7xreL66kzkREZ9LHGpzb/ikgiTUZ/+gsmTJzTuzraRNHSLfjusS+XrFqrVw//D5Zu77UeM2JlXWMY486TCaNvVlatShOJwzaQgACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCoRwD5neYNoWTuqLGTZfSI/tK5Y/ukvTMR0Zn0CUN+qw8FZr08PyarF328XEaNfkweGXeLwWbLth0yeMQEGXpDiSHE7V+rmNUYCxcvlTtvvU6Kigr3+TopYBpAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEHAggPxO87aIJ7+tu8Pbt20dE8D2ndG9e3Y3RO8nn62Qa4aMjc1u7ZOK/DbbzJm30BjDHFcJZPO973U6SN585yNZsuxLo411V7YS1db5nfq3O6C1DB1YEpfQWwuXSNejDo3t0rbLbbvYVgMpHupS4zrJ8HQ/XEgzfTSHAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEGggB5HeaiXaSs0okj394Vr0d0ObXjRs1Sql+t5LC6zaUGmJcXclqflslsl0qm/J79TcbHWPasnVHvd3rqv2k6S/KtZecY4hss38y+W1HZ2ej5PfKNevqCXSrEN9TXi6jxjwmwwZdGttF7yTE00wRzSEAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEICPI7zZvALniddmlbX+t15slJRbYKwSrQkwlzJwFvfa192zb7zGmVyq1bNjfqcI8eNaBefe40UdRrbo5f0uf0WP1zu6BXHazye+36TfuUkEF+u8kCfSEAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAGTAPI7zXvBK/ltL1uiwjAPe/RDftslvf0Qz0SHdiZDZArrbsd32WeXNzu/k9HjfQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQMAPAsjvNKl6Ib+dyooEufNbHT5pvewHVaaDRPFQu8gHXX1hbMe32Z+a3+mQpC0EIAABCEAAAhCAAAQgAAEIQAACEIAABCDgJQHkd5o00635rWpo28t/OJX2UG0WfbjcqNGdbOe3CjmVmt/dTzg6JqSViJ718nxj/C9WfiOqHnjfXj2M1ccT+slqfpuHZloP0rTitK/Tad12Qe4kzNNMEc0hAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCFDzO917wEl+qzGsZUTat20tj4y7JXaIo7k7eu36Uunds7txqOUnn62Qa4aMjU3f7/Leaclve9kUc9yiosLYgZVz5i2MjW+WVFEy3pTQS5Z9GXvfKrBTPfBSCfgpM+fsg1CtZejAkphYVzvD1drV5VRexTqONc50c0N7CEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAImAXZ+cy9AAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBA1hFAfmddSlkQBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIIL+5ByAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQCDrCCC/sy6lLAgCEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAASQ39wDEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgkHUEkN9Zl1IWBAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAshv7gEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhDIOgLI76xLKQuCAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAAB5Df3AAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCGQdAeR31qWUBUEAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgADym3sAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEso4A8jvrUsqCIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAPkdwXugrKxC7rh3qnQ/4Wjp26tHBCMMN6QZs+dJr7NOllYtisMNhNkhAAEIQAACEIAABCAAAQhAAAIQgAAEIACByBJAfqeQmtlzF8jt46bEbXnX8H5xJXUmIjuTPiksI9QmXq4pnvwe/+gsmTJzTmydvXt2lztvvU6Kigply7YdMnjEBFmy7Mt9ODjlb8WqtXL98Pvk3LO6y9CBJQnZ2eedNnGEdDuuyz59zBgOPmj/WFyhJoXJIQABCEAAAhCAAAQgAAEIQAACEIAABCCQxQSQ32kmV0nRUWMny+gR/aVzx/ZJe2cifTPpkzSQkBt4saZFHy+Xa4aMrbcSU1yr8SdNf1GuveSc2I5wJaXVFU9eKxk9asxjMmzQpfVyab6+ZdtOOen4oxLKb/XByKyX58uksTcb86oYR41+TB4Zd0u9Mc31b9u+S1o0b4r8Dvl+ZHoIQAACEIAABCAAAQhAAAIQgAAEIACB7CeA/E4zx/Hkt3V3ePu2rWPyM95u5E8+W1FP5Fr7pCKKE+1yNvt/r9NB8uY7H8V2O6sdyQve+yS2O7rf5b3riV27XLbuYFbvjX94Vkzy2mM0dzWr3dZPPPuarF1fKqlwUPhViZd2B7ROKJmt8899/T2j7MkXK7+R1d9sjLvrXuVk4eKlcUWzkxw31zH0hhKDVSJ5rt57a+ES6XrUoTHhbu1v7v62slJ9EsWU5u1IcwhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQCAOAeR3mreGk/y2i2Hr140bNUqpfrcSses2lBqi1hTCqdb8NoVrSZ/TDRFsylYlhs0dyaacN3dKm2U9Ro8aYJTosK/L/nWq8tta0iOVNZmxJpPfVpH93Ny3ktb8TjauUx7t4jrZznGnW8c+rv1DgmRCPs3bkeYQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAA8tubeyCZ3FSzWIVnrzNPTkl+ZyLMrSuyilqnnePJ5LWT6LW+lqy/045nt2uyrs9as/vYow6LSX17Vq3trDW/7e3s63WKP135He9DCOuHGMhvb74PGQUCEIAABCAAAQhAAAIQgAAEIAABCEAAAskIsPM7GSHb+17Jb1NQz5m3MDaDKXVT2S1u7txW5UXMyyxjko3y2y76zYMtEx02Gk8020W+GtuJpzlnItlutjHFd7fju8TKtyQ6ZNNaEibNW5DmEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAQAoEkN8pQLI28UJ+O5XkSGeXtL1kiYov23d+W3MwY/a8WM1vddikKhVTVFS4TyYVp3seelpGjxwQq8mdSj11c6BUd36b+Rh09YVx64+bY7LzO81vOJpDAAIQgAAEIAABCEAAAhCAAAQgAAEIQCBDAsjvNMGlW/O7VYviemJaTRevxMaiD5cb5TyS7fy271y27zrOZOd3sprfTjXArxkyVsyd18nKnjhxUCyS1ea2SmNVT1zVJzfltzrMc+WadcZOaxWfen3YoEtjItxac9yU4067vuPdAnb5He9DC8XBejhoolsK+Z3mNxzNIQABCEAAAhCAAAQgAAEIQAACEIAABCCQIQHkd5rgnOS3GsI8UFL92V7SwlpSw6xD/clnK0RJU/NSJUtSld+qjxKzZukPVZZDiWHz0MhM5LcaU4lha0x2oWud89ILzpQdu3aLWc86FfntxEHNe8e9U2Oxx0tHojIvqo9TGRl7zW97Te5kqU9FfluZWMczS9DY50B+J6PO+xCAAAQgAAEIQAACEIAABCAAAQhAAAIQ8IYA8tsbjowSIAFz57faTc4FAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQMCJAPKb+0I7Ashv7VJGwBCAAAQgAAEIQAACEIAABCAAAQhAAAIQCJwA8jtw5EwIAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACfhNAfvtNmPEhAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAgcALI78CRMyEEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQj4TQD57TdhxocABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAIHACSC/A0fOhBCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIOA3AeS334QZHwIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABAIngPwOHDkTQgACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAgN8EkN9+E2Z8CEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQCJwA8jtw5EwIAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACfhNAfvtNmPEhAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAgcALI78CRJ5+wrKxC7rh3qnQ/4Wjp26tH8g4Ra6Hi/9ucf8kvev9EiooKIxYd4UAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAINgQDyO4Usz567QG4fNyVuy7uG94srqTMR2Zn0SWEZSZss+ni5jH94lkwae7O0alGctH28BqnI7/GPzpJOHdollfsmiznzFtabrnfP7nLnrdcZcn3Lth0yeMQEWbLsS6NNv8t7y9CBJfXaq/mmzJxjvHbsUYeltMZkfRSva4aMjc0zbeII6XZcl4y50RECEIAABCAAAQhAAAIQgAAEIAABCEAAAhDwjgDyO02WK1atlVFjJ8voEf2lc8f2SXtnIrIz6ZM0kBQaeCG/nT4osEphq1BO9KGBGW4yFqb4LunFTuQTAAAgAElEQVRzuiHSzfbtDmgdE+AqpoWLl8Zkuf1rJzTJ+tjvg3TvixTSQRMIQAACEIAABCAAAQhAAAIQgAAEIAABCEDABQHkd5rw4klOq/Rt37a1PDLuFkOOW2WvmsrcsfzJZyvq7Rq29kkmfM2QrWM79Td3S1t3Sau+dkGtdkpf+LNT5frh98na9aUxIqa0tgvmeMhMYTzypitEza3Knsx94z05+KD96+2ITnV9ap5kbZ2EvfU1NYbaFT70hpJYDMlEtbneRH0Ue3WZO8yTxZnmbUZzCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAwCUB5HeaAJ3EqV3AWr9u3KhRSvW7lUxdt6HU2J2srmQ1v63tVekPNae6VNkNu5i1fm2PVYnex595TQZfdYEoIe9U9iRV+W3Oo8ZKVPM7HVHsVPbEWtbESX5bc9SqZbGMGvOYDBt0aWynvpPctt4G6v1kfZzKtti5p3lr0RwCEIAABCAAAQhAAAIQgAAEIAABCEAAAhDwkADyO02YdvntJHKtr/U68+SkIluFkI4wT7Rz2ek962ulW7fLqNGPxXamW5fvtuyJmsfcPW7fbW6dJx35bU+PXcSbc44eNcBxZ7fqby9Tk0x+OzG09ul6ZGfHnCK/0/xmojkEIAABCEAAAhCAAAQgAAEIQAACEIAABHwkgPxOE65X8ttpR7N5EGOy3eJu5LdTKRazvIlb+W2itK/NfhCkG/mt5rDX47YfPKnamCwN+c3O7zTvcppDAAIQgAAEIAABCEAAAhCAAAQgAAEIQEB/AsjvNHPohfx2OpQxqJ3f9kM6lUie9fJ8mTT2Zvli5TeOZU/SRGTU6TbLnqia3yvXrIvVxlZjeSG/7WNaY7TK8T3l5dT8TjeBtIcABCAAAQhAAAIQgAAEIAABCEAAAhCAQBYQQH6nmcR0a363alG8Tw1up7IbqmTGog+XGxI62c5vFXKmNb+VGLYeQGmV7lu27tinRIiaK9Wa348++bL07HGitG/bJia/J01/UTp1aCd9e/WIkU4kv+1lTFR8q7/ZGOvvVObEmkLV3l7Wxb5T3P610/qS9bHfB8kO0UzzNqM5BCAAAQhAAAIQgAAEIAABCEAAAhCAAAQg4JIA8jtNgPEkp5Klt4+bYozWvm3rejW1nWphq8MlrxkyNja7OsQxHfltLy1indP+nrX+tjUWp1iVVJ8yc44Rl1muJFX57VR+5K7h/eqJb+v45uKtbezS2R6vNS6zv5W9We5Efehgvazz2tvEW1+iPmps+3rt5V3SvLVoDgEIQAACEIAABCAAAQhAAAIQgAAEIAABCHhIAPntIUyGqiNgLXtSVFSYMhZT2pf0OT12eGXKnWkIAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQMBCAPnN7eA5gUzlt9rlfc9DT8vokQPEvnPb8yAZEAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEMhqAsjvrE4vi4MABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQg0DAJIL8bZt5ZNQQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACBrCaA/M7q9LI4CEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAINkwDyu2HmnVVDAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEMhqAsjvrE4vi4MABCAAAQhAAAIQgAAEIAABCESXwOy5C2TWy/Nl0tibpVWL4ugGSmQQgAAEIKAlAeS3lmkjaAhAwA2BLdt2yOARE2TJsi8TDnPsUYeF+hBujbPf5b1l6MCSevFG4T8KZowlfU6Xvr16xOIrK6uQO+6danx9563XSVFRoZuU0RcCEIAABCAAAQhAIGIE1LPo7eOmOEaVznN00M+08eKeNnGEdDuui6eUF328XK4ZMlbMseM9O6tJxz86SxZ9uDzU/394ungGgwAEIBARAsjviCSCMCAAgfAIRFXUmg/HzYubyIpVa+WRcbdI547tY6CC/o+CU4aQ3+Hdt8wMAQhAAAIQgAAEwiSgnkUfeuKFfZ5R040p6Gdap7hNSX3X8H71NnSkuxZ7e+S3W4L0hwAEIOCeAPLbPUNGgAAENCcQdfndu2d3Y5d6uwNa19v9HfR/FNKR35rfEoQPAQhAAAIQgAAEIJCEQDbJb7XUIHZeJ9r5zQ0HAQhAAAL+EEB++8OVUSEAAY0IxJPfarf19cPvk9GjBsiC9z6RKTPnSPu2rY3dLaVbt8uo0Y+lvBtbPUyr/uaVyq4S68PxwQftX+9HJtU48eS3/Uc5nUqmmGtbu77UCKnrUZ2ldPM2GXT1hbHdLuZOFWsqrT/CGq98jLk2teZ1G0qNsid7ysuNUjPdju+yT/kWNY+dZSpr0OgWI1QIQAACEIAABCCQdQSSyW/zGXvOvIX11m5/DnZ6pnV6DrU/09qfZ1MttRIvbvvrTvHbS6M4tTH/v6B+YtP6/4nvdTrIsfSiycPKQQFL59k5UxZZd1OyIAhAAAIOBJDf3BYQgECDJ5BMfitBbH/QdRK2TkLaaWzz4dQqmp2SYJXfvc48eZ8a2k7/UbDvWDHHsEpnpx/rdIpJtVv9zcZ6P/oZb3x7zW+1Hqv8VjW/nXbTmHysu9pTWUODv2kBAAEIQAACEIAABEImkIr8njT9Rbn2knNiB1k6PXPan2ntpULUMtUz7ePPvCaDr7rAOEvGqU2qO7dTkd+tWhbvI5/tc8b7P4QaX21cUfXDrfJbfZ1o57edQ6rPzm5YhHwLMT0EIACBQAggvwPBzCQQgECUCSST32rnt/3wm1Tld6Ld2QsXL014GKT94dj+YOv0HwWn3eiq3/iHZxmH5zRu1MiQ6PYSKqn+CKZ93ckO7TF3fqv/pNgf/tU9YX8tHlfrGlq1KI7y7URsEIAABCAAAQhAoEEQiHdwpHXnsx2E08YHJ+lrfYa0jxHv+dN8fegNJQkPrownv60bN+a+8Z7Menn+PodPWmPdsnVH7KdE4x2U6UZ+p/Ls7JZFg7hRWSQEINDgCSC/G/wtAAAIQMAv+R1PNCviqchc+8OsPU77Q7l9p7WZWfXgPGrsZBk9or/xklnKxfqQHu/B2f4jlOaYqZ5Yb/2Pi5v/7FjXYD30k7sXAhCAAAQgAAEIQCAcAsl2fptR2cv/qdfVmTaqNJ7aIGGX36ZUdyrdZz5HO234MJ81u59wdMJDK53iNudUz7hdj+zsuFnEPre5O3zT5q1xD/10I79TeXaOt3EkVRbh3DnMCgEIQCBYAsjvYHkzGwQgEEECfstve51DE0GiXTGqjZOQtu7+ViVJrDtSnP5jYcWtHuZbt2yesvw2x7PWZUz3xHr7rh3rfzbat21j/MfC+h+UVNYQb2dNBG8tQoIABCAAAQhAAAJZSyCZ/DbFb5v9WsZ2UDs9d8cr5Wc9L8f63OxUD9wKOZ40N9s47Vi3ju8knc2+dpnttFHEOr8b+a3mTPbs7JZF1t6cLAwCEICAhQDym9sBAhBo8AT8lt/2EiOpAneS39ZY1aE+SqyrciaqFEi8nd/W+Zx+fNJJtMerS+5WftsP8bTv2kllDanyox0EIAABCEAAAhCAgH8EksnvRDWrVVTxdn7bIzafH9Xr6rn3i5XfOB48n+pKk8WdSH7H22ltF+vm5hG38jvZs3OyeFJlQjsIQAAC2UwA+Z3N2WVtEIBASgQykd/xJLLTj2061QtMJbB4pUhMAX3aSV1l+47dMfmdysNvsrqA5sGV8dbnVn6rdZuCu7hpE9mxa3e9uueprCEVdrSBAAQgAAEIQAACEPCXQDKJ7LSpIdWd3/bIrc+IZrkRpwPXU1lxsrjVGInO7Un0bG8X527ld7Jn51TP7UmFC20gAAEIZCsB5He2ZpZ1QQACKRPIRH6bD5rdju8iQweWGHOZP0KpdmSbu7HNdurEd3N3i2prP7HeKdhkh0mqHwW1zmWuQ5VDMedX46rXJ01/Ua695Bxjh7jTA7+9xInTjhfrj3WaNb/jsbM+qFvXrV63/nimOY65/lTXkHJyaQgBCEAAAhCAAAQg4AuBZBLZaVOD+cyZqOa3atPj5K71Dq20i3RrjW5rSTz1unruTlQmL1nc5rP64BETxPqsb98Eop6NZ8yeJ8MGXWrULldXvLIoo0cNMGJK9OwcT7gnena2/h/E/lydCgtfbgwGhQAEIBAxAsjviCWEcCAAgeAJZCK/rQ+3a9eXGkGrH29Ul9NuEKda1tZa2k6rTiS/nWoommM41TG01z60txn/h1/JtGdeE+sOGnP+Jcu+NIZW/0k5r+cpMmjEeLE+XNvbmeuKV8IknuC2MkhlDcHfKcwIAQhAAAIQgAAEIGB95nzoiRfiHvao2tmf6R4aO1RemfeuMUS8sidOdaytstyc36netnVjSLxMpSK/VV/zmdV6fo/1GdjpfdXP2sbppynjPTvHk9+pPDtnyoK7GQIQgEBDIID8bghZZo0QgAAEkhAwH8KH3lCScKcMICEAAQhAAAIQgAAEIAABCEAAAhCAgC4EkN+6ZIo4IQABCHhEQO2mWfDeJ7FyLWpYDpr0CC7DQAACEIAABCAAAQhAAAIQgAAEIBAZAsjvyKSCQCAAAQgEQyDVHyUNJhpmgQAEIAABCEAAAhCAAAQgAAEIQAAC/hBAfvvDlVEhAAEIQAACEIAABCAAAQhAAAIQSJGAvRa26uZU6zvF4UJpZt1kkqz+uNN627dtnbCGeiiLYlIIQAACmhNAfmueQMKHAAQgAAEIQAACEIAABCAAAQjoTMA81LH7CUdL3149Ykt59MmXpWePE6Vzx/aRX546dHLU2MkyekR/I151gOXCxUtjB3vaF8CZO5FPKQFCAAJZQgD5nSWJZBkQgAAEIAABCEAAAhCAAAQgAAEdCdjFsX0Nakf1rJfnx0SyOq+mU4d2hihXEnnUmMdk2KBLDems3psyc44xhHUntSmb1W7yJ559TdauL623s9y+E9u661zFd/3w+2T0qAFxD4dXsnvlmnWxc3WSrQn5reOdSswQgICOBJDfOmaNmCEAAQhAAAIQgAAEIAABCEAAAllCwBTBBx+0v+NOaSWS73noaRk9coCx4sEjJojZdu36TfXem/v6e3JF355GO+uh7nvKy+v1U+/fce9UMXebW4W6em/G7HnS66yTpVWLYklFfqv+6ho6sMT4PZnctst2Sp5kyc3MMiAAgcgRQH5HLiUEBAEIQAACEIAABCAAAQhAAAIQaFgEnGpg3zW8n7G72yyLUtLndAPKa2/8x/hdSe7SrdtlwXufxKSzlZraMT7+4VkyaezNxstKmg+9oSS2e9ssTTLqxitl9INPSrsDWjuOk0om7PI8mfy2j6liUbvbVaxKuHNBAAIQgIA3BJDf3nBkFAhAAAIQgAAEIAABCEAAAhCAAAQ8ImAeHjlt4ghDVptyWQ2vdn2v/mZjvZnMWuHWQydVA/PgSSf5bS2nYu4MX7LsS2NcU7ynupx0d37bx7WXb0l1XtpBAAIQgEBiAshv7hAIQAACEIAABCAAAQhAAAIQgAAEIkXAfgimEtVqx3fTpo3l2kvOkS1bd8jDf33JiPmGX55v1PtWbUaNfkweGXdL7OtUdn7feet1UlRUGFt/snrdTqDSrfmN/I7U7UYwEIBAFhNAfmdxclkaBCAAAQhAAAIQgAAEIAABCEAg6gSUbFY1ttWhlaaEtgtos+72uWd1N0qTmHJc7QA3S4VYy5yo0iHWUiKKgbXsibUsSdcjO8vf5vxLftH7J8b88eZOdOClvY9ZUsUU6/ayJipWdald7eqyt496zogPAhCAgC4EkN+6ZIo4IQABCEAAAhCAAAQgAAEIQAACWUjAFNlz5i2Mrc5+AKS17rdVGK9csy5Wp9s+zmkndZXtO3bXq/ltljVRE1lLm6iyJVNmzonNb5ZbUS+kcuClamctuWKWWzHrd9vltznm2vWlxpz29lmYZpYEAQhAIBQCyO9QsDMpBCAAAQhAAAIQgAAEIAABCEAAAkERSPcAyqDiYh4IQAACEPCXAPLbX76MDgEIQAACEIAABCAAAQhAAAIQgEDIBJDfISeA6SEAAQiERAD5HRJ4poUABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAH/CCC//WPLyBCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIBASAeR3SOCZFgIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABPwjgPz2jy0jQwACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAQEgEkN8hgWdaCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQ8I8A8tsl27Wle1yO4L57cZMCKW6cLzv2VMmO3ZXuB2SEQAm0a1UkG7aVS01NbaDzMpl7Avu3bCRbd1RKZXWN+8EYIVACrZs3kp17KqW8ktwFCt6DyVo1K5SyymrZU17twWgMESSBnJwcOXC/oiCnZK4IE/h2c5nU1ob77NOscb40b1IgO/dUyXaeoSN8tziHdkDLItm8o1yqqsO9j7QDF4GA27RoJNt3VUpFFc9hEUhHWiHsV1wou8urpayC57C0wEWgcYumBcbfl7vKqiIQDSGkS6B968bpdqG9hQDy2+XtgPx2CZDugvzW9yZAfuubO+S3vrlDfuubO+S3vrnzI3Lktx9UG9aYyG9984381jd3yG99c4f81jd3KnLkt7v8Ib/d8RPkt0uAdEd+a3wPIL/1TR7yW9/cIb/1zR3yW9/c+RE58tsPqg1rTOS3vvlGfuubO+S3vrlDfuubO+S3+9w1CPk9e+4CuX3clBitu4b3k769esS+3rJthwweMUGWLPvSeG3axBHS7bgusfet/Xv37C533nqdFBUVGu8jv93fhA19BHZ+63sHIL/1zR3yW9/cIb/1zR3yW9/c+RE58tsPqg1rTOS3vvlGfuubO+S3vrlDfuubO+S3+9xlvfwuK6uQSdNflGsvOUdatSgWU3QPvaHEENzq/TvunSrdTzjaEOIrVq2VUWMny+gR/aVzx/ay6OPlMv7hWTJp7M1G//GPzjKoDx1Ygvx2f/8xggg7vzW+C5Df+iYP+a1v7pDf+uYO+a1v7vyIHPntB9WGNSbyW998I7/1zR3yW9/cIb/1zR3y233usl5+2xE5ye57HnpaRo8cYMht+/tKdnfq0C62U9wuw9n57f4mbOgjsPNb3zsA+a1v7pDf+uYO+a1v7pDf+ubOj8iR335QbVhjIr/1zTfyW9/cIb/1zR3yW9/cIb/d567ByW+1s/v64ffJ6FEDjJ3fdpmtkJq7uwdfdUG9XeHqPfvOcOS3+5uwoY+A/Nb3DshG+V1VKVJRKVJZkbP3d5GKirpflZU5Uhn7s3otRyqNtnV9Ksrr2tS13dtnbz/ztfK9bcw+6ve6tjlSHeCh8QX5ar5aqanV9/5rqJEX5OVITW2tVNc0VAL6rjtHRN55O1ffBRC5pwSQ357ibJCDIb/1TTvyW9/cIb/1zR3yW9/cIb/d567ByG9rXW9rzW8lv2e9PL9eHW+7/C7pc3qsBrhdfldUhf+/77zcHFG/qmuUDMDkuP+2CHaEwvxcicJ9FOyqs2O2grxcqaqukVS+65TYVeLXkMB7BbIhjM0/m7+X18njfX6Zknnve+ZYMTHtMOZ388UfUwlr61y1qSwmO9LHKiAAgRAI8HdMCNAjOiXyO6KJ0Sgs5LdGybKFivzWN3fIb31zh/zWN3fIb/e5azDy20RlL2viduf3pm3l7rPgcoQmRfnSpFGe7C6vlt1lVS5Ho3vQBNQDxNZdlVLDBxdBo086nxLDGzbmyMYNIhs35MjGvX+uey1HtpTmyJ6yOnlct6PZIrfN3dN7dzYHuas56cISNMjPFyksrPtVUFgrhQXq971fF5jv1e59X2zv171e2Kju9box1J9r9/5e93WjRiIFBfuOkZfnJvL0+jYtypfyymqpqsb2p0cu/NZNGuVLZXW1VFaRu/CzkV4EquzJ+b3y0+tE66wlELb8bvL+fGmy5kvJK9st1YWNZE/7zrK72+lSm8c9qstNh/zWJVP7xon81jd3yG99c4f81jd3yG/3uWtw8lshmz13gaxcs844tFLt5Kbmt/sbiREyJ0DZk8zZZdJzz546kb1JCey9vzYpuR37c93rmzaJbN+mfkjfmys3Vwlfi1S2COV6klm1scrhmHyujfW3S+XYuMb4Fqms5LNNPBtSutF3Y6m+xvxGWxEVZ0O4qPmtb5ap+a1v7qj5rW/u/Ig8TPndYs4MafTVsn2WVXlgR9ly0QA/lsuYPhBAfvsANaAhkd8BgfZhGuS3D1ADGhL5HRBon6Zp37qxTyM3jGGzXn6rciePP/OaqPrdRUWFYpY/UaVM+vbqsc8Bl/ayJvad4WZJFCXO1UXN74bxjeLnKpHf3tAtLc2Rr1fmyLp1e8X2XqEdk9x7hffOnanPp0Rwm/1rZX/164BaabO/WP5cK987tEBqpEpy8mr2yuPvJLK5+1mJZSWV1Y5qrugQQH5HJxfpRoL8TpdYdNojv6OTiyhEEpb8Lli7UlrNnhwXwfafXSplhx8TBUTEkIQA8lvfWwT5rW/ukN/65g75rW/uVOTIb3f5y3r5rfAoYT1l5pwYKWvNb/WitR64+nraxBGxGt/qa7VT/PZxU4z+vXt2r1cfHPnt7gaktwjyO/W7YNWqHFn1VY58vSpXVhq/5+z9PVd27EhtHCWhHYX2/rXS5oA60W1I7gNqpXXrxGUVsvHAy9Qo6t8K+a1vDpHf+uYO+a1v7vyIPCz53fiT96T4Xy/HXdLuH/5EdnY/248lM6bHBJDfHgMNcDjkd4CwPZ4K+e0x0ACHQ34HCNuHqZDf7qA2CPntDlHi3shvP+k2jLGR39/lWQlsJ7GthLcS34mupk1FOnaqkQPbq13adTu0DckdE9pKbIu02s+7OsHIb32/R5Hf+uYO+a1v7pDf+ubOj8jDkt9NPnpHmr39atwl7Tr+NNl16jl+LJkxPSaA/PYYaIDDIb8DhO3xVMhvj4EGOBzyO0DYPkyF/HYHFfntjh9lT1zyo3vD2/n97do6ka1KlKxcmbv397qvVemSRFfbdrXSsdPeXx1rpOOhtdKxY63xe5s23kntVO9L5HeqpKLXDvkdvZykGhHyO1VS0WuH/I5eTsKMKCz53WjFf6XF3Jlxl77zJ+fL7q4nhYmGuVMkgPxOEVQEmyG/I5iUFENCfqcIKoLNkN8RTEoaISG/04Dl0BT57Y4f8tslP7pnn/zetjVHVq/OkTWrc2T113W/Vq1Uv3KN3ysq4mc9v0CkU6daOaRjjXQ6VP1ukd2daqSoKFp3DPI7WvlIJxrkdzq0otUW+R2tfKQTDfI7HVrBtlUlAEeNeUyGDbpUOndsH5tcnYVz/fD7ZO360thrxx51mEwae7O0alGctHSgOjvnmiFjjb7WfurrsOS31NZKm7/eJ7nbtzpCLutyvGzveVGwCWC2jAggvzPCFolOyO9IpCGjIJDfGWGLRCfkdyTSkHEQyO+M0Rkdkd/u+CG/XfKju37ye8vm7+T2GiW3TdG9Oke+WZMj27cl3r2tyo4Yu7XNHdydamJ/bn9Q8Lu33dyDyG839MLti/wOl7+b2ZHfbuiF2xf5HS5/p9nLyirkjnunypx5C6V929byyLhb9pHfo8ZOltEj+td7XY1l9u1+wtHGIfL2Q+PtX6szdBYuXho7Oyc0+S0iBevXSLN3XpWCtatiWKqb7ye5O7dKTk2NlB9+jGw7+2IRdfI1V2QJIL8jm5qkgSG/kyKKbAPkd2RTkzQw5HdSRJFugPx2lx7ktzt+yG+X/OgePfmtSo+o3dpKbK9ZUye0zV/q661bEsvtwkKRDgfX7d6u+722bje3kt0da6V5C70Ed6J7FPmt73cw8lvf3CG/9c0d8ju6uUu08zue/FZy+56HnpbRIwcYu8DtMlzJ7pVr1snQgSXGwu0yPEz5bWaiuGaPNKutkF2SL9vzmhoyvPlrT0ve7h1S0aGzbD+zr9Q0bxndxDXwyJDf+t4AyG99c4f81jd3yG99c6ciR367yx/y2x0/5LdLfnQPXn5v3PidzF67Zl/Bnazudn5+ndxWvw4+pFYOPrhGOhxSK4eoPx9SK+0OzB65nez+RH4nIxTd95Hf0c1NssiQ38kIRfd95Hd0c5Nq2RNr6RJV0mT8w7NiJVDU6sY/OstYpBLe1j+r19Qcg0dMkKE3lEi347qEV/bEkoZmjfOleZMC2bmnSrbvrjTeydu6SVq8OlPySzdIVesDZMcZF0plu0Mik7yZz70qp538Azmkw4GRiSmsQJDfYZF3Py/y2z3DsEZAfodF3v28yG/3DMMcAfntjj7y2x0/5LdLfnQPRn7v2SPywnN58sLsfHn7rcQ/wqt+wteU2zHJfXBNneg+pE56c9URQH7reycgv/XNHfJb39whv6Obu3jy2x6xEtrrNpQapUs++WyFzHp5fqyMiZP87tShnVESxUl+7y6vFpFwnykK8nKlID9XKqtrpLKq5rvlVlVJ/rNTJffrL6W2abFU/exCqT3iGNcJfGDqc8YYN12XeU3xx5+aI2eceoJ0OmRf+b3y629lwmPPyh+GXSctmxfH4n3p7+/IXeMfrxf/VZecG4vD+v4xR3aW++++KW7/n515svxuyNVSVFTomofbAYoK86W8slpqa8O9j9yuoyH2LyrIk4qqGqkhd9qlv1FBnlRV10p1jeXvTO1W0TADLszPlZpakapqcqfjHdCkUb6OYUcmZuS3y1SsLd3jcgT33YubFEhx43zZsadKduzdteJ+VEYIikC7VkWyYVu51Kh/iTy+/vdZjiG8lfhWh02alyG1O9QaO7br/lxXosQU3Hl5HgeSpcMhv/VNLPJb39whv/XNHfI7urlLVX5bS518sfIbVzu/t+2qVGdPhno1KsiVxo3ypLyyRvYYMr7+VfTSk8NklCMAACAASURBVJL/+adG7e+ynhdKVdeTXMX70LTZRv9B1/RNe5xVq7+Vob+fIOs2bDb6tjtgPxn/x5ul48EHytbtO2T4Hx6Upf9bIUcf0VnG/eHGevL6lX++I+9//F8ZeePV0sgmrT/89DN5aOrsWB8V4/pNpbG2Tu9nuoa0F52kQ/Mm+bKrrErwOF6T9X+8Zk3ypay82pCoXHoRaFpU98FFZRW50ytzYvx7p5yD+jePSz8CLZsV6Bd0hCJGfrtMBvLbJUC6ix/y+415efL839ROb/UPXB3kzofVysWXVckll1fLAQfwsOLFrYf89oJiOGMgv8Ph7sWsyG8vKIYzBvI7HO6pzJqJ/N6ydYf2Nb+dyp7YeX0xY6oMmr2oTjg3byL/d9etRsmRr9d8K6PuflDWb9wsbfffT0b/7sZYKZLXXn9X7pv019hQ9971G+PPt95+f+y1M3t0k6GDrpSy8gr53ehJ0vvs0+Scs05xTNe27Ttl0tRnZfB1F8ucfy4wyp7897Ov5MAD28hx3z8i1kfF9MgTz8nwm66RFs2bxV5X8Xz4yXJjvkaNvtuxXV5eIeMfelKO79olNrcaY9yD02X4jVcZ65n85AvS4cADYu9//N//yeTpL8jdowbXmyOV+8zrNpQ98ZpocONR9iQ41l7PRNkTr4kGNx5lT4Jj7cdMlD1xRxX57Y4fZU9c8qO7d2VP1EGUSnarX4ve+660Sc+fVsvFl1VL7z777miCvzsCyG93/MLsjfwOk767uZHf7viF2Rv5HSb9xHPHk99/n79IDj/0IOncsb0xgLWOt/2AS/uBlvav1QGYCxcvjZVJicKBl8nktxK99/z5CZlw3ony/ZWL5atd1bLl8GOluGcfQ1j3v+pCQz6b7ZQAV5dVQCuZrMqR/PiUEwyRrK7+V14YS4gS28nktxrjhbnz5fqrL5LnXnk9bs3vRPLbKuMv+fnPjBic5LcZj1pbl8M6JZXjYd7VyO8w6bubG/ntjl+YvZHfYdJ3Nzfy2x2/sHsjv91lAPntjh/y2yU/uruX358syd1bzztP1n1bV9qkdeta6XtxtVx6WbV0+T4/1uTXfYb89ous/+Miv/1n7NcMyG+/yPo/LvLbf8bpzmAK7DnzFsa69u7ZPSao1aGW1wwZ6/ieetE8xHLJsi+NNtMmjjAOszQva3/rYZnqfR3kt1VWN/3wHWn6zqvG0t5t3kkm/ndzbPezVSKr3dhKmFt3gps8nOR3Kjkzx39jwaJ9dplb+8eT39Y2dtlu3xXuJL97/fS02A5z+87wVOL3qw3y2y+y/o+L/PafsV8zIL/9Iuv/uMhv/xn7OQPy2x1d5Lc7fshvl/zonrn8nvtK3S7vOS99V6D7xG41UnJJtVxyeZUUhn8OUdanF/mtb4qR3/rmDvmtb+6Q3/rmzo/IdZHf1pIfjT5fIi3+/qy8v7VSnt1WKDfdfXusjIi1PIi17EmXww+NSfJM5beVvxrjmef/brykyqmkUvbEnj8V35pvN9Tb/a3EunmZZVza7t+and9+3PyMKchvfW8C5Le+uUN+65s7FTny213+kN/u+CG/XfKje3rye8P6nNgu748/qittUlAocsGFqrRJlZzag13eQd5TyO8gaXs7F/LbW55Bjob8DpK2t3Mhv73lqftoushvxdlapqRw3Wr5/PGHZeL/dsj9Zx0htVfe6Fg+xMyPVXh7Ib9nPveqUfZky/Ydsmjxf+vFlsrObxWXVX7b7yNriRVVH5ya37p/p0UzfuR3NPOSSlTI71QoRbMN8juaeUk1KuR3qqSc2yG/3fFDfrvkR/fU5PcHi3KNXd7PP5cnWzbXlTY54shaueDndQdYHtieAyzDuJeQ32FQ92ZO5Lc3HMMYBfkdBnVv5kR+e8MxW0bRQX5ba3mrwx/V1+o6bL/mcvtv/yQl7fLl/CMPlDePPlP+9Ngso9SJktLqMndkW4W308GTqdb8fvu9j+Tyi84VU37/Y/579Q6iVHM6yW9VMmXuvHekV89TjV3q1rIm1l3jqr/Te/YDLr0Q+F7dw5Q98Ypk8OMgv4Nn7tWMyG+vSAY/DvI7eOZezoj8dkcT+e2OH/LbJT+6J5bfSna/8FyezPvHd6VNfnpOtfz8omo5/+ccYBn2/YP8DjsDmc+P/M6cXdg9kd9hZyDz+ZHfmbPLxp46yG/F3VrCxCwHokS4Es2/GzlGvt1dKe2L8mTMbQOk/bHHGa+PuvtBWb9xs5G2M3t0k6GDrqwnnpd//lXs9bLyiqQHXppSWvUzr1sG/1LOOesU40un981DLdX71lIp6ut4fa3rs95zVgbW9YR9XyK/w85A5vMjvzNnF3ZP5HfYGch8fuR35uyi0BP57S4LyG93/JDfLvnRfV/5/fWqHGOX94uz82T5srrSJu0OrDVk90Ul1XJMV0qbROW+QX5HJRPpx4H8Tp9ZVHogv6OSifTjQH6nzyybe+giv5PloOULj0vhmroDP7f1vlLKD/3uwM9kfTN539z5rQR8Q7+Q3/reAchvfXOH/NY3d8hvfXOnIkd+u8sf8tsdP+S3S350/05+v/2WWc87X3btqiPzo1Nq6qT3xVXStCm0okYA+R21jKQeD/I7dVZRa4n8jlpGUo8H+Z06q4bQMlvkt8pV878/LUWff2qkbcfp58ueY07yLYXI7+/QIr99u818Hxj57Tti3yZAfvuG1veBkd++I/Z1AuS3O7zIb3f8kN8u+dFd5LUXi2T6X2vlX/Prdnk3aSJyQd9qOf/CKvnx6ezyjvI9gvyOcnYSx4b81jd3yG99c4f81jd3fkSeTfJb8Wn69qvS9KN3DFS7up0hu04+yw9sjGkhgPzW93ZAfuubO+S3vrlDfuubOxU58ttd/pDf7vghv13ya8jd3/9Prkwcny9vzKur5330MXW7vC/4ebUcfAgHWOpwbyC/dciSc4zIb31zh/zWN3fIb31z50fk2Sa/FaPGSxZK8VuvGLjKvn+ibD/z536gY8y9BJDf+t4KyG99c4f81jd3yG99c4f8dp875LdLhmtL97gcwX334iYFUtw4X3bsqZIduyvdD8gIvhKorBCZeH+B/Hl8vlRXi5xxhsjlV1dKr/OqfJ2Xwb0ngPz2nmlQIyK/gyLt/TzIb++ZBjUi8jso0nrMk43yW5FvtHK5tHjlSSMJFYd8T7aef40eCdEwSuS3hknbGzLyW9/cIb/1zR3yW9/cIb/d5y4Q+b1l2w4Z88AMGXnTFdKqRXEs6hWr1sqM2fNk2KBLpaio0P1qQhgB+R0CdI2n/Off84zd3h9+kCvNmon8emil3PX7fNmwrVxqatjtrVtqkd+6Zey7eJHf+uYO+a1v7pDf+ubOj8izVX4rVgWl66XVUw8Y2Kpat5XNl93kB8IGPybyW99bAPmtb+6Q3/rmDvmtb+6Q3+5zF6r8jifF3S8ruBGQ38Gx1nmmDetzDOk9bUq+sYze51fLkKFVRqmTdq2KkN+aJhf5rWniRAT5rW/ukN/65g75rW/u/Ig8m+W34pVTUSZtpt0jORXlUtukmWy8boQfGBv0mMhvfdOP/NY3d8hvfXOH/NY3d8hv97kLVX7PnrtAFi5eKnfeeh07v13kkrInLuAF0PXZp9Ru7wJZ+VWOdDi4Vn49tEqu+OV3JU6Q3wEkwacpkN8+gQ1gWOR3AJB9mgL57RPYAIZFfgcAWaMpsl1+m6loPf0+ydu+RSQ3VzZdd5vUFDXVKEvRDhX5He38JIoO+a1v7pDf+uYO+a1v7pDf7nPnq/wuK6uQO+6dKnPmLYwb6bSJI6TbcV3crySkEdj5HRJ4DaZdvizXqOv94vN1B1oq4a3EtxLg1gv5rUEy44SI/NY3d8hvfXOH/NY3d8hvfXPnR+QNRX4rdi1fmCqFa1YYGLdcdqNUtm7nB9IGNybyW9+UI7/1zR3yW9/cIb/1zR3y233ufJXfZnjZUN4kHmrkt/ubMBtHeGRSvlHmZNvWHKO0iSpxokqdOF3Ib33vAOS3vrlDfuubO+S3vrlDfuubOz8ib0jyW/Erfn22NF622EBZetmvpbr1AX5gbVBjIr/1TTfyW9/cIb/1zR3yW9/cIb/d5y4Q+e0+zOiOgPyObm7CiOzf76rd3gXy1vxcY/pf/Vrt9q40DreMdyG/w8iUN3Miv73hGMYoyO8wqHszJ/LbG45hjIL8DoN6dOdsaPJbZaLpf94wfqlrw413Rzc5mkSG/NYkUQ5hIr/1zR3yW9/cIb/1zR3y233uApPf4x+dJZ06tJO+vXqIqvV9+7gpRvSUPXGfRGp+u2fodoTdu8WQ3g9MqDvQ8tQeard3pfF7sgv5nYxQdN9Hfkc3N8kiQ34nIxTd95Hf0c1NssiQ38kINaz3G6L8Vhlu+fITUrjqc6lu2UZKr7y5YSXd49Uivz0GGuBwyO8AYXs8FfLbY6ABDof8DhC2D1O1b93Yh1EbzpCByG9r2ROFdvCICTL0hhKD8viHZ8mksTdLqxbFWlJn57eWafM06Lmv5Bm1vT9Zkmvs8FY7vdWO71Qv5HeqpKLXDvkdvZykGhHyO1VS0WuH/I5eTlKNCPmdKqmG0a6hym+V3TaT75bcsjIpO+I42f7Tuv8TcaVPAPmdPrOo9EB+RyUT6ceB/E6fWVR6IL+jkonM4kB+Z8bN7BWI/DYPvizpc7oxrym81Z/HPDBDRt50BfLbRR7Z+e0Cnouu36zJMaT3k9Prdnurmt6qtreq8Z3OhfxOh1a02iK/o5WPdKJBfqdDK1ptkd/Rykc60SC/06GV/W0bsvzOqayQ/R+500jyjtN6yZ4fnJL9CfdhhchvH6AGNCTyOyDQPkyD/PYBakBDIr8DAu3TNMhvd2ADkd8qxEUfL5drhow1or1reD+j/IkqhaKuoQP13fHAzm93N6CuvWf8Nd8Q32tW50iHg2vl10Or5Ipfpr7b27pu5Leud4EI8lvf3CG/9c0d8lvf3CG/9c2dH5E3ZPmteBauWSEtX5hqoN1y0UCpPPAQPzBn9ZjIb33Ti/zWN3fIb31zh/zWN3cqcuS3u/wFJr/dhRnd3sjv6ObGj8g+/UQdaJkvc17OM4ZXwluJbyXAM72Q35mSC78f8jv8HGQaAfI7U3Lh90N+h5+DTCNAfmdKLjv7NXT5rbLa5IN/SbN//9NI8MZBf5TavLrnS67UCCC/U+MUxVbI7yhmJbWYkN+pcYpiK+R3FLOSekzI79RZObVEfrvjJ8hvlwA16v7gRLXbu0B27RKjtIkqcaJKnbi9kN9uCYbXH/kdHnu3MyO/3RIMrz/yOzz2bmdGfrslmF39kd91+Wwx50lp9NVyqWncVDb1G5ldSfZ5NchvnwH7ODzy20e4Pg+N/PYZsI/DI799hBvA0Mhvd5ADk99m3e858xbGIu7ds7vceet1UlRU6G4VSXqr8ipTZs6JtTLLrpgvqAM51SGcS5Z9abw0beII6XZcl1j72XMXyO3jphhf22NGfvuaukgMvuBfuTJxfIH8+51cIx51mKU61FIdbunFhfz2gmI4YyC/w+HuxazIby8ohjMG8jsc7l7Mivz2gmL2jIH8/i6XbaaMldw9O6Wi05Gy9bxfZk+SfV4J8ttnwD4Oj/z2Ea7PQyO/fQbs4/DIbx/hBjA08tsd5EDktym+Vaim7HZ6zd1SnHureSZNf1GuveQc41DNFavWyvXD75PRowYYgtuMo/sJRxt1yNX7o8ZOltEj+kvnju2NWuXmAZ2qv71OOfLbj6xFY8zt23Jk4vh8efgvdQdantpD7fauNH738kJ+e0kz2LGQ38Hy9nI25LeXNIMdC/kdLG8vZ0N+e0lT/7GQ39/lMKe6WvZ/6PfGC7tOOtP4xZWcAPI7OaOotkB+RzUzyeNCfidnFNUWyO+oZia1uJDfqXGK1yoQ+a12Vo95YIaMvOkKQ0CbV7zX3S0pcW8n2X3PQ0/L6JEDjNjs7yvZ3alDO0OMq8suw5HffmYrvLFfej5PJt6fL8v/m2vs8FY7vdWObz8u5LcfVIMZE/kdDGc/ZkF++0E1mDGR38Fw9mMW5LcfVPUdE/ldP3cFa1dJq9mPGS9u7XO1VHQ8XN/kBhQ58jsg0D5Mg/z2AWpAQyK/AwLtwzTIbx+gBjgk8tsd7EDktwpRSeR1G0pjO7/NUiPdju8iQweWuFtFGr3NeYfeUGLs/LbLbDNW9fvgqy6QO+6dKuaucPWafWc48jsN+Jo0HfrrQnlmZt2BQ6qmt6rtrWp8+3Uhv/0i6/+4yG//Gfs1A/LbL7L+j4v89p+xXzMgv/0iq+e4yO9989bko3ek2duvGm9s6v9bqSlqrGdyA4oa+R0QaB+mQX77ADWgIZHfAYH2YRrktw9QAxwS+e0OdmDyW4VprZ2tvrbX3na3lNR628uWKPk96+X59WqPm21M+V3S5/RYDXC7/N5T4f7Aw9Qij9+qIC9X8vNypKq6Viqr/ZO0buPUof+1V+fKM0/nyCGHiNw2okau7Vfre9hFBXlSXlkt/s/k+1Ia3ASNCnKlsqpWamrJnm7Jb5Sfa/ydWU3udEudFObnSnVNrfGLSz8CjQvrPlzmggDy2/keaP7aU1L0xVKpzSuQjYPqSqFwORNAfut7ZyC/9c0d8lvf3CG/9c2dihz57S5/gcpvd6G6723ffa5GdLvze8uOCveBuRyhcaM8KSrMk7KKatlTHr6Md7mc0LrfOChfZs7IlcOPqJUn/lolXY4KRqy0bFYg23ZXSS0iJ7TcZzpx86YFsmtPFRIuU4Ah9mvWpEDKKqqkqiqY7/MQl5p1Uzctyjc+6K2o5MNe3ZKrdn6rf/O4IKAIIL/j3wetp90jeTu3SeWBnWTLRf25YeIQQH7re2sgv/XNHfJb39whv/XNHfLbfe4ajPx2Et8Kn9rJTc1v9zeS7iPcNrRAnpyeL4d2rpXHHq+Qo44OTqpQ9kTfu4eyJ/rmjrIn+uaOsif65o6yJ/rmzo/Ikd+JqR7w4O+MBrt/cJrsPO0cP1Kg/ZjIb31TiPzWN3fIb31zh/zWN3fIb/e5axDy217qxIrN6QDMUWMny+gR/aVzx/b77Ay3j0XNb/c3Ydgj/G5EgTw+OV86dqyVR6dVyDFdgxPfau3I77DvgMznR35nzi7snsjvsDOQ+fzI78zZhd0T+R12BuLPr87EGTXmMRk26FLj+dd6WcsW9u7ZvV6pQPMsnSXLvjS6TJs4IlYqUH2tfsLymiFjjfeOPeowmTT2ZuOAeXUhvxPfDwXr10irWQ8bjbb/7BIpO7xrdG+gkCJDfocE3oNpkd8eQAxpCOR3SOA9mBb57QHEEIeg7Ik7+L7Lb/XArGpqWx92Vcjmw7Kqp923Vw93q0jQ2/5Qbja1Prwne3BP9NCP/PYtdYEM/Mc7CuTRSfnS/qBamfxEhRz3g2DFt1ok8juQVPsyCfLbF6yBDIr8DgSzL5Mgv33BGsigyO9AMKc1ibkJZM68hdK+bWt5ZNwt9eS3vTygdRNIsg0k9nNy1PP0wsVLY/Ic+Z08VY2XLJTit14xGpZedYtUN2+VvFMDaoH81jfZyG99c4f81jd3yG99c6ciR367y5+v8ls9FKuSIlf07bnPLhIVtnoonjF7nrHLpKio0N1KQuqN/A4JvAfTjrmrQB6cmC/7ta6V6TMr5PgTgxffyG8PEhniEMjvEOG7nBr57RJgiN2R3yHCdzk18tslQB+7x9v5rWR3pw7tYhtVrDJ8y9YdCUsHKtm9cs06GTqwxIjcLsOR36kltMU/Z0mjzz42Gm+48e7UOjWQVshvfRON/NY3d8hvfXOH/NY3d8hv97nzVX6rB+kxD8yQkTddEfsRR2vIyd53vzz/R0B++8/Yjxnu/VOB3H9PvjRpIvLU38rlhyeFI76R335kN7gxkd/BsfZ6JuS310SDGw/5HRxrr2dCfntN1LvxnOS3fWe3XWCXbt0u4x+eVe+nO607w+2lAs2ftBx6Q4lRGgX5nXr+9ps+XvK3b5aqNu1k86U3pt4xy1siv/VNMPJb39whv/XNHfJb39whv93nzlf5bT40q9Im6iHXfqndI6okyp23XsfObxe5LG5SIMWN82XHnirZsbvSxUgNo+ufx+fLn0YXSG6uyN9eKpeTu4cnvpHfet9zyG9984f81jd3yG99c4f8jm7uEslv63O8dfe2kt/253i7/LbuGrfL703bK0Rqa0OF0rhRnjQtypc95dWyq6wq1FiSTd5ywiijSfkxP5Q9Pfsma94g3m9VXCjbd1dKdXW491GDgO3xIls0K5Bde6qlqjrc/4d5vKwGMVzzJgVSVlktFZXkTreEN22cb/x9WVZRrVvoxCsi6kNDrswJ+Cq/VVjmQTf9Lu8d+7FH9bp6OJ4yc84+B+NkvpRwerLzOxzumc760IP5cvcfCozuf3uxXH50avj/aFPzO9Nsht8P+R1+DjKNAPmdKbnw+yG/w89BphEgvzMl53+/MHZ+V1bVSNjKMi83R9Sv6ppa41ekr/XfSO7kCUaItb1/IbU/ODnS4QYRXEFeriFPI565IFBoN4fKXXVNjUT92047sAEEnJ+XIzU1IjUhf3gZwFKzbor83Bzj78vI/3uXdeS9WVBhfq43AzXQUXyX34qr9TAdk7P9tHhd+SO/9cnc5Efy5fe/rRPfz8wul9N+HL74VrEgv/W5h+yRIr/1zR3yW9/cIb/1zR3yO7q5o+Z3lbGDOOpX46WLpPjNF40wN1/6K6lqc2DUQ/Y1Psqe+IrX18Epe+IrXl8Hp+yJr3h9HZyyJ77i9X1wDrx0hzgQ+e0uxGj3Rn5HOz9mdNMfz5eRw+rE98xZ5fKTM6IhvpHfetw/8aJEfuubP+S3vrlDfuubO+R3dHMXT35bD7hs1aLY+MlNdalDLO01we0HWtq/VgdgLly8NFbukJrfmd0PzV9/XoqWfWB0bugHYCK/M7uHotAL+R2FLGQWA/I7M25R6IX8jkIWMo8B+Z05O9XTN/lt1vVTdQL79urhLsoI90Z+Rzg5e0N76sk8ufXmQuOrvz5dIWf2jFaNK3Z+R/8eQn7rm6N4kSO/9c0p8lvf3CG/o5e7VH46U0nr28dNMYK3/+Sm+by/ZNmXxvvTJo6od86PWf5QvXfsUYfVOxwT+Z35/bDfjImSv2WjVDdvJaVX3ZL5QJr3RH7rm0Dkt765Q37rmzvkt765U5Ejv93lzzf5bYZl1vZWX981vF/WiXDkt7sb0O/ef3s2T4YMrhPfT8yskJ4/jZb4VnEhv/2+C/wbn53f/rH1e2Tkt9+E/Rsf+e0fW79HRn77TViv8ZHf7vJ1wIO/MwYoO7yrbP/ZJe4G07Q38lvTxO09uG37rkqpqIrOT+PqSzPYyJHfwfL2cjbkt5c0gx8L+e2Oue/y2xpeNopw5Le7G9DP3i89nyeDBtSJ7ynTK+ScXtET38hvP+8A/8dGfvvP2K8ZkN9+kfV/XOS3/4z9mgH57RdZPcdFfrvLm9r5rXaAq2vnqefI7uNPczeghr2R3xombW/I7PzWN3fIb31zh/zWN3cqcuS3u/wFKr+zUYQjv93dgH71fnVOnvS/uk58P/p4hfTuE03xjfz26w4IZlzkdzCc/ZgF+e0H1WDGRH4Hw9mPWZDfflDVd0zkt/vcqdrfqga4urb07S+V7Tu5H1SjEZDfGiXLFiryW9/cIb/1zR3yW9/cIb/d5y40+W0X4es2lMYOwHG/rOBGQH4HxzrVmV7/Z55cdVmd+H54coX0uTC64hv5nWpWo9kO+R3NvKQSFfI7FUrRbIP8jmZeUokK+Z0KpYbTBvntTa6L33xRGi9dZAy28YbfS21+3QHvDeFCfuubZeS3vrlDfuubO+S3vrlTkbPz213+ApHf6jCcMQ/MkJE3XSHqpHjzUqfAz5g9T4YNulSKiupkpW4X8jtaGXtrfq5c9otGRlB/ebRCLuwbbfGt4qTmd7TuoXSiQX6nQytabZHf0cpHOtEgv9OhFa22yO9o5SPsaJDf3mVgv6f/IvmbvpWaosayqf9vvRs44iMhvyOeoAThIb/1zR3yW9/cIb/1zR3y233uQpXf8aS4+2UFNwLyOzjWyWb697u58ovz68T3nx+qkItKoi++kd/Jshrt95Hf0c5PouiQ3/rmDvmtb+6Q3/rmzo/Ikd/eUjUPwKw45Huy9fxrvB08oqMhvyOamBTCQn6nACmiTZDfEU1MCmEhv1OAFOEm7Px2l5xQ5ffsuQtk4eKlWpY7MbEjv93dgF71/mBRrpx/bp34nvBghZRcqof4Rn57dQeEMw7yOxzuXsyK/PaCYjhjIL/D4e7FrMhvLyhmzxjIb29zmb99s+w3fbwx6K5uZ8iuk8/ydoIIjob8jmBSUgwJ+Z0iqAg2Q35HMCkphoT8ThFURJshv90lxlf5XVZWIXfcO1XmzFsYN8ppE0dIt+O6uFtFiL2R3yHC3zv1ko9z5dyz6sT3n8ZXypVXVYUfVBoRUPYkDVgRa4r8jlhC0ggH+Z0GrIg1RX5HLCFphIP8TgNWA2iK/PY+yY0++1ha/HOWMfDW3ldKxaH6/h8rFTrI71QoRbMN8juaeUklKuR3KpSi2Qb5Hc28pBoV8jtVUs7tfJXf5pTZUN4kHmbkt7sb0G3v5f/NlbN+XCe+//h/ldL/er3Et4ob+e32LgivP/I7PPZuZ0Z+uyUYXn/kd3js3c6M/HZLMLv6I7/9yWfxW69I4yV1G4829RshNY2b+TNRBEZFfkcgCRmGgPzOEFwEuiG/I5CEDENAfmcILiLdkN/uEhGI/HYXYrR7I7/Dy8+XX+TIj7sXGQGMvL1Sbhyin/hGfod3/3gxM/LbC4rhjIH8Doe7F7Miv72gGM4YyO9wuEd1VuS3f5lpNethKVi/RiQ3VzYMvtO/iUIeGfkdcgJcTI/8dgEv5K7I75AT4GJ65LcLeBHoivx2l4TA5PeKVWvl+uH3ydr1pfUisGzgzAAAIABJREFUPvaow2TS2JulVYtidysJqTfyOxzwX6/KkR+dWCe+fzOsSm69rTKcQDyYlZ3fHkAMaQjkd0jgPZgW+e0BxJCGQH6HBN6DaZHfHkDMoiGQ3/4m0zwAs7LdwbLlF9f7O1lIoyO/QwLvwbTIbw8ghjQE8jsk8B5Mi/z2AGKIQyC/3cEPRH6btb/bHdBahg4scRdxxHojv4NPyLpvc+TErnXie9CNVfK7P+grvtUakN/B30NezYj89opk8OMgv4Nn7tWMyG+vSAY/DvI7eOZRnhH57W928nZuk9bT7jEmqWq1v2y+Yoi/E4YwOvI7BOgeTYn89ghkCMMgv0OA7tGUyG+PQIY0DPLbHfhA5Dc1v90lKVnv4iYFUtw4X3bsqZIdu/UWwcnWWlqaI8ceWSe+r+1fJXeP1X+9yO9kWY/u+8jv6OYmWWTI72SEovs+8ju6uUkWGfI7GaGG9T7y2/98529cK/s9M8mYqLagkWzqP1Jq8/L9nzigGZDfAYH2YRrktw9QAxoS+R0QaB+mQX77ADXAIZHf7mAHIr/Vzu97HnparujbUzp3bO8u4oj1Zud3cAnZsT1HunSuE9+XXVkt906oCG5yH2dCfvsI1+ehkd8+A/ZxeOS3j3B9Hhr57TNgH4dHfvsIV8Ohkd/BJC23vEzaPHZ3bLLSa4ZJdbMWwUzu8yzIb58B+zg88ttHuD4Pjfz2GbCPwyO/fYQbwNDIb3eQA5HfKkRV83vegg9k4JV93EUcsd7I72ASUlYmcliHxsZkP7+oWh58JDvEt1oP8juYe8iPWZDfflANZkzkdzCc/ZgF+e0H1WDGRH4Hw1mXWZDfwWaqzfTxkrt9szHplpIbpLJth2AD8GE25LcPUAMaEvkdEGgfpkF++wA1oCGR3wGB9mka5Lc7sIHIb1X2ZPCICbJk2Zf7RMuBl+4SqHpne9mT6mqRQ9rWie9ze1fL5CeyR3wjv93f/2GOgPwOk767uZHf7viF2Rv5HSZ9d3Mjv93xy7beyO/gM9ryxWlSuPoLY+Kt514uFYd9P/ggPJwR+e0hzICHQn4HDNzD6ZDfHsIMeCjkd8DAPZ4O+e0OaCDy212I0e7Nzm//83NQmzrxfcZZ1fLkM9klvpHf/t8/fs6A/PaTrr9jI7/95evn6MhvP+n6Ozby21++uo2O/A4nY83ffEGKlr5vTL7zJ31kd9eTwwnEg1mR3x5ADGkI5HdI4D2YFvntAcSQhkB+hwTeo2mR3+5ABiK/2fntLknJemfzzu/uJxTJ6q9zpNvJNfLCnPJkKLR8n7InWqbNCBr5rW/ukN/65g75rW/ukN/65s6PyJHfflBNbcwmi9+SZu/+w2i8+8SfyM4fnZ1ax4i1Qn5HLCFphIP8TgNWxJoivyOWkDTCQX6nASuCTZHf7pISiPyOF+KjT74sPXucqPUhmOz8dncDJupdcmEjefftXDmgba18uLTMv4lCHhn5HXICXEyP/HYBL+SuyO+QE+BieuS3C3ghd0V+h5yAiE2P/A43IUVffCrNX3vaCKKsy/GyvedF4QaUwezI7wygRaQL8jsiicggDOR3BtAi0gX5HZFEZBgG8jtDcHu7hSq/1SGYM2bPk2GDLpWiokJ3KwmpN/LbH/BDf10oz8zMMwb/ZtMefyaJyKjI74gkIoMwkN8ZQItIF+R3RBKRQRjI7wygRaQL8jsiiYhIGMjv8BNRsHaVtJr9mBFIRYfDZOuF14YfVBoRIL/TgBWxpsjviCUkjXCQ32nAilhT5HfEEpJmOMjvNIHZmocqv1U5lDEPzJCRN10hrVoUu1tJSL2R396Dv/+efLn3TwXGwIs/LZO27Wq9nyRCIyK/I5SMNENBfqcJLELNkd8RSkaaoSC/0wQWoebI7wglIwKhIL8jkAQRyduyQVrP+LMRTFWr/WXrRQOlpqjuvJ2oX8jvqGcofnzIb31zh/zWN3fIb31zpyJHfrvLX6jye/yjs2TdhlK589br2PntIo/ZVPP7b8/kyZBf1f0UwOxXyuXk7jUuyOjRFfmtR56cokR+65s75Le+uUN+65s75Le+ufMjcuS3H1QzGzN3zy7Zb9Yjkrt9s9QWNJItF99giPCoX8jvqGcI+a1vhuJHjvzWN6vIb31zh/x2n7tA5He8Ay/bt20tj4y7hZrfLvOYLfL7vYW50ve8RgaNCQ9WSMml1S7J6NEd+a1HnpDf+ubJKXLkt775RH7rmzvkt7658yNy5LcfVF2MWVsjLV+aLoWrvzAG2XJRf6k8sJOLAf3vivz2n7FfM7Dz2y+y/o+L/PafsV8zIL/9IhvMuOz8dsc5EPntLsRo96bsiTf5WftNjnQ7rsgY7DfDquTW2yq9GViDUZDfGiQpTojs/NY3d8hvfXOH/NY3d8hvfXPnR+TIbz+ouh+z+ZsvSNHS942Btp17uZQf9n33g/o0AvLbJ7ABDIv8DgCyT1Mgv30CG8CwyO8AIPs4BfLbHVzktzt+gvx2CXBv9yM7NZadO0UuKqmWPz9U4c2gmoyC/NYkUQ5hIr/1zR3yW9/cIb/1zR3yW9/c+RE58tsPqt6M2fT9+dJ04TxjsB1nXCB7ju7mzcAej4L89hhogMMhvwOE7fFUyG+PgQY4HPI7QNg+TIX8dgc1MPldVlYhd9w7VebMWxiLuHfP7oHW+549d4GsXLNOhg4sqUfNXpZl2sQR0u24LrE2qt/t46YYX9tjRn67uwFV79NOKpKvVuTIid1q5KVXy90PqNkIyG/NEmYJF/mtb+6Q3/rmDvmtb+6Q3/rmzo/Ikd9+UPVuzMaf/keK579kDLjr5LNkV7czvBvco5GQ3x6BDGEY5HcI0D2aEvntEcgQhkF+hwDdwymR3+5gBiK/TfGtQjUPt3R6zd1S4vde9PFyuWbIWKNBv8t715PfZhzdTzha+vbqIStWrZVRYyfL6BH9jVrkqu/4h2fJpLE3S6sWxaIO6VSXKdCR3+6ydlGfRrLw37my//618tGyMneDadob+a1p4kQE+a1v7pDf+uYO+a1v7pDf+ubOj8iR335Q9XbMoi8+leavPW0Muue4H8mOHr29ncDlaMhvlwBD7I78DhG+y6mR3y4Bhtgd+R0ifA+mRn67gxiI/FY7q8c8MENG3nSFIZDNK97r7pYUv7fTzm8lu+956GkZPXKAEZtdhivZ3alDO0OMq8suw5HfmWfrhv6F8vILecYA32zak/lAmvdEfuubQOS3vrlDfuubO+S3vrlDfuubOz8iR377QdX7MQvXrJCWL0w1Bi47/FjZcdaFUptf6P1EGYyI/M4AWkS6IL8jkogMwkB+ZwAtIl2Q3xFJRIZhIL8zBLe3WyDyW82lJPK6DaWxnd9mqZFux3fZpwyJuyWlJ7/tMtuMVf0++KoLjFIt5q5w9Zp9ZzjyO7Ns3fX7Ann4L/lG5/eXlMmB7WszGygLeiG/9U0i8lvf3CG/9c0d8lvf3CG/9c2dH5Ejv/2g6s+Y+aXr/p+984Czqyr39v+06X1SSSCBENITioHIB14uYEvkXgTz6VWagiBIDRhDBFTgizEUFTFIUxAsGEWuXFAUuFzhKgFpKRBaek9mJtPLad9vrZN9smfnnDll7bZm/lvnd+acs8q7nncP2fPMOu9G3VO/QrCtGX1jJ6Dt1M8iUVPnzGQFjEr5XQAsnzWl/PZZQgoIh/K7AFg+a0r57bOEFBgO5XeBwCzNXZPfYl5z7Wzx/JaFF6Z3VKstI7/emXZ+C/m94skX+tUeN0qbGPJ7/hmnpGuAW+V3R3csv8kdbFUSCaIkHERfLIG+aMLBmewZ+r57g7j2mqAc7E/PxHHSyUNXfAsGlWVhdPXGkBzaGOw5uVwepaIshN6+BOIJJs9l9MrTlZeG5H8z43HmThmmywOUlYQQSyQQizF3LqNXni4QSP2bx0MfAuK695KFd2D7rqZ00DOnTEiXA8x13xxz6UFzPzEY5bc+54GINNTRhurnHkfJlg8Qqx+O9k/MR3T4IZ4ugvLbU/xKk1N+K+HztDPlt6f4lSan/FbC53lnym+1FLgqv9VCVe+dTX6ba3qLWazye6Cd321dUfXAFEcojYRQGgmiN5pAbzSuOJqz3f/yTADzz0r94vuTn8Zxzrn+l/XOEgGqy8Po6IkjSfvtNGrbxxcSp7s3jgRzZztbpwesKA2jLxpHjH+4cBq17eOXC/kdTyIa578ftsN1fMAAaioovx3HbOME1k0f5qFz3TfH2ldch7/8+tr0hhPKbxsTpTjU5q078NLKN/HFsz894EiBeBTVz/4BZe+vQjJSitZPfQF94yYqzl58d8rv4tl53ZPy2+sMFD8/5Xfx7LzuSfntdQbU5qf8VuM35OU3a36rnUCF9H7v3QBOPalM7nC+6toYFl7v/R8OConfqbYse+IUWefHZdkT5xk7NQPLnjhF1vlxWfbEecZOzcCyJ06RdW7cgeR3rmto66YT61iU3/bkrbWtAzcsWY6LzjsTs6YeVdSg2eT3n5/7O+5Y/kh6zGsvOxefOu1EVP/PkyhfvRL/3BfFhW+0yfcnTzwcty6+DLU1Vf1iEGPf+/DvsfCKCw56z9xQtFt8693YtadZvnzqybOx4NJzUFpaAut7Rr+5p83BlRd/EaFwJD2U0fac+fNkrOLIto6iYLGTLQQov23B6MkglN+eYLdlUspvWzB6Ngjltxr6IS+/c+1asdYEN3aFL7h4viTPmt/5nYDd3cD/mV2GXTsDOPOsOH5yX19+HYdAK8pvfZNM+a1v7ii/9c0d5be+uaP81i931rIn5tIlA903R1wnW6+ZjRIpC742X5YTpPy253xQld8PPPoEHvvDM+lgPv/ZT+Kic85Eb28fHlnxNOb/2+lSWlvn2fOnJ7Dkt8/h1slVGP6Jz+Dx5gDeWL0uLayN9uve35BVjJsJCEE9evSwtMAXcYlDxJLpEO9PnTAGHzvpePlpIHGYJbkh6nOtw54scJRCCVB+F0rMP+0pv/2Ti0IjofwulJi/2lN+q+XDNfmdqWagCN1a/09tOZl7m+sNGi0e+tGidB3vXPUKzbXK550+p199cMrv/DL2qVNLsXpVEMccl8B/PdObX6ch0oryW99EU37rmzvKb31zR/mtb+4ov/XNnRG5+Qb2q99dn/W+OYb8Hj92VPr+Plb5nRKW3tbuDwYCCAYDsnxZIkMZLBHzFYvvwup1H0oEc087Ad9e8GWUlZVgw6btuGHZzzD1qHH47R//W77/5f+Yi5OOn44Lr1mWfn71RZ9LJ/6JP72Eb9/+s6xj3brwKzh83CEQm3O+e+fPcfZn/gUfmTkZP3zgd+js7EZHZxeefm4lDhnZiOXfu0a2Fe/9/NdPp+f47nVfwZmfPknGd9n1P8Atiy6UY2Q6RDzimDX1CDz30utyvodXPIOvnfNvco3mw4jphGOmyfFF342v/hNXB7fJZhsmHYcbXvgAxhqMviKOO+59DLd88yLU11bn/UMgxl/5xto0b3NHY8wl11+Mmmqx0zwJkasbv/8ALrvgTDzyu7/AiNM6oXUdeQfEhrYSCAWD8mdO/I+HXgRC8r+ZYMlOvdImoxX/3olP4bPcqobJAxAOpe6bx6M4Aq7Ib+Nid/Yxk2HsmC4uXP/1ovzOnZPz/qMEz/01hMbGJFa925O7wxBrQfmtb8Ipv/XNHeW3vrmj/NY3d5Tf+ubOiNxc6uSDjduQ7b45+ez83tPa6/nNvitKQ6gqFzcejyPTTezfXPueXPrR046SO5+vv/VufOYTH8Pc00+Uu4wXfvcunPf5M/o9P/Vjx+Picz8r3//eXQ/j+ivPx2FjR0OMdd/Dj+N7N1wud1Lf98gfsHtPM77x9XOxa09Tv7Zit/JtP3kEn/nkyXJu0fb5v72CZd++Uo719LN/x+ur3pF9e3r7ZFwXn3+WbGscRnyLrv5yv9fNZ6EY9/hjp6GhthovvvwGvvS5uVlPUut4oq84rjj+cFT++bdoiSZw+ftJXHjlhQfFcc/Pf4dFV315wLIn5omN9Y8Y3iBZWg8x99jRI3HuWaegtbMPTS2p3AgGU44cL9kdO3OKzIv1yIeL/j+p/l9BfXVE/sxFefNq/yfLEqHYPdzTF5f3G+OhFwFxr7F4Iin/zeOhH4ERdaX6Be2jiF2T39/78S9x/RVfKugv/j7ilDUUyu+Bs3Td1SX49aMh2Wjb3m4dUup6jJTfriO3bULKb9tQuj4Q5bfryG2bkPLbNpSuD0T57Tpy2yc0y++Wfe247Z7fYMn1X5XX99ZSgoOx5re5FIeQqMvu/gUWXn6eFNLWsiDW59YyHub+IlHmsYT8vfOeRzH3EyfJMiDWvm+9/R6e/stLssSIkN/F1vwW41x34w/keWKUO7GeNObyJUYpEdFGxDR29AhZV7tk0/uI/2kFrlq5E5fPPgxTTzsdPZOOlkPlW/PbmNcow2Ku+W2OyTzexMOGYcfediy7+5E0K4PdMTMmp2t+i/7Z1mH7DwkHzIsAy57khcmXjVj2xJdpySsolj3JC5NvG7HsiVpqXJHfIkRxASyOs+aerBaxz3pTfmdPyPeXRHDXnWHZYOUbPRh7KD/WlokW5bfPfqgLCIfyuwBYPmtK+e2zhBQQDuV3AbB81pTy22cJySOcZ154FRMPH4Mjxh0iW5vreOe6b471Bpfid4GXX1+bLh+oS83vbDWxi5Hfhiw2ZOyyHz+ES84/W7L1Qn4bp4C5VnY26WyVylYh3/Xhe/jW0ntxzbgwPlIXQXTckeia8VG8H67J64aX1tNR1AA31xAX71tjGFFXhg3bmrDolp9A1Ba3HmZZb7yXTY7n8ePAJjYSoPy2EabLQ1F+uwzcxukov22E6cFQlN9q0F2V3zcue/CgaN2o+a2GaODelN+Z+Tz0YBjf+mbqzusrnujFiSfxY1HZziTKbyd/Qp0dm/LbWb5Ojk757SRdZ8em/HaWr5OjU347SdeZsa33zbHe+ybXfXPM/a3X/DrIbyF49+xtTt/EcbDt/DbOGiG/X1r5Js7+zGlSVJ859xS5m916CCG9dcdueRNK8/einfHHgG9/fBYmb38HodYm2f3dYUfgzrebcN11l+Zd9sQYT8Sy8IoL0v3ETvUHfvEEbl18mXxNyO/m9t70DS9Fv3zktjV2Z356OOpABCi/9T0/KL/1zR3lt765E5FTfqvlzxX5bb3BjVrI/upN+X1wPp56MoSLv5y6Sc7tP+zDf5zDmlIDnbWU3/76mS4kGsrvQmj5qy3lt7/yUUg0lN+F0PJXW8pvf+XD62h0kd+Ck5C9hlQdPqxBPi9057cQt7fd9TCW3HC5FMtmsW4tXWKUI7n9lmtylj0R8YkSKdYyH8Zu7m9ceb4cI9Pxq9//CSedkCpPIuS3+N4QzuK1FX98FufOn4vS0pJ02ZB5Hz9JlhOxrt+8U7s8GUf5qn+gYvVKbNzbhjs+7MS3PnsySk/4F8QaRsj5rH9YMGIxpLv1/UxSOx/5LcqdDLQOr38Ohur8lN/6Zp7yW9/cUX7rmzvKb/XcuSK/xcciRU3AL511evpjk+qh+2MEyu/+eXjjtSD+43OlaG8Hrrwmhm9+K+qPRPk4CspvHycnR2iU3/rmjvJb39xRfuubO8pvfXPnROQ6yG9zOZCRwxtQV1eDo6dPKkp+C4ZCEN+x/BGJ01pexFx/+4xPfgydXd151fwWYtrc1yj1kY/8NscjYpo88fD0rmpDUD/2h2fS6beWETHPa+0rpPONt9yFd9ZvSff/8uFVuPisj6N71hzc+4fn++2qN4+ViU+mMij5yO981uHE+c0xByZA+a3vGUL5rW/uKL/1zR3lt3ruXJHfIkzxsccXV66GuPv7YDoovw9kc8+eAM4+oxQffhDAv302jnvu7xtMqXZsLZTfjqF1fGDKb8cROzYB5bdjaB0fmPLbccSOTUD57RhaLQfWQX5rCbaIoI2yJ188+9NF9M7dJbx3JypWv4yytf+UjeOVNVKAd8+Yg2Qk9WnRYo5M8ruYcdjHfQKU3+4zt2tGym+7SLo/DuW3+8ztnJFlT9RouiK/rfUAzSGz5rdaAkXv6ooIqsvDaO+Oob3Lu53Wn/u3Uvzj70EcfUwCT/21V31hQ2QEym99E035rW/uKL/1zR3lt765o/zWN3dORE757QTV4sZ0Wn4bUUV2bET5qpdR9v4a+ZIogdI966Ponja7qMApv4vC5otOlN++SENRQVB+F4XNF50ov32RhqKDoPwuGp3s6Ir8VgvR37258zuVn8u+WoL//EMI9Q1JrHmvx99J81l0lN8+S0gB4VB+FwDLZ00pv32WkALCofwuAJbPmlJ++ywhHodD+e1xAjycvnTTe7ImeMmm92UU0UPGoWvGHPROnFFQVJTfBeHyVWPKb1+lo6BgKL8LwuWrxpTfvkpHwcFQfheMrF8Hz+S3sRtcRLN86dWor61WW4lHvSm/ge/cEMH9Pw3LDGzb2+1RJvSdlvJb39xRfuubO8pvfXNH+a1v7ii/9c2dE5FTfjtBVa8xS997S+4EL9mZqgveO34SumZ8FNFxR+a1EMrvvDD5shHlty/TkldQlN95YfJlI8pvX6Yl76Aov/NGlbGh6/L7zvtW4MFfPSWDufCL87SvAT7U5fdP7gpjyc0Rmc9/vNaDw8Yl1c7IIdib8lvfpFN+65s7ym99c0f5rW/uKL/1zZ0TkXstv8Mfvo+alS+hrH0feitr0HbM8YhOK2znsRNchuKYFWtelTvBQ8275fJ7Jh2N7plzEB05dkAclN/6ni2U3/rmjvJb39xRfuubOxE55bda/lyR3+s3bcclC+/A9l1NEDW+//X/HI1hDXU4a+7JatH7oPdQlt+/eyyEq76euknNY4/34qSPJXyQEf1CoPzWL2dGxJTf+uaO8lvf3FF+65s7ym99c+dE5F7K76rlP0LNTdcftKyOaxai7VvfcWK5HDMHgUC0T+4Cr1izEsH2Vtla3BRTlEOJ1w3L2JvyW9/TivJb39xRfuubO8pvfXNH+a2eO0flt/lGlw/9aBFmz5osI3786RflI+W3egLFCF7c8PJ//juIc79QingcWPaDKL50bsyexQzBUSi/9U065be+uaP81jd3lN/65o7yW9/cORG5V/I7tGkjRh43NeuS9v7pv9E3+wQnlswx8yAQ6mqXErx81UoE+nqQKC1D98yPomvmHCTLK/uNQPmdB1CfNqH89mli8giL8jsPSD5tQvnt08TkGRZ3fucJKkszV+T3oWOG4+brvoKystQuYcpvtaRZe7stv99ZG8Q5XyjBzh0BfP3KGBbfFLV3QUNsNMpvfRNO+a1v7ii/9c0d5be+uaP81jd3TkTulfyu+PUjqLvikqxLarvhu+i4+htOLJljFkAg1LIHFatXShEujkRtPbqmz5G7wZPBkHyN8rsAoD5rSvnts4QUEA7ldwGwfNaU8ttnCSkwHMrvAoFZmjsqv425zGVPbll4YToE7vxWS57R2035/dxfQ1h0XQTbtwXwmX+P494H++xZxBAehfJb3+RTfuubO8pvfXNH+a1v7ii/9c2dE5F7Jb+zlTwxrzF2xJGITZmK6JRpiE2eitiEIxE7YgKSlVVOoOCYAxCI7NoqBXjZu2/KVrFho+Uu8J6px1F+a3zmUH7rmzzKb31zR/mtb+5E5JTfavlzRX6bQ+QNL9USlqm3W/L7gXvD+Pa3Uje3nHdGHPf9nOLbjmxSfttB0ZsxKL+94W7HrJTfdlD0ZgzKb2+42zEr5bcdFAfPGF7J74pfPoy6qy4tDmQggOiUqYhNFlJ8CmKHT5BSPH74BCRqaoobk73yIlCy5UMpwUs3vCPb9405AiUnnozmQ45CLJ7Maww28g8Bym//5KLQSCi/CyXmn/aU3/7JRTGRUH4XQ+1AH9fltzG1UQ9cPF++9GrU11arrcSj3kPlhpff+mYEDz0YlpS/uTiKKxewxrddpxzlt10k3R+H8tt95nbNSPltF0n3x6H8dp+5XTNSfttFcnCM45X8Dq//ACOOn5kVYsv9DyNRV4/w5k0Q9cFDmzciLB83Idi0N2u/ZHmFFOLRoyYjfvgRUooLOS7FeF3d4EiaD1ZR8sFaeVPMkq3rZTTRsYejZ8IM9E6cgURZuQ8iZAj5EKD8zoeSP9tQfvszL/lERfmdDyX/tqH8VsuNZ/JbLWz/9B7s8nvzpgAWXVcCcYNLcTz6WB/+9bS4fxIwCCKh/NY3iZTf+uaO8lvf3FF+65s7ym99c+dE5F7Jb7GWqh8sQ83/+85By+q47Cq03fy9rMsNb/gQoQ8/hHgMb1xvkuObEOjsyNovUV8PUUpFiHAhxfuOOx7R42ZTiiucWGXvvIaat/8J7NgiR0lUVKFn4gz0TpiO6CHjFEZmVzcIUH67QdmZOSi/neHqxqiU325Qdm4Oym81tpTfavwwmOW3EN7fvLYEWzYHUFuXxN9e7sWwYfZ8rPBXv/8TTjrhaBw2drRiBvTvTvmtbw4pv/XNHeW3vrmj/NY3d5Tf+ubOici9lN9iPZG1q1H98osoa2tBb2UN2o89AX0fOb7opfYT4+s/kII8tH49wps3ArHMn5iMTZgoJXjf/q/o0ccWPf9Q7ChueNmx6i2E312N0vfXIJBIce47bCJ6jpyGninHAYHAUETj+zVTfvs+RVkDpPzWN3eU3/rmTkRO+a2WP8pvNX6DVn4//LMwFi9M1fc++pgEnvprb5rUA48+Ib+/6Jwzi6aXTX7/+bm/447lj8hxTz15NhZceg5KS0uKnkeHjpTfOmQpc4yU3/rmjvJb39xRfuubO8pvfXPnRORey2+xpqryMGoqIujojqGtK+rEMuWYZjEeeXsNIm++jsjqtw6eLxSSAl7I8OixKSkeP/Qwx+LSfWAhv5vbe2XN71BrE0rfT0nwSNNOubR4dR16j5yOnknHIDZspO7LHVTxU37rm07Kb331oEEdAAAgAElEQVRzR/mtb+5E5JTfavmj/FbjNyjl93duiOD+n6bqe59zfgzfv6P/LwMq8nvz1h1YfOvd2LWnWY4/cngDltxwudwB/tbb7+GBXzyBWxdfhtqaKqjMo5hWV7tTfruK29bJKL9txenqYJTfruK2dTLKb1txujoY5beruH0/2VCS3xmTEY+j5I3XUiL8jddQ8ubrCL+bupmj+UiMGHlgZ/h+MS7qi/MAzPLbzKPkw7dR9sFqlL2/Ov1y7/hJ6DlqJnqPmkV0PiBA+e2DJBQZAuV3keB80I3y2wdJUAiB8lsBHgDKbzV+2shvIZavu/EHcrVm4WyW0cMaGoC2a/C35w6V7S666gX8/c2H0oRuv+Ua+b0xjvje2J3d09uHG5Ysx7yPn4RPnXZiRqqtbR1Y/rPf4rKv/F889dcXZdmTt9/dgNGjh2HW1KOk7B47ekS6v1WGK6bKt90pv32bmpyBUX7nROTbBpTfvk1NzsAov3Mi8m0Dym/fpsaTwIa8/M5APdDdlRbhkTdSUlzUFrce0anTUuVSjk3VDhfPh+KRTX4bLEJtzShb9ybKPliDUPNu+XK8tlHeHLNr2keQqOaNSL06byi/vSKvPi/ltzpDr0ag/PaKvD3zUn6rcaT8VuOnhfwWEvm2ux5O77AWwlvI6pHDG6Wwvui8M9HZPBnf+OZ6ROoeQMvGBbj9R1G8sHIFFl5xgdyFLfps3LwDHzvx2Iw7soXYziW/xRhPPP0CLjn/bPz+v57rV/O7t7cPd97zKI6ZMTktv0X7ZXf/AgsvP29Q1wan/Fb8IfSwO+W3h/AVp6b8VgToYXfKbw/hK05N+a0IcJB1p/zOL6HBffsQefM1kxR/DaHt2/p1FjvBZamU/TvDxfdix/hgP3LJb/P6yz5Yi7L334LYFW4cfROmonvqR9A77qjBjsp366P89l1K8g6I8jtvVL5rSPntu5QUFBDld0G4DmpM+a3GTwv5na18iLGz+uiJV+CmbzYgGOzDlDkP4porj8IhhwzrJ8zNmIotR2II7udffLXf7nMxtvHe3E+cJHeBi4PyW/HkZHfHCVB+O47YsQkovx1D6/jAlN+OI3ZsAspvx9BqOTDld/FpC+7eJcukiJ3hRsmU4N49/QYUtcKlED/mOESnTkd02oxBJ8QLkd8GnFBbC8rffk3WBxd1wsURbxiB7slHo3vGCUhGSotPDHvmTYDyO29UvmtI+e27lOQdEOV33qh82ZDyWy0tlN9q/LSR3+ZyIsaShfxedsff8bcnL0QiUYLP/Hscs//1t+nSI+abT06eeLittbiFQH/sD8/IUEQ5lckTxnPndyKpeDayu9sEKL/dJm7ffJTf9rF0eyTKb7eJ2zcf5bd9LAfDSJTf9mYxtGWzrB+eluJvvoZgW1u/SRLDhksJHp02HbH9QlyIcYRC9gbj0mjFyG9zaKWiNvg7r6F047vpl3snHY2u6ccjOpo3GnUyjZTfTtJ1dmzKb2f5Ojk65beTdJ0fm/JbjTHltxo/beS3WOZF55yZXu2ePQFcfvl6bGv+PTavuRpfv6IcV1/beZCANjqYd3sXu/PbjPpXv/+TLHvS0taOV19/W8bGmt+U34o/jq53p/x2HbltE1J+24bS9YEov11HbtuElN+2oRwUA1F+O5/G8IfvI7LqTURWr0JkzVuIrHoL1h3iIorY5CmIThG7w6cjJuT41OmIjxnrfICKM6jKb2P6YPs+uRu8bN0bCLXvky9HG0ehZ+YcdE/7iGKU7J6JAOW3vucF5be+uaP81jd3InLKb7X8UX6r8dNCfltrfj/2uw9w1w/C2LJ+LA6f9UPM++RJWHjNHJjbCSktDqMEiVl4ix3hb6xehwWXnoPS0hLZLt+a3y+tfBNfPPvTMOT3X15Ymd5pbr3BpR2SXTG9rnRnzW9XMDsyCeW3I1hdGZTy2xXMjkxC+e0IVlcGpfx2BbM2k1B+e5Oq0M4diKxZhfDqtxCRX6sQ3vDhQcEk6uoQm5raJR6dOgMx8ThtOpKlZd4EnmFWu+S3eeiS9e+gfO2rKN30nnw5GQyje/pH0D39eFkehYc9BCi/7eHoxSiU315Qt2dOym97OHo1CuW3GnnKbzV+WshvsURzCZNoTyM2r74WkyaOwneXbsJdD/4Yu/Y096vDLeptL771bvm6OE49eXZadhuie937G9Kvixto5rrhpbmfgf3ay85N3+DSGqd5TsU0+bo75bev0zNgcJTf+uaO8lvf3FF+65s7ym99c+dE5JTfTlAtbsxAZ0dqd7iQ4WsOPCKROGjA2ISJB5VNiY8bX9zEir2ckN9GSMGOVrkbvHzNKwh2dciX+8YcjkRFNeJV1UBlDeIVVUhUViNeUS0fkyX++cOAIlrHu1N+O47YsQkovx1D6/jAlN+OI3Z0AspvNbyU32r8tJHfYpm3fieCe+4OyxWL+t73PtinuPriuxs7vw8bO7r4QQZJT8pvfRNJ+a1v7ii/9c0d5be+uaP81jd3TkRO+e0EVXvHjKxdnRbi4f2lU4KtrQdNkqyq3r9DfDriRxyJ2NhDEd//lRju3G5pJ+W3eZGiJnjZmlf61QbPRDoZKZEiPClkeFVKiBtiPP29eL+s3N5EaTga5beGSdsfMuW3vrmj/NY3dyJyym+1/FF+q/HTQn7vawngiksjeP7Z1M1svn5lDItviiquXK075fcBfpTfaueSl70pv72krzY35bcaPy97U357SV9tbspvNX6DrTflt54ZDW3amNodbuwQX/0WQtu2Zl1MsqQ0LcJFHXEpxY3H/YK8WBnslvw2FheIxxDsbEOwQ3y1IrT/+3BHGwLyebt8PecRjqR2kAs5XlmFpNxFLmS52Eleg0RFTer7soqcQ+nagPJb18wBlN/65o7yW9/cUX6r547yW5Hh9qZuxRHUu1dXRFBdHkZ7dwztXf2l9huvBXHpV0uwZXMAtXVJLL4phnPOi6lPyhFsI0D5bRtK1wei/HYduW0TUn7bhtL1gSi/XUdu24SU37ahHBQDUX4PijTKRQSbm1M31FyzCqEN6xHaugWhbeJrKzLtFLeuPNE47GApPubA7vH4yFEZYbktv/PNWEqMt0shLsS4kOUpUd6aEuedbRAiPdeRDIVTMrxKfNUivv/7WFUNkvK52GFem2sYX75P+e3LtOQVFOV3Xph82Yjy25dpyTso7vzOG1XGhpTfavx8vfP7t78O4ZorUjeknDkrgW/fGsWcjx5cu08RAbsrEqD8VgToYXfKbw/hK05N+a0I0MPulN8ewlecmvJbEeAg6075PcgSmmU5gfY2hLZuRVjIcCHFzV/bt8rnmWqLm4dLRiJIHDK2XzkVsYO8etIRaK1qQLSuAYlhwyB2metyBLo7pSAP7d9BHjB2k5tkeaCvJ6/lpMR4tRTiQowLWZ4S5bUpcV5ZAyHS/XQMdvnd3NSEhsZGPyG3LRbKb9tQuj4Q5bfryG2dkPJbDSfldx78Hn/6Rdy47EHZct7pc3DzdV9BWVlKKvt157e1vvedd/WhsjKPxbKJ6wQov11HbtuElN+2oXR9IMpv15HbNiHlt20oXR+I8tt15J5P+Opb63DBVUtlHDOnTMDypVejvrZaPqf89jw9vgkgtH3bgd3ihhzflhLjYgd5sKUlr1iT1TVINDQiPmwYxG7y9JfluXy/oRGiva+Pvh65YzzUkSqnYpRZMXaWi+eB/TfjzLWOZHllqszK/h3kSWM3uUmWu3nDzsEsvx956AH85le/wC9+/TgaG4flSo1271N+a5eydMCU3/rmTkRO+a2WP8rvHPzERfudP12Rvli/874VsseCi+fLRy/l9/ZdCfz6ry0I1nQhUhFHtCuE2L4KrHpmOJ5/JrXzwQ/1vdVO0cHfm/Jb3xxTfuubO8pvfXNH+a1v7ii/9c1dMZGv37Qdi5c+gCWLLsIR4w6B2Ezy8utr05tIKL+LoTo0+wQ6O/bvGN+aKqcipfhWlO/chviu3Qju3YNgc1POHeRWemKnuNgxLkR4Ytjw/bK8MfU4bDji8vX+It13GYjHZRkVKcbFLnvx2GV53tkGxOM5Q5e7wwWTSCmSJSUQMjwhdtOXlCEeKZGPxuuylrt8T7RNvZ7ql3qe6xis8luI70XXXSmXf/SxHxmUApzyO9fZ7d/3Kb/9m5t8IqP8zodS9jaU3zn4Cdk9fuwonDX3ZNnSKsO9lN+3/XY76sYcXHN8+/vleOzWI1jfW+1nw7XelN+uobZ9Ispv25G6NiDlt2uobZ+I8tt2pK4NSPntGmpfTCRk98atO9MbRqwynPLbF2nSOghrzW9RezzYtAfBpiYEm/amv0Li+717EWze/yjfa0Kgp/B7N4kSLBCSOBJBMhwCwhHI18JhJMP7HyPh1Ovh/e3S7cXrRl9TG9H3oDHEPGJ8MW6qn5TT4vtQaP/3ofR7Iqak0V62M/UNhhBIxBFI9CEYiyIQ7UFQ7Crv60agpwvBni6EejqBaJ9t50NKiPcX6UKUC2EuXi+vrkRvHIgHgkgGg0AgJB/FGgKBIBLBIALBUPpRtpFfISQDwRQD8RgMAaFA+nvZTnCQ4wVS3yM1rtOHWXwbcw1GAU757fSZ5Nz4lN/OsXVjZMpvNcqU3wPw6+npw023/wxzjp2Wlt/WC3ev5Pfjf+lGU+X2rNF3rxuDKy/M/Vd3tdOHve0gQPltB0VvxqD89oa7HbNSfttB0ZsxKL+94W7HrJTfdlDUZwzrpyVbWttx2aIfYsHX5mP2rMkse6JPKn0bqeoNL8WO8pQUb0JKkKd2kMvXTPI8Lc5bW33LwpbAhFAuLUGgtATJ0lKgtER+JSvKgbJSJMvKgPIyJMtS7wXE7nDRpiQid34HxR8EIiFAyH8/HkKuJwOAkOJCugeEYA8iEQjsfxTPxfuGWN8v5oVgF68Z8l0K9vABWR8K44Fnn8c196fKpFqP4yZPxq+XLMHwxsb9c5mlvhhbzCOEfSAl//dL/wOi/0BMgVAICRm3+AOI+KPBgb5uIaf8dou0/fNQftvP1M0RKb/VaFN+D8DPkN/zzzhFXqSLwyq/E8mkWgaK7P3/HtiDxMjdWXtvfrsKE2cVvpuhyHDYjQRIgARIgARIgARyElj06Sk527DB4CBg/fSkVX6LS+gkvLmONggHEBC+CX6IZXBk3d1VBIUsdPM8EpNFo0Aslvkxy3sB8+sD9TfGNdqIUiXiNetXAa8HRN8C2mdsW0xapUDvL9Ll85L9Ql1Ic7GbXe7wFjuz9z9KsXzg+0zvpXaAp9oZ4jgQSolq2d70nrldMcvIp899/1yFr//XswM2nT1mFP7zi5/F8MryfIZkGxIgARI4iED423eQigIByu8B4OWz81uBvVLXm+/bg+SoXVnH2LimEuOndyrNwc4kQAIkQAIkQAIkYBeBknAQ18+datdwHMfnBHLt/BYeUYhnHiRAAj4nUKhAd7p9ITLfHEsiAfEnt9RfTMRXQv75LZBMIplIpP4QhkCqdny//zal/kwnXhIbx1OP4k9nqee3btmOb2/eNmASx5eX4Y/HH4NptdUHif6DZX5K4htyX+4AN/9BYL/o7yf2+R9Tn/8QMTwSUCdA+a3GkPI7B79cNb93NveoZaDI3r95ugutNdnLnlTtG4XPfYp/WS4Sr6vdhteWYm97r7j+4qEZgYaaErR1RhGLe7tzTTNsvgi3rqoEXb1R9EWZO18kpIAgaisi6I3H0dPL/2gWgM0fTQPAuOGV/oiFUThOIFfN750tPdJDeXlUlodQXR5BZ08M7V0xL0Ph3EUQEDdNbOnozedejkWMzi5OEhDX0O1dUURjHv9HwKZF3nnbEty29JaMox162Dg8+ps/4KhJg+OTT3VVEXT3xdHbx+swm04f14apqQgjlkiiqyf3DXBdC4oT5U1gVAPLGucNK0NDyu8c9Kw3uLTuYvGq5nc8AfzoyS2oHnbwjUna95bgqjMOlX8s5uF/Aqz57f8cZYuQNb/1zR1rfuubO9b81jd3rPmtb+6KidxaKlDI8JdfX4ubr/sKyspKWPO7GKjs04+Aas1v4vSOgPjDhdhA0hcbPAL1B7ctwe3fv7UfVCG+H/7V45g0eXCIb7E41vz27udGdWbW/FYl6G1/1vxW40/5nQc/cbF+47LUDSzmnT4nfdEunnslv8Xcr62J4tm3mlF/WIe414XcOdyyuQqnz2rAcdMjeayMTfxAgPLbD1koLgbK7+K4+aEX5bcfslBcDJTfxXHzQy/Kbz9kwd0YxCaSC65aKiedOWUCli+9GvW11fL5juYeJD26d45Boao8jJqKCDq6Y2jriroLh7MpE6D8Vkbo2QCDUX4LmGYBPhjFt1gj5bdnPzbKE1N+KyP0dADKbzX8lN9q/DyV3wcu3CPo6AigqiqJjm5euCum1PXulN+uI7dtQspv21C6PhDlt+vIbZuQ8ts2lK4PRPntOnJfT0j57ev0aBEc5bcWacoY5GCV34YAf+zXjwy6Hd9GIim/9f25o/zWN3cicspvtfxRfqvx84X8rq6IoLo8jPZuUa9w6MrvzVt34KWVb+KLZ39aMavudqf8dpe3nbNRfttJ092xKL/d5W3nbJTfdtJ0dyzKb3d5+302ym+/Z8j/8VF++z9H2SIczPJbrHnN6rcwfcYsfRM0QOSU3/qmlfJb39xRfqvnjvJbkaGXZU+M0AeD/Bbietndv8DCy8/DYWNHF5WVbPK7t7cPd97zKJ5/8VU57rWXnYtPnXZiUXM40Yny2wmq7oxJ+e0OZydmofx2gqo7Y1J+u8PZiVkov52gqu+YlN/65s4vkVN++yUThccx2OV34UT06UH5rU+urJFSfuubO8pv9dxRfisypPxWBLi/u6r8fuDRJ/DYH55JB/P5z34SF51zpnwu3hOHeN7a1oEblizHReediVlTj7IneMVRKL8VAXrYnfLbQ/iKU1N+KwL0sDvlt4fwFaem/FYEOMi6U34PsoR6sBzKbw+g2zQl5bdNID0YhvLbA+g2TUn5bRNIj4Zh2RM18JTfavy0KHtiCN9172+Qqz315NlYcOk5KC0tgSGdjzriMDz5zN/k+0Iczz52Kq678Qfp54ZIFi/8+bm/447lj2Qdy9i9bey4nvuJk6RoFhK6q6sbnV3dchf2yOENWHLD5Rg5vLHfzmwx8O23XCP7iLme+utLuHXxZaitqcqYLdFGHFMnHS7Lnsz7+MlY8cdnce78uejp7cOyHz+ES84/O72j3CzDFdNvS3fKb1swejII5bcn2G2ZlPLbFoyeDEL57Ql2Wyal/LYF46AZhPJ70KTSs4VQfnuGXnliym9lhJ4NQPntGXrliSm/lRF6OgDltxp+ym81flrI77fefk+uUshkQ4TP+/hJsvSHkN+Lb70b58yf1+/5KSfNljulrTuyxVgP/OKJtIwWInnP3mYp03ftaepXuiST/H7hpVel8BalTYS0fmP1uox9jbTkI79FDELW19dUH1TzO9OOcvO84g8AXh+U315noPj5Kb+LZ+d1T8pvrzNQ/PyU38Wz87on5bfXGfDX/JTf/sqHjtFQfuuYtVTMlN/65o7yW9/cUX7rmzsROeW3Wv4ov9X4aSG/rUs073y2ymFrWRDrc+uuaXN/MY+5bncm+S3aGLvIhUh/+i8vDSi/80mPGCfbLnUR370P/x4Lr7ggvXOc8jsfqmyTDwHK73wo+bMN5bc/85JPVJTf+VDyZxvKb3/mxauoKL+9Ij945qX81jeXlN/65o7yW9/cUX7rmzvKb/XcUX4rMtSl5ne2mtjFyO+xo0ekbxgp5LhRVsQr+W2k0NjFvmtPc7q0i3U3umhL+a140rN7mgDlt74nA+W3vrmj/NY3d5Tf+ubOicgpv52gOrTGpPzWN9+U3/rmjvJb39xRfuubO8pv9dxRfisy7IslFEdQ7x4IHBgjmTx4vJ27mhCNxzFm9HAEAwGI5+IYNbJR1sTeumM3hNAuKy1BPJ7Ahi3bMWp4I6oqyw96bu4rxjD3F8/NYyWSSWzbsQf1tdVyLGvfjs5utLS2y7j6+qL9+hZDRcTS1t6JYY112LFrLxrraxEJh7Fl+y6MGtEo1ycOaxzFzGVnH5m/pPw/D80IGD97mX7uNFvKkAuXudM35cydvrkTkZeEg3ovgNHbRkCHa2jbFsuBHCHAfw8cwerKoMydK5gdmYS5cwSrK4Myd65gdmwSXkOroaX8VuPH3iRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAj4kQPntw6QwJBIgARIgARIgARIgARIgARIgARIgARIgARIgARIgATUClN9q/NibBEiABEiABEiABEiABEiABEiABEiABEiABEiABEjAhwQov32YFIZEAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiSgRoDyW40fe5MACZAACZAACZAACZAACZAACZAACZAACZAACZAACfiQAOW3D5PCkEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABNQIUH6r8WNvEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABHxKg/PZhUhgSCZAACZAACZAACZAACZAACZAACZAACZAACZAACZCAGgHKbzV+7E0CJEACJEACJEACJEACJEACJEACJEACJEACJEACJOBDApTfPkwKQyIBEiABEiABEiABEiABEiABEiABEiABEiABEiABElAjQPmtxo+9SYAESIAESIAESIAESIAESIAESIAESIAESIAESIAEfEiA8tuHSWFIJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACagQov9X4sTcJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkIAPCVB++zApDIkESIAESIAESIAESIAESIAESIAESIAESIAESIAESECNAOW3Gj/2JgESIAESIAESIAESIAESIAESIAESIAESIAESIAES8CEBym8fJoUhkQAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJqBGg/Fbjx94kQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAI+JED57cOkMCQSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAE1ApTfavzYmwRIgARIgARIgARIgARIgARIgARIgARIgARIgARIwIcEKL99mBSGRAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkoEaA8luNH3uTAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAn4kADltw+TwpBIgARIgARIgARIgARIgARIgARIgARIgARIgARIgATUCFB+q/FjbxIggSFK4PGnX8SKJ1/A8qVXo762eohS4LJJgARIgARIgARIgARIgARIgARIgARIwL8EKL/9mxtGRgIk4AABIa1vXPZgxpFnTpmQt8x2W34bcR8yshH3LrsWR4w7JL2GltZ2XLboh5h/xik4a+7JDlDLb8hsTF59ax0uuGopHvrRIsyeNTm/wdiKBEiABEiABEiABEhACwLGteiqdz4cMN5CrrWdWHi2OOedPgc3X/cVlJWV2DZtT08fbrr9Z3I8Y+xs18rrN23HJQvvwKXnn+nptbxti+dAJEACJOAzApTfPksIwyEBEnCWgLjovOfhJw4SyIXO6oX8FnE3NtTi+GOmYMHF8ym/C00a25MACZAACZAACZAACThOIJP4dXzSPCYw5PfsYyanr6WNWLds25P3Jpg8pgLldz6U2IYESIAE3CFA+e0OZ85CAiTgEwI6y29RZuWCz38Kt9/zm37y3u87v32SeoZBAiRAAiRAAiRAAiTgAgGd5LfA4dbOa7c3z7iQak5BAiRAAloQoPzWIk0MkgRIwC4CueS3cbH+1LMv95vyloUX9vsYYqaLV6O8h7njhV+c12+XtnFxvX1Xk2yW78c/jfnu/M5l+MH9K2Rf4yOU2eS39aOdmUqmiHHuvG8FHvzVU+mwTzp+Btrau9K7X/JhkqmcjLG2ln3t8qOcSxZ/VZY9yZYDY55RIxrTzPJdg13nB8chARIgARIgARIgARJQI5BNfhvXweKa8MWVq+X1p3F92rSvDYuX3H/QpzOzCWPr9av1Wj3TCjLt/BbtMr1uva7PVBol17W/iHHn7iZ5zf708ysPKr1oXCuLGMwlDAu5Vs50LZ8PC7UMszcJkAAJ6EWA8luvfDFaEiABRQL5yO/lv/hPfPnzn0rfyDLTbhDrhXimutbiQvrnj/0Zl53377KGYKY24qL41TfW5fyYpXm+DzZu61dDO5P8zhazueRLto95WmMS7YphYqTK/IuOkN/ZdtcIPuZfevJZg+LpwO4kQAIkQAIkQAIkQAI2E8glv8UmEOu9YKzXgUZI1mvuTGPnu3M7X/lt/X0h05z5XPub5bf4XSCbyLdey+d7razCwuaUczgSIAES8DUBym9fp4fBkQAJ2E0g2w0vs+2KFvNn2pFsvXi1Xtxa4861O3vB1+YPeDNI83zlpaX9bqDT3dvbb7dIpnjN65hz7DS5iz3fXzIy5SAfJtnkt3g9Ey/za6KNuEmQeRd4pjXYfX5wPBIgARIgARIgARIgATUCueS38WlA8yz5XpdmE8ji9ZdfXzvgjSuzyW/zRo0jx4/JeCN567V8rmv/TNe7+crvfK6VB5Lp+bBQyzB7kwAJkIBeBCi/9coXoyUBElAkkGvntzG89aOU4nXzxx2tF6+GVLeWOTHGy3ZBb/xyYAjpbMsbaKe59SLdutPaPKZYlzjEDTOzXbTn+/HSXEyMeTPFY+WRbcdLpl+OzGtQPB3YnQRIgARIgARIgARIwGYCTslvYwOIdXOECF9cW9750xUDfpoyk/w2Xjt0zHApzle/uz5j+RXrxo9c1/4ipmJ3fhvrMX8i0nqtnG2zS74sbE45hyMBEiABXxOg/PZ1ehgcCQWFrD4AACAASURBVJCA3QRyyW9D1A5rqDuo5rWIxaiznUkQW4W5eTd5ppqA5rVlk+ZGm4E+8nnNV+djwXeWY/4Zp8gd3da64laGhsQXpUyMOoRi90i2uVSYiDEzyW/rLx/WX1jyXYM5brvPFY5HAiRAAiRAAiRAAiRQOAGn5bf13jxGhAN9klO0sd5Lxuhnvg7PtmFFtLXK7IGu/TO1L2Tnd65r5Wz35MmXReFZZQ8SIAES0JcA5be+uWPkJEACRRDIJb8z1eDOdAGf627txgWrCHH50qsh6nRnuolPvksY6Aabd37n63josT8fJL8z7Zo2z5fvzm9VJtl2oltv4mnexTPQ7vV8mbEdCZAACZAACZAACZCA+wSclt+Zdn7ns8psZU/MfXN9WjPb3NZr//raaqWd3yKmga6VB9r5nQ8LtiEBEiCBoUSA8nsoZZtrJQESkBeR5ps+WpFkEsLFyG8xrvniub6uOmP9wHxTkkl+G3Ft3rYbTc2tuPT8M+XO73wvhgeqmbjiyRfSO99VmWQT2cbr5//fT+Hh3/4ZZlmf7xry5cd2JEACJEACJEACJEAC7hAoRn7n2iwhNpMIoZxrA8pAK8xHfue6T4/xSctM81jFuUrZEzH+QNfKZjlusHEnu5yFBEiABPQjQPmtX84YMQmQgAKBXPI7024P4yONA9X8Fm1OPmFGv5tWZrrgvXHZgwfd3V7EJOoMzp41OevKsl3om8uD3LLwQim/DfF+wVVLYX7NeH3Ltj2yXaZfADKVOMmXSaa73psv3K070c0f1zSzNSAY4w20BoVTgV1JgARIgARIgARIgAQcIFCM/M50XWrU1Z45ZUJ6U4a1RrdRAk+8/vPH/ozLzvt3ZCuLl4/8NqSyebNMpvXkc+1v/V0g27VyNuGe61pZhYUDaeeQJEACJOBbApTfvk0NAyMBEnCCQC75bVzwCkltHPcsXYD/evbv8mm2mt+ZanpnErqZalmbL+izrXmgXS6GnLdK4kx1Da21EK1tRMwiHlFL0byLxPjlYyAmVnbGulr2teOShXf029mdS3Ab7+ezBifOE45JAiRAAiRAAiRAAiRQHIFi5LeYyXqdLK5txWH+RKIRUaab01uvha3R5yu/RT/rtb31uj6fa/9Mn540X1Mb18pivssW/TBdwtAcd7bNIOY2xbAoLrPsRQIkQAJ6EqD81jNvjJoESIAEHCMgLspffn1tWvQ7NhEHJgESIAESIAESIAESIAESIAESIAESIAEHCVB+OwiXQ5MACZCAnwmIXTm33fMbfOms03HEuENkqLzRpJ8zxthIgARIgARIgARIgARIgARIgARIgAQKIUD5XQgttiUBEiCBQUTAXEfQvKyHfrRowPrjgwgBl0ICJEACJEACJEACJOATApnK3WUqI+iTcDOGYS6Hkm9pQ6PcorU8oZ/XydhIgARIQCcClN86ZYuxkgAJkAAJkAAJkAAJkAAJkAAJkMAgI2Bsyphz7LT0DdzFEu979EmcfvJx6U8p+nnZ4hOUi5c+gCWLLpLx5iolKET5nT9dkb7PjvW5n9fK2EiABEhAJwKU3zpli7GSAAmQAAmQAAmQAAmQAAmQAAmQwCAjYBXH1uUJMSxufGncfF7c5HH82FFSlIsd44u/dz++cekXpHQ23wDSvJva2FkudpM//Ns/Y/uuJph3lme6EbwxXz6lAYXs3rh1JxZcPF+Gn2tNVjmeq/0gSzmXQwIkQAKuEaD8dg01JyIBEiABEiABEiABEiABEiABEiABErASMMTzoWOGZ7zpuhDD4l41S67/qux62aIfwmi7fdfefu89/dxKeU8bcQgRvnN3kxyzu7e3Xz/x/k23/wzGbnOzUBfv/fLxZzH3tBNQX1ud131xRH9xGPLbWNOCr83PWFLQuuann1/ZT57zLCEBEiABErCHAOW3PRw5CgmQAAmQAAmQAAmQAAmQAAmQAAmQQJEEMtX8vmXhhXJ3t1EWZf4Zp8jR//z8K/JRSO6mfW14ceXqtHQ2T28uJSJeF9LcLKON3deLLz8HS+5+FKNGNGYcJ58lWeV5LvktxhR93v1gM156ZTVY8zsfymxDAiRAAoUToPwunBl7kAAJkAAJkAAJkAAJkAAJkAAJkAAJOEjAuHmkcTN2Qy6LKcWu7y3b9vSbXUhycZhvOimeGzeezCS/zeVUjJ3hq975UI5jiPd8l1jozm9rmRQRy+Il9+PeZddqUeM8Xy5sRwIkQAJeE6D89joDnJ8ESIAESIAESIAESIAESIAESIAESKAfAetNMIUcFju+KyvL8eXPfwot+9rx00f+KPt87dx/k8LYKpDz3flt1PY2Aiim/nahNb+L2SnOU4QESIAESKBwApTfhTNjDxIgARIgARIgARIgARIgARIgARIgAZsICNksamyLm1aWlZXIUa0C2rjp5KdPmyNLkxhyXOwAX770almb2yy7xXMhpMWNMsX74jCXPTGXJZkx6Qj87qn/wefm/YucP9vcSxZ/NWP97kzxWm9oaY7FGpsRO3d+23RCcRgSIAESMBGg/ObpQAIkQAIkQAIkQAIkQAIkQAIkQAIk4BkBQ2Q/9ezL6RisNbDNdb9nz5os21l3W1vHOen4GWhr7+onv42yJqK/ubSJ2In94K+eSs9vlFsxxPYlC+/AQPJbtDOXXDHKrQixbcRqiHjjNfOcrPnt2enHiUmABAY5AcrvQZ5gLo8ESIAESIAESIAESIAESIAESIAEhjqBfG5AOdQZcf0kQAIkMBgJUH4PxqxyTSRAAiRAAiRAAiRAAiRAAiRAAiRAAmkClN88GUiABEhgaBKg/B6aeeeqSYAESIAESIAESIAESIAESIAESIAESIAESIAESGBQE6D8HtTp5eJIgARIgARIgARIgARIgARIgARIgARIgARIgARIYGgSoPzefxdpcfOK7bua5FlgvumFeC5uonHjsgfle/NOn4Obr/tK+g7UQ/O04apJgARIgARIgARIgASGOoH1m7ZjoGvogW78NtTZcf0kQAIkQAIkQAIkQALuEBjy8tta98v6XFy03/nTFfLu0OKOzOJuzOJYcPF8dzLEWUiABEiABEiABEiABEjAZwRyXUMLMb546QNYsugiHDHuELmZ5OXX13ITic/yyHBIgARIgARIgARIYLATGPLy23ph3tPTh5tu/xnmHDsNZ809Wcru8WNHye/FYZXhg/0E4fpIgARIgARIgARIgARIwEog1zW0kN0bt+5MbxixtidREiABEiABEiABEiABEnCDwJCX3wKyENx/eu5l3LvsWsn8tnt+gyXXfxXlpaX9RLh4z3rh3hdLuJGnAecIBA68nUx6Hg4DKJCAzF9S/p+HZgSMnz3+3GmWOADMnX45MyJm7vTNnYi8JBzUewGMvh+BbNfQmT4tad0pzmtonkyqBPjvgSpB7/ozd96xV52ZuVMl6F1/5s479nbMzGtoNYqU3/t3c9/x09+iqblV1v02an4bu8Dnn3EKZs+aLElb5ff2pm61DNjQu7oiguryMNq7Y2jvitowIodwk8Co+jLsbu1FIkH97SZ3O+YaXleKfe1RROPe/xHMjvUMpTEaa0rR0R1Fb5S50y3v9VUl6InG0d0b1y30IR9vIBDA6IayIc9hMAEQn4jMdA0t1mj99KRVfu9o7kHS478eV5WHUVMRQUd3DG28htbu1BxRV4bm9l7E4ryG1i15w2pL0dYZhR/+CKYbO6/jbaguQVdvHD19vA7zOheFzl9bGZH/vezsiRXale19QOCQxnIfRKFvCENefguZbez0FrtUjAtzIbznnnpCzp3flN/6nvx+iZzy2y+ZKDwOyu/CmfmlB+W3XzJReByU34Uz80sPym+/ZMKeOAa6hjZKB4qZjPvkUH7bw52jHCBA+a3v2UD5rW/uKL/1zR3lt765E5FTfqvlb8jLb7FjZcWTL/S7+Y75ppa5an5TfqudgOwNUH7rexZQfuubO8pvfXNH+a1v7ii/9c1dpshzXUPnqvnNnd+D63zwYjWU315Qt2dOym97OHoxCuW3F9TtmZPy2x6OXo1C+a1GfsjLb7Fr5ZKFd2DJ4q/K0ibmnd9i14r1BpdmMS7QU36rnYDsTfmt8zlA+a1v9ii/9c0d5be+uaP81jd3mSLPdQ1tLRUoZPjLr69Nbzih/B5c54MXq6H89oK6PXNSftvD0YtRKL+9oG7PnJTf9nD0ahTKbzXyQ15+C3xCcF9w1dI0SaPmt/GCuFi/cdmD8um80+f02yVO+a12ArI35bfO5wDlt77Zo/zWN3eU3/rmjvJb39xlizzXNbT5/ZlTJmD50qshygyKg/J78J0Pbq+I8ttt4vbNR/ltH0u3R6L8dpu4ffNRftvH0ouRKL/VqFN+q/Hjzm9FfuxO+a3zOUD5rW/2KL/1zR3lt765o/zWN3dORE757QTVoTUm5be++ab81jd3lN/65o7yW9/cicgpv9XyR/mtxo/yW5Efu1N+63wOUH7rmz3Kbz1zt7ZjF1a379QzeEYtCSyYPockSEASoPzmiaBKgPJblaB3/Sm/vWOvOjPltypB7/pTfnvH3o6ZKb/VKFJ+q/Gj/Fbkx+6U3zqfA5Tf+maP8luv3L3dsQtr2nchgaRegTPagwhQfvOkMAj4RX6XJSPoRQztPVEmRzMClN+aJcwULuW3vrmj/NY3d5Tf+uZORE75rZY/ym81fpTfivzYnfJb53OA8lvf7FF+65G7dZ17sLZjJ6KJhAx4TGkNjh8xBnWhcnT3xvVYBKNME2DZE54MZgJeyu+eJmDT00G0vBNEYv9/SuonJXHoJxKoGss/sulyplJ+65Kpg+Ok/NY3d5Tf+uaO8lvf3FF+q+eO8luRIW94qQiQ3TGqvgy7W3uRSPCXLd1OB8pv3TJ2IF7Kb3/n7t2OPXinczd6EjEZ6KjSakyuHC4fWfPb37kbKDrKb31z50TkXsrvN38QQtfOwEHLKqlO4ujrYgiXHfyeEww4phoBym81fl72pvz2kr7a3JTfavy87E357SV99bm581uNIeW3Gj/u/Fbkx+7c+a3zOUD5rW/2KL/9mbv3u5rwTscudMVT5QcaIxWYUjUCY8tq0wFTfvszd/lERfmdD6Wh08Yr+d3yTgDvPBTKCnrC2UmMPJ6fLNHhTKT81iFLmWOk/NY3d5Tf+uaO8lvf3InIKb/V8kf5rcaP8luRH7tTfut8DlB+65s9ym9/5e7D7mas69iN9livDKw+XI7JVcMxrry+X6C/7HgPd7euxuZou78WwGjyJpA87tK827Lh4Cbglfze8VIQG54MDm64Hq4uVJZEaT1QWguU1gEldQn5mHotKb+HTRvrKb89TLTi1JTfigA97E757SF8xakpvxUBetyd8lstAZTfavwovxX5sTvlt87nAOW3vtmj/PZH7tZ3NeG9zr3YF+uRAdWGy3BU5XBMqGjoF+DaaDN+tG8Vnurc6I/AGUXRBCi/i0Y36Dp6Jr//N4gNf6T89vKEkjJciPHa/WJcyvGUGBdfofL8SgFSfnuZRbW5Kb/V+HnZm/LbS/pqc1N+q/Hzujflt1oGKL/V+FF+K/Jjd8pvnc8Bym99s0f57W3uNna3SOndHO2SgVSFSjGxshGTKocfFNhPWlfjh/tWoSsZRXkgjKWj5+Dc6km84aW3KSxqdpY9KQrboO3klfxu/SCAtfdnL3ty5OfjGHFsfvJ10CZHYWF9HUBvSwB9+4C+fQH0tqae9+4Tj0C0M/e273BpQO4YL6lLpnaQ1ydRkt49LgR5EoEgQPmtkCiPu1J+e5wAhekpvxXgedyV8tvjBChOT/mtBpDyW40f5bciP3an/Nb5HKD81jd7lN/e5G5TdwtEXe+9fZ0ygPJQBBMrGmVd74Dlc/D/27ND7vYWj+L4bOURuKlhNibV1qInGqf89iaFSrNSfivhG3SdvZLfAuTae0NoXX+whK0YmcTRC1jv28mTLRFFSoQLMd4C9LUG5fOelpQc720NAHmkIFKTRFVjENUT4qifnkTlaP7Bwsm82T025bfdRN0bj/LbPdZ2z0T5bTdRd8ej/FbjTfmtxo/yW5Efu1N+63wOUH7rmz3Kb3dzt6V7n5Teu8WWQACloTCOrBiGyZXDEAn034HZkYzirn2rIHZ8i2NsuBI31s/GZyrHy+e84aW7ubNzNspvO2nqP5aX8jvem8SWZ8JoeTeAWCcQLg+gekICh54eT9Wk5uEpAXFbh9Ru8dTO8b6WAHpakunnsQy7x8sagIbpCTROT6J6HEW4pwnMY3LK7zwg+bQJ5bdPE5NHWJTfeUDycRPKb7XkUH6r8aP8VuTH7pTfOp8DlN/6Zo/y253cbe9tx/ude7Gjt01OGA4EcWRFIyZVjUB5MHxQEKKm952tb2FdX4t878KaKbipfrbsZxyU3+7kzolZKL+doKrvmF7Kb4NaVXkYNRURdHTH0NYV1RfmEIs83idKqgDhjlJsfCWGvasCSJp2i0eqk1KCN85IonYCRbgfTw/Kbz9mJb+YKL/z4+THVpTffsxK/jFRfufPKlNLym81fpTfivzYnfJb53OA8lvf7FF+O5u7nb3t+KCrCVt7WuVEQnqK8ibiZpZVoZKDJt8a65C7vX/Z8Z58b1ZJI25o+AhOLBt9UFvKb2dz5+TolN9O0tVvbMpv/+Rs89YdeGnlm/ji2Z/2T1B5RGKu+d2yLoimNQE0rQHi3QdK2oibZzZOh5Th9ZMTeYzKJm4QoPx2g7Izc1B+O8PVjVEpv92g7NwclN9qbCm/1fhRfivyY3fKb53PAcpvfbNH+e1M7kRZkw86m7C5Z196ggn7pXdtuDTjpEJ4f7/5dTQlehAMBHBt7dG4um5W1gApv53JnRujUn67QVmfOSi/7clVa1sHbliyHBeddyZmTT2qqEEzyW9j3HXvb+g35uSJh+PWxZehta0di2+9G7v2NMv3jddra6qyxvDn5/6OO5Y/It8fObwBS264HIeNPfBHzt7ePtx5z6N4/sVXZZtrLzsXnzrtRIj4zHMZE8w9bQ6uvPiLCIUj6TlF20XfvhufnnIGJvf8H0TbUyJ8b98OPLL9h9gXa8bw2gYs/e7lOOzQg//AWhRAdiqYAOV3wch804Hy2zepKDgQyu+CkfmqA+W3Wjoov9X4UX4r8mN3ym+dzwHKb32zR/ltb+6ao12ypveGrpQEEcf48ga527uxpCLjZGujzbi9+Q38pXuLfP/U8jH4Vv1HMLmkfsDgKL/tzZ2bo1F+u0nb/3NRftuTI1X5/cCjT+CxPzyTDubzn/0kLjrnzIzBCXm9dcdu+f5bb7+HHTv2SjktDjHOnr3NWHDpOSgtPfgTPqL9A794QopzIcitzw3xfcyMyekxByIk5ps6YQw+dtLxiMVTpU3MktwQ5+2bAljz0k7c/5eHcWbDlzGs5IDwbpyWRIMojzI9geDBIduTII6SkQDlt74nBuW3vrmj/NY3dyJyym+1/FF+q/Gj/Fbkx+6U3zqfA5Tf+maP8ru43HXHo+iM96FLPCb60Bnrk8939LanBzysrA5HVjZiREn23X/iZpZLWl6TfYaHyrGg7micVz0pr6Aov/PC5MtGlN++TItnQekgv627n089eXZa7grRuuzuX+CoIw7Dk8/8TXIU4nj2sVNx3Y0/SD83i2TzzudMYy28/Dy5E9oQwXM/cZLczS1Eb1dXNzq7uuWuaPOuaau8tu6W/saV52fdES7iEcfUSYfLsifzPn4yVvzxWZw7f+5BAluwWPbjh3DJ+Wf3261tnEBWmW09scRcb6xedxA/Y81msZ7rpBTs733491h2wyVIBkuk/DbiO/8LZ+D3Tz4HQ6KbWR5ZPwlNqwNoXhNA164DpVHEfPWT9ovwaUmEK1knPFcOVN+n/FYl6F1/ym/v2KvOTPmtStDb/pTfavwpv9X4UX4r8mN3ym+dzwHKb32zR/mdOXd9ibiU2fIr1oeuZBRdsT507H9NvJ/tGFtWiwkVDRhdWpO1zf/27MD3Wl7HG717ZJvPVR2Jb9UfhxGh8rxPJsrvvFH5riHlt+9S4mlAOshvIXTFIQS0IcLnffykfqU4zpk/r9/zU06aLXdGG3LckLtWOWzeKb1rT5MU6QPJ7xdeejVdJsQsknt6+zKWPTF2QQ8kv0UMQtbX11TnrPmdS05b5bb15DL4HTJqmBTg//3SP9O7yEVbq8TPVBbFGFO0HTt6BM47+1Q0t/eiqaU9zWDyhPGydIohvzOVbxF/eLh0/jnoeK8UzWuC6NjaX4TXjBciPCHrhJcO/GEkT3+GdJ6c8lvf7FF+65s7ym99cycip/xWyx/ltxo/ym9FfuxO+a3zOUD5rW/2hqr8jibi6ErE0GUI7ngf2mO96ee9A8htkW0hL6uCJagMl6IiFEZFMILKUAkqwiUYOcBO745kFLe3vIH7296WJ83kkjpcU3s0PlM5vuCTiPK7YGS+6UD57ZtU+CIQHeS3FZSQruLIJLet5Uesz819xRhmOS6e55LfxrziUYj0p//ykpTI2eR3PkkW42TbpW7un2vXt1X0Z5tbMFi/cQtefePtfrvXrTvdRX8h05/660vpMinGmMau74VXXICJhw3Djr3tWHb3IzB2yVvLp5jbi3IrxvvDhzWky7v0tkDeLFOI8LaN/UV41dgDIrx8eD5U2SYfApTf+VDyZxvKb3/mJZ+oKL/zoeTfNpTfarmh/FbjR/mtyI/dKb91Pgcov/XN3mCV37FkIlWWJLa/LIlJcndG+9CTjA2YNHHDyQoht0NCcEdQKeR2uAQVQnAHI/JRtCnk+K/Ojbil5Z/YGuuQ3S6pmYbF9cchHAgWMky6LeV3Udh80Yny2xdp8E0QusjvbDWxrcI3H/ktdisbNbLNQlkkxQv5bRbKxg0lzeVYjPet4t58EuWzw9yQ2Ua9cPFciPfb7npY7mYfObxR7tY2BLZ4P1Mtc6vYHlFXhg3bmrDolp/AemNOMYYoASNKuogSKUKWGzfjHKhES6wzgKa1qdIoLe/2//euYmQSJTVAIAyEwkAgBCCcRDAEBMXzcOox03PRTrSX/UztApFUe/FaIJRMjSPaRfaP75ufWHsDofy2l6ebo1F+u0nb3rkov+3l6fZolN9qxCm/1fhRfivyY3fKb53PAcpvfbOno/wWFUhlKZJEH7oT0dT38Wi6/rbYzR1NJAZMipCPlUEhsyOoCpdIuV0RLkVlKLWDuzwYKVhuZ5tQyO4lza/hP7s2yCYnlo3GNXUz5aPKQfmtQs/bvpTf3vL32+w6yG/rTRwH285vs/wWNb/P/sxpUhSfOfeUdF3vgXZ15yu+xTxGqRKz/L9hyXJcdN6Z6brm2f44IOqgG8LcfNNMIb9F2RPjhpeijVWQZ9q1bt45n+nmnAaXRJ/YER6UIlwIcS+OUScmMGpOAhUjvZjduTkpv51j6/TIlN9OE3ZufMpv59i6MTLltxplym81fpTfivzYnfJb53OA8lvf7PlRfguhLWS2vKmklNxRKbkN0S1ez3ULriACqV3aQmbvl9upXdyp3dxi97YQkE4fP2t7B7c0/xN9iKM6WIIramfg67UzbJmW8tsWjJ4MQvntCXbfTqqL/BYARZkTa7mMQnd+m3c6C5lrFuvW0iVGOZLbb7kmLYaNOAwJbJQ9Ec/NNa6NhOcjpn/1+z/hpBOOll2E/BbfW3dJZ9v1navUiXV+axkTKw/rc2sNcavUFjHnI79FOzPrbLxy/qAkgbb1ASRiAYgKYeKDVIlYUj5PiudRIC4e4wEko8nU97HU80QUSMST+/uIfqk+4vWkeD0eTI0p24n39/c1/aNfMyGJ0R9NonHGwH/kzrkOnzSg/PZJIooIg/K7CGg+6UL57ZNEFBkG5XeR4PZ3o/xW40f5rciP3Sm/dT4HKL/1zZ7b8juajKd2aceEzE7t2JayW3zt38EdTeb+hbYsGJZiuzyUKkEidmyLMiVSdoud2+Jz0h4eb/XuldL7H707ZRRnVB2Oq2tmYnKJfXcMo/z2MMGKU1N+KwIcZN11kN+GwN21p1nWqK6rq8HR0ycVVfNbpE8I3TuWPyIzaS0vYq6/fcYnP4bOru50GRCrgLbuXDb3FaU+xO7qfOS3OR4R0+SJh/ersT1QeRBrX+P0NIR9pvnNJWQy3dDSPKY1lkw31MxXfhvi/PkXX5Vhfv6zn0zX+/bzj1Xz2gB2rQz2K78SqUpi9IlJjJyTQKTSz9EPHBvlt765o/zWN3eU3/rmTkRO+a2WP8pvNX6U34r82J3yW+dzgPJb3+y5Kb/Xtu/E6o5dOWGFAyGT2E4JblGiRJQikZI7HEFEFhj15/H9ltdxV+sqGdy4cDWurJ2JL1RPtD1Yym/bkbo2IOW3a6i1mEgH+a0FSBuCFKJa7Pz+4tmftmE094bIJL/dm929mXqagZ3/CGL3yhBivQe2gw+blcSojyZQc3iuz4W5F2u+M1F+50vKf+0ov/2Xk3wjovzOl5Q/21F+q+WF8ns/v1ffWocLrloqn82cMgHLl16N+tpq+fzxp1/EjcselN/PO30Obr7uKygrK5HPtzd1q2XAht7VFRFUl4fR3h1De1fUhhE5hJsERtWXYXdrLxIJ/S5c3eTkx7kov/2YlfxickN+7+3rlNJ7V2+7DOrAju0Du7WF2BavG6VK8ove+1Z9yTg2xtpTX31t+FXH+3g/uk8GdkHNZFxVOwsjQuWOBEr57QhWVwal/HYFs+uTDHQNPdB7lN+upyrrhJTf/slFrkj2vBGQIrx904ESZhWjkxh1YhKjjs/9CbJc47v1PuW3W6Ttn4fy236mbo1I+e0WaWfmofxW40r5DUBcmN/50xX9hLeB1frenfetkG8tuHi+fKT8VjsB2Zs7v3U+Byi/9c2e0/L7nY7dWN2+CwkkMKKkCtOrR8pHnY4EktgYbZOCe0O0DZtiHfIx9bz1oPrjx5YOtUlF8gAAIABJREFUl7u9P15xqKPLpPx2FK+jg1N+O4rXk8EHuoZev2k7Fi99AEsWXYQjxh0iN5O8/Pra9CYSym9PUjaoJh0qO78zJa1zRwC7Xg5g58vB9Nviw2FiJ/jojyZQNszfqab89nd+BoqO8lvf3FF+65s7ETnlt1r+hrz8bmltx+Lv3Y9vXPoFeWFuPYTsHj92FM6ae7J8y3qRT/mtdgKyN+W3zucA5be+2XNKfjdHu7GmfSe297ZJOFOrRkrxLW5E6ddjU6wdm6KpXdwbYm3Y0NeWeoy2IT7ALTZHhiowLlKNw8LiqwpX1c5EOHDgl3Cn1kv57RRZ58el/HaesZsz5LqGFrJ749ad6Q0jVhlO+e1mtgbnXENZfqczmoQU4DtfBrp2Hvg3uO4oIcLjaJjqz0+WUn7r+zNJ+a1v7ii/9c0d5bd67oa8/BYX4pcsvAPbdzWlaV74xXnyQr2npw833f4zzDl2Wlp+Wy/cKb/VT8KhPgLLnuh7BlB+65s7J+T3u517saZjJ6KJOBoiFZhRPQqjS1Pls7w+tsc6pdxen5bbrann0XaIm3FmO0TpksPDNRgXqcG4cBUODVfJet6HRaodK2uSixXldy5C/n2f8tu/uSkmsoGuocV41k9LCll+2aIfYsHX5mP2rMmg/C6GOvuYCVB+9z8f2jaI3eBB7HnzwB/cS2pTEnzUR5MIl/nn/KH89k8uCo2E8rtQYv5pT/ntn1wUEwl3fhdD7UAfz+W3uBD+3o9/ieuv+FK6xrYIT1xQ//LxZ+WObKO+ttpSM/cWO7lXPPlC+iOYxoX5/DNOwdxTT5DyW3wvLtKNuMwf4RR1tr0+SiNBlISD6Isl0BvVp9ab19z8Mn9VWRidvTEk/bkxwy+YfBlHZVkIPb0JxJk8X+ZnoKAqSkPoiyYQs6HWvtjt/XrTdmzobJFTTq8dgY80jEEk6M7NKbsTMeyKd2NntAs7Y53YFevGtmiHFNsf9rbiw2grehLZBffwcDkmlNTiiJIa+Tg+UoXxJTUYX1KN4Q7V7VY5YcpLQojFE4jG+R9NFY5e9BU6pqo87MXUnNMBAgNdQ4tPTFo/PWmV3509sQE+W+JAwBmGjISDKA0HERXX0DFeQ7tD3b5ZKkrD6OmLwYZ/yu0LygcjxbqBzS8mseWlALqbD/xbOeb4AA79GFA33vsgxb/l4jqM19De56LQCMoiqeswO66hC52b7dUIiH/vxH8vo3H+e6dG0pvewhvxKJ6Ab+V3Nile/FIz97ReuItWRk3CxZefgyV3Pzrgzm8/3GCyNBJCSSQoLyB6o9kFh93sOJ49BIQI6OyJI0mBag9QF0epKBO/dMV5s1IXmds1VXlpGH2xOOKKAvXttj14rXk7ehIx1EfKcFzDGBxeWWdLmK2JPuyMCaHdhV3GY7QnLbjFa0J070v05pyvMVSOI0qqMWG/4BaS+/BItRTcjSEfbQXLuRKgTMjvRBIxiqo8aPmsSSAgb9DNY3AQGOgaWtwcfvkv/lMu1LhPjlV+t3XF4PVf/sX1s/hviriGFv+e89CLgLiG7urlddhAWdv7NrDlJWDP2gOtag4FDj0ZGHOCd/muLE9dQ6teh3m3gqE7c0VZCH0xXofpeAaUlYbk763i3zwe+hGoqYzoF7SPIvat/LbeFMcpZmKH+W33/AZLrv9qeue5uUYha347RZ7jGgRY9kTfc4FlT/TNnWrZk454L1a17cTmnn0SwpEVjZhePQplwdxib0+iB7tjXdgd68aeRBd2x7uxJ96z/7FbPu6Od6E9Ec0LsNhNK3Zoj5RfFRgVrsCIUIWU20eEazE+XIO6UEleY+nQiGVPdMhS5hhZ9kTf3GWKPNc1NGt+D658+3E1LHuSf1b6WlM3x9z5DyDWnSqLIi5ZRp2YwOgTkyitd/fTVCx7kn/u/NaSZU/8lpH842HZk/xZ+bEly56oZcUz+W3U037q2ZezruChHy1KlxtRW2b23kYco0Y0yp0p1l0p1htcWusXsua3U5kZOuNSfuuba8pvfXOnIr/XdzVhdfsudCeiqAqVyhtaji+vzwrjHz07cVvLG9idSEnujkRfXuBCCEipLepuj5BCu0xK7VGhCowUz4PlUnQL4e3f22nmtdSCGlF+F4TLV40pv32VDuVgcl1DW++TY93YwprfyikY8gNQfhd3Cux9S9QGD6F1/YH+dZMSqDq0uPGK6SXKz0Ua4qiZkkDAnSpxxYTJPhkIUH7re1pQfuubOxE55bda/jyT30bYbpU3GQiTIbxXvfOhbHbLwgvTN7gUz8XF+o3LHpTvzTt9Tro+uHhO+a12ArI3QPmt71lA+a1v7oqR352xPqzu2IWN3c1y4ePLGzCzehQqQtk/gvZo+3u4qWklenHg4/ThQFAK6+FSZqfk9vCQkNvisSwlt/c/F2159CdA+a3vGUH5rW/uskWe6xpabCK54KqlsvvMKROwfOnV6U9aUn4PvvPB7RVRfqsR79oFuRtc3CQz6WEVhIapCTTMSKJxahKaVWJTS4CmvSm/NU0cAMpvfXNH+a2eO8/lt/oSvB2B8ttb/oNhdspvfbNI+a1v7gqV3xu7W7CmfSc64n0oD0Uwo2oUjqhoGBDALc3/xE/b1sg2X6o6Cv9RPTFdniTCbU5FnzyU30Wj87wj5bfnKfBVAJTfvkqHlsFQftuXtl2vBNHbat94uUYSO7+3vZFE5/b+LcUO9MbpQP2UJEqq3S3Fkitmvp8iQPmt75lA+a1v7ii/1XPnC/ltrqtt3mXtRtkTVYSU36oE2Z/yW99zgPJb39zlK7+7EzGsbd+BD7pSu70PLavDzOqRqA5nv0nklmgHbmpeib90b5F9bmz4CL5WM11fWD6LnPLbZwkpIBzK7wJgDYGmlN9DIMkOL5Hy22HADg5v1Pxu251E8xqgeW0QbRv7F3GrmZDEsOlJ1E1OoGzg/QYORsqhrQQov/U9Jyi/9c0d5bd67jyX3+ayJ2I5ly36IRZ8bb5c2Z0/XdHv45Hqy7V/BMpv+5kOtREpv/XNOOW3vrnLR35v6d4ny5y0xXoQCYYws2oUJlYOG3DRf+vejpuaX8H70X04NFKF79Yfj09WHKYvKB9GTvntw6TkGRLld56ghkgzyu8hkmgHl0n57SBch4fOdMPLaEcAzW8H0Lw2gJZ1FhE+HmiYlkDtUUlUjuKOcIfTM+DwlN9e0lebm/JbjZ/XvVnzWy0Dnstv42Y58884pZ/wFk++9+Nf4vorvpSuDai2VGd6U347w3UojUr5rW+2Kb/1zd1A8rsvEceajp14r3OvXOCYshpMrxqF+kj5gAt+qG2d3PEdRxL/Uj4G322YjYmROn0h+TRyym+fJiaPsCi/84A0hJpQfg+hZDu0VMpvh8C6MGwm+W2eNt4TwL53gaa1QoYHkYgdeLdqbBKiTnjdUUlXb9LpAhYtpqD81iJNGYOk/NY3dyJyym+1/Hkuv0X45pvhGDebFKVQxLHg4tQucL8elN9+zYw+cVF+65Mra6SU3/rmLpv83tbbJmt7t0S7EQoEMaN6JCZXjsi50G83v4IH2t6W7S6onoybG05AKNB/11LOQdggLwKU33lh8mUjym9fpsWzoCi/PUM/aCam/NY3lbnkt3llyTjQ8m4ALe+IneFBRDsOvFsxOomGKUDtUQnUHs4d4W6cEZTfblB2Zg7Kb2e4ujUq5bcaaV/Ib7UleNub8ttb/oNhdspvfbNI+a1v7qzyO55MYHX7Lqzr3C0XNaq0Wt7UsrGkYsBFboi2yd3ez3dvk+2E9L6wZoq+YDSInPJbgyRlCZHyW9/cORE55bcTVIfWmJTf+ua7EPltXeW+94B97wWlCO9pOvBu+TBxo8wEao8E6o5KIBDUl4+fI6f89nN2Bo6N8lvf3InIKb/V8kf5rcYPlN+KANkdlN/6ngSU3/rmziy/d/R2YHX7DjRHu+SCZlSPwrSqkTkXJ4T3jU0rsTHWhiPCtbi58Xj8a/mYnP3YQI0A5bcaPy97U357Sd9/c1N++y8nukVE+a1bxg7EqyK/zasWN8ncJ3aFrwugc/uBT9yV1gN1E1M1woUID5fy03h2nS2U33aRdH8cym/3mds5I+W3Gk1fyG+j7vdTz76cXs280+fg5uu+grKyErUVOtyb8tthwENgeMpvfZNM+a1v7oT8bu+O4p/N2/B2R2q394iSKkyvHikfcx33t76N77S8IpudXj4WNzeegHHh6lzd+L4NBCi/bYDo0RCU3x6B9+m0lN8+TYxGYVF+a5QsS6h2yW/zsB1b94vw9wNo33BAdkcqhQBPYsQJSZZGseGUofy2AaJHQ1B+ewTepmkpv9VAei6/DfEtlmHI7kyvqS3Tud6U386xHSojU37rm2nKb31z1xPqxd/3bMHu3k65iKlVI6X4DmLgnUGxZAI3Nb+Ch9vXyX4X107Dt+tn6wtCw8gpvzVM2v6QKb/1zZ0TkVN+O0F1aI1J+a1vvp2Q32YaXTsD2Pee+Api3/updwIh4NBPxDH2FNYGVzlzKL9V6Hnbl/LbW/6qs1N+qxH0XH63tLbjez/+Ja6/4kuorz2way7b62rLtb835bf9TIfaiJTf+mac8luf3MWScezu7cLeaAf29HVhT1/qbkkNkQpZ5mR0ae5d2+/1teCm5lfxYs92lCCEW4adgHOqjtIHwiCJlPJb30RSfuubOycip/x2gurQGpPyW998Oy2/zWR69gaw4+8B7PjfVBFwURd83CeBitEJfQF6GDnlt4fwFaem/FYE6HF3ym+1BHguv0X4d963Ajt3N6V3fgvxfdmiH2L2MZOx4OL5ait0uDflt8OAh8DwlN/6Jpny29+5a+oTsrsTu/uE8O5EXyKeDrgyXIJx5bWYUjkSEbEVKMfxTNdmueN7a6wDk0vqcUvD8TixbHSubnzfAQKU3w5AdWlIym+XQGsyDeW3JonycZiU3z5OTo7Q3JTfRih73wpg8zMheZPMcGUS4z6ZxMgTKMALPYsovwsl5p/2lN/+yUUxkVB+F0PtQB9fyG8RzuNPv4gblz2YjuyWhRfirLknq63Ohd6U3y5AHuRTUH7rm2DKb3/lriPeiz29ndgd7ZSP4rlxhAJBDItUYkRJBYaXVmFSYwO6emLojeb+peee1jW4teWfcqh5lePw3frjMTpc6a/FD6FoKL/1TTblt765cyJyym8nqA6tMSm/9c23F/Jb0OrdB2z+Swh7XkuVuRtxbBKHfiKB0nqWQsn3bKL8zpeU/9pRfvsvJ4VERPldCK2D2/pGfqstw7velN/esR8sM1N+65tJym9vcyd2cosd3WJnt9jhLXZ6m4/6SLm8eeWwkkoML6lEWTCcflvc8LKjOzqg/O5JxnBT0yv4Zcd7st8VdTOxqO5YbxfN2UH5re9JQPmtb+6ciJzy2wmqQ2tMym998+2V/DaI7VoZxKZnAoh1BlDWCBz2yTiGzaIAz+eMovzOh5I/21B++zMv+UZF+Z0vqcztKL/V+IHyWxEgu4PyW9+TgPLb/dyJWt2iZreo3S1qeIta3sYhSpmMiFShsaQCI0oqURMuyxpgLvn9Tl8Lbmx+Bf/o2YHqYAm+Wz8bn6+e6P6COeNBBCi/9T0pKL/1zZ0TkVN+O0F1aI1J+a1vvr2W34KcuCmmEOAtb6dqgY8+MYHDPpFAqFxfrm5ETvntBmVn5qD8doarW6NSfquRpvxW40f5rciP3UH5rfFJQPntfPJaYz3Yu/8Glf+fvTcBk7OqE73/VdVdXb2lu9Ppzr4RlgRGNo2iGAcUBcngOPjljuPCMIAgfHrlImLMDMxz0QciIldHP1xYruIyKiNXRBAYBB1cQBQFLyQEsiedpdPd6a2qurqW7zlvpSrVlequeutdT9XvfZ48Saffc87//P6nq07/+vT/VSe8o6nJ/KCNwZDMaciWMVGyW53wrvSaSX4/PL7DEN8HUlE5NdwtN89+k6yO9FbaNfc5TAD57TBgB7tHfjsIV8Oukd8aJs1nISO/fZYQE+H4QX7nwt3zy4Dsfjwk6jxF28KMLD4/LV0ncQp8unQiv00sdJ/divz2WUJMhoP8Ngms6HZP5beq833/Q7+UOzdeK10d7fnQcg+8XHfROb6v+83Jb2sLkNbIb53XAPLb/uzF0kk5NDEm/apud2JchiZjUwZRp7p7Gtukt6nVqOEdDpZ/WGWpKKeT318ZflE2Dj1vNHlv63K5uftN0h2c/gS5/QTosRwB5Hc5Qv79PPLbv7nxIjLktxfUa2tM5Le++fST/FYUR3aI7H40JMPbs7XAF749LUvPL/9cGH0zUH3kyO/q2XndEvntdQasjY/8tsbPM/kdjyfkC1/7gXzw4vPkuKULjpnFtp198r0HnpBPXf1+iUTC1mbpYGvkt4Nw66Rryp7om2jktz25S0laXh49KIcmo6LKmqQzR0/btDc0SU+4TXoa1QnvVmkLNdkyaLH8Hk0n5KbB38uPxl4z+r+u83T5ZOfptoxFJ/YSQH7by9PN3pDfbtL2/1jIb//nyO8RIr/9nqHp4/Ob/FaRZtIiux8Pyp6nsmVQZq3IGAK8fSmnwAszifzW9+sO+a1v7lTkyG9r+fNMfqvT3bd+5XvymY9/cMqp79x0yn3e2rTta438to9lvfaE/NY388hv67nbHTssm8b7ZXAy+7DKplCD9KhSJupBlU2t0t3YYn2QEj0Uyu8XEwNy0+Cz8lz8oMwONRllTv6u9ThHxqVT6wSQ39YZetUD8tsr8v4cF/ntz7zoFBXyW6dsTY3Vj/I77yE2BWTXY0EZ3xeQQEhk6QVpWfA2ToHn+CC/9f26Q37rmzvkt/XceSa/1cnvm26/V1Rpk9WnrTxmJs+9sNkoiXLz9Zdx8rtMnttbGqW9uUFGY0kZjR6th2t9edCDGwSQ325QdmYM5Hf1XEeScUN6b48OGp2oet2rWntkblObNKjvNBy+cvL7h4dfk5sGfi8D6bi8IdJriO/Twt0Oj073Vgggv63Q87Yt8ttb/n4bHfntt4zoFw/yW7+c5SL2s/xWMSajAdn1eED2/y57Crz7rzKy+F1paZnLKXDkt75fd8hvfXOH/LaeO8/ktwpdCe5LP7FRLv/AWrnuynX52dzxzfvlnu8/LN/68vqSYtz6tO3rgZPf9rGs156Q3/pmHvldXe5eGe+Xl8cOyEQ6JY2BkCG9V7X3SkCydRbduJT8/te9v5fPD/zJGO6/tZ0gN3evlvaAf8tsucFFhzGQ3zpkqXSMyG99c+dE5MhvJ6jWV5/Ib33z7Xf5nSPb/6fsKfCJoYCE28R4GObcN9b3KXDkt75fd8hvfXOH/LaeO0/ltwo/dwL84Seeyc9m7Xln+f7Edy5Y5Lf1RVjvPSC/9V0ByG9zuds3MSabxg7IwcSY0XBJpFNObp8rnQ3uPVAymknKr2P75PHETvn3w9n63uu7zpSPd5xqbjLc7RkB5Ldn6C0PjPy2jLCmOkB+11Q6PZkM8tsT7LYMqov8NnzFoBLgATn05+wp8N43ZGTJu1IS7rAFhXadIL+1S1k+YOS3vrlDflvPnefy2/oUvO0B+e0t/1oYHfmtbxaR35XlLpaelJfHDsqr44eMBh0NTbKqba4sa+6qrAOLd+1KjhnC+zfxffLrWJ8cSseNHuc3tsj/7HqTrG1ZanEEmrtJAPntJm17x0J+28tT996Q37pn0Pv4kd/e56DaCHSS37k57vttUHY/HpBkLCDNc0QWvyslc06rvzIoyO9qV7337ZDf3ufASgQ88NIKPRFP5Ld6mOU1679k1Pu++MI11mbgcWvkt8cJqIHhkd/6JhH5XT53W6MDRm3vseSEcfPJbb1ycttcaQhkT884df1p4pA8He+T38T3G8K78HpzZJ6c37FYzo0slOMDnU6FQL8OEUB+OwTWhW6R3y5A1mgI5LdGyfJpqMhvnyamgrB0lN9qWuN92VPgQ5uz+9j5b03LkvPTEqqjqnnI7woWuE9vQX77NDEVhoX8rhDUNLd5Ir9zseRqe6uPP3vD5VqKcOS3tQVIaxHkt76rAPk9fe4OJcZl0/hB2RsfMW5a0DTLEN/qwZZOXLlyJsbp7nifbE4czg/THmiUNc0LjvyZL8sbZknugZcTk/Vdt9GJXDjdJ/LbacLO9Y/8do6tjj0jv3XMmr9iRn77Kx9motFVfufmuOdJdQo8KJmMSNuijCHAO0+sj1PgyG8zK91f9yK//ZUPs9Egv80Sm3q/p/K7MBQ/iPBc/XEV183XXyaRSPZHuA888rTceNs9xr+L65Ejv60tQFojv3VeA8jvY7M3mU4bD7PcPH5Q1LcAraGwcdJ7Rcts21M9XTkTNdDihjZZ0zxf1kSy0rsr2DRlfOS37elwrUPkt2uobR8I+W07Ut90ON0eOvdwexXoqatWyJ0br5WujnYjbuS3b9KnbSDIb21TJ7rLb0V+ZFtAdj0elJHt2Qe2L35nRhafl9I3KRVGjvyuEJQPb0N++zApJkJCfpuAVeJW38jvwti8EOGFD94sFNxq037H1+/Pb9ZVbOq67sp1xt/Ib2sLkNbIb53XAPJ7avZ2xIaM097Dk9ma2ie0zpFVrb3SEmq0Lc0zlTN5XXi2rGleKGsi8w3hnf1WpPSF/LYtJa53hPx2HbltAyK/bUPpq46m20Nv29knGzbeLbesv0KOW7rAOEzyzPMv5Q+YIL99lUYtg0F+a5k2I+hakN9qHpmkyK7HQ7L3V9ldZ+cJYjwMs21J7Z4CR37r+3WH/NY3dypy5Le1/PlSfhdOScnm/QcHppzEtjbl0q3VOMsWzTM+Wbgxz/1/rjZ5sQxHfjuRjfrqk7In+uYb+Z3N3eFkTDaN9cvO2JDxcW+4zZDe8yPZ031WrpnKmah+sye7s7L71HB3xUMhvytG5bsbkd++S0nFASG/K0al1Y3T7aGV7N6xZ3/+wEixDEd+a5VmXwaL/PZlWioKqlbkd26ygy8HjVrg0f0BCYUDhgCfe1Zagvad/6iIqxs3Ib/doOzMGMhvZ7i61Svy2xppz+W3evjlrV/5nnzm4x/M/xqkmpLaIH/vgSfkU1e/P19+xNpUp29deJq78FSKanHT7ffKWWeekq9HXrxxR347lZX66Rf5rW+u611+pzMZo7yJEt+TmZQ0hRpkVWuPrGzttZTUmcqZdAbDR+t3RxbIkoa2qsZCfleFzReNkN++SENVQSC/q8Lm60bT7aFV6cDi35bMPfD+uo+uk9WnraTsia8zq0dwyG898lQqylqT32qOk+MB2fVoQA78PvswzMhske5T0zLn1Iy0Lqydk+DIb32/7pDf+uZORY78tpY/38rv6aS4teke27r4VEop+b3uonOMTXpOyhf+Cmcq7f0bWTAQkEBAjAduKBnFpReBUDAg6XTGqI/MpReBYDAgmTrN3baxIXnuUJ/sj44ZSVvV0SNvmDNfZjc1V5XEP4wflP8c2yNPjfbJk6N7pvRxfFOHvKN9kbxj1kJ5R9si6Qhln8dg5VKvm+qrjpdMKxS9aUvuvOFu16jqPY+rNgjMtIfOyW/1W5W5354slt9+2LOq1ah+KKP2YBneELRbmOr9wA/rSDtwPgjYeC/PiLEXq7Vr52/TsvM3GTm05ejc5p8elMVvEFm4OiiBrBvX9lKvmSpttZg7bZNSYeCBI0UhyV2FwHx2m3rd5KqegG/ld3FdwOqnOHPLwvrihXequt8bPvYhueWr353x5PeBoWxtWy+vtuYGaY00yHg8KWOxpJehMHYVBHo6muTQaMKQqFx6EeieFZbh8aQkU2m9ArcQ7VgyIS+NHpDXogNGL7Mbm+WU9nmypLnDdK/JTFoeHN8uD45tl8eju6e0P6NpjryteYHx5+zm+ab7Ltegqz0s47GkJJL1k7tyTHT5vDq1MjGZlnii9h8qpUtOKo1TfcPc2zn14bOVtuU+/xGYaQ+tHhx/530PGkHnnpNTLL8PDE14LpzV/rm9JbuHHo2yh/bfKps5InV6+PBYQpIp9tC65W72rLCMRidlMlm7uTv8akAOvRCQ/hcCkprIZqi5R2TOaRnpOTUjLfP0nHtXW6NEEymZSLCH1u3rblZrg/F6GY2zh9YtdyreebMjOobtm5g9k9+FD8eZjsa3vrw+f+LaLWLF0p2a326Rr99xKHuib+7rrezJlvFDxgMtY6lJCUpATm6fKye39Rr/NnNtSQzJQ7Fd8tOx7fLa5OF803PVwyqbVQ3vBXJyY5eZLk3fS9kT08h804CyJ75JhelAKHtiGplWDYr30NT81ip9WgZL2RMt02YEXYtlT6bLxsThgAy8kBXhY3uP7pm7T83InNelRf2t00XZE52yNTVWyp7omzsVOWVPrOXPM/mdC9ut8iaVYireuBc/4LK4fiE1vysly33TEUB+67s26kV+H0iMGnW990+MGslaHOmQVW1zjVPfZq7Horvlp+PbjT/pI7/muqChVS5qWS7vaVsmp4fnmOnO0r3Ib0v4PG2M/PYUv6XBkd+W8Pm+cfEeuvg5OcWf54GXvk+p7wNEfvs+RdMGWE/yuxCCejCmkuBKhucqLbXMS8uc12Wk+7SMcTLc7xfy2+8Zmj4+5Le+uUN+W8+d5/JbTUFtjq+64YvSdyD7a/S569RVK+TOjddOeRCm9SnP3EOpcivq/2687R6joSqHon6VU9UyVBfy2+mM1H7/yG99c1zr8jueTsrLYwdEnfhWV3tDk3HSe3nz7IqTtjc5Lj+NbjdOeb+YOPoa/7bmhXJRyzK5qHWptAet1/CuOKAjNyK/zRLzz/3Ib//kwmwkyG+zxPS6v9QeWh0iufQTG42JFO/rkd965deP0SK//ZiVymKqV/mdoxM9IDLwl5AhwmMHs/+raoEbp8FPS8vsk/17Ghz5Xdka9+NdyG8/ZqXymDj5XTmrUnd6Lr9z5U/m9XbnawJam5K7rZHf7vKuxdHEJM17AAAgAElEQVSQ3/pmtZbl97bogGwa75fRZLZI4crWHlnZ1iuRYENFCXs61ndEeu+Qscyk0aYn1CwXtS4zpPcbI3Mr6sepm5DfTpF1vl/kt/OMnRoB+e0UWT37RX7rmTc/RY389lM2zMVS7/I7RyuTEjn0YrYkytCmo0/CbF2YkTmnZqT71LREKj9zYi4JVd6N/K4SnA+aIb99kAQLISC/LcBTP2DMePxoc7+VPTGLE/ltlhj3FxNAfuu7JmpRfh9MjMnmsX7pmxgxEjO/qV1WtfZIb1N72UQNpSbyp7yfmTiQv//NkXlHpPdymR3yx8PukN9l0+nbG5Dfvk1N2cCQ32UR1dUNyO+6Srcjk0V+O4LVlU6R38diHt0TkIE/BwwZnhjO1gYPNmYfkNn9uox0rfTHAyaR3658iTgyCPLbEayudYr8tobac/mtTn5/4Ws/kA9efJ4ct3SBtdl40Br57QH0GhsS+a1vQmtJfo+nErJ57KC8Gs2WJmkNhY2T3ie0dJdN0B/jB7PSe3ynHExFjfs7gmHjhPd72pbL2ZH5Zftw+wbkt9vE7RsP+W0fS7d7Qn67Tdzf4yG//Z0fHaJDfuuQpdIxIr+nz10qHpD+F7MifHjr0Qdkti85chr8tIyEZ3lXFgX5re/XHfJb39ypyJHf1vLnufxW4aua3088/Ue58kMXWZuNB62R3x5Ar7Ehkd/6JrRW5PcrY/2yOdovsVS2PMlJbT2yqnXmEicTmaQ8FN0pD45tlydje/JJfH1TT/4BlnNDLb5NLvLbt6kpGxjyuywi396A/PZtajwJDPntCfaaGhT5rW86kd+V5W5kW0D6jzwgMxnLivBQs0jPqWmjPnjH8e5LcOR3Zbnz413Ibz9mpfKYkN+Vsyp1p+fyW5U9uWb9l+TFTVuPic+LB16axYn8NkuM+4sJIL/1XRO6y++98RHZPH5Q+hPjRhIWNc0yTnvPCbdOm5TNicPy4JEHWO5IZkujtAQa5KLW5cZJ73NbFmqRUOS3FmkqGSTyW9/cIb/1zZ0TkSO/naBaX30iv/XNN/LbXO4mR7J1wdWJ8LFdR0+DdywX6T4tK8IbW90R4chvc7nz093Ibz9lw3wsyG/zzApbeC6/rYXvfWvkt/c50D0C5Le+GdRVfg9Pxo2HWe6IDRrwOxua5aS2ObK8efon6jw8vtMobfKz8R35hJ3WNMeo5f03zctkcWObVolEfmuVrinBIr/1zR3yW9/cORE58tsJqvXVJ/Jb33wjv6vP3dCmgAy8GDREeCaZ7aehOSMdJ4h0Hq/+dvYhmcjv6nPndUvkt9cZsDY+8tsaP+S3NX6C/LYIkOaC/NZ3EegmvyczKTFKnIz3SzKTlsZASE5qnWOc9m4IHH3CfC4jO5Oj8tPx7fLTse3y8uSQ8d+qzXtalxknvd/ZvEjb5CG/tU2dIL/1zR3yW9/cORE58tsJqvXVJ/Jb33wjv63nLnZI8g/IjB6Yuo/vOF6k4/iUqL/bF9t7Ihz5bT13XvWA/PaKvD3jIr+tcfRcflP2xFoCVev2lkZpb26Q0VhSRqPZmr1c+hBAfuuTq+JIdZLfO2JDsmn8oKhT3+pa3jJbVrb0SEdj5JgExCUlGwf/KN8ZeUXUv9W1KtyVl97LG2bpm7QjkSO/9U0h8lvf3CG/9c2dE5Ejv52gWl99Ir/1zTfy297cHX5VZGRrSNTfY3uOlkVRo7QuyEjnCSKzVqSl84SMlDjvYioY5LcpXL66Gfntq3SYDgb5bRrZlAaey+/pwv/mdx+S89a8Xo5busDaDB1uzclvhwHXQffIb32TrIP87p8Yk1eih2RPfNgA3RNulZNae2RRpKMk+N/E98nnD/9J/hg/aHxelTW5qGW5rG1dqm+iSkSO/NY3nchvfXOH/NY3d05Ejvx2gmp99Yn81jffyG/ncje2NyDDr4kMvxaS4VdFMgUHv5u6xBDgWREuVdUJR347lzune0Z+O03Y2f6R39b4+lZ+b9vZJ9974An51NXvl0gkbG2WDrZGfjsIt066Rn7rm2g/y+9YalI2R/uNMifqag41ysrWXqPMyXTXvx1+wRDf6jqzqUfWd50pZ0fm65ugGSJHfuubVuS3vrlDfuubOyciR347QbW++kR+65tv5Lc7uYsPKgkelOHXskJ8cvzoqfBQU6EIz0hzT2UxIb8r4+THu5DffsxK5TEhvytnVepO38pvVQ7l1q98Tz7z8Q9KV0e7tVk62Br57SDcOuka+a1vov0qv7eMH5JXov0ynkwYcE9snSMntfRIa0PpHySqet6fH3penojuNu7/yKyT5dNdZ0pzoEHf5JSJHPmtb2qR3/rmDvmtb+6ciBz57QTV+uoT+a1vvpHf7ucuGVciXEnwgAy/GhRVM7zw6jju6Inw9qXT1wlHfrufO7tGRH7bRdKbfpDf1rj7Vn7f8c37Zf/BAbn5+ss4+V0mx9T8tvZF4HVr5LfXGah+fL/J730To8bDLA9MjBqTmt/ULie39UpPuG3aSX5n9BX5/OHnZSg1IcsaZsmnO8+Q97Qtrx6KJi2R35okqkSYyG99c4f81jd3TkSO/HaCan31ifzWN9/Ib+9zN7JN5PCR0iiju6bWCW+Zn5FO46GZR+qEh47Gi/z2PnfVRoD8rpacP9ohv63lwXP5Pd0DLxfM7ZZv3PZJan5XkF/kdwWQfHwL8tvHySkTml/k90gybpz03jo+aEQ8qyEiK1t75LiW2dPOYF8qajzU8j/Gtxr3vK9thdzQcYYsapxelOubqWMjR37rm03kt765Q37rmzsnIkd+O0G1vvpEfuubb+S3v3IX3RcwHpapSqQc3hqQTPJofOEOkc7jMzLr+LR0nZCRuQvCEp1ISTyR8tckiKYsAeR3WUS+vgH5bS09nstva+F735qyJ97nQPcIkN/6ZtBr+Z3OZGTT+EF5ZbxfEumUhAJB42GWq9p6pXGGR7n/bHyHUdt72+SwtAcbZX3X6+XS9pX6JqKKyJHfVUDzSRPkt08SUUUYyO8qoNVwE+R3DSfXpakhv10C7cAwyG8HoNrUZWJY5PCrARlRIvy1gCSyv1BqXMFGkd6VAZl9Wlo6X4f8tgm5a90gv11D7chAyG9rWJHf1vgJ8tsiQJoL8lvfReCl/N4VP2w8zHJgMmoAXBrplJXtvdLV0Dwt0LikjNPed428bNxzTvMC+XTX6+XUcLe+SagycuR3leB80Az57YMkVBkC8rtKcDXaDPldo4l1cVrIbxdh2zwU8ttmoA51l56cKsKjB44OtOi8tCx5Z9qhkenWCQLIbyeoutcn8tsaa1/I73g8ITfdfq88/MQz+dmsPe8s39f7VsEiv60tQFoL8lvjReCF/B6cjMqmsYOyOz5skOsOt8rKlh5Z3NwxI8nfxPcZp73/GD9o3Hdd5+nyyc7TNaZvLXTktzV+XrZGfntJ39rYyG9r/GqtNfK71jLq/nyQ3+4zt2tE5LddJN3tZ2R7QBK7G2TLw9kHYs45PSPL35OWxtbpH5DpboSMNhMB5Lfe6wP5bS1/nsvvnPhW08g93LLU/1mbpnOtkd/Osa2Xnjn5rW+m3ZTf0dSkvDp+yKjtrcqdRIINRomTlW29MvURNcfy/LfDLxjiW13qlLc67a1OfdfzhfzWN/vIb31zh/zWN3dORI78doJqffWJ/NY338hvfXOnHni57XcpefWBgEyOi7QtzMiy96Rl1jIEuN+zivz2e4Zmjg/5bS1/nstv9cDLW7/yPfnMxz8oXR3t+dlM9//Wpmt/a+S3/UzrrUfkt74Zd0N+q5PeO2JDxh9V11tdx7d0y8q2HmkLNc0I7+XJIfn80PPyRHS3cZ+q663qe6s63/V+Ib/1XQHIb31zh/zWN3dORI78doJqffWJ/NY338hvfXOn5Ld64OWhbWnZ/tOgjO4MSENEZNlFKel9AwLcz5lFfvs5O+VjQ36XZzTTHZ7LbxXcHd+8X/YfHMif/Fbi+5r1X5LVZ6yU665cZ22GDrdGfjsMuA66R37rm2Qn5fe+xKjsGB+SnfGhPKBFkQ45vmW2zGuaVRbad0Zfkc8ffl6GUhOyqLFNbug4Q97XtqJsu3q5Afmtb6aR3/rmDvmtb+6ciBz57QTV+uoT+a1vvpHf+uYuJ7/jiZQk4yLbHwpJ/x+yv4e66Ny0LLmAOuB+zS7y26+ZqSwu5HdlnKa7yxfyWwX3wCNPy4233ZOP87M3XC4XX7jG2uxcaI38dgFyjQ+B/NY3wXbL77RkZGd0SLbHhuRgYswAE5KgLG/pkuXNs6U73FIW1r5U1Hio5X+MbzXufU/bcvl05xmyrKG8MC/beQ3dgPzWN5nIb31zh/zWN3dORI78doJqffWJ/NY338hvfXNXKL9zs9jzVFB2PRo0Pux+XbYOeHgWp8D9lmXkt98yYi4e5Lc5XsV3+0Z+W5uGd62R396xr5WRkd/6ZtIu+R1LTRrCe1t0UMZSEwaQtmBYlrV0ybKW2dIWClcE6WfjO4za3tsmh6U50CCf7jpTPjLr5Ira1ttNyG99M4781jd3yG99c+dE5MhvJ6jWV5/Ib33zjfzWN3el5LeazcBfAkYZlMRIQFrmp+U4VQf8OH3nWYuRI7/1ziry21r+kN/W+Any2yJAmgvyW99FYFV+D03GZEdsUF6NDhgPsVRXT1OrLI10Gae91anvSq64pIzT3neNvGzcfnZkvqzvOlPObOqppHld3oP81jftyG99c4f81jd3TkSO/HaCan31ifzWN9/Ib31zN538VjOK7g/Itp8GZWRrQNQjhtQJ8LlvpAyKX7KN/PZLJqqLA/ldHbdcK+S3NX7Ib4v8aC7Ib40XQbXyuy8+Ktvjg7I7djg/+8XNnbIs0iULI+bKk/wmvs847f3H+EGjr//ecapx4ptrZgLIb31XCPJb39whv/XNnRORI7+doFpffSK/9c038lvf3M0kv9WsMimRbQ8G5cCz2UM8C/86I0svTOk74RqKHPmtdzKR39by5wv5vW1nn1x1wxel78DAlNmcumqF3LnxWunqaLc2yxlax+MJuen2e+XhJ57J3/WtL6+X1aetzH9cWI987Xln5R/MqW7g5Ldjqambjjn5rW+qzchvda57Z2xQtowPyOBkND/pE1vnGNJ7dgX1vItJ/dvhFwzxra5V4S5Z3/V6Oa95kb5AXYwc+e0ibJuHQn7bDNTF7pDfLsJ2YahK9tDPvbBZLv3ERiOa4n098tuFJNX4EMhvfROM/NY3d+Xkd25m+/4rKNsfzgrw2SerOuApaerSd961EDnyW+8sIr+t5c9z+T00PCrXrP+SrD5jpVx35Tprs6mitRr/f//wUbnmkr+VSCQsapO+4Za75Bu3fVKOW7rA+PiOr9+fl/B3fPN+Y5RcrMjvKqDTZAoB5Le+C6IS+R1PJ2Xr+CHZEjskE6nsqYdIsEFOOCK9Wxsqq+ddSOnlySH5/NDz8kR0t/HfH2o7UT7d9XqZHWrSF6bLkSO/XQZu43DIbxthutwV8ttl4A4PV24PrQ63bNh4t9yy/gpjT60Okzzz/Ev5QyTIb4cTVAfdI7/1TTLyW9/cVSq/1QyHNgdl+4NBiQ+KtMxVZVBS0nE8D8L0KvvIb6/I2zMu8tsaR1/I71u/8j35zMc/6OgJ70ox5WT8dR9dZ5z+VrJ72aJ5cvGFa4wuimU48rtSstw3HQHkt75rYyb5PZSMyWvRQ7J1fDA/wc7GiJzYMkeWNXdJMFBZPe9iOt8ZfUU+f/h5GUpNyNyGFvl05xny920n6AvRo8iR3x6Bt2FY5LcNED3qAvntEXiXhi3eQyvZvWPP/vyBkWIZjvx2KTE1PAzyW9/kIr/1zZ0Z+a1mGesX2fFQSIZeCYj69kfVAZ/3ZuqAe7ECkN9eULdvTOS3NZaey28VvtocqysnmK1NyVrrwo35grlzjJIoZ515Sj624o078tsab1pT81vnNVBKfvdNjMiW8UOyf2I0P7X5TW1yYmuvzG+qroRTMpOWX8X75Kdj2+U/xrca/V7YulRu6DxDTmjs1BmhZ7Ejvz1Db3lg5LdlhJ51gPz2DL0rAxfvkYt/W7JYjiO/XUlLTQ+C/NY3vchvfXNnVn4bM82IbH8oKPt+kz38s2BNRpb9DXXA3V4FyG+3ids7HvLbGk/fyO8bb7vnmJm4UfO7cNBc7cKc7M59vO6ic/I1wIs39gMjCWsZsKF1S1NImptCEptISXSCNxEbkLraxez2Rjk8PilpfgDuKnc7Butoa5TxWFKSqYxsGu2XTaMHZTQ5ke/6+NZuWdXeU1U975F0Qp6K7pVfRvfKU+N7ZE9y3Oi3MRCUf+5+g3ys63V2TKFu+5jV0iixRFImk/zqpW6LoL25QRLJtExM8qKpW+4CARH1TTNX7REo3kOrGRb/9mSx/B4aTSgf4ukVCYdE7aPjCfbQniaiysGVyBmLTUqKt4MqCXrXTO3DohPZPTSXXgTamhuMPdhk0vwX3p5fB2TLA1kZ3r0qIydeLNI8R6/56xyter9TziE+iTPSMY/soa1lzXP5XbwRtjad6lvnNu3zervzv55ZaiNfLL8nfPDC0RAKSigYkFQ6I0l2f9UvAo9ahhtChsgxdgFcWhGYyCTlj4f2ywtD+yWdyeYvFAjKGbPnyV919ojZet77J6PyxNgeeWJ0jzw6ulsOp46K9PkNrfL29oVy2eyVcnbrPK04+THYxoagpFKZfN78GCMxlSag3vPU11s6zWumfmskIE2N1ZV80m+u9RNxqT20mn25k99x9QOsI++dXtFqCAVEvaYoAcce2qssVD9uU2N2D53xeB1VP4P6bRluDEoyyT5MxxUQVnvodMb4U83Vv0nkpR+lZeyASGtvQE5ZF5DeU6rpiTZmCajvf9QeWn0PxKUfAfUDe67qCXguv9WG+Qtf+4F88OLzjIfheHFNt2nPbdyp+e1FVupnTGp+W8+1ehPfEu03yo1EU5PWO6yih9ZQWFa29og67R2QQMU97EyOyq9iffKr2F55NLprSruTGjtlTfOCI3/mS5Pwhlcx2DI3UvbELpLu90PZE/eZ2zUiZU/sIumffmbaQ1Pz2z95qtVIKHuib2Ype6Jv7qoqe1I03YnBbBmUwZezPxBfdlFaFrzV/ElyfSl6EzllT7zhbteolD2xRtJz+a3CVw+RfPrZv+RPXFubkrnWpU53F/ZQ/IDL4lMs1Pw2x5u7jyWA/K5+VYylJgzhrf54dc1pbJGTWntlcXNHxSFsTgwZNbz/M7pbfhffP6XdGyNzZU3TPFnTvFBWR3or7pMbzRFAfpvj5ae7kd9+yoa5WJDf5nj5/e5ye+ji35ZUMvyZ51+Sm6+/TCKRsFDz2+8Z9n98yG//52i6CJHf+ubODvmdm/2Oh4PS919ZAT7vLWlZflHaeCgmlzMEkN/OcHWrV+S3NdKey+9c2ZMXN2Uf4lZ4uVHzW23Mr7rhi9J3YGDK2Jd/YG1exqvNeq4m+drzzspv2lUD5Le1BUhrHnhZzRpQD5NUwls9XDJ3dTe2GCevFze79wDIUg+8nG4+f5rolydje+Wx6C55KTE45bbzmhfJXzcvlDXN83mAZTULooo2yO8qoPmkCfLbJ4moIgzkdxXQfNykkj20OkRy6Sc2GrMo3tcjv32cXE1CQ35rkqgSYSK/9c2dnfJbUTjw+6BsfzAo6aRI5wkZWfaelLRw/seRBYL8dgSra50iv62h9lx+Wwvf+9bIb+9zoHsEnPyuPINbxwfl1Vi/HJ6M5xstjnTIytZe6Q63VN6RTXeWk9+/je+Tx2O75dHxXbI7OZYftTXQKBe0LpG/jmRLmvSGmm2KiG4qJYD8rpSU/+5DfvsvJ5VGhPyulFR93If8ro88OzlL5LeTdJ3tG/ntLF8ne7dbfqtYh7cHZMeDQRnfF5DI7GwZlNknUwbF7jwiv+0m6m5/yG9rvH0pv3OnwdXU7tx4rXR1tFubpYOtkd8Owq2TrpHfMyd6IpWSLbFD8up4vyTS2SdTNwSCsqKlW05smWP6oZJ2Lqti+Z3MpOWJ2B55zBDeO2UkncgPpx5YeUHLEnl78yJZE5kvjfxOn52pMN0X8ts0Mt80QH77JhWmA0F+m0ZW0w2Q3zWdXlcmh/x2BbMjgyC/HcHqSqdOyG8V+ORoQLb9NCgDL2afnbRsbUoWvI0HM9qZVOS3nTTd7wv5bY25r+S3qqd9z/cfNmZUWHbE2hSdbY38dpZvPfSO/C6d5cHJqGyJDsiO6NESIW2hJjmhNSu9lUTx+lLye+fwmPxsZEdWeBc9sHJluFPOb1kq74gslNdTv9vrdE0ZH/ntq3SYCgb5bQqXr25GfvsqHZ4Hg/z2PAXaB4D81jeFyG99c+eU/M4R2fVYSPY8mf0+b94b07Lsb9MSbNCXl58iR377KRvmY0F+m2dW2MJz+V1YL1DVAjz37NNlzuxOufjCNdZm5lJr5LdLoGt4GOT31OTujh2W12KDcmBiNP+J3nCbrGiZLUubu6ZdCb+PH5D7Rl+R/amoa6sl3BCQX43tmzKeemDl+c2L5Z0ti2VFY+UPwXQtaAYyCCC/9V0IyG99c4f81jd3TkSO/HaCan31ifzWN9/Ib31z57T8VmQO/jEgOx4KSTImMuu4jCw5Py2NrRlpbBVpcL/Spb7JKooc+a13KpHf1vLnmfwufNDlt768XlafttKYiXq4pLqQ35Untr2lUdqbG2Q0lpTR6GTlDbnTFwSQ3yLpTEZeHT8kW2ODMpI8Ws97SaRTTmiZIz1NrSVzpX4R7r7RzXLfyGbZPHnYs3yqB1aqE97valksc0IRz+Jg4MoJIL8rZ+W3O5HffstI5fEgvytnVQ93Ir/rIcvOzhH57SxfJ3tHfjtJ19m+3ZDfagajOwOy/adBGdsz9bd9lfxWEtyQ4e0ZaVD/bhNpahcJtWaMv8OzRBraMhIKO8tCt96R37plbGq8yG9r+fNcfi9e2CM3X3+ZRCLZVybkt/mEIr/NM/NTi3qW32OpCXl1fEC2RQdlMpOt5x0JNhgnvGeq5/1yYtA45f2d0VfyqWwKhOSSWSvl/OZFrqW3oy0sp6TnSCZNPTrXoNs0EPLbJpAedIP89gC6TUMiv20CWSPdIL9rJJEeTgP57SF8i0Mjvy0C9LC5W/JbTTE5HpC+pwOSGA3I5FhGEiPq3yKTYwGRCr79KhblSpKH25UYV39njH83tmUMWR4IeQjVpaGR3y6BdmgY5Lc1sJ7J71zYhWVPPnvD5fnZcPK78sQivytn5cc761F+H0yMyWvRAdkVO3pau6uhWZa1dBknvYPT1PP+8fhWQ3r/IX4wn8rTm3rkkrYT5e/bT3A9vcUPvHQ9AAasmgDyu2p0njdEfnuegqoDQH5Xja4mGyK/azKtrk4K+e0qblsHQ37bitPVztyU39NNLJ0USYyoPwHjQZmTY5IV5KOZ7N/qc0ckeSZdGZ68KG/PSMucjDTNyUikW6R5jkikOyPBxsr68fNdyG8/Z6d8bMjv8oxmusNz+V0YHA+8rC6ZyO/quPmlVT3J7+2xIdkeHRQlv3PX/KZ2Wd4yW1SJk1LXrsnR7CnvsS0ylk7kb/mH9hPlkvaT5NRwt2epRH57ht7ywMhvywg96wD57Rl6ywMjvy0jrKkOkN81lU5PJoP89gS7LYMiv23B6EknfpDfFU88k5Xihigfzcry5KiIerTUZMEp8okREcn+EvK0V7gzI83dIpE5GWnuEWmanZHm2SJN3fqUV0F+V7xyfHkj8ttaWnwlv3NTydUDVx/fufFa6epotzZLB1vzwEsH4dZJ17UuvydSKdkay5Y2UWVO1NUQCMrSSKcsbekS9TDLUtdj0V3ynbFX5Kno3vynj2/sNIT3Je0nSqMPfjcN+a3vFynyW9/cIb/1zR3yW9/cORE58tsJqvXVJ/Jb33wjv/XNnVby2wRmVWJFCfKJwwGJD4jEBwISPyQS7Q/IxODMHUWUBFcyXJ0WnyPS1JU9NR6ZnZFQk4kgHL4V+e0wYIe7R35bA+xL+W1tSu62Rn67y7sWR9NdfsfTSZlIJyWempRYOimJdNL4O55KivrcgYkxSUv2983aQk2ytLnTOOndVuIJJEOpCeMBlt8efUUOpKL5dP9N6zL5x/aT5C2R+b5aAshvX6XDVDDIb1O4fHUz8ttX6TAVDPLbFK6avxn5XfMpdnyCyG/HETs2APLbMbSOd1yr8nsmcKp0SlaIByXWf/TfSo7HKxDj6rS4Ice7j4jx2UqMi4SaKyhcbmNGkd82wvSgK+S3NejIb2v8BPldHcDv//jn8tY3nS5LFvlLZlY3G2ut/Ci/pxXahuielNgRsa2kdzpT/k1bne5Wp7yPi3SJkh/F12/j+wzh/bPxHflPzQ21GML7kvaV0uWnH5kXBI/8trb2vWyN/PaSvrWxkd/W+HnZGvntJX3/jY38ri4n7KGPckN+V7eG/NAK+e2HLFQXQz3K75lIqfrjsUPqdHj2xHhMCfFD2VPj6hT5TJc6Gd4yT2TR29PStrj899TVZexoK+S3VYLetkd+W+OP/LbGry7l993f/YlB7YoPvbdqetNt3B/9xW/li3d+x+j37WtWy3VXf0iamsJVj6NDQzfl90QqKUOpmHEiO3taO3tKWwnto/9OSqYCoZ1jq8qPNAUbJBJqkIj6OxiSplCjNAWO/l+p0iaTmZTcN7rFqOf92uTRB1+e27JQPtx2kpzfssT36UN++z5F0waI/NY3d8hvfXOH/NY3d05EXo/ymz20vSsJ+W0vTzd7Q367SdvesZDflfNMJY6WT1FSXAlyJcpVSZXE8NF+VDXPxe9Iy6J3VPh0zspDmHIn8rtKcD5phvy2lgjktzV+yG+T/Hbt2ScbPvdVOdCf/f2guT2z5ZZ/+ZhxAvyFl7fI3ff9RD634RrpmNUmdnyDYDI8T253Un6PJONyKDEuhyZj0opxQUMAACAASURBVJ8Yl9FkvKI5NgZDElHyOtggTaEGaTaktpLZYQmrzx2R3Upwq4/NXC8mBgzh/e+jW/LN2oJh+XBb9gGWSxr9W+O/eJ7IbzOZ99e9yG9/5cNMNMhvM7T8dS/y21/58Doa5Le5DLCHPpYX8tvcGvLT3chvP2XDXCzIb3O8prs7GcueGD/wTFAO/iF7Qrx9acY4Bd610plT4Mhve3LnVS/Ib2vkkd/W+Gkjv5VYvv7G/3WMcC7cSBeKaHVj4Sls9fHtn/0fRvtcP+rfudPZ8YmE/Mstd8rad75VLnjHW0pSHR4Zkzvv/ZFcc9l/k4f/82mj7MnLr2yX+fPnyGknn2jI7kXze/Pti2W4xVT5trld8lud1j40GTVktxLdg5NR44R34RUMBGROY2vBKW0ltRslEmrMiu5AyPhcKBC0ndcPR1+V+8a2yJ8n+vN9vyHSawjv97WusH08NzpEfrtB2ZkxkN/OcHWjV+S3G5SdGQP57QxXXXvVRX6zh/bvCkN++zc35SJDfpcj5N/PI7/tz83gywHZ8XDIKJWirvlnq1PgGWlstVeCI7/tz52bPSK/rdFGflvjp4X8Vpv2L/zbt/MnrJXwVrJ6bk+3IayvuOS9hnwuvE9h+ca3fyw3fPxS4xS2arNj1z5521vOLHkiW4ntcvJb9fGTR34pV/3j++THP/vFlJrfExMJueNr35UzXrcyL7/V/bd99T654WOX1HRt8GrltxLbxqnuRFQGlOxOxiSlnsZRcLWEwjIn3GII7znhVpnd2GxxxZdurkqYxDNpiWWSxp94OiVxUf+XlJ9Hd8l9I5tlIpPKN/6wUcv7JDk5PNuReNzqFPntFmn7x0F+28/UrR6R326Rtn8c5Lf9THXuUQf5zR7a3ysM+e3v/MwUHfJb39whv53L3a5HQ7Lnqewp8MgckUXnpqT3DfYJcOS3c7lzo2fktzXKyG9r/LSQ39OVDyk+WV0ooNVp7EJhXoip2nIkuf6ffPq5KeVOVN+5z134rrcaIl5dyO+pi3NYlTCZjMpgYlwGElE5XKKEyezGlimyuyXUOKWTlGTkmfh+iWdSRq1vJafjkjb+bXyshLX6t/p/Q2hnBXbMkNlHpbZx75H71b9Vv+WulY2dcsmslcYDLGd+9Ee5nvzzeeS3f3JhNhLkt1li/rkf+e2fXJiNBPltllht36+D/GYP7e81iPz2d36Q3/rmZ6bIkd/O5nVstzoFHpSR7dnvmOeclpHF70xJc4/1cZHf1hl62QPy2xp95Lc1ftrI78JyIrkpK/n9yOO/nvJQycLSI4VlT1aesNzWWtxqnB/+n8eMUFQ5lZUrlnHyO31UIKePlDAZnFTlS2KG7B5XT8wouFSZku5wiyjh3RNuNU53q7ImxddwOiE/H98hj0Z3y3/Gdltc8aWbq3EjokqoBLO1wiWUrxO+JNRmnPJ+Y2SuI2N72Sny20v61sZGflvj52Vr5LeX9K2Njfy2xq/WWusiv9lD+3flIb/9m5tykXHyuxwh/34e+e1ObvqeDsjOR0KifrE71JyRReemZeFflz9wNlN0yG93cufUKMhva2SR39b4aSO/1TSv+NB7p8x2ppPfxXW7C0++VHvyu3Dw7//450bZk6GRUXnu+ZeN2Oq55veuoXHpj2dLlwwkxgzhnUgfLROi2HU2RIzSJV2NzcbfHQ2RaVfvnuSYIbsfHd8pv5vYP+W+N0fmSbN6aKWS1YEjklrV+lbS2vg7++9m9bd6sOURmR0JHrlX1AMwj9yn/h0KSVjMPfTS4pedb5ojv32TCtOBIL9NI/NNA+S3b1JhOhDkt2lkNd1AF/nNHtq/yxD57d/clIsM+V2OkH8/j/x2LzcTgyI7Hg3JwAvZA24dx4ssPi8ls5ZXJ8GR3+7lzomRkN/WqCK/rfHTQn4X1ytUH6tr2aIFU+p0F96npLS6ciVICoW3OhH+p79snnJivNKa379+9s/ygfe9W3Ly+/FfPpt/yGWxjLdDsltMr6PNh5Ix6YuNyKH0mByIjYs67Z27wsGQdDc2S3e4LXuyu7FVGoMzP4Ryc2JIHo3ukp+P75T/Ozk4JfZ3tSyWC1qWyAXNS6UjFHZ0XvXUOfJb32wjv/XNHfJb39whv/XNnROR6yC/2UM7kXn7+kR+28fS7Z6Q324Tt2885Ld9LCvt6dAL2VIoieGsBF/wtrQsWzv1WV+V9IX8roSSf+9BflvLDfLbGj8t5LeaYmEJk7k9s6c8/HLD574qB/oHp9ThVvW2c/+v2r99zeq87M6J7s2vbs//v3qAZrkHXha2y2H/5DUfzj/gsjjOwjEtpsk3zUdTE9IXH5E98RHpT4zl45rVEDEkt3o4pfq70gdTPhc/kD3hHdslOyZH8v21BBrlAiW8W5fKBc1LJFSiHIpvoGgcCPJb3+Qhv/XNHfJb39whv/XNnROR6yC/2UM7kXn7+kR+28fS7Z6Q324Tt2885Ld9LM30lIyK7H4iJPt+kxXgLfMzsuSdaZl9SuWnwJHfZoj7717kt7WcIL+t8dNGflucpu3Ncye/lyyab3vffuswmpqUvokR2Rsfln0T2RP16lKCe1FTh5w+t1eS8aCkC2p+zzSHp2J98qiq4R3bJYdS8fytvaFm43T3u1uXytsiC/yGoSbjQX7rm1bkt765Q37rmzvkt765cyJyXeS3E3O30mc97aHLcUJ+lyPk388jv/2bm3KRIb/LEXL284e3BGTXY0EZ25OV4L2rM7L03WlpbC0vwZHfzubG6d6R39YII7+t8UN+V8mv1jfuql5338SwccJ7T3w4T0md8F4c6ZCFkY786e55XRE5ODwxrfyezKSM092qnIkS3hOZo7XAj2uYZchuJb3PbLLhEdBV5rNemyG/9c088lvf3CG/9c0d8lvf3DkROfK7Oqq1voc2QwX5bYaWv+5FfvsrH2aiQX6boeXcvXufDMrOx7JlURvbRZa8Ky1z3zhzKRTkt3P5cKNn5Lc1yshva/yQ3xb51VLzlKSNGt574yOya+JwvoZ3c6hRljR3ysKmWdIbbjtmyqXk92Aqni1nEt0pv4jtmdLmtHB3tpxJyxI5sbGzlhBqNxfkt3YpyweM/NY3d8hvfXOH/NY3d05Ejvx2gmp99Yn81jffyG99c4f89k/uRncHZM8vgjK0KXsKvGtVRpatTUnzNGfikN/+yV01kSC/q6F2tA3y2xo/5LdFfrXQXJUy2R0/LLtihyWZyf60tSEQkqWRDlnU3Cnzm9pnnGZOfu9IjMqj6nR3dJc8O3FgSpuzI/PzJU3mh1pqAVtNzAH5rW8akd/65g75rW/ukN/65s6JyJHfTlCtrz6R3/rmG/mtb+6Q3/7L3f7fBWTX40FJRgMSCIosPj8ti8459hT42OEDMnfeQhmPJ/03CSIqSwD5XRbRjDcgvyvg98AjT8uNt91j3Ln2vLPk5usvk0gkbHzcNxCroAdnbzkUjEosmJDmdFjmpBGjztLO9n4wMWbI7l3xw6JKnOSuJZFOWaz+NHdMG4YqW7I3OSZ7k+PG38ONCfnx4DZ5KTE4pY062Z370x7MrjcufxFAfvsrH2aiQX6boeWve5Hf/sqHmWiQ32Zo1ca9z72wWS79xEZjMqeuWiF3brxWujqyhwL8IL+bGgISCQVkIpmReKp8vdTayErtzAL5rW8ukd/65g757c/cTQyK7P5FSA7+IXsKvG1JRpZdmJZZy7Pvbfv69so/feh9snjJUrnrWz/05ySIakYCyG9rCwT5XYaf2rTf8fX785v1O755v9HiuivXGX97Kb+fGtslL48ekG45KkYHJCEnt8+Vc9uWWFsZtD6GwEBiXHbFh2Vn/LDEU5P5z6uT3Uubu2RhZJY0BkJyMBWTviNi2xDcqTHpS0XzsrvwIZWFg7QFGvPlTC5oXixKEnD5mwDy29/5mSk65Le+uUN+65s75Le+uasm8m07+2TDxrvllvVXyHFLF4g6TPLM8y/lD5F4Kb/j4wk5uHdYYmMT+alFmhtlzsJOaZ3VVM10aeMBAeS3B9BtGhL5bRNID7pBfnsA3cSQh15QpVBCEj3yi+QL1qSl6czdcsk/XCwvv/QXo6fz3/03cu93fmSiV271AwHkt7UsIL/L8FOye9mieXLxhWuMO4tluFfyezAZl5/0vywtEjpmBlFJyXt7TpbZDRFrq4PWMjQZM053q7ImY8lEnkg41CgTDQHpC8Rldyp7gjsnuNUDKme61Df/C0ItsrChTRaGWuXEtg55fXCunN00D+KaEUB+a5awgnCR3/rmDvmtb+6Q3/rmrprIlezesWd//sBIsQz3Un5ve2m/TE4c+2vfao2u+Kt5Emo8dn9dDQPaOEsA+e0sXyd7R347SdfZvpHfzvK1o/dkVGT3U0HZ919BGRjfK59/8m9l+8EXp3SNALeDtLt9IL+t8UZ+z8AvHk/ITbffK2edeUpefhdv3A8ejlvLQJWtfzC4SZLRo6dVirs50DApp7f0Vtk7zQYSMYlPxCVY8BuwB2RC/pAckD+nh2Qwc1SEF9PqDIVlYUO7IbgXNbQakntR45G/G1plQUPrlCZzZjXJ4FhC0ml+3Va3lac2fyPRpCRTMz9ZW7d51UO8nW1hicaTkkiSO93yPaul0chbPDHzDxp1m1c9xKvEYk8Hp2rrIddqjsW/LTk0PCrXrP+SXPfRdbL6tJXSPzwhmYz7e5/Robjseq1/2jT0LJwlHbMpI6jDOu1oCctYfFJS7KF1SNeUGNV7eTSekmSafZhuyWtrbpCJyYxMJtmH+T13W57tkyuvWSfb+rInvouvt79trXzlC//u92kQ3xECJ79x5mfJAWpmAsjvGfjk5Pe6i84xNunqKpbfXi2wW7f+Xppi028WXkuPyfHBNq/Cq5lxBzMT8nz6sPwpPST70zEJBQKyJNwuS8Jtsrixzfg7+yf7f0ua2qU92Fgz82ciEIAABCAAAbsIKM9JRS+7aPq/n+LfniyW316th907h+S1LYemBZiRjASE0nP+X2FECAEIQAAC0xHoP7RfNvzLlbJ12+YZIZ39lvPk5n/9qgTUkzK5fE3g3Hee4Ov4/B4c8rsC+T3Tye+kRw/H+eKOP0pjbPqn9G5Kj0pviNNV1X4BxkMZkaaQ9Da1yuIjgntxuF0WNk49tV1t/4XtGkIB8Wod2RF/PfcRCgUknVLfJnPpRiAUDEg6kxEPDh3qhsp38ZI736XEVEDqPY+rPgiUO/nt1d5n355heW3L9Ce/GxtD0him7IkOq1S9mrAH0yFTx8aYeycgf/rlj9zpk7PbvvDP8sBPvjdjwFddul7ef/FV+kyqjiM956JldTx761NHfpdh6Nea34+ObJfD4yPTRt/ZOksumLXc+gqhB8cJzOuKyMHhCcqeOE7a/gGo+W0/U7d6pOa3W6TtH4ea3/YzdatHan67Rdof4/i15nd0bEJ2zyC/FyzvlvauZn9AJIoZCVDzW98FQs1vfXNHzW+9crf++v8u3/nW3SWD/ud//Zxc8/Hr9JpQHUdLzW9ryUd+l+FX/IDL4lMsXj3wUoX9lf3PSU8mfMwM+gMJ+fi81dZWBq1dI4D8dg217QMhv21H6lqHyG/XUNs+EPLbdqSudYj8dg21LwYqLhWoZPgzz78kN19/mUQiYfHygZd7tx6SseFjn9vT3BaWJSfyzBxfLKAKgkB+VwDJp7cgv32amArCQn5XAMlnt5QS4IhvnyWpgnCQ3xVAmuEW5HcF/NRm/cbb7jHuXHveWflNu/rYS/mtxr+r/88ykZqUhkxAkoGMNIUa5SM9p1cwK27xCwHkt18yYT4O5Ld5Zn5pgfz2SybMx4H8Ns/MLy2Q337JhHtxqEMkl35iozHgqatWyJ0br5WujuwDm7yU32r8gf0jEh9LSEY9tDoYkKbWsMyZP0vUOuXSgwDyW488lYoS+a1v7pDfeuauUIAjvvXMIfLbWt6Q39b4eS6/VfjtLY3S3twgo7GkjEYnLc6I5m4TQH67Tdy+8ZDf9rF0uyfkt9vE7RsP+W0fS7d7Qn67Tdzf43ktvxWdtuYGmdXSKGOxpIywh/b3gikRHfJbu5TlA0Z+65s75Le+ufvXz1wri5cskyuuvlbfSdRx5Mhva8lHflvjh/y2yM/O5rv27JNfP/tn+cD73m1nt473hfx2HLFjAyC/HUPreMfIb8cROzYA8tsxtI53jPx2HLFWAyC/tUqXL4NFfvsyLRUFhfyuCJMvb0J++zItFQXV0doo6mHT4/FkRfdzk78IIL+t5QP5bY0f8tsiv1xzJa5v++p9csPHLpEli+ZX1et08ntiIiF3fO278uTTzxn9fvKaD8sF73hLVWM40Qj57QRVd/pEfrvD2YlRkN9OUHWnT+S3O5ydGAX57QRVfftEfuubO79Ejvz2SybMx4H8Ns/MLy2Q337JhPk4kN/mmfmpBfLbWjaQ39b4Ib8t8rNLft/93Z/ID//PY/lo/v7vzpcrPvRe42P1OXWpj4dHxuRfbrlTrrjkvXLaySfaFL21bpDf1vh52Rr57SV9a2Mjv63x87I18ttL+tbGRn5b41drrZHftZZR9+eD/HafuV0jIr/tIul+P8hv95nbNSLy2y6S3vSD/LbGHfltjZ8W8jsnfDe/ut2Y7dvXrJbrrv6QNDWFJXfi+sTjlshDj/2X8XkljlefebJcf+P/yn+cE8nqPx79xW/li3d+Z9q+cqe3cyeuL3zXWw3RrCR0NBqT8WjMOIU9t2e23PIvH5O5Pd1TTmarjm//7P8w2qixHv7PX8vnNlwjHbPaSmZL3aOuk09abpQ9WfvONXL/T5+QD6+7UOITCbntK9+Sq/7xffkT5YUy3GL6bWmO/LYFoyedIL89wW7LoMhvWzB60gny2xPstgyK/LYFY810gvyumVR6NhHkt2foLQ+M/LaM0LMOkN+eobc8MPLbMkJPO0B+W8OP/LbGTwv5/cLLW4xZKpmcE+Fr3/lWo/SHkt8bPvdV+dC6tVM+Puetq42T0sXlSFRfd9/3k7yMViK5/9CgIdMP9A9MKV1SSn7/8tfPGcJblTZR0vpPf9lcsm0uLZXIbxWDkvVds9qPqfldqpxK4bjqBwBeX8hvrzNQ/fjI7+rZed0S+e11BqofH/ldPTuvWyK/vc6Av8ZHfvsrHzpGg/zWMWvZmJHf+uYO+a1v7pDf+uZORY78tpY/5Lc1flrI7+IpFp58LpbDxWVBij8uPjVd2F6NU1i3u5T8VvfkTpErkf7I47+eUX5Xkh7Vz3Sn1FV83/j2j+WGj1+aPzmO/K6EKvdUQgD5XQklf96D/PZnXiqJCvldCSV/3oP89mdevIoK+e0V+doZF/mtby6R3/rmDvmtb+6Q3/rmDvltPXfIb4sM+wZiFnuw3ry9pVHamxtkNJaU0ehkyQ6nq4ldjfxeNL83/8BIJcdzZUW8kt+5CedOsR/oH8yXdik+ja7uRX5bX3P0kCWA/NZ3JSC/9c0d8lvf3CG/9c2dE5Ejv52gWl99Ir/1zTfyW9/cIb/1zR3yW9/cIb+t5w75bZ0hPUAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgIDPCCC/fZYQwoEABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAHrBJDf1hnSAwQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCPiMAPLbZwkhHAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACELBOAPltnaGnPQwNj8o1678kL27aasTxrS+vl9WnrfQ0JgafSsBMjuLxhNx0+73y8BPP5Dshp96tKDO5K4wyl0f1fzdff5lEImHvJlGnIxd/LX32hsvl4gvXzEhj284+ueqGL0rfgQFZMLdbvnHbJ+W4pQvqlKB30zabu+Kv08s/sFauu3KddxNg5GkJqK+xL3ztB3LLZz4iXR3tkIKApwSqfY/3NOg6G9xMjthD+2txmH0vL4z+jm/eL8/9abPcufFa3is8SGs1uWMP7UGiSgxpNnfsof2Rt0qiYA9dCaWZ70F+W2foWQ+5F7ezzjzFkDrqC2LDxrvllvVXIGw8y8rUgc3mSL0B/e8fPirXXPK3hjB97oXNsuGWu5BwHuTTbO5yIRZuOtaedxby24PcqSHVN07qUhI0t7G77qPrpv3hIK+fHiWqxLBmclf8dVr8sX9mVd+RFH5zdeqqFQiN+l4Ovph9te/xvgi+ToIwmyP20P5aGGbey4vF9z3ff1h4r/Aun2Zzxx7au1wVj2wmd+yh/ZO3mSJhD21fnpDf9rF0vafin/7wTb/rKSg7oNUcVSLtygbBDVURqDZ3atOxbNE8Y8xnnn8J+V0VfWuN1NfNhlvvkk9d/f78DwILN4PFvedeO9dddA6/OWMNveXWZnNX6jVyplxbDpAOLBHg1IolfDS2kUC17/E2hkBXZQhYzRF7aO+WmNn38lykDzzytOzYs1/WvOl1csfX7+cHpR6k0Gzu2EN7kKRphjSbO/bQ/sldJZGwh66E0sz3IL+tM/SsB3UquHhjwDf9nqWj5MBWc8RP0r3LZzW5K/z6Uxt45Lc3+Sv1dTNTPop/5U9Fzal9PXKnolS5vfG2e4yyX8cvW3jMDz68mQmjliLAxp114RcC1bzH+yX2eonDao7YQ3u3Uszuw3Lv5bl9819e2Yb89ih9ZnPHHtqjRJUY1mzu2EP7J3eVRMIeuhJKyG/rlHzag9oU3v/QL6ecLEV++ytZVnLESX5vc2k2d7nTKrlaw8hv7/JXanMwUz6mO102r7eb2tEup9Fs7lR4uc2++vdfNm0Tan67nDQTw7FxNwGLWx0lYPY93tFg6LwkASs5Yg/t7aIy+15enOtSP/jwdkb1M7rZ3LGH9s/aMJs79tD+yV0lkbCHroQS8ts6JZ/2YPVEhE+nVVNhVZuj3KYd+ebdcjCbO/WDJ1WjsPjiBLH7OTR78qHUZoJvvNzPW+EmvPDZFeVO7ReWuOG105u8VToqG/dKSXGf0wTMvsc7HQ/9H0ug2hzxPuD9ajK7D8v9Bldx5NT9dj+XZnPHHtr9HE03otncFZdJ4bXTP7ksFQl7aOv5oeyJdYae9WC1Fp5ngdfRwNXkiDcefyyQanJXGDknv73LYzU174prhJc6cebdjOpnZLO5q+aUS/3Q9N9M2bj7Lyf1GpHV9/h65ebmvKvJEXtoNzM0/Vhm38uLe+IAgnd5NJu7Uvezh/Ymf2Zzxx7amzxVOyp76GrJHW2H/LbO0LMezD4F3bNA63jgcjnK1UlTD9q7+MI1wq9p+mexmM1dceTIb29zOdPTzou/7lSk6v79BweMMlLquun2e+WsM08xvi653CVQ7kn1hbmKTUzINeu/JMWvofzWjLs5q3Q0Nu6VkuI+pwmUe493enz6L0+gXI7YQ5dn6OUdZvdhhbEiv73MXHZPrC5VynG6hyLm9syRSJg9tLfpmjK6mdyxh/ZR4ioIhT10BZDK3IL8ts7Q0x6KHzKhHvi1+rSVnsbE4FMJzJSj4o27elG76oYvSt+BgSmdUMPWm1VlJnfFESK/vclZbtTcN80PP/GM8V+fveHyvMguJb+L7+drzrv8zZQ7FVWh/FbfdBW/bpI773I33cilHohFnvyXp3qLiD20/zNuZh/GHtpf+TS7D0N++yd/Zvdh7KH1zR17aP/kjj2087lAfjvPmBEgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEDAZQLIb5eBMxwEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQg4TwD57TxjRoAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAGXCSC/XQbOcBCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIOA8AeS384wZAQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABFwmgPx2GTjDQQACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAgPMEkN/OM2YECEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQcJkA8ttl4AwHAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACzhNAfjvPmBEgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEDAZQLIb5eBMxwEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQg4TwD57TxjRoAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAGXCSC/XQbOcBCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIOA8AeS384wZAQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABFwmgPx2GTjDQQACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAgPMEkN/OM2YECEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQcJkA8ttl4AwHAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACzhNAfjvPmBEgAAEITEtg284+2bDxbrll/RVy3NIFjpEaGh6Va9Z/Sa776DpZfdpKU+M898JmuePr98udG6+Vro72KW3j8YTcdPu9ctaZp8jFF64x1S83QwACEIAABCAAAQhAoBoC7KGroUYbCEAAAvVJAPldn3ln1hCAgEsEHnjkabnxtntKjnbqqhXy6f/3/bLx//t35LdL+WAYCEAAAhCAAAQgAAH/E2AP7f8cESEEIAABXQggv3XJFHFCAALaE1Cb+Geef0luvv4yiUTCxnw4taJ9WpkABCAAAQhAAAIQgICDBNhDOwiXriEAAQjUAQHkdx0kmSlCAAL+IDDTxv1vznuz3PqV7xmBXv6BtXLdleuMf+fatLe2yA8efDL/OVWK5NJPbDTuUSfIC0uS3PHN++We7z9sfG7B3G75xm2flK7OdqPsydrzzpJv/+hR6TswYPy7UMQXnrAp/Fxx2ZNcCZUXN23Ng/3sDZdT9sQfy4woIAABCEAAAhCAQE0RuwAWjwAAHmdJREFUYA9dU+lkMhCAAARcJ4D8dh05A0IAAvVKYLqN+1U3fFHe/Y6zDOFdXJs7J6S/9eX1+VrdSkZvuOUuQ2qrOuHqnh179hvt1efuf+iXeamtPlbX8csWGvJ78cIe43PqKqzVXSy4lUDff3DAuPcvr2zL1/xubmoy2s3r7TbGo+Z3va5m5g0BCEAAAhCAAATcIcAe2h3OjAIBCECgVgkgv2s1s8wLAhDwHYFKfmUzJ5PXXXSOIbtLtVFiWl250+GqdMoXvvYDueUzH5GnfvNnQ34XP5yy1AMvVT/LFs0zTmyX6jP3IM6BwyN5+T10eHTKAzqR375bZgQEAQhAAAIQgAAEaooAe+iaSieTgQAEIOA6AeS368gZEAIQqFcCdm7cc2VNciwLS58Ulj3JlS+JTUwYJ7+v++i6/AnyYvmdE+GqTyXLN9x6l3zq6vdLsfzOifaujnZOftfrYmbeEIAABCAAAQhAwCUC7KFdAs0wEIAABGqUAPK7RhPLtCAAAf8RsHPjXiiqp5tp4ansc88+vaz8Vv0Unibn5Lf/1hARQQACEIAABCAAgXojwB663jLOfCEAAQjYSwD5bS9PeoMABCAwLQG7Nu7FNb/VgN974Am58B1vkt//abOcsHyhUQvcjPwu7rNcze+zzjzFKJeiSq6omuVX/+N7eeAlax8CEIAABCAAAQhAwHYC7KFtR0qHEIAABOqKAPK7rtLNZCEAAS8J2LVxV3NQsvrST2zMT+fyD6zNP/Cy1P+Xq/mtOso9XFP9O1cuJRIJG2Pd8fX783XEc8K778CAvO2sU40Y3vm21chvLxcXY0MAAhCAAAQgAIEaJcAeukYTy7QgAAEIuEQA+e0SaIaBAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAAB9wggv91jzUgQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCDgEgHkt0ugGQYCEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAATcI4D8do81I0EAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgIBLBJDfLoFmGAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEHCPAPLbPdaMBAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAi4RQH67BJphIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAwD0CyG/3WDMSBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIuEQA+e0SaIaBAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAAB9wggv91jzUgQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCDgEgHkt0ugGQYCEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAATcI4D8do81I0EAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgIBLBJDfLoFmGAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEHCPAPLbPdaMBAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAi4RQH67BJphIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAwD0CyG/3WDMSBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIuEQA+e0SaIaBAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAAB9wggvx1m/cAjT8szz78kN19/mUQiYcdGszLOHd+834jruivXHRPf0PCoXLP+S3LdR9fJ6tNWOhY/HUMAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQsJMA8tsCzZwYfnHT1pK9fPaGy43/r0f5XczmW19eP6M8N3u/hbTRFAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEKgDAshvm5I83QlpKyeyzYRmZRy7T37H4wm56fZ75awzT5GLL1wj23b2yYaNd8st66+Q45YuOGZaZu83w4V7IQABCEAAAhCAAAQgAAEIQAACEIAABCAAgfokgPy2Ke/l5Hd7a4v84MEnjdFyp6Bzbdaed5Z8+0ePGp/7xm2flAVz5xjy+OEnnjH+T50gVxJZXUokX3XDF6XvwIDx8eUfWGuUK8nJ71LjqPtmOlldLL+LxyiMWf1b3b//4MC0pVxU+y987Qdyy2c+Il0d7VIst4uRm73fppTRDQQgAAEIQAACEIAABCAAAQhAAAIQgAAEIFDDBJDfNiV3Jvl942335IX3cy9slju+fr/cufFaY2RVT3vxwp68SM6J4nm93YbUVv1uuPUu+dTV789L8XUXnWOUEFH3/sfDv5L/Z+1fyyNPPivTjdPc1HTMSWwl0G/Z8BGjn0L5nZuHGkMJ91LzKie/C+eo5HdOmKu/S9UVN3u/TSmjGwhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQKCGCSC/bUpuuZPfuQdeFp5yzsnvwodJlioRomTzskXz5NyzTzdkeU5MF4ZeXPakcJyhw6PHlB0pFN6F/y4W0dU88FL1cf9Dv5xyMnym0ipm77cpZXQDAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEI1DAB5LdNybVTfheWNcmFlyt9UlySJFdCpZz8LixDovpU9+/Ys984iV0svwvFdbXyO3e6nZPfNi0wuoEABCAAAQhAAAIQgAAEIAABCEAAAhCAAARMEUB+m8I1/c12yu9iUT3dqIWntJ/6zZ/lmedfyp+29vLkt9ka3mbvtylldAMBCEAAAhCAAAQgAAEIQAACEIAABCAAAQjUMAHkt03JtUt+F9f8VuEpOfzq9r3yxjNWyiO/eFY+ePF5RtSVyu9cze9cHfHc6fGZan7nSrGoMS79xMZ8zXI1brma38UPuCwu5VJcV7zc/TaliG4gAAEIQAACEIAABCAAAQhAAAIQgAAEIACBOiKA/LYp2XbJbxVOTgY//MQzRnQL5nbLN277ZP6Bl8X/f9zSBUYZk+lOfqvSI7n4Xty01egzVy4lJ7PV37mHUeaEt/q/teedJbv39kthXfJy8lu1m2m8Yvld7n6bUkQ3EIAABCAAAQhAAAIQgAAEIAABCEAAAhCAQB0RQH7XUbKZKgQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACBeiGA/K6XTDNPCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAJ1RAD5XUfJZqoQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABOqFAPK7XjLNPCEAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEI1BEB5HcdJZupQgACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCoFwLI73rJNPOEAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIFBHBJDfdZRspgoBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAoF4IIL/rJdPMEwIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBAHRFAfjuY7JGxuIzHJiQxmTJGCTeGpLW5SWa1RRwcla4hAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAA+W3zGkinM7J7/5D0HRyWYDAobS1hCYcbjFEmEykZjU5IOp2WBb0dsnhelwSDAZsjoDsIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhBAftu4BgYOj8uWHQelo61Z5vZ0GOK71DUWTciB/mEZHovJict6pbuz1cYo6AoCEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAASQ3zatgX39w7J11yFZsbRHZndUJrMHh8dl685+WbFkjszv6bApErqBAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAAB5LcNa0Cd+N60db+sOn7BtKe9pxtGnQLf9FqfrFoxjxPgNuSCLiAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIKALIb4vrQNX4fvbFHbJsUXfFJ76Lh1QnwHfsGZA3nbqMGuAW80FzCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAALIbxvWwM6+QRmPJoxyJ1YuVf6ktSUsSxfMttINbSEAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQICT39bXwO/+vF1OXD7PdLmT4pFV+ZMt2/fLm09fbj0oeoAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgUOcEKHtiYQGMjMVl07YDcvqqRRZ6Odr0j/93l0xMTIoEbOmOTiAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAGfEjj3TSf6NLLaCQv5bSGX+/qHZWg4ZrnkSS6EV3celI62iPR2z7IQFU0hAAEIQAACEIAABCAAAQhAAAIQgAAEIAABvxP47fNbBQHubJaQ3xb4qnrfiWRKlsy3p073rn2DEgwEZNG8LgtR0RQCEIAABCAAAQhAAAIQgAAEIAABCEAAAhDwOwHkt/MZQn5bYIz8tgCPphCAAAQgAAEIQAACEIAABCAAAQhAAAIQqGMCyG/nk4/8tsBYlT0ZHI7K8Ut7LfRytOlrO/tlVlsTZU9soUknEIAABCAAAQhAAAIQgAAEIAABCEAAAhDwLwHkt/O5QX5bYMwDLy3AoykEIAABCEAAAhCAAAQgAAEIQAACEIAABOqcADW/nV0AyG+LfH/35+1y4vJ50tYSttTTWDQhW7bvlzefvtxSPzSGAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABEeS3xVWg6n6PRxOyYmmPpZ627uyX1pawLF1gz8MzLQVDYwhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACmhNAfltMYDqdkWdf3CHLFnXL7I7WqnobHB6XHXsG5E2nLpNgMFBVHzSCAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACBowSQ3zashoHD47Jp635ZdfwC0+VPVLmTTa/1yaoV86S7szp5bsMU6AICEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAQE0RQH7blM59/cOyddcho/xJpSfA1YlvVe5kxZI5Mr+nw6ZI6AYCEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAASQ3zauAXUCfMuOg9LR1ixzezqmPQWuTnsf6B+W4bGYnLislxPfNuaAriAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIKALIb5vXgaoBvnv/kPQdHJZgMCjtLU3SGA4ZoyQSSVHiO51Oy4LeDlk8r4sa3zbzpzsIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAshvh9fAyFhcxmMTkphMGSOFG0PS2twks9oiDo9M9xCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAE6psAJ7/rO//MHgIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBATRJAftdkWpkUBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAIH6JoD8ru/8M3sIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAjVJAPldk2llUhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAE6psA8tuF/L/hDW+QP/zhDy6M5N8hYCBS7wzqff7qq7PeGdT7/FkDfA2wBlgDrIHsXrXe3w/qff6sAb4GWAOsAdYAa4A1wBpw02Aiv12gzQaXL2pe2FkDrAHWAGuANcAaYA2wBpDfrAHWAGuANcAaYA2wBlgDrAEXZGzBEMhvF3gjv/lmlxc21gBrgDXAGmANsAZYA6wBvtllDbAGWAOsAdYAa4A1wBpgDbggY5Hf7kJGfvPNLi9srAHWAGuANcAaYA2wBlgDfLPLGmANsAZYA6wB1gBrgDXAGnDXy3Ly2wXeyG++2eWFjTXAGmANsAZYA6wB1gBrgG92WQOsAdYAa4A1wBpgDbAGWAMuyNiCIZDfLvBGfvPNLi9srAHWAGuANcAaYA2wBlgDfLPLGmANsAZYA6wB1gBrgDXAGnBBxiK/3YWM/OabXV7YWAOsAdYAa4A1wBpgDbAG+GaXNcAaYA2wBlgDrAHWAGuANeCul+Xkt7u8GQ0CEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAARcIID8dgEyQ0AAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgIC7BJDf7vJmNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEHCBAPLbBcgMAQEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAu4SQH67y5vRIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAwAUCyG8XIDMEBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIuEsA+e0ub0aDAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABFwggv22C/MAjT8uNt91j9Lb2vLPk5usvk0gkPG3vZu+3KUzbuonHE3LT7ffKw088Y/T52Rsul4svXDNt/zPdPzQ8Ktes/5K8uGlrvv2Cud3yjds+KcctXWBbzE53VE1Ot+3sky987Qdyy2c+Il0d7U6HaGv/ZtdAbnDFacee/XLdleumxHPHN++Xe77/8JT/K7eubJ2QDZ0998JmufQTG42eTl21Qu7ceO20eVW5v+qGL0rfgYGK7rchPEe6MLPui3NcnN96WwPFr33l1owjCbShUzNroHjdF79f1tsaKMSfY3P1P753xvdTG1Jmexdm1kDh4LnXzG99eb2sPm2l8anCvnL3Xv6Btce8Z9g+CRs7LP7aLpxfqWHqbd2X2/fV4xpQ68LMHsLG5WpbV9XEX7j2C7/Oi98rKtlX2TYRmzoys08u9TWh45zNvPaV+jpXc87tDettDai5F/PT7b2v1BzKvf8V57nwewPWQHnHYtPLla3dmHkdUAMX57lwzZTbL9gauMOdmfE+1e6rHZ6C9t0jv21Iodrs3fH1+/OiS23k1FUs93JDmb3fhhBt76JwjrkXpes+ui7/zWvxgDPdX0l72ydgc4dmc1r4Qq6r8DK7Bgq/KSq1mSv3dWNzymzvTr2hbdh4t9yy/grjhzbqTeuZ51+a9gdhisfuvf15yaXmv//gQNkfnNkeuIUOzax79U3gnfc9KP/09xcYPxDIbXRu2fCR/OtGva+BcmvGQqoca2pmDagg1BwXL+yZNuf1tgZyiSnc+Ov4Qz8ze6DCvVDuh4XF8num107HFrNNHeeE11lnnmK8vhe/N5Qapt7Wfbl9n46vhYV5rWYNFL+W2rQcXevG7B5IBTbTuq/k68a1yVU5kNl9cvEw0x0WqTIcx5tVs+4Lg1KvCxtuvUs+dfX7jX10va2BYn7FHzueQBsGMLsGit8Lij+u9zVQ6nslG9LkaBdW14B6L9xwy135Q5Dl9guOTsamzs16H7PfW9kUZl10g/y2Ic1qc7Ns0by8xCq3gTV7vw0h2tpF8eak3Aa23P218KJWbU7N/ATQ1iRa7KxcTmfqfqaT36rddD80shiy482L52V2w1budcPxCVQxQLXrXg1ValOvuwBiDWRPLhaK0HLLqlhy1eMayL2efuyf/k6+ff9jkpOm5dj55fPVvA7k3vtuuOYfZMOtd0vhD891F5/F7+uVCIx6W/fl9n31tgZK7an88vVdaRxm3//Ue8X9D/1y2h/4m91DVRqnW/dZ2SerGHVcE9W89hXmw+waciuX1Y5jdg2Uel3U7b3B7Boo/jo3K06rzY1b7cyugVJ76FpfA8Xv98VroNx+wa1c2jFOpd6nmn21HfHVQx/Ib4tZLvVNzUwbNrP3WwzPkeal5jfTNyrl7o9NTEwpe6JbyRMrOa30RdCRRFrotFxOy5X8qaTsiW6nH4s3J2bfrHX7Zt/Kus99Y6fKHRVKr3JlUSwsWVeaWl0Dup3+t7oGcu3n9Xbnf+hVb2ug8HXidScdZ5QT00l+V7MGCt8/ujrbjff/YvmdKyOnvnB1+7Xvar55rdd1nyt3V7zvKy6HUOtroNSv9us2Z7Pvf6VKXhT+BkgxE91+S9LKPlm97ul26lvFXM1rX25zVkoS1uMayH1dqK+F45ctnHIS3pWNrMVBqlkD6rXj5794xjjpq67CcqD1tgZK8dPt+0Oza6DU/Er91sx0+wWLS9bV5pV4n2r21a5OQvPBkN8WE5hboOsuOif/a9yVyO9K7///2zt7lc1qII4/N2G1bGEh2MgWIlaLzXZ2YreNd+Bt2NiLYCcWYievIChot2JpYecdKHgHMo/kJTvkJJlMAmdyfm+zH+/JPMkv/2cymZMPZ/WWFC99cVvJb32ude15+Z2sBqmdl7ykYYNGrRrIP6bHCQ5Wa2kxqwbyyvQE9BG3eem3tJbkd8QVTh7dix5aKxmupIE02Yk2ufdoICX7andk7K4Bza9nhfBSxz5g3KoBneBo+cn0e4mZaveKDFR9WZHSitaWv9NxgdwHkR8Jtayykwx7xr+U6DuK+66gAa2ZiG22aqC0si3f6q6lGe3lsCdOjrjqOyW/9Wr+Xt/XMze4ggbSfEB4/vHnXyFf/lo1IP7v8y++vf39z7/3e5Bqi59210ApJoqY/LZooDQHrvmNaHkia97HGldPCuMuY4bkt7OrrW9nrM87q7ekuHU1g/X5aEGfp08jJ7/z863T5LXnnNaeADclR/PjhJaIeaJR66qn9NERE3xSd4/ue4NXPTme2F1LTI1qIFXGemTIkkYYjHo0kD6mFdTvrIH8DECNPcrOF6sGSitcU9uPLsXqHTMM0l36qHXVU6kyO+u+1N5W3Le7BkovTFq+camIB4xbxz+t8dbLv2jxsnXukyPvTRgPdNPSIqO+r3cByO4a0H6wtDtuaQdOMG7VgO7T1ou/3TUgXZDfkZW6JNJOIKsGUg4h3/En/3cUB7fihQkyXmaiR7/WuHpZZTc1TPJ7Qsdaz+WxPj+hilNNWM+vmvH81AYsMDbapz1OcEF13SatfZp/YO8kNtrkf+SswqiJ79SfI7rvTXzLZ1xBA/l3I2JAN6KBvM0tH3glDbSSP27HvciARwOtld9pUlQ6KmtRc9xmtaZH+vVKuhfgLd/XGze4O2+SAasGjlYJR9K9NQbSz5dWu1nGikldN83MaJzcmwieVtGJhqy6z2NJ+Xvrzp9WvDCxKVNMWTXg2S0wpcITjFg1YN0ptbsGSl0g8cDz9995PGFgQjctNWHVgK6MjAVyYsDLj17cL77VP614YWnjnMZ79euJq51V3L44ye8JXdy6kVUne1rPT6jSchP5qgQ9eS29ta09Lzzk571nb9//jLbaRerc6tOjLTq9TnB5hw58QK1PxdxRkrM0iRXN/PDzb/eBTn4iBv+6zlrHWgMR26hl0tK91kBtNdMVNSCaePrkjdd8X6Qjn3p8n9bAl19/f3vx/N3HgDb/vdz/sLsfqL3wGkmSDrju6UVafqC2RVXHD8Lgu4dfbx9/+MFN7o7oSY5Pb5DToO5H7eu1Bq7o+2pxn+DfXQM6TtYrPCPqvhUDad3rf2s/8uMvv9/eevPJa2OFaKOVIHV+facWt86VUuwcrZ0JmtX3teL9q2mg5ReminORMasGSuOh3AOSjjrbXQO1+XLUnEhLA63V/XquuEOeKH3djvI+O+YKF7kYt1mS326E/xvIL27RZ5iWkoC15ydVaamZ5Ngefnp1/5x8a0rJqdWeTwOfnPMlP9HOvU2ga32qJ/+l7e6RtjRJm2t9WhrMS9u40jZ3bUvKH22BXypsp/G8jVrHWgO5XvKPjdbuXt+nL7ZNbU7+Uv4tl/0ln3IFDVzB95UCuk8+/exR8vl4eQU/sGPyuxUDWZLfaez46puHR41EOQIm9+N6jC9d5JfO9L6C7ksvf+Vc86O4T/zGzhooxclaMxF1X4uBSr4vf15feqpjxtr9EM7QbVlx61wp2tFnJXAjvu/okucrakDHhdHmhqIJiwbked3Pue/bXQOl+XI+r4rY/y0NHC2STGO+Hvt2mCu18j475gqXDaxOwyS/nQApDgEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAucjQPL7fH1CjSAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQMBJgOS3EyDFIQABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhA4HwESH6fr0+oEQQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCDgJkPx2AqQ4BCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEInI8Aye/z9Qk1ggAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAScBkt9OgBSHAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACB8xEg+X2+PqFGEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQg4CRA8tsJkOIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCBwPgIkv8/XJ9QIAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEnARIfjsBUhwCEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAATOR+A/NUBfKJxOnTEAAAAASUVORK5CYII=", + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot \"Interactive confusion line chart\" and get amount/cost per threshold dataframe and total_amount.\n", + "\n", + "# at least one of cost_dict or amounts must be given\n", + "# either cost_dict or amounts, if not given, is set to None and won't be visualized\n", + "# when amounts is not given, the total_amount returned will be None \n", + "\n", + "amount_cost_df, total_amount = bc.confusion_linechart_plot(\n", + " true_y = y_test, \n", + " predicted_proba = test_predicted_proba, \n", + " threshold_step = threshold_step, \n", + " amounts = amounts, \n", + " cost_dict = test_cost_dict, \n", + " currency = currency);" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "2f878e76", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "total amount: $374.24\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
thresholdamount_TNamount_FPamount_FNamount_TPcost_TNcost_FPcost_FNcost_TPtotal_cost
00.000.000000301.3743240.00000072.8674550.01590.00.0000000.01590.000000
10.0554.546707246.8276170.00000072.8674550.01260.00.0000000.01260.000000
20.10131.950002169.4243220.00000072.8674550.0800.00.0000000.0800.000000
30.15201.45031699.9240080.00000072.8674550.0470.00.0000000.0470.000000
40.20244.53183656.8424882.00057870.8668770.0270.05.9790090.0275.979009
50.25272.41844128.9558827.48619965.3812570.0120.09.9066470.0129.906647
60.30281.06648120.3078438.03384864.8336080.080.011.4364060.091.436406
70.35289.99921011.37511415.09045257.7770030.040.018.9166510.058.916651
80.40296.2801445.09417915.09045257.7770030.020.018.9166510.038.916651
90.45297.9855673.38875720.44952552.4179310.010.026.5417120.036.541712
100.50301.3743240.00000032.33792440.5295310.00.036.5127110.036.512711
110.55301.3743240.00000039.28510733.5823490.00.046.8978570.046.897857
120.60301.3743240.00000044.41782728.4496290.00.051.4822900.051.482290
130.65301.3743240.00000058.04255014.8249060.00.063.1244820.063.124482
140.70301.3743240.00000059.65460213.2128540.00.065.0754070.065.075407
150.75301.3743240.00000062.09673610.7707200.00.067.2225220.067.222522
160.80301.3743240.00000072.8674550.0000000.00.075.9665770.075.966577
170.85301.3743240.00000072.8674550.0000000.00.075.9665770.075.966577
180.90301.3743240.00000072.8674550.0000000.00.075.9665770.075.966577
190.95301.3743240.00000072.8674550.0000000.00.075.9665770.075.966577
201.00301.3743240.00000072.8674550.0000000.00.075.9665770.075.966577
\n", + "
" + ], + "text/plain": [ + " threshold amount_TN amount_FP amount_FN amount_TP cost_TN cost_FP \\\n", + "0 0.00 0.000000 301.374324 0.000000 72.867455 0.0 1590.0 \n", + "1 0.05 54.546707 246.827617 0.000000 72.867455 0.0 1260.0 \n", + "2 0.10 131.950002 169.424322 0.000000 72.867455 0.0 800.0 \n", + "3 0.15 201.450316 99.924008 0.000000 72.867455 0.0 470.0 \n", + "4 0.20 244.531836 56.842488 2.000578 70.866877 0.0 270.0 \n", + "5 0.25 272.418441 28.955882 7.486199 65.381257 0.0 120.0 \n", + "6 0.30 281.066481 20.307843 8.033848 64.833608 0.0 80.0 \n", + "7 0.35 289.999210 11.375114 15.090452 57.777003 0.0 40.0 \n", + "8 0.40 296.280144 5.094179 15.090452 57.777003 0.0 20.0 \n", + "9 0.45 297.985567 3.388757 20.449525 52.417931 0.0 10.0 \n", + "10 0.50 301.374324 0.000000 32.337924 40.529531 0.0 0.0 \n", + "11 0.55 301.374324 0.000000 39.285107 33.582349 0.0 0.0 \n", + "12 0.60 301.374324 0.000000 44.417827 28.449629 0.0 0.0 \n", + "13 0.65 301.374324 0.000000 58.042550 14.824906 0.0 0.0 \n", + "14 0.70 301.374324 0.000000 59.654602 13.212854 0.0 0.0 \n", + "15 0.75 301.374324 0.000000 62.096736 10.770720 0.0 0.0 \n", + "16 0.80 301.374324 0.000000 72.867455 0.000000 0.0 0.0 \n", + "17 0.85 301.374324 0.000000 72.867455 0.000000 0.0 0.0 \n", + "18 0.90 301.374324 0.000000 72.867455 0.000000 0.0 0.0 \n", + "19 0.95 301.374324 0.000000 72.867455 0.000000 0.0 0.0 \n", + "20 1.00 301.374324 0.000000 72.867455 0.000000 0.0 0.0 \n", + "\n", + " cost_FN cost_TP total_cost \n", + "0 0.000000 0.0 1590.000000 \n", + "1 0.000000 0.0 1260.000000 \n", + "2 0.000000 0.0 800.000000 \n", + "3 0.000000 0.0 470.000000 \n", + "4 5.979009 0.0 275.979009 \n", + "5 9.906647 0.0 129.906647 \n", + "6 11.436406 0.0 91.436406 \n", + "7 18.916651 0.0 58.916651 \n", + "8 18.916651 0.0 38.916651 \n", + "9 26.541712 0.0 36.541712 \n", + "10 36.512711 0.0 36.512711 \n", + "11 46.897857 0.0 46.897857 \n", + "12 51.482290 0.0 51.482290 \n", + "13 63.124482 0.0 63.124482 \n", + "14 65.075407 0.0 65.075407 \n", + "15 67.222522 0.0 67.222522 \n", + "16 75.966577 0.0 75.966577 \n", + "17 75.966577 0.0 75.966577 \n", + "18 75.966577 0.0 75.966577 \n", + "19 75.966577 0.0 75.966577 \n", + "20 75.966577 0.0 75.966577 " + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# total_amount and dataframe returned\n", + "print(f'total amount: {currency}{total_amount}')\n", + "amount_cost_df " + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "9580ceca", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
thresholdcost_TNcost_FPcost_FNcost_TPtotal_cost
00.000.01590.00.0000000.01590.000000
10.050.01260.00.0000000.01260.000000
20.100.0800.00.0000000.0800.000000
30.150.0470.00.0000000.0470.000000
40.200.0270.05.9790090.0275.979009
50.250.0120.09.9066470.0129.906647
60.300.080.011.4364060.091.436406
70.350.040.018.9166510.058.916651
80.400.020.018.9166510.038.916651
90.450.010.026.5417120.036.541712
100.500.00.036.5127110.036.512711
110.550.00.046.8978570.046.897857
120.600.00.051.4822900.051.482290
130.650.00.063.1244820.063.124482
140.700.00.065.0754070.065.075407
150.750.00.067.2225220.067.222522
160.800.00.075.9665770.075.966577
170.850.00.075.9665770.075.966577
180.900.00.075.9665770.075.966577
190.950.00.075.9665770.075.966577
\n", + "
" + ], + "text/plain": [ + " threshold cost_TN cost_FP cost_FN cost_TP total_cost\n", + "0 0.00 0.0 1590.0 0.000000 0.0 1590.000000\n", + "1 0.05 0.0 1260.0 0.000000 0.0 1260.000000\n", + "2 0.10 0.0 800.0 0.000000 0.0 800.000000\n", + "3 0.15 0.0 470.0 0.000000 0.0 470.000000\n", + "4 0.20 0.0 270.0 5.979009 0.0 275.979009\n", + "5 0.25 0.0 120.0 9.906647 0.0 129.906647\n", + "6 0.30 0.0 80.0 11.436406 0.0 91.436406\n", + "7 0.35 0.0 40.0 18.916651 0.0 58.916651\n", + "8 0.40 0.0 20.0 18.916651 0.0 38.916651\n", + "9 0.45 0.0 10.0 26.541712 0.0 36.541712\n", + "10 0.50 0.0 0.0 36.512711 0.0 36.512711\n", + "11 0.55 0.0 0.0 46.897857 0.0 46.897857\n", + "12 0.60 0.0 0.0 51.482290 0.0 51.482290\n", + "13 0.65 0.0 0.0 63.124482 0.0 63.124482\n", + "14 0.70 0.0 0.0 65.075407 0.0 65.075407\n", + "15 0.75 0.0 0.0 67.222522 0.0 67.222522\n", + "16 0.80 0.0 0.0 75.966577 0.0 75.966577\n", + "17 0.85 0.0 0.0 75.966577 0.0 75.966577\n", + "18 0.90 0.0 0.0 75.966577 0.0 75.966577\n", + "19 0.95 0.0 0.0 75.966577 0.0 75.966577" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# the amount/cost per threshold dataframe can be obtained directly with \n", + "# the function get_amounts_cost_df in the utilities module\n", + "\n", + "# this function requires a list of thresholds, instead of the step, for example:\n", + "threshold_values = np.arange(0, 1, 0.05) # will generate an array of values from 0 to 1 with step 0.05\n", + "\n", + "# example without amounts\n", + "bc.utilities.get_amount_cost_df(\n", + " true_y = y_test, \n", + " predicted_proba = test_predicted_proba,\n", + " threshold_values = threshold_values, \n", + " #amounts = amounts, \n", + " cost_dict = test_cost_dict)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "e79e6e49", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "hovertemplate": "total amount: $%{y}", + "mode": "lines", + "showlegend": false, + "type": "scatter", + "x": [ + 0, + 0.05, + 0.1, + 0.15000000000000002, + 0.2, + 0.25, + 0.30000000000000004, + 0.35000000000000003, + 0.4, + 0.45, + 0.5, + 0.55, + 0.6000000000000001, + 0.65, + 0.7000000000000001, + 0.75, + 0.8, + 0.8500000000000001, + 0.9, + 0.9500000000000001, + 1 + ], + "y": [ + 374.2417789254318, + 319.6950723637539, + 242.29177716748666, + 172.79146291489718, + 127.70936500766814, + 94.33713874856325, + 85.14145017085328, + 69.15211709757911, + 62.871182797376306, + 55.80668741474659, + 40.529531387710634, + 33.58234886130552, + 28.449628589410278, + 14.82490553087267, + 13.21285380021408, + 10.770719838097396, + 0, + 0, + 0, + 0, + 0 + ] + }, + { + "hovertemplate": "total cost: $%{y}", + "mode": "lines", + "showlegend": false, + "type": "scatter", + "x": [ + 0, + 0.05, + 0.1, + 0.15000000000000002, + 0.2, + 0.25, + 0.30000000000000004, + 0.35000000000000003, + 0.4, + 0.45, + 0.5, + 0.55, + 0.6000000000000001, + 0.65, + 0.7000000000000001, + 0.75, + 0.8, + 0.8500000000000001, + 0.9, + 0.9500000000000001, + 1 + ], + "y": [ + 1590, + 1260, + 800, + 470, + 275.9790094922077, + 129.90664676341643, + 91.43640630763322, + 58.916651027941086, + 38.916651027941086, + 36.541711980570135, + 36.51271105083246, + 46.89785726845953, + 51.48228951704443, + 63.12448167214795, + 65.07540726526575, + 67.2225223778225, + 75.9665774440284, + 75.9665774440284, + 75.9665774440284, + 75.9665774440284, + 75.9665774440284 + ] + }, + { + "hovertemplate": "%{x}", + "marker": { + "color": "black", + "size": 8, + "symbol": "diamond" + }, + "mode": "markers", + "showlegend": false, + "type": "scatter", + "x": [ + 0.35000000000000003, + 0.55 + ], + "y": [ + 58.916651027941086, + 46.89785726845953 + ] + } + ], + "layout": { + "autosize": true, + "hovermode": "x unified", + "margin": { + "t": 120 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "Interactive Amount-Cost Line Chart
Amount categories: TP + FP
Cost categories: TN + FP + FN + TP
Swaps at thresholds: 0.35, 0.55", + "y": 0.965, + "yanchor": "bottom" + }, + "xaxis": { + "autorange": true, + "range": [ + 0, + 1 + ], + "title": { + "text": "Threshold" + }, + "type": "linear" + }, + "yaxis": { + "autorange": true, + "range": [ + -88.33333333333334, + 1678.3333333333333 + ], + "title": { + "text": "Amount/Cost" + }, + "type": "linear" + } + } + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAABb8AAAJYCAYAAABCY5tXAAAAAXNSR0IArs4c6QAAIABJREFUeF7s3QmYFNW5//G3Z+kZFyQIKuKColEMriiRq+KKBiHuQY3GFVmVgIBkIEIMKCDCIFFBNqPGHcW4gMYQNaIGg9GIGjEKSlSCCyKiMvv8n1Om+l9T9ExX96murjr17efe52aYqvec83mrjffXh9OJxsbGRuGFAAIIIIAAAggggAACCCCAAAIIIIAAAggggIBBAgnCb4O6yVIQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEELAHCbx4EBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAeMECL+NaykLQgABBBBAAAEEEEAAAQQQQAABBBBAAAEEECD85hlAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQME6A8Nu4lrIgBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAcJvngEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAAB4wQIv41rKQtCAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQIPzmGcirwJq162Tg6Omy7tMNcvAB+8isKcOlTetWeR2T4gj4JVA5d6EsuG+xVW7i6H5ydu8efpXOex3ne69Pz+4yYdTlUl6ezPu4DIAAAggggAACCCCAAAIIIIAAAgiERYDw22MnFi1ZJuOmLkh7tU6w5KwbtXDNxnAGhHfOrJBuh3ROOYUx/N709bdy9XW3yiuvvWPNc6892svtN46QPTrs7PFpiPZlGzdtliEVN8vKd1ZrfSDR0NAor7/1nvzx6WXywvKV8sWXm6SkpFj277SH9DrxSDn9lKOk3Y6t84aV6zqc77lM790wht9q3YuXLpennn1F3nr3A6mrq7ecux3aWc474wTpeuAPpbi4WAodfhd6/Lw9eBRGAAEEEEAAAQQQQAABBBBAAIHICBB+e2wV4XfzUC2F3x55A73sn2+9LwNGT5Nvv6tKjXvt8Ivk52eeFOg8CjVYrqGxc77fbamSmfMfkXse+XOzy8j3Tv9c15FN+F2oHjU37j9W/lsqbphj/U2K5l72h2iFDp8LPX7Yesd8EEAAAQQQQAABBBBAAAEEEEAgeAHC7yzN/Q7OTN/5nSVv3i+vr6+X6XMWyl0PPd1krJ7HHi6Tx/SXbbcpz/scCj1ArqGxPW9lOPeeJ+XW3z9q/dFBB3SSiqsukIM67239rAJa9YFIQhJ5PeYm13X4/R4Oqp8f/Oe/ctWvZ8qHH623dtgPvvgM6wOb1jtsZ+26f+CxZ2XevU/Kb0Zcah3PUujwudDjB9UXxkEAAQQQQAABBBBAAAEEEEAAgfAKEH5n2ZtMwZlzF/SsKVfL2o/Wy4OPP2cFVl3220uG9T9HjjriQEkkElZAaJ8n7J6G8/iQDRu/lvseXSpP/vlv8vF/P7eCrwP331suPOdk+clxR1hHHKiXc26/veYy2aVdG7llwSJRIeGcqSOlwy7t5KEnn5e/LPuH/HvNx/L15m+t+/bec1fpceTBcuFZPWX3Djs1mYoae+GTz8ufnl8h/179kfW7/fbZQ07ucbic8ZNjZOaCh60jGNyvDru0tcZs84NWWx2x8fkXX8nAX02Xz774Sk48uqtM+fUA2W7b70Pnj9Z9JoN+VWl5Hdn1AJlx3VVWuNfY2CjvvPcfWXD/Ynn51betue/Qajs56ogu0v/Cn0rnfff01MlPv9goQypmyKr3/yOHHrivNNQ3Wsd/qPHnTh1l/Znzla6fdy38kxU2/viwA+RXV/5c9txtF1n2ykqZc/fj8va/P9yqz3a9j9d9LvPvXyzPvfS6dX9ZslQOP2R/uezcXtL98C5SVJSwLm0uNHSGvbZvp44drP46jzGpGHqBLFrygjzz11elurpGTjqmq1w98FxR9zhru8EyHQFiX6+eA7t/qqZ6zn+49+5Nyn258Wu5/Q+Py+BLzkid8e51/apQuudu9113kh8f1lku7vsTKS4qSp0ln+06Mr2HnfWa+3Aqm/e5Xc/r+zjdg+z+0EY980MvPyv13lf3qPfIU8/9XdS1p518VJNe9z7xSDn/zJPkDw8/Iy8sf0PKypJy5k+OloEXny4/2GF7a0j1HKmd/C+veFveXf0fqa6pTR1jc2KPrtL3p8dL2zY7pKbnNJh700j5fMMmK3zfYfvtpP9FfWTo2N+lfU/2u6CPjBjQ19P7lYsQQAABBBBAAAEEEEAAAQQQQAABHQHC7yz1MgVnLQXaaqid2/1A5tw40gqQvYTfy1/7l/zq+jlWWJrupcLFwRefboVgzrmpQOub77ZY5wGnC6LT1dp3r93k1knDUmdfZxp77k2j5LE/vZh1+L3dttvIxBl3WfNVofP86ddYZ0+r15JnX5FrJsy2/rN9FIm901iFqWo97pcKwWf89krp3vVHGbvprq9uuP7mP1j3/bLfOTLgFz+1PpiwX5n6qczUF3iueGNVk7Gd4bT6hbK8+je3pT5wcE/U2Ued8Ls5AHtn+/rPvsw5NLZrP/7MyzJm0lzrxwvP7ml9AGB/ANPc+Nms37nDOV09dazHoV32yXkdmd7DzjG9hN/p5uh8n9v99/o+TldPnVN/5dibrTPWd2yzg8ydOlIO+GHHFp/3lj7osG+85NxeMnJg363OCE9X+KhuB8q0cYOtD6PUy/neUHNSH3iol3ovE35n/EcRFyCAAAIIIIAAAggggAACCCCAQAAChN9ZImcKzpyB0KSKK6T3Sd2lvqFBpt/+kLV7W72cX2zZ0rEnzi9mPPXEI2XsL38hO/6glag/n3jz3dYX3jlDVmcttbNS7ZAtLS1JrVDt7Jx8y73WrlAVFKvfqbOb7174jNxyxyLrusljB1hfVOgcW+00H3r52fKLc062dit/8t8vZN59T8pPT/4/68stWzrzu7mjKZ756worDFYvO3SuratPheLOL6F0ntE97uqL5Zzex1o7UtVO8GHjfmedf+xl17Ja65jJ82TpC/9IfQihxrd3MXfZf2+59YZh1u/sl3NtyqbPSUdaZ4X/esoCefal16zLfnXVBXLuacdLUVGRTJv9gNy76Ps+25Zqh7s6ruLtdz+wdqtPvXagHN3tIPnvZxvk15PnW8G5Ws9tk4bLMT8+SGvnt3Kbcd2Vsu/eu8sn6z+3jN95b22T5yTTcSHNBf72jl31twnUBxHqpY47uehnp7T4Lsp2/XPvecI6T9zqzUWnyZWXnmnZqp3FT/z5Zdl15x2t91WmdTQ3qUzvYed9XsLvTO/zbN/H6eat/iaE+hsR6m9GqL/loHbbq7/Z0dLLGX6r4Pq6kZfKrju3lTdXrZHh42+x/uaF81x2db06zkZ9oPGj/Tpagbia+9RZ98sfn37RekZ/P+NX0vWg/axhnc9J5XVXSs8eXZt8CMKxJ1n+lwuXI4AAAggggAACCCCAAAIIIICA7wKE31mSZgrOmguCnfcNuuh0GdrvbGvklsLv1978t1x29Y1pdzs7p20fkeLl/PAtVdXy0oq35NkXX5P3P1xnhWn28Seqph3MO8d2Hj+SjiuX8NsZiNr1N2zclNrN69xR7Axbm2uXly9XdB7XYYflDY0NqUBc1Vah4nHdD0kN09zavPQ5naX7mJeHn/yr/Gba763x7HBZZ+e306GqqkbGT7vD2pnvDC4zhcZ+h9/OZ8nL+u//419Su/Hto2EOP3g/Uf+rjg6yz2XPtI7mnpVM72HnfV7Cb+cRRene59m+j9PNWzf8dn445HTbo8POcvuNI0R9aKJe6ncvLF9pfbCjPuRSz6I6/sR+Odea6YtuCb+z/C8XLkcAAQQQQAABBBBAAAEEEEAAAd8FCL+zJM0UnHkJRZ1n3rYUWKsdwZcOm5Jxhl7D79UfrpMR190m73/4SbM17cDWOXamXdW5hN/qfGK1y/R3Cx5Jnbe95j//lXFTFzTZBa0mmunoEXVNpvDbOV5LoOqLAsddfYkk/7dj3o/w+8W/v2mF+urltkz3PK379IvUhwDNhZYtnfk9a8pw6ygWZ/itxrafk1xDY9st22NPsl3/5m+/k7FT5svLK97aqlXtdmwtN1470PqbC7muI9N72DmoTvhtv8+zfR+nez51jz3x8hxlOubI+Qy535fOUNyeP+F3xn90cwECCCCAAAIIIIAAAggggAACCORZgPA7S+BMwZmf4bdzx+hl550qIwed2+Q8avfUM+38du6gvvhnp1jHoqgw8Yk//80KndXLy25l97i5hN+qhnMn9rmnnyAbvtwkf3nxtSZfdKmuc857QeVoT2d7u+foPHqipZa7z+r2I/x29lEdXzNx9OWyTXmZNY2gdn47g8tcQ2PbzcsXXn719TfWl7le/vPeos7wtv8Gg5f1q3HUOe/qWJt/rHxX3l39kfW3Fexz79WXnKpjNurq67f6MlUV+md6ZXoPO+/3I/zO9n2cbv5ev/DyuZdft47lcX/hZabwe7ddd5LfTr9THvvTS9aHT1f372sda9Sm9fYyc8Gi1BfzsvM709PF7xFAAAEEEEAAAQQQQAABBBBAIEwChN9ZdiNTcJZt+O08+/q800+QiqEXpnYdu89KHjXoPDn1xB9bxz7U1tbJex98Ivcu+rP0+3lv6dSxQ4tHqKhlOud284Sr5KRjDpea2lq588GnU2d+2+G3ChpH/naWvPrGu1YYNnrIz+WcPsdaZ35/+vlGUecyn3rSkdaZ384zmkcNPk8u6dtLioq+/9LIloJW587k8vKkdbyL+l/7iy7t1qidw+rL/tTvDjqgk3XO9EGd97bOF978zXfyyuvvWF8oOWrgeaLqpHs5a7h3d9fU1qXOGlf3Osf3I/zO9sxr545Z9aWG6ss8d2u/k7z/wcdy9XW3iToCQ2fntzJTfwPg5Vfftr48UZ1zfsiPvv/CUS8vFcTeNPtB+cPDz1iXO3uifn5z1QdSOechqa2tF7ULXf3fbM48n33XY6K+sPXEYw6Tndq2sZ4lde67egZUqH7YgT+0zkdXf57LOjK9h50GfoTf2b6Pm+vBv/69Vq4cO8M6q1u9JwdffIb8/MyTrC+gVB/uPPj4s3L73Y/LtcMvFvWMZ3N8Todd2qWOyFHPxC0TfymHdNlHvvmuSqbccq915rd6ZRN+f/zfz2VwxQxrHvt12l1uuWGY7L7rTl4eMa5BAAEEEEAAAQQQQAABBBBAAAEEfBEg/PbI6AzB3Lc4d1VmG347d9E669ohU6ajCJr7wkvnl2radf/0/AoZff3tLZ4h7rwv09j2HJ3Bsj2WPa82P2jV4u7cJc++ItdMmJ1auvOLLu0/VGGrOiJFfcmiCsDTvVo6mkXdf+Nt96e+iFKFyacc161JGeeHEPbO4lbbb9vsl3l66bPbUn35pPN8decEBl9yhgy++HQr0Hd+MWdzj6dO+O3eRWyPkel4G+dcvvl2i0y59T559Kllzb6DnEfRqGfJ6/pbOuZGhb7qixvP7HWMNKgvkp2zUO566Okmc8i0jpbey3Yhu3d+hN+qZqb3kvtvHKRDVUf3/O0f/5Ixk+amdsGnu86eezbh99577ioL7l8iM+YubPGfiNmE3809x85jnzz+45fLEEAAAQQQQAABBBBAAAEEEEAAgZwECL89suUr/FaB1suvviWz7nxM3nr3AyvcVUeR3HLDL61zrNVrw8avZeGTz8uzy16Td9d8ZF2zQ6vt5KDOnaT3SUdKzx6Hy/bbbZNx57cKPZ9cutzaqa12D6sgUR2PoHZj3nLHImssd2iudpkueuoFUcG5CurVSwVlasxfnHOyNVe77p0PPZ26psv+e8u08YNEBchDKm6Wle+sTnsut3NXrKr9s58eJ9cOu0hK/3fmtt0e5aSOwbj/j0vl76+vErWrVL3U3H98WGc5/ZSjpetBP7TCY/dLfannoF9VWmvuvO+e1pda7tKuTZPLnLtUt9u2XOZOHSWHHrivb+G3GuzjdZ/L/PsXy3MvvW6Fl/aXOV52bi/pfniX1G55de26TzfIjDkPWcfAqJc6guKcPsfJlFvusyx1wm9VT+2gVh8oLF76N2su6lnoe9rxcs3g8615eXk1NDTK62+9J+oLKlf8c1WqzoH77y3qeJNeJ/zYej7sl9f1v/Gv1fLwk8/L62+9bx2Zol6qzrHdD5afn9lTDvjhnqnjf3JZRyHC72zex5ns1d+mePSpF+XpZ19J/fPA9jn9J0dL1wO/fx9kE36rvzlSVV0j9z7yZ7n74WdSz+cl5/aynpWHHn/OmlY24XfqOZ67UNQHZOqDH/VsqQ96+l/400zL5PcIIIAAAggggAACCCCAAAIIIICAtgDhtzYhBRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTCJkD4HbaOMB8EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABbQHCb21CCiCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiETYDwO2wdYT4IIIAAAggggAACCCCAAAIIIIAAAggggAAC2gKE39qEFEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAImwDhd9g6wnwQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEtAUIv7UJKYAAAggggAACCCCAAAIIIIAAAggggAACCCAQNgHC77B1hPkggAACCCCAAAIIIIAAAggggAACCCCAAAIIaAsQfmsTUgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgbAKE32HrCPNBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ0BYg/NYmpAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBA2AQIv8PWEeaDAAIIIIAAAggggAACCCCAAAIIIIAAAgggoC1A+K1NSIEwCGzctFmGVNwsIwb1lW6HdA7DlJgDAggggAACCCCAAAIIIIAAAggggAACCBRQgPA7S3w7ZFW3zZoyXNq0bpVlhWAvX/HGKqm8fWHe5hqW0DnoeaxZu04Gjp4u6z7dkLahfXp2lxED+srVv5klK99Znbqm3wV9rD/Px2vRkmUybuqCrUqrMS87r5f14UBQc8nH+qiJAAIIIIAAAggggAACCCCAAAIIIIBANgKE39loiYgKGJe/9rZ89MnnkdhlHJfwO8s2+np5VVWNjJ92h3Tv2kXO7t0jVdsdyNvXtd+5racAXAXs9y5aKtcMPl/Ky5MZ52w/mxNGXb7V9bpzyTg4FyCAAAIIIIAAAggggAACCCCAAAIIIBAyAcLvLBpih5d9TzveCr8//Hh9kxDTDppPOPpQmTn/Eauy2gF8Sd+fyPDxt1q7hDvs0lbmTB0pnTp2sH5v11y8dHnqeju8TBequsNsO/Bstd228sBjz1o17N3F6XYn3zmzotljQSrnLpQF9y22ajjn6fxze01qjuqlQl977s6xW1qXuk6t49JhU5roTxzdLxUe22GtvVPZuWPaNrj0vF4y4rrbrLneNG6Q3HjbA00+kPBi65y700a5LnzieU875r2G3/a6ve7Ez2f4ne1csnibcCkCCCCAAAIIIIAAAggggAACCCCAAAKhECD8zqINKoy8afYDMmlMf9n41WYZO2W+TKq4IhVk24GuHeKmOyJFBcnrP9sgdsCtflYv+ygM589ew2911IUd3NqB96Sx/a2Q2+vOb/e81H3q5T4/216T+gBA7XJOd9yIe4ez+2f3HN3rzPSz7ewMxDPtbHbPwe2uaqoPNOyd2/kMv1Wonm53tvtRDCL89jqXLN4mXIoAAggggAACCCCAAAIIIIAAAggggEAoBAi/s2hDtsF0pvA6XYCuAk87VO+wS7utjtNobud3c7vFvYTfzjHtHektsTgd0oXfzg8J7DPR1TzsoHXJs6802TXvdko3Z+efvf/hJ1udY+6eR6Y5zLr7sSYfQmTxGGx1qded3+4PDtKN6d5l776mpZ376c78PviAfazd6+rl/EJQL3PRMeFeBBBAAAEEEEAAAQQQQAABBBBAAAEECi1A+O2xAyosHDt5nnX+sh0Qu89Ydoe2poTf6Y5PsXddpwu/0x1popjtIPb3Dz5tqdu73fMRfmeagx0G28eq2HPL5QtMM4XfuX7JZD52fuc6F49vEy5DAAEEEEAAAQQQQAABBBBAAAEEEEAgNAKE3x5b0VyY6jwb28Tw231EieLKtPM7025z95Ej+Qq/vZ6tne0XUbofmUzh94hBfZs9Z72lxy8f4Xeuc/H4NuEyBBBAAAEEEEAAAQQQQAABBBBAAAEEQiNA+O2xFSqw3Wv39qkzoe3bnEFutuG32mXc0pnf7qDZDlnV2dTqKAt1v3v3uTuI9XqkSXNnfltzuH1hajx7p3e3wzpbO7fTBb/pwmR1n9rxPeTiM+TNd9fI2EnzUl/8aQfsgy850/L1cua3O9jOdOa3Woc9h8vPPVXueOgpuey8Xpah21n9nK8zvz0+btZlhN/ZaHEtAggggAACCCCAAAIIIIAAAggggAACTQUIvz08ES0FyC2dRZ3p2BMVvNrXLF663JpJn57dm3wZovPIEbXL/JJze4m61mv4bQe7C+5bbNVv7sxo9zycO9qd51Cr40H22G0nab9z29SxJc5d8fZxKO56amz7i0Ddczq2+8HW3E4+tlvqwwU7zLaP6XB+uWW6neUtffGmbeucg/t8bLd7GMJvD49mk0vcH4Q4f5nOJ9v6XI8AAggggAACCCCAAAIIIIAAAggggECUBAi/o9QtQ+dKMGtoY1kWAggggAACCCCAAAIIIIAAAggggAACBRQg/C4gPkN/L5DpjHCcEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBbAUIv7MV43ptAfeRJs4jVrSLUwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEBARwm8eAwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAHjBAi/jWspC0IAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAg/OYZQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEDBOgPDbuJayIAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAHCb54BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAeMECL+NaykLQgABBBBAAAEEEEAAAQQQQAABBBBAAAEEECD85hlAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQME6A8Nu4lrIgBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAcJvngEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAAB4wQIv41rabgXtHHTZhlScbOMGNRXuh3SOdyTZXYIIIAAAggggAACCCCAAAIIIIAAAgggEFkBwu8sW7doyTIZN3VBk7smju4nZ/fukWWlpperustfe1smjLpcysuTWrXS3bzijVVSeftCmTVluLRp3cr3+l4LBh1+p+uXc66qd3vstpNcOmyK9OnZvYl/Ps2qqmpk/LQ7ZPHS5VvR3TmzwvozNSfnS/15vj4waM6p3wV9pMeRBwXqYz8jK99ZnfaxOviAfWTGb6+UyrkPNfFz98/rM8l1CCCAAAIIIIAAAggggAACCCCAAAJmChB+e+yrHVZ+9MnnTQJk9eez7n5MLjuvl1aoHJfw2yN3Xi5bs3adjJ0yXyZVXCGdOnZIjWGH3CoE7961S+qDjGzDb3X9slfelBED+macv/08Ocdz3uQeW8194OjpMmlsf08BuLr+3kVL5ZrB53v6MKWl588vn2znZHtUzl1o/Uenazo/dd36zzbk7QOkjE3lAgQQQAABBBBAAAEEEEAAAQQQQACBUAkQfntsh9cgVF3n3LHr3K2bbrdvul2+HXZpK3OmjmwS0DqnqUK+Bfcttv7IvrbDLu222kmsdu2qwNAOTtd9uiFVxp6Xe07pdj+7dyA7d7q3tF7b7NLzesmI626z5nrTuEFy420PNDn2xD0/Z333LmCnjT339ju39RQ4Zwq/J425Qmbf/ZiMGXqh9UGG157bqPkMv9UY6ULg5h7fbINmL+G3rk+2c8o2/G6uvx7f4lyGAAIIIIAAAggggAACCCCAAAIIIGCYAOG3x4Z6CR7d4Zv7Z3cNFZaqneTqyBSvO7/du1tVDfVyH4fh3imcLsh1h8fun9013LttM63XDsbtEF7N033siXsM588H7d/JCvSdu6OVk9qhrdbrd/itjoR57qV/Wp6qJ2EMv/favb2nI3ayDZq9hN+6PtnOKZfw+6bZD8ikMf21/haGx38kcBkCCCCAAAIIIIAAAggggAACCCCAQMgFCL89NkiFzpmCx3QBufPPWjqWwUv4nc3OVndQnS7IVfXcYaG6buETz1tHRyx59hX58OP1qV3V7pqZ1ptuTHf4rdbtHEO1w7bufeKRVvjtdWd3plZm2vmtwl31Gjt5nnVcyIavvm7xnPSWzu1WdVrawd/cvfYHBW479fPYSfM8/42AdBYtnRme7sxvdba2Mnn/w09SDtn42L20/5ZCtnPKJvzO9oOQTM8Kv0cAAQQQQAABBBBAAAEEEEAAAQQQiL4A4bfHHnrZ+Z0pDHYf4WGHi+qIDT/Cb/cRJGpp9hEi6YLodNere+x5/f7Bpy0d+6zlfITfziNcnK1o7sgWnS819BJ+271Qgbz6osdsviTU72NPdL7wMttd1l53fuv4ZDsnL+G38wtDdZ4Nj/8Y4DIEEEAAAQQQQAABBBBAAAEEEEAAgQgJEH57bJaXIzAyhd/Oodw7VXXDb/fOYC87vzOtyb2efIXfzoC9pXbYHx70Pe14T0d/uGt5Db/VOtWO+L333FVUuKp2P6vQN9PL7/A7m+A93Vr9/sJL2yFXn3yE3819YWimXvF7BBBAAAEEEEAAAQQQQAABBBBAAAHzBQi/PfbYDn7VGd3OMFT9+ay7H5PLzuslG7/aLGOnzJdJFVdYX1bpDFvVF1La19lBqjNczhRE29Ns7sxvNa/lr71tHVdSXp5Mfcnl4EvOtILidMFvuqMiVMCsdnwPufgMefPdNU2O2rDP426upnsML8eeuM/8Vuu0z0I/4ehDU3OpWaKCAAAgAElEQVRRa3KH79kedeE1/LbnoHZeO3fnZ3pU4hJ+5+pD+J3pCeL3CCCAAAIIIIAAAggggAACCCCAAAJ+ChB+Z6mZ7pgO+2gRZyhol3Wes+w+V9l5TIPzDOhszoq2r1Xhujof2z4G4tjuB1tTOPnYbqld0s652/NKd/a0cz3Oe9LVdB+d4lyvl/BbzdEOwNd9usGas3P9bm/nl2fmM/xu7sOOLB+XZi93B/nuC71+GOLXfLI59kSNmW8f57rS/Y2KTH5+uVAHAQQQQAABBBBAAAEEEEAAAQQQQCC6AoTf0e1d4DN3f1ll4BNgQAQQQAABBBBAAAEEEEAAAQQQQAABBBBAwKMA4bdHKC77/jgSnXOoMUQAAQQQQAABBBBAAAEEEEAAAQQQQAABBIISIPwOSjqC49g7vVe+s9qafUvHsURweUwZAQQQQAABBBBAAAEEEEAAAQQQQAABBAwWIPw2uLksDQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiKsA4XdcO8+6EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABgwUIvw1uLktDAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTiKkD4HdfOs24EEEAAAQQQQAABBBBAAAEEEEAAAQQQQMBgAcJvg5vL0hBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgbgKEH7HtfOsGwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQMFiA8Nvg5rI0BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgrgKE33HtPOtGAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQMFiD8Nri5LA0BBBBAAAEEEEAAAQQQQAABBBBAAAEEEIirAOF3XDvvw7o3btosQypulhGD+kq3Qzr7ULHlElVVNTJ+2h3SvWsXObt3j6zH83L/oiXLZPlrb8uEUZdLeXky6zG4AQEEEEAAAQQQQAABBBBAAAEEEEAAAQTCIUD4nUUfVryxSi4dNqXJHQcfsI/MmjJc2rRulUWl8FzqJRBWs1Vrr7x9YZO1En5772Pl3IWy4L7F1g1enhkVwo+buiA1gPse237lO6ubTKLfBX1kxIC+nidm93/x0uXWPX16ds8Y/Lvnpu7rsEtbmTN1pHTq2MF6VtzvE3XNnTMrAvmQxPPiuRABBBBAAAEEEEAAAQQQQAABBBBAwGgBwm+P7VWB3thJ81IBn32bCjV7HHlQZEM9wu+mD0A+dn67a3oZY+49T0jPHodbYbJ6ue/x64MH9fyqlx2Yu39O9/bINP90H5R4fJtxGQIIIIAAAggggAACCCCAAAIIIIAAAr4JEH57pMwU+LnDyJZ+Pmj/TtbxHfZuWzUF545d+161C/euh56WdZ9uaLKz1g5DnTuDW9rx69x1rO517u5t6Xc2zZq162Tg6OnWPOyX2sW77167WceeNDdPO1hXu5bVDmW1Xnue7poTR/dLHWXi3tVs7yrusEs7y02N+9xL/7Rqqpd7R7FzZ7JzR3K6oD/dDmqnj3uXs9O5uQ9EnI9UupBarX3slPkyqeKKVLid6TF0B8p+hN/p5uEluM70XvBSI9N6+T0CCCCAAAIIIIAAAggggAACCCCAAAK6AoTfHgXtoxycIa37VhUk77V7eyvEta93hr03zX5AJo3pv9URKXYQPGlsf2sHuR1s7rHbTqkjKFTguPCJ561jR97/8JMmR5Co63//4NMy5OIzMp5Tbdfue9rx1jz92PntnKcyWP/ZBmve6qXC6tfffK/Jjnn3ep0/2x8MOM/1VmtXY9i/++iTz1PHrzhd1NEz7uDV+fM2ZWVNzgy3195+57apnc/OYPfNd9e06Ow1/B47eZ5cM/j8VNCdS3DtdFVnkacL7Vt6NtM95srd/Ux6CeYzHcniPvbE+QGEx7cblyGAAAIIIIAAAggggAACCCCAAAIIIKAtQPidBWG6s4ydgaMzOJ1192PSZb+95C8v/kPGDL3Q2qn84cfr057H7A6gM+0W3vDV12mPYPG6FOfRFn6E384vvGwpbLbnp5zcFvYHB71PPNIKqJ2BtH1furk6w1p7Z7gzOHfeY9e2f58u/HWH3+mOuvHqrK5LFyZ7Db+d53FnOifc/YGClzmm26HtJfxO96GP/YFHui8JdX9A4WVuXIMAAggggAACCCCAAAIIIIAAAggggICuAOG3hqAdOA6+5ExrF7Udpo4e8nOZffdjVuitdmSrM8GXvfJmale4GrKlID1dOOr+M/dxJS19mWC6Y0vsHemFCL/dc7db0NyRKPYxJOo6FYw7w22d8Dtd+Os+0iMb53SPkuqbHzu/vRwl4uW8buccc9357V5npsDca9iv8VbkVgQQQAABBBBAAAEEEEAAAQQQQAABBLYSIPzWfCjcu6jVMRJ777mrfLbhK2uXtwotn37279YoF57d0zr6wn1cRrY7v+0vQbSn3tLO2nQ7ggu98zubkNZ5TIt757Zaf77Db+fjkcsO5ky7+N29bO5xTBeiu691Hrvj5bHO9czvdOF3c0f6qGu9zN3LfLkGAQQQQAABBBBAAAEEEEAAAQQQQACBbAQIvz1qqWBR7eBWZ3Lbr+aC5QX3LU59CaMdfqp71Hnd6lxq9+5i9w7ydIGp88znJc++Yp2Bbc+lpV3BzX1RYrfDOqeOYPESRns9vsPLsSfp3NR96izvE44+tMn55S0dW+IOv+0PFipvX5iybmk+7vPP3WetZ3L2cua3mqO73+6f081j8i33Wn9zQD0vdg37zHf7GXI/A+4jWryE9e7eu392r9F9vrz73HT1szry57LzeqXm7j6v3ONbjssQQAABBBBAAAEEEEAAAQQQQAABBBDQEiD89siX7uiQdF/kly6IdgeKzrOc1fDHdj/YmsXJx3azjk9J92WG9tEf6kxl91wyfaGg8+gOdXa0Ck2dZ2o76znHcdM466hjVvbdazcZUnGzZHvmtx1aDxw9XdZ9usEaxrkG91EjLR3Rki6Ud34ho7Nuc2eG2/NQNip8V18oqr6wc92nX0hzc1Rz9hp+q2vdPbA/CFG/c4ff7uvVz+4zvzN9qaTX42zcz6K7/839LYXFS5enHg+7P/YfuPvX0jPl8e3HZQgggAACCCCAAAIIIIAAAggggAACCGQtQPidNVn+b+CM5Pwbmz5CuvO8TV8z60MAAQQQQAABBBBAAAEEEEAAAQQQQMApQPgdwueB8DuETYnYlNTu9w8/Xp862iZi02e6CCCAAAIIIIAAAggggAACCCCAAAIIaAsQfmsT+l+A8Nt/UyoigAACCCCAAAIIIIAAAggggAACCCCAQLwECL/j1W9WiwACCCCAAAIIIIAAAggggAACCCCAAAIIxEKA8DsWbWaRCCCAAAIIIIAAAggggAACCCCAAAIIIIBAvAQIv+PVb1aLAAIIIIAAAggggAACCCCAAAIIIIAAAgjEQoDwOxZtZpEIIIAAAggggAACCCCAAAIIIIAAAggggEC8BAi/49VvVosAAggggAACCCCAAAIIIIAAAggggAACCMRCgPA7Fm1mkQgggAACCCCAAAIIIIAAAggggAACCCCAQLwECL/j1W9WiwACCCCAAAIIIIAAAggggAACCCCAAAIIxEKA8DsWbWaRCCCAAAIIIIAAAggggAACCCCAAAIIIIBAvAQIv+PVb1aLAAIIIIAAAggggAACCCCAAAIIIIAAAgjEQoDwOxZtZpEIIIAAAggggAACCCCAAAIIIIAAAggggEC8BAi/49VvVosAAggggAACCCCAAAIIIIAAAggggAACCMRCgPA7Fm1mkQgggAACCCCAAAIIIIAAAggggAACCCCAQLwECL/j1W9WiwACCCCAAAIIIIAAAggggAACCCCAAAIIxEKA8DsWbWaRCCCAAAIIIIAAAggggAACCCCAAAIIIIBAvAQIv+PVb1aLAAIIIIAAAggggAACCCCAAAIIIIAAAgjEQoDwOxZtZpEIIIAAAggggAACCCCAAAIIIIAAAggggEC8BAi/49VvVosAAggggAACCCCAAAIIIIAAAggggAACCMRCgPA7Fm1mkQgggAACCCCAAAIIIIAAAggggAACCCCAQLwECL/j1W9WiwACCCCAAAIIIIAAAggggAACCCCAAAIIxEKA8DsWbWaRCCCAAAIIIIAAAggggAACCCCAAAIIIIBAvAQIv+PVb1aLAAIIIIAAAggggAACCCCAAAIIIIAAAgjEQoDwOxZtZpEIIIAAAggggAACCCCAAAIIIIAAAggggEC8BAi/49VvVosAAggggAACCCCAAAIIIIAAAggggAACCMRCgPA7Fm1mkQgggAACCCCAAAIIIIAAAggggAACCCCAQLwECL/j1W9WiwACCCCAAAIIIIAAAggggAACCCCAAAIIxEKA8DsWbWaRCCCAAAIIIIAAAggggAACCCCAAAIIIIBAvAQIv+PVb1aLAAIIIIAAAggggAACCCCAAAIIIIAAAgjEQoDwOxZtZpEIIIAAAggggAACCCCAAAIIIIAAAggggEC8BAi/49VvVosAAggggAACCCCAAAIIIIAAAggggAACCMRCgPA7Fm1mkQgggAACCCCAAAIIIIAAAggggAACCCCAQLwECL996Pe6DVt8qEIJBBAwQaA8WSzblhXLl5trTFgOa0AAAR8EiosS0q51mXy6scqHapRAAAFTBHZpUy5fbKqW+oZGU5bEOhBAQFNgx1ZJ+a66Xqpq6jUrcTsCCJgk0KHtNiYtJ/C1EH77QE747QMiJRAwRIDw25BGsgwEfBQg/PYRk1IIGCRA+G1QM1kKAj4JEH77BEkZBAwTIPzWayjht56fdTfhtw+IlEDAEAHCb0MayTIQ8FGA8NtHTEohYJAA4bdBzWQpCPgkQPjtEyRlEDBMgPBbr6GE33p+hN8++FECAZMECL9N6iZrQcAfAcJvfxypgoBpAoTfpnWU9SCgL0D4rW9IBQRMFCD81usq4beeH+G3D36UQMAkAcJvk7rJWhDwR4Dw2x9HqiBgmgDht2kdZT0I6AsQfusbUgEBEwUIv/W6Svit50f47YMfJRAwSYDw26RushYE/BEg/PbHkSoImCZA+G1aR1kPAvoChN/6hlRAwEQBwm+9rhJ+6/kRfvvgRwkETBIg/Dapm6wFAX8ECL/9caQKAqYJEH6b1lHWg4C+AOG3viEVEDBRgPBbr6uE33p+hN8++FECAZMECL9N6iZrQcAfAcJvfxypgoBpAoTfpnWU9SCgL0D4rW9IBQRMFCD81usq4beeH+G3D36UQMAkAcJvk7rJWhDwR4Dw2x9HqiBgmgDht2kdZT0I6AsQfusbUgEBEwUIv/W6Svit50f47YMfJRAwSYDw26RushYE/BEg/PbHkSoImCZA+G1aR1kPAvoChN/6hlRAwEQBwm+9rhJ+6/kRfvvgRwkETBIg/Dapm6wFAX8ECL/9caQKAqYJEH6b1lHWg4C+AOG3viEVEDBRgPBbr6uE33p+hN8++FECAZMECL9N6iZrQcAfAcJvfxypgoBpAoTfpnWU9SCgL0D4rW9IBQRMFCD81usq4beeH+G3D36UQMAkAcJvk7rJWhDwR4Dw2x9HqiBgmgDht2kdZT0I6AsQfusbUgEBEwUIv/W6alT4vXHTZhk7eZ5cM/h86dSxQxOZNWvXycDR02Xdpxukwy5tZc7Ukalr1H1DKm6Wle+stu65c2aFdDukc+r+RUuWybipC6yf+/TsLhNGXS7l5cnU79dt2KLXBe5GAAFjBAi/jWklC0HANwHCb98oKYSAUQKE30a1k8Ug4IsA4bcvjBRBwDgBwm+9lhoRfldV1cj4aXfI4qXLtwq2FY8KvsdOmS+TKq7YKhS37+3etYuc3bvHVteueGOVVN6+UGZNGS5tWreSyrkLLfERA/oSfus9e9yNgJEChN9GtpVFIaAlQPitxcfNCBgrQPhtbGtZGAI5CxB+50zHjQgYLUD4rddeI8JvmyDdzm873O572vFNdnPb96hg/KbZD8ikMf2tcNsdhquwe6/d21vBuHq5w3D1Z+z81nsIuRsBkwQIv03qJmtBwB8Bwm9/HKmCgGkChN+mdZT1IKAvQPitb0gFBEwUIPzW66rx4bf7SBPF5Ty6JF2Ybe/uHnLxGdaOcntXuLo33S5ywm+9h5C7ETBJgPDbpG6yFgT8ESD89seRKgiYJkD4bVpHWQ8C+gKE3/qGVEDARAHCb72uGh9+N7ezu/3Oba2jS1T4vfCJ55uc4+0Ov527xtOF3zW1DXpd4G4EEDBGoKgoIUVFInV1jcasiYUggICmQEKktKRIavn3BU1IbkfALIHS0iKprWsQ4V8ZzGosq0FAQ6CkJCENDSINDfyDQYORWxEwTiBZWmTcmoJcUOzCb4Xr3O39/oefNDnTW/0+253fX3xdHWTPGAsBBEIskCwpkvLSYvl6S22IZ8nUEEAgSIHiREJab1cqX35TE+SwjIUAAiEX2HH7pGz6tlbqGwm5Qt4qpodAYAI7bFMqVbX1UqM+GOOFAAII/E+g3Q5lWGgIGB9+pzsH3Lnbe92nX2id+b3loQXyVbdTpXGHNhpt4FYEEDBFgGNPTOkk60DAPwGOPfHPkkoImCTAsScmdZO1IOCPAMee+ONIFQRME+DYE72OGh9+Kx61k3v9Zxuso03Uy3mOt/sLLt3HmrjPBLd3hasjU9Trq3OPkYZ9D5KqEdNFEgm9bnA3AghEXoDwO/ItZAEI+C5A+O07KQURMEKA8NuINrIIBHwVIPz2lZNiCBgjQPit10ojwm87wF68dHlKw/mllu7f97ugj3Xet/1yfynmnTMrpNshnVO/X7RkmYybusD62VlX/fz1oLOk4cvPpe7wY6XminF63eBuBBCIvADhd+RbyAIQ8F2A8Nt3UgoiYIQA4bcRbWQRCPgqQPjtKyfFEDBGgPBbr5VGhN96BHp3165YJt/MGC+JulqpO+FMqTn3Sr2C3I0AApEWIPyOdPuYPAJ5ESD8zgsrRRGIvADhd+RbyAIQ8F2A8Nt3UgoiYIQA4bdeGwm/9fysuz97fJEk76m0/nPNGZdJXa8LfKhKCQQQiKIA4XcUu8acEcivAOF3fn2pjkBUBQi/o9o55o1A/gQIv/NnS2UEoixA+K3XPcJvPT/r7nUbtkjJnx6Q5B+/Pxql+qKRUn9ULx8qUwIBBKImQPgdtY4xXwTyL0D4nX9jRkAgigKE31HsGnNGIL8ChN/59aU6AlEVIPzW6xzht55fKvxW/yH5yBwpWfrw9wH4lZOk/sBuPlSnBAIIREmA8DtK3WKuCAQjQPgdjDOjIBA1AcLvqHWM+SKQfwHC7/wbMwICURQg/NbrGuG3nl+T8NsKwO+aKiXL/yxSto1UjayUhj329WEESiCAQFQECL+j0inmiUBwAoTfwVkzEgJREiD8jlK3mCsCwQgQfgfjzCgIRE2A8FuvY4Tfen5bhd9SUyVl8yZI8VsrpGGn3aRGBeCtd/RhFEoggEAUBAi/o9Al5ohAsAKE38F6MxoCUREg/I5Kp5gnAsEJEH4HZ81ICERJgPBbr1uE33p+W4ffIpLYsF7K510vibXvSsO+B8qW4dMkUVzsw0iUQACBsAsQfoe9Q8wPgeAFCL+DN2dEBKIgQPgdhS4xRwSCFSD8Dtab0RCIigDht16nCL/1/NKG3+oPVfBtBeAb1ktd12Olpv84H0aiBAIIhF2A8DvsHWJ+CAQvQPgdvDkjIhAFAcLvKHSJOSIQrADhd7DejIZAVAQIv/U6Rfit59ds+K1+oY4+KZs/UaR6i9Qef4bUnneVD6NRAgEEwixA+B3m7jA3BAojQPhdGHdGRSDsAoTfYe8Q80MgeAHC7+DNGRGBKAgQfut1ifBbz6/F8Fv9Un35pfoSTPWqPeMyqe11gQ8jUgIBBMIqQPgd1s4wLwQKJ0D4XTh7RkYgzAKE32HuDnNDoDAChN+FcWdUBMIuQPit1yHCbz2/jOG3FYAvfViSj8yxrq25aKTUHdXLh1EpgQACYRQg/A5jV5gTAoUVIPwurD+jIxBWAcLvsHaGeSFQOAHC78LZMzICYRYg/NbrDuG3np+n8FtdlPzjAin50wPW9dVX3SD1XX7sw8iUQACBsAkQfoetI8wHgcILEH4XvgfMAIEwChB+h7ErzAmBwgoQfhfWn9ERCKsA4bdeZwi/9fw8h99WAH5PpZS89JRIslyqRs2Qhj329WF0SiCAQJgECL/D1A3mgkA4BAi/w9EHZoFA2AQIv8PWEeaDQOEFCL8L3wNmgEAYBQi/9bpC+K3nl1X43VhfL+XzJkjxGy9LQ7sOUjNiujS0aefDDCiBAAJhESD8DksnmAcC4REg/A5PL5gJAmESIPwOUzeYCwLhECD8DkcfmAUCYRMg/NbrCOG3nl9W4be6uGjTl5KcN0GKVr8t9ft0kerhN4mUlPowC0oggEAYBAi/w9AF5oBAuAQIv8PVD2aDQFgECL/D0gnmgUB4BAi/w9MLZoJAmAQIv/W6Qfit55d1+G0F4J+skeTcCVL02SdS3/VYqe4/zodZUAIBBMIgQPgdhi4wBwTCJUD4Ha5+MBsEwiJA+B2WTjAPBMIjQPgdnl4wEwTCJED4rdcNwm89v5zCb3VT8arXJDlvoiS++0bqjj9Das67yoeZUAIBBAotQPhd6A4wPgLhEyD8Dl9PmBECYRAg/A5DF5gDAuESIPwOVz+YDQJhESD81usE4beeX87htxWAv/qclC2YZNWoPf1SqT31Qh9mQwkEECikAOF3IfUZG4FwChB+h7MvzAqBQgsQfhe6A4yPQPgECL/D1xNmhEAYBAi/9bpA+K3npxV+q5tLn/ujlD50m1Wn5hcjpO7oU32YESUQQKBQAoTfhZJnXATCK0D4Hd7eMDMECilA+F1IfcZGIJwChN/h7AuzQqDQAoTfeh0g/Nbz0w6/rQD8ibukdMk9Vq3qK6+X+gOP9GFWlEAAgUIIEH4XQp0xEQi3AOF3uPvD7BAolADhd6HkGReB8AoQfoe3N8wMgUIKEH7r6RN+6/n5En5bAfh9M6V02ZPSmCyX6hHTpKHj/j7MjBIIIBC0AOF30OKMh0D4BQi/w98jZohAIQQIvwuhzpgIhFuA8Dvc/WF2CBRKgPBbT57wW8/Pt/BbFSqbN1GKX3tBGtvtKlXDb5LGtrv4MDtKIIBAkAKE30FqMxYC0RAg/I5Gn5glAkELEH4HLc54CIRfgPA7/D1ihggUQoDwW0+d8FvPz9fwO/HtZimbc50UvbdSGvbpIlW/nCKSLPdhhpRAAIGgBAi/g5JmHASiI0D4HZ1eMVMEghQg/A5Sm7EQiIYA4Xc0+sQsEQhagPBbT5zwW8/P1/BbFUus/4+Uz5sgiXVrpf6wHlI9YLwPM6QEAggEJUD4HZQ04yAQHQHC7+j0ipkiEKQA4XeQ2oyFQDQECL+j0SdmiUDQAoTfeuKE33p+voffqmDx+29Kcu4ESWz+SuqOO11qzh/qwywpgQACQQgQfgehzBgIREuA8Dta/WK2CAQlQPgdlDTjIBAdAcLv6PSKmSIQpADht5424beeX17CbysAf32ZdQa4NDZK7WmXSm3vC32YKSUQQCDfAoTf+RamPgLREyD8jl7PmDECQQgQfgehzBgIREuA8Dta/WK2CAQlQPitJ034reeXt/BbFS5d9qSU3jfTGqP6whFSf8ypPsyWEgggkE8Bwu986lIbgWgKEH5Hs2/MGoF8CxB+51uY+ghET4DwO3o9Y8YIBCFA+K2nTPit55fX8NsKwJfcI6VP3PV9AD54gtQf/H8+zJgSCCCQLwHC73zJUheB6AoQfke3d8wcgXwKEH7nU5faCERTgPA7mn1j1gjkW4DwW0+Y8FvPL+/htxWAP3SblD73R5FkuVQPnyr1ex/gw6wpgQAC+RAg/M6HKjURiLYA4Xe0+8fsEciXAOF3vmSpi0B0BQi/o9s7Zo5APgUIv/V0Cb/1/AIJv9UgZQsmSfGrz0lju12latiN1v/lhQAC4RMg/A5fT5gRAoUWIPwudAcYH4FwChB+h7MvzAqBQgoQfhdSn7ERCK8A4bdebwi/9fwCC7+lpkrKZv9Gile9Jg37dJGqqyaJlG/rw+wpgQACfgoQfvupSS0EzBAg/Dajj6wCAb8FCL/9FqUeAtEXIPyOfg9ZAQL5ECD81lMl/NbzCy78FpHEF+ulbM51UvTxaqk/7BipHvAbH2ZPCQQQ8FOA8NtPTWohYIYA4bcZfWQVCPgtQPjttyj1EIi+AOF39HvIChDIhwDht54q4beeX6Dhtxqs+MN3JTnnOkl89YXUHnea1J7/Sx9WQAkEEPBLgPDbL0nqIGCOAOG3Ob1kJQj4KUD47acmtRAwQ4Dw24w+sgoE/BYg/NYTJfzW8ws8/LYC8DdfkeTc30qirlbqTrtUanpf6MMqKIEAAn4IEH77oUgNBMwSIPw2q5+sBgG/BAi//ZKkDgLmCBB+m9NLVoKAnwKE33qahN96fgUJv9WgJS8/Lck/TLfGr7lguNT16OPDSiiBAAK6AoTfuoLcj4B5AoTf5vWUFSHghwDhtx+K1EDALAHCb7P6yWoQ8EuA8FtPkvBbz69g4bcauPSZB6X00fnWHKoHXif1hx7tw2oogQACOgKE3zp63IuAmQKE32b2lVUhoCtA+K0ryP0ImCdA+G1eT1kRAn4IEH7rKRoVfm/ctFnGTp4n1ww+Xzp17JBWpnLuQlnx+iqZNWW4tGndyrpG3Tek4mZZ+c5q6+c7Z1ZIt0M6p+5ftGSZjJu6wPq5T8/uMmHU5VJenkz9ft2GLXpd0Lg7+cgcKVn6sEhpmVQNu1Ea9umiUY1bEUBAV4DwW1eQ+xEwT4Dw27yesiIE/BAg/PZDkRoImCVA+G1WP1kNAn4JEH7rSRoRfldV1cj4aXfI4qXLpcMubWXO1JFpw28VfC+4b7EcfFtoJf4AACAASURBVMA+qfDbvrd71y5ydu8esmbtOhk7Zb5MqrjCqrHijVVSefvC1PWqhnqNGNA3FOG3mkTyrqlSsvzP0tiuvVQPnSINO++m91RwNwII5CxA+J0zHTciYKwA4bexrWVhCGgJEH5r8XEzAkYKEH4b2VYWhYC2AOG3HqER4bdN0NLOb7V7+8OP10uPIw9qEmarsPum2Q/IpDH9rZ3g7jBchd177d7eCsbVyx2Gqz8r5M5vNX5jfb2U3z5Oit9aIfWdfiQ1V02Wxm221XsyuBsBBHISIPzOiY2bEDBagPDb6PayOARyFiD8zpmOGxEwVoDw29jWsjAEtAQIv7X4JBbhtwq+l7/2tnVcyZvvrmkSfqcLs+3d3UMuPsPaUW7vClfU7p3hYQi/1RyKNn0pZbPHS2Ltu9Jw2DFSNeA3ek8GdyOAQE4ChN85sXETAkYLEH4b3V4Wh0DOAoTfOdNxIwLGChB+G9taFoaAlgDhtxaf+eG3CrcXPvF86pxud9jt/r3idIfffU87PnUGeLrwe/N3tXpd8Onuxo9WS8PMa0W+WC9FJ50piYuG+VSZMggg4FWgpLhISksSsqW63ustXIcAAoYLJBIJ2ba8WL7dUmf4SlkeAghkI7DdNiXyXVW9NDY2ZnMb1yKAgMEC25QVS21do9TVNxi8SpaGAALZCrTatjTbW7jeIWD8zm/nl1U6O2+f+/3+h5802QmeLvzOtPN7c4j+n9nGt16VhlvGiVRtkcSZl0rRWZfywCOAQIACJcUJKS0uki01hN8BsjMUAqEWKEqIbFtWIt9UEX6HulFMDoGABbYvL5Hvquukgew7YHmGQyC8Atski6W2vkHq6vkHQ3i7xMwQCF6g1TYlwQ9q0IjGh9/uXrl3fptw5rd7jSUrnpXkHZOtP645f6jUHXe6QY8sS0Eg3AIcexLu/jA7BAohwLEnhVBnTATCL8CxJ+HvETNEIGgBjj0JWpzxEIiGAMee6PUp9uG3+wsu3ceauMNy+0iUEQP6puQL/YWX6R6Bkr8skuTDs78PwPuPk7qux+o9KdyNAAKeBAi/PTFxEQKxEiD8jlW7WSwCngUIvz1TcSECsREg/I5Nq1koAlkJEH5nxbXVxUaE33aAvXjp8tQC+/Tsnjrn27nqdF9wuXHTZhlScbOsfGe1demdMytSZ3yrn51Hp6SrG8bwW8279LE7pPTp+6WxJCnVwyZLw74H6z0t3I0AAhkFCL8zEnEBArETIPyOXctZMAKeBAi/PTFxEQKxEiD8jlW7WSwCngUIvz1Tpb3QiPBbj0D/7rCG32plyXsqpeSlp0TatZeqK2+QhvZ76i+YCggg0KwA4TcPBwIIuAUIv3kmEEAgnQDhN88FAgi4BQi/eSYQQCCdAOG33nNB+K3nZ90d5vBbza/s9t9I8RsvS0OnH0n1kOulcbtWPqyaEgggkE6A8JvnAgEECL95BhBAwIsA4bcXJa5BIF4ChN/x6jerRcCrAOG3V6n01xF+6/lFIvxOfLtZymaPk6LVb0v9oUdL9cDrfFg1JRBAgPCbZwABBLwIsPPbixLXIBA/AcLv+PWcFSOQSYDwO5MQv0cgngKE33p9J/zW84tE+K0mmVj/HymbPV6KPvtE6nr0kZoLhvuwckoggIBbgJ3fPBMIIOAWIPzmmUAAgXQChN88Fwgg4BYg/OaZQACBdAKE33rPBeG3nl9kwm810eL335Tk7PGS+O4bqe39C6k97RIfVk8JBBBwChB+8zwggADhN88AAgh4ESD89qLENQjES4DwO179ZrUIeBUg/PYqlf46wm89v0iF31YA/voyKZs7wZp3zblXSt0JZ/ogQAkEELAFCL95FhBAgPCbZwABBLwIEH57UeIaBOIlQPgdr36zWgS8ChB+e5Ui/NaTauHusH/hpXvqJS88Icn7f2f9cXW/X0v9EcfnzYbCCMRNgPA7bh1nvQhkFuDYk8xGXIFAHAUIv+PYddaMQMsChN88IQggkE6A8FvvuWDnt56fdXfUwm8159In75bSxX8QKUlK9dAbpH6/Q32QoAQCCBB+8wwggIBbgPCbZwIBBNIJEH7zXCCAgFuA8JtnAgEECL/9fwYIv30wjWL4rZadfOAWKfnr49LYtr1UDbleGjt09EGDEgjEW4DwO979Z/UIpBMg/Oa5QAABwm+eAQQQ8CJA+O1FiWsQiJ8AO7/1ek74redn3R3V8NsKwOdPlJJ/vCD1ex8gNUMmSuP2rX0QoQQC8RUg/I5v71k5As0JEH7zbCCAAOE3zwACCHgRIPz2osQ1CMRPgPBbr+eE33p+kQ+/paZKym/9tRS9t1LqD/4/qR78/Zdh8kIAgdwECL9zc+MuBEwWIPw2ubusDYHcBTj2JHc77kTAVAHCb1M7y7oQ0BMg/NbzI/zW84t++C0iiS/WS/nsayWxbq3UHXOq1Fw4wgcVSiAQTwHC73j2nVUj0JIA4TfPBwIIpBMg/Oa5QAABtwDhN88EAgikEyD81nsuCL/1/IwIv9Uiij98V5KzrpXE5q+krtcFUnPGZT7IUAKB+AkQfsev56wYgUwChN+ZhPg9AvEUIPyOZ99ZNQItCRB+83wggADht//PAOG3D6ZRPvPbufziN1+RstnjRBobpabvEKk78SwfdCiBQLwECL/j1W9Wi4AXAcJvL0pcg0D8BAi/49dzVoxAJgHC70xC/B6BeAqw81uv74Tfen7W3aaE32otJS8/Lck/TLfWVX35GKnvdqIPQpRAID4ChN/x6TUrRcCrAOG3VymuQyBeAoTf8eo3q0XAiwDhtxclrkEgfgKE33o9J/zW8zMu/FYLKn3mQSl9dL40lpRKzZXXS33nrj4oUQKBeAgQfsejz6wSgWwECL+z0eJaBOIjQPgdn16zUgS8ChB+e5XiOgTiJUD4rddvwm89PyPDbysAf2SOlC59WBrb7iLVgyZKw+57+yBFCQTMFyD8Nr/HrBCBbAUIv7MV43oE4iFA+B2PPrNKBLIRIPzORotrEYiPAOG3Xq8Jv/X8jA2/1cLKfn+jFP99qTR03F+qh0yUxh3a+KBFCQTMFiD8Nru/rA6BXAQIv3NR4x4EzBcg/Da/x6wQgWwFCL+zFeN6BOIhQPit12fCbz0/o8Pvxvp62WbWtVL0r1el7sAjpXrwBEkUFfkgRgkEzBUg/Da3t6wMgVwFCL9zleM+BMwWIPw2u7+sDoFcBAi/c1HjHgTMFyD81usx4been9Hht1pc0aYvJXnbr6Xoo/el7qheUnPRSB/EKIGAuQKE3+b2lpUhkKsA4XeuctyHgNkChN9m95fVIZCLAOF3Lmrcg4D5AoTfej0m/NbzMz78tgLwT9ZI2a2/lsRXX0jdKedLzVn9fFCjBAJmChB+m9lXVoWAjgDht44e9yJgrgDht7m9ZWUI5CpA+J2rHPchYLYA4bdefwm/9fxiEX5bAfg7/5CyWeMkUVcrtecMlNqeP/NBjhIImCdA+G1eT1kRAroChN+6gtyPgJkChN9m9pVVIaAjQPito8e9CJgrQPit11vCbz2/2ITfaqElK56V5B2TrTVXXzpa6o882Qc9SiBglgDht1n9ZDUI+CFA+O2HIjUQME+A8Nu8nrIiBHQFCL91BbkfATMFCL/1+kr4recXq/DbCsD/skiSD8+WxpJS6wswG350hA+ClEDAHAHCb3N6yUoQ8EuA8NsvSeogYJYA4bdZ/WQ1CPghQPjthyI1EDBPgPBbr6eE33p+sQu/1YJLH7tDSp++Xxrb7PR9AL7Hvj4oUgIBMwQIv83oI6tAwE8Bwm8/NamFgDkChN/m9JKVIOCXAOG3X5LUQcAsAcJvvX4Sfuv5xTL8VotO3lMpJS89JY17/vD7APwH7XyQpAQC0Rcg/I5+D1kBAn4LEH77LUo9BMwQIPw2o4+sAgE/BQi//dSkFgLmCBB+6/WS8FvPL7bht1p42ezxUrzyb1Lf5QipGTxRGotLfNCkBALRFiD8jnb/mD0C+RAg/M6HKjURiL4A4Xf0e8gKEPBbgPDbb1HqIWCGAOG3Xh8Jv/X8Yh1+J77dLMnbfi3FH7wjtT1/JrXnDPRBkxIIRFuA8Dva/WP2CORDgPA7H6rURCD6AoTf0e8hK0DAbwHCb79FqYeAGQKE33p9JPzW84t1+K0Wn1j/Hym/cagkqr6Tql9OkYYDDvdBlBIIRFeA8Du6vWPmCORLgPA7X7LURSDaAoTf0e4fs0cgHwKE3/lQpSYC0Rcg/NbrIeG3nl/sw28FUPLcHyX50G1Sv98hUn31NB9EKYFAdAUIv6PbO2aOQL4ECL/zJUtdBKItQPgd7f4xewTyIUD4nQ9VaiIQfQHCb70eEn7r+RF+/8+vbOavpHjVa1J71hVSe8p5PqhSAoFoChB+R7NvzBqBfAoQfudTl9oIRFeA8Du6vWPmCORLgPA7X7LURSDaAoTfev0j/NbzI/z+n1/Rmn9J+U3DpLF8W6keWSkNu+/jgywlEIieAOF39HrGjBHItwDhd76FqY9ANAUIv6PZN2aNQD4FCL/zqUttBKIrQPit1zvCbz0/wm+HX/KxO6Tk6ful7vBjpeaKcT7IUgKB6AkQfkevZ8wYgXwLEH7nW5j6CERTgPA7mn1j1gjkU4DwO5+61EYgugKE33q9I/zW8yP8dvrV18s2kwZKYt1aqblopNQd1csHXUogEC0Bwu9o9YvZIhCEAOF3EMqMgUD0BAi/o9czZoxAvgUIv/MtTH0EoilA+K3XN8JvPT/Cb5df8T9fkrI510lju12lamSlNP6gnQ/ClEAgOgKE39HpFTNFICgBwu+gpBkHgWgJEH5Hq1/MFoEgBAi/g1BmDASiJ0D4rdczwm89P8LvNH5lf5guxS8/LXXHnSY15//SB2FKIBAdAcLv6PSKmSIQlADhd1DSjINAtAQIv6PVL2aLQBAChN9BKDMGAtETIPzW6xnht54f4Xcav6KvvpCyGwZK4puvpWbIRKk7qLsPypRAIBoChN/R6BOzRCBIAcLvILUZC4HoCBB+R6dXzBSBoAQIv4OSZhwEoiVA+K3XL6PC742bNsvYyfPkmsHnS6eOHVIylXMXyoL7Fqd+nji6n5zdu0fqZ3XfkIqbZeU7q60/u3NmhXQ7pHPq94uWLJNxUxdYP/fp2V0mjLpcysuTqd+v27BFrwsG3l3ywhOSvP93Ur93Z6keUSlSUmrgKlkSAlsLEH7zVCCAgFuA8JtnAgEE0gkQfvNcIICAW4Dwm2cCAQTSCRB+6z0XRoTfVVU1Mn7aHbJ46XLpsEtbmTN1ZCr8Vr+bdfdjctl5vaRN61ayZu06GTh6ukwa298KuO17u3ftYgXi6vdjp8yXSRVXWDVWvLFKKm9fKLOmDLfuV0G6eo0Y0JfwO8OzV3brGCl++1Wp/enFUtvnIr0nlbsRiIgA4XdEGsU0EQhQgPA7QGyGQiBCAoTfEWoWU0UgIAHC74CgGQaBiAkQfus1zIjw2yZobue3kyhd2H3T7Adk0pj+Vrjt/r0Ku/favX1qp7g7DFe12fmd/iEs+s97Uj55iEhxiVSPrJT6vQ/Qe1q5G4EICBB+R6BJTBGBgAUIvwMGZzgEIiJA+B2RRjFNBAIUIPwOEJuhEIiQAOG3XrNiF37bR5yMGNTX2vmdLsy2d3cPufgMa0e5vStcUbt3hqs/+3xTtV4XDL67+PG7pOiJu6XxkO5Sd9UNBq+UpSHwvUBZaZGUlxbLpu9qIUEAAQQsgeJEQn6wfals2FyDCAIIIJASaNsqKV99Uyv1jY2oIIAAApZA621Lpaq2XqprGxBBAAEEUgI7tS5DQ0MgduG3+9gSFX4vfOL5Jud4u8PvvqcdnzoDPF34XVvHfzG19AxuGdNPGta+J8nLrpbSk8/SeFy5FYHwCyQSCSkqEqmv5/+RDX+3mCECAQkkREqKi6SOf18ICJxhEIiGQElJkdTVN4jwrwzRaBizRCAAgeLihDSofyzwoVgA2gyBQHQESkuKojPZEM40VuG3CrXXf7ahSdDtx85vjj1p+ckueesVSd52rTS2bitVI6dL4067hfCtwJQQ8EeAY0/8caQKAiYJcOyJSd1kLQj4J8CxJ/5ZUgkBUwQ49sSUTrIOBPwV4NgTPc/YhN/pgm9Fp3Zyc+a33kPk5e7kvTOk5MUlUndUL6m5aKSXW7gGgUgKEH5Hsm1MGoG8ChB+55WX4ghEVoDwO7KtY+II5E2A8DtvtBRGINIChN967YtF+O0+6sRJlu4LMMdOmS+TKq6QTh07bHUmeLpa7PzO/BAmNm+U8usHSuLrjVJzxbVSd/hxmW/iCgQiKED4HcGmMWUE8ixA+J1nYMojEFEBwu+INo5pI5BHAcLvPOJSGoEICxB+6zXPiPDbDrAXL12e0ujTs7t1vMmW6moZUnGzrHxndRMp+/fl5UmxvwTTvubOmRWpM77VTYuWLJNxUxdY9zvvswsSfnt7CEteekqS91RK/e57S82IGdK4zXbebuQqBCIkQPgdoWYxVQQCEiD8DgiaYRCImADhd8QaxnQRCECA8DsAZIZAIIIChN96TTMi/NYj0L+b8Nu7Ydns8VK88m9Se8p5UnvWFd5v5EoEIiJA+B2RRjFNBAIUIPwOEJuhEIiQAOF3hJrFVBEISIDwOyBohkEgYgKE33oNI/zW87PuJvz2jlj08QdSfsMA64bqq2+S+v0O9X4zVyIQAQHC7wg0iSkiELAA4XfA4AyHQEQECL8j0iimiUCAAoTfAWIzFAIREiD81msW4beeH+F3Dn7Jp+6Tksd/L/WdD5PqYVNzqMAtCIRXgPA7vL1hZggUSoDwu1DyjItAuAUIv8PdH2aHQCEECL8Loc6YCIRfgPBbr0eE33p+hN85+pXdOFSKP1wltecMkNqefXOswm0IhE+A8Dt8PWFGCBRagPC70B1gfATCKUD4Hc6+MCsECilA+F1IfcZGILwChN96vSH81vMj/M7Rr+hfr0r5LWOkcdvtpXrkDGnosFeOlbgNgXAJEH6Hqx/MBoEwCBB+h6ELzAGB8AkQfoevJ8wIgUILEH4XugOMj0A4BQi/9fpC+K3nR/it4Zd88FYpef4xqTviBKnpN1ajErciEB4Bwu/w9IKZIBAWAcLvsHSCeSAQLgHC73D1g9kgEAYBwu8wdIE5IBA+AcJvvZ4Qfuv5EX5r+CW++VrKJw+WxJefSc0l10hd91M0qnErAuEQIPwORx+YBQJhEiD8DlM3mAsC4REg/A5PL5gJAmERIPwOSyeYBwLhEiD81usH4beeH+G3pl/J8j9L8q6p0rjz7lI1qlIaW7XRrMjtCBRWgPC7sP6MjkAYBQi/w9gV5oRA4QUIvwvfA2aAQNgECL/D1hHmg0A4BAi/9fpA+K3nR/jtg1/ZvIlS/NoLUnfCmVJz7pU+VKQEAoUTIPwunD0jIxBWAcLvsHaGeSFQWAHC78L6MzoCYRQg/A5jV5gTAoUXIPzW6wHht54f4bcPfon/rpXySYMlUVcr1VfdIPVdfuxDVUogUBgBwu/CuDMqAmEWIPwOc3eYGwKFEyD8Lpw9IyMQVgHC77B2hnkhUFgBwm89f8JvPT/Cbx/8VInSZx6U0kfnS8M+XWTLiEpJFBX5VJkyCAQrQPgdrDejIRAFAcLvKHSJOSIQvADhd/DmjIhA2AUIv8PeIeaHQGEECL/13Am/9fwIv33ws0uUTRsuxavfltrTLpHa3r/wsTKlEAhOgPA7OGtGQiAqAoTfUekU80QgWAHC72C9GQ2BKAgQfkehS8wRgeAFCL/1zAm/9fwIv33ws0sU//ufUjbjGpGSpPXllw0d9/exOqUQCEaA8DsYZ0ZBIEoChN9R6hZzRSA4AcLv4KwZCYGoCBB+R6VTzBOBYAUIv/W8Cb/1/Ai/ffBzlih9+HYp/csjUn/I0VI96Dqfq1MOgfwLEH7n35gREIiaAOF31DrGfBEIRoDwOxhnRkEgSgKE31HqFnNFIDgBwm89a8JvPT/Cbx/8nCUS330rZZOHSNEX66TmgmFS1+OnPo9AOQTyK0D4nV9fqiMQRQHC7yh2jTkjkH8Bwu/8GzMCAlETIPyOWseYLwLBCBB+6zkTfuv5EX774OcuUfLqc5JcMEka2+wkVSMrpbFt+zyMQkkE8iNA+J0fV6oiEGUBwu8od4+5I5A/AcLv/NlSGYGoChB+R7VzzBuB/AoQfuv5En7r+RF+++CXrkTZgklS/OpzUnfMqVJz4Yg8jUJZBPwXIPz235SKCERdgPA76h1k/gjkR4DwOz+uVEUgygKE31HuHnNHIH8ChN96toTfen6E3z74pStR9NnHUnbDYEnUVEn1gPFSf1iPPI1EWQT8FSD89teTagiYIED4bUIXWQMC/gsQfvtvSkUEoi5A+B31DjJ/BPIjQPit50r4redH+O2DX3MlSv6ySJIPz5aGPfaV6lEzpDFZnsfRKI2APwKE3/44UgUBkwQIv03qJmtBwD8Bwm//LKmEgCkChN+mdJJ1IOCvAOG3nifht54f4bcPfi2VKJtxjRT/+59S2+vnUnvG5XkejfII6AsQfusbUgEB0wQIv03rKOtBwB8Bwm9/HKmCgEkChN8mdZO1IOCfAOG3niXht54f4bcPfi2VKHr/TSmf/v2Z31Ujp0vDvgfneUTKI6AnQPit58fdCJgoQPhtYldZEwL6AoTf+oZUQMA0AcJv0zrKehDwR4DwW8+R8FvPj/DbB79MJZKPLpCSZx6Qhh8dIVVDJ2e6nN8jUFABwu+C8jM4AqEUIPwOZVuYFAIFFyD8LngLmAACoRMg/A5dS5gQAqEQIPzWawPht54f4bcPfhlLVG+RbaYMlcT6tVL7s0FSe9I5GW/hAgQKJUD4XSh5xkUgvAKE3+HtDTNDoJAChN+F1GdsBMIpQPgdzr4wKwQKLUD4rdcBwm89P8JvH/y8lCh57QVJzpsojdvvINUjZ0hD+z293MY1CAQuQPgdODkDIhB6AcLv0LeICSJQEAHC74KwMygCoRYg/A51e5gcAgUTIPzWoyf81vMj/PbBz2uJ5F03ScnyZ6T+xz2l+rJfeb2N6xAIVIDwO1BuBkMgEgKE35FoE5NEIHABwu/AyRkQgdALEH6HvkVMEIGCCBB+67ETfuv5EX774Oe1ROKLdVI++UpJfPeNFX6rEJwXAmETIPwOW0eYDwKFFyD8LnwPmAECYRQg/A5jV5gTAoUVIPwurD+jIxBWAcJvvc4Qfuv5EX774JdNiZK/Pi7JB26RxvYdpWpkpXUMCi8EwiRA+B2mbjAXBMIhQPgdjj4wCwTCJkD4HbaOMB8ECi9A+F34HjADBMIoQPit1xXCbz0/wm8f/LItUXbLGCn+16tSd9I5UvOzQdnezvUI5FWA8DuvvBRHIJIChN+RbBuTRiDvAoTfeSdmAAQiJ0D4HbmWMWEEAhEg/NZjJvzW8yP89sEv2xJFq9+W8mnDrduqhk6Whh8dkW0JrkcgbwKE33mjpTACkRUg/I5s65g4AnkVIPzOKy/FEYikAOF3JNvGpBHIuwDhtx4x4beeH+G3D365lCh94k4pXXKvNOx7sFSNnJ5LCe5BIC8ChN95YaUoApEWIPyOdPuYPAJ5EyD8zhsthRGIrADhd2Rbx8QRyKsA4bceL+G3nh/htw9+uZRI1NVI8sarpPjjD6TmjMukrtcFuZThHgR8FyD89p2UgghEXoDwO/ItZAEI5EWA8DsvrBRFINIChN+Rbh+TRyBvAoTferSE33p+hN8++OVaoviNl6Xs9t+IJMulatQMadhj31xLcR8CvgkQfvtGSSEEjBEg/DamlSwEAV8FCL995aQYAkYIEH4b0UYWgYDvAoTfeqSE33p+hN8++OmUSN5bKSUvPiX1h/WQ6gHjdUpxLwK+CBB++8JIEQSMEiD8NqqdLAYB3wQIv32jpBACxggQfhvTShaCgK8ChN96nITfen6E3z746ZRIbPhUym+8ShKbv5LqX1wt9Uf31inHvQhoCxB+axNSAAHjBAi/jWspC0LAFwHCb18YKYKAUQKE30a1k8Ug4JsA4bceJeG3nh/htw9+uiVKly2W0vtulsa27aVqZKU0ttlJtyT3I5CzAOF3znTciICxAoTfxraWhSGgJUD4rcXHzQgYKUD4bWRbWRQC2gKE33qEhN96foTfPvj5UaJs1rVS/OYrUtfjp1JzwTA/SlIDgZwECL9zYuMmBIwWIPw2ur0sDoGcBQi/c6bjRgSMFSD8Nra1LAwBLQHCby0+MSr83rhps4ydPE+uGXy+dOrYISVTVVUj46fdIYuXLrf+bOLofnJ27x6p36v7hlTcLCvfWW392Z0zK6TbIZ1Tv1+0ZJmMm7rA+rlPz+4yYdTlUl6eTP1+3YYtel3gbm2Bog9XSfmNQ6061YOuk/pDjtauSQEEchEg/M5FjXsQMFuA8Nvs/rI6BHIVIPzOVY77EDBXgPDb3N6yMgR0BAi/dfTEjPDbGW532KWtzJk6skn4XTl3oaU0YkBfsYPuEYP6WgG3fW/3rl2sQHzN2nUydsp8mVRxhVVjxRurpPL2hTJrynBp07qVOGvZ9ITfeg+hX3eXLv6DlD55tzR03F+qR1VKY8n//4DCrzGog0AmAcLvTEL8HoH4CRB+x6/nrBgBLwKE316UuAaBeAkQfser36wWAa8ChN9epdJfZ/zO73S7wZ0Btgq7b5r9gEwa098Kt91huLp2r93bp3aKu8NwxUr4rfcQ+nZ3fb2U3/RLKVr7b6nt/QupPe0S30pTCAGvAoTfXqW4DoH4CBB+x6fXrBSBbAQIv7PR4loE4iFA+B2PPrNKBLIVIPzOVqzp9caH3+6d3Gr56hiT5a+9bR1f8ua7a5rs7Fa/t8PxIRefYR2XYu8KV79LV4/wW+8h9PPu4jeXS9mscSKJhFSNnCEN+3Txszy1EMgoQPidkYgLEIidAOF37FrOv22QdwAAIABJREFUghHwJED47YmJixCIlQDhd6zazWIR8CxA+O2ZKu2FWuF3c2dsq5HUDumFTzy/1fnYetNt+e5083Hv7E4Xfrvn6Q6/+552fOoM8HThd0NjYz6XRe0sBarumCE1f1okJYf9n2xbMTXLu7kcAT2BhCRE/U8j/1zQg+RuBAwTKEokhH9fMKypLAcBTQH+uaAJyO0IGCiQSKj/R0L9DxmDge1lSQjkLKD+nYFX7gJ5C7/Thc65T9Pbnc2F384zvNOF384zvdXvs935vf7LKm8T5KpABBJffSHJG4dKYuPnUnfelVJ3wlmBjMsgCCiBsmSRbJsslo3f1AKCAAIIWAJq5/eOOyTl86+qEUEAAQRSAjv9oEy+/LpG6hsIuXgsEEDge4E225fKdzX1Ul3TAAkCCCCQEmi/YzkaGgJ5C7+dR4uUlwfzxYPpwm/O/NZ4OiJ8a/GLT0nZvZXS2KqN9eWXDTvvHuHVMPUoCXDsSZS6xVwRCEaAY0+CcWYUBKImwLEnUesY80Ug/wIce5J/Y0ZAIIoCHHui17Wcwm+1q3vg6Omy7tMNzY7eYZe2MmfqSOnUsYPeDLO4u7ljWJxfcKmuGVJxs4wY1Nc6ysT9BZfuY03cX3DprGVPjTO/s2hSgJeWz/2tFL3+otR1P0VqLrkmwJEZKs4ChN9x7j5rRyC9AOE3TwYCCKQTIPzmuUAAAbcA4TfPBAIIpBMg/NZ7LnIKv+0hWzrzW29a2d1tB9iLly5P3dinZ/fUeePu308c3U/O7t0jda0diK98Z7X1Z3fOrEid8a1+VrvYx01dYP3OWdcuQPidXb+Curroo/el/MarROrrpbrfGKk/4sSghmacGAsQfse4+SwdgWYECL95NBBAIJ0A4TfPBQIIuAUIv3kmEEAgnQDht95zoRV+6w1tzt2E3+HtZenT90npY7+Xxg57SdXIGdK47fbhnSwzM0KA8NuINrIIBHwVIPz2lZNiCBgjQPhtTCtZCAK+CRB++0ZJIQSMEiD81msn4been3U34bcPiPkq0dgoZdOGS/Gaf0ltz75Se86AfI1EXQQsAcJvHgQEEHALEH7zTCCAQDoBwm+eCwQQcAsQfvNMIIBAOgHCb73ngvBbz4/w2we/fJcoemuFlN821hqmatiN0tC5a76HpH6MBQi/Y9x8lo5AMwKE3zwaCCBA+M0zgAACXgQIv70ocQ0C8RMg/NbruXb4rb4Acv1nG6zztdVr/LQ7RJ29XYgvvNSjyP1udn7nbhfUncmHZknJc49K/X6HSvXVNwU1LOPEUIDwO4ZNZ8kIZBAg/OYRQQABwm+eAQQQ8CJA+O1FiWsQiJ8A4bdez7XCb/uLIkcM6mt9QeSKN1bJwieet4LwN99dk/rP5eVJvVmG/G7C75A3SEQSmzdK+dRfSuKL9VJ71hVSe8p54Z80M4ykAOF3JNvGpBHIqwDhd155KY5AZAU49iSyrWPiCORNgPA7b7QURiDSAoTfeu3TDr/HTp4n1ww+Xzp17CBqF7h6jRjQV9asXSc3zX5AJo3pL21at9KbZcjvJvwOeYP+N72Sv/1JkndPk8by7aR6VKU07NYpGhNnlpESIPyOVLuYLAKBCBB+B8LMIAhEToDwO3ItY8II5F2A8DvvxAyAQCQFCL/12qYVfldV1VjHnPQ97XjZd6/dZEjFzeLcBV55+0KZNWU44bdej7jbR4GyBTdI8avPS93hx0nNFdf6WJlSCHwvQPjNk4AAAm4Bwm+eCQQQSCdA+M1zgQACbgHCb54JBBBIJ0D4rfdcaIXfami1w3vg6Omy7tMN0u+CPtaub/s4lG6HdbZ+Nv3Fzu/odLjo4w+kbOpQSdRWS81Fo6TuqJ9EZ/LMNBIChN+RaBOTRCBQAcLvQLkZDIHICBB+R6ZVTBSBwAQIvwOjZiAEIiVA+K3XLu3wW294M+4m/I5WH0ueeUCSjy6QhnYdrONPGlu3jdYCmG2oBQi/Q90eJodAQQQIvwvCzqAIhF6A8Dv0LWKCCAQuQPgdODkDIhAJAcJvvTb5En6rL7q8dNiUJjO5c2aF9SWYcXgRfkevy+WVI6XovZVSd9zpUnP+0OgtgBmHVoDwO7StYWIIFEyA8Ltg9AyMQKgFCL9D3R4mh0BBBAi/C8LOoAiEXoDwW69F2uG3Cr7dZ3vbR6EMvuRMObt3D70ZRuBuwu8INMk1xeJ3/iFlv6uw/rRmyPVSd9CR/4+9N4G3qyrv97/7jDdzQkbCkBCoRVFRhJqKKFRslYAoFUUUtMwEfwWDWqBCW6RIZai2FqmKAraWNorWJFQrWmuotY5VS6X+IRCGkHke7hn3/7PW3ucOJye5w9rnnL33ec6n93emvd71ruddwfyeu/Lu5C2CjGNJAPkdy7KQFAS6SgD53VX8TA6B2BJAfse2NCQGga4RQH53DT0TQyDWBJDfbuVxkt9Db3jZfMrbSPHlK76rmz94kfr6Cm5Zxnw08jvmBTpAeoWv/K1yj3xZtaNerPK1d8nP5pK5ELKOFQHkd6zKQTIQiAUB5HcsykASEIgdAeR37EpCQhDoOgHkd9dLQAIQiCUB5LdbWZzkt7mx5Q0f+6w+dOV5WrRg/rBMzOnv2z/9oG69/lLNmDbFLcuYj0Z+x7xAB0pv905NuOMaeRueVWXJBaqceWFCF0LacSKA/I5TNcgFAvEggPyORx3IAgJxI4D8jltFyAcC3SeA/O5+DcgAAnEkgPx2q4qT/ObkdwAf+e22Cbs5OvvDR1T8wl9Iubz6l92p+lEv7mY6zJ0CAsjvFBSRJUAgYgLI74iBEg4CKSGA/E5JIVkGBCIkgPyOECahIJAiAshvt2I6yW8z9UMPr7btTe6+7ZqBE970/HYrCqM7S6D4hduU/eG3VXvZYpWWfrSzkzNb6gggv1NXUhYEAWcCyG9nhASAQCoJIL9TWVYWBQEnAshvJ3wMhkBqCSC/3UrrLL/N9Ka/9/uuvm1YJvd98jo19wF3SzW+ozn5Hd/ajCYzb91a9d1xtbx9e1Q57w9Vef1ZoxnGNRBoSQD5zcaAAASaCSC/2RMQgEArAshv9gUEINBMAPnNnoAABFoRQH677YtI5LdbCskfjfxOfg3zj3xZ+a/8rfzps9R/7Z3yZw3vYZ/8FbKCThFAfneKNPNAIDkEkN/JqRWZQqCTBJDfnaTNXBBIBgHkdzLqRJYQ6DQB5LcbceS3Gz87GvkdAcQYhCh+8o+Uffynqr7mTSpfcG0MMiKFJBJAfiexauQMgfYSQH63ly/RIZBUAsjvpFaOvCHQPgLI7/axJTIEkkwA+e1WvXHL70ark1btTQ72nVu68RyN/I5nXcaaVfbX/63iX37IDitfcqOqr3rdWENwPQSE/GYTQAACzQSQ3+wJCECgFQHkN/sCAhBoJoD8Zk9AAAKtCCC/3fbFuOX3XZ9Zbmdedtm5LTMY6Xu3tOM1Gvkdr3q4ZJN/6LPKf+ufVD9skfo/eJfUN8klHGN7kADyuweLzpIhMAIB5DdbBAIQQH6zByAAgdEQQH6PhhLXQKD3CCC/3Wo+Lvm9bccuLb3uE1p2xbkHvKmlOf191z3Ldfdt12jGtCluWcZ8NPI75gUaQ3re3j0q3nmNMuueVuV336nK2y4Zw2guhYA4+c0mgAAE9iOA/GZTQAACyG/2AAQgMBoCyO/RUOIaCPQeAeS3W83HLb9v+Nhn9aErz9OiBa1vDLhm7Trd/ukHdev1lyK/3WrE6A4TyP3431S491Y7a+kDd6j2ouM7nAHTJZkAJ7+TXD1yh0B7CCC/28OVqBBIOgHaniS9guQPgegJIL+jZ0pECKSBAPLbrYrjkt/9/WXddMfnde5Zpx705PfyFd/VzR+8SH19BbcsYz6ak98xL9A40ivc/3HlfvAt1Y49QaWr/2IcERjSqwSQ371aedYNgQMTQH6zOyAAgVYEkN/sCwhAoJkA8ps9AQEItCKA/HbbF+OS32bKhx5eraefW3/Qnt8LD5+nc844xS3DBIxGfiegSGNM0dvwrPruuEbe7p2q/P7lqpz+9jFG4PJeJYD87tXKs24IIL/ZAxCAwNgIIL/HxourIdALBJDfvVBl1giBsRNAfo+d2dAR45bfjdPfJtjQ092Nz599flNP9Ps260d+u23CuI7OfeerKiy/W/6kKSot+0vV5y+Ia6rkFSMCyO8YFYNUIBATApz8jkkhSAMCMSOA/I5ZQUgHAjEggPyOQRFIAQIxJID8divKuOV3Y1pzAvzGj987LIuPfvjinjjx3Vg08tttE8Z5dN+nrlfmsR+reuJpKl98Q5xTJbeYEEB+x6QQpAGBGBFAfseoGKQCgRgRQH7HqBikAoGYEEB+x6QQpAGBmBFAfrsVxFl+u02fjtHI73TUsdUqMk/8Qn13Xmu/Kr/3w6oufmN6F8vKIiGA/I4EI0EgkCoCyO9UlZPFQCAyAsjvyFASCAKpIYD8Tk0pWQgEIiWA/HbDOWb5vW3HLi297hNadsW5B7zZpVtKyRuN/E5ezcaSceGfP6/cN/5B/twjtO/aO6UpM8YynGt7jADyu8cKznIhMAoCyO9RQOISCPQgAeR3DxadJUNgBALIb7YIBCDQigDy221fjFl+m+kaAvwXv3pSL3/x0T3T2/tAqJHfbpsw9qNL+9R35zJlnn1C1dPepvI7lsY+ZRLsHgHkd/fYMzME4koA+R3XypAXBLpLAPndXf7MDoE4EkB+x7Eq5ASB7hNAfrvVYFzye+iUP/r543rf1bfZjy4+f4mWXXauW0YJHI38TmDRxphy9iffU/FzH7WjSlfdqtpLTxpjBC7vFQLI716pNOuEwOgJIL9Hz4orIdBLBJDfvVRt1gqB0RFAfo+OE1dBoNcIIL/dKu4sv4dOf9dnluveL62yH933yet6pi0K8tttEyZldOGLdyr3/W+ofsxL1b/sTsnLJCV18uwgAeR3B2EzFQQSQgD5nZBCkSYEOkwA+d1h4EwHgQQQQH4noEikCIEuEEB+u0GPVH43Uum1tijIb7dNmJTRmc3rVLxjmbwdW1Q5632qnPHupKROnh0kgPzuIGymgkBCCCC/E1Io0oRAhwkgvzsMnOkgkAACyO8EFIkUIdAFAshvN+htkd9DUzJtUe66Z3mq+4Ijv902YZJG5//968o/+NdSvqj+a+9SfcGLkpQ+uXaAAPK7A5CZAgIJI4D8TljBSBcCHSKA/O4QaKaBQIIIIL8TVCxShUAHCSC/3WA7yW9zwvuGj31WH7ryPC1aMH9YJkZ6L1/xXd38wYvU11dwyzLmo5HfMS9QxOkV/uYjyv3Pf6l2/GtUuuLPIo5OuKQTQH4nvYLkD4HoCSC/o2dKRAikgQDyOw1VZA0QiJYA8jtankSDQFoIIL/dKtk2+b1m7Trd/ukHdev1l2rGtCluWcZ8NPI75gWKOL3Mk4+p785lkl9X5fxrVDllScQzEC7JBJDfSa4euUOgPQSQ3+3hSlQIJJ0A8jvpFSR/CERPAPkdPVMiQiANBJDfblVsm/x+6OHV+sFPH+Pkt1t9GB1TAvkV9yv/8N/JP2SO+pfdJX/m3JhmSlqdJoD87jRx5oNA/Akgv+NfIzKEQDcIIL+7QZ05IRBvAsjveNeH7CDQLQLIbzfy45Lf5lT35R++U+s2bDng7PPnztTffvza/dqhuKU7vtFDb8BpIlx8/hItu+zcgWDN39/3yet00vHHDnxvRP6NH7/Xvl9y+uL9hD4nv8dXl0SPqpTs6e/M2l+revIZKr/nA4leDslHRwD5HR1LIkEgLQSQ32mpJOuAQLQEkN/R8iQaBNJAAPmdhiqyBghETwD57cZ0XPK7MeXBen67pRXd6P7+sm664/NafMJxOueMUzTSeyP2b7jtc7r1ukusuG++Yeddn1lukxsqz5Hf0dUrSZGy//0fKv7tn9qUS5f9iWqvfG2S0ifXNhFAfrcJLGEhkGACyO8EF4/UIdBGAsjvNsIlNAQSSgD5ndDCkTYE2kwA+e0G2El+u03dmdGNU93Lrjh34DT3UIHd3Ju8WY6baxcePs+Kc/NoluHmM+R3Z2oZx1mKf/+Xyj76sOpH/oZK194lv9AXxzTJqYMEkN8dhM1UEEgIAeR3QgpFmhDoMAHkd4eBMx0EEkAA+Z2AIpEiBLpAAPntBj318tvgabQtMe1Mjll4mG742Gf1oSvPa3my21zfkONLLzx72Klx813zyXDkt9sGTPpob8sG9d21TN7Wjaq86XxVzv6DpC+J/B0JIL8dATIcAikkgPxOYVFZEgQiIID8jgAiISCQMgLI75QVlOVAICICyG83kM7yu7lf9tB0Xv7io3X3bddoxrQpblk6jm4IaxPml79aM6zntznJvXzFd4f18W6W3+eederAqfFW8ntvqeaYIcOTTKD2nX9W7Qt32SXkPnCrMiecnOTlkLsjASO5cllPpUrdMRLDIQCBtBDwPKkvn9W+Mn9fSEtNWQcEoiAwoZBVf6Um348iGjEgAIE0ECjmM6rWfNXq/IchDfVkDRCIisDEYjaqUD0Zx1l+t+qBHSeSzX3JG21N5s2Zaft2t2pjMtaT39t3l+O0ZHLpBoG/+VPpJ9+Tpk6X/vAWadFLupEFc8aAQD6XUSGX0Z7+agyyIQUIQCAOBDKep8kTc9q5pxKHdMgBAhCICYGpk/LavbeqOvY7JhUhDQh0n8CkvpzK1boqVQ7SdL8aZACB+BCYPrkQn2QSmImT/E7CDS+be3qbGpk2KD/46WP2tPe6DZt1+6cf1K3XX2pPqNPzO4G7OAYpe3v3qPjpm5R54hfy5y9U/5U3y591aAwyI4VOE6DtSaeJMx8E4k+AtifxrxEZQqAbBGh70g3qzAmBeBOg7Um860N2EOgWAdqeuJFPvfxutGUxrUvMTSubT343y+7mtibNJ8NbnXTnhpdumzAtozMbn1fBCPD1z6j2m69U6co/k4oT0rI81jFKAsjvUYLiMgj0EAHkdw8Vm6VCYAwEkN9jgMWlEOgRAsjvHik0y4TAGAkgv8cIrOlyJ/ltYhkZvPDweVYsx/VhhPblH75T6zZssSlefP4S2/Kk8WjuW25ujHnS8ccOfN+4Yab5YMnpi4f1BzefIb/jWvnO55V58jEV77lJ3u6dqp14mkoX39D5JJixqwSQ313Fz+QQiCUB5Hcsy0JSEOg6AeR310tAAhCIHQHkd+xKQkIQiAUB5LdbGZzltxHLf//QI/rQleepr683e9Agv902YdpGZ3/+fRXv+RO7rOppb1P5HUvTtkTWcxACyG+2BwQg0EwA+c2egAAEWhFAfrMvIACBZgLIb/YEBCDQigDy221fOMnv5hPTzam8/MVH6+7brrG9tNP8QH6nubrjW1v20YdV/Pu/DAT4W/5A5TefP75AjEocAeR34kpGwhBoOwHkd9sRMwEEEkkA+Z3IspE0BNpKAPndVrwEh0BiCSC/3UrnJL/dpk7PaOR3emoZ5Ury//L3yn/9Phuy/J4PqHryGVGGJ1ZMCSC/Y1oY0oJAFwkgv7sIn6khEGMCyO8YF4fUINAlAsjvLoFnWgjEnADy261AyG83fnY08jsCiCkNUVh+t3Lf+apdXemKP1Pt+NekdKUsq0EA+c1egAAEmgkgv9kTEIBAKwLIb/YFBCDQTAD5zZ6AAARaEUB+u+0LJ/lN25MAPvLbbROmfXTh3luV+/G/yZ88VaUrblb96OPSvuSeXh/yu6fLz+Ih0JIA8puNAQEIIL/ZAxCAwGgIIL9HQ4lrINB7BJDfbjV3kt8Hmrq/v6zbP/2g3n3O6Vq0YL5bhgkYjfxOQJG6mKJXKalw903KPv5T+YcuUP+VfyZ/9mFdzIip20kA+d1OusSGQDIJIL+TWTeyhkC7CXDyu92EiQ+B5BFAfievZmQMgU4QQH67UW6L/DYpPfTwaj393Hotu+xctwwTMBr5nYAidTlFb8sGFe+5UZnnnlLtRcerdOXNUt/ELmfF9O0ggPxuB1ViQiDZBJDfya4f2UOgXQSQ3+0iS1wIJJcA8ju5tSNzCLSTAPLbjW7b5Peatevs6e9br79UM6ZNccsy5qOR3zEvUEzSy6z9PxU/fZO8HVtVfdXrVb7kIzHJjDSiJID8jpImsSCQDgLI73TUkVVAIGoCyO+oiRIPAskngPxOfg1ZAQTaQQD57UYV+e3Gz45GfkcAsUdC5B77oRXgfq2m6qlnq/zO9/fIyntnmcjv3qk1K4XAaAkgv0dLiusg0FsEkN+9VW9WC4HREEB+j4YS10Cg9wggv91q3jb5fddnltvMaHviViBGp49A7j+/qcIDd9iFVc56rypnvCd9i+zhFSG/e7j4LB0CByCA/GZrQAACrQggv9kXEIBAMwHkN3sCAhBoRQD57bYvnOT3th27tPS6T+gXv3pyvyyWnL5YN3/wIvX1FdwyTMBoTn4noEgxSzH/rX9S/qHPBgL8/GtUOWVJzDIknfESQH6PlxzjIJBeAsjv9NaWlUHAhQDy24UeYyGQTgLI73TWlVVBwJUA8tuNoJP8dps6PaOR3+mpZSdXUnjos8p965/slKXL/1S1V5zcyemZq00EkN9tAktYCCSYAPI7wcUjdQi0kQDyu41wCQ2BhBJAfie0cKQNgTYTQH67AY5Efv/o54/rfVffNiyT+z55nU46/li37BIyGvmdkELFMM3C/bcr94N/lT9pispXflS1o4+LYZakNBYCyO+x0OJaCPQGAeR3b9SZVUJgrASQ32MlxvUQSD8B5Hf6a8wKITAeAsjv8VAbHOMsv434vuue5br7tms0Y9oUG3nN2nW6/MN36sr3vlXnnHGKW4YJGI38TkCR4pqiX1fxb25U9rEfqj7vSJWuvFn+nMPimi15jYIA8nsUkLgEAj1GAPndYwVnuRAYJQHk9yhBcRkEeogA8ruHis1SITAGAsjvMcBqcamT/O7vL+umOz6vc886db9T3kaKL1/x3Z7o+438dtuEvT7a27lNxbs/oszaX6t+zMvVf9XNUt+kXseS2PUjvxNbOhKHQNsIIL/bhpbAEEg0AeR3ostH8hBoCwHkd1uwEhQCiSeA/HYroZP8Nje8vOFjn9WHrjxPixbMH5aJOf19+6cf1K3XXzpwItwt1fiORn7HtzZJySzz3FMq3nOjvC0bVD3hdSpfemNSUifPJgLIb7YEBCDQTAD5zZ6AAARaEUB+sy8gAIFmAshv9gQEINCKAPLbbV84yW9Ofgfwkd9um5DRAYHs4z9V8dN/IpX7VX39WSqf94egSSAB5HcCi0bKEGgzAeR3mwETHgIJJYD8TmjhSBsCbSSA/G4jXEJDIMEEkN9uxXOS32bqhx5ebdub0PPbrRCMhoAV4D/6joqf/5iFUVlygSpnXgiYhBFAfiesYKQLgQ4QQH53ADJTQCCBBJDfCSwaKUOgzQSQ320GTHgIJJQA8tutcM7y20xv+nu/7+rbhmVy3yev268PuFuq8R3Nye/41iaJmeW+81UVlt9tUy+/6w9Vfd1ZSVxGz+aM/O7Z0rNwCByQAPKbzQEBCLQigPxmX0AAAs0EkN/sCQhAoBUB5LfbvohEfrulkPzRyO/k1zBuK8j/8xeU/8aXbFqly25S7ZWnxC1F8jkAAeQ3WwMCEGgmgPxmT0AAAshv9gAEIDAaAsjv0VDiGgj0HgHkt1vNkd9u/Oxo5HcEEAmxH4HC3/2lcv/xsPyJk1W68mbVj3kZlBJAAPmdgCKRIgQ6TAD53WHgTAeBhBDg5HdCCkWaEOggAeR3B2EzFQQSRAD57VYs5LcbP+R3BPwIcWACxXv+VNmf/4f8uUeotPRm1eccDq6YE0B+x7xApAeBLhBAfncBOlNCIAEEkN8JKBIpQqDDBJDfHQbOdBBICAHkt1uhnOX3mrXrdPmH79S6DVv2y+TlLz562I0w3VKN72hOfse3NknPzNu7W4W7P6Lsk4+pdsxLVb7yFvkTJyV9WanOH/md6vKyOAiMiwDye1zYGASB1BNAfqe+xCwQAmMmgPweMzIGQKAnCCC/3crsJL/7+8u66Y7Pa/EJx+mcM3q3JzHy220TMvrgBLwNz6p4943KbHxetVe+VqXL/gRkMSaA/I5xcUgNAl0igPzuEnimhUDMCSC/Y14g0oNAFwggv7sAnSkhkAACyG+3IjnJ7207dumGj31WH7ryPC1aMN8tkwSPRn4nuHgJST3zxC9VvPsj8vbtVeWUM1U5/+qEZN57aSK/e6/mrBgCIxFAfo9EiO8h0JsEkN+9WXdWDYGDEUB+sz8gAIFWBJDfbvvCSX43Tn6fe9apOun4Y90ySfBo5HeCi5eg1LM/W63iZ262GVeWXKDKmRcmKPveSRX53Tu1ZqUQGC0B5PdoSXEdBHqLAPK7t+rNaiEwGgLI79FQ4hoI9B4B5LdbzZ3kt5n6oYdX6wc/fUw3f/Ai9fUV3LJJ6Gjkd0ILl8C0899bofw//JXNvHze/1P19W9J4CrSnTLyO931ZXUQGA8B5Pd4qDEGAukngPxOf41ZIQTGSgD5PVZiXA+B3iCA/Hars7P85oaXEvLbbRMyemwE8isfUH7VFwMBfumNqp7wurEF4Oq2EkB+txUvwSGQSALI70SWjaQh0HYCyO+2I2YCCCSOAPI7cSUjYQh0hADy2w2zk/zmhpcBfOS32yZk9NgJFB78a+X+/evyJ0xSaenNqh/z8rEHYURbCCC/24KVoBBINAHkd6LLR/IQaBsB5Hfb0BIYAoklgPxObOlIHAJtJYD8dsPrJL+54SXy2237MdqFQPFztyj7k3+XP+cwlZZ+VPW5R7iEY2xEBJDfEYEkDARSRAD5naJishQIREgA+R0hTEJBICUEkN8pKSTLgEDEBJDfbkCd5Dc3vER+u20/RrsQ8ColFT71x8r++ueqH32cSktvkT9xsktIxkZAAPkdAURCQCBlBJDfKSsoy4FARASQ3xGBJAwp+LfnAAAgAElEQVQEUkQA+Z2iYrIUCERIAPntBtNJfpupueElbU/ctiCjXQh4Wzao7+4/lrdurWqvOFmly//UJRxjIyCA/I4AIiEgkDICyO+UFZTlQCAiAsjviEASBgIpIoD8TlExWQoEIiSA/HaD6SS/TduTpdd9Qr/41ZMts3j5i4/W3bddoxnTprhlGfPR9PyOeYFSnl7m6cdV/JuPyNu9Q9VTlqh8/jUpX3G8l4f8jnd9yA4C3SCA/O4GdeaEQPwJIL/jXyMyhECnCSC/O02c+SCQDALIb7c6OcnvA03dkOLme+S3W4EYDYHREMj+8r9UvPsj9tLKGe9R5az3jmYY17SBAPK7DVAJCYGEE0B+J7yApA+BNhFAfrcJLGEhkGACyO8EF4/UIdBGAshvN7iRyu8f/fxxve/q22xG8+fO1N9+/FotWjDfLcMEjObkdwKK1AMp5r7/DRW+eKddafmd71f11LN7YNXxWyLyO341ISMIdJsA8rvbFWB+CMSTAPI7nnUhKwh0kwDyu5v0mRsC8SWA/HarTSTy+67PLNe9X1o1kMl9n7xOJx1/rFtmCRqN/E5QsVKeav6bDyr/tXsDAX7Jjaq+6nUpX3H8lof8jl9NyAgC3SaA/O52BZgfAvEkgPyOZ13ICgLdJID87iZ95oZAfAkgv91qM2753dzv2wjvYxYeZnuAL7vi3NjJ7zVr1+nyD9+pdRu27HcqvdVahsp7c1PPGz8eCMUlpy/WzR+8SH19hQHyyG+3TcjoaAnkv3yP8t/+itQ3Uf1LP6r6b7w82gmIdlACyG82CAQg0EwA+c2egAAEWhFAfrMvIACBZgLIb/YEBCDQigDy221fjEt+H6ind+PzuMlvI75vuO1zuvW6S/Zrw9LfX9ZNd3xei084TueccYqarzWtXO66Z/lA73Jzyt08ll12LvLbbe8xuo0Eil/4C2V/+Ijqs+arfNVHVZ93ZBtnI/RQAshv9gMEIID8Zg9AAAKjIYD8Hg0lroFAbxFAfvdWvVktBEZLAPk9WlKtr3OS30ccNnvYKeg4yu+G3D73rFNbnkY3svv2Tz+oW6+/VDOmTVGzDDeye+Hh86wYN49mGW4+4+S32yZkdBsI+HUVP/XHyv7vj1Vf9BKVlt4if9KUNkxEyGYCyG/2BAQggPxmD0AAAqMhgPweDSWugUBvEUB+91a9WS0ERksA+T1aUhHKbxNqaKuQxs0tZ0yfEru2J80tTUzuQ1uXtJLZjdPdSy88e9ipcDO21Sly5LfbJmR0ewh4O7ep+KkblHn2CdWOf41KV/xZeyYi6jACyG82BAQggPxmD0AAAqMhgPweDSWugUBvEUB+91a9WS0ERksA+T1aUhHL76Hh4nzDywOd7J43Z6ZtXWLk9/IV3x12gr1Zfg89Nd5Kfm/bXXarAqMh0C4Cz66RPnGdvG2bpdedKf99y9o1E3FDAvlcRsVcRrv7qzCBAAQgYAlkPE9TJua0Y08FIhCAAAQGCEyblNeuvVXVfR8qEIAABCyByX05lap1Vap1iEAAAhAYIDBj8uB9B8EydgLjantyoGmMSH7f1bfZr1vdGHLs6bmPaJbfJuLQ095PPP38sJ7e5vuxnvzeV6q5J0oECLSJQP2xn6hyxx9J1YqyZ1+g3NsvadNMhDUEzI3tsllP5Qp/YWVHQAACAQHPk4r5rPrL/H2BPQEBCAwSMP9arFSpCffNroAABBoECvmMajVftTq/FGNXQAACgwQmFLPgcCAQqfxu5HGgG2I65DnuoSaXGz72WX3oyvMGbnY59LT3ug2b6fk9broMTAqB7A+/reIXgl9Mld9xlaqnvTUpqScuT9qeJK5kJAyBthMwvxSbNa2oDdv62z4XE0AAAskhQNuT5NSKTCHQKQK0PekUaeaBQLII0PbErV5tkd9uKUU/2pzkXr9xi21tYh433fF5LT7hOHsTy+YbXDa3NWnuCd44FW5apjQe9PyOvmZEjJ5A/ttfUf7L99jApYv/WLUTT41+EiIK+c0mgAAEmgkgv9kTEIBAKwLIb/YFBCDQTAD5zZ6AAARaEUB+u+2LnpDfDcG96pEfWFoXn7/E9vtuPJpvinnfJ6/TSccfO/D9Qw+v1o0fv9e+b9XOBfnttgkZ3TkC+a/dq/w3H5Rf6FP5qltUe9HxnZu8R2ZCfvdIoVkmBMZAAPk9BlhcCoEeIoD87qFis1QIjJIA8nuUoLgMAj1GAPntVvCekN9uiEYejfwemRFXxIdA4Yt3Kvf9b8ifNU/9S2+Rf+iC+CSXgkyQ3ykoIkuAQMQEkN8RAyUcBFJCAPmdkkKyDAhESAD5HSFMQkEgRQSQ327FRH678bOjkd8RQCRERwkU7/6Isr/8L9WOOlblpX8uf/LUjs6f5smQ32muLmuDwPgIIL/Hx41REEg7AeR32ivM+iAwdgLI77EzYwQEeoEA8tutyshvN37I7wj4EaLzBLy9u1X81PXKPPW4ai9brNLSj3Y+iZTOiPxOaWFZFgQcCCC/HeAxFAIpJoD8TnFxWRoExkkA+T1OcAyDQMoJIL/dCoz8duOH/I6AHyG6Q8Db8Kz6PnWDvM3rVXvtm1V697LuJJKyWZHfKSsoy4FABASQ3xFAJAQEUkgA+Z3CorIkCDgSQH47AmQ4BFJKAPntVljktxs/5HcE/AjRPQKZJ36pvk/9sVTap+qbzlf57D/oXjIpmRn5nZJCsgwIREgA+R0hTEJBIEUEkN8pKiZLgUBEBJDfEYEkDARSRgD57VZQ5LcbP+R3BPwI0V0C2Z+tVvEzN9skyu+4StXT3trdhBI+O/I74QUkfQi0gQDyuw1QCQmBFBBAfqegiCwBAhETQH5HDJRwEEgJAeS3WyGR3278kN8R8CNE9wnkv7dC+X/4K5tI6eIbVDvxtO4nldAMkN8JLRxpQ6CNBJDfbYRLaAgkmADyO8HFI3UItIkA8rtNYAkLgYQTQH67FRD57cYP+R0BP0LEg0Bu5QMqrPqi/HxR5fffotqLXhGPxBKWBfI7YQUjXQh0gADyuwOQmQICCSSA/E5g0UgZAm0mgPxuM2DCQyChBJDfboVDfrvxQ35HwI8Q8SFgTn+bU+D+zLnqX/rn8ucviE9yCckE+Z2QQpEmBDpIAPndQdhMBYEEEUB+J6hYpAqBDhFAfncINNNAIGEEkN9uBUN+u/FDfkfAjxDxImD6f5s+4PUFv6nS+2+VP3lqvBKMeTbI75gXiPQg0AUCyO8uQGdKCCSAAPI7AUUiRQh0mADyu8PAmQ4CCSGA/HYrFPLbjR/yOwJ+hIgXAa9SUvGvrlfmiV+q9rJXq7T0lnglGPNskN8xLxDpQaALBJDfXYDOlBBIAAHkdwKKRIoQ6DAB5HeHgTMdBBJCAPntVijktxs/5HcE/AgRPwLelg0q/vX1ymx4VtXXvEnlC66NX5IxzQj5HdPCkBYEukgA+d1F+EwNgRgTQH7HuDikBoEuEUB+dwk800Ig5gSQ324FQn678UN+R8CPEPEkkHn6cRU/dYO8PbtUfdO7VD77ongmGrOskN8xKwjpQCAGBJDfMSgCKUAghgSQ3zEsCilBoMsEkN9dLgDTQyCmBJDfboVBfrvxQ35HwI8Q8SWQ/eV/qXj3R2yC5bdfqeobzolvsjHJDPkdk0KQBgRiRAD5HaNikAoEYkQA+R2jYpAKBGJCAPkdk0KQBgRiRgD57VYQ5LcbP+R3BPwIEW8Cue9/Q4Uv3hkI8ItvUPXE0+KdcJezQ353uQBMD4EYEkB+x7AopASBGBBAfsegCKQAgZgRQH7HrCCkA4GYEEB+uxUC+e3GD/kdAT9CxJ9A/psPKv+1e6VcQf1XfVT1Y0+If9JdyhD53SXwTAuBGBNAfse4OKQGgS4SQH53ET5TQyCmBJDfMS0MaUGgywSQ324FQH678UN+R8CPEMkgkP/yPcp/+yvyD5mj/qv+XP78hclIvMNZIr87DJzpIJAAAsjvBBSJFCHQBQLI7y5AZ0oIxJwA8jvmBSI9CHSJAPLbDTzy240f8jsCfoRIDoHiF25T9offVn3Bi6wA15TpyUm+Q5kivzsEmmkgkCACyO8EFYtUIdBBAsjvDsJmKggkhADyOyGFIk0IdJgA8tsNOPLbjR/yOwJ+hEgQAb+u4l9dr+zjP1Xtpa9W6apbEpR8Z1JFfneGM7NAIEkEkN9Jqha5QqBzBJDfnWPNTBBICgHkd1IqRZ4Q6CwB5Lcbb+S3Gz/kdwT8CJEsAt7ObSr+9R8p89xTqr7mTSpfcG2yFtDmbJHfbQZMeAgkkADyO4FFI2UIdIAA8rsDkJkCAgkjgPxOWMFIFwIdIoD8dgON/Hbjh/yOgB8hkkfAiG8jwI0Ir/7eeSq/9eLkLaJNGSO/2wSWsBBIMAHkd4KLR+oQaCMB5Hcb4RIaAgklgPxOaOFIGwJtJoD8dgOM/Hbjh/yOgB8hkknAtD4p/tV1ku+r8vYrVHnD7ydzIRFnjfyOGCjhIJACAsjvFBSRJUCgDQSQ322ASkgIJJwA8jvhBSR9CLSJAPLbDSzy240f8jsCfoRILgFz80tzE0zzKF90vaon/U5yFxNR5sjviEASBgIpIoD8TlExWQoEIiSA/I4QJqEgkBICyO+UFJJlQCBiAshvN6DIbzd+yO8I+BEi2QTy3/6K8l++R34ur/JVt6h27AnJXpBj9shvR4AMh0AKCSC/U1hUlgSBCAggvyOASAgIpIwA8jtlBWU5EIiIAPLbDSTy240f8jsCfoRIPoH81+5V/psPqj5jlspX3ar6YUclf1HjXAHye5zgGAaBFBNAfqe4uCwNAg4EkN8O8BgKgZQSQH6ntLAsCwKOBJDfbgCR3278kN8R8CNEOggUvninct//hvyJk1V+26WqvfaMdCxsjKtAfo8RGJdDoAcIIL97oMgsEQLjIID8Hgc0hkAg5QSQ3ykvMMuDwDgJIL/HCS4chvx244f8joAfIdJDoLD8buW+81W7oNqrXq/yWy+RP2teehY4ipUgv0cBiUsg0GMEkN89VnCWC4FREkB+jxIUl0Gghwggv3uo2CwVAmMggPweA6wWlyK/3fghvyPgR4h0Ecj87FEVVj2gzPNPyZ80RZW3XaLqyb1zChz5na79zGogEAUB5HcUFIkBgfQRQH6nr6asCAKuBJDfrgQZD4F0EkB+u9UV+e3GD/kdAT9CpI+At3uncivvV/7fv24XV33V61V526XyZ85N32KbVoT8Tn2JWSAExkwA+T1mZAyAQE8QQH73RJlZJATGRAD5PSZcXAyBniGA/HYrNfLbjR/yOwJ+hEgvgdxPvmcleGb9M/InT1Xl7EtUfe2b07tgScjvVJeXxUFgXASQ3+PCxiAIpJ4A8jv1JWaBEBgzAeT3mJExAAI9QQD57VZm5LcbP+R3BPwIkXICu7apsOIB5VavtAutnniqKqYXeEpPgSO/U76fWR4ExkEA+T0OaAyBQA8QQH73QJFZIgTGSAD5PUZgXA6BHiGA/HYrNPLbjR/yOwJ+hOgNAtkf/5uV4N7G5+RPnqLKWy9V9eT0nQJHfvfGfmaVEBgLAeT3WGhxLQR6hwDyu3dqzUohMFoCyO/RkuI6CPQWAeS3W72R3278kN8R8CNE7xDI7Nhi26DkHv0Xu+jaiaepfM6l8mfMTg0E5HdqSslCIBAZAeR3ZCgJBIFUEUB+p6qcLAYCkRBAfkeCkSAQSB0B5LdbSZHfbvyQ3xHwI0TvEcj98BHlzSnwzS/YXuDlt16iWkpOgSO/e28/s2IIjEQA+T0SIb6HQG8SQH73Zt1ZNQQORgD5zf6AAARaEUB+u+0L5LcbP+R3BPwI0ZsEvK0blV/5gHL/+U0LwJ4Cf/vl8qfNTDQQ5Heiy0fyEGgLAeR3W7ASFAKJJ4D8TnwJWQAEIieA/I4cKQEhkAoCyG+3MiK/3fghvyPgR4jeJmDkd27lA8ps3Sh/8jRV3naJqq95U2KhIL8TWzoSh0DbCCC/24aWwBBINAHkd6LLR/IQaAsB5HdbsBIUAokngPx2KyHy240f8jsCfoSAgGl/Ulj5RWX/61sWRvXE01R5x5Xyp8xIHBzkd+JKRsIQaDsB5HfbETMBBBJJAPmdyLKRNATaSgD53Va8BIdAYgkgv91K13Py+67PLNePfva47r7tGs2YNsXS27Zjl5Ze9wn94ldP2vf3ffI6nXT8sQNkH3p4tW78+L32/ZLTF+vmD16kvr7CwPfrtuxzqwKjIQABSyD76L+osOoBeds3S1Omq/zWixN3Chz5zWaGAASaCSC/2RMQgEArAshv9gUEINBMAPnNnoAABFoRQH677Yuekt9GfN/7pVV6+YuPHpDf/f1l3XTH57X4hON0zhmnaM3adbrhts/p1usu0aIF8/Wjnz+uu+5ZPnC9iWEeyy47F/nttvcYDYGWBDIbn1duxf3K/fjf7PfVk35HlXdcZW+MmYQH8jsJVSJHCHSWAPK7s7yZDQJJIYD8TkqlyBMCnSOA/O4ca2aCQJIIIL/dqtUz8tuc3n76ufU65dUvGyazjey+/dMP6tbrL7UnwZtluJHdCw+fZ8W4eTTLcPMZJ7/dNiGjIdCKQH71KivBvV3bpCkzVH7bxar+9u/FHhbyO/YlIkEIdJwA8rvjyJkQAokggPxORJlIEgIdJYD87ihuJoNAYgggv91K1RPy24jvH/z0Mduu5Jf/t2aY/G4lsxunu5deePawU+EGdfPJcPPZ+q39blVgNAQg0JKAt36t8iseUOYn/26/r736Daq+4/3yJwUti+L4KBYymljIatvuShzTIycIQKALBIz8PmRqQZu2l7owO1NCAAJxJTB7elFbd5ZVq/txTZG8IACBDhOYMTmvveWaSuV6h2dmOghAIM4E5h3SF+f0Yp9b6uW3kdvLV3x3oE93s+xu/t5UrFl+n3vWqQM9wFvJ77rPX1hjv9NJMNEEyt98SOXln1d91w550w5R37uvUP71b47lmjx5Mv/n89+FWNaHpCDQLQIZzxN/X+gWfeaFQDwJ8N+FeNaFrCDQTQKeZ/4/Eub/cAzdrANzQyBuBMzfGXiMn0Dq5ffQm1UOxdTo+/3E088POwneSn43+oGb71rJb9qejH8DMhICoyWQef4p5Vc9oOzPHrVDar91usrnvV/+hEmjDdGR62h70hHMTAKBRBGg7UmiykWyEOgYAdqedAw1E0EgMQRoe5KYUpEoBDpKgLYnbrhTL7+b8TSf/Kbnt9sGYjQEOk0g952vKr/qfnl798ifOkPlcy5V7dVv7HQaB5wP+R2bUpAIBGJDAPkdm1KQCARiRQD5HatykAwEYkEA+R2LMpAEBGJHAPntVpKel9/NN7hsPtndLMsbLVGWXXbuAHlOfrttQkZDYKwEMs89qfyK+5X9xX/aoUZ+l9/1/+QXJ4w1VOTXI78jR0pACCSeAPI78SVkARBoCwHkd1uwEhQCiSaA/E50+UgeAm0jgPx2Q9vz8tvg27Zjl5Ze9wn94ldPWpr3ffK6gR7f5v3Q1ilLTl880D+8gR757bYJGQ2B8RLIP/Jl5VY+IK+0T/60Q1T+/ctVO+l3xhsuknHI70gwEgQCqSKA/E5VOVkMBCIjgPyODCWBIJAaAsjv1JSShUAgUgLIbzecPSe/3XDtP/oT99Q0a3ZNhx/m67DDfE2ayI0pomZMPAgcjEBm7a+VX/mAsv/zX/ay6qtPV/n8q6VCd+6GjPxmv0IAAs0EkN/sCQhAoBUB5Df7AgIQaCaA/GZPQAACrQggv932BfLbjZ8uuboyLEImKx1+mHTYfH9AiB8yHSHuiJnhEBiRQO5f/1GFlV+UKiX502aq8vYrVD3x1BHHRX0B8jtqosSDQPIJIL+TX0NWAIF2EEB+t4MqMSGQbALI72TXj+wh0C4CyG83sshvN3767n/U9cTTFW3e4mnzZk/bd7QOOG9uKMPny54QN+95QAAC0RLIPvW4civvV/Z/f2wDVxe/UZV3f0B+Lh/tRAeJhvzuGGomgkBiCCC/E1MqEoVARwkgvzuKm8kgkAgCyO9ElIkkIdBxAshvN+TIbzd+dnSj53elIm3a7GnTZvOc0eZNvjZvyWjjptaTzJhhTon7Onx+0DJl3jxfhc45ughWTggIxJNA7htfUn7lF+XVqqpPm6nqO65S9YRTOpIs8rsjmJkEAokigPxOVLlIFgIdI4D87hhqJoJAYgggvxNTKhKFQEcJIL/dcCO/3fgNk98HCrV5i7R5cyaU4oEc37LZU39p/xGTJxkRLivE58+X5s2ra8rkCJIkBAR6jEDmyceUN6fAH/+ZXXl18e+q/J5lUjbbVhLI77biJTgEEkkA+Z3IspE0BNpOAPnddsRMAIHEEUB+J65kJAyBjhBAfrthRn678RuV/G41xZ690oYNQauUjZsbctzXrl3efpeb0+DmZLg5JT5/nq9D5/s6ZEYEiRMCAj1AIP/w39kbYsr3VZ8+S5V3XKXaK1/btpUjv9uGlsAQSCwB5HdiS0fiEGgrAeR3W/ESHAKJJID8TmTZSBoCbSeA/HZDjPx24zdu+d1qWt+XXljvaeNGadMmT5vCPuLm5Hirh7mpppHihx1qWqZIh86jj3gE5SRECglk/r9fWAGe/fXP7eqqv/17Kl2wTJ6XiXy1yO/IkRIQAokngPxOfAlZAATaQgD53RasBIVAogkgvxNdPpKHQNsIIL/d0CK/3fhFKr8PlMr27Z7Wb/S0cYPpJR70FTdtVMqV/WX37FlB2xR7QtxKcV/FQgSLJAQEUkDACPD8qi/alfgzZqv8zverdvxrIl0Z8jtSnASDQCoIIL9TUUYWAYHICSC/I0dKQAgkngDyO/ElZAEQaAsB5LcbVuS3G7+OyO9WKZbK0vr1nm2dssGcFLdC3NPuPftfPW1q0DLl0EOD0+GHzpMmT+aUeASlJ0QCCWT/72f2FHjmif+x2ddOfrNKphd4RA/kd0QgCQOBFBFAfqeomCwFAhESQH5HCJNQEEgJAeR3SgrJMiAQMQHktxtQ5Lcbv67J7wOlvXFT0Et8/YaMbZ9i+olv27Z/H/EJE2SF+Ly5vg41P4f6mjkzAhiEgEASCNRq9gR4/l/+3mZrToFX3nW1qi97tXP2yG9nhASAQOoIIL9TV1IWBIFICCC/I8FIEAikigDyO1XlZDEQiIwA8tsNJfLbjV/s5Her5eze4+mF9aEUNz3FNwUnxWu14Vdnc5LpI26FeHhC3Dx7+7vzCKgRAgLdJ5D93x9bCZ5Z8782merJZ6j8ng84JYb8dsLHYAikkgDyO5VlZVEQcCaA/HZGSAAIpI4A8jt1JWVBEIiEAPLbDSPy241fIuR3qyXWa9ILGz2tf8GcEpc9Kb5pi7S3RduUuVaGy0rx+YcGJ8WLfRGAIwQE4kCgWlZ+xQPK/+s/2mz8Q+aofP7Vqh33W+PKDvk9LmwMgkCqCSC/U11eFgeBcRNAfo8bHQMhkFoCyO/UlpaFQcCJAPLbCZ+Q3278Eiu/D7TsrdulDeszesEI8bCn+Lbt+199yHRp3qH1QIrP87XwyLqKRY6IR7CdCNElAtnHfmgleGbt/9kMqqecaSX4WB/I77ES43oIpJ8A8jv9NWaFEBgPAeT3eKgxBgLpJoD8Tnd9WR0ExksA+T1ecsE45Lcbv9TJ71Y4+vulF8yNNTeY9imeNqyX1m/0VK8Pv/qww3wdc7R09FF1LVzADTUj2FqE6DABr9yv3Ir7lX/ky3Zmcwq89O4PqP6SE0edCfJ71Ki4EAI9QwD53TOlZqEQGBMB5PeYcHExBHqCAPK7J8rMIiEwZgLI7zEjGzYA+e3Gryfk94EQ2RtrbpSef97TmqdML/HBk9+ZrHTMoroWLZSOXuTLtE7hAYGkEMj+8gfKr7hfmWefsClXX/8Wlc/7f6NKH/k9KkxcBIGeIoD87qlys1gIjJoA8nvUqLgQAj1DAPndM6VmoRAYEwHk95hw7Xcx8tuNX0/L72Z0u3ZJTz7lac2ajJ5Y42n37sErJk0MToUvWlTX0UdJU6ciwyPYeoRoIwFv3x7lVz2g3LcfsrP4M+eq/J5lqh17wkFnRX63sSiEhkBCCSC/E1o40oZAmwkgv9sMmPAQSCAB5HcCi0bKEOgAAeS3G2Tktxs/5PdB+JmT4E+u8fTkk0aKZ1SrDV48e5a06Ki6PRVuhHghT7/wCLYiIdpAIPvf/6H8qvuVee4pG71y2ltVecdVB5wJ+d2GIhASAgkngPxOeAFJHwJtIoD8bhNYwkIgwQSQ3wkuHqlDoI0EkN9ucJHfbvyQ32Pgt/YZLzwZ7umZZ4fL7iMO93V02C98wZGcCh8DVi7tAAFvzy7lV96v3Hf/2c7mz5yn8oXXqvaiV+w3O/K7AwVhCggkjADyO2EFI10IdIgA8rtDoJkGAgkigPxOULFIFQIdJID8doON/Hbjh/weJ79KJTgNvmaNpyfWSJs3D8rwbDboE77oKD/oFz4HGT5OzAyLmED2J99TYdUD8l5YayNX33COym+/ctgsyO+IoRMOAikggPxOQRFZAgTaQAD53QaohIRAwgkgvxNeQNKHQJsIIL/dwCK/3fghvyPgZ0Ls3CnbImXNUxn7vHvPYOApkwMRbnuGH+VryhRkeETYCTMOAt6u7cqtuF/51SvtaH/WfJUuvFb133i5fY/8HgdUhkAg5QSQ3ykvMMuDwDgJIL/HCY5hEEgxAeR3iovL0iDgQAD57QBPEvLbjR/yOwJ+rUJs3Bj0Czenws0J8fqQfuFzZjdunGn6hfvK59qUBGEhcBACuR//m3IrHlBm43P2qsrpb1fl9y9HfrNrIACB/Qggv9kUEIBAKwLIb/YFBCDQTAD5zZ6AAARaEUB+u+0L5LcbP+R3BPxGE+KptZ5tkfLkU56ee254v/Ajjwgk+DGLfJnXPCDQKQLeji3Kr3hAuf942E5Zn3OYdNGHNfGlr9DWXdFDgOsAACAASURBVOVOpcE8EIBAzAkgv2NeINKDQJcIIL+7BJ5pIRBjAsjvGBeH1CDQRQLIbzf4yG83fsjvCPiNNUS5PKRf+JPSlq2DMtycAjci/OijjBCvy5wS5wGBdhPI/vAR5Vd8UZnN6+xU2SXv0q4zL2r3tMSHAAQSQgD5nZBCkSYEOkwA+d1h4EwHgQQQQH4noEikCIEuEEB+u0FHfrvxQ35HwM81xI4dQb/w4Aaa0p69gzLc9Acf1i98MifDXXkzvjWBzLZNyq18QLnvfyO4wPNUOfNCVc54D8ggAIEeJ4D87vENwPIhcAACyG+2BgQg0EwA+c2egAAEWhFAfrvtC+S3Gz/kdwT8og6xfoO5cWbQM9z81OuDM8yd4+voRYEQN8/ZbNSzE6/XCUz48SPKfOer8p/6dYAim1X5zAtVfdP5vY6G9UOgZwkgv3u29CwcAgclgPxmg0AAAshv9gAEIDAaAsjv0VA68DXIbzd+yO8I+LU7xFNPS2vWZPTEU56ef354v/AFR5oWKXUdfbR0xOGcCm93LXohfl8hq4nFrHY+/FXlVq9U5tkn7LL9XF7Vs96ryu++sxcwsEYIQGAIAeQ32wECEGhFAPnNvoAABJDf7AEIQGA0BJDfo6GE/HajNMLodVv2tTU+waMj0F8KRPiTTwXPW7YOxi7kw37h9mR4XbNnRTcvkXqHQEN+2xte+r7yjz6s7FAJXuhT9awLVTn93N6Bwkoh0OMEkN89vgFYPgQOQAD5zdaAAASQ3+wBCEBgNASQ36OhhPx2o4T8biu/bgbftr0hw02rFGnvkH7hU6eaU+FGiNd1zNHSpImcDO9mrZIy9zD53UjarwcS/HsrlXnuyeDTvolBT/A3/H5SlkaeEIDAOAkgv8cJjmEQSDkB5HfKC8zyIDAOAvT8Hgc0hkCgBwggv92KTNsTN352NCe/I4AYkxAvrG/0C8/oidBRNlKbOzfsF75QOmZRXRn6hcekavFKo6X8bqRYryv36CrlVq8akOD+xEmqnPk+VU97a7wWQjYQgEBkBJDfkaEkEARSRQD5napyshgIREIA+R0JRoJAIHUEkN9uJUV+u/FDfkfAL84hzGnwJ9dk7A00n183vF/4wgVBv3BzKvywwzgVHuc6djK3g8rvoRJ89cpAgj+/xn7qT56q6pnvVeX1b+lkuswFAQh0gADyuwOQmQICCSSA/E5g0UgZAm0mgPxuM2DCQyChBJDfboVDfrvxQ35HwC8pIfr7Pa1Z4+mJsF/41m2DmReLno5aWJcR4guO8JHhSSlqG/IclfxuzFurBSfBHzXtUJ4KJPiU6cGNMU85sw3ZERICEOgGAeR3N6gzJwTiTwD5Hf8akSEEOk0A+d1p4swHgWQQQH671Qn57cYP+R0Bv6SGMPL7yacyVoibG2j27xs8GZ7NSgsW+Fp4RF0LF0pHHuErk0nqSsl7LATGJL/DwF6tqlzjxpjPhxJ82iEqn3mhaq9dMpbpuRYCEIghAeR3DItCShCIAQHkdwyKQAoQiBkB5HfMCkI6EIgJAeS3WyGQ3278kN8R8EtLiA0bPD39jKe14c+uXcNXZgT4giOlBUf6OvLIuvqKaVk56xhKYDzye2B8tWIluDkNnmlI8BmzVV5ygWonvxnQEIBAQgkgvxNaONKGQJsJIL/bDJjwEEggAeR3AotGyhDoAAHktxtk5LcbP+R3BPzSGmLbNoUyPKO1az1t2Tp8pfPmGhke/Jh2KZMnp5VEb63LSX43UBkJvnqV8o+ukrfuafupP3OuKksuUPW3f6+3gLJaCKSAAPI7BUVkCRBoAwHkdxugEhICCSeA/E54AUkfAm0igPx2A4v8duOH/I6AX6+E2L3H09NPa+Bk+PoNw2+gecgMP2iVskBaeKSvGTO4iWYS90Yk8jtcuFetKLt6ZSjB1wYSfNahKp95gWqvfmMS8ZAzBHqSAPK7J8vOoiEwIgHk94iIuAACPUcA+d1zJWfBEBgVAeT3qDAd8CLktxs/5HcE/Ho1RH9JemZIm5Rnnh0uw6dMafQND06Hz52LDE/CXolSfjfW61XLyq1+2IrwzAuhBJ9zuMpL3q3ab52eBCzkCIGeJoD87unys3gIHJAA8pvNAQEINBNAfrMnIACBVgSQ3277oifk912fWa57v7RqgNRHP3yxzjnjlIH323bs0tLrPqFf/OpJ+9l9n7xOJx1/7MD3Dz28Wjd+/F77fsnpi3XzBy9SX19h4Pt1W/a5VYHREJBUr0tGgJsWKU8/k7EnxKvVQeFd7PO14IigRcqCI6QjjkCGx3HjtEN+D6yzUrISPGck+Ppn7Mf1uUeocoaR4G+IIw5yggAEJCG/2QYQgEArAshv9gUEIID8Zg9AAAKjIYD8Hg2lA1+Tevnd31/W3Q/8s/7gnW/SjGlTtGbtOl3+4Tt16w2XWsFtvr/pjs9r8QnHWSFuvr/hts/p1usu0aIF8/Wjnz+uu+5Zrrtvu8aONyLdPJZddi7y223vMXoUBJ5/3txAs9E73NO+fYOnwzOZ4OaZpk3KgiPr9nU2O4qgXNJWAm2V343My/1WgucffVje+uAkeP3QBaq++XxVT/qdtq6P4BCAwNgJIL/HzowREOgFAsjvXqgya4TA2Ahw8ntsvLgaAr1CAPntVunUy+9mPK1k9+2fflC3Xn+pldvN3xvZvfDweQMnxZtluInPyW+3Tcjo0RPYuMnI8OB0+NpnPe3YMXzs4YeFN9E0fcOP8NU3gdPho6cbzZUdkd9hqp6V4KuUsxI8PAl+2FGq/N55qiHBoykoUSAQAQHkdwQQCQGBFBJAfqewqCwJAo4EkN+OABkOgZQSQH67Fbbn5HejxcmyK861J79byezG6e6lF5497FS4Qd18Mhz57bYBGe1GYPt20yKl0Ts8o02bh8ebO8fXkUcGQtzcRHPqVLf5GD0ygU7K70Y2RoJnv7fSSvDMhmftx/XDj1bl996p2omnjZw0V0AAAm0lgPxuK16CQyCxBJDfiS0diUOgbQSQ321DS2AIJJoA8tutfD0nv5vblhj5vXzFd4f18W6W3+eedepAD/BW8rtcrbtVgdEQiIjArl2+nnhKemKNryfXSM88P/zk98xDpN842tMxi4KfObMimpgwAwQynifTkqZa6/ype79/n2rf+boqj3xd/vpAgmeO+k3ll5yn7GvoCc42hUC3CJiGVblcRhX+vtCtEjAvBGJJIJ/LqFqtq/N/Y4glDpKCAATM3xeynr0XVN3nvwxsCAhAYJBAIZcBhwOBnpLfRmqv37hlmOiO4uT35h0lhxIwFALtI1CuSE8/7emptbI/T68d7BluZp08WbZn+CJzMnyhr/mHti+XXolcyGfUl89q595K95bcv1eZ761S5nsrpQ3P2Tz8o46V/8a3q34SJ8G7Vxhm7lUCmYyn6ZPy2rqr3KsIWDcEINCCgDnhuX1PRfU6kosNAgEIBASmTsyrv1JTucIBO/YEBCAwSGDWtCI4HAj0jPxuJb4NN3OSm57fDjuIoYkjYHuGhz9GhleGONpCQVp4ZH2gVcqCIxO3vK4n3I22JwdcdP8ee1PM7OpVymx83l5WX/QSVX/nHFVf9fqusyIBCPQKAdqe9EqlWScExkaAtidj48XVEOgFArQ96YUqs0YIjJ0AbU/GzmzoiJ6Q382tToYCaHUDzBtu+5xuve4SLVowf7+e4K1iccNLt03I6O4SWPeCZ0+EP/Os7I009+wdfjr8qAXSkQt8LTiiroULfOVy3c037rPHSn43YPXvCW6MufphZTaFEvyYl6py6ltVQ4LHfUuRXwoIIL9TUESWAIE2EEB+twEqISGQcALI74QXkPQh0CYCyG83sKmX340bXP7iV08OI7Xk9MUD7U+ar7nvk9cN9Pg2gx56eLVu/Pi9dvzQcY2AyG+3TcjoeBHYvFl6+tmMnlkbnBDftn14fofNH34TzYkT45V/t7OJpfwOoXj79ij36CplTUuUzevsp/XfeLmqrz9b1Ve9rtvomB8CqSWA/E5taVkYBJwIIL+d8DEYAqkkgPxOZVlZFAScCSC/3RCmXn674RndaOT36DhxVTIJ7NgZtkmxMlzauGn4yfDZs6QFR9a1wJ4O9zV9ejLXGVXWcZbfjTV6e40EX2lPg3ubX7Af137zlaq97kxVT0CCR7UXiAOBBgHkN3sBAhBoRQD5zb6AAASaCSC/2RMQgEArAshvt32B/HbjZ0cjvyOASIjEENi7V0HP8Gc92ybl+XXDZfjESdKsmebHD3/M67pmzpS84ZcmZs1jSTQJ8ntQgu+2J8GHSvD6i1+lyilLVHvlKWNZNtdCAAIHIYD8ZntAAALIb/YABCAwGgLI79FQ4hoI9B4B5LdbzZHfbvyQ3xHwI0SyCVSroQx/JqOn10pbtnjatbv1mowANyI8kOPSrFl1zZrladJEP9kQhmSfJPk9VIJnV69U/lFzEny9/bj2khNVee0ZqiPBU7M3WUj3CCC/u8eemSEQZwKc/I5zdcgNAt0hgPzuDndmhUDcCSC/3SqE/Hbjh/yOgB8h0kegv9+T6R2+abO0eYsXPG/27OtWjwkTjAg3J8WDE+NDJXkmkyw+SZTfAxJ8zy4FEvxheVsCCV63EtycBH9tsgpBthCIEQHkd4yKQSoQiBEB5HeMikEqEIgJAeR3TApBGhCIGQHkt1tBkN9u/JDfEfAjRG8RMBJ805aGHB+U5KVSazF+yIzGCXENSPHZszxNnhTP0+JJlt8DEnz3zqAdijkJvmVDIMGPMxL8TNVecXJvbVhWC4EICCC/I4BICAikkADyO4VFZUkQcCSA/HYEyHAIpJQA8tutsMhvN37I7wj4EQIChsDu3eFJ8c0Ze1J8y1ZzYtzT9u2t+fT1hX3FZxkpPthffPZMX5ls95imQX4PleDZRxsnwQMJXjvuRFVPOUu141/TPcjMDIGEEUB+J6xgpAuBDhFAfncINNNAIEEEkN8JKhapQqCDBJDfbrCR3278kN8R8CMEBA5GwPQUNxLctlGxJ8YH26jUaq1HHjLdt21UZs4KeovPDluqTJ7c/tPiaZLfA3R371B+9UrlTDuUrRsDCf7Sk1Q1J8GR4PwBhsCIBJDfIyLiAgj0JAHkd0+WnUVD4KAEkN9sEAhAoBUB5LfbvkB+u/FDfkfAjxAQGC+BrdvMDTYzVowHPcaDlip79rSO2Ff07A03bU9xK8TDPuOzfGUjOi2eSvkd4vR271Due0aCr5K3bVMgwY/7LVVPWYIEH+8mZlxPEEB+90SZWSQExkwA+T1mZAyAQOoJIL9TX2IWCIFxEUB+jwvbwCDktxs/5HcE/AgBgagJ7NvXOB0enhrfEjxv3dq6r7iZf7o5LT5Ehs8OT41PmTK20+Jplt+NOnm7tiu/epUyj65UZtvmQIK/9NWBBH/5b0ddTuJBIPEEkN+JLyELgEBbCCC/24KVoBBINAHkd6LLR/IQaBsB5LcbWuS3Gz/kdwT8CAGBThHw/UYLFXNCXNoypIVKqdw6i0IhOC1u2qdYOW5OjId9xvO5/cf0gvweWPWubVaC23YojZPgL1scSPCXLe5UWZkHArEngPyOfYlIEAJdIYD87gp2JoVArAkgv2NdHpKDQNcIIL/d0CO/3fghvyPgRwgIxIHAzl2DrVNMKxXbZ3yLtGPHgbObNi1smzLTlz0pPsvX/HlZzZ+T0dZdB7DpcVhs1Dns3DoowbcHJ8GrL3u16r95gvxZc+XPnCf/kHnyJ06KembiQSARBJDfiSgTSUKg4wSQ3x1HzoQQiD0B5HfsS0SCEOgKAeS3G3bktxs/5HcE/AgBgTgTKFeMFB+8yebgiXFP9XrrzPN5T1On+po+zde0adK0qXVNn2Zaqyh8H12P8Tix83ZuU+57K4KT4Du27JdaIMHnqG6eZwWvzWf1mYEg5wGBtBJAfqe1sqwLAm4EkN9u/BgNgTQSQH6nsaqsCQLuBJDfbgyR3278kN8R8CMEBJJKYOtWafPW4Iabm+xNNz37s2fvyCuaMtnXVCPGp/maMc2zz8GPNH2qr4kTR44R1ysyO7Yqs3qlMls3ytuyXpktG+zzwR7+hInB6XAjxWfOVd28NlLcvJ91qPy+BAOJa6HIq2MEkN8dQ81EEEgUAeR3ospFshDoCAHkd0cwMwkEEkcA+e1WMuS3Gz/kdwT8CAGBNBEwPb+9elZrn69o+07Ptk3ZscPTdvMcvjevR3qYfuLmpLg9PT51iBi3gjyQ5ZnMSFHi8723d4+8revlGRG+eb0yQ17bz/cd/DcGVoQfYk6JB6fF7Qny2fMDMT5jdnwWSiYQaEEA+c22gAAEWhFAfrMvIACBZgLIb/YEBCDQigDy221fIL/d+CG/I+BHCAikicBob3i5fbuR4dL2HcMF+U4ryD31l0amMnVKcHLc/Eyf5g22WTHvp/rqmzByjLhcYU6GD5wSNyfGjSA3n201p8Y3HDzNvkmqz5oTnBw3YtycHDdSfNahqs+eJxUSBCIuBSGPSAkgvyPFSTAIpIYA8js1pWQhEIiMAPI7MpQEgkCqCCC/3cqJ/Hbjh/yOgB8hIJAmAqOV3yOtub8/lOI7w1PjoSTfvjM4SX6wG3E2YhcL5vS4r6lTwxPkYZsVc5rcyHIjzRPx6N8biPBNLwTPYRsVc2I8s3mj1L/noMuwvcUbp8atFDetVOarPvtQ+dNmJgIBSSabAPI72fUjewi0iwDyu11kiQuB5BJAfie3dmQOgXYSQH670UV+u/FDfkfAjxAQSBOBqOT3aJhsC0+P27Yq5vUOTzsHTpN7KpVHjmJ7jA+0VpFmhDflNDfsNHK8rzhyjG5f4W3bJG/zOmU2D4rxzOYNQZuVrRsPLsb7Jga9xQ+ZK3/2oeGJ8fmqG0E++1ApV+j28pg/BQSQ3ykoIkuAQBsIIL/bAJWQEEg4AeR3wgtI+hBoEwHktxtY5LcbP+R3BPwIAYE0Eeik/B6JW/8+T0NPig+0WAkFuRHlIz36+lq3VZk2NRDlU6bE+/S4V+6XTAuVzS/Yk+PelhesJJc5Nb5lo7z+EXqNz5htW6kEbVTm2dPiapwanzJjJHx8DwFLAPnNRoAABFoRQH6zLyAAgWYCyG/2BAQg0IoA8tttXyC/3fghvyPgRwgIpIlAnOT3SFx9Pzgtvm2HH5wa3xH2ILetVTL2Jp3lEU6Pm5tu2tPj9qS4NNW0VDE36pwqFQq+cnkpl5VyOV+5nHntKZf37WdxuGGnt2PLYDuVTeuCvuP2BPl6mRPlB330TVTdnBo3Yny2OS1+qOozzWvTVuVQKZsbqQR83yMEkN89UmiWCYExEkB+jxEYl0OgBwggv3ugyCwRAuMggPweB7QhQ5DfbvyQ3xHwIwQE0kQgSfJ7NNz37fOabswpbbc35ZR2bPe0c9doorS+xshvK8StGPdCOR5KcivNPWWzdeXD14FI961TzluRrkCuN143BHvOjPOVb8QNBbz9bCBWMM/BHl61Is+cGA9PjWe2vCCFfccz5iacI50aP2SOFeIyp8dnzFH9kNmS+Wx68N6fOGn88BiZKALI70SVi2Qh0DECyO+OoWYiCCSGAPI7MaUiUQh0lADy2w038tuNH/I7An6EgECaCKRNfo9Um3q9cQNOXwNtVUwP8p3m1LinakWq1qRq1VO1al77qlY8+5kZ2+1HNhuIdCPUjQw3gtw8W7lufwIBbyR7vnFq3XyW8TWpvk1T972gyXvXafKe9Zqw9wVN3LVOfTtfUGH3CKfGzcLNyfEZRojPlj89kOP+jNnhZ6YP+Wz59Bzv9haJZH7kdyQYCQKB1BFAfqeupCwIAs4EkN/OCAkAgVQSQH67lRX57cYP+R0BP0JAIE0Eek1+u9TOyG8rxK0Y90M5HkpyK8191WoZVcLXgUj3VKtKFSvSFcj1xuuGYK+acV44LrympiGfhQK+6pL9wcdmVNXM2nodUl2n6bVN4c8GTa9v1PTaRs2obVLOL42YQKVvmspTZqs2ba5q5rT4jNnKzJwtb9Zs5eaY5zkjxuCC7hNAfne/BmQAgTgSQH7HsSrkBIHuEkB+d5c/s0MgrgSQ326VQX678UN+R8CPEBBIEwHkd7KqWasFIt0IdSPRjTQ3z1au259AwBvJXmmcWjef1YNT7Y3rgnFG4HvhZw1x76tUkkplT/0lX+WSJzOneUyq79CM2gZNs3J8o2bUN2l6daOm1TZoRt08b5KnkW8oujM3W7sKc7W7OFt7J8xRaeJs9U+eq8rUWapNnSNNm65CQeor+va5WDQ/vn3uK3rKF3z1FdtXt+9+5xG94pWv0vQZvXuDUOR3+/YXkSGQZALI7yRXj9whMH4CprWeKmX51bK8cllerSKVK/KqJU3Jm7871lQ2pzx4QAACEAgJzP3txbBwIID8doDXGLpuy74IohACAhBIAwHkdxqq2N41GKluZHi55Ku/5KlUViDIS0GrmP7+4LlU8pXZsUWFXRtU2L1RfXs2aeK+jZrUv1FTK5s0tbpRk2vbRky26uW1PTtX2zNztD07W9uzc7QtO0c7zOvMXG3PzVa/N0nFUIwXhojxQqGuYtFTMRTk+aIR5V4g0AuBQG+I9WKfZ29yWsgPpmTE94XvepteccKJeuBLD/WsAEd+j7hNuQACPUkA+d2TZWfRXSbg1aryK2U1BLRXLcv+c8GKeS5L1bIy1Yq9xrz37GcV+2xldXitEdZeuSQ/FNnm+2apbcfZsea6cii4R7ibfJf5MD0EIBBPAtP/6dF4JpaQrJDfERQK+R0BREJAICUEkN8pKWRCllHeW1Zt42bVNm9UffNmZbZulLdto/I7Nym/a5OKuzcpV9k94mr6vcnaForxHVaOz9aOUIxvyxhRPkdGoo/mYW5kaiT4C899S1998Gz59eDk0oKjFuuiKx/S5KmHKJfxgj7rGV+ZnKdMxrc3MM2Ym5hmTe91KZsx731lTa91+2zem9cKr/cH3ptYjRuoZrygb3vGzhHENWO7+UB+d5M+c0MgvgSQ3/GtTc9m5telui+ZZ/Ovz0yPOj9479mXdXn2H6WZN+az4DvfXBNe65nv6r691sapS96QePbacKz9F26NGKrLa/yTPCOK7anoUtC/rmIkciChVS4Fr21fvEBaG7lsZLRvT0+HErsyRGKH15vr7Hq6/PDtzWQK8nIF+YWC/Gxe5vSAnysq31eU+ZtTHO6N02VMTA8BCAwhMPOWv4GHAwHktwO8xlDkdwQQCQGBlBBAfqekkClahrdvj7Rtk7ytm5TZvsnKcc9I8q3m9SZltm0M/j+PIzzKfTO0Z8Ic7SnO1q78bO3Mz7Mnybd4s7XZn6st9Vn2RLs52f7c2m/qX7/+Vvn+8H+yO+fQxfrds76mYt8hI00X+fdGjlupHgp187oh0odK90DCGyFfD8S5vcFpcFNUc6NT874h2AMh30rYNz4LJX/W18ypee3YW7E5NIS8lfthbPMLgYyR9Vb6R758AkIgVgRWfO0r2r59my543yWxyqvTyfSc/DYys1SyotIITBlhaZ/LgSQdEKihXG1I2KFCNhSn5lrPvg5F7RBh21LIhvEHhawZP2ROzxuUt0PmC64ffu1QeWsFcVN+w/Jqzq9xrZXHoeEcIoP9UCobIWzE8H5rMZ+FQjmQzoFotsI55DcsPyudA2FtxbV12kPW3Zx/p/8QdGE+P5uTly+oIaCVL8q3dzsvBD+5guq5vL3GvPftZ3n7bGV1PhDX9jr7WfDefN8ste04O7ZoxwaCu3DQVdPzuwubgikhkAAC9Px2KxLy242fHY38jgAiISCQEgLI75QUsseW4e3aLm3dqIyR5FaOB6I8+MycJt88MhHPk3/IHH1ra7/O//K/qGZERIvHS457tf7kY1/VpIkzgh7rNalubm5aD25mWq17qtu+6sFNTc3JJ3Od+c7ENHLd941k9+x7+7m9oan5PuipbuKZsXZczVPdnkAbeQlxuiIQ9YGszxkZP3AiPjgFb3+skPeUy/nywhPv5n3wXSjW7Un54Foj1oMxwal6E9fEHxT4wVgj/o3ktyI+vN6epveM/DdzByfw7VhzTSZO5Mgl7gSM+L7ikgtsmrfd8Vc9LcBjIb/NfxxDGW1FdLk/OEVbNi0aTB+uIbK68X1DWJf7lTHiutQfiGzz2oyx74PTuPa1jREK7rhv0F7PzzP/Ufck8ywv+A+8+cWAl5FvX2bkewaSeWM+C77zzDXhtb75LuPZa22cjOQPiWevDccabd+Yz1NGvvkfobz5H6xALvuFohXPyofS2LwuGFltxHQ+/M6I56I9Pe015HIorgckdni9uc6uJ8YP5HeMi0NqEOgiAeS3G3zktxs/5HcE/AgBgTQRQH6nqZqsZYCAOfVmT4lvkrZtCOS4FeXBiXLPfLZ7p769fpve+eivVBvBNJ80e7pWnHOa8pOmSpOmqj5psjRxivyJU6RJU+RPmCJ/knk9Wf6kqfInmOcpUnHCuItiuq9UjUi3Et0Ics++t6K9IeGtaB/8sfLdXO8b+T4o6K10t2LdxAkkvXltnv1QwAefBXLe9zPy5Km/XB+4LhhrBH54w9W6r3o1zClh97gyHsEIdSvIB1rVGLcx2HamIexNj/jgJqtBL3njNcwNV4Oe874avePNZ6Z9juk5b27W2u3WNePeeAwcRmCo+G580csC/KDy27Z/CMWxFdHmhHQgps3NIrxQUltxPfQ09YCwbshrI6hNq4hASlsJbWW3eR+2j+jUPjUCslhU3QhI84ffCEv7XAgk6YBADeVqQ8IOFbKhODXX+vZ1KGqHCNuWQjaMPyhkzfghc5r/3WrI2yHzBdcPv3aovLWCuCm/YXk159e41spj45CHymXzvxQNYWzPfe8vl81noVAOpHMgmq1wDvkNy89K50BYW3FtnfaQdTfn36m9wDwHJID8ZnNAAAKtCCC/3fYF8tuN2i7FKQAAIABJREFUH/I7An6EgECaCCC/01RN1jImApWSFeJ33P4x3fmFLxx06D++9iX63UNnjCm8udj+U+WJU1S3YnyK6hMmyzPPEwN53hDpnhHqEyYHIr0h1btoT8fT83tQwpvT8b6V7ENPt9vXA6fhvfA0fHA6PvguFOuN0/P2VH2T/Ddy3pyMHxD4wdh6PWNlf/DLgeCXBebEfd3+EiCQ+o2T9eZkfif6kpryGTlupHkgxQM5bt4bOW7cmZXo1qmZz4Obsdqbs4Y3aLVji8FpdR6dJ9BKfHdEgJtf3pkb3NVr8gZ+o2X+QJhNXQ16DIe/yfKqVfm1qrx6VX61qoxpK1E11zTGmz8AZpz5Q2Oua/xBNJ/VNXR8+AfRxrbjw+dgvIlZV96rq7J3b3Ay2ghuK7uNoA57GXeqTIU++eZuxfk+yb42Utr8psq8N3+YzGfmffi62Be2fgi+twI7lNnm2rp9H46315p2D+bELX/4OlVS5kkuAeR3cmtH5hBoJwHktxtd5LcbP+R3BPwIAYE0EUB+p6marGW8BO74i1v0l7ff2nL4A1/6sk5/zSny9u6U9uySt3e3tHenffb27JTss/l8l7R3lzJ7d8nfs0uZPbvtza/G/eibaE+PB6fIp0qhMB8Q6ROnyJs4ORDp5rT5xPC0ed+kcU/ZGDge+e08aQcDmAOTA4LcnogP5Lg5Bd84Fd/wi9bvlT31l3zbI94cZu0PDrKqVPJU6vdVtt/LPpdKvvpLwSn7qB7mX8obOR6cQDdy3JxCrwfP5vR56PHMyfTG94VCPTitHsr1QKhHlVGy4wT9m8PTxLb1hbkBXdDP2XxuThp//duP6LJbbzvoQm8/7236g8UnBpLayuJQOteqyljJ3PgtTCigrbwO5HMgoY3cNpI6ENpWWpvf3nTitzPtKKERxUYsG3Fc7AtFdCEUy+Z9sFEHxXMgpH1zbSH43gpr89qK6UBgB9cH8azwNq95QAACsSGA/I5NKUgEArEigPx2Kwfy242fHU3P7wggEgICKSGA/E5JIVmGM4FWAvyBf3hIb3jjm8Yf2/SXNbJ8zy5p365Aku/ZHYpy8/nO4HsjzfeE0nzfruD68T4ymcHT40ae2xYtUwOR3jhVHgrzQJybk+iBSLc3vlLQl3vWtKI2bOsfbxY9P87IbyPHjTQPpHggx817I8dNJwcr0e199BryPHhvf8JrzXdRulB7wjw8WR6cMjeCvCHSG6fTA1EenEgPRLvpm97o4x7cjDU4kT7Q393cXNX0VR/LDVDNCechItozvyyy8rkk3/ZiLst+NuQmg0GP5qAfs9/o2Ry2xTD9nz1zM9zwxoTBuCaxPYpfSK3d06+3/Pv/6Jk9pYPu4yn5rL5yynE6aeaUaPe77ctjevLk5Id3lLX/iiSbk5/Jycvlgj7Dmax9tp/b5va2j0+jn0/wL0+y5hrb+D5soJ+1MYKm+ub6RmN9E3tw7OD3JnZwjfn+kBkTtaOcUc32Iw42k20JYjbTCDfFixYS0SAAgbgQQH7HpRLkAYF4EUB+u9UD+e3GD/kdAT9CQCBNBJDfaaoma3ElMFSAO4tv12TM6fF9jVPkjVPlgTC3p833hiI9FOtGmFuRbvrijvdhWgWELVpyU6epXPVtT1bbj9U8Gv1q7evgvbkvp7mhZ/Bd8EXQv7V5TKPfbTjYfm/6xQ6NG8Sw/WdtX9fmOJJn5zrYNcEY34jVcLy9QdnADcNaxTV5tMjPjDHHxAfyGJzbZn6AdTZYNeZt8LP3MB2BTWN9Q/mZG6OWK+Y0eUYV01bZ+Fzz2rSKqco+25+K+Uwq2w4ZWVnvaz8Pv68aLgFam5tZs6lf+By8b/ALczWf+Z7yKinvV5TzSyr4JfucVzl49svKD3m218j8VMJxwfUFmevKytVLypoY9cp4d6rTOCtrh8rb8IZ0RuZ69uRxQY9v3aV33fegnt26veVcUyZM0N/98R9p8cteGkroUE6HotlK6mxGfi4nz0jsIZ/bu68OCOjgdUMwB59nndbXzsGxuOFlOxdIbAhAYMwEkN9jRsYACPQEAeS3W5mR32787GhOfkcAkRAQSAkB5HdKCskyIiNgBPgrTzjR7cR3ZNmMI1C1bFuu2NYrYSuWQJQbgR60ahnauiVo5bJT3p49pu/HOCZkCATGR8CI9opXtD9VrxC8NsrcflZQ1T7nVVVRZXtNUZWMUerB98Ous58F1wfxTKyiyplGnPBZI/d+adzDcNeOx7XqK2dp5461wxZYLE7Vee/9qhYe/drwRLyvrD357llvnbE3Tg1Oymc8P7yxanAq3l6Tqcszh6wzg6fpzfjGyXrzLy8GTtaHh7ONLzdjso1D4eZGrfa1iWfmrCuX8wbuRTi+iow8Cvk9MiOugECvEUB+91rFWS8ERkcA+T06Tge6Cvntxg/5HQE/QkAgTQSQ32mqJmuBgBsBb+8e24Ilu2+3pucq2rarFJx8tseF7RFve6I6eB2897zwe/tx43Vwntgemg7H2fPF4ZiB62yQoXHNeHO6OxjfPLe93AvjHvCaxtgwP5tH43yzyaZV3PB7+1XT3I3T3wOfD+Znrx3CJng9uCZ7rjq8JsDTuN5o3/BUeSM3+93g+lrF3Y+fqUejGC3y25+fuT6cZ0jtghqFe2fImgbX59sT0X54Wtr2YM6H7xuvbQsM0wojaIdRzxVVzeRVyxZVD3+MmDbva9k+K7tr5r25qWnjRqa+p2o1uFlqvR70Yjen3s3NTO17ewNUXzXf3PQ0vNb0b7fts4MboZoWMYPxwntEmns9mhudhm24B663n5k5zHMmmNsf3nJ7+9Zf6Ztff4t27wwEeL4wVb/7lq9p3vzXuv1ha+No28mkIdBte5pmKW9kfdgFxRvSKcULW9dkPXufRyPgB1rZmBY3OU9TJ2VVrdeUz5ubtgb95m2LHPtj3nsq5n3bWocbtbaxyISGQIwIIL9jVAxSgUCMCCC/3YqB/HbjZ0dz8jsCiISAQEoIIL9TUkiWAYEICdDzO0KYhEocAXtD1FCUG8n++OP/q8v/4Bzt2L5Nf/23D+kVrzzZ3hh1UKb7tiWNEe/VmhH1gYw3Et5I+2HS3ch785m9uWog+oNfAITXmbntLwA8K+LtPTKHxQs/84Obqga/DAjkfTDf4O9jug0+n/NkbrxaLHjKm77yheAGrFaa29e+zP0rBwW6byW6vUmrua9l2Eq8kA8ke4y7wXQbNfNDoKsEkN9dxc/kEIgtAeS3W2mQ3278kN8R8CMEBNJEAPmdpmqyFghEQwD5HQ1HoqSHwK//71fatm2rXr345NgvKpDljdPzzSfhAyHfkPeNk/L1upHn4bX2JHx4TRir8cuACfmctu+s2pu12hu5loMbtJo+9OYGr6Wyr0o5Y58b/ygiKmCmZYy9OWvBszdjDcS5p0K+roK9cWvwWXBDV/NjJLt5H1xjrw1v5Go+N/f75AEBCLgTQH67MyQCBNJIAPntVlXk9yj4PfTwat348XvtlUtOX6ybP3iR+voGexxy8nsUELkEAj1CAPndI4VmmRAYAwHk9xhgcSkEeojAWHp+l8u+SuWM7HPJ3LRVKpdkhXnZvLfi3Lc3czUC3X5uhLoR6xUvvNa3n5lrjaiP8mF6rNtWLS1PoQ+2cWnI9eDahkwPejqFt+a17Zgy4U1/G/fWbbR9GbwXsLkZsGkVFd5qduh9gjOebfdkbo4bXGO+DGKaVkXBfXLDazJB+ybTzsZXfWBe+7FMn/ng2W/k1Lh3bZTwiAWBIQSQ32wHCECgFQHkt9u+QH6PwO9HP39cd92zXHffdo1mTJuiuz6z3I5Ydtm5AyOR326bkNEQSBMB5HeaqslaIBANAeR3NByJAoG0ERiL/I567eZ0eSDFjVQPhbmV6EaQG3kefFeuZAKp3pDpZdmT6sHp9MET66blTK88BoS8udXAEGnvGelu5Hr4bEV7JpT6RrZb8R4IeWvgQ+luuFnJbh29H74Z/AVAIOCDWPZa8/+Enxlpb9+G4xuyfuCXBI2cGvPaa4NfAJggjV8ONPK2OZlfEpj+9aH4H5q3yd/c0qDxy4ggb9/mZFmE6zT5DfwCIRPegqGJQePaoeNM/3xzqwPzLwnyOV95868PCp5yubryeS94nzffm+882/bH3MA2TQ/kd5qqyVogEB0B5LcbS+T3CPyM7F54+Dydc8Yp9spmGW4+Q367bUJGQyBNBJDfaaoma4FANASQ39FwJAoE0kagm/I7apamn3pw0nzwdHkg1Y1AD9u4lHxVQpluTqZXwlYvtarprR6cyv7/27u/EM3KOg7gT5bbdrFsm5SxFspaqCyrJEhzI0jtRbkIFSyFN6nrn4pA2WzZFvRCYRvUJG/MdBXrIoIFIUQhEBIkWBAkDdEbRamW3Wox86Jt17Z4zjvn3TOnd+Z93/OcGd/3eT5zo7PveZ73/D6/M2dmvufMc6rH3Ma11peeaVs/5zb+90y19ssgfB0+a/bMIKE9Exd1D3Ft9/gw4A+FM4Mn3lbb1ePiNjGCrret3q/5jOEz9dyDeaq3WXqmbfvZvn37mS9NIAbigwfHxqD8v2FDDM/j84LPPRucD7apg/PBg2U/8uFBwF5ve24M2T8SQ/XBtoMAPobug+3W40P4vR7K3oPA/AkIv9N6Jvxexe/kyVPh7geeCAtXbh+G32++fTQcWDwUDu6/OWy7cGs1WviddhAaTSAnAeF3Tt1UC4F+BITf/TiahUBuAjmF37n1ZrV6BoH52XC9Cuqbof1SEF9tEoP4Rmgfx8UIvnoCayOIr7apg/bGXMvGLy1VU18YqIP7mNBXc1ZB/2DPh6H9mcFr1fvGCwzVvpyztIb80mv1NssuIJyd6+ycg/HxckO9bE71WnWxoboBfPA+rX2J21b3uS+91tyX6nJEY1x8YO3pU4MH0Z5+/0PVXxjEv0Z4//1zwunT8eJJ/IuF+Hp8La6JP1hPf70+4h3pccmeKlRfCs5jiN4M2ZfdnR5fi2Oq0H3wgNp67GDc2UC+DufP/8SG8K9T/wknT61jYesF6H0IEOgsIPzuTFcNFH5PEH7vvu6acNUVl1Zbjgq/01pgNAECBAgQIECAAAECBAgQINBFYLDG/SAoPx3XvT9dL9Uz+LxaK38pSB9+Hv/64P2zS/1US/7EbRtjq8+rfx/M74MAAQIflMChh9bpz08+qALX+H2F3xOE3+Pu/F7jHpmeAAECBAgQIECAAAECBAgQ+AAFqrXu65B9KTgfft4Izv+9FMJXgXwM0+sQvTE2brM8sB+E9/Hfllbd+QAr9dYECMyagPA7rSPC7zF+1vxOO8CMJlCagGVPSuu4egmMF7DsyXgjWxAoUcCyJyV2Xc0EVhew5rcjhACBUQKWPUk7LoTfY/zaD7iMYXj82Hvr7uFIa36nHYRGE8hJQPidUzfVQqAfAeF3P45mIZCbgPA7t46qh0C6gPA73dAMBHIUEH6ndVX4PYHfU8++EO667/Fqy107F8I9d94UNm7cIPyewM4mBEoTEH6X1nH1EhgvIPweb2QLAiUKCL9L7LqaCawuIPx2hBAgMEpA+J12XAi/0/yq0e787gHRFAQyERB+Z9JIZRDoUUD43SOmqQhkJCD8zqiZSiHQk4DwuydI0xDITED4ndZQ4Xean/C7Bz9TEMhJQPidUzfVQqAfAeF3P45mIZCbgPA7t46qh0C6gPA73dAMBHIUEH6ndVX4neYn/O7BzxQEchIQfufUTbUQ6EdA+N2Po1kI5CYg/M6to+ohkC4g/E43NAOBHAWE32ldFX6n+Qm/e/AzBYGcBITfOXVTLQT6ERB+9+NoFgK5CQi/c+uoegikCwi/0w3NQCBHAeF3WleF32l+wu8e/ExBICcB4XdO3VQLgX4EhN/9OJqFQG4Cwu/cOqoeAukCwu90QzMQyFFA+J3WVeF3mp/wuwc/UxDISUD4nVM31UKgHwHhdz+OZiGQm4DwO7eOqodAuoDwO93QDARyFBB+p3VV+J3mJ/zuwc8UBHISEH7n1E21EOhHQPjdj6NZCOQmIPzOraPqIZAuIPxONzQDgRwFhN9pXRV+p/kJv3vwMwWBnASE3zl1Uy0E+hEQfvfjaBYCuQkIv3PrqHoIpAsIv9MNzUAgRwHhd1pXhd9pfsLvHvxMQSAnAeF3Tt1UC4F+BITf/TiahUBuAsLv3DqqHgLpAsLvdEMzEMhRQPid1lXhd5qf8LsHP1MQyElA+J1TN9VCoB8B4Xc/jmYhkJuA8Du3jqqHQLqA8Dvd0AwEchQQfqd1Vfid5if87sHPFARyEhB+59RNtRDoR0D43Y+jWQjkJiD8zq2j6iGQLiD8Tjc0A4EcBYTfaV0Vfqf5Cb978DMFgZwEhN85dVMtBPoREH7342gWArkJCL9z66h6CKQLCL/TDc1AIEcB4XdaV4XfaX7C7x78TEEgJwHhd07dVAuBfgSE3/04moVAbgLC79w6qh4C6QLC73RDMxDIUUD4ndZV4Xean/C7Bz9TEMhJQPidUzfVQqAfAeF3P45mIZCbgPA7t46qh0C6gPA73dAMBHIUEH6ndVX4neYn/O7BzxQEchIQfufUTbUQ6EdA+N2Po1kI5CYg/M6to+ohkC4g/E43NAOBHAWE32ldFX6n+Qm/e/AzBYGcBITfOXVTLQT6ERB+9+NoFgK5CQi/c+uoegikCwi/0w3NQCBHAeF3WleF32l+RhMgQIAAAQIECBAgQIAAAQIECBAgQIDADAoIv2ewKXaJAAECBAgQIECAAAECBAgQIECAAAECBNIEhN9pfkYTIECAAAECBAgQIECAAAECBAgQIECAwAwKCL9nsCl2iQABAgQIECBAgAABAgQIECBAgAABAgTSBITfHf2eevaFcNd9j1ejd+1cCPfceVPYuHFDx9kMI0BgngRefPn1cMPti9UuX37ZxeHhxTvCls2bRpbw5ttHw237fhKOHj8x0fbz5GBfCRA4KzDNeaHpVp8jvvvtr4VvXHs1UgIEMhJ45933wvf2/zS88tobVVVPPrQ/XHXFpatW2PVckhGbUghkLXDy5Klw9wNPhGeeO1LVee++Pat+/2+fR/ZcvyvsvXV31kaKI0BguUD8feH+n/06HPzRLSvmDsxWFxB+dzhC4g+lDz5yeBh4Pfjo4WoW34Q6YBpCYM4E4jeeA4uHwsH9N4dtF24N8ULYkZdeXfECWDxf/Okvfxv+UBvPF8f+esIFsznru90lsJrAtOeFeq7mxbFxv/zqAAEC8yVQB1wLV26vfgZonydGVdP+HWO+Kra3BAhMItDMDupge+93do+8MNY+j7Q/n+T9bEOAwPwKNC9+jbvpbn6rXJ89F353cI7fsC76zKeHYZYfVDsgGkJgTgVi2P3Wn48NL3ZN8stss1TnizltvN0msIpAl/NC/GH2wI8fC9+/8evhF4d/G+qADDQBAnkItO/SGhda1eeEH373W9XFdR8ECOQnMOrrfLUb6UaF4268y++4UBGBcQLu/B4nNP514fd4o2VbjPrBddrwa8q3tDkBAjMk0P6Bc9wdG+1dH3en+AyValcIEJhQYNrzQvO8seOSbdWfPwu/J8S2GYE5ERh1sXu10Kq9TFos0/IGc9Jsu0lgQoFRucG43w3q5Vbjskmfu+iC6sK5i2QTgtuMQCYCwu/0Rgq/pzSsw+/d110z/NMk4feUiDYnMMcC7b/8mCb8dq6Y48bbdQKrCExzXmj/HDHublDwBAjMp0AMvw8//fyyZc5WC7/b29c/X8TfOTwPYD6PAXtNoC0wKsAaF37Xvz/Euf742psuijmsCBQoIPxOb7rwe0pDd35PCWZzApkJTHuHZ11+fUfXwQO3jH3YVWZkyiGQvcA054X2g6uaONb9zv5QUWBBAtPe+T0qLB8XihXEqVQCWQhMe+d3e5mUOov49KfO87yxLI4IRRCYTED4PZnTalsJvzsYWvO7A5ohBDIR6LK2r+A7k+Yrg8AKAl3OC/VU7vx2WBHIU2DaNb9XuiO0+ZyRPKVURaAcgWnX/O5yp3g5miolUI6A8Du918LvDobtOzk8dKIDoiEE5lSgfcdG+66s+Hn8M+eHF+8IWzZvCpY6mdNG220CUwiMOy+sdgFM+D0FtE0JzJFA+2u7fZ5oL2vSvqNzmmXV5ojFrhIoXqCZHbS/ztvnhXHnieIxARAoRED4nd5o4XdHw/rBE3H4rp0Ly9bz6zilYQQIzIlAvAB2w+2L1d5eftnFw6A7ft4Ov5vnimZ58aE1V11x6ZxUbDcJEBgnsNp5Qfg9Ts/rBPIUaC9z1PzeP2pN7/b2lkLK87hQVdkC9YWuZ547UkE0v85HnRfaD8P1INyyjx/VlyUwarlE54Bux4Dwu5ubUQQIECBAgAABAgQIECBAgAABAgQIECAwwwLC7xlujl0jQIAAAQIECBAgQIAAAQIECBAgQIAAgW4Cwu9ubkYRIECAAAECBAgQIECAAAECBAgQIECAwAwLCL9nuDl2jQABAgQIECBAgAABAgQIECBAgAABAgS6CQi/u7kZRYAAAQIECBAgQIAAAQIECBAgQIAAAQIzLCD8nuHm2DUCBAgQIECAAAECBAgQIECAAAECBAgQ6CYg/O7mZhQBAgQIECBAgAABAgQIECBAgAABAgQIzLCA8HuGm2PXCBAgQIAAAQIECBAgQIAAAQIECBAgQKCbgPC7m5tRBAgQIECAAAECBAgQIECAAAECBAgQIDDDAsLvGW6OXSNAgAABAgQIECBAgAABAgQIECBAgACBbgLC725uRhEgQIAAAQIECBAgQIAAAQIECBAgQIDADAsIv2e4OXaNAAECBAgQIECAAAECBAgQIECAAAECBLoJCL+7uRlFgAABAgQIECBAgAABAgQIECBAgAABAjMsIPye4ebYNQIECBAgQIAAAQIECBAgQIAAAQIECBDoJiD87uZmFAECBAgQIECAAAECBAgQIECAAAECBAjMsIDwe4abY9cIECBAgAABAgQIECBAgAABAgQIECBAoJuA8Lubm1EECBAgQIAAAQIECBAgQIAAAQIECBAgMMMCwu8Zbo5dI0CAAAECBAgQWD+BF19+PTz4yOHw8OIdYcvmTev2xidPngp3P/BEWLhye/jGtVd3ft9J9v+pZ18IR156Ndxz501h48YNnd/LQAIECBAgQIAAAQLzICD8nocu2UcCBAgQIECAAIHOAu+8+1743v6fhldee2PFOfZcvytc/cUdwu/OygYSIECAAAECBAgQmD0B4ffs9cQeESBAgAABAgQIrKHASndIT3Ln9Frslju/10LVnAQIECBAgAABAgRCEH47CggQIECAAAECBIoSGBd+7/3O7nDg4GPh6PETlcuTD+0PV11xafX/9djmNvfu21MtV9K+w3zXzoVly4vEsTfcvji0vvyyi6slVj720Y8Olz1568/HwuO/eqbapj0+/tuDjx4evr71/PPCz+/7Qdh24dZl+9ZctuXNt4+G2/b9ZFjLSvMWdQAolgABAgQIECBAoBgB4XcxrVYoAQIECBAgQIBAM8Bur+1dh9PN0DmukX346eeH64CP2ibOWQffMRSvg/IYVB/764kqAD96/O/hwOKhcHD/zcOwOs792Qs+GXZcsq0Kv5957sgwaK/n233dNcN1wJvzxfW6477EkL4OwNuhfh18Hzxwy3CfrPnta4AAAQIECBAgQKAkAeF3Sd1WKwECBAgQIECAwPDu7VHhd/uBlzFAbobWK901HkPleNf23lt3D4WbY0/8458rrie+0rInMeyOH3HOUeF6e1x735rj650SfvsCIECAAAECBAgQKElA+F1St9VKgAABAgQIECCwJuF3czmSJnG9NMmWj29a9tDN5lIqk4TfMUi//2e/Dgd/dEvYsnnT8C2aoXsz/G4upRKXZBF+O/AJECBAgAABAgRKFBB+l9h1NRMgQIAAAQIEChYYt+Z3e83sSe78HnWX9Sji9rrgMQSvlz1ZuHL7cImTOLY5Z9fwOy6bUi/DEud053fBB77SCRAgQIAAAQIFCgi/C2y6kgkQIECAAAECJQusRfg9bajcvNv72i99cfjAy+Zd2inLnrjzu+QjXO0ECBAgQIAAAQK1gPDbsUCAAAECBAgQIFCUwFqE3/XDJb/65YXhut8x4H74l78JN37zK+F3v/9DZVyH2801vCe58zuOnfaBlys9APMLOz5fPYQzPjTTBwECBAgQIECAAIGcBYTfOXdXbQQIECBAgAABAv8nsBbhd3yT9pIm8d/2XL+rCsPrcPzo8RPD/bl3354qDJ9kze96UHNt8Xo98W0Xbq1eHlVXvCP9rvser17ftXMhXH7ZxeGV194Qfvu6IECAAAECBAgQKEJA+F1EmxVJgAABAgQIECBAgAABAgQIECBAgACBsgSE32X1W7UECBAgQIAAAQIECBAgQIAAAQIECBAoQkD4XUSbFUmAAAECBAgQIECAAAECBAgQIECAAIGyBITfZfVbtQQIECBAgAABAgQIECBAgAABAgQIEChCQPhdRJsVSYAAAQIECBAgQIAAAQIECBAgQIAAgbIEhN9l9Vu1BAgQIECAAAECBAgQIECAAAECBAgQKEJA+F1EmxVJgAABAgQIECBAgAABAgQIECBAgACBsgSE32X1W7UECBAgQIAAAQIECBAgQIAAAQIECBAoQkD4XUSbFUmAAAECBAgQIECAAAECBAgQIECAAIGyBITfZfVbtQQIECBAgAABAgQIECBAgAABAgQIEChCQPhdRJsVSYAAAQIECBAgQIAAAQIECBAgQIAAgbIEhN9l9Vu1BAgQIECAAAECBAgQIECAAAECBAgQKEJA+F1EmxVJgAABAgQIECBAgAABAgQIECBAgACBsgSE32X1W7UECBAgQIAAAQIECBAgQIAAAQIECBAoQkD4XUSbFUmAAAECBAgQIECAAAECBAgQIEABe6MrAAACz0lEQVSAAIGyBITfZfVbtQQIECBAgAABAgQIECBAgAABAgQIEChCQPhdRJsVSYAAAQIECBAgQIAAAQIECBAgQIAAgbIEhN9l9Vu1BAgQIECAAAECBAgQIECAAAECBAgQKEJA+F1EmxVJgAABAgQIECBAgAABAgQIECBAgACBsgSE32X1W7UECBAgQIAAAQIECBAgQIAAAQIECBAoQkD4XUSbFUmAAAECBAgQIECAAAECBAgQIECAAIGyBITfZfVbtQQIECBAgAABAgQIECBAgAABAgQIEChCQPhdRJsVSYAAAQIECBAgQIAAAQIECBAgQIAAgbIEhN9l9Vu1BAgQIECAAAECBAgQIECAAAECBAgQKEJA+F1EmxVJgAABAgQIECBAgAABAgQIECBAgACBsgSE32X1W7UECBAgQIAAAQIECBAgQIAAAQIECBAoQkD4XUSbFUmAAAECBAgQIECAAAECBAgQIECAAIGyBITfZfVbtQQIECBAgAABAgQIECBAgAABAgQIEChCQPhdRJsVSYAAAQIECBAgQIAAAQIECBAgQIAAgbIEhN9l9Vu1BAgQIECAAAECBAgQIECAAAECBAgQKEJA+F1EmxVJgAABAgQIECBAgAABAgQIECBAgACBsgSE32X1W7UECBAgQIAAAQIECBAgQIAAAQIECBAoQkD4XUSbFUmAAAECBAgQIECAAAECBAgQIECAAIGyBITfZfVbtQQIECBAgAABAgQIECBAgAABAgQIEChCQPhdRJsVSYAAAQIECBAgQIAAAQIECBAgQIAAgbIEhN9l9Vu1BAgQIECAAAECBAgQIECAAAECBAgQKEJA+F1EmxVJgAABAgQIECBAgAABAgQIECBAgACBsgSE32X1W7UECBAgQIAAAQIECBAgQIAAAQIECBAoQkD4XUSbFUmAAAECBAgQIECAAAECBAgQIECAAIGyBP4HHnMN1EopyC0AAAAASUVORK5CYII=", + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot \"Amount/Cost line chart\" and get a dataframe containing amount and cost per threshold for selected\n", + "# \"confusion classes\" (TN, FP, FN, TP) and their total\n", + "\n", + "# at least one of cost_dict or amounts must be given\n", + "# either cost_dict or amounts, if not given, is set to None and won't be visualized\n", + "# amount_classes, if not given, is set to 'all' when amounts is given, to None otherwise\n", + "# cost_classes, if not given, is set to 'all' when cost_dict is given, to None otherwise\n", + "\n", + "# for example, if we want to plot the sum of the amounts of the True Positive and False Positive data\n", + "# and the sum of the costs of all the data:\n", + "\n", + "amount_classes = ['TP', 'FP'] \n", + "cost_classes = 'all'\n", + "\n", + "total_cost_amount_df = bc.total_amount_cost_plot(\n", + " true_y = y_test, \n", + " predicted_proba = test_predicted_proba, \n", + " threshold_step = threshold_step,\n", + " amounts = amounts, \n", + " cost_dict = test_cost_dict,\n", + " amount_classes = amount_classes,\n", + " cost_classes = cost_classes,\n", + " currency = currency);" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "fa57e083", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
thresholdamount_TPamount_FPamount_sumcost_TNcost_FPcost_FNcost_TPcost_sum
00.0072.867455301.374324374.2417790.01590.00.0000000.01590.000000
10.0572.867455246.827617319.6950720.01260.00.0000000.01260.000000
20.1072.867455169.424322242.2917770.0800.00.0000000.0800.000000
30.1572.86745599.924008172.7914630.0470.00.0000000.0470.000000
40.2070.86687756.842488127.7093650.0270.05.9790090.0275.979009
50.2565.38125728.95588294.3371390.0120.09.9066470.0129.906647
60.3064.83360820.30784385.1414500.080.011.4364060.091.436406
70.3557.77700311.37511469.1521170.040.018.9166510.058.916651
80.4057.7770035.09417962.8711830.020.018.9166510.038.916651
90.4552.4179313.38875755.8066870.010.026.5417120.036.541712
100.5040.5295310.00000040.5295310.00.036.5127110.036.512711
110.5533.5823490.00000033.5823490.00.046.8978570.046.897857
120.6028.4496290.00000028.4496290.00.051.4822900.051.482290
130.6514.8249060.00000014.8249060.00.063.1244820.063.124482
140.7013.2128540.00000013.2128540.00.065.0754070.065.075407
150.7510.7707200.00000010.7707200.00.067.2225220.067.222522
160.800.0000000.0000000.0000000.00.075.9665770.075.966577
170.850.0000000.0000000.0000000.00.075.9665770.075.966577
180.900.0000000.0000000.0000000.00.075.9665770.075.966577
190.950.0000000.0000000.0000000.00.075.9665770.075.966577
201.000.0000000.0000000.0000000.00.075.9665770.075.966577
\n", + "
" + ], + "text/plain": [ + " threshold amount_TP amount_FP amount_sum cost_TN cost_FP cost_FN \\\n", + "0 0.00 72.867455 301.374324 374.241779 0.0 1590.0 0.000000 \n", + "1 0.05 72.867455 246.827617 319.695072 0.0 1260.0 0.000000 \n", + "2 0.10 72.867455 169.424322 242.291777 0.0 800.0 0.000000 \n", + "3 0.15 72.867455 99.924008 172.791463 0.0 470.0 0.000000 \n", + "4 0.20 70.866877 56.842488 127.709365 0.0 270.0 5.979009 \n", + "5 0.25 65.381257 28.955882 94.337139 0.0 120.0 9.906647 \n", + "6 0.30 64.833608 20.307843 85.141450 0.0 80.0 11.436406 \n", + "7 0.35 57.777003 11.375114 69.152117 0.0 40.0 18.916651 \n", + "8 0.40 57.777003 5.094179 62.871183 0.0 20.0 18.916651 \n", + "9 0.45 52.417931 3.388757 55.806687 0.0 10.0 26.541712 \n", + "10 0.50 40.529531 0.000000 40.529531 0.0 0.0 36.512711 \n", + "11 0.55 33.582349 0.000000 33.582349 0.0 0.0 46.897857 \n", + "12 0.60 28.449629 0.000000 28.449629 0.0 0.0 51.482290 \n", + "13 0.65 14.824906 0.000000 14.824906 0.0 0.0 63.124482 \n", + "14 0.70 13.212854 0.000000 13.212854 0.0 0.0 65.075407 \n", + "15 0.75 10.770720 0.000000 10.770720 0.0 0.0 67.222522 \n", + "16 0.80 0.000000 0.000000 0.000000 0.0 0.0 75.966577 \n", + "17 0.85 0.000000 0.000000 0.000000 0.0 0.0 75.966577 \n", + "18 0.90 0.000000 0.000000 0.000000 0.0 0.0 75.966577 \n", + "19 0.95 0.000000 0.000000 0.000000 0.0 0.0 75.966577 \n", + "20 1.00 0.000000 0.000000 0.000000 0.0 0.0 75.966577 \n", + "\n", + " cost_TP cost_sum \n", + "0 0.0 1590.000000 \n", + "1 0.0 1260.000000 \n", + "2 0.0 800.000000 \n", + "3 0.0 470.000000 \n", + "4 0.0 275.979009 \n", + "5 0.0 129.906647 \n", + "6 0.0 91.436406 \n", + "7 0.0 58.916651 \n", + "8 0.0 38.916651 \n", + "9 0.0 36.541712 \n", + "10 0.0 36.512711 \n", + "11 0.0 46.897857 \n", + "12 0.0 51.482290 \n", + "13 0.0 63.124482 \n", + "14 0.0 65.075407 \n", + "15 0.0 67.222522 \n", + "16 0.0 75.966577 \n", + "17 0.0 75.966577 \n", + "18 0.0 75.966577 \n", + "19 0.0 75.966577 \n", + "20 0.0 75.966577 " + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# dataframe returned by the function\n", + "total_cost_amount_df" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "c0b79d97", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
012345678910111213141516171819
24-0.242065-0.3085033.760622-2.578657-1.335929-2.963459-1.3769582.6008286.0164731.5044034.683341-3.540326-0.026682-1.5355501.8044700.012693-0.399791-0.1875180.904504-1.069521
96-3.049729-3.7840031.107009-0.2011790.873662-3.947325-2.886823-0.8196485.0831530.8505604.0914390.033962-2.147115-2.442134-0.2542470.827896-3.5321460.291766-0.1811260.280283
99-1.653646-4.421039-0.7534832.040763-3.970115-4.7700705.4462142.6016201.5238242.9146461.196405-0.8257191.3971090.8859380.5087962.0752170.2768880.7625720.064900-1.881491
126-3.434496-2.571210-1.2294710.0639100.444734-2.9921230.070030-1.4544591.5947850.1358792.5769300.357375-3.0427570.2353900.280402-2.5404031.4381690.888857-1.2843180.233549
136-1.360906-0.2121362.3999200.6676942.154019-2.3255761.0528930.1411613.8108932.8558835.371719-5.3705570.355076-2.5437521.1331721.1768710.9251201.210851-0.5475870.559531
1761.288896-0.6470203.014068-0.5011102.388474-5.3269212.489166-2.980914-1.745957-0.318102-1.713305-0.246686-3.9224315.5700900.5236160.9770631.1207061.2906730.2414140.768060
\n", + "
" + ], + "text/plain": [ + " 0 1 2 3 4 5 6 \\\n", + "24 -0.242065 -0.308503 3.760622 -2.578657 -1.335929 -2.963459 -1.376958 \n", + "96 -3.049729 -3.784003 1.107009 -0.201179 0.873662 -3.947325 -2.886823 \n", + "99 -1.653646 -4.421039 -0.753483 2.040763 -3.970115 -4.770070 5.446214 \n", + "126 -3.434496 -2.571210 -1.229471 0.063910 0.444734 -2.992123 0.070030 \n", + "136 -1.360906 -0.212136 2.399920 0.667694 2.154019 -2.325576 1.052893 \n", + "176 1.288896 -0.647020 3.014068 -0.501110 2.388474 -5.326921 2.489166 \n", + "\n", + " 7 8 9 10 11 12 13 \\\n", + "24 2.600828 6.016473 1.504403 4.683341 -3.540326 -0.026682 -1.535550 \n", + "96 -0.819648 5.083153 0.850560 4.091439 0.033962 -2.147115 -2.442134 \n", + "99 2.601620 1.523824 2.914646 1.196405 -0.825719 1.397109 0.885938 \n", + "126 -1.454459 1.594785 0.135879 2.576930 0.357375 -3.042757 0.235390 \n", + "136 0.141161 3.810893 2.855883 5.371719 -5.370557 0.355076 -2.543752 \n", + "176 -2.980914 -1.745957 -0.318102 -1.713305 -0.246686 -3.922431 5.570090 \n", + "\n", + " 14 15 16 17 18 19 \n", + "24 1.804470 0.012693 -0.399791 -0.187518 0.904504 -1.069521 \n", + "96 -0.254247 0.827896 -3.532146 0.291766 -0.181126 0.280283 \n", + "99 0.508796 2.075217 0.276888 0.762572 0.064900 -1.881491 \n", + "126 0.280402 -2.540403 1.438169 0.888857 -1.284318 0.233549 \n", + "136 1.133172 1.176871 0.925120 1.210851 -0.547587 0.559531 \n", + "176 0.523616 0.977063 1.120706 1.290673 0.241414 0.768060 " + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# the function get_confusion_class_df takes in input a \"confusion class\" {'TN', 'FP', 'FN', 'TP'},\n", + "# a feature dataset (X), the true labels (y), the predicted probabilites and a threshold \n", + "# and returns the portion of the feature dataset corresponding to the given class\n", + "\n", + "# for example, if we want the True Positive data points with a 0.7 threshold:\n", + "confusion_category = 'TP'\n", + "\n", + "bc.get_confusion_category_observations_df(\n", + " confusion_category = confusion_category, \n", + " X_data = X_test, \n", + " true_y = y_test, \n", + " predicted_proba = test_predicted_proba, \n", + " threshold = 0.7 # default = 0.5\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "68a5ff99-b28f-4ed2-9f6c-05009431d739", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernel_info": { + "name": "python3-azureml" + }, + "kernelspec": { + "display_name": "Python 3.8 - AzureML", + "language": "python", + "name": "python38-azureml" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.5" + }, + "nteract": { + "version": "nteract-front-end@1.0.0" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/pyproject.toml b/pyproject.toml new file mode 100644 index 0000000..fa7093a --- /dev/null +++ b/pyproject.toml @@ -0,0 +1,3 @@ +[build-system] +requires = ["setuptools>=42"] +build-backend = "setuptools.build_meta" \ No newline at end of file diff --git a/resources/images/01-interactive-confusion-matrix-train.png b/resources/images/01-interactive-confusion-matrix-train.png new file mode 100644 index 0000000000000000000000000000000000000000..8241de8287c726941f21de6c2d916cb272316cfe GIT binary patch literal 191235 zcmce7WmMH&+b1Z3AR!3Sp`>(5hae>_-O}CN2nfd-n^4LroqFX(a2-` z&h(?r9VlKc4W?=-vP0?-}>`uShhK=ZF~i($an&m8R8GJt{V8@zaMRC@|vK zZ#i)3tJW`dTUggelD%ZXWwJamQinj7xvJttR8J zZ`*eD{5q06kTDv)Na<7_dz;dxIqerw30nA+XtwhO(m%(mVgDIM*mzyw)4LY0W8N?Q z1ukm`2?LGpw10)Czc<8R-Fe0qF7#n97O#uxdnz#(owR}R_iDxlCB(JPsc=}yzW z#!-#BUd^gu*0t_>!MpI7Ie#tcd~(^>pQ z6cXWVH1}Wv$eXt!B zeZg8rL-F$L_Ntd`>F!k^QtCrD0V)Cg%6IjWr42KB;jHULWJ$z-Pb?!9}4T?`kKh_Moz>%+4P}2l;^sw<=D9i?p6llN9VdE9{ZLLvD|C!X00EYki4KT zk_u!s8r*?bIQ`)oCzBt|XWF}xd7V9;E_queqR^0A_r+L=^6{oJ-}`hbF|oWn%s54x z^KqulbB;}krgm|~P!#cJC5w+)giaC%o^OlhLPTPhk!$LQHz`?oeX!_`P=~gt~un?Py}ffvl^W*;cm81u>nK zV_x52^SwBuqw~hFAy@G5q0#(C%JiOe7wW#KhIv2g&YxxzNj&bKiLNpf%rOp%KySL!y+CYhJWQr^!YyuSeuDhQ7y542I&b2kdbR$!w=eHNe z=k-cipGw9u$4tD&KZv-UgrAgfYG;j^Mv@__#*P^4laW0O5+q57S+Z|PVAFf1to?Dr zhy1p0U~7mx3qiN2ipk;bwf!vdMd85K%&%k88+i?-&g?Q@rX>13`!c&KE;j^*ru!E! zx+Th>_(wN)@gc6X=!UvkbaRgPn3id5=Wd5Bt=qbTT|CbqeSVS8f7bpPTl=?EHJ1cu z8MzbrB}sLB7RE3@d~DU$P1>7N{zK~Jo)UwKh}^e#UV)fSKu5dEKHL=Cy{osNE>ne+ zuKzoi`LHPW_~s5<>S)ba4!6bgg3i`)gA`V+D3-oA(6~wsV!D%8T&BZ}`!hK7X0(69 z*!ruMiLj!=Y^U()c!?$Xhj$yI+z;c&LUr~7B>Lj@d7dv~$pU{KF=l4HA2DHbZt`?I zpi9rJk9D*erK`5EuA51WlW~qm&-xV3pZ+b75kVC94u-xaAZ{VG8-h~TcsJm?$nDKc zRzaE8aw_Wn@aIJxrRgrAg6i%|Dx{R?Xy=V%sMpEn;O%MbabHWz3VTa!#vsfWI|$@K zEXSwkB@1suZu*#UqycVCw~+5xC z)|spQZcjkT18VqG@TU@fH1fOU6EwojnK=FxP#9f{VmthB+S=RmiYnyQjk*_>+AvHW zK6Up%)&I21G>N#IW40sw4u%Q(r-xt{1!p{4a)?{e_44QuVs&@l5~>E-oZ{$uN~3X&qvkBtyt=Rv;wszR;l4ki=#OKSgF?N>8x zc<#USGHg0eOgcsh!}8-hag4Ijw{4Q}$@J_F9}yrBU1r?Cz@R^)OKocE;Sk7YzW{W6 z!kL}v3AT>}(%2XnWlWKN0VzCj0s%4ejzgWTA>kXD=NMx9mtj9 zQ#B}R-##JfXO@fH_{hBlRv5JzAz0PfemG>}ZJU?!s)_;puSwqXgv96l9Mgm-jdv}W zX@vZ6ZHR7*Lb@R4S)leVf0TWPfF%7Iok&DMpJV+Oo6($=R7whb?kizL$HY}VIt%!4 zTSuaAP7iYL2PhzBJ0Ga?1r%E`bSU~T!XOX@rKx3Gx1Ygfeh2(XP2Xp^xaDH4GvBwH zSl5@$5ayXO%2`#C6XffWgMj!8L$q6o{4Y*$uVVLQ!k8&p-D zv({?#MEQxte)v#AF`!Sv+$O1@-+wy=ZlcnnH~;HD`s2~Br!GzlhBnfR7e-e+&z*fN z=JdzkV87|yh7Tj)QyKszGhRxBK$=~c{8t_%h;v|ihbSU~5$`NxSJ#PS)Re6AUijO4s%M)rL)kCKAA zyt59J{uR9}!QrGO-mR|msp!|l^QLQI(AAvZLqtgMou7qC#4$i+&Z&BvHbs25$A}A) zS6JM+exb{_B^JW(F*3P%Dz9nQzIi%kyAT}&5v(Ln?)h2mOH#mou;y&T3Evc3kQ=rf zhM%j$jAPxvyT`52(=602&An5yu;4woFf#2ZY2j%JL#y3@64&jkRIu(Whf5!a5Gq2! z_i-mPk&pTxWO!78mJaTv&842#robn3FRvX>__OUHx6{~i+j+-Ahx3kZ6&!wB7^iuT z&=}Nx7!KP;ze|4Yt~RWsmuM_8cjhR9D)6-d#~)2{^M;0Eq{OL4X|vu2O4O{HI2bk`Kvh!sso>Xk za&kvcEAE`*Jf?o=z*GIaZe!bWP}8tPL*qZ^YW60M{xrOpTA%h|)xXs8R65o9z`}GF zuhwPbv)0u<@6!_UZMmf+H<$>)Np3Y8=9M%*>qQkdP^7!$J4QRXz>4_G_nlqK*)Jqj z6Q*ajHu^>X$5J+iv>iPB*q1E#xAvQm4_OJ!Iz6hQxO>wc5miY}nG=1LGC`ZeGIQdO zAqRBT+fWe?81tT)c6JH&QoX59eFdh7EO=rvy8~wuqKqCVFWW-=N2(FRQN6$4KI9KX`R?_l_f~Cj?nq!QjTHQl4 z|MH1*0V_)5;d{4O@ITF*F=b#^f^mHPLl1(>QRUiGa(N4PJg^ofjSH zRU0AGtk%0hcnfwQe7fGPGxJyjlcTd2ML2$lR_^+0iPFiiQ_G*-S4V3?>~@z@aW#3q z`weKv=PM58gZ;VLjd)GcqQm3*zr%?8CdNecOeQ}qMm3}bJRC8+Zy&t7B@Q23vOgW7 zT#Sl#f(h@I*j)Qu9M2q-RGjE+SumQHPL1SylOw08M@qvT4uBsnf4NuiVD;X#sHy?V z8xeg_=;bt&CQO&S$JTZBH&V=J%EAd7&}{BLb9#Dt`_&r58~nD}U)RHBqKbdaY27wl z4hp@yjqa?S*E(}0v})#0o7!*>o!VUmC4KD}!EpKf+GTHsUA4}VTjp^`=^%;M_qxB_ z#cP52f|zeeK76i^j)k(!_TDk|2I^(aT3fg3Z*upLp`KU8>3oIus5|^UOXd9l&wT;3 z)^ygGHZ+&hcyh>);JN)$ z%kAM^^*+}hbz)jFHz-kYDp%sBr=8O-NeREeWS7Rm-8WcJ`#L(+RBGKxPvZ<$FP!Ui zPpBTQa}k6t3n6gI0bDwM%z6E05pIEq`?tZA98gRd%RGXng+GsUR+%FuIE96 z-GhKIdPV4VzSIF5?S5GsP`BbFzVFzcPVBFd33%?#%=9<+))Ts|^meW?+^;&3V)ZRD zG9mucIIl?If7@LSj;X_W)a>&-fk8quDPCns+}=e`FJi8gw`Q8WXm=L|j{CfAr!5Uh zazZyp51aie%@hID1)7XwaQ11h~Yg@!H54Wy@kX zbbmcid#=Z$!l+Vp5o?0YnTM|}v#n15Ou*Gq0ZrRSTuysL_fV*>z~;e00^!8(X%ozuw(V11~qYdfqBWUN#!3Vz%#owT@K& zapQRJjT5s)+eoy592Tf5P$!}#>sCZ9&r69NLKM)HvGF2TE?+p`u3GgD%?N?}9p5eq zc;9j$66)LJZ)4RSjVGIrX6T<28c2e%weJ1Cn9<>d!dLYEgueOKJ~^+TYF4+ND84tu z-veKY{cti%sW34;V!{f}VSIvHB_*Z*w}sn`-4a#H z{kl{+T+P^kf`V3*7ejCpybMV(NymWRxkXJ)i^`WLxPCpM%t zHU+rcltF)@+}jrWix}LU&NIw3?~;%kC<2aoeB-`GOt1f#A($-9jyBJGnry3m^&A%2 zmG}AW@5m~qr{efk`S4|EAt+wp-H1a)49`lNF|m|aP7!9Oqx&eeOIDJ|cf}=tk~8xl zrzi=T2(z8OjVaaXw|qE0dmci#5PtH7#>%5MV&yM&Na&@a{17T)zVI`ZoU(^YLaw3Y zI*F(C^;JoAFb)MrnZm`dtFUN$D`y@&0Jf1BUPj{3T z63kgLw8LL)gsF~=R59U^zLtF|R!}G6HVkxs2!^SU7-hezs%HP;;|=lKl35IblyBo% zQzjocwA#S7nzUT#t!QbE21J&p&Pwr<999^19E;U5o|fAo{>29I3m?*)Sv-_g>w1^d z_8)uGb{v=_W5%po_|Ng`hh8Qfsr(Jp_8Ec>PYdJxFd^xNToEfA#;TRfz5ooG=w6B9uGSCS-M7J#d0D*yJ#lC2>}<2B!ez07M~VuYY7$Seco4xj~mznjICF>Pf;%Z6ZGT zmdI;E%5;aoerG!D0e8M^a+-=B4Sv0SP)Cx0rQd{P>Lj_YfM}4)#sDECmd}S%}P2=&yGeFLP z=)i2L@70C89o)UCXLjJ}n&X%$^p!v)E0vRhzg1iNHYVjZ>@PiEQ1@Y)u$n1zP-fKM zcd#!Vmss&|Lq$+uC;|u)-Hk@UZG;vEPnlG`Z-FkLT4O+oLeCzFZb%VM?4wkmGxhLn z;l}zMYHskm1m5fO`--i&$SGnSWcCSSfb?M zgN3CN1W1=I_xIP+JNR28^s&9G{*0wocsW=Tv>MHUKC7MXH-pq%b@fPDeM! zm3WipbK+la9q*QxXTUZ8)*p6HtJ?G;V61azk8sX<9q#7hpzFTEh|$yTi__xgC zS@^sYZ#gYs_G+PT(fE`Kq0(wK`Ug!0u6o~?!Y5{2YUhZWHR}=*;zG&m$_A4IGxMk* zeSeyH!A4s?8pXIErq=IBw}*Lxa;bNE_F^G=Vvkxt9V%KPB~!g4!q2m!(H+ z*C&&TR--IZX46PcPO)7%c#6qZ41WL3s`LJJz|~SP7LemYMM&*-tD+NJdu2h}LJYmk zf{N$joTuA`Sh~wxpb$aq=~}SgS)fE<1X;Qa{>oxVWLQY*ys#aXTji zUA1>2E_AucrQe#B1JvE+Z*XYb{Z%)UUeDS@5f-e^7Tgfjec8Fk;9c~ z;y@7h5nuHOl#IvXy|!Ka_m;a0q78<{9>D6BY+Y(yXK^fBJdt39-+|&U9wm!c5>DGc zKD!6x!dk~04iRL@+%~oTxocG*?$}k9#!Sp`3&O^LJ9^ZG@G7r{8#ihuSeu_QcpyXp zDeTutpI5W~epgE4<2ADg%J!J)=Rvf0;;kl1mf_)X3lBg87>pRuBBS^`21MC5eC7IH zNtyNL8D&``J4Tx`0gN}gd3liK^Gobfi%r<_nth$I3y*<#*7ud#p&}x3>q@Z1p|pA< z+fUu}$odW1f+yC!tJ5mbue9m3L;;;ycrH3qYr!xjMLebJHJH|vac`m@0?*6sNYsI0 zva#Gy{EoNiRY2I=Qy}`PnC;9YCJo2Vxf@F2eexaa+Z$|P zek*ug-(rBY4`V1)S!%6%H}@OsmMZ8UB~6zo+>XR6z6`Oao0JDDeZ8dOCTV~87ZOE3 z=^z49$8+9ejJT~K>o-wUI`X@Gf-N@<6! zkNy&liXKHe+8CR-{ZF%+B!v*wuz;b66Gqbdmt$v-LX{T6@F|G~Kb(UUUf;9IAs9&l z-iRz=0|E|>j?uP%c+T|nz=#_;B2dm&Mb9=zZ;R2IO6q|AZm_Ygr+z0BMK)ka78z5_f9sE?S**T-oqWQ^slj4lPvr#by?96ogfL3tX3ol>A%i&NtUk4F zQ0AN)`M%IVwxJF9z58!Qb}Mntxt@K8fo}=}pZsQmR=e%8w*;3!JoEiKIfEjhSOZsw z!_Tg2*p`i^E1cx}bMX~PK6;(TRd`+DTf-7E{5U&nDEo`S+C0}tz+fqyElp8XmL$m$ z64Y~qW8=uArU=^fa#J?$7`~Fb=ajoqKDi+3QaS|M@kR18D(coq*rs}?Ot(1H!uiJF z(xf9w<^8u~^%x!7Y`N^V*r?C% z9i8o)lrKOAj7^lh^c7Es7Zt6N_-V-|T%6B0-i7{#rG%i}uBEP_(-UC!TtE@Ruzvk` zNc)u{0Tf{0Pu)_=GWr9ho&rY+*4>3BdvodnRaIdY+^554Fgd_`0W9Z(qSHX)mjJ^t z8yI9)LeNA!f*;Q%r84reqf%~>fG!9ckt4+Ium2m!!H95}06^R` z*9R<+{-fAgmtChJro%l$B7}A`+6$DteU!0G^Hz#Qr1}!Pyhv2Sz(MZ&jk0z3yvkX- zXmAMZUhsOY@Nmk9JEh=lWO^CKL!aTp+{(Gxl_t-Yv<^QNqQ-m3M_)<^q@3oFDyins zV5*rkCPrCK-AGi?*M+1qwEZxr3w0r~4Ffblu9R5BEM}qBXo|sHRIrIKg;5-&lhC~Q zlh(4GpEz|ZsW1TzHKo;|4n-*8z{Pw3hnB{7rCgn}5x$OYH9=C*?5~K z;Dg{k@BJ+rvC)03 zCg7uATFxw=DrlDfnZ+-hTDtC_KA~Q!02FiF*INmRf&gV81^1Utj@xBsGjlx4w|OHh zx0Nzk*C~4sXxu*D8^teC_OsgKw%1oeIwwFZUo+FusqA0#-XvfvinQw&rPZmJ>GDZ$&uz$GuwByb8xzI9{9JxKXiTJhJfT;d?=CN{FH&c|qOGT>Q2AgN`VseOlNBTOIsm!GTijYUBz(-XHrqezO*aoh#RyMN&bM=o&RJgoulfDx0O&mVaL%?V1nw4i@bb={Fc$vnQj=SVJ=wH^GuGP{S8f%TO(S56=U1gwg)|Gm$yGvwV;jI^mcU3VT&Yxe|O2csZHf*Hi z>B&sSr$S(NY=-U6YEaZHjQ%+-ac^t<(K<(k7wQi{H;N}>|%P$l0nER7$KYZl-y zWn#E5u$DakH>L3S_K^h^lVn`=u2`Co90owhz?W!GdTq92+1>VafKTA9^h^`2gatiA zKE$*jj5}H5*B?tKz?*o`=Gmf`pN|EG1*I>kFtyy>7XZ}2b^sUg$DBDc(tt;c7&Z46 zA!Taj3FcarSkkIDgz_SUm3v%%ay(!V$cpThJQO+X+7{qydRxI6B0$37u>zXeC*WQb z?P~kPv)D6}i)Vto0DKc_8oz+F7GI4Pd!2Cig93a?Y|l??1uS<@{xEnzqBJeh&M)Bg zRYeLS)yXg|G9f#hQqi2)iCu8XU+|~q4y<*ZSSzm!Eq7Z1-Jb5t^M!AUU-3J!}eRBn7?Um0gC z05Gd}*!hzRs6bRwcvh>hgA^|*yunjFxO)&tN*OpDo|1^El)_kaUJ z@bFu%=4liZCQ@^djVyOTX@ce@esq7>R|A5ie_`bD^|QP@_v?KwK>sDeEqfQu(xhl3 zmx0VZ9$*mj6TJcTw<8bqxPLg=~ zu*i>7JX(&aVJ7jY+Q({|yyBwG(-&sWo2ynrF0s0L?`zFh7>VjOxdx2l|4zJ>@JmQ4 zP8Itqh#by$O7Ux=ihzph8L(4tTEN-Q5|1;G}3;;!|s2wEj+XLbYRwiN4FN;~_g3Rr)~>KS)~5Gl0_ zAQ_Vz#-s11#4u8#-i&Tn0u5|ZfAc90a#kN*CkV=M*=K(})K_7G#yfCV_YZbj+nM6E zGaVrOGF@wd20RPe-q|lUCRh~Fk>Yv?0bGt;MX^Mh+~shHHQf>pq5B~;?8&_&4^6;p zmQ_-1@3L@nIjqQ;vuUq<+tP7+4;%LO*C^A6RL1D<<3szA28g1*!N5XFaO^D|scyI+ z%qXpWCan0RbmnXBMha}of39Ux=(=kcrqhC!IiD<|7MwqR;r-@qd0l)e$Kj+Jfk|=D=$JwR0am)nCb0T zu8$kcb>93)2+xp4V_yOnwROnjg?p7Tp=CIB^ynX8PXc1ZCj)K2EGPm@)LcwpbB)Z> zsv0r~+#eqo-C32JkK?1}cuID#Pck8ZMXvv6F2*N-1f=rd@6smJ)LBX z$-2C@8O?CTydM<%UM^YCT*I^M@4l5;*frTUGXla~XqkOpA)AO9{5AJ5sS^ z0K1l&OQF)&Y$EW!q4#@3{_D!a6I0mWq_!1Ez6@t-IyNteN)D5iQtIPXiq6N!C!%9; z`u8h-XO5W${(PC`B?30GqFp_2p;n7;hhMxB%{fTXkO>GPg-%LHn~Dl*U;;BTBWJ$h zcQPls`KfmV1d?GC^Pe^=1}7^`I$%sPkS!YPdwQ&WeW{GR2lWkt;B_GnXIqsNOXBkT zDdIcI9$KHw(Gbh2Xbb^WCqf^$U_#`gnwP9Y#O9EWMGd8apD=6GyKod>1`aiquBZw1 zt+4_cs1xB@)n#+*>hTW|n!F$+<`9CI)_^pI+}}e(K@L!mShko0tIK|~AOnX~V zE9kIrw!6Ecn50@^LP-jr6P*zGl-mO;$m+2(;B@HA6q&;(H1|EN+h^M|zmij~3uh{$ z15#Z>BYns6YuHPzuPORy%p%BefD=oVuU!5k}8yCRgdT%rKq9Ve9QAfD|PO>W2vUs4LdC9y@lI%1EhbIubThaMqYd162+ zZ399;+2rKuo&+)Dev}RwMMtU0t(KBikFcB~mxHAKT@Nh(mU|-L#u=l=ApKD|6Cu$s zO%)>Y9K>$$OOl<3hAZSXnN49%-x|tks6EN5@>WhvHUlt{@VpoB*qkoc)A$;9D;EWV z5-%QALb{f|E~^#!OF=J~YPDrR>Pw~E_0{Ry;!gz=8m0Nd*nK`&_}8YRuCDeH6#1I8 zn(|RV{um#htN_^w*WbUBnb7V35HA7Y$L`9QDFHVhh>@fq-O|*Kn_O>VB~UWPT&vAk z3!*XYwaW=lwH7EeJSS&nbMEIkKmiA+6nHjI3`5WVe7)~OmiN+*8t{`qp)xH9ja$6- z`E>sm1R!((Gd|-c|6cYV;eFfajeyCQXZSDS)TFpy!X;|St2w;JBIhvYPp6{u7Zw#2 zehR+;B|o5jdF9k<>Zr5E?1%{P6PlQaj@Z=j_1; zmPGBwNg16#Sz10V%zT4mwwH)gtl_#W*s6NNje$y8tq1l@4sEZaFmzSw4e`Gl3iToY zc$va3y}ItyoW5|Nf4oBn!j=GS|C(^fc921Jz;xiE%L=&AS+Cy*t3B3Wz0`g1BLEUI z{H`=v{uhW+1~187d4+4F_i_2CQo>u*gyo)!R9aa(ix3SH>yzfu;`!|@Xqf2a2EQ6l zkKb?5tN7ANfIb9*YJk_Z`8sL1beYlgGhfc}q`100PxGiqR7*+$s-{YfsxO(ivq!55 z*Zr8h$rp;K*&NcA`b(}21YXsqr?h38n_V36J*Ej!LWm~Oe6_k0LtW^812t9c$z(B5 zRS*2hm^IPEF;4`-m;)4~Q-e67x`L8=b&1*~(d%C%f3Aj)?X4M5kH>PQ04Odhbuz)tD#2#RfERiSF-c;nGV|7X?iLA@ z8nB?v7s|qc5_EKZZ>*m{LlLfTrp4!WL2PmSz(RPtc5bf8|7G=7Iwj2Rw{7*+9>=H#jJ$pA@g$vhC5yPY2}fv^eRnp=_av>iTNudW`Z!`j`pu zp1{g`_5}u%bgXDmTcC{L)dX-`#&-plo4%zVrl4d<18kKE_Z%=15QdW~YU(^o0qmk3 z{&xi%195JD`%`W`*lH>h@&sSe1<;>ju*;bzAma+;0ZI7h@V?E$e29Tde`6?oVZrLk z=jSl1!UF{iR@mhH#mVGuZaNipu#!cWntb?Zw$ZmVqHMaYp{5tpd#K3pyuK`BwYocbZ{>MGx(7+rH>o7HFspDb zNGX?`w1~yS?L|voUwO!Adbd7f`dF3a`zSJ--mUMn+BKp6@a%+9v?0U^Gp5`x>9JD& zHWR*5wjiTqPs@z@;@%81D!2TkXc)W^O_pDQ_8c)j9QBxsAP;?82e@d?E*>Cx7(^Sn zvxCteh@>}fCd>^&P2!MqgmekC=~RaSX8cf)NAZy-3dFbKnLQcDD8o9;`4Th~V-1i) zH|O1v6yBs<=;NF5m1xJRX-&y@il{qpltIP!$G;a!)hVc3babiI+7IX-)GsrCw1i4X zYk3A=ue_!bTjcJSJiBJs!5wKKw6S1< zDh4Pt4|g3YjqFw*5MD{cMK@gRw)&yB>UXzd>DU|bQif7E%fKn?A*S|&6y4Pdv?X$@6y=_K&$NtXB!X`J)G$p(cnwJ*&iZf8(YaN+Yy+&E2;vqwb9+mj?bdiSI^9yIP#r1 zJ}ClnRil=JkY3+4c}1=eO#XN7{dYZ}0OjWwbg!Pjcuo$_I~x1*t+u_dL4Nn{X_ad1 zhJs=ah(1qkb`uyPOHCa)dw{40!4Xrq)ttHdWpN$^ z&zvRnQdQDkKPly&A}AA#Gb|t9s7)AcH9rU0hm3phj7Fu@C8~_+tsbRM89R9DdIy-i zWuvWJXV>?jIsjg0QzlnrtH{cs30!y>#w4i>RPEDM6ISLjxk!s@agc)sDrv$*p}MU;*U;7TG?RAfq$vVhkHm!rzT5zKeQf4Gw5o>%Dn zZD(1Zmbg>&A+Ut}FM%5B^!kOYyb*#TdErdOS2>?y*YK$Tkt~y{OhsRo+8}%ZznRba zdTu*lpyBF~9KtmVmFEl*HnMINW^p?$}0-2Xq!>li2o-O|&P->2et@ z3@)9Q=L%|Zs^f-1vBd?*@uLM{X#AbQFzHI?x3eS$pH#H)eHdFHmRype9oJWH^F)>A z-{i9V%?zCEKilRdJpFoRJ`T?%Hm({>46Wlif_l9d$6&ZWhW#BvJlmD} z?cudN9j+dVp6Zz?lU;i?!7rDKMmH3t0FAN1u$e|Em0F z;0_k^N#eUwodpRu2_-8X06(yPvB7*+eZMtYMG9CGqoE3a6rS=a#=nO-B>nH{EgKE& zAFo^@#8plj`_SAcCmO5%`;Hvk|3L@;NQZErID%P9xc|L4{}2HmlAr$>-uQRQuWjc4 z`d#(^{r5hXOe&-YfhB}P%GVtHxBq~Xe?NZtZuDXN#Z?ASe88vxoIn&A5KDqG)2Tqv zpp(EbTiF!JwdueoRu8mn(4vAVy3EM2F0Xz_ z!Z#~8e2@}hkU!xl8Wtz3rjw)Tj?7!{Xl|$dqZ14Bm(pu|gAAu|Y3%x~|2@Zelyy^r zmQJfy^`nMQ?WYoH7K9p@cOt$(A%czTm$)qMz1tmr6#d#TZ8y7^kwpod!R@q#d+uND z2i7125}cX0xXCK`WECh)J*0ai2LtGMXErni;QMF~vt>B2;JTs1!K8?^kRc=dRsC)3=}Mvt>S{f^3NJar~g?I z;6D2iw|jZOtOGtA&tu6L1^2NbdXeW5RlXa|uq#_G4+4A?a*)?gzN}$2qjB|p;6{)I zl{4iaKsi^bfRo{t^G(TAH}DugN0Di{Y+$RrZ_6(%UaeE+UzwMAd)zH*B^pbU|nn%44?PNCD`vzuv=;Hza5a)1SgM$^$usXCvK8U+W=~tK2?DwZ@ z$j>jzmA8Gb7jW5bJW?|)0tkb#b(v>BJ;=RoP3H6JiRx!g7z;wd$YHtNh4q>^mJwX{r_5tW21FWg7%CG*;wr+H898Z5NYS~k04 zuxmLWQp+A13&<(n@$my)FaQj3!RM~I*Etgc2^<4kuXXqIbUo8y&U%7;pxF?kQX2p7 zZ}2vaH)$oHJ*vEKS52<^L0(XE1bu7>1mjyII6NPCu#Mv@^O@f?S-%$fWquvZgxZ< z00U@poEbeni00mI&3*_(uxf#H-cp9+4}^%5mVSm8ZE&wMCQPGK8639}`WeoBiMn1(0oo8QH&1kPQ+>JZ{l!T2lSfdg zCBpIU;Bltm@Cwp*`+YTy<)CMQ`}H%j!q*@D$fF?DqB5+@lz6*hQ=Qiwih}*(%X)7fr_}*0Ru34Kwn{G4pHhDAI?PPA# z{qWKymFj()5Qq)2vQ|Z;#`>AWD@;sY=A$OnY%be#)UMB}azHmY0t3UAE_Ue+4l}X{ z_*IdvSPVpv#f^r9SD)KuWam&=uP1*nU$lFfHcZ09<2QRFf=Wz-nk=E9k7HTmMJ4+< z4%hs6&W*#(T+w}#P0`I_J55r(xp5kY9an1GF70pd8~rUFW?q2&6e6OHldE@;U$Uf#!atRz4N`T zFtdVjqzF0dQe-+FmRUqR~YJsn**Z_y6peQU?k2Y(cO@;K^V3kFZRcd|r za^cUw2R)UGh1oot{D(=%dZfg}UPGQ$ork7em{=T->>OiwiWmkx-HE5$ajbe? zhtu{3{jJZ~dU|bkX1^JwM4wGvGGV#Qp7i&(&}!92bCy+6ly$R9t>LZ0Rq5sO`eJU6*_rbzJ)??TyEM@Da8rtTNs?*fyG{>ex(-B#wy!4Y*i>*^ZHfxMt^IU!E9)mZF`tB z6uV?v@{2C5FFe`vC3}wP6sP$4TU3OL;~Qka+FM6LSlimUWOk4qIKTQEWXs8EB3!Wu z#uiQw1j-xCPv&@i;R%&0+MCgyHo2XgM<}HY2E|@b$OnhhoaC^0VbX*?x<<*If{imQ zrbESE6U0X)!5q;iI|;LIX--NO@0j1mfUR)8J^P=X;`chu5qtbK5wzOG*c60=99;IR zcje)}BB_it2!*Ng&vi#~=7 z-znGQWe2~QbjbSnHqs6rUZ9!!U!1#7VZTxPiPApUeWP}oV+_dE_Dte+`2j|RZSqQg zMwL?&-OuiS=ai8g(;e~F*YYx>Gpkv{c#GFjJoijZjTcPqnPa|KSoDZs!*_avh3gN2 zV8$s~A6cU>x-U_{I35gcdNtp=d0x!B)t<YVI)WigBG9O0DF!JW^t>hmd`w2m&8c zy*HrOdZ(J5Lk45rKM{8{U6Qt15dM≧ROm!!>BkK=JO%s|DvJl_t9tm)i;IDgWX< zubzmZb$M;_9Vw;DnOO}w!PwBmV z%)ZYYJ$))O{21#@npg7g4W;5nd!$R+cx;t@_-`sAc<33eYeYOjLQ^==zr-&}zmt)7 zlwK~$neO5zusU)$&D-OCvSbHM7?A3bxw#YIm2)DaZVG@ErUro|(PVnqK_U0$uxa!3S!%X>| z-I$p7laZ)ak1tCU8D3z@-e(T=w@e?!JNkMFUIj&+m3SR+G_uxfWZg2c7;BEUmvqY3 zoqNfDc<9h|-bv!739AaDybzU%#33FOy3`_8>3vDU(KA>XI5W=1YExSJ^JwICv+Jcp zNI#KnSX$c7QPlxZ!l7E7<{QQYfi%XI5V6r zwZrw<>d;|E8!p#}=rRlZlBocbnUv~=KyodMVdoT{(St1QFB;+N zlk6W)Ly7MbdP-$IkDG37&R!o)Up;7fo^`ycbZz9YM;WUeaY!NdJf%03CPMjh{J)rc z>!_&S=zSDXKomixTP3BtLj^>nJ0zqT>26S3T99spL57l$PKg0V7wn0TC$d`8RpD6=Y98n_OqX7A9Zs!z52`(ciOzpMFugxTb`PF_PxJ6-YI(p^>3pkX<`F2BlI29O*-hpVH90(Xn#KLVT$3p_3S1n!(cc z`ROG@jsGSfP(qua4OsCd#V)W1?c_eMZ z*Wr022@pXo7y38$K&d^~QbQm*mh6?~g~1!CBBd#!QO4wVK~`<&lZ%d7|GuoMsg9gA z)c-SC;(h<&qb|!+FSg+dTSGrnh6{We^Q~??8w6%OK{kk6--u}YMx6_OShFOW|A2w$ zsdj0uD^S*0m#W^mJmtA)4jA?F-PR|WKF5!MCI{8muqI_7_21685zjiq=nZ>*myFvC z10w`dZg$29Rq9@tL=?C;`1?u`GKC`s`4X!9zTRsvz(`J%8SGJ;L06@9bdb3%tq_t> z{LQXfYHfFSwG{_mv2g)_vsH0ogD_CsMj0`WMe})aTT0e^FJH?A%>*jjj zTLiAea|y;cFhHP{_7^joNED12Z!0UPGR^p9Mn5P2x4CE9bNuamfJFzMfuPvAY=UY^ zMuuh04(VV*s->W5f^T}^foqs!C3YDv^ ze_=vXYa6(!)r`m7U;b4e7JJvsuT?lm;@V-_1#|LPm0D|CCQOQG&|sfV92> zJ;=QlZ)3=$<#hRXiznZBnzPF%+P`4q3uCod<+AL$=XaX63Lx`*3cO|1_818+x3H>y z7jKMzgbYGp!AYccc|(4W99!?h$F_ABhha_L9EX$ZHp^5YgK4BY zW;TQcWgw9;lIHJJB;EW+syvDGtFzx}6rb}$@Q>Lam3VYKu=QBSj zAADj^&C~@~@hB$SWc$D0u7@n2odh zYSq{=f@fZ>lRBdAM6UAivq!1pd>-^1fz*M2Y5lJuY;OR^)o z%8aJgS;Cx{-{%k^$o;|@BRiYx?HHMn@j3|s{5yf_#R|2o!b5C`WzmuIy0JfAvV zF-DWWHy)e_WWxA;^e8Cg9*`e>h3Ex^Vu3I-xp{$4M8(7{u~JMp^5B0$nox@bsj^K7 zq{8Ej5oCcr#Y0Yfo0~~-lyi1=m|&9a(g&lu&K5o3rnF{Bg$?bW`THElDw)stUFC~i zj?;oAw(g8!{85!xL>Q0*I$bC7uoUrp5zr*P(leHJokP|AxlJMe~W z`jxsfultk(>s(e#o}gV)gt_&MrL3I<2**GHJC#CMx7Z~t{m&uBW-?QD=gXVxUH_KT zx>QNo|H+UN*0&YPMygjY3#`_r>y)D`3ej)of9+_4eyd7kgWhq=j5zPI7_*yH1ZxIn zP03sa%PB8BDn7JKFU%j)%Jfo#agU~*3&_sR z*RroOdYu}muFrUE(&|GP0jZnfJ1Er8Cm|Z&CY+lA?-8`tmP!v85TO>bU#dk>97m@iI@noC77 z(v?}v@NbO&$qVD>ufZg+bk%ljr(b*bKrUVr8iozeuW7^_Go&E@u2><%REV(3kgZ*e z-P4C>zCr>@1wV!dlA>MDgurHT9KMWzSlK{x>+#EwbMO}5Z&?yf1dFo1wKm_}?2_WS zbp!9-&XE2rZXHqh#6u%6jf$H>ngZO_Uyl8!}m77o1+4@dm66^iwbtO%#jDw&lV z8~A6J)TyKxP4~M!oezMXpnEv`2+8Y+-1z(q#%gvJj>U@>uf&&&m9=2|thzM+m)Wkp zZx>SRGeH%jJ=QM?_6sI2bekNtvqIc3 z8qZfKrj(eJ#g2)m?EFcj-m6hr_cQ+xPj-gV1d>+YT)HTVZl3*4GM;ctQXqz@z*c+HQb$T>(xJ?-r4%niN+BB zg2);^`?Ui4Dd%`JXA`rhGbsDr!?^ZBIY%J_e2Uc6yXbJGg#ADxN%-26z_arvRMxOC z?*9ax)7^9ZdnzyJ-pK7{b)1*f>GQhleQW@;!8S|pDx`5$NMUsTsgfXzGno(oF%u85 zHVc`U+xEr>)6;^+LXEi-ZPir`-~(+}m~Digsq4-(G*CxE6Q7I#-~zaG{VGnUg`sBn zpbr4=5>Wy!^8o++XQAx?0yxw+!qmy@aH3VTRHGK9luTe?1c!MQZ`URupceN}fk}1e zseZX_T01;^->WH)v2%E1UrkM`50FMypCIOd!N`i)Jt9vRGf=W|3G$DALfNk`SO;L~ zv}dqB@Vy@vcXUc0GyvcAa9q!WUse-u-M0Hyy^UG|LH8L0>{CY(YH8UJV_nd@U5KvU zmIyP~rDy8EtSWK%C!)?|wx2Irx^YfGgyg-9COe71Rs6!~A4TVsZ@e(X(IG8rE$&IY z`x+U+%^vdd6m4Yowx3zcZoDn$4Xm|qP$vU%W4X&+rO_MfewEUa4%(r$B?42`B^x4%pvg{*TV4@v+e~(Tu z_A%+S7KzV#^chHX>YQwh-P>j!79uBXwE>+7K`b6)7X#oAeNclKTu%nMJ@1rE-!_G1 z@SE}F?p?vdCEkZ;J-dcxZKFxQ=ISQ^i*dfHvTjVAS;U#vTf3$3z8B`<+Cu@p(AfrQ z868XR1%v-I2M*8$8T5*RvZ8!&9?$+mIkSLB+|}9UZQm;unp;E>-}PvZYf4 zqHq+|_cMIRHap({keq<&rdoP%Plh7x!!Ne9z3Soz?ObTBbX6|Jn}IA|Z9QRib!S#6 z1UpeeKoKBF6-|DX5Gm9;Stwu?Zz_7JL(bE;J+|f7GPf^NKj`g~GtTFBA+Csu2ql&*x6Xl^>8l_Y1?Pzkw^0KXHyeYEXJ zi>TnjBMg<=CCWbEw>QF&nJ*9B-Kz3ecYYXRJntfM-|3|BQ?&U6S;%1i)J`(=DKJ zkITxqL1h7agKo`5bpP=nm`rzw_EXICNZ8qF-ULk3dJ;eTuUgI({NIS9&bqQJ*8ll4 zKt~Jze@h+xKaaL->XciXZrgxAcSye4!17<(4LVI;Uv0po9UU4)>ooe%fhi(CA8-^z z8|#6~2QHbB6DGloFFR1Y`LZCZZP^fShN}Rx!!CMqc-+f=d1h$@pBM5^8nsMbOAXIu zUj28CN-Q=$IAuF$fV)r53~d;rO9O4jtCK+Q0$i@YnG(_R(5OdLMfszMTPkHHP}WiS z3e~!K#O>)rV$`_oG$Jv!UXqYDk)hqKy;Gk$z83aMc(Z2P{Ax^pVnSoy+d$#w z`>El3!vD@fq8{mo9gYbwOZGFSa7@;*?K!|d0#+3Kqr#`YkRrORY}xeducfrx*9UNM z-LjnL78X_13_EGFd;`zBpn#GB{)onEGxi(Z`pl`jvOn#uurFWd7Z`b^%}Q22Zs#Kh zT(?qapwZ>N5wJeVBtx-Y8Tis!3vB1s)dfGRd02z^ir#)ReD0UFOfAwy=Al*j^v-5cBVZK9}j&As(QaMo=HvA$YJQ}bvsZ@ z-m1jC+U)>Lm+C)#;&b>VZGb<@vy#yfP}d+#5_`<%x(gnRJhXS}-0A^bjI^^nE3V_9 z&#raNx5U)b=Vf7%7>9p05kSs(54iHjt0n*CGduK*aQp19)B$GYE^rYU`ESKsS`U8m zJMR`><#%BCZ%6$(Ndb6wWMdz^XNG3wxv-wbA4x;+q)WO26=Jds{^Se0hPbtE2R(7a zOy6bdF}r>S&`$`&lEI^h{S#=^nD}epquVz7$9d6BQ1geNEV%#zxUg@DTM8PNKp|Io zbx!+5W(*D`j-nI+7CFpEmzfQX&tp(A3-v!N<6J%MQRCBOu$;QTW9T59)AsrckAMvt zv1wnDUkoErR3#T?%K)Di9vCchxt(9b{IX~P;N&Ru_L98&UncLf%PKG|l(fx0+gemue zNL7yH(OTUrH=()e9LA%G{UiQxWpHDE?{;U-2_pB0?Wd&x;|e--e@mM}*ORE=)PjZ~ zrI33#XLs>IH%u-(W&vaiF1&cuj8}}&&9bK7(e#BwU3$}4AD2SrDcah`%bymdFOiXV zYNeE*@sw%{`=h(zb4jlS&n|O<`D=7p9%y=XBEUdAy*5*VS-E!(k11zo;k22)fpw(H zFX+S*!h0#+vwpHV@*v~4d3?x`(lN~);OIT0p?3}IG z1BMR!mVT)kkp^AouTft=s^~ct@Bq)1UV%S>lJfiq$+L$H%cFQ}s0)XLsViBX22Vjr z-zCGY7>c2F{&p_U^(f-VzTP>Iituc*1h~^KnvW>8N@sicoeRo+l_lnlbEYak8rHzq zlBi@otRA;xpX`2z94y+;Dq0tX{ugzelgq^O-v;&xATQg%w_fwkI#RFdk51_rQ}x|+L1AShtu(wV1V~D#2ef` z;l+?j$s3Q4&5sZjnDM!p>+c33x0E&LZ1ycIr-ArURpoV|5t`wNl}F$CP22_`JutdL z*tI?&MZL>ql7^PDXZ#!atz`c*=-WDNxCl#nA28q(XRfJ58z)cW8^4!}G#~i(A zO&9PXP$jaSOJVif_>ga1y&rYs9lkMnZWpu7i+8<0$#V-I7YeTrQT(^#U5|D`F-HaY z4$}$@%`exUD`douZcF@^JUZa(&fmTOZa>`o)~n;@$<84XXDY)mUOjF4IS25;l9D%! zp)naR*!jQg{dyctB^iaX{s)QE`V56yJT>{@DAHhf&;=zS!U7AZzQo88!ho?@5xQ5o zJB2VZ)c@NabM+N;{pzmH<;lfO9I`eX1dOU&;MxwKCaIA_?@j?;VCJDw#D%h@xhgmB+9h9 zH-%5JAb&K_T-Si+JVS{Z9ipX-vPmR~DHy&6o%Q+MmNTQ6Ag&F5>oRs+x%iK=mubwWNG7CAyrC6GsRLMuiSb$Qa z03Gm(ItAJ}+2?)BR9+bgM?-XhAc5@DC%fg+vYWWu<_(>Z0mdumh)~*_9T|`<{Ejm& z?hA+3Y5iY8(|Nz{em2Mfgp`D@?F^qgTPkh+o6Nil1|=yrCNtDL2SR&~jSX!v+h(ee z#TO2u5Kc8|lGf1BEk_r{u(6KH%jPmu{qi}Fav*$x)W&6%1NQ z$=t$}AaZ$+YAKN|n86hQBJ%uxOLMQ($@D95KE$K0w|^HIu@XKZEOvMx3YLrUpP$b` zm};zE5>HLltF>9Vhrt5d0NEfc^1hTRkYxnGHblBCF9PwtJu#*dRs9372)J^O3rZKA zggq9@%2ag?;DDfJ{RLCW?oaGfzww9%G+5k>vguHTzWWJ!wTD})QzYE;Rma8+E zLuyaog+;s_)&OU62De5yY={gqTHO8Rylc#cpl|YjYF85vj%lc08<1N6)juTf2u$tV7jl*x*mWZC%krgdZDmeUS3yf z`0fRJvOn(437S-AZ#j$0tK(Vo$&u)7$$z#U&w0=p>L&-Lo`c?kzU#Uf7?KtR-^_Y7 z%BKie3V8l^(_Fe!P&V&fSduu+-bh5Fms>Y^J@$4slfCz)OEW~H5=jV@#cvo>OBaqP zq-8?(r*Z6=!1-f{IuY!b$rSDVX5Y6?W)wCJb?(!@dGPv2B{r|;<^ATv$^tpX=tcP& zqfU@^x+R?g!Z$<|iZ&hSLZ!gWV~!U<<*@*4Fd=PW&mmJzM+|28TR5L#KZ|E-(=xmX zo;;xlfLim_c)SB#*9mQXJSdwnl!%h{Yy3I7ayIYb;0%tBC^!LAxVR5#Aoi&?KdiXW z)O+W-9jvYvjw}bUDp897(9gH|>sNLd$UA{BW}h?BmUfhYT&cP4=Rfu|-r4Zy(*MP< z4*2VGWTL=6xhWYVPzrzv>#u!m%xW&aYmeP#Ha<;rtG5*2<_$u#fQI%qcji2Q4G5FZ z!#TrXzZqV0vmq?jvi*SAU&RF$Ilguu)G6Sds_LlL*6W^(5R8nT#iMeN6Q2ojaj_Q; zgNZKr2~_MNQGibISiyKBC6T=PBY#wCu#g9=IY6d$oUXl!{jtbD?!LyX*jIvwct;1s zTf^oF9%9X}o~_tqo^BTDOISZ`=f!p@JSit+07o;?6#zFHukW3drikTSI!oakP_#5k z1cHWWh(+G~+OO1T_+tLg+Vs4jwbrF7%TIs<(U8Nsd(N=nCVbn?*&9>`p2*_p8f)|o zwMea`>Nn%2%(VaX5RRp{#M$xs1CK}1Nn^Pzy=SH2r&N_}lm$|B;=QW;6)Jg4r7^cftRhNcE_O_jPR+3h2d6gJ}~O;uZ)Z>ArxFuM?Z2X*1#%8xbehy6rUW1 zOu9Qb+D5%a>IYvyC#)uzqv_#6i*85FW%pDho`+-BL*IipX(yWe_$}`82^LUVc<`8| zzvvjFHxxp?JVTs?y$v4QvOgOW{sMgZwQurYF)aUC4NT^R;q0rK(aGjn2Jlsx5Y-n` z9PjNl{@;+j)L|6b7Tt4^6-HS5f=(Sr5~0B^`rt=+?qi~*wXz9xClN`f6wv!XUQIa9y9pyF1^*ePWg_R}?Mz(_8a`f>W{q6oTyGw$ z?zS{LG^7jFL+FrVHM}?Kdo`VHuXkep*|_!}xm}=-W8SC|1x%Gz9{U2n&bAwt7Uh+F z97ZozSGBDIV&j-!M)k5RZACbtq>u$nX7F#>=cx0vp6aRk~)4Ix(<8Uv@<&s)>Jd^n^-zNXOwxQzBj-i zV%@UpeQu>NEN0EreC0e-A)ZtsdYpN5=Z!wurS1BeZqSW{>`Ejt)!U z8(6OHT(S9CJ_>;ts`ygK&Rz5Fd5E3*biv(j)>FH7nnFFc`^>>uuPWtdufW2BLdq@L zFP2DYc8A`kLWALpor||xB`&TQ2$o-;(zE&oX7YmDAPQTvmO?f z7A~@$a6IFFUOikVOpUKqg8mbizgs>R;<=v{!BO0x0Ca>Q;Zc3l^VsS^A@1oUGvX`Hx4F>_kc5orhhW zufF*qHi#hW9%VFaLSWozBrPu{y1HTeXI0D5-xHmxs z_#QzaAue9bTg^>@I{~GZGjx{Lg#9+6lQ+{NLjmwrsrfD2os?x}T8(0LZ%ecQrNHhp z;g?^GQ|^L?JY~$3!B`}++9a=khb=NGIp2`lnGJmQ^YCqMmEcH*vPC^gKt zu|auy^2a@e&yRkwEAliuCa18f+RO9osD?cCTmQe8i(Xr%fO0n0-J0=!j726QL>;(8 zd+FsxwzcE^!AAsiYxsX36&uzh1fI$6do+UI@8bM39gCF9qlYgZQe3yV-@o)2oVJ8* ziYzB+ZuN_If0r}8{|NW3CNUc#7l0LZ5A>MDK;5JD(&?*@X*aWd>?IyewzfrY3IwVR zjL^H$7pMMasy%%OCNQB8*R(?9sG0ywQMmnZxeT|`a~#A`sqC;Z82x$Ns<4U(41 z5KZfvy=8AZ15 zR3e(Azl(KS5~Q%;U`4LsXSChD;I)1W+#%&2qWW+*aRcO{Oo6b=DRWYPdce@}Vu~>t zpMb#db@I^kZ_$e@)KM+9kv7qdc(bLE1YHO@KuGVrqp0ySZtu`e@1v>{CSM6Kv#EX7 zP)`7bZ21o6-U--Ecg9BE0fR5FcLHfH9!`%nY~Q=kIXU*)oob?0)FhAlHnUs@C^oPJ zN@zHDcc)}c^zjM{zkZ&8_}{okhi*32pnWVNH#$`5#Qle8w7~Rj>T%)m4dH4BGkrzRGURI?k_h{dn2JBSMA0({$*C zH{4-)dXtW(i-em0ew05bu|~vt{alQrfH(H-SZ2j|v$DIC2cP1@t>N;&J0jX4kb#k* z_j0-nIQZ1h`GudWR6`-4d@grB@k>qpU}a^4f4N@>3x^hd`5aYhoeU)wLft(JzUI*w z^;fhJjm7?1<*WXoIvAq&H$$9S=1v)k)G7>owd(EGvWJQ0zAMdP5}QB?F|1)?lB?7F ziH;Yl_>4n+)xa#HR(Hl!y*gG)D)6TjMC?BXIS$|svKM4&b-;Wsn~ zv%IuEr7+kXx6oJFLt4={%|ou#2$2&7uKgZ$qTrPkl3rFAS_CUYy#y`#A{A<)doA$l z_3Kd$h4!tzS9A7(lm4$q_)3xlv>#HnG*Lfz;Ito%E^XucTm3A&rSJE?rN0YG0tO>l zBRV@#6|E{@`R)2>OVlBGJem1B%@CX&ky}`oP;tO=OwA0Mho9z*wT3TS@V95YKi8kX zO-=hCiX|a(J-wFNLd~aeQ?5*$^v(ZNNZ58(>iRr$qI41%CIWGeO~+%uc!&0JtfaD zaGfOE+RDR^b?=N+?;7~uYz98F^X{q`UZ3m7I^{4|{%y*c^xfds_NrLRAd6M3;?P^4=`8}%W! z6FSG1WxE>=Yu~?X?fs3g2aQ0eB8|L@#yv&FKH&WS+#-HLVN`oWF?7y^vm<#^85%Wu z+*G{b^}#{~eI(`;un^~@(Rq`;%!|hu+4sWo53?8zClrF!jBdNRn(=G0ML#ezcX3Dl z8)33SO+Tg?t|A+dOtCIa4&E7Hep&KyyKDPzy1?^*E*`U~ z|Ja_WXm~DGUz#&;E%~4f!HiIH9gEWm6>@< zQsbSC0zFW&f>P@TT+iu)W9&Zbjl7ZagXmT51qrhA)7VG<@%4wfh26UU;9&QS3 zw=TOl{X2abLO|Y;;B5KJ^aRYo0;Y+`nxqmsKE7nMU41|w+6|~tTEWZb2yM*+e3A;g z_6txrK7B&do35))p31F4lYWCx7&g;cc{OG`)!%k$O5Xv`Wu6=0fABzgcxb`+Uv~}| z^8ubBv?*v?uqKUbn3Z&0D5o#rO#!A(W%O!jCQMFZ&*+v%r+@uH&X-LaVw_#bvRkYZ z11$vM4e-ILn!y>~_~5w=_+ljzL&IvdE@K+t%rT9K7KQ<`_pdKo*e$m6^e0V)&AA9q zG`bS-yB^_D#r6^>8AxkL-$Q8GW;d6A1q*7K_FzaL{UC|~0n8hwT_d;v)R`_OW`GmA z!{s)@1y!aAE#35JGSn)bkY1T{d5>VxY4OA%?6TlC?Y&3BVIb9&%~w$w@{x?u`~RHP zJyZS9H3}kZN-k(|FBK?=J|M@oy?dy>cjdIhfjsFRy1LG)*8{3RrRZu)UB<50HFJff zp*33ZX~$q0<)SH-Uk-cNQL@q^_wB>|)aB_VBKKLYdP>>_xa)4w!1% zKi+(WRXkmr0fmyN#S_-r9P`ByE_RE0B+J;BL8}@A3Nk%|PsgoFvm`^+3lKj`3+a4c zvB+x|!}%2LTFzjtC#|m92JgY+G+{7@(|1p-$83KT=Z4Qc6RfmY;`+2SfYe~RsqC#_ z)8}AXgj?(%SGa!H)`%ZSg@C?O|C!&RazJ57APQ@YC54CLo`aWC46vE_FKiLSc zNCSRo|IF1H6^l^Ua*`5!+wIOZ(LeXZGCIpQ0)ayprf30n_L5@VU8KzbU)0w{Ssu?n zRvJKNRo{7*!}1^za(lS7`mVr}Sta0=lW2d1(txf+&Ic!vR+_DQ`>gMz-N(f@={vUt z67^DRo7n_eAQYIO<4F~x5~zk)6*EGb!x@%K*23lg%c^}+|Mz-GKL-ZM!F zprAN*^vS@;)EggtJOC8)s;e_`O)G0X&gqYrsLeKyn?^=ayaL`rq(*$Wz+wklBw!Pm ze)M87tq84j>SL_l>3(!Mr~N@&8Qe2{=Vdl3{EUO%Pg=z@9X;v{K_Nj7gH`)x1V}uw zk6ykKi6xWoXTG!t1>NKIQy_U2BP9kT=iCw@em%HL)M9^=x4@1dx$i|v_3{Oy$kT%1 zbpo+!tOHxL#T9t2(`-VhF&Q2$Pna&R)BQ(}OcoQT*$nFLAga%f;*s3X*n^8!4gU0t zd*c#3e67i!SgNo5UQMh<-(R@y;^3u-XDY%%v3-5yPH;xU;rK6eQeadA9wg_pt#!P2 z@;h;=$B^Mn;j^)Z-6up#D{U9{3}RwL02rY77?r8|4msIPdKz{e0bK4_cB$|~C{cj~ z(0**-$tS?i%jnGvri*le7tXGx8!JsRZoIDNJ+brh9i}xaCmJNP8n1$<9QvqS6c?ux zHsuuMz-9ij-EeF?A)u}A^&}Ac*z{_JdJFAOHe8*;@B89MWhmCh2akXE(yDiIVUssh z0(K(~Ahm?H4?4eUtzdgfxbRLV_@e)_<6Y%sR`EA4tZl+)B8dLki&Krf%p#xdWT(+;RYZpa^I?EC_t*n@|M1C8pVd(UAo7@FpBm%7Im zz5I-COxT_Z2vFHS0TB@Mo3e)2bmLxWraNxvgXoIAzU41DkEtQB_XbjgWo-K45Hfww z2|OU7_3)n11HQC_4%G}bGIR=5?l?@rZJB1SyPPnRMwqB!Tl;U5CzcuBmNGU zM_FRu2YHm5M{$@isd8HtTVmOaG;k;sab)#`83*3N{rXZ~=SgY6XCAXU0hwb_Apv1pl^l7Lfb-9$wVX`%Hi z_1h5lGXCv_=*#Lp5Is9OWxk~o#ejCxsNfv0f`vlb=N%Q@dY`-YoF5Rjf=0nJIfP5J z?e-1}X1Ei&QkX41FT>x+L4qaUm$IzEdZ8r^I?WcmywGSS34v7p&6@o()XaQDjX@M* z`_G24#GU>1oI)0G18k-<<&VSg7?sI_k$gJUpXefHJ!2Z|TN2mS-c|36BdU59ZwY@@ zjrU60754sj+C%W}*#JNg78&`>@{d(-Z;?*37hT)y*9vK3Bw*rVd9KL;J`tF5C)FP` z2zFu{7apLepVE>pW`*|tQ!~_6Z23+Pmhh|jK|;VLBm@Nqb2&*fVt5}OO!&`n(aGY^ z_X_g@UOc^19`%@n;?J+YE>4VQ>RMVodHWN1G$UEvVZZEF`wz&mbyLW<5Ug_!#!upz zqU9Y+t&3FX>cN_INcrvRldxPpIq^5V|Mf%B#29=Fl@Hp;dPTIbPgU5+(ml{410F3^eYO5?i%k3E*c=6cje((_=JRUU z1n(CYi~}JyRxi4*Znl~%WA#@PplAAN5(w|zhrw^!9@9L-jr;scjcB=3t7vp+%gW7? zQKZ_mU=`lqMX}w{@pq>>V?7h1Sd*8Sn)~GCR~q_vu^8`!;xO*p!&I09-+0;&={HE) zS>!%oCaZoIfZ5Cx(Dus0e5EgKHPgHKFyoNMzrOX9w=%SW98vMJsPvVVnTUutGyBU{ zSL06>i4QZxZFCx*W*GsyYY3dN8;LY-pCrb^i`qLcJ-Ls4X`@qP(l+yzOY+WC1b63gr~tP(C8`mx_mIsR0)ho^%BTA> zi4*0U;u2y`akd0D9lIyx)+cwMmKL51MFhhmDt!lI7Ema3qS=-3%d2PcmlL4>dgeJ% z^_x#kOD_x%L&^${b^c^1SAhA%cd1uOrg3yCVF_Es_scynrwgu>s;Cha(l@Ql;=X~v zH&|acjxt`Uj};`>VQD`DkM|>s)`TAD<;-8Z(5);Q5}S{W6<8Q#3wpCgWR%7 zxA$3o$TzB8nfp8CYvIdk`)P&N-4neLM(FxZ)0S^3{h)JU79AY<3swTI;|!uMIzsFa zJe^qUyNX6Eyd5pzyfP(|dC^BH{lYkv0#?qJ_O0B}$+=Re#Yn-EEldC-9;^zZ+{@8qM2W&Zg8Yd>Z85KASrsO63O)Fpu=; zemj8@qpvXL4ij9w;e|A#2_+>rqG7(22qqrF=jj?eCYy;-GkN!9EX>hQLqguJZ`F4k zm@5{VRzR%9j|hnW(*oEo4Q`)+ZWTh00_cW7FV-spsW6=vRLo2z=^9;EN9KPZJIf@< zgkTkwHUSfD*z9fpWWhM<&b>*OR@JoBI`-pNtqjy+pfCR!Qhap!li213{3cgBv5E&H>S z#ni_qu0Nuw*rS3NtDx91V(mG@IR4meR{JvAzED1~Ht zq`c@+Q0Q}*yD}9!4!!^zhc|jrMO(ei=&FWE7(LUOnovT&9ehq0fMi;)*p{uCR(|cL z1Uni)vf6JMo7n^;u6W(v^xz2b??lUV@;s}P4c$ltv>J*zT(Nql52osqXC*Ja(dJAW zEBPB{CmP*;8;GpvBO$sV5awFz!3?^K4#uzN7=8SxHC1&+tAl2m?}%_54@?eye!)r~ zhg~ASaW>R`vRFSbHra7{O2mY$s`SyN`>nYw{o^^T=)G=zUZxIP`Pxp?qLB2T=M~cX;!;i7SkKmSiZY+n!y{Bf3!lYVl>sbd(VzJ-oAyOp(IbmS$gHc zqrN`2B1_%ze>urKoEQwNh0naDmosttgq>BYuBP!BVn|#tA)u>k9PnE5#}C41o;~Xh zLLDd?@33O4dorrsJ>h#1tA^%_lf>Y(RJHV^Z{{BNDe~XLyhE>CdQUw63}X)Z^e38T z{FS4z1V+3%FO`T-x}?Vf_k)K{uj7)FGjl47P{ZQi=&Llm12^l*sj(C_J=cG`|72#h zxCl&(rT=;oLj_+QKGVKwCk%S?TA=JCZU#qE>@9i-8yh=R*b^FP@9QdBr2X5=mW0?m zU3k_r%3{t3P|a0&vFYi|;Et+m8+?Hl>er6T^FUOLKJY{@OE$yzRn`cAY;hj=QVw&}QUlAUMFB_Z5-(sD=)W9@whjecnW zDP(zIx~L9jdVdGW;^T!>8gHt$1x#_{Fq*9gq=Gvf!C0OTSy=9{A)d3c2GGla*fd<< zQAF_oC(!3?5a(-<6p-B0KV9iW%~&k9KA_lOdCBn-19#V_zo<%~#-gt98a!Qv8MOQ* zfvIjtAKqCifj7Lw8Y3PAW9Aba;Sm#iuYJM*;MhIA`n-BW~_U?R=oT1-W-=g?nEbq$|BJzwEHYi3l&C^>3`nL3K+Av344bC|TOj1d3 zB!og1MSfPiLFW5)bupzxbmC%PqPp*SijVUk5(N(a6g7~MXJj{4g$-MZetrArdlHG| zB!ijm%0cVnp1iigN^0<#QRz-U!D?4fP*T^`+B%9C!H2G!yYuUIy5`j7q{4dDR#p~j zIUbIb6YE--IE4dvl)3@qR^X+pV5;@iiI!4y6$Y1NcvYmZtR$}zfu1m&)X$oj2H4`d z&De|c(c=jC`VMt#)z-+$G2D5ef{j-|plzU=>?*Lm@x0593f{@3$XH-OMoxW#+2*-m z3SunB42QauEdzi~I$~d7Fhl?H(r@o5h=`X4HH@UZWd$iwr5(Q%`_p&xN}+M@n8Oxp zYoh^(-~g#jE)^SKxgJEn-Y@6o+>#U(u5Nv{=C#w;it5}7@zD|Dk&#Lt$*>m*)e9@M z1uNe{eir?yZZdeOsQEQ0FthaYwgpKo@F%2>DSn{UOWhRm`9}oOJLJ>Pm8oEkH*L=} ziSwz%{jfFFzo|Fd`|iN-a*fTO;nh05lj1UBv;Jt0SHH=-}~v66U0oX;%Qt{hk{z z^*!->z_w7jbxZf$9vRe_M@ZT+C-+lGfLS|0rGf5_O>NU+;d|qMxzRn#)WMt%B z@DBKC2hrkU{CIVIp#qoULwe-_5>$hQeE5Ups7?n1(yUU;XsI~*khfjs3i0QY@1K5M z!W`V2B_3LRuSybw8j3iO=1D26FDxkq2(-XPI;XxO^7AZwZs5KvKe5mul1X2*2YzI7 zv(d{#FZbe`LICTxtRzJ_$2)Q0wt0-we|tAB`ZhE&r28xyY-3q40RVBgeQDLw|3!jJ z^x|WDtilowI2WD*;!Pa=o1AA*^ZYR{d>O2|Dt6oViihQ@L=3;d34u#BN#!fengsa;o0{vnJInsiBwLVH$ocax_|cXZ&>+R zZhG|g;~1ut)Xe$6b^TZmBNT6g{CWh=1xIqCqPi462oKTyG)~SHYg;>}eK0LP#fF7g z{V+J;-_C_9cbDgg_bbk0Wp;FeqT#L?$XNQli>tZ%+MVC{BHLoN@Z*mCj^0ye;4cSB z6~tGkoXXHTopfhv1C7Kawb-n*y7lJYtIrDhU1HPXgOyP!>8br&ZU!+$?ujcAkS;>G zIJv;mOa#bkmNqp2Q>XUwu%Vyy#LqqvdyNSG;(dOipzLpDS3Hm6Z0Q;ApzjH4o3e?_ z?{h6&`g5;r+b5}TUALn0g;i?rl#R`6^LTnsV$$daoj2|Bdq>BQ4mXsPndm9-^ZAP6 znB$nvw{e|%Qw%hpEzXwKJoKWoK|^7U-!B_&lrpxnq4nvNtDI`u>aU;8H7vw1e3kz5 z?Atr1Li^9_DH96bdQt|&QAeYNn>OWYZlo>9RY)P*L1PfpfGzs?jS)vJyHK>0rp(KE zhuGVzS@A=EgVt;_@zGCM$l|zylH%b8f{N?i6~FzJfb-yX{>bS z?qVtsLis(JV)e439Ajgm!pG&FN8U+=nWVVE{>+1wv5+v+8u%|tQ}sL6eh$oQp=brJ zLzFMWseXeg#{Ego;)`-hfAu$%L z1qDT<)4U01{fcG)T^no}h#H7I;MLuh-4#Kz1+yQYKIm9qvUW0INfNqG*Wu@$qjv- z3Dn~&&CF%?E*i(m|NNPnJ(f0;;51;5zZNfx#?mMCDg3lql`&Cmxf?&sn=aAdKwWLT z?F1qrE5*F`?Dc~Sd}?!e+U~*F&RwzkZ9gpz`~LfXSi{pjk!Nta=TBl78hb~-f3`pO zqz_|yI)2>v`*~)pBU>W9;0K(SSDBDO)0{6aPJG`dbVXQ5YQZsh=FF zk>8pRcP?C9Pxb?MeKT@%ecrTTAg{e-8Gnf1G?BDZCM@rDp)cg<<1X6>jb1RZ29$1I zF7+6(>*xp-PKW%f!qH7k$xJ!oiB4r&TJ}vuJs`w8g%p>q;LKjUeVZY?9klg*=+p!( zB4)De{K9CkfedjQAwwEQzg3FW13nHYLmcnSUi72xWBU}oq%ebu{?-1{Jc-*-nnvDI zGhRnE3S2|YlVMO-8$b`fobGy z=Kpy2K77w8PkUb)fEqu}sF#h*{L`&esX*{ZE#Vz&6L>T2?y1(aQaJH89>ENaB5OdX z(l4@rRke$ISA>9PTaFHX&Y7wCfS+(Px2!nv&0?*(z;xj`gY7~1LO^!*4r@L9uqf~L zDAQ%t=uqUx3x=Iq?tqq`qiYXi^TdXM+W`Sn(^cQ~uv1fnY=YBA9>HrNM7s=023G0T#{9mo0<3C!$f42vFVu@^%D@s49VQ>O=y!; zv@`iHXzbTNcBG3%C8p(l_%P6=o7J9DN|SHL{^5C1Ckjg?@-ctZ7emSW#u@f$f@;>* z>j!3fPo1mK4^G?^9kKexoTjc$&4HBziCYP~rM;l~Q~ZOf*D!&FnirRtA>b}6 z?nQjs2lJO1XFqgE0zg0Xbwwbf*(O@St9vFByy_A<&bJN34dMt@b6La$e8E>tV3V!M zX+k&Uwv7N%oa~Vlg_`Un0+}_B>bw-QZ8|zyZo0b<el&hJTJwxyaLTrc9a zXlR?$7QA|2k{if19`?7-xoTm5%eSJi7yUy(=9b-g+gWo$Mm8gKQQQ%ZCMY5jRS|gc zSkh}j+@rZFFU_M7IBaR}x+$j*zEx4G5K6_=6a=qtuW2iCQKx6X&&O(_(lB^#zgg4UmhZyblr4X|9=MAn5C{N!E3Izf zu;jd%7{CsQVh) zr>@Wt#sUm10$AebiZ3g#J?U~x(hfF#RE*@CL+6-yPz}{}xorj7re5x3F(-PKHVUNZ z`T%w?g8lscm$OF`JQ1ON0b=iYjD0SB!b3<|8Rwg^I)WNhd|H;ewk&OrW}d2*=gHu? zMB8phjlGI0HX9e)BEa$vuKa%gN%lppzG#}MM`)WFWv~;d9keAR4R#Sm)x0=&!=0(2 zASYKG69kBr1(8m*r-yG54o&!SyPu0|A@${Ax`?p$n3nEpSd>EBK65O}XB8<#k}Wx> zaTQ9NDm>wvsh&DCISEk+z0gf2K^<=z(~>W59L8J++?SScivlH`B#+v^jc$v~g~ z`qVrf^yqVuJJ+(7cDk#&(tsdU@+?b)m3y$H_A|Xe8C4@X)YS2bn3(nx8tK>s!CyL$ zxBp%h13R}^f4*i*K8xAo{85pSn0Uo`*-Zj&wKU)nA zJp~Fe*vR1d7Kq3rv0Xt#DLdf~(j-uO&)C+LgMys|g2eR9+^+qzg6&*~GrVX^Qdi(_ zad6|DPp=i+OcZpQu1=RpjDm+LXOO)^KVR>b32U}~FQUpr_}*Q(DRy^z@5VF<3jNm7 z)(=T}yR^NrWA0^1-7-w&?*sn9as*`clY*&jv#NEG`owR|)yxUOls(WBOD)rpMmsO( zY)+fVSDeV8}{pW z)ohI?jOc5)9Ew2|&&2o1==7*E{h}FuLw&5OUT9kU-9az3I5{Aq&^Uq(A{j^##ez^v zY`~!IDJZUuf4?vsF}9vSA|@1e>etlfWnTHsY5pB17 zxAzHzM#w}4>WMFicP+mHFNTp`01d-hbA;5#7^VmKJZW zg*FetC(V~b@uTVdkr%Y@XtZ#!PM<_mlN&@rTW%65BupTd#i*(1Invc}aWwJ)W*7<2ce%{S~9!fRNURIkJrvuQgQojoxE!#DmPmS>; z=A}K~{}jMEBRBS4tq?@^Cxa#@^M~?;9lRs%G4Qar000yHuDV(DrDWJh60XQ1QKK$O zYzb1jlDxo}#AUQ;iFyjEyp@K90BYFjt#GdLvS@CZ8wk}wHQ;`JCo$M9>J5CmK0+(V^|~aZpDV! zJ_0~<;itM-aHrfSxcE5dIwFF~@Q`)to~MLZmB3HD1JLE5akLiivxQYzU4@}Zcis&f zfD>J;zB65~xVswDHAv>?6N<5#l0@#B0^b&LZ*84;3<;vP42(SU^ayJkW50S2LE8}G|$G4q~T^YM@P~*sWd5nng}(Qr@6|e0#<|WCWO!m zI+HV70N7aG6%^4!&)su!n*-cTPE?wlbuQ8R?5?BD(XPwu*>Vn1$Fp%=9@)=d{@rx0&z|1xKwN;V zzX?fI6`%F`nwQtMHAr}b4+Mw@SR_P3^KG2?k%ayxljH-k+ z4ydy$Es_j_`AKyJ7#6@vsb#zY3cmm88$H=r^=I{*;gVe6(E3bl{Ti+|jT;Z!(e0=U zNX4%YCD%Fusd0Fl6)Z0 zdgieE-|VAm{xE~0>3QF9U>EXJ%=rW9%SVcD$|?X+WWpKbKy=h%Pz`-zp%l!%zP>_a zBl%1v6hb(mYgketHE?9V+jjNmaCEzYf+i>b8-1Fbv&Sdsa`-kHiuG!EjamZXR;RT*&1a6tUx1GXKADrvvESwmoz&vN` z9bU>MQ56VQKx_jGqpVRw);Zkuy4>V@v=E0;guEOv$(r{D5ZzC zu&`WIC~{ysssiyhq|*`xud7Vm*pfx* zOlWJ4CN~r$gqK&pF%6`J;C`6R<^(tV%^|BWSaR#_7jl}cS59w|wOF6IKF1w-b1r~; zWI`sW2N&gOKX=Qnt94eGxHdwygi7yd22t64aQdzIiY?fTT#VofzIp9EE*s>-gFH z_3KPvnOn#D|M}Ctzp4u+%FnbN$sGvzTD#6U9VWi4#Ph00z2bdlqK*++7_UaTVyVQ& z!_|NN)xkH|PAJ7{qjbfU7r(W};jLXiK-QFBCO4E9$M5WL`uJQ)<@st-+39~L#D2)i zb`&Cn+mVkf54mpKQDc~KmtykYKhb9AP&vGCtM|G5<`8}*@)ZtJ!}4;>3vV&eQow&f zzAjAA>Rtd#c0Eh267^V%n29Nb26fcR%hZJds+(rxCwmctsc9rhDJ1GAG2yJ7gBD%L zwdCFUbU0KtfLj5>yOcfI{$=LdjEtC(37HTF3Blib+B&PHTj3o~`&A=1w&^UnNsDUg z(M&+*d9ACL>Lbp&m*OF+p#8bxt9*i$iwp9N{b%#HE~!BU1b_fqSCE>WU9Q%8VGGW# z*vLI10jw8XGoDO{ZCeabREoqtHvH~qtLWL|Zo=Ll)z^BM!uXE0WO&kOOBh|+YYpN3p+x@y(m;tl~sNtY2 z+xM^Trp3Cb7tqgN^3#+ac&ZpXgVBJ3sLd&I5D?{ppNjjB9RS9ZOicD`M&y}fZZY?& z0I>qR9!ae}rp$~Beg)RWDz=MPt#E`Fc%4!YQl1e)tVgAsJoj4#)xk1ihCc^UBT$|I zP=0i*CNIBu?A~!0Jy;MBu@hjPZ>rl$l8~)c71zaT@qXNvb8r`f!3gT>uaqH4_Qnmt zsc>;*5y8q@RveZ2_>3{(-Gm6+2U0JgRPTQ$#xJ3A2djUNN>F((! zlj*=r+ZPX58Hp})x^*^3CdH4!IsKvm(9Y(N$Ui@Ef zF}@=69UU``+MP8h`T@d{pB`F<@x%4Lsm{$sQFV2qpmNuH`F%hjxDn%`Ze`VKY+P#J zuO1)s{PS1D0ihT4Lt-Kt_K^!eUyeCBF&PQ?aF&=S+*VsRUJ00+PfVepIJ3F6X~9kV zudWXmBAGA4S4;LP=B>SaXgq`xlQZ#Ip}GbsL2!Ab*@2r7VbpyR^K=kI;MR%nXJ(zQ3$ zgDLWoKbvsRq_P8rji|Y_k6}#^HK_LeI`1j@_O^wWj|MOzUD`LMhb(mZNQ{K@uw9)$ z5am42>m@H+cxW=FC6pr1P}%xT(%hh;aoT-O?at39rQ=ode{%s!NE-hT^?2|i`U4(b zOREiZ3#wbfPP^6EUDjS}O0*W6TPpfbv01JEU8jI&Y{i`XMmF&w*GP7Wp(-&S^aRA& z;pWzt66=i6T+vi>9|;&?sWvh)Q+xVhMfiMfNpVhYePQWaIPsX8$$5rru^n5bQNXRPU zZ4&GrdwzxV9ml2aP7RJrPw;-#9bJmNx$wIbvKVtWQDyQS8mzqX^I1Et_@k8o(KP;9 zrAGxl`Wb;Jee6;0S0A>`UF``3D|DI(8}0gd2M6s0)fF@&+L#mPS8(<8DyC%hi78Ab zpo3S9p%aN&8Po@`MYKqWwoz(F*DaQPPm>)HtL^Anub1Bv_Zrt!gJutMH`@PG;5%3% z|JhqTZT@D_n@hXb500yKGU> zc)2QjS}~$y|A;ClH^ORoPB%Q*C(;+N4dM>y0OyD)5i_@CULNKi()6 zuDv+>{?{`eg4N>=h5tNc8Stj>Or5qbefUXj z$C{fkZ?iruRXi`EGv&{%8%h88_G9I*1&HJHk_6U;!Z8jdz^txnHwgfJ~ld zk9*_DpRz(@qK-kC@OpUR;PH1wc1Qge6*@0SZevkiD1=TPhz-AS`pQQ8pPXPm-ksD? zm&ys0^0sT>i2F30!7yMj$5@WR)pe&!Jz)iNAXv%|7;7QnlJpb>%lOh`oofTvQ4out z@t)T>$~HVfLmZMgk!m^|C=KkggW0jSEdkz#?!?MW6lK}+VB0k5a4acfK(Ycc@>MzHc2tLC_-jNzf{8-{(??{P>S|D%b(JdU0u z(>GjeV~A#E`cKP&A1n{YCo)i+0sfOUu0wUi6Qk=<+jAxF`sUXoa5|P-&c?Hz(6I>P z&r0*R5Q*I8jFPCrZMl?@rbFY>9l3O8pKhw^dhOP3j9#u(UN|p}H($S{UhfvZadsGk zt=v{l+L1|c3#8!G(n33o7qiHG7u+7>88i*WEH5vR+_IgntABhsdyBX=sc6PCX==Vl z>TuS=P|ocyN$35c1vVJl*h3blutwMMnolkBZ#R#@ltz7wf2Am+>ul82j@|_A>}2eE z#qKEQY26Q1Qdx)=IvOCrfq8alZ8j=CEA`KuB;wa&Mo2KFpD+Y5{CodDzm_IyBp4Sq z`eCoUDUWq%)@GyRV}DumNEmJQ+oe3cAx^?Gg8%+g^gIg0HepOi(2PMCPpz-BNyrV> zZQn=q$p5+w_;=@O1dk2ccI7AY7V{$CND}|wPyV}BE!O|M?!U`B5y_(|{O1<`zdH?D zWd5K3?msuLj*mtB-@pFPg@Uu_;Rk+^qOak#i^8Z{N9&rV?RwGDJ5W&$eXLA(Ce-eM zk@vv3(S#+9L-@kk0Y-lg$q0fG{%sCjU8?!_Sdr0? z2!vGI`h!i4u0y9sUK-#yDRHs}LkAfD*AUs>o>q0qY;*loX z7EC7S!I}@C!OB`T%+?=iblMz1T!>b$B3L{(x*$h0EuQkrWU)ipvWOMg&S_AQyVxj_SyM>g3{wgd)a?M% zQG(8?~VIkk6q+{?&bfyFTF@dwA;HQ|8du?d4@So~KK1STKprR|=*KFZFP9o{ z;lm;7Y2v?D)6sJ?kxgy$XyxVP9Ju}65(T!H-^*hEJOs2Bv3`{p7O`y_cu<7!Zq`a{ zt$Avj4r=kgXHTJoVdgGJI~e_{*nLBN?atX*En4*F)CIQe%@?cV zH(#ay!S%0M{6p|>?>iY3mSPLIItQF=NdV@QLV&4ooMdgnWhN3s){hdFng9WU9OU~= zfjD6H&yTW{E0J<}ZA<$Z*$E+T6WW!NA9%lHL{;>>vEm%(l(l8|3isK-$;$JDK;;sw zp7=Rs&t1hW)^lh5;j}rfUsXmnZoJl=&;{wL`TE{jMtUZ^v^i3Vc3N4Gy1kkcsE$~B z#4a?}X9?_@0Q^Dny7gfu)fdn~7_UW~@mxux@~o8rP@r;am_Ut!Qda>WO!hNt_DW=+ zd}#B=GJCmQl6I~>q5o)^in$%blPr=`KtQBtLF$5G;ikL8-n1pra6BANZ)#1XEsSVQNeebTb`edY$61D?k8T5AGrX^ zE$pegi}myaQ8Fd0{B7@J9U2~UZ)yDs4~Yf?q9UUg_B-57{OT21i-S2VV8UgE_y^nQ zALjX>iNRJpvxf$Hp;}rj8wMkSBs~cSSAv#PzIf0hkMVyzlHbn8-)PQa&u=VY42wFv zYL5my681uPPK*Fhcv#$Kc6XjeEi?X8Y9NhQn6Ha!pE@4_4+bO{j0}HRVmwKPS<{hl zOMttG`pG!)3Yfhn@rZ&p$I{AgE3qla*eCj$_kG@AQROf^?zd#%2c_@SyKmyaQ zhYcBICHy62c_(*h3zjMgK8y{Oz@jO2i# zndtDAH=tgg279K6%!_qu<^=#K9NVR;%IjpvAAoD%=8Qd;>JBz3A3e!ic^7a^ec=rQ zxvm}-#Xx|3w@@2q||xw0+)QdrCTPS)Oq zrHGwhdiT#uompLbACad6{FU;-XK~rqQ;9z8{gD6(dDa?^D5an)DKqt>!t}buH|X!Y zze!3@cCcwmy?vqP^y1b~kK{Ul=3dKi6jbQsWgyo8lC0{XWL}-&pwEwdc0y_Or{&D=dJ25?aOcXBIJ4%z z!tZu3;sLLPT_p3ifGAw~9gUE)*X=_KJUo|S;ib5fQA}f6vJe~L~8Yb!|3P(R`C!&cD#$V7O(Qkn*vn(m~#(_AQYfO2i`!@Aq>Gs{K4;vr&W*^@4Nc#2MmOkL6T!h=0E=5$>qwtz5V^+VOa2k!aZa17J<NcP;&RMgd{TutQWwSd)RR7XqA>)ySXjcCNj1Oi-=M06 zC&2!QX5iSF4-6r);nvcDMV7JuJ;6J^M0{vG{qs~Kr$HG2gQkw8_goLr_h~La<}dUV zFqU}Vu1aM)?8B>T=~o4q6uX(lT&_6*Gs^RnW+`;ybkyHAzW?ZT@O_zBfNt>X=m<0( z&zqZiyUIMm%Tr9XQi-bQEcYb(cP|iVySwr2;ROw7Ej-x2J-?c*Y7AOc%>sHVHzC3I zDeX8&A&bTnOd=BfH&h0dC(T0OrkxkMS8;GPofZ$Uge#095VoG3muq8-`b4a9^7>Ay z#bn(3K-o5&E{7R>Y~vgfcxjfm^0zMP+>f%X>}ZtA_hR_&hT>s(PkMIlr<>P2VC`V{;9W*XeZ=b>NN9BCTZuk|WY4EX&sIhJxU&i;6#B{bY zJR^fV)rxTdo6gTI^X!SgJSfViDj%!|UJ35gNrl2~&)s5NY38oOTdvu_*%GxT^()x!NKzT%H^;r zfH9GG6ros;JJ%psirw%7(B>^lZ-AVlafy1IyJ@sA8@BLJ;Aw);D6ylR%VhenNsy`6+m)4;2Hb7_}- z!vkvvhgH{I3(`a9oq_=^pqi8ewifxsNg@JJWu=9NRNplYOs)vl!xu%lWqjAH0xo~6 z0aWhb-#9#{hbej5oGWns;kZpQ|tsApp(_aO_V4PdtZR{&tEL zCg6iTFw}BaMK?AhqD-I959(J{Jk4DT*DGS;4VNE7o;QA9_rDzji(YvM#NQOOEv3&l z1h1q;H6X+c3B2b~;N!qDp%sTQ^H2eI9=(v2}X}b zZjVPc#^ZnqcfjRYu~q__0mbHptX|VHH6J+G3uFjF9!4&vI+;|UAC7#bx|l99!VGs$ z3>)}&bFLc)Q2mNGD=Qg}rc-rs`vKcg_6>ntsa95`_y29vt)FKI@1N^qZSGhY4|vEwZCTY^R{(J&7ZTqPlL7xiwYPVaQc>xeH6NZ+geI^v$5@=zeA5mA9OGhK@$6n`rkg@lLlRFZ>?j43bb#3$lTiK8l)~S^Ye=K zSMfAKNJ8kx;UGN}H=i#epbJt}FuJ-rW{R|hy)tDzHTN4pgc>r0PBUP)*u-YxmO z&eZQeyIsUA*?G{54$3=#8{km#ve7N)jcD)UFT=7>B?h2m zG$v?2W9?;+rvBhprNc(EVCzAzXzD8d!NtbjZchyj_?ik~K}*`)CwP1kR7I>ZXVTU_2Xcpx3l5y=)pZ1w{1wFf$dzX`)Y5vwHb*H>H<*E#l zkhH3|LKT*g$?e_+nD%Wc5I1#&R4c&PGrudaC^wqh+Jw)3;Nh3aq>Yr8V$= z1$)lGfhD-R(cAQ15wl(P9jWG_M+82?_AC4o2o-i)*1v>_k? zq7EtreorKi%J4&NJn785EgxsX2{j=yIYex=UzHO>tY!uWyIEbbG4!hbak7~sdXgS{ z1apG!s`_juT%qfexICaSx_x-%222DX;AOM11a347ftI@pU@>upR&j9R4wsZ{_*3-I z+FsWpqBx=UQ`M36(=Q0Ih)l)+C;551)mZ(iDB?N4xz3B^p6>AhQIGl$UavW9rW+zc z(CiJz!cg_5R=JQlw@33OcIY?K-OTU}I%R&UsHNl0!S3aGy4hC17|^E6k<_$sVB%7D z2W^O1Z&w?Mj6C=BArNZ|KKmZ)falQ=?}&}f44Cn{%4KH_4YG>S{^gHgGSiu%zkfNI zx-LK%aX8X<9P(V2dcu5cTKI{dSFp_8Oo?FwGIVN+9ISe)AQyGdCuCv#Kkj7%i&_2` zPnsoA;r_ou9^mDSKsSGSv) z1Uk#WVzjxl^$wU1MUsLblT?6}i~H4$)PSgGL6-a|;NKvt{J_K7+@g7C9DJWnpvo0U zAHhp!W4=lTcO^hFyd;DEp__>$3e366uhQW*BFCp7oBs6fRXR)FLffwcQ9xAw^VM;6 z+sp_5*?G6-JpjGU5+XUxUkXcj(ydHxJ^^Ti?Mpzr8}z4YM9u)4WeHQ%`yGw{)QfDZ z*FCp^;CLbnfx^e~X0p{+u@|Q4Y^huKmlpNOlpk$H+Sl{o{u(v>z%T$>g29x@wrBSS zJouxqCu$-TJIYP}jqj5<-(oZpofyI8uKxa;2VaAD*48UZuSN6BO@mYtRoIIiS;*-% z>jBgkR`UYaolSl1WUdxuG#vGlK?m&6#yN34;`PhjWCe=IyJNNvR#1^JH{>6pnL;N6FUaIFFC;4=p6?kz4 zh69><>`BYJ`jgO%UY;TK|#$nVqp(7XyW_sOes9k9K+ao#f~$466e z;cUCOZ3~yUnsptP^33@@Vd_gltRR~}((HXV0jqz@nB}>{$R!j?RgohX=yk6J@f2`0 z@B#k7z|nX(&;MlN&#{uG^s~1r@wMi+X$u^2JUo${M6@4|mdb`O(e+ZSl#yTTNEFQJ zDXlh_)v2XD0OgAhH>rq4gRkD&aFkTf%3GN@6);Dv;4E8)U9yRo7&jnJiA7CkwG)6h zombAG6S46S{qni)wcV?a-6+uiRavhSO$*y}Kze0=c$ROMnRV-*>L(ieft>>+nX$t| z9@K!XEn?z}kt5{~gx$dy2&u=?h6A%R*7SKLzL`B;C^0Qb?vD^C7)R5NH&Nv_uGoCo zIzb^+7`zkhmg~PM#V|rH_pEhaby7RHU?$Bm?V+cOsP9fS%iqDi=Nh6)KcyX=%=so! zeyh_CjpBFDX){HVA}qf24fHL?oTa+1q#K!m`QMgPUrQNs+_{%Tjm2znwtwuvYxam6 zPU)=v_NurbNBJZl^)p4`JDw%%l;d1JVkmJvv%(B#WJRj!TZ_wK3J$sZfU!naGynSN z8n5(e>us1bvFDn!O#`kTfH~w5=;ZJr5}@eeuw@8&HnFrxMwXCB2$ACI`r^0eY&t85 zEKuPgcRE?i7=bvhQyDDO&-KmfR<^xlB9lwC!s%G4o0u>8(h&Df`oLW!>Nw$j%T?Fo zzQ1|0EGHR0utdVJmxYsN^!cc%S82krsQ9EDSqQ18r!0|Job!Mhsdt*y57i9zzI1p7 zr=uV0yMfEViNRB7e(%ALyK6KUMJf7qz;c+Zg6-45qo(lt2Uo976g{3K2c^_wkc zv))8!KkF#;f`UHwWj)phYAQ+bBp3>q#IUuKi-E~%e;ygXW$CaqGT)IR+V#chxF>jn zO&MA$@o5XDa@yuk6fVR-ctv%bR(1A@Yazf(xT8N3#CO+YIu)-n^hZhELqu>( zM0HhiQR%sFXHkS@$13_lp{*BY?v-@5-p0YO?W_&9>->Z7YUBdJK-cm`a$1lr42Yo-&eSA8KGW)} zc)m-IMdZq>s^+{mQ__Z%v8w{<13G?Eobz}qEZ`8g_LwN6P-h$=a+Fdx<{H`da(*g$ zj#!hv-%^)WnFe#cNti-m%7oO2uRXk6=vrWX;cuxWoFkt-)2L2826%3m`3wDQO+72V zFF^jNvM#0%WjC8rEs|h@{1`G~qOIRsFfD%Bq5UFQJiug4%RwrjMI*qGw4I>Z^Yqu) zOyKmZM2M%0%d=GTsWSD+nxPeEMor)2P^xZ(t<#RYT_No-*q#gVe|l+Y*Dahps|p** z$Ex4FdCN$wb$I2ktPH+uB63tt?tYH>Dxd|)+iq`YZ0MUIx2IT2`Cy3~yLdXjt5+;vombb2Th8*Mz`Q&72 zS{BwlUL1S8;Gv*a(t4SUC#U6G81y?{j^Pb5U2 zRo($w=V$>LuUf-bCwFArq6@F7uccFH8t}+ZI@JD~3!rVB-qSb(*M5;4QP|p6hFbLq$lB59S0SI+uZRSJE57 z*wllq$4_|)C5%2)FhK#&Ebl^9zv|5tDF6khz%g$)r7_?6yaaeG8XgZP)U$f+j?>K3 znL&yK2A^x2>i2FCqwry+*x@GLE#?-W!Ua4MqYOvLb}Ps{1%t;Y6Fki&O~M4wzzDKZ(owGGGQ3=dE?w2 z9-%QLuwK-`%ICi&S)9aNpEuwwi$1YX(gTlXKt}2W`)sHga0fOvw#<)eDUVzPDt|`8 zi7;OT%Ob15uvfnaQyH5$@~{2Ay?$UacN3BGl3b`T@dw%0i$1`aM` zGa;=Wi_>42k47$Ou2B`H%dtiXCekRPn6A3FN91yC@7H-7(E(b#9Bgc@mNz)?&i}nF z4E@1G{eP} zjFp5)(}`dAFhS662z>rr(~aceq$I==P>4tW$eP{VtJwuwd9wP5neGqA)<9h1y~9l7 z%`N-9*Ef>XhH}bmUwSK2Sg~>uFJ4y!pP`482Gl7@5 zkAcS6Y56uQ``~I3uEgguPT52zAU&sI;hIHNmwn!|KL-2ZO(vGH8C{NeHFhcm#1=o& zNe0l>uPKUO-H6kb&wfPM0jwBle?m%0Y2>}KHxtkFnUmx74B`Q&VNJ?tp``HcWDf|f zGI;B!qn;g#KI(A>T*z6M4#8YstNW#;Pv4fY8#cavAa(P=*mWG8SYa8}6n@bqP;uM? zW)N)Z^ni)AivRfLQpm)=zwu8>GBa8%arHV>N?AF&PYZWsMEZvVPOI{6nt7IAbQ0hT z?5LJ7Wk9sG^_7j3$W#p+U*9dEba6RQWo#Beuq$&*#jn2qTw71@drj5rA^n;FKYS(8 zXgVDQeMNB#r6)2r_U-9!K{!BRs@)F;B*5xCs7`RX)bhl0`;iPTNC8$3HhM~Dsk|X$iAd8{&mP6mfVuz#`T;Qc>0Hz)Qb> z;A0HePR@&BL~qN_6Qc5P83*S!i~lqmqsM>-mWp{!j5F4T3>+RfVy85s z-J@~BV@_o$-k!6qLjnkS`fqAkb62tPSvg(Bhm6`Jp>bz4YZnt_m0(*~!j>wp95qQf zb%`_Pn|XPfZtf3APs>@@NeI9-mkWHYm(H#l5fB@K1GZi=w&)V8vr!^bSn4;msA-}S zpxB_s{iJQKi%zPLaG(Z+oJ1f}QcQ$2-yGO?M}LNpihvdYtfI0v4*RdWroV#2OE*xH zF6szjE5Mf%?W@jf(*?rWY&>kQhJ#+}Bj!||TW|nFqU;TO3eH(FDOo~Ff{JXw6FcF( zS2wA1AsyO|O-m|3R1xs?n1zH=z*h!KUtO>UfEq7!rv?=WPuGjUwdHY={X+?=ASXw*ZbCaOw03+1`7(-9JX&q88$hy z0I+{BSL}n>50iZl3TQEk+qgc~lQgh1!Qup`f^)S`Y5j#^{0G}iFj)w=3a{G}1^cNw zx+P57=5=9knnNrkI@Oc92L6lzU#4nAX5_JBGtmrsSpDPwoN6$~Q9)m-Y#^QTKSxGu z>TquvCVW%pVS&K9d2wQC-@W?#5k#0(eLvNdw2A*&$j(Yeav6B!Gzyo~s3~-s2v?2L zpkp#~DI_@HZP~!)cHB4T8Cu8YTXqeh@0AA~?!X)#$6W0%ZgKQ5hRFLW;VH$AAAh$i zLGCZ|k@773+kR)w-XbVPTo%V^-DFbyI4VxlN@?4wpXp%Ijb;(N9!+Q|zu8!e1aK7a z1?;mmBSc%WovCHLq4!}Fn||jb%)rqowCF0ByT5hG`o^F2-BniaH+C10bZ`h>Uy(KY?0q*izDIzhlAVKOQs95kqP{J5NF zVLwe2A5+^<1XQf`F(Midjp5ByhyN-qW7c|K+x(n!Tq(U0Uz`}x9ojv0Qw+LnbNeBX z0AYhAEx%C03^FrN#x<=y7XWUc{)&f&YF#D@0*&y|dYA}7jR{dN)zX|pB3}K9LjeK8 zukS`jraH`SZz{ZxM!b#rYz3SA!4%Mr5+KbSim(IW?0V@!^AMesvkb|n(2z%kpe$Yw zXKIi$i5~K)qenk?&-k6M=-IO5aNv*q;n;bQclL>P0A1NKd=DoUPd|fLE}tE{28Azz zL#+gQH}AJ(DF&1}5C$e--p?pS+_*h$B+gxUnwIL!#7iXBSHGw6`$NuK2qeS_m%O8z zP{NJ!gJLxb6McEC2j>TG+QRyWmF=Bw*RbM|Ws zsvpK*Vdg=@vM8?ex(}sErtFc22ZoeKADgiApIj|g6K%g}4BtDWET?dO*-~fWc;Dj3 z5FGy2k@XVhBJ$a2jx^m-31~XU9ZyTBMo_?wKGBI#8;efYxE}mW8m!0Je z-!KkoMyv&AzOxy7%RX97Xbf>##&BD|OWzH=|VHRVoAlO{nBi9VINmnvjvEHHA? zcOQbagwr1uGF1k>}MDz1!4Mw!UbT{^rcy9XxZH5T6 zE}JcNr@#jT9^@Z86HnBx17wz?E#5~VVLVn%-pslFK8K?1ZP3Bh$l-7l=CX&}={;!t zoAjkEsWD`NC05?v)+_u@oa5*$Kkwd2o7Jk`{PkxSG*6)jo0Cz}5rLMu3lCq&&%6BG zcRO z_{E0y820zzQz)b^tjz3gg`p`8FV8BrIo{8t9ML#A-00_4@l3Jda&gId-R5*(GO=Y*KmG559$WSm>rXB>)rTvVp9cKc*&vzOgSs%ZID&4Yjw@{!-$7$y8hU|X7~w6hz3iP zQvdS`+%k>al4kcG=3pGBI==Fj{=(ArPzrO^O+}bE8GMFSSrv;01*+*qcLi6>2r$6!uR;;sWA>S zW;pkFJI)D_U6(QQiZl6IqhdIc4t-jm_W28 zsJ9ezrvHnKc5w!8Zu3;#Q+nn>{x&5DnpS=#h|@No313U!2!L-H124^%9PgKi(&sy? z*#c^BB@V>kD!d=fbHDruxo4u|9P)fO z;^Ae-17gyZ7wKv0v%JnB&k`X2bjzEfy4O79p2`5&2r#4ukQ5)~#YSiM#M2%<&~ zVlQ++&vEPeSS4qag?r53)6l+tHBeZ+*GG`6Gu_dFN|e z`@5{jN6iT^z!`O-{`c=G5jF-$J)cboy>mFhSQ67}UQtezS2bcWX=-APY}n?a4%(eu z_aY>LDe7B7Ak<5*jD*oV%_qlZG@n~+$3Ifnwj_o-tLKc+n^t8P;5E&qo3ek+lz7Ix} z{;6`B5(hN9YR>MMvgMI0M;0dXd(h?H%B05gKaboz&kD=1E7RM!M2x$#VFF-0fYhV6 z-tYR}X1<(GAjt?)POdN!Nb%iojCgNW0yNbW=nxh&J&&Fxf+U@IZS~-sv8t4ltG&80 zVhE*1!FZZsmxvoQ_p-tQ13=8wbvE|4*H=Z-zJWN`EiVi|Sggu% zac#Ro-i6u{y4(>bd_4cij_^3U>+_bmq{ki2%385&ZB4G3I}bgQ7K_g z00BO9oJ!|M7lKA^2TggFHojiQIFSrQ5nW!JLrfq$hf4(XG0J5xh6yZZvkPWEOoujz1@-@Jkjvd;!h#J z+_?xIdj2tdiwQtbJUn_RVcUDWr?a7Ql8%HTYI3qNNKOEQB)m^frgxy31MO`d*5YMl z0EPjr-0~LAqoZ<`HpO@_<8!whCy1Pl0S}TB%ufzZ;yscpcy=TTO$4yu>vU$@(gGgE zcy6MHWS&vd#yxuvlrF01B;~wqpMnf_@XJ2;CwiH1a~lQG&CLEankz4xLw4F`U*<7* zbV=RU4`wX~-2a~M54v1+2qmgZBsD&hawRU$?|rgXygC@?GBZK?0zj;KNj<-&#-BUO za>vd4Qh86ob|zipOH94OgJB@Sfh_|fHGm{YiA&fg?}(I`Ug753k(!Qh*(*X9ar80)C~R)Q(qkw)f;xJ0s=~x zG$P$C-5?+(@I&ctq`M^q>F!cu5QL!{LAo2IbAX|{hqy1_UEf`IE&ecIhB@cFPwZzu zdvk6TmF1Jo*MTQmT5Vl5s^Z!7HePto*3J$JIzX<`ul)Kge{hI=VI4%i^;UoAUULF7 zM&cs|@==f}#z8SILHizv!0-{sOeUTBLwi5Hnyv#|$7R5swR1G!M)bC6B+`L>wei!d z6L`QG@sID~+of@I)0LNV%~Z~7X7~a3`3?Yn?u6L+cp~mJ*DWj^|4ylWo^^`*w4^fYZt4f4xVxzG3#5bDYR0UG}{62tbYi&qQw}IMCA5d|;XE_?P{ZwW*88 znu9iD#Gg8HAjb>{qagEu8x8bKl0LkS4}t)2F?v56ux8#fN-z>1+1z>Q@q&2T#~qpK zV1zgbzTLj0Dr_l@Gyhe8bfQc3AuYA@D8eMFI`2JL3isAx!d~P{1gnU1bIn(&MTW4# zda)INF2*T&on4KBu~O?Z@KJm$u{l~=(~#t1K=ZB)lzddhxKk6>M8FxWbv>HMRJ5|O z>#YLXFdLPK1EYZuQkCAeCaVmo{bP-mvwwI(%|2j@Z0f@|2XT>1wZDY&30-R&yW6{D zuL)jMc=a003H!*aDz9Rb6*gwhdt1p!R;w0$7@EQ|&$?8_ZwcMne+2AT^E8Q$U! zPJiyMT$~C;-CP_vW9c!`#saH4<4yZ5l}3V6XpiC?C5#FO1qNIGk77q_nTkJ!XOr|C z#XP4$ka2$YKkI#ppX}Ct7us$g9CX4b8xS#M>3;KWXkjir2aTun7NadOmWJN35`TK@ zsWPI?b%3iuT`YFRUOw=~4o3hnS+ngDITE5=&z9;nXXoB-k(ogXo8BuYcwTH= zj`1an``#J=qvwHxH);gwt&So4&DhSpY}1@>CVcP65AJWG_vU;;&NIa=JY~5OWSryC zDtsQ)-bEAll<_NdR*}EcOg-L5Jy_>2|E;R)^9rD2_eW27z%0hxi5~KW3E#%^?zcI} z{FQd?e4k?Aw$n-q2Qq&98BC9X7_ zb2U%EsK+SmGJ3SA+I^D!f=cL}u|L+lJ5@p1@5q`Y990pa)Z_eLIDc;GegRp@y*-R2 z{{T8b%DU~pq@ow)+rXa$JI}_4?XVWH0Ft}ar)%g%L-?^H`BkNHo(n7D2HHRwl^uIH zGu&7w+;+Bq(++Xfj(-`SlOe@we{_+T>|0|myc)Di+JM# zPHXQj>GiP(m5G*@SRD%XvT)?Xd2E~UXuA$jmk+V)eafFv^{Xfs|6F;fao@Y=UlMM# z(1Oz-ug;v%Y=a-R27Qd#@(B;|~nQzf2tI~y>2tFAKE|q0(3h4R#^?Z9cBex%}F%uJv?0JA6t16vBr!=@3 zeLdLMKLW}~tq;RKAY>lBQ4?W*0R~T0-%gHO zJ0B6c;>42hZWIr2^AK2+ri&^10K6qphfUPk^+c17BpvhhqaiBu-#0q-5SD6HCxZ%Q zD(Ur7!rJL$QTGgJPK=0#rEwb*1l)wh;sHL{MeSE$%IkZ78x|Xnhw)nBz~rEPwLT#w zq2r|k``Yz15x0pa$!vPD^aukvKkab_3&RHu{lMj-T;H@LE4FYzS;wyHOx0|dyXrHQ|p z0N$pF6?bI-^Q@|~{NdZpzbIgo&Sn1}-Mk0Y=IkdTPRoC83*Mc)q?z+x*ZbH4f2Tqr zeogqYXw!_Ox;$C4)fNEgZ3lG)IEhr8RV9y;sK*Js?IAntK-j@->f3uzR+|+R0%jNs z|7USaRvuA8IkdcEfhz8)RkPW*00yH*u38Tr;xMSp0hs!6wj4YzHCy)m`!AlXD(4mI z_6_bYx=|Vd5NNTaSCN%b!d()U>U<Fx=K#^~w#WZXO$kySk zxjBx=z`({ocN3z5hAP)*W>H|QO%%DToRG zo$)NuYdRNoLT!5cw6m`?07#~#;H!ffb+3I1F_)D4gbfHQKo@X7#k+wiEv7S~c0SDu z#(RIHdkO5A%3G?F0=#bc{O`fkX*iE11rcAIgALPI6MNt+*b9BvX z-(t^fY7@FD5M(HFM|#Mv(;eG}c%8tCA4vumkYpXCCyfnWXMek7(2&4K=5bVpdRXw9 zBQvL!lkTe*yx_IB9%)~dl8YiL;4cTYu)a}y*^3JbsJ{O9MXf(bxa`)fkqn;AS4jkY zUygNL5Y$L`%`coNU3)I`#tFRk)}!bK#11CFola6blOpY6%aCj?OMEJIy|$Oj>~aM*-ugUo=A^<*Rq`<^Z^zsWGKmZg_A9wmYO)%H{E-_&reqG8kZTZuR0W4g7_z#hIrA^`@p~1Q-{*A;Kqy*p8+UY&f+*aVKly z>Ch1vi19iK4CA#^+pQ)k+8xK53tCXRg3)vcY&IkJ6=-q^0b2_^VqAwYWN0Y9KVSIn z29}?GdN|?@i}}apwr2I>)PLQ)kM&&|p4pHRP@iIFz;f9tV$%*V~6p+p+TE zC3gu4HlDL@Z4;?!zBKxsB>8+ddx0NeVN((r-a`&du?b#)v+rtVeZ=1o|Ch{tY;5YC zvKtf2v>gqHaN?l|NM`Ylq#}b}+3D{0BBa$^)M8R5oKhqejNV(@ZWLdRUT!gR*K0>x)eW;Em+5`O{1#s9)juFJZag674Ijr*p~>(d&>-Vo zj{g2?ym8&Nh6QoDPeK`V|5;pOwA1jOT;i$4XhwU7`7S^m0aR~KQKmW(Pz4xGHFX}~ z`cfX`3MZx;W-9U0$C;sbRNovEN;vWJIqPG&Ef&O@^3#cDoSgxfLlsJ9RiQLXt4S`{{vEzr3-Dt`_i%iOlM}L z@*O|${Vx}Qk$B}IvuITSuyfi&%bEoZmO~(a;^(|$$bZ2(?&o1qWlS{oXkfu7!KgdK z&h_%*6ejK&H?c;pr16CoH{*88W=-*CAqQ{+wFic$T(GhPb~T!stp z`f=YO;lAA$P~jzl%PcajLE23(mk-`a_|$E}dmd3Tpi=^-&%9t_!XHoD*C$Uy!pOq?WHH@)A0kltLBTNh*hv21=M-jt!z4pqUK zfvo;To2;!aLo#9a7nuc4$B_5_21H(h>91ICH;MR?W-H+WJ{MGlwfUJKfOsQr#`&T_ zeRgxx0c3oQ(r}_1e{=)M=IMui(<)YKCnv9BphBUkEoJP_j)X*?vQKM^v?uDCpzjkq zw(w6uKtw{(mZ1rX8z~H)74DWiWLbbqL{GY@`3ikfA>D@<)z)a}WQ{`az5d^8~nPsH(V}4QvgW2py&>)?J$;`YUF+2I4y*s_mo7%lQ>}lsc z86q zJ3LmVfY;V2m`<>6&hU~Jso(vWW!fR%+mnQ_P!_(9K)n@<`O9}Q*R0sM5BWvH)iShe zv*|Q0AhmM34VJA|1UiyAR^Mp@-4v5~+NMjvt)>Ga-jwf^joCv{u3&zSE;kfX#_ZB*DM}IfPb=ESZi}=(2?HufrSNu`ke3_N!A1sTU>t`*- zW~UE$F+pmY8vtbZ9cB|o&OxU^zMv}hyTPT?B3p)eY&O?e=U_cCF&R**K62L}?gi_C z=bj^gYdP7>6i7|t6y*B`#ui7bNigvJH?j*qFS~u|$A71$uPr5j2Lp(iK)A2?WDVZ5 z_}N{G%YCKfh=EdHf~(3nhb&mK4g5oqNSKbII1Rk@-qOdAwO5?HA(yKFRy#6z{^7~r z90hyPYCreHkg5Qt8j$4&wsXpC`wRY)f8}%X5JPBBncANO8a?SHSs?TX5bxxbS5yRU zrXyLhU}Uz<4AS|o9={!4w!UZ*;j6K~^S!-3F>%@13U>NDktyYHK%RkblHlV$qmL@y zw0wY*i0Rd)qaHL7_TvKnCP=EMAepZWo`YIh6r^L47{g3)CwO+is1?P!rLX_)PD`m z)Q4k-Hm^wWyL%cl^FmXvY)`RQ{{!67DggA%^kra4UtffjoF#VlqMwq`owxNx?z8zzO3VEeeYnVfAXQt>Q`YS*j4nTHVE=@&b`*7-ocqky9v;PY-(6$4 zP$OFxQ~#&=qnSSn@?Hy)#aTr+p`jtKfbQJgH9nN>MHt^jU&tD4EHG0yPxrHkBkMD6 zDKqf%!3*yatCebmT9b=?90lBvI;cto9bi*Dc!JkU~cq01Sn3qsV z`?-QtikW&4oFs8kw#HgVCjWWF8`unY2{WK%hLb(Fgt9Cgt#pY3ciy=#N0l_C$$ z*Io??bWjVkP<-i0ai@u_2?OVEh6TQ{==HyrtK7g&j9*877R0g(S1uW|m5B*)vB zrBRTCVAHbF3*iqqGaof^cwSTTGqDYrbj;Y0>dt{3x-W)sZ~{f{I+_8vEdz$CgK>*U znwmgC4Q}9<8v~{EzeUAXi%U)a#+ulIMi7gP2ND*TUYGn7NRS@lv^v~_)Ch~HO+4_Fyhd!5^?D{?>JY$ zcqGr78?sR+KpAy)(s1TTE(!7)QamHLyZ~INu#*fZhy_{ueZ*-zEs3VvWXoDOn)qZD z`tv(IuFB{7!3RqMRENSHHN~)_Z6T*giFospuw*V98Iq=FZC-XH?O$>e@@eX z0Vz&biRvK}GYN&pf} z&Yj%s{jp@+q9fGYwr=He8whgZM>ekpI-8_c6#ve>j+_SYs&Iij>XVLWEvJw~*Z-#Y zE-Q?-Z2&w?aNVKr2)rm6Sfb-Q2d|Fuqj~Fq$~`x@l%UK3wKa(bPnHK!xykZ4J?o$` zm~H&0fqI98WR=mg72i1n-WQ8p2z2LoFH0S;+~ZnNpikQ_rhXSo>^`Dp7=Wy)*59vW2^eAkDTkdF z^VYjpJ1<^z{T3XBy$LiG6o^S23fSM~(W-F8WZ20Z<0Dj#PvdqX040ohFEqF>Vcxx| zo?|amP8bVd(1n1{i~Z5g?DMeWgu2vH-n#gs2BSp*m$w-m;I8HumZ55D%(Nn2%f;|> zn)_mAK*j*23vQqD$OgMI-fyTXBBSyzY4 z(fKNV8SAYh+qjj;xU&Ww4^1=}4Q(G_=I=6N771Nh!LR_C=SjD0BjEoX--iLo-yOMl zx(+1VH{+@vzCONgz^8a%;tl9lwW~}-D;okODx8Pk0xCbuCX_}YD7zW^bWK;0_?t{3 z8#hI7J1<3s4&v(k^w3C~h~Iz*MNR;%H=3xHA}sJ}V&N}wi}925p(bk~rXR2C_P;YT zpJOWTE%RWvzXQkBH zyXu?w=17x^=!{OG=a2EGgRA9#x`W8Fu>nh#Dtz_h|CYdB02n7)szzz<*3+(z|-z<=@9y;~T)JbXHWNii)2x=csKOA8ICkrr1xfRR4ZDAeiItDpFn5Aveog7@y zl>Lvst(F(cw>$g}$CJ4a5gjd`0Wt^r{q3O~zF>sqvJ%jp6GuGc7XIYqR}&aq4VT+Y z$jRt9|D?LPb^QE(b=klS%-sHGC=Lidxf!1vG62E$s}d!Dg5iB{CSa^mbaDbI#DVuO z@CmP1N3?ka{x0+w-rbc0VN7cB7|y#0ClTLE*3F@e_TtTdEg*q$MJm1 z2@J4Ta&!HofhGtjivf=53y&8RsFMcspmY+D`rH!$eLjJ@0Fb8RXE56U5`O*H#o_o> zz$L-#>^5(f%|__2B2K40w2&_}y(%XQEH8--)RX}EKHe(Ig9w^eS(xo8Am!m8emTjBr~n@m2r@OYn}i#^0b1|^gZZ~V>i%UljMj*SR~eC=v$h6h-HcsHmZ^SBbhI*JMK z@m^^;O|iXhQ*9eiz297BWEt+QBY%|a!%XyCc+E$!4$zAK`Sg}xBNV`k_~A0?J_t;} zMI~4Z{e-`v-s$wXhJ(G#6ItYscpGrf{}2J)u5ougUeT{tPs8Hyn-HPUONb z#*M*Y)v1dC!!{QBXq9)l7_ts>@<>cJ3T1VrTy*eUO^6= z)W8&N8vTv_ii1;dgR#kM(87We80itU`Ptz%Us6yLADN~-qWY;|5Y^yt!S*;Ov8~^e z(j)*BiRR@NAX2KQ$}Y7=R}jNLbHelc)aFUW^{0o>NB zVV0MGn+(QA=(}}$Cf7S`1e@@<9MZhn{79{#mDOfT5Nr4Oimsl;h15$SvW;eg4l11D z%@sytX%&DqFFwX&y9x%0IFV#Zl!nrp=1ig1d5qiu*9Uaa{NL4?Kn1dA>OXals&MdY z0VLw5_}}-RK5+mJHZXlTJ3FfeaFI8nGm28Jzaj!}hb#lIiD~HwRy_4-kj9DgOIQ*b ze*orP47tO1NJ$XDwI9dLT{Eq_uZPR_!8QZ8^`1Q7Ab&6;0cOmehsH6}{J?HqGno!Z zVCGpfSFr-0Yhib)yaO|Q!VOtKo9*t`U|Tmc2eSBIAvr#m5lX9l+l z6!<#&;`|@db*{DMK1PESB~HG9hT(+ zSe!s_1gMWZEuQIF-#`K73Bq+sbu2SwLx@m!u4(4x*dOF1KnB#%iyJ&nR0a#<->peA zAQN*--F4Xrl5ag}0H%;d5d@STDOn&v3IReAfc+1Wf80fky|W8Xx_||MF^W@VyRv8{ z-%HSt^Kty*<`e_UuVsm4!k56RDzPWl%+sq=6x!MUI?lo(Wm zrA71#_B*>Hi(yvQhpy*kE;`E=kRmR-0WGN?f9N<8rOhP!BN5870vIp|&86n!o0j!mvo^?_V-IcxDnfRzBh1t!J;R)XJ|npxiP?JPTcY7iX0bYMcQI zCa5hq3cN&eX!SImD~%Y^Mmj_p5IP!Jz?ITYNfgeK`cl$&wsX7P|2-2^5v{?jTSo*)0~EWneY*BtdPXs5E7D zbii7iq-HxWHIWA*FB1}OF8I3ftHGT=rm_=5pVpB3OE&`}B@NZ(%m(TTrI*SY;bayk zOFtu&XuZ8JKdt2OtW1B<#;2THtw=2_e8sXp^P*i+F%@D@{2zg`eT>7 z3K`NJ2d5@JYdrC{;IimX4wIjf&?F4<-&i=1kl?joaBpUhrRoES zUMwXI2LlRnm-4q>Sie-L<<3?+%J%A)f2_V?%8m$+^jTd zp`-(@stK_Yc4Tk#x`<0_8+xyTdl#~Y)9xixf1?;FPlAdB@SoV_mY24}!3GbEHqIC3 z!7C)v0l|w>3C-jXQCl#>Dk)i+Ts;4F_At|Y$k`adb9}ihR6MyZLNgrYOuP{l7a|jf z_DqSBo^;Rcj}wLaG-CcY0#R0exU^f#FUat@svnISSxV3{FvNMpiC56=Qo-#(K$I;S zkA^cPWam^w1bas;8}e&+%4@f*US2nrW-1)GoSr%|k} z_dRn{l^_S$?!!(hx=4pjOWLCwUPUqDF1vcvbE!wPlMh&wu*ta;kzFmcXOu;#BqOd+ z1ik{9^t7PoI`V01sqAD8R(UdR2>A-wcP!17{z z|7nu)y!&Z;ioVvr;z*|H^R4OX1hL=DPWrFrw*@?7eTwEjSNzJ1oSdkP_Rd*cCB7tw zll^rSzZ?1cc16z=Bff;rZT0@>%w_d!40_J#9zv|N?W3LgcBuwTZoGe9MfBpVZW(&# zKkxp5g)BLi1uf{RCdWmDWrTFpI|nFlaBRRdNEma!$2Q-t*-RV6olkA{7iSardF@br z5}-y#2OKIs%7V^U>yKMO92Pd?GL;KDg>ozvcQuw^}HRE$cMV#WV z^e4r9d#Zkme|{*-b@FI3S|}=5ZYe-Ulc_MxzR_h)4ZPUhw(si%R>}*6Qm|kGnZ$Mb4k7Pu94wlO-P&m!lj{zd=iRXoQycAO_4Or;#D!jmmt5 zAqAwF%&FlQb(t-FF4=j$>Z}^V@N;z3AA*`K2%=iSQl=u~VNAcM&`aU``?tuJi9Gp158(cunmxjyMmO@O@p+s2rh zlY~?0swADycd+L9NsfYTBV?3>Vk^ zA}x2eM#nY#k!4$)ly_U3?H_YkIx+-h9$-+8R!trp?#`MNepU66Ko$(h{_j^~MDde| zJjVa`H4ygU>Hq%U<98%s{{SSR|L+^9q)z-PSUO}Po#v0sO(#kR3iB}`)QX;r5P@MMDG)Q2IH|A&}tsQD{UR>@ADKy}=bLcQ9 zS%0Dq6tR!*PU{;dtuwwC@{QyX9!@sP3F;37h%#_B$fnkwp`}d zREh#Tz^6{dr$$am-*Helua9wA+GVCjhFBXBlV&_I3^Mf*fM$x(6I4|wjT@`?y88mQ zvyAv)Q8Ku&uey0L03D}i^x^1D6C^P+Qz3QYjkh~XryCszLgui4iz2Rv!|NLsux!hU z0>)h4LGIZmKMsdcT@_Q8mq>{7^*XY0IvSdY-JC^s<<9SQt?~76cFW6FY49^ngP5k< z%SFQK@7?#r{tQmS6O`saB1cAEQSATuL(_Nj->%hXn^o*l71&t34Tf~@xkweasfh0( z+kdWX?M`|z)S#|S(D9jt4yuP+dPDy$6`*ma zK)bIZ_K_h+{^Va);esESifAUSdS&~Rf&;`$jg!#>Ua8vZ+DD#=gx>}YznmfzY756W z(N5`q^sE&0Ve0*5yZtvmt2nV&U%frnE(HTEHQ#ItAcmp z4{z#P9BC!DK~IgphMrqMq4y+=6@TzWUUR=$@AQAr&nf07 z?VH)RdzTy&<*FXwa&%TDlL@%4BQM`h_=T|kl6D;BbXA#}I<8*+{RLvH$76zn8cPmu z3%Gn1EAEYL`VQkyl@dTTjzzGkc|&l%td}(^GW8AjaAWT5WNOtLlihiHFo<)I%>$pU z4&u-l<1KO#=d5LsYtmK6Z>!QbYJOEQ%i=uIu)npw7b9f2>e*dlm_bSfj-0~dE*go`B9CEDa$PV!3jy~x4-Bbt9W#TWgdPh|gG1XN|32E zHGbfqbCJAwBQHx^-MDxw;&xNa{5w8&Kxj%lsj>VNmRJ-4Oyx8*zKMa5w1J{+1DaN?@XHB5)vMh*Xr+=((ALbeXx$Q%f-I^uwCCYQyZ@(ke=2k zx2-UT8+>eQ`-*yy6E(&wQOi+y8uG=FF$C6RB}GI2uYy9JHsMdP5|gsxxpBA#iQ4`M zpM~ftv8>=L$+4a#{fY#*VRm=JcyNFJh}qoy%VII@!Td{A*-07iDrK}lp+KC4z$O2*B*`@2`8oX%E+i3~9ocRdumy!A(adkt1+?cSR6ahZ2|cs?@L(W$1N~9$_vxL~;s0_0E}s&y`vC2Pcg)Qxj-4U# zU=EvaD8Alaq!70LaHJ)C9|ht(E0)K`8DIlUbyEVB)6{7-&2rMm2IwFA0y-YzLy znUlqceh=uZfj>_ah2XazNC+cs`ZDm(!-nlC6h8eU5l*m>@w0vH!2Jf|(4J6bVH~Nk z!kV}uL!D=M2aR{nUz}7G7u&AX)_<%%{DTVuI+ytbF>vc0xfV+v42EuJmD(ANKT{)3RxII)@rMj5 zBEk;RgA{T464g&`hQ0zj5H91r559(LUSbeq$7wr!AZ<&-z=AXxB6;U?lG}F80{}5I zM@u5e>&p zYQR#wcq45fY{E7BCX{}YRcF}JKE017H#6!v#@=+|vdB4Uei*iq#4_bJIwn)_y|dAS z0S4t*7}WghR>tF!#%k{U{xpElbDsJ&!vrW_H(KssF1XEW;VGcw>5XdKt;-ce^f6~| zBJcufNh5KhLx8``Ya;YSrMV~)uDC<-dmQub>+E~33`jdz#J`$7G%SFyqs4%;Q{lAB zUT}zCrIZ4_{}S-9!9y|px0#|Jr0-4%0<2gL1S`!LH ztJFR%%j=uso62FxytcBgWMUu6SG{~ucd(F3+Lv_$@nb567UzR|P^pzv*ATt$9YrOI zJYOg1TPj4XM`wqpkXf)FCod14IY~(aEKP7Ryv8Obz%mQq9d-z%LH?wQwI*GuxMJX0Y$bBT5TV&uH`3W)#kpI-p&5!r6>Ct1*M9FkK zXDhQCGH8ep7ki*TB`SYTQnTlBZYqUVz~Oa}?BQv7{{pbl`$q?XWCRZd%{O`lxQgO2y^0Qtc;D@=;*+m5-9G}> z0Me<+6KWPuEW#0n0LHFW_7n3i8563K?|u zzL|jrd1~tIasGpE5UAjeHslUy&9tYc_~NojV25qjXh1si$>;f6pdB-PQp>T>d2WjO z>}a9pYs>Wk-t+TA1$+0DfoBat)>5Eq2syk4zx*mf3@;q{QDmmoGQdWAx|l+JE>(|Q z$objyIa(MS?^8fPgKr%t*3{Jf$bS2T8zWmUxOby7%j zWx%=8X3-@947VyYzM9Mj&}2YXy%P9#>p!R`sj9d`-WT2`;XKRGohKG75MRE{^r=+J zPVr2jx`XGYiP>^3KgJtO+TOD~@TZh-P%kBj?9=XET&mXwbn^T1j2i;KTf-FJQh=~MFNXh-)Y zkU_sb+g*%~U`HVi9SI$7zWSGX0Q*N)juOOLn!217XiR*&EAE@VfRUJp>2$x*+Xh?w z%Hp+NU61@~q~zMromV-(2@(^f6(TPXlB&Z(Ri(sjiVKb>wYiUkP9D0IjXhnwJU}KA z-}9wj;YGYWooR4;Rb~hLlbvU)9~ckWwYrf!R3QbNv7REctF@}5O57OHn3*16x(>-}HaTW(V_$eblmsW5;EfB}fkG^FN}F`b|1U04^nD9WMxjz3EE(m~Mod^5gUcj4)$=%QP4 zAmtbdI;YcgUUy^$+uiH!@*LRWHH(+=oE|8f$(K_p=0b2JqrVlh{7XzHG5w%fK6M~Q z38MY>axnJ-5&O`^Oux|Oahzm1-FeS;n!=ynr=J2QTUu%@R(cs!SArK z^A)|ZHV-;{C`knT+7l}0qDaMaZ0xdbvn|umN#MKO3%~z$f z_~>6}njeTAM)iBv6-*h~`*uGFgMHq{VxSicKZ=KKFPULvrA?Ro;tEmRHhG%F4ox z)(&eR_+}f{HMR6dzK1P-=7>!c4y8=x)P!eH3PH5_W3(_S4Cv0+L&do{yglH;8t~A~ zBXYim;k*24T9hhqKtfHdD%MBGQ9rizH}f^9$4}>UPp^v};GZxkX2M4OEVxCP6@QjH zs1W+pPN-?2S!9BkGGU#(&y(7UJ?@w$^G1G~uGS3L-Xry*M=U5X75{QDK|uX(4`!{4 zv8kQ(QU{=gT_$RLM>hl&O2KjF)FWDbW0d``bb9A0rVHij*>4x8sf;(X3R$&lLABwRDP=g*a5wO_>68A)7Ioy@|Myaq`IBVm|++90xmyM;LEyWvJNd2IbzZ zq8NCaV%>SWDWWQL7)OF|e7sgO>w6JHMm$y?#%yxS^ro$;Vsh5#UEbRggRx5cS)r~GhrVm zF8#uP?D`%D&U<QSMrjI5Igf&h5T)qyGx3uZE+)J zc(WCXg+`jGGjZ7bS{zk>^4Jes*@`w%!Dfd{py5nFx9+h0^zQ8IbqJUA-zNv$^ym>b zq!~+<;>q99LBqY%V4xIazZD`)UE^}m_Ppr_kIR8`2#$#BC|gLhk)nzIB(Sjrl7Q|u zr^SwaYklE~w>SNtNQAzF)hzvBSQAAR>Q@{fhZVE1rxc2{7hGh4NRI7GP599FMx4K| z!uAk}EF*)j* z)!@{4$e%>8cvQpj)eqFNT6Au`C*twS1bOX7n*?UZFcv=?E#AaS*#&7QDngj#v2MDJSMtI zD_TO{_-#bUlj%z?C5lN-D@BTVHX@i663EL2G6B!b0imhBvR1Zd(1swP@zbT9OX^?j(_M-mdOn@8U>((2Gl* zyJlh(Xm&kEweqegC^Oy13xuHTz84(@uAv=Wwqd7dkvyPFhA1jfH(6J>cYb{AvLGrX zqe%*;>a%J#73bFDtuLdqnOTV!7_IE1VU1#;PBzyw*A|S0N$oK>#*wz~u-0?~TnvRI zCR%ykzhiyxr*S%aw}9fABlq#+a{w1vf(GS$D62VYS@cvWV~kkX24`HpLJ2km?CdZ= zpG0w^_hcLOoVmmJ*WC(M`zwVwzO-aq(;a14<3?y@O*gFO;p5QMcU5yk{T$!rMnBP_*w(ejp;H$E{t+D^EI z$AJVy(1+8+WtbNw`n<*RkNih;i_7iA6QV*X$BPFlki^?tYz{STgN&uXwKFk(tpnY` zoy$7M-lStQ3z&E+kBRh6yHlgBQKjwIQt>qxvE5)x<*1 z{9e3t=EThQ=^{qcM( zSV*QoU}t}~tY=44HeGJdHq0}(ELquB1>KR`dXQcY3ze|tC6;Kh(a*Y{1k3ts_L z!}6CW+^my->L{=%1tqz?baon^OdpT){)9Tfvb_dL#C~#swNB5RSSSkNL~5ztXl?#; zjkMH619xikiYW%Xx0S4kapopljw@qa+$Ol(JSN1Do||D|PxBiQ$_Aeomy2SQ`q*_p z?Uo}n8c(*H-nqEE1jq@knItcs)TGg5o&Nf|SzJ1BhTsHM;_GvhVxV~WdAT-rZ-~>J?var9 zK_`pC>`woz=)=8^uc7)T|7 zAk0zae~N`1hg*9j(w~xzcoe(ip&7`oS6Xkf4V?tYh&`eH&nGV_-#5!AqM9VqN8i z5X-}jjC{Mt)(2Eln#=g-X1)RC#oh4WMljRy3(-I(G^{Py9x*8dRL4|3@jIqf1gp!WV z{G;SI2)IC&KkHEJ{&f=+#ZBjPQRfh3w+R#g%F71Hw^y%59Y?2jnV1GFm)mJTMzJRr ze>TZG)%2Go4UVE{cF^D@qAGGp4@$A6-^^)z9w<;am;VrstA2%jr@Q}sSLAIczxd-r zJH9|_IlUD8Scp zYk6LM%kH^okY&&IHT&nzb!VHvdg1i|Qd%e_0Z~nM^=^(l$-)7mf$|Y!D`c5I?aUQx z*RNNm8$y#k^<8`R*^)^TDMk)Yj&hg)=>+AP|X%4sh)a$0y z)K!7@x^G3fRKCl-RZ8~F*5u-Me_d|3+H%%zj%h0FQh%eyaGJ;ml-#&}N)Je78a-uX zVPCm%qPae`tp?DuOg^rGzbO`|wtwzSB89I<*T3TO=(o9tJ@{ruoZvy0cw-)}?_Se(X*lJapOWLkDyQwyr!i5R=1FUOXX%ta!R1?eZV2K^mJOWz@_fgM32SX83zVK771?z?f3D-StG#nxPF!}NTFGbXb%Xxq@F(95Atsr z81y7^3>g7f-D?G!Ia}u<4nD-6OS(#}wAEmQ)0rox3sG5tWxex2#7hC^TiU}ReU);1 zeG;*TWv}w>q*D!0OytQk0k0M@I6I&E`!~jsl*#%PBaCbA(DaE5*UC$NJ2>c7$3wuG z;#$6$fHMw^cAtw-HeP;o=H~J8Xn((UObenH2FVO6`hxKJbC79=GU|gsQqs1@4L~HL zZcR6nDG1A}{o2!!qQz5bdo}uU0^WAt?UOEONm9L8{>OBY`fF6f5b|po?bD4R0`CQ?}skhzs;f z6Y?S#oJ|)fE+h^&OSlV*alX5XPa=R9sR~It$}%trCvMojtpcUT6A%=xZ(fNHZW$vv z>g7tysXhs!VNf|4V&Tyk9P`D{hgTwsCdyirP(DB%C2^(Nug0Z`_5MaC+wyZc^y`4k zS01ox5Q=>uH{lM>Lj*gWnR!l0Gp+fD{DM4NbdpN67<_{KyZdRX&1esz3`K0cSOLBf`)V>h6(=>wyo)=01rCsu=Sp^d|2-f z{%BjcvDJd_ofarb07ePW4{2b<^vwTm{numkX*Fi8Uvyfat0%IIM1s6!-?*xCbAAv5-F1r z#s!AD)4ZRS02Iyn$yM+MO=a)8nquW)tnFq8R#e)90#--M^B) z?*_FfMQ*+g3)wg1V{isjcjJ`?Ea)zZn<{9`GU&%bQrOW@C7&lB`fN4jFkdl`3RTJn z(OFtrU`dQYeMw5WlI5i!;l{}GKDh?SvzMc+7bH``4gZI-w~ng1jlKs}8bOdyKw44| zN$Cy&NdXZhL|W+%X{19!x&)-ei-6K0c_ri`sGyYO1&K>{%(?IUzB99C{+OAy-u12} zOIi1R;ymZ;uC}#AJ{e-v{*0%2`N0d+>U~u6 zB>zr6&3lH`j}|m4jlZ;x4n~d|m~{$r+!z9mYpW3}bBByrRRITL<=u*AM%nBHi1+Q} znI>{)o@H?4ViGm*uamre{R-{7Y%(_J6+nJTW29@}KS_K%jO{YNYF3-EOn$OY3+0-W0Zf*|6MVW zux6*r#8dG`1SN6CL2lq6(dPR%DX+8ap1BufhZ5(%R4~?lFrIy)Pn{v|@61Q21^ZAI zJAcoWBNUV}5u1yWF-En%iaIP39v^c^Jf(eh&c?qE_I=qu`4KMG{70vBhI))$R%n_a(tStGO_OQHm131nhrSOw8qAL`Z~w8Sv@YNVTs-d zvadB$qsti0$ash35t;D@8NH3Wva2WLFH`^a=(Y9spJ$O0Uj4CSYgbd5d7&=@t)Xf{ z-WM+~*`BesH-TOkYFlypd_00e*|acmkNm!fmPDD|e#ss62;Zn`kU-~Orhek2+wzc? zVuahvi0Lmrf81^2b+tCxm3VV1($!3oCRM^IA+2^=0$rOJ%hmPn1+? zsS0pEYTWjJU8Q8C}8>vH=vASXo4N4EdzF+l52ibiNMrpSlsid0DBfE+MU3BKUt- z87T(BgEBn!uk=uQAt@;cLF6hJB66&D?_J`pw1`!bnvwh7SiMpLYMVXo_Fx24DOVmp zQJ982ydPEF?Yln@^cz00y=D*snb!SpP0{~oxzae7lLv>%ZuQ;|dwd(>n+muL*|pho zdD1Q}hicrO*(}nZ(_2VNzOEZ#jHe?b|NK>hYj0G%gAUYi%a(d$hxBgR18NUgs z$`2=hE>+6a$Emp1QD|HnMlOc9{NNc4)0Do$INldwj~{&g#6iV&kBWnfiHt`(Jtr4s$5MU)@DeqJ4=)~e<*2ZWWb8~|z6`)Y%qGuZay?k%%BN1=oPmi2YNCT%^^K|@1 zjtxBvP3<_5^Jnm#8+bpP1!-k9{AVksJ?#_gJl3&2I92q7Fqi{3(ANh){_oMY#Q$gk zR<`2q1YBcb1Hl)UA$-J5sk{%8d*6Qyt1FLE0ONzA-3aoKCJ!@3{x704aPj^7Q9>Yu6%;}_n#JpzH}5sfYb)$&eoz3WxmszXJN`5`4||lV9RycWSMP z^nxC-S_7;b0`u0vB~ZUw@EJ2Mq)*K?7}|WFn25HcgF&*vrGsldSAs~Bl90t&I&WF% z`gVyd3fsOFuuX82$cV&vCjP zjc{G<=KN)+;WjU?){QR=^|>)tG;B$CvDkUci1qdoPTlsE8cS<#v&->nzGe5Y*l07SP05?%z3VoAdr{NGoJ0t~hGz z5V!r~zL3v(r~`~JFQ?JLO(pyQ@Y|28F^x}gh&oPo^EeF_)`BUEAgJ8l!kC>P>q*A` z>hO8R;r0AWTzwG~3PTga;dXS7im@8B&Hork)9Y$jF6Sdr^$D4niub#^W52Sxi2UoF;K!40-P@tGk&5AS&`(Js-{t7D-nah?~24-&S z^NkDvKkfu+{x{z{@tpyAYV$u5G0hUltCaE;b=bs3wMoQ;G}~iwDT)}CN2gQP0q3hX z+$(u4R!f6_h<@5YqNj`CTLrY-8bRH;XhKNQ%iKSInQW>(C_viQE^519wsoN9PTMzG z|NYBh8bZ<+^ss8tg^oXIewZiJYKN>{!I(c3L`^99Zq>Z4C5|K@ksLlzo^7H{FQBG z|ED%9@NE5h+0x?<5G{GT{IQ3La=7W9kFSp}dCKLUY(@M%>#o;l&>8FLjeH3_Uq?yp z_wlx#??wy>Yid#jYG7r!I)0jw8E$DHgizw8upUSF>yHWp+lm}zY)XT)?%87*%)pa) z^s!}6fkxivbVq6{EThmGqJ#)O- zL)5_E&-t|eYCYm!<+>HrkF}F!l#^>gW9lPbb)Y_0dae|{aJiNn7JTXlA{N^i&I`e4 z9}=b?Y38BFTkr`bdBxp~(>hL!TMvd9Xd2^JeCE+A4e)WL^7@_=q0y!VZJAj4v9XW4 zrUgU~Ha9u5b3Xs)efHDH{XN$lPhMNhM=Jr(c{vr5ve~lhHh=RhXb&>N2y@*)SKKUU z!MLeJF}nS=FLLt@YFfF{aY1!i$Yw^pxTPktr}&z?33?CGS|)NtgM$EZ5IUWFT5-#t zMlfHLEO74{oHQH$d3B4tEJD}1J&mU_!J`PoMs;TX7mDUz+0{V)ga2z-eV1}ZeKVHy zC68ZYk)%G;mANg#`dRQ}$!c*k#>(ZB(@THIX2=4ol-X z<~YZH??+({ch*e$;1Ni#^Ctb^;36ngP}-lBa1S(iWbA~gKL$)bWkz6HG6GNbEZFR` zrlqCh%w!Mgu)N z06PvS%dzys5wJ(UG0-oR;XC53a^-!&=g)D@Vz`m|0{jFfqvE=Hz*XmTuZbquz)}z_ ztYM#;f*wT2G8>wm9l0Ac}xnId5#Z zFg9Qwg4W9Nc>VNbE6Q-`p>EHQte&~?ocr7Qd`y``rDZRaE=}_Ee{@hA_Wa13Y&zK| z?mEj>JC|=)q9sQ0(d2qRNovWV;K3b9A)Ij+G2iBJftyDH3r8=~TWm$D9)IL?oQ$%oMT#oCeQ}g3Glw#2;~XiE{rn|RFSL89>-qFYe_V|Tj|x+K95H(+-ldk)mFP~BnQZcySuY!Png0Bq!g@g&|#JDG3Rg0&$Np1{f`NSCN z{Vb6ro0OzQkyT$RA^{&$n+ig?zI+`UUb?qjvMRa(v5b@IYHT6w;%iSvX~TPRaqf+Q zR?*CFl~ILcT}^7n4Sjpmb$(23@s3G{5she3ocIk2sTd6 z&_{1=^XrYPL@wfN- z)U%&{S@q@}Ts?7&3cM7>kO>dUPZg5om^lThMBG0yqjk^$bbV}Z_g5QlPs4{gd(b++ zRFw?UJ4j6@`8SIo39~* z%M?Rl7$NcX<5pCLn#px^g^k6B&_kb-bhCEz0hVs&zVk>MnsA^A31DO{dBvU-AQZ0YrWW-XbUn{RTPa3>L8FvYhdDEMHebB5R#=@^iLjWKFK${))K9(32NW zDP@yZ%?jf3B4ocoOVjr{o4OzC!Ffyf4EcmwcX|gRDXthXJpaeS4s0^Ka4h}mW_6$H z$dDc&U!8+r9)>=KT{OY9wO1$qdJPYeP64?mC-lZ|UTsyu3_r}RAgAenvo+;WcyRFx z&{Q}V6vt;*4D2NA?IZ_7qi1CeVzTc1vzGevz0FU*gD#lhAm4oY%-$QRT=wCG(r755 zObPX#l*w_tw7;JL$fEJ`8V)4_4w$q*T6Q19>mDaRbkiWXv7Y}r3oguX8j8s6mn1jG zG`VE&j5U;0H7q~?nBH0W%VoXSS)sUB7(Q4p<(sO?etjSTjNhxnhOmmKb_s|T5HB;r z^qvnQ77&TzDMolL-Y$W}gX-CrV9FFr9s-wDZ4895R^8&D;OpH?{+v^8>zFBzKgyJs zr*;3y4J;x~HE)xw+Q<<7KlkL5lfcA>f)pfEQ;eij#@Dvf{k-%VTM@D;H=*Ad0Nmf z1(Ejcrh4MTRyI-2n2BtSct+XYNS2mOtB)T%HBE5dEU=eV_%QWX56>CFluP7bR zAjFX0^%1pGbIt4hTKX@Z#+g}jtCHR!5NY@!SInt}kr=T73t~>t{yz@Wh*g=AVRVA|dussou{q zkbIyIf%FzE4b)z|W7L^g_}R9xr_Up6tOY|365dW>5Af{i!Q^H106f7@!obZQzcTB? z82626D*bcFtNu}!l{gEc2ojh~Sl?ML{E4fNkFcYIrT4IX(KV=*gqkDuLydPdM{Hl* z-$Ft~Gn?+hP9Cw3Qo@TLQuJDuf2{a#e=jWwa||=o@Gu?Hg)LDv@?^r^7?YmN2 zU_v@nNl@7;k`O0(#X=H3vcsyhGjQg=F8_L{CzJD1wmzQjN85Ga$RNTmU#h))|89-{ z=tY$)A36j@;9C!3zjgafBxI)HM8vzy+ltguQfVO&4pw^|2C&+vYo2?H_4s07fw3?|F2S^j6Pa%IO*-S*N$TII_#J}DGu;wPY*e%0avRZjxC z_^*-5XMua`k~05RGPi$1^cKKLXbS{3+;w}~)|2qXPICB&w(-V^^x4qnwTN*^Y zoRYpd?xn?nS#`Y^|5#7@GyX|@lHyE0wrI8=P1cL!gP4R$Hu9f?e0R3(+-x*f`A7@vPI#=1TF!N-@J5Dw{C;wroy<~%lk&}8Z}X?<-@3v4BD2rX zu`RwVS>?6RD>U>G&S10} zJ*M2BKfiIXe23|#G${VH|Q0060*v?sXCRV9~1 zUdE#pw7u{fc7n=73btY^ILa4eUL;EX>_-|KqsJrc;h+;O5*?vOEj)d z1%_F0KIhj=F6fW~1Lh&&wdh;h)R#hv)fKYk-I`v_^__)Yf3_r%_$U@00N5f@=>76C zoRo2_38$^4C0UUg$<4QV&-KA228OG!Ca1Mq=4(6(aph5oit4JGYOHiI{ymt*?fZnP zYWzc=?_Xc~irZ)9`i@;E*L#K(d_oV$G1J;yr7XBzykzesWB71!aqy!HD5AQLnw^5p zZqSjW)2QsLan&xZYps*DO^th;pM6h{vHA@w&GkyrwVOQ@A)1nfSG&-`6eH$j`!VkYqke4V}w&B)mqFenIKOoihyPxmG@*oS{L8 zJdP$#f3YYnEACRGI`dQVm_K5Om;$b_kc%WZ#$**^hcDtaN0^_MpY`fpnY_mq?bZW- z%aiGa?f%_;LCqYUA#JX`J%RPs+jJgP_Q&PFi+L!yuyq2#BN9AJxq=(Y@x3%|CHKY( zE)GX7XQUC>hrl9nAEG7VBSYKr`*W!PRHS)m%u-%n9AY=+wW9FiLDi*zmv6a=gY%i{ zj+*jKD%R6y2GU1&nXh^H8lK{j3pdRTr2j;F5QBZ#rNw3M-_@_$+>VKxjFX9gEMl6z z^|of#=-gN3U{pdr)OMi9#n@f*Ciw$|%)J!z(1B(&nFwd>Kaa4~Yj<`#Nt(dT+Vg}cWVa=&5I9uXdP7z) z0x6?1W+aoEut6EV;2p5R4@2Sk=x(3jq6~tN4;ajtc`!jN&$9_?6%L9EcmYW zzq$Tl7#)&PTF~3hrIxf)wi%Y+a=*uI*hZU>FoUibF-+@Gg&L_-Ns`f2kjr!|crF;c zmGOXjfml6X)l4a*Ra#6Rtk_bp7u@8XFr^=0=6Ga&<1-{FSFh zaIVO#q(OD0R^`ws;t5Brz%G(=bz`o1C;pficx;pE1yy1_-EKnTWM| zvG@`6F%(F<%u?c(UYY;C@R?v{IYo{AUB}o@#4-n<1K7S<*a<%gr4%kSConqZnP)M9J1zJmbr_GCkeyH@-JC zHl|=?$Ko|D5uw8mY$<)2SbGxn4KagJRd6hY?bA5$53E>M>k}q59<|yW7RfF}EVMQ` zGPB4q?q8yWV+n5Y^ZM>+(gd(lsn5oZgmN^QuB%@je7gY`5B>CMb zI>FIa4&xC1mNK5~bvijSAJvB8HVOhBHeJrvh-NN?zr7jOR?5WxZ3@|gJiPwlZzb#X4ZLtye%4}99D#TN zPuvzNK?d0i=$Z!YJ@p5yZGN-Vwf567<}|jM0LDq}?Xc$hdvF`kmKlp$TvEo_k`H>j zvijRAY+C9_3N&`wP2mXD6tnX)@mukRuuEEA4y{gVVBoBQsqv=}2T8K0zqK&lZ?IPz zyz?|eYxlHj*CtS2Osz42XL-|qbH^(!7BauVQhFxbFKaE@d%I=$0h^WD4}1#nJL?bV zs>{o}UY*bgvrJIF&&_==qIq*YR_v#6oRH%-Qx;qrdZsT@D}H#FIEu}oHeuZM`FC13 ztBU*Xe}4Zeq%AAp_rHDblZNgc6v}+yYkPCcKk3{j2Y0#D^90~_0rGp+!qEKDS=_EH zY9Lo8H-3=s4Apj);ZMK=k3Nf(Cq@>)_auP^&%)>m#{XlC1GF1c-__(z?}`qzrv4}jLmfHX&!a3ae>Q%_ z>BHEUrK_O_-@VqAN6q^V5>G14WCwd-(l-C4B!${dc8v}}*x7rZD+-&S15bX2vV|#f z5%U@+^?(~FExdZYQRdewA0wx57EVx10Xa#*K4bA%d~CG4n&DxEPhR!##giq;{Q@rM z)7Yq!vtB%2qpDzx>=rwTiOos`(^V$oE$G#s!WHGKXV=44$fB4L{Wt&q;9t9AqWH7S zx7@-%`+u|mrlu!XU@vnn{)UYp13lXgu z?d-3xPx8!xn7xswd$*oQT=C-FhfW7U<7m|URFie#1uJ%(gMCg@^VzW(k~=)C)`vF@ z34>RBW9c9EjU|FPgVsHRr+YtM95A(cr|ip&Eno_2P2`;WcSq_Srr3NRZ5{+Z=hfZV%t%h$mZF4!=Jo=e<$4%Em%} zZ=f0&8}_G}0G)5IOiTAKI{3lcb&u`ZTpp8u>MjPu{FH7fvu7%Fp}F3h9o5>HGKe5_ zX=g5e>sERq)^;>01lttA-l7`!W#;#_`SOJ*me(R!Od7yZ(^B(xt%H!GJ8f0^y?Z5! zy5@{_+-j@RI#ZJB}dz!ox$S z+`pZZ1YqedR(ab<6Xu8W4MVc4(U(D#iCBSqSyWQIF^8GDXPm9}HR!6M`oTh*^tY&T zy;%CY8#MvrFh`Yh34i`H)4Z=#6It8cJZFGl{&vHt!sx41#WPlIBFZBeQf%|biqeCXT?UdprR;fkng?MJI0eO zOy~l#w9MgetzeA6lHgJ&SJKrIjW*6s< zU8`?t(w%-(dxb^nY=7E6CZ)(5ccX9iC$DjJW_6N+Yt4u=eVX)f{6>OoK$uHm|Aw*r zfT#CioEH}l!xyr)W2;NI26AMA+s?b0yq#7Y5qaXerW>X+R0i)5t+eBwM9A(L&wUO7 z($IRH*Logt^|?#ph52c7x$&HuoqsJg8IW4~+waB~4~XQEZyP@6SiPUNIY!`=Mt6KQ ze+N~jzV5l)k)@@CUL&s*3;88jx*L2gj}xhM8dcI*8{F8#G5jETtma&dX|=4V;d3Yg z!L>lmY3Hzl9qr*|Q8P9UvK0=WtM|@5*S-1=A^$<_VP|a%HAtB)(j~s9OBFwoxJ_3R zsdU6>HYOwmZ~4X`p+XqBHv&1(J7?=?hfZtr%N$MnfNn5Mt8rbkmXjaRmyo#mLqxd7 zvfFo$3BktAGSC`IeKK;sFTC)EGb-V-b7zIx%a0aJ=UWkJkE);HU|+Kjk}@4XcBiOu zMt6OYHUHhqb8+b?QWWK*)HthM2M`5G0D2^K{BJy#{&B}f_3Y(bnOUNQ`7VB(Z8x8P z3+xpW^;vs^d?6QcG=DBFtige}z7&zbNPtI+ zhMSlFp6B14lN^BnyZ|3x8$&9T+Z{3334x*C)Z0NE@3b1~mRRZ<1qm*Vq$_`LP*lM| zlX1ZDSj-7>yK=5^UEH7R-Th=qouYmPW`2^KA1Q27+U|kmTrJn%R^EAXuj7cU(ThON z^_kSGQ#V^o?9iWI^87SQ0omvFe?@;u=m*5sJ+v<>thsFH?e4B*`vRjd`Z=bVZuz+d z9e#U$l)|){3L%-$)BJ1$jFsdS*!w*>XxiW2E041uZ^$#ZQZ^QKy993!OuX?cL$py~ z$?WXd=tx}r_WN(@1uULLjd6rK$u}CysK8J26dIqG^~V<|k))irMKTOlY7Zn$EoYUm zC##G|@mtC$qm!B5S6p9Cy}l`q{J6}iBNf}<${%N(z@2IKvK z+U3<~@++^Lr3c4)3n=1xmX>14iSb>eWqo(0f{PEWTG!TcE-YoLKUZfhFPQb_%Ury( z{;9UM#(vk&eyX-aROXk#8_;gda|H9`T?mn{IcCdkbtzx*!6kvLU6<|#$#f4BMZ)$x zGw;ywo@)UcYkoxO9FQ|jBVpF)q2+{N7#{0u0O z?{kSRoD@adEkW$e)(3+1{EDKXY4MOeBT`%qSXYI{x6Kg~OGaigVr%cX;FZv(0PxWC z$)7dL;*#N^G4MI6<6ID5d~ipb5ax&>_nf`K!S(osvq#UL+i{ABCkBB(aRBGb@jb&p zu-}#yO~%N&ik1^!B%Lzey;xojiLVOa)OdQlpz~1h0z|t;Kk7o_(V9LS07MmDgyJ$d z>7T7eQc&T!lQQ~mktR`evT=kj=yqf8#SS-A5mnwEro6}4X(jOVgP)o@$v*d*I6z-& z8YJ5-5t#YG8#dK2|k-5r@3AIqW=kS`?KLgt@R*aoB>*$P9D zBWrI9=pDd{iGx~OsS>~miKgUvVg15 z$8#O_#`XO~fY%6LxoiCtaV>9+0?1lj?VO}zlP)5j5v}BrGZDbCyCs#d^U0E;!v(@+ z2~7+Mky-AZ%Hr@QT|C`}oy$i91+$N+znA`$Y~Ugui_e=cwOh4Zmb^g=Yk<%mK$ahQ zd;)e=GMxk3{JE-xhYyppX?li8eJMn0*WPk{#OP3C0zYPzQL0c1YZ}?y!k$KXmo!Hr zRV=VyAL^y-$zSuM1&)2bF_Q{<$To%%$^)-KyzHcoz{z@c%p9~WVa~>{Co0_c7^R3q z)@gpq_K4BP7c$?8@h3=N4Kwp(WGZnfDgfMxUp8Xfq_8pf9>fDjMVVte6LnWOW0i(S zDB#3orV&ORi!Jxf5@9nqi|syoo$Jmj+?w&u`E#TKWCN|fab&ripC2cHxiFTS7;Z`> zq?ta^0v);R>C7mtF#ly`T|&>aRYDd*Tu2k992p{drT=^-6Dkd>C=Y|>);#5Z#jB@! zO$Lc*nADVZ%9MO1+jhWl`vbUUnW{rd*DmQdYy%6mu-<%+E#SQCQdp2~r@FYos2rpn z!*a(>cJAQo*Ke1cHkM^qlv(^d`d}L!GHi0=U!$p0Vdc~)vsa0+0pOM7{MhOAzX^{p z9dZUg+W$Nzgjm=_+suyI9D;*2i#r=$=cgAr5}4%uY{E_>c&;h{-`y4cIg2PAU(`&N z8tFoaL<)EvdFPsJ++E8tA>re;?5}OnXRKU|m~MdYZ)d-pUrK3&gJvp-=^q-9w(LV0298J|lA22nk{0p~w1-ED3QJ;vmsdcH|U8Qn#! zBxNRjU786MAU(|%e`G+-nn(jd6D%@(s*j&jyg@z}^DasP0y7lx9x5a{N~2N0;&}i6k?1m2r+3N7IMcCXlVYtF*xTKX8J1v<^wwA z+COV{ax|%^_h54;r##a)we46YH0D^yx9h1-&d&AMM1To^g&wOo_k^T4(Z$pSezz?# zijK|Z-9eSTRauz!NSGc#1oP-WO&TGRwJf^(4=Zd?XE&jdbIcLVf!@0H{A-%G%Xi|l zoz-W6bRTRvxQQDFWXpZ&a=}%L+9X-c8-H>+JugdHOh(JJ$kd9rAF7}rR_bMHRvQnl zBZB$NX;`(|&JRo8es*qwf&5toAX2V&khR`*8t+{9zo$xq6bRVSaZDG9>I(C=AD7pa z;xG}S*EIBb(XBFd{!|na9#4LXwrLnGU!aFk(;hPQG~nU`hcOW_r(vzd81r_;Uu*KJ z!fSG-d*6dzlAKOlfUJ3#E)xJ}{US`OKar=y6;wdTn#gq-=@Wuaw-08#TKfv#z3`qr6pc){?23*P$`Eo;*eALbGO-#vH9FZ@%fJ!K zpaP+H->6r70%imuyg|o>c2)ve9l&TVG@yCsRckyg@k)?Jc_NJ~v{nzI1XoCw_%BY-v(r zd3Op?@V9d8#^igv__>0zTbYZT>b{KcZxNT5?^!R4XyUaSjQc4N4hg^dft$R?msPr8 zB4RQ@t=v9z>ay6#7e0fI@#DB|VDMceaAG%BSNS4p8wpX1Ef$|pZgdie6%VJJA3D@{ zD;29PUz|XPd4iUNY@?GAe`93JtD8xlRd?lcpz92rvvo8>MtX|GNr z>>gwIP8g-&MPy0@i-P3Cy&%#iiEiYJ0Q>m$slT-2Rw z$i0>|sRRQp*~OQbLezFHwT&@%SkUXTL>i}|AJ*nghNw%^$nTuLn!ku7iOoGmuj+C7 z+nC96qhFdxXcDU47q+^zP&4lnf=D0urJP>%g2 zq*#`s`^NMQ4F3H2BW`LCgZ3$*q?)sHvF?cxgl8SD^rh6x9sW0&UruZ78U+Une^CyK{X!{ymQEkEW&;!lNL)7 zW`D+B_zSEJJB-x-=Z8%ydY`S4ulj#{c=)>^{~!K*{T&x^`OzT*$Jt7TZ_d)NnffG@&21|J#7#%u5RYGf2} zrH98O-g`54@iuwI=71xthT=Vgb{D*=bdR2WeST6LO}!1=F<|o={TZETB*GCa7y4bD zQH>_p4_$Owj|$IZbSYY?${`}i4x6@6{w!Aj^CWc=?b03;Rm@FzqGuMif%YAh_Cll; zp`sCX>BWH=j^li_bH*oUVAgT$QnnK8@$lq1jYRR=-FUwX{hn28F|w8J0fND-COZ62 ztF4gtDomT+ILSCmsznjyWnGrW_FIZ-PVi@=!(Cp!=9D!u!6Vu;M5nA~}9! z5E-OqF3;y9PCHf`Duxo%HK0};#iDUA1tukTklf>)ZnMduMz5i-3&WNyPE*K z6m$fXPQHJtK)AN(ZB;Y*LYsO|Im@`T8zuw1UH;BBo*nCHdC0iWMDFwzfdv~#M2j6l~F5SWWmiW z)&(G{sLNYQyXW<=4N904=IqrmKk{);ZrXHh-{-@4b6rpQ!Jvr%=4?AB3>$pF*^7ru zjWFJGL7HqCzShIhqfxa>au8n)CO_fy`+*nX;ZwKG1nXn2pcP+#!3^oTi(>KPS!}vg zuT?w8$l`03H&>5dy)`6EZL$(@di{V_E$<2_jT|sw2x)4A2`=o4Pz0mZG^dQt zin6)E!^xeK!E1a*$iB~6QJ3+edY(~{eMQf}A{94F>|7(RMl#64w}uO-L3cu!j*oMM z9=;=*+!e;};J_f&W-IQu_a>Q~si3eh=F=ytR+ni9SQ42fdbEEQ0Wjz-eFIP(J)ofU zo_}BW;L+H))@p^6EH6JmXZVKs5j-ZuB zxc2C~CL`pR==WE}^zcr^x`sTc@G923b8~a!<1~C`yp!!W5{YN3GFWBt$Wz zs(ibHavp7!NFIOlk4aK~`7MAP%$I<-DlBVwv-5+kT5#CexbC=Qk^xm8k9I-6 z&d{Bhr_4cC)C2m|e>E@U3=E#7eyjSU=dR3J^o}FhzXzpy zv;!SWaanVfJ;S{OgUt~pS%m;oj`yR1Uqaa5_x67)`cxW-p}7FVBIy&)D!?ONp0+-r z5p^YmK){pDvRBPVJ-47Ey?g0mXy*d*@RYJr&}D+(vDFb~Rde3{J)B#3zwG}Eg0SE) z3p0uOa@GJga+_JQQm7D7!%eU0wmgum_?XYQBC^C258XH@V~nIux1L~++kl8)*v`LogAqH zUnpp)6WG{T07&@ZuTe)p<}Zx9$P}OT~6=xjHlQR z3p&9>7+vr>Gh0U?$Dd8Dg_Obg}lkcl`nk$S}d(yjBCyD~xO3 zMRN3Z<6ws)8UCS`Cp2Xy?!mf8&mI^+vWhn}rsNy_d8b~pb0N*2Y}vKjPOixwwksBK za30O=k+kRc0^2Cyd%*l4iBjyb3*?<0*YFxO1XoT<=S4DfRy!~@qOBbp0&aaze?<;f zEtW(mGhn6>&M@aPFLf7y5>QDOIGE+9|44HOFCtD?+S6w%$U6lIA+#97}U;zF6tI>zmo+EeRjvlLO-(M`mp~l{1h@_3HC@z!Q`Z-P`QUP$H zQT@CL$f~_V3X$*2V8c^ZGzKH(e*MtL=mM4-{707shm4r}j`u!WYL^#dWAbn?9^niK zS9)qHTfcp`;5_Y>rkLCF8Oac}arI)N%}_f0WSgn}#E+m!Mxvv+A(>W!i;0ILUH14f z(5U^zADU?Nf3*1>uP>j8Gcj=4Ed34E$lxbNdcr>7>TKef$`$UJ_$=${ za~(V^OX}x;G6T7?B?T>P1UGBSN-q8IuXo{ z=xcn14euDjU{eVzq)YB0Rn*n54LG=Zhu2ue-{P_YAsF%u-rS#7=c2J(iBIs}{Jh|< zTtLVI+f9Fi@1Sht&ZYE~XL3BA0A;|;BmGAC{wQ|5PiWgWIAZStbXx^R=%9jIVyWLI zXek>U&PenP-l(PU#1`LzT3E8EFFjq4xqGxwJS*lr`mN?*Nlu(;UFIu1U3(llCk#6w zL>3X|OTJEc?WHry;AGSHz3&$NC?;=q>O>?LC?wv>Z| z!*ywi2vVRAe}#IzPR$;O7Qt-ytzh`;i(a?0pN@GgiD|dihl!8$2n7y)&MuYdZj;%g z07rd-Rw<^Dq2DbSLd2XaCP(yjT2A}onjdz$>{Gv-A>l$(>F@`O8=Y^Ak|n0opsFZE zmNEhIOS2~*Pd*G>$=QEY>q|KuINzT_GJveMhXmYhwDEl-HI`z#4P=Sw+#As;b09@w z^sIH*UJqY;dHTK%D@278f8OhSQ!qicEW2 zt?C)0z<9ebX*BV6nS?=v)$h{G;jA%=gLh9L;_KGr!rP&i{;vg9WpBEi)8Y7<@Yv>+ zXgV3L1&RhvE@4e5mBreO{b!wTu&~sk#tl?(=Nl+^+Y951`Q-t6cmA7C>rz;msR;9L z5&tatH`GIdC$5j}yqD<}2#r~=QRH|WoQx>E89HCXqUMyi{DkdtTBLgK39|bVc4cYdqF+fzCK60Sq%!IO?Cvp;rbiZ0*UXc0|LqUv$MBMulg zUy1Mo(RM_uDOh7kDP(5=d3L+A zZ_B7|S&?|V#^)fnflE%y_iCN7>>H7+TDN1VKms*m{<0on+W*l4d~N=nOe<}F;X4iB zXz{yQUd~0cYQM2MhVEh<(Cnt!Bqq zK(FGRn;+O_AD%J~az)~SJh$6eqG64}q^lcmGwdl;)d^uQ!RP`2`nwd(8ZyjI*J*FX z8wmL-UCl-73NzIBPu6 zGGM~LoR_yy$A>z_>#J#80jKJy5|t2jd*}Dr2)W52_SpJM%KJ54yiV z7tBFqc;EHk)ayh#H>*LbV3J7Fh{!X=(`6>-w{yUBM2q8waD0GP{Am8Y7$U;TD3(FD zr^RbZPTf@@FP9y?b;r1K)1?df!qSH0YTTjKpBthWHldqupcx?R9CDFv(=Czv=+du+ zEp7iMw*mOkH1wWt9Y6S8$v79vz~pj#^1`LDKce;JiZOoLqIoxN>fA@`xx0WBcYhd- zBlvq{S9suzlD}&|)%zo=(AR5N-H@<5LBs*6sP}nlg~>oqfHWudm!~mmTRTBw&OEdD zfq!|f2@?aywHh%X58B_og7^&*sZm7(1AT*;&vjD^YX&#q$u2T;yk^$2jo+tE@KrFk zEeN!UZ%>NTLjXO6P-Vh&j>O1Uqd5)2?m4i#1aO-GN$8^=m%67vCuL@TshShn8MyhI z){c!mY&lvYsLes(X(lwM4xPPvyDvYrW#^r2sTrfr3oFG;UzL~FBc=yL#JPh9b}SnU zOuZ~_Bc0TFaN}`=I1&~LK}7S{rp@Yq>A!G}(K*Rh(phg;fKur#Cw&4WKU+<4EIY++ zLb(V@jw)MU&o_cGuhJ0s(%=t0BgO}~T)@#z|2H}2j}AAG{~LF28C3Nfz7G;2ARQtg zDJTd?cO%^*903I>DG`xwQ0bQLl#nCRA|*&m9tlCZK|s2DZ@&Bc@6Nv2+1VHSVjagB zWH@~CdG7nVuRuU*^<9CxA+_xmI&ITS35n^E`Gqi%Y^LKjSunB z3K~zSfy4!+N>4fT-?APrdB05x`_&iW1ASm2O0!YH%PaWVvbyXv6o zj8G4xCQ^Kn9@NPXr+oVjSFO$k-!VUmh3Ns-I7Cy}<}z^M$sx;CpzL^KcUZQ}fwcpMSN7(ju5Q9PABC z>P)_b-!3NiN%L^oTMa70*z%Ygso-Tr<_t`XwHJTKF0^~aNE*RYR1~boA9#yi5x`$q z8Shw(LN)#C*HH6Zp3QNhRKriyW5=W?D{xyK95@L(z9xG=Wos454&?C#yT(hj zaaVevS*f4xB}Un!Y)5!}Hv&9^S&znt$HYWyPM1c#oMu?-4&(WXUNI!B4~z|W(q}$b z0+~gKSr8v+E}`G~Q|fM+xx8!CO@;c*>dgyEJ*jgKtb*I|Y&YDR7oqwdZLpDo!Siwo zkL=&o(CuNd+Y9~1ndpo_s8cjxb!#7%^Udnu2+M8t-&krb_$G6rNQInm95=|0L zpg}eMvA2A_@#hIJuc?`M7(tv33ukb4o6oCz*YYsSxt-F1bB%zJ3S>%oPBq*Cb37=* zE>DT3OPsY2##hwjssQu|}G7UpEI^t&bTgO5h!)AIYe>h5r zYd%WK>Jc7 z4QgsTr#jIkf>#v0H^C>9^or~6v-PFKnEHAf=1Df|jpDU_DXG{qu;jS7Jj(!ZOzT5p zK%*R|w*l`vhk(^iAItoLN8U&}&7(SK!DSKWVVCv)@Fo9zr7!VR#64n}11{Cc@^V(8 zfs}UQ7X>!kCN$6seL4MP{EPn$jpV_7{${e)01O}%lJl`d&HWY{E_K?!S4?H7 z@I>KhrdgsVJtpwCUh3Tki65C}W4%9%kwRjiW0rLIOi)(LkR>{p2$eH{vwOr2@?(_0J z2GWoWoaZULVCmjSM z^;eLNSsYZ_Q;JqrJ@cPeYmcC5PFSb!pPG_Ud5lp!57mIma}8=4T8anL;rWHoT+LRO zGp7BwiIQH`N6HK$BJZFOh0$s_F?BN;Kfj>1-UmPHzW~I!`xLSJ|Jdfo$RC~jfJk%I z+TJ_dQc_i(>$_dxIG@&ewnqQlxHB{Ym;?9tBm(ji1j*Z^iuK$uvn!{JE@#la(nOSWq6z4|6-f| z!ZIKILLhk=mqt-m7XednvJBsBrnM$XlKl!F^npc4AutOh%E_;KxA++xL|>UET!B3h zIBuqx*gr7VSMEC90oj|3dS5RvBXxiCnuJeB&6*l^dR{ESOW*d6DW1c_M&b*tR_z@g zw#bpk&d3W>M=dV-cf$u7aIV4aG&IR zv8+nJBS>|1$lYO{SBN*Eq`ukl*?kX%Ck&!!1y_+|^V0$)fp0ElGrjvoo}02us0NC` zU!7{I*>2L3b{s~i&eiMu2=nPCv#b3N-fU$JLhTQky{F>`Z_4wr28V!ZIhXz)Fsh`i z(dsC{G2Y~CAS!AGa(*JNhN|%7*p8U^yraAMq(pN!RvZ{;L*}mvCn2R?o#tC6bv`4Lvz#aHq^t=&F z*pyUM7EX;CQ_-<%COkX#0bdh?eE?ft%gWkz8Af5K4+HP?sv6ChJf0*x`;RVA%UMOh z6qxV^K4$v_)arV5pk{;;aUo%?z`ncQ`r`a!nPZo}X+prda8h71;DdU#FUjni&@zZ2 z?aX0t;y#d(GPE_E4m`v41tZr1j{AXmIMHfH=N&nhg8{s?Bp|77H~Q{g16D=Lz5($0 zA0e`5^A<+DLgxB2?)?M)k@Q-Jc1KHE*nnwr8DOmxNPTt!u-)0aVb6HuFghqVR# zpgS-#0E`v7fbL8quUKf5ve!hFaZMnSFQn~-`fNdONytI9_k|k3x5uL;7jmYLlL7-N zmU?RwNX*-Ch}fcjmu~g`zT)U*&3TE|-MNDJIy5rwkcOC!3SJ4e=M@MTsVjc*M?mSe zjN)o&Liy|q-|xhQ_L<7#^M@mr>lA;Oltf*y@7aFlPbF3GWv3;Ec$`brly^s` zR%Q_WrP}o5+PPDKn4z}F&7nGJe)NaNFK+wUatmGy5{``h6Y1ND3L#sL&rJVgZ%`I- zyEp&v4l${c(nBoV{i)M*4N=3!@yWtQDT~b^ky$j+U%Nivr3d={^|-oPx;E_g9G;42 zGB8Qdq8#0wn|OzdreVra`PJ27Jw7&B!0hR2QXE+l@k5;c+o)Y|6rSZbz`&rlK&AEd zo2h#(H~PrBJP}pAoto_an;cAn?%`lSkWmL%Q)oa!9ZC1XpKS`2)0=NP9*mIjL{vn& zY!K@7c${>0@j`ISE4wq(J+yByp>?IP>&ri2UT&H^O z%Gw+)^sE3-W>a7FMg(}dn#?u3jzW*0JoR7qAMB4+uCvUPK?B&PtN~+ z_HGHsLJIr6==kKm39N3t3VX4(fMdOcrn3153+9#%Bg<0JU0(-(eD`&`F-`QdvoAOA zD*@tn^%@+{RHI(Z&kL$J=>~UtoDn>$jZ&1&wRY^ny4KALzx`K}HAK_9g*1;In!Dq| zEHFtyb7_eI2ddAModMHVENZ6C^)>Nmbq-i09;kSF-Z~}xt*!t3;ZqLMzSBK#kYK8LJdL}!i&a_WTyA!V9w{IQ zd_X_!C)`=SJlBZJD&M@&KeV}X<~eXM>RXxt#(w4X%mPK~P>~se727YFo0YCkWiIoC zV`E~JdWL;(FWUY|Ir*2z+%fIPkvct}&+RbvdO5rZ5`f$9Hu)Tm7(#D2Xy4s(+VK5% z_vyH3^=^ewsmmZC1i>=Bv;h-$e6sg>fj+M%YGYgWJ6P}cS<2ZG>=Q)fw&l$J^uyyX zXTXsjBzNFb8>^!st@3R*n22IG94WI+{rX>SqKdjXmEULVJvH{VzyD09-+8cgss8K< zo~@<3{cU6E&AAq&L{bUnhBlw2X=4Nj7MqC?t_iNsSefye=gH&K8$iowqAVv{z@G5} zN=_QvSNHgsB2)tjnE|zZF#yU}aP9xuCxIOz&xB87%9tuNwdU9TCa^ z;vAx_v$snwb%!@kg%JqhsUZc!7M|-P_&DqvSm+RWR%$zJJJz(F|K$3Uc%EDfY0a!A z7n*~Ol6g2dnvsu2T6Az7z)T4?Kt&>lT`DhE$kzO`4bABzkciS}J4i(eD3gAfn%RMGr@%Rd_% z(@(5jx_a)=&%>0*W`7p8&-c=Z47dJ3@^bJMaeTGel!>IZlhMjDGLdWv0_OU4<#BY3 zRqDtJ%V|c@TGAJmxjgk%foBsOq@7V0n@y*8aTr*@4bCGoiwQlBNXZB{>zY40_8>oZ z1oz5HNKNc)NE5dc2VdGtQ!$gAJ2;yQYqcQ9V~%k_Il;yo{PbSr{9G<6mCR9qQ12W1 zV(iXbzh!qA)tXZ?+ulauEhn)N-#b;gt1!SH5p2GfR{g32EIT3v1qx-DmlpVKvme>jl@!a3n;}L)dbN@Qs0xxRxj05Yqt|Y!^Ew+ zS!@XzNki?jo;SxUhtlwTNxu&YHi zS&D74tZ!X6KuWzxxmVkM-y89^uUPo=@aya^ANdfI_a?N6ui+y(E&t5Cbdps@SmK|C zzJA%N;%YQruBIltveGeDH8?0F&`Y*_@nT?&YMt~NI_R;iSE+7Qpl9X3_D@l8YjBz< zMU78x9({^I>#D(en{BO^kWu?uY=5kW8y{bmDHlw_?eS zwvF%C9=*7M>M%I8i?$W}Q;^PA=lhAKLt<^~3-_}MMR5U^%4OFF@xSXm(_dH38;e=K zZaF-U9hNF9I+g4HuAwXL-sMQp0?1u##50#@CxgnN*mDL@5VLii&K}E4*ltd_i2LN& zW-RxQI1z`u ztRPZ!sM05&G`F3$t(%)?;rKZ_>yl120|pKw&YtgGO&ET)L}Z#z#$IrGqYe|prH|1% z#ZDVX#&PF-cj-X;`_=V*&WB_=V5pH}jfvH5No4kf@A17X@zvQ=dv}6UW#}cYysU}C zDCspIB=OBvj4L2f)nU%V=>DWk4&Ed&{cQMlgy8t^}<|}1#I#NjgV(f zml8M_8c2n+jBfm=VKL}WrFoA`$^tliwlW{6AFQRn8c7t(Ma=Lf%_Ti!qt)AO%nhBhpHSL0xupoRV)-;?9|@8$ZR z@Al*2X8q3(!B6fzL~aFZ1Nzp=8_YuEHQo5Dmjp;_#1To9qQaa`ZMN@czAuC|RNt@v z_HS&tt|7)oZ-^b0(ZD*X8eBV>`6dYEiN7ReqW*IPp_>kL)renQkOY)ot zfq;}cvq8uxqj@U(#6mQKMJ5h(Nx<`6jA;8jTDFXK)BHS%*XPPMy}M*u#F>5?0LZkv zAP?KEca&5d5pYt+>s~`|pr5JUxZlKvK=3$8h%2MN+cXn<{W8<|@2q6qHIPy z&boOlTs%m|49>-dx+@zm+5EjtN1UbpChnFoqsN84MItL*UCLh^i-JZ_*+M~-_==AZ zb8`(ioRIRp0(ejK$ByH{!IFVX8&`;wyo(-(r-nd~W6}Bg&|OhqjS*C}`EwpErE0kJ znX#nTWuKIccXjVh=Y07XYvPBjwqA0As5kpGK26HNZ0+e^Kk-U9O;HyuU?TM99HC7m zU`h=2-nCgl+7YwnPJW6vizhn2=c3flf8s1Z&r`2>{Hv`eX|;; z0akMP|HL`9ZthdhKsQX*&7UM`&M{aJE`zv9wSV{O`lvzsI`C~IHk!_?^%u2)?t9j` z$-+5Bolv~Oy626SRHK%-$e;b%0`GrtMft3$)PE52#G(`n>xVD*XXpV7urBpYsR$Qq> zztYj>MoA75`6Bn3UjFE=C<1YpqT-j1fPh5X>gW^xm-}aL_u9Fg1|DxJKka!qSecR3 z+}Ul~za_Cg{2leCD@IwNHXwUVVtvG!V31$K`mjz55pTsjp{r0U-zvIIqb|0spI-n% zw|6;dCugxE%3v2IOpV*xKSx%2RHTVtczoC1P0JKGLK^aDF#!MoalH6W{j zk2CY7?Z283#Qx)dV4N;>-1`wONl$~1sOn&yDIsgEHKxX2NYigrj#fEXH9_n*yWh;!K|SVC$WEBdO*Tf^itQFl>#Mn-S%k zaJx_7v_~M#Cq89E6jGO{@_Ei*TsJwQ$4(0MlB zg(iJgW$uTvMEu##ThA@m`nl`z|REAd{E()lW*2Cll-_!BniJ=X3re zfh#Zy28GFQ#1*{~%VfF+`qDhxdlXk%wah*c{!afcEJ?{2UAQj5mxF%gJQ)Q`Gu4z_D0Wu6wx(y0#`pBA5AHF%1V zg5YtO`O*>>i7bb3XgF^TSu--kVqQxEZO^fF)p5b_Gf8b#bZQ#t}UPC)H5|ozVMRiU44Fndr?$IX+ds^>czkpoV0MMtFA&DVzPOzYcnRY7)%+W8$|EQ;QiBaUj(2UfkbGe|i}l9m z5j$A^*jH9nxL+v=j2QBS?CnuP-r8T$)T;HRh&FccKY}H-B5krB1R0|Cjiij*$?)h?DuVw5;lZ%}A@b52hiq~L+tFTa;&tJP2trU3b zXsB6y_d<;qBaf&b5pnV{LVTykAj4zZnRj52bfLWaNi-IC=D_a6^4enUl?P75%v(Y z*j)R6;8{`|#NW-Ttla)J&owwP*7ry2D*!k^OX>%&^TCEx4}GRb0G8c%zvbhkKqy8}^-JAuHf-+x z9CXyL_j&-G;-})jsO;L0U`C!vYA%s(o>F8`kxV~zstCOzIFf^h?5pvna;K^170H(; zZ7pDXst`fhnt|!;b;&|hx+zUd(w)T~{Q@rE#N}T+IN4J4wbLGh0Q;uwwIO^mIK;PX8(RZB^;(-3_6tTnLRP1tksb5 zA=Ia`)*)au|2xCRG1yAMpSO|3aG{PA@<{9TZ8Jn)XlaI)cb}y!afP|AaC5 z7qHPgQlH-EdT`HFAF46Zs*dV@SbJ|^x8YFCNldcDabdU zE?A4#ctJ}vhnpFxk%(@7{CwrDx7^&nU_b!XPLiNKWhjP-KGoTVCTiEu_nexn178Ng z2tdcp&qDS9sl{Yab9c8cCgyc_bYMJ7JzNfQx`rl31<1s`3 z)SnaEaXjxF*=Pu`p1+O>pH8nSE)``>#$__`Hyf<1Q!A^!f)#8_Rr+c5NjWYgP_~rK z>m=N&*nA`*fH2SP$N{Zxl;-pstPu@*`R0J!^#HB@iiN_rTQ5cihWh|a>>I*O+)8xq zxwo}K#pqB}7QtfV<=1^LVvg%|9SM1o_vGT)As5}!N+QJ;k!iv-Fv-G@%BnPCMD-aqK_cY+pQzbY z)eh}}5;VvRcAB#q8>>4SwWBY{WzBTE(^=jBwI{<}q!^EC#hS+MWp>_|bjWx2qK6M` z%{ULDdj8D0OIhox=%I%Uk5S((98{nF&vhZxi{am~Zzj-CM7s+ArgS@?7N0vn^(@q~ zvk)I~&xeMbo%&v8)ZisJjx3j$?H+swch2pvby9vN(sxLV#W;}|u^mLquuD)$d9YR# zr${R%vfuhLmqw0Qv@#=u05poQ!1ECXFx!9?Nik9&pyOV_)PRJDZ-#9hhu#ih&}!69 z9%|}s0-IbvEVQb-Q>JaJ>R{IaI>W1vOv&#OXv>trVD%24uht=A&8y9clWPXq($20! z^$RNk7@{-BN~RP)Hi(Nd`O9n@v{y;lZ{_bM-ZX{j3=y4#BlPlv&M}dG^#0?Jd7ry( zJpP)EYAK{6rYbClt-4s%UWU$0fv{5np^TqB9Ur-c5h`s&K-+^pm!mDZfgdLytnFTwdLMx%bHTyMy9=SbCUBR&9_ zaTFtTf6(nLWe zOpDr0l32T{Bm?K&UaKbnWE(Cju42CtAe-oByb)IoX?-03I{YfOF(n+fgJm~314D~~igh){Y0RofGiexZC)I&M$i=5{H1yTU_Iv*ToZthMm4 z9KY$TI~^nf2-oq7&hn6 zQroFPne%p=4e|eaoElsXzg#sHVlL|iun9s(`S3hi;ZDL`{a*pZ4}*!6(O`Fi2D>(& z|{5-tmXqe6sm#VI7Ji$)bON&(Q9Cd*Y=?J?#{!D#nZ;6m{|d@gV+)9clVlo zo^+&iJw93q}if!Q-7$eij^Xy~mp>R?BSC>WbGxUF$O?e@ntD-u}M##W*uh9Xph z{ME;S>{>(I%b7^FBE7HCndck0_rmGA7VMdna(9ryyMUuheiBo1STeIL{=7zwO-MUC zB_-Z_Q@exLrk#JsvEs_%SgK*OUz_c#6SjedOI1f-)#V!*%Dr$oHF(E%)9ohY`Cra? zNZwG<%wqtB7tN#QCRu{YZ?2C&WU4kcivx!8qUqUYsre}#7#J1h2EP~pY@mAAvEr!p zYa)+tzskkl-e=YyP!}kV_32O1!-}ZZ0u=M1!6l6RJb6z}w>qQL_wO@Lws~N@vHSSl zrwXIejJ55-LgYh^mjSLE8lFVzEeuRd=W#AhTzH=^^(X`1nd=+4{w9Yl^JXg;JEG(f zrTww^m8n+jtl#H9j#-gQ34~9+jCU<+w?C4|N;=R; z?JB?Xy3YNcuiJt=0KBk`Gp?*?y{xNma+TQFaj*78QmkNw2L>qB z{jYJ_33&x=TjE^KvOH!#LvB z{35n1x)3bAlbf zNpyO=3^5p!MlN4pShjexY*{=vp!^X6dF@caF@whqnwLHStpho)MjN7(m}%4p3|)$g zaz7OHI0@QL%CrR{N*SM(X#?a~}0{NbWh9#18HtljulBvI=V?&8+|G7kr*^ zNinZTbXSZo9po)`OozLT0E9J}w_$&azS>{ECNk?x+(e z+7yO{uAR8iRXV$ipU>UaNjUuIARW>pdlR5xN#=}An8?CxmgQ=f&B#C8WAS6isx6n= z_V0!MAh*p48p9U@uxR_?7gI?yJ2=#s#osr>-u~TqgipJk&QD{bfI!d)6%E`9@fV^B z5WY1{1cTJ(N_@drW6B)Jn2daF*W73TBLjzYuJ{~deXz@W?C`xrs_>iofBfu+Mqf(H z5`V7AxaFA$Mc5YvsB5g;H*Bbap z=c=KQ6oXCY8FID5A6~Rv!AS{J_d55yp#RMM`Xya4(>nt9W6)!Smda(!L($qf@Glg< z7eT8b?=B_H7+r~?-2YHX3k-f|6D4P?!F!Pl9fuNK!vG>ZPD5SzDVB2h>Fa8?@Dm`} zR7M*-VG(mYT(7X7dtWC5CHF{g|ArMK!%6>2|}9J#?XECG+gXB zD#+GxeJH7Q64z|tjsp5_mulE28{zigG3xe6npS6BjoE0+=XWzIsq_%-Natrjqr>)f zJhUw3__!<~@r>av9Aq;8fm7rf4^&?iTt+R2J|_%(K*y+}ttC}{ox~FXI88H=&jmLe z9SLVDe@Y8Mhnw}rvz}@%4CwIf4Ki<+)Wp$GoDxr;&)U_z+OeV;F}rLM1)WXPAJywn zu!ZC@M@kqqEW_}$!ct>dmq@&&gx)RV-EZ?AFgr{s=CN&70@t&2=kcTdl8e@FmlqmW z7(4K>0IF->m58LZS=w)7?^KGiZxI-LV~|*>7iUwP^wTe@Q4I_*WM5w2I#}(cLE6kD zjOvnwJvHF5rHPUdyCts$1FI%z8!~*&Nwis>KLo9B@p8HMh>xh~JZxsrnGkfOK09tV znhZ2g`O}xoRQz89eBnqFl@fXpPA?H>bT+GeKwBTz)5E_S$TF05 z>DnQ!8RzQj+VuuHLlTeo9bg>4g`{Pmi2!<{q5PoqUTD>~3EluhE%{J&DQsWADe62x| zv0Pz0;xpypNoyncx}dP;>KVP--_T~?D&G~jwY9LKATz^P?SbZAlU)DZg3m_q6^jWA zmDV%a=NeDgIxQvHpV+==TaBO$?7L-`-u5$FK=?JKxQIhhh>724z#&#U@6Vs2pAyk# z1CC;z*Cv5ZA+P1J#GG+vbQqU?MbF8d6}J2G6t(d^h?VVUp35W1^Ao|Rh2Wa>Q~gS> z2S5X=*&b7^xmYc{CX=+r49R=&Q}#2zND{tG`~a3ku>8kxYQf;NA~n*g-snJuKztf$ zndcjxbP^wtH?&k+T)YgpW=tuSSKTGyCA+_(`yH{018OO3~ZS1cs)3(}41MGs!Sfj8PAUfrr;toJ#M7gu}hzq{}O z8>tvI`4jFIbcS8%cNdlyOJA;2JSiHLJCB|>@LXhmo#O5;9Iy1weDl=;AONGjtZKPl zhqglfjg^0M@G|5ctjDdmUM=x@GDthN+5q>Jz>#4P1$R$9M*)V=FAxFe8y!veu__0BWFv0oJC6GD_0dcUcZXatJscN{~BYtG4)dg)T zhhfb-c)S1#tNz7Ri~1#i)%{E951kL2`j0kF9OFj_krit#iU)=*piQH4>?Ce*>*mNI z!IOGB-}{BxHdT3E;X^dtJX|06)yC)f>90m>h)}!7|J3=acgpPxbwbfk35O~y=3Ric z(%Em;Yhb@3{JLi4CCA{0+m$RKPfa3|rdZ$kOG^&8h zNF-$~#dW>+Z!)jVRGWB`|4_O~?MibPXSsW9dl%eR#mlTCOC zgvZ$8DLOI-Hua2682*FnZZ3v2GCxQ9CF@;@%F{bH|XcbA%9iq_bblQWVge+E; zs=UI&$Hpp2j(MlwfpLR%wQGC2-2O3olJ-G1t5u;~=cH|I(!z@*t7ZEbQUDe&{-X~mQ@D$&YxfHfpoj{# zkjQ~Sq9=&21uDwK*Jjb#c}yQ_s+Ihz)G7Sqiu&$ahKmuL#74yf zzAC3VHBGLPwWl!+^v^w=5~*FZ&-*uQ2*sSee>$k}{Vu{*puTEge{1aC7A84D zUi+p2Dt4w*`8}EgFTT^4!#E03>EpN6&wp$mEO-)TIkD7<*IaZTi|706uA78@9+d1K z98s1~l77=}R(R7h;c)DFp5^}GURvykL>>Xm#&`ay;_20!KBz6;f5mPsrlWhX+=rT! zexh)qj2^}}{-)}1A?n zLL|NRY_j3j_w{+x4~f>wX!7tT%4N{Msej;}o!ZZmK5C?NzF5@VH;_2qo+kRM z((vuR_#AWSLvL9oFgGf|&)f0NRAPPz^=*=cTfwDYF7k%q_BH7K=Q8qAG-RHGhIN$Q zP3*z|y--CaL1EzFO}%uaazBe46K{Yb9HW{KF|p=Payt82pxE5k%U96lr6J&yz_4e; zl2*&#`adZN^-{UvW&aP!3;!=U5C7l(SmQ5(|4!$K6_?Wq^S?Ty;c=g%1a6iW8tk+5 z7bcR5sbkzu?qLDMb532y8F?4@?+hkGiKNl0GdkkQUe;`PMIZSvbfjEi^w0%m*=$ZJ z$A3O0db^1&zV+|%!Dg{vFx-76`0U`zFAQiM^1A$zB4*5-HyW-zy86$k0EV|S;_XQ) zXp5MnW%#9P9RE8Bgx+0-*w}_GFx&8N{(s|NjA$U!D2rUy==={|gwg+RUG9yj|3BT2 z|C_tNhc}4^XB5be{*FD#?1R`?k)f${e1jrXGc2?&iINUtNkVth8d#nflMp5ramgj{98|brGA3c8D z1>b;(qOb=tIHn7(nrF z%f`e$nwKT|pw=EDmjg&@&JT93##Y_NgKyz<5|7`rJ~WW~kB4NLt*Cx+bmma?Pc(e~ zWWsxw|GF-DnYpV3kwhbnIzq3^g-AX?-z_65Kj3~|!&ZoLkGmt&?yaJZeeaaodVDO%%sH4b? zI~`SWvRZ~{L{cHCD$001aG$2IrQ-NKKp*eo;ESON3G$~=u%yIRt}9{{bOEDa!pCSnxg0Jk{L{**PoJIyd?K2l|?c6vpS*oafSmes!}1Wzr7u|0n(;y#7ur|LsCUq^`=3r`NHMbt-aHkKgyc#XD3aY$s-96D zrDfz);l+Tn>yte%qgaisdgNR5b(u$A>+fHc$F7wD2?w0O=I!SfA6ahbn10do%i)IO zAi9-x)JG+Gx~ua>;k>~QS;#`l!{y}YPrQja_zT$7(?q43)D@o#VbzyGQ|?&5Z}ZPxlB8Q&HA39pP&0oQ zXPboL8oF}FVyaPX0=>_gb~WA6fFJ1`6ADCFBl3d+{OdiQ-3^;Tcf)Q1HJei!FMyan zkO9q*fV)b@d zi|PLN2%1t-C*;kZvMfr9gya_{281^*E#RG8+ylG z^Xjo`*f4k(`x^8P%wabl<|=JI|33%#(}f9{rrc7C?4QMo;vp^6|$MmyJ;2 zNfca4tgZTrk^2bpU)r5!-cmnywNJG?N+6K=q|nwnB{V0^EpqwzNaj~X@8IXl>I}^p z?84=YPZxvVZO?PpYl^W$?{O~d zeMKM1Q=Q*KKEkJhb%(Aej&9n3Q~*7pu-{fTcyUY(wI%tK0Mu!HE?!|4wWL9+gd zRMl;6axw6dV&IbiM%|-FN}`0ew73`u8Epix>K<4GpcBX|x3Oc8D&HD+(bx-q{GI`n zALV?e(v(VNY7)Ow$h@XI4l(DHgL2owG)^R$2j8&8#o+1K{Lw`ST6ZVR3X2P0n9BjE z_Jb&x#a6U725iTWY|OEo35Bt-6u>()KoxxFd$(Q<_Hpwbx$+MN%qR@Enb!@K_jHKm z5jVj!N{N}4rbGU>&Xq+l%d0uu(<0leRsDq55SzeiO^GO>RK%vG(eOXOPh$0#N$BenPPn;JGu!{0s-uzvUp79b^WmP> z)$_BbTzu>L{f)B)@{8GGo1eWm{4h3OO`&uz&b4?4@0{%~7wiVyW+914ft9 zk($GPA?5a1wcAojrx)jfp$>d9xMCd8FQjKS{`h`~Vv3;>D{DcEQ4Z2H5D3lmJ$-Vq z`^_<=P3>Zzy<+Q}>|4yM5m|J>^&+!_5g&OMkGRXj{ZTKEb}Q1VpnT-n?8>*JPTAd+ z;PHa+lQ*8nkI%tnk%Wzrl=Z+#ysR&t@ly9RBo$a|x;ZwdYw? zfIPb^^x#G*5&@TI?FFA~UM+50CPrt*D#$C-9ZG!*cO71D3Qe&>cJ1tY{$g6Xe_BbK zIFaUbvCUP?nCz5X;l^|eIF1P2jb;R*~#J`li8knnuu8to2AM{%lvG!pbIUS9jVysboSlJ*N59#dZg3N7L1) zTd2WFpnG^dzrN^0Ge>1AClWm(myU&J;^}F-5?>Xd_B`Lhg7iDwrW$XtLy$(0|9Fsa4ZV%*#l0~_EB0qhqo=k3pw;hITR$_3`+ZP?-_au z9De6AhSNW9YCJoWC;TmB|EVFwdF{YI;>KIK7(4IX!OD)w74(-}&C+LcR~Q6%h9O z3r}+rIwyrRnI4$#>`HNFv73OmKd}`Ai^uCGzFJDK>2SELP#tYpR?a*c4;uwH>Ra@dvcoalTlsR1J|+OYUNlqi3SR3Ly5@Fs@Uh)RM9A@V|Pe z4o)oM_N;{6^|f0T?1-;xo}sDHa-{G0h$PjvZ!c-!WHGRuw??E^;^c zT5fV+t|14iylur|(y9fmwMT{mL;ccgJI9 zcqG9uWH5{9;rkTMpzHm zbJn=$@vl6Mvd0vgar&8X*@<;<@g8lK?p8<{iNB{o_}`Jpe$27mixHbY-okiVF~{9O zVZl*^^Lf~cJAc;waO_3gmeT3nFF*edE|-(BzDuyy9`l$bWoe)6)2AKB(?1z;h?C&0 zYQ6nlGRpkUI-_EX+12k1s=1c8=7_BLZHc28LX(!{>1qZ4`_riZUMAvSJw#G29+jE> zn{G_xnQtefqj1Pjkwq)7;EjF}AgbJncI4&LrJ{;Uus>AA_wG?tkTJKCygU}}cE17Z z0nU-%i{-`a6>3F7`X#wB-1hL)x83(Y-sZNSbL;Bva%f47~%NPY`2PNOr3!q{pkiVaDA&*bk{-YD)ese50w@PrqowfwGhA z;X$%#hOaNxVGJILi4{d zb(K+ZbU_xk;F93(?jD?A8C-(9yIYXp65QS0CAdSdL4vzmaCgZz-`PE9`_CMPq3P+@ zRqs~Sty|z>dNX{MM_SL zWQJ$URwDnq#IBSW5n%A+-EkVwQKY1$B|9XaWjSA|X)9xttDdK&su~17CFkVChS23f zC{Iz=PlpMFYeTJ0@0_?Qw#R!g%k1sJPX{ys(0iVY%jMks7=WOkn*Y||>6<#NB z<i7WM+LjbJS;JEW8 znMt?r0da>FG6ftpw3F9T_>ga14=m}VF}xz+Q+!nr6t!=Q^GAmg>?d|glG=MYHGjS0 zf`wlxD4v^**P05jQ#?KI)?g(rbO*$WDVH`SCWyMIl zpCPVyim+VcM3ng`GdaBTWT=bh3WBHa^ku+%CM1*(uH=yX>f=UjmlB9x(wC^T_V}`= zopv=~ej=DSQV|oqzUnO)`QiymGgYZo7+^QYNEz8*YyN?^AU} z6Fhfm1mLOb2Ax32a-|nL12Q_8JH}xV7cWB^uo_ECO_-~gog(|TOyyV$8WtZU+sTl7y&a#A~}+WlT%Zd^Ylz5 zw1(x2sCpnkK^c%oDC($7Ch>&LkWpl5dwt_U_~7n*{nySUo7t#0-RGTE?8=!xeD~SX zX2TczMN|y4;PDv?OBy^z!&Ctw0qNKJ$pq286br;dOLtvw>z@A0bRWfmk|HLrQ=6mI zoFM{SUYdeFZtl#Zl&KMbxo3DB5;&&UmH$O8hd(ZA-;?Do8d@|88 zXNs2U;|y!LoS>CO`VU6!@Hq@(9z$ZDaZcD{^s zB{)GraP-o6NG2?jucmY5bdVF|vepA5wkn@rU_1;4SA8ZCF%%`Ub4Q4aQ-WwQ`BV4P zS`v~nG-w7-mNJj>_YgV`*5rptAxSec?qWpW?wsn+UJ&T4xuUX|y6v}{1DD1YAzWk4 zAY0Lu*^f5sZGqGAm``_y{oB7I9r!aLXyxHU%8dW=Lm~Y*N+h3JKdl8EtdrznbMpy5 zpw~9J+1l+l`2M=IAhZ*_0L7u` zHhq@mFJ|hH6VCLD2m$^lPNYFC4ueuxFVGZ!|F8$AeQ1hJQTh71i>v41fs7UEN>zH) zXr2AFz^hJL9(H8UpOr_$-A+~_H6!yy`F*)>U@c}i@ytCCtVF2z`I0B9j#c#b3R)VG zL_cESq%980bU6HT;64YLZz*{HQ4PGPMeh@|Gs+j_#YXfKfn6gNqRvE!$=FHre5iPl z-p0ATwl@Y2=U}6BY8)Ijm_U3ea}?be;?ID-JSjWW`;Yb;GBy@ZIB>4S;G{g@5qupZ` zz#IG0_RGy7LUHdye70KvAkwP^{cSF28i_?Ng>nA~&<6|Rb>!DgOi6-N)YFO}XGk7l zRMgazk@Vz4L=1O>H73Z|Ak|2OGQEx#2V`pk4WZj95X7p!o?~*ud?EwdsY`Y`vdjqx zGX5b)fO|(lp^p~xT5k^G!fcA{lOFWSjSv3*EW@s^D~|tmeJ#>O3)<>tK|go1 zSTrv80;)(Ok^jyIn4c33&imkvrFRF1iwig}1Xb{PwuN!P77a*+&g3hR6S!p=+{F_W zn(kjuHCuaL6hqp)n&IP>AX&~ahVMQ|zwhax3YntnlwbRI6;$BzZjzgR-I55OvS`OViMjo980lmyb_N8_CTR zFH6aUNxdOqjm4W0HodRT0?=2z{f3Z>n(;-fwRMfufXT@A@8O8A_t~FWf4H5lGc#!i?L4V-iM{Rc^YIeay zVPQ9d&T1?1^J?3}wO>q#j_M|DqsPYmO|Oiazml?^fvu4C*Ty5XsJiWHY%rt*^((PlkC9@zfU z%@og298OG#?R_q>IQH$t&|xK%diGQ;R9TYu2+-<0)_jqdl&1*!(&So(#mnnp;!qW;(N~_V5<_&HS&6$ zmz9MeL_$p|n6Kn2J^Gs@q-e5A+&s7bsrIX_b*v<1GgcA*W;p>|IgbUE;lgIDV+gNx z%?c-(;vV$Oz?LIL`1}C){DZ&#FEd+aSk1UJZdU}qEC}*FJ6qat*GC1$e{Qb-5xn2#4KkTr9ae`l5ykGt=~c4+I;_Kv*QbqEK$Fhv{^W~d z!}m3!gA)>qZ;+_9A)peItc98%VXwdAiqHZL}#B-bF#BJI$tA&8)EFm zmrs9OQ|5V=dN{s{9|#{dM6iP+13p5eQb#c61^w%g>$FU7(LriS)SpXXjD&%vuaVae zDL)+e5<(s^w}6h}HDdgArtw9QFoipt8&rAx^G4^-+m&!?{{dgl$4awgze4!qAG#=yC@0b;PeQp zklVWF(*}$ANV)CJ@e*;$%#ZwUG1ikmc3Lt~@rx*x6jdWg5oT*LdNO|>505Yv>N#z9 z|Jw&LBX2{zI!IE}&S_7JE)H}px})b>{0!mbLfxaz_7kxE0~kkQO+MNGA=YY#$|wa~ z_F7@;m;EF{GgsM7F6bxntK$In_shluE;}NRKqAE3VlAI6fHc=iJyxPpkJV<~GmI<4 zO+`;Bxcrb%L0Hl%GUOnuzjDHYc=evXyu-IEy&<4xzjCw9x{brhK>U_Gizl-v zIN{4CoyCSxZBFtlW$twditC72QKY|KXGRh1|D$NGlV|X zu!yXDjC!!_XZ{Mky+i({ao!7j1wVK>MCzA?#N#TZE?tXg>;Eu>a}foCMu^oc@cZUT z92}7;P9n9=#=9ydS)zISHSiN4vzmfESxf}KRC@|>s!XuZgjkOM<+kQL4l8XJC-G0I zFJ_XOP;&LUtW(xEY|VTS_{*$<{N_l?zh2M|JTTT$TlR{&smjGFT7GtX z;&WsUa-XzhkTJ6TMNR-584bg84No5!dR~apVJfC4{!RYU4mlV0vl(x-{(?H*h^+00 zswuRhez1KVk*~%k)q~H>6?i>L`vGb=Ud?c*QYh3n%~_`$O$JKl;ZcY=m|Q!l_ogBE z1IxDT=5jC>4!*SadKd5R{HL9rfa`3Cb-l7{+|_mo@nYP|XZ^iP(XE zp|elbT}l|rXlw+F0eo~oGL$SFN>uGVY)e`vMU^BkwE{kPn_%S7jvY`wQPzQ3-T_$= zAFD}pflxZ|I|z#iLrm0>O0CO3NsJaj&~@RLi%nABD~pe~yl>jx-W5k`ak!A!`Hgk!Xo)YYjT(1%TD8uy9 za`~(lgnSCI%KB;FB;e11=&GKQ9N|x+D3o1^n7l6?m8qVIWFIF8xO5;{1mLlVVql<^ zF6F>Loc6abo<$p|`R{g|8AvK3BLf>xi+S`X{HE;xxB!T+YfQ4PYq|A(a?%!my9*0l zMq;xPCX<;maJjs&BOrb_f866Tjf@0W&@wU(up(~*nn*z*dW|d;2%E9FmD5ssdc>*d z1fQf-B`j<68tGOf50fgNCpLLJ4Hky#hIi91xW~!MQizC zX*MmJnH}W91yWK{V(vT6`JTu35^(Y+rO5T14`F?j7ZbCwCHX|=PbnrUiWtuba6RQLc!nUN8Bw&Fp})weiGT80X8Tx3ij@FWtCucf_3 z`U}M3m&FP*{s-~HuhAU*kZ@Y0ppX{Nw=HcecNK3JJJ3PX_$9oWH7gR|MiAQ= zR^OV+7YFbFS!sF5%wef+E$&^7|F|D6R)W9&-h5rB$9dVY=j%0&;O#vhDbg<_x~k%0 z5(8Cx#IXD@#&C-^$0_pzBOiOH`Rz3=-rC)*v8Nko1W6LfC zGT5<{7-}<)t=ML7r`*Z5yaOBS>5+toqL{FaN1UBgnMKZzHATm}lnC+LSv z*2Mdk`$x4;BUtfUDHe!Z`RI9iAiuVA9~?ICUoM-2;`DU37d$F@hQB z)wo+E99?Yr>M>gJA|Vx2YqADO?B|0@({Ls8GiEo5PowML zs~%##IQ8ZSCs2**`&CtCP_mgWn~&+$;`}}pfmr4Q<)5pKJMv*8_gDI$aZTRnK#3+* z+Y)dbN0q(DO5QoI0rQ}Q$7kc6ze{--MSDW|Nz`m|!%WCxXzqhYgYBP8|EfjvQJG6k2UBYwqiDiyGIC4yOHuz811C_2k zl9@9?G15{;a)un?jt3@7JkOwz*3`>|j5vw7OTVX}a{8oV6wK7uechAK@#DIae!&YQ zwQ_?1^jtJJ-F=3}uj#tNB#sHC$@W^7wd6Bz*2k`bt)|TextD4Fl$-vYlO;EPZ{Xv1 z#;Fls>6cRxU3$2qV+!@{)XKMMQjLPwl-KEm@}0tVqx zXvQPLK)q*Yk8M>fXIq4D74_674sv`3f%>E)ZI)6#WoCaRA7km-9o z0mx%z4NIdHz%@$6ON886jZ1A*@0hqjGN(X`q9dR=7nILK;BGkrcONIo7XW~Q#GkhE z=FOATd^>z`Ldn%i1}%bG2!To%5bd+%Dl4B!CQDGt3>?OWJJ3J8^e&S|(IQ9$hvpJc z3+bbms0@K%&DxkwloG$-rK6+>#@XH#-BWA>ir=8q}_4Wano zLp7MG%~`}^gNInY7Q2^FKLp~}Ddhn*l&up1uXM*};o|bqNhV|OtE-$ZK#B)O4Mnr{ z<~)RJD!!%Koj~3M=i=emnU=1~Wcs37khN7<(_Hoe?EOJnCL*t~4@@-aE2`y2c8f{= zc%1X)dLL_tFEd%(vnVI!A1A&-X(R#hW8&%y=98QKh;__QDvFXYDZQ7FXPSHSqX)f? zi*+&eN&%5}?px2(xVq99+|}E$uTbR^6e^*twnyl);7%AdqP+lMT2-#H(q1!EOWO~+ zi~%Wc)*n~0`lmq}Gbov;!SHrRQl%@s1RUzhnmC(F-qi)(&tF#WQ|$RXcr(<;kFO>Y zusrv(k5eBmgaJ6K@y3~cTyrX>*@{M4@%5?*0gh|Asd7krhB`huX;OF6M@F(WC1dbr z_l@AW&e)IoTH}0gUB*YV^%0>V<;>tIQYF>H)?Cla2h~{WK399?%j(rE@+d}^m8BBPZ^CH?w_@50C;_5b z=*?o1MI<%N5w*1rVr%n+&6RzjlLu6cjG5@o${9^c1;eE`WvYoOI}ZF|5y%zm*mcVf z9gr|e5=s*jDS@IWx(kl{RebI}Bm-M6qzH5AGX`pVj4aMvF;> zN!-ICYikiy=R_7<38SwMmI4flB2L!Zb6C0`2)l*-E&HYlLit=AgjMWXql%*l3?Q7l zbHGAFX)W2^f~=t~5DM`AeNtj}S#>fv>NB%`K=!y%N> z`|~j8YIjBf>&T7Wd)`Jqled>5MuCEwKA=^2!u+X(((i67KcKJ`M^Cw`W zCGYpY2syr27+Z01Kk?ZJ=L87`Fku)__J=&3OEWUX4x&$|kRR?=?1#q$M~oG|Qm~W% zB=JoJ-}rqWqX2%Sr@x99rBi}g^AEm0*t+(Tk*|(4#6^&Xf$|OLg-EdPN|Gm9!J4g% z42ur$g{XISTB#%TJSFa|!RY`dGS63X%N@j{h&=tS0| z;~83`)f}KuagfhR1EiVhHB=$q!?wOZC~b|FA|AHi4kI5N?skYM1`9wk} zQ=)!*S%F_(et9IEa(Q`jYtaQ!5bD13OKQ;Rc}BnX`>Bv3Wjt2?!`o>)UwSr}Ddsf+ zQQZ5YXZH;#-u<4-%GgG9+(L9@H~-B{{Bq2QPdRjTL}BbGK(xwM{Ru17%?zk1jcL^f z`n{PV?IrmR3SN-$J(>alIK&c%wA;}`qxx_?z|wxg)L~LpKAU+roM#`XTD|#4R7%s< z4;)-`H~d?qTmNpK;MyjL^wWbF467ga{edmj{{GRZ}X4I z1G_=(Ludo*))=6^?O}AJh(8y(({o99G$2*)c#rszX&p652#Mjlp!2ya0L?LoNJe^y znUR~KUjQ7{21WlE@vqY^M}#ntsuzp*d3wxU`U#B72) z${rfe-2n>;^LC*9JShTHK5ecwoUPWpF;KqQuUQALQ!F7wd{q{sOym1KrdJQ`X9n4> zuzT^>Hc(o=cG{H_G<1OGwDCcIrb$xQj$mcS96%5Klx)VLz`N z{zbh?hoR8W3kD&?M544uH`on1PAlLj^N>ZG$2p)8gOzNZ}K5THt_ZN7CU1CD0v{&}gTPQ|jFGmur$7MV2CB&ry_sX1xW5Z+FaszISk&>oMDHwRhU*V{6p2jiH1| zK?NP1Svr_Zw3!j#$-a3pr{G$<90D&H2NmGN{O;92^-q;1o8`QKp;DWqNW$ zh$pHNQoERcGl5=t&sf&TwC zTY>%>qOaYMK1$_79$0_p3K+DTZ1y+bUXe+JUOJA|DS3U#19yg^ofbO%L_WgG?|pRo zy9r4RO8*Kr13{z;?tRSmIdXJ6TkQQKy5K;k6eAvF%Any)FOVTBUQM-Q0z~)ZP(n3m zqUh2fTTozP;{dSHb`Zu)mVT>K09EAY@t{qP2{}d zx!%I$m^)ZNv|;t2wZ&62*tA^%mKk@`6?0MHpIVDuO6+^;j41J+bWxDo42@l&x~ z(e!|%C+<==QPG~->htVD2b(dKIKaJdw_hJgdtpDz;tp&!uQpSRNnRBwLkn3@00L5> z$7>L$jLc@;!hr+uWNUu-M?=GID&aonAF@&wi%s%lhE7|Lz@HM4a^OA6)v^_$pUP81 z>VIn5+R;32IbTZq-fTnD9CbKSW$YF2SnkgwtS{r4l=E0|?=;!K@pynnaQOuF>rf)u zJ%Gi;dBZe6m;TetR6}mTiu>2lF0;Wg7PeJ}_Q^f!=KsiFt z&Ox9Q>yu2_im0y=Y@3}y>b@q|PeiitxJE0T(0U{iz&*)+0Kc#KwAN7>jHl}tpZ>IFC!U5M9acyjgDOqSjM_VDPBQ=Xc@ zr7e}D^4xp3-Ji(FcDCV)bVEV|cmRSyqo$yxGL!H6BWW19&ofF7#B!spIN%s^6#gZ0 zcs`y8djz2z&$D^_b(Qc~-QC^wN4zEA6dAg*c5Ek_t>z z*+94`i}^-GoGuYttz;_^9UE*Ed`^S&^|inIzZXo5ueE=x=K^d4LyL0x1~^2WnNBJK zw;Y4lrh<1`l=jd~u1W>=ygeV(x2b<8tC-o|_K-C9SthsH2|w}wL=P+?=sg&ay}xt% zh8%Kh32Og1BJo?2y+dC>iwCs7Z<%ws$72n#=ti0_TP*XHXd|KKlbz%oCzNQ_GR5zF z>RYL~%HM5sgOj8TVQOB%#wznoSM_10g$# zCe^K{AmskS!c}boh%&s*ZvCc6NL}rVi*aZSs6~n4d zM7mqLnPuKN;YP-V;-?M9<&X`6o-HRJIVNA=S@w6W-iUn^Oxl{8IJa^L35K5At!8V> zSi*keX0-h-f+tcWsLAeTe+9ED@puWsc>i6u&4noaO3vb8%wSkk!M8y|vu;ls5gC4Wi`57=IF^jo!oIRYRu^gUIAMg9=5)Gb; zTJ2kVw|~}f({(-q5MO@c_fMRz94;MO@w=Zu^Z*QG&*$+4Kt+&-yb=`Q>x@cDbq$9tcNXW@_2$NzQCz`v|#=+aO|i)^e;4qaD0`d ztDvwlASe}qoT9*?eQj1oRxD0r&aiJlrZim^Aipj1UBUE2gfg;QoqQ|)w}YkUdkK3) zNs|zl{iPxq6h|dz8K0683f?ms*$zHgZw-tXm5q;&PxW|>DlDYT(l8uk1-ya7byf4# zbdLV+loYY(f~(if$;f!~Y6N+BDgVvUdQx8i)Vkj@$Rso{7M*7%+bekxyNnpYS`S;T8MsDMQo|6y--qr@LqmnCH8pjx}~8gqNXMu zOki>VFw8CvgW`+2eNg6Sc@8p$Ys&C&*NY%6x{0D9DxldXpZ1qe*qjf*3e3|-{~1qt z0ms>uaf@;);9BeoE+!OqyAjN*pp8&X)VP>>KHqkr1t_HaE++$vh*;rK7wDgIL?lgN zVPS)@KYq-&=6`(jEF==1@D~mAyw7Up^?5>mh12QZ>YPfqo;rk zGe(wQm}_xpfyKxDqG)UolMH0V!7pmwWuwdnTj{Sri4OUEB^m#oRSA8VS9kdEML7(q zKTjISsts{m5A&-avuzF6OBb>D(}vN?r>RF_mfgTD`cM+A%I_ke72yb><_zZ?1 zIG6)G)M0s8wVA_3`d|gU)G==b1tZ|k64gEUlC*!Cr2^Lp(9I5xmk_O^JCoeP>0;;bfvNG{{EBCegg!Mxswbv9C zj)4>G$NM$*hBOHT`Q#)#5R%p*-u#gQ{EP9wwl#f72z56d34s=T+}Cj<9Nvs}>`Y}Z zhtH?X*XP}7LoPQ%C&HQlY`)l68Tp;J0HB0u^2m2G6n=B%P+BFF+1Sd!Kwj44m3_04 zs&e>B(Waxo<&&y%2IV_dA`IF6`tNC=V>@AL+eBJ`GT;oA)^K5D%DG9K-s!yO;_Q*3MlzlWU95VF3Npw`tn;(p7Z&!^pX z;AI6R$lCh{1boNmZd66_9Y>OVH^X>J`5b;zrdmHyE`u^fDtvC6AaYGB1ZZGBg`_%b zxwEBQ9p^L$>Fg<`Zg5$k@*W!TYg<7w4w~k4|-2 zTfjO1$XrsNA3#8@uwUJNCZ?h$^!*>v=qLl9#u!~hvO74F#1|NXcb3YZ6plsX$o@I& z+}ux!v@}n;)_Mby+wR-sg;GK5&fN+SU=Jq_#T+Wtk(RVd3$@uv2~Kgf(#+o zin^$%C@3^E$M~kAKtHy?ME#x!S<9D=>l}n$xjDKm8L3E!O06f1QNEFOd!K6nafukd z>NTWl*KufO*L`glf z-ENQT*HK48md6ZKA^n;^QqD$^DH2Jr{cQM>EB0%tLhH1cCG%Pnw4_}!Ll3q_>6-t` z5T+{U`TMB8^JBW*EPr{%oTO0CPQXlAzovJY9h9YFF?p}E_SqM^PxjVBVkUjNPsl5!lD&hH7) zrNMPPf2OVfNi#bFJmK3b-3q3Fyx`U?yywwG-k4rffr>*bkxC8B8aU2RK^Xz)LsjAEH@rIA(M3e&t)(LdI- zuPoIe&0N#&oa@{^ROB?2Pt{9)etR04A_R{aj~eGFrKSy~d}z8_%W%KkhNk$|@JhSH z_nSAX`)tYbjkLeIJ))iFZmX>M;POiQS_FNuo+qnDuQRLUyerx}=P>|?Fh)YMXkw}2 z9#UEL{Jsm$9N6UBHkjNIef~|;u#f=9?jSnWiU(bCdC#S#@ zHlxg^oo)jW*rl_lrMDw=pQ642Ger5^ZgAJyTq;3HN)n4L#xw-;RXbBO*@c$k;DZ9m z3iXcrc>;h4`E$NX<vFU8Bq)If@=t}mzMkhHRaeF<5!&maXfl(wyt?|w$<7OM zB||b~6NnF=Sd8a+^k?eT81nNAm`sOZMX^D12xu`P$(1+Bv-7qVNz3UXJyJkIvMZA> z;qc!>qW4)lnoP14!zEChtUjLqUY=fC%bF=q6XJQ+4y&euh=wMGS*CVF3n;$2$KrsK zSq-OAcK0&}XI+7GSZQVD?(Rs!Y?(?ZdUIsj(tN`IhtPs5f2O%2gUq#?do2(A+8~ z2ltW07F_s?iyd4`iYr$fGtX1bjr!MJ_G^~G(@~)o3xa7vYg)jgzCXE}fz($d%mYeL zX)WS4N&9<&{)dxOO@XyEXlfWPLo=!Mv1a6y*;v5}a)wahn9xBm@*-G2%cXn@R z`4Tap>&9XspIAP0th`F<&v#J-_Xg8*8GyPczvER`NGTae>Tu+OQ89mFKC*p!B9tgI zc^5T8M@z*~g0Q7w1E!4_C|gyw^LcWfw-FeXLyHDTT|Q705%+J_?L@;iwh zM^usx2DiRQ3j5?=f*tuea*7C0F|iJNv9@1+k3?Ap0N7f84_>Xnv6Gim*L>y-YwpPe z-Z}Zy=zfb)i$|sp>yQln&tmN!f;BhcZu(gjEz|ww;XOfxJ5X^@s{L*Vljr7y`w1s{ zCU5gYY4?%OJ3~Y#JS^Wdq|NYE>xjo<-~kcq?^-j7#{KbROZWniIs#fDyejG(E~y9i zSV33{VUfeb(xYH7gxo1P6r>--*B_;{U=y_&PQchoyQm=n;vF!UI-7SdWe6SI4T>*Z zZv8Z2+mp^7De#Gkzra#BKh za^KNv0yQWc>4Ruh*BQ>k%iS>rpNNKage`o|{xt10j9*P?n$y-`cj@I77DW zB>T<>TB@XjhDY81JJp|;Axk!98~&+<(ty~) zzyRXtp7VYP6U{=oAvaFjsemMgq)mdutmZ2v!a{EA&T=;fH7mbg+iH*(fn0@g3_XYJ{BXAZNmB?(`7Hdv}8gn*tu>s6X9 zX2MpArhTy!vvNO;cFr30*Gjai*e#|=f7CuW1hmPRv}A;m5CXN)-6|H}{Aug7(W8(b zlo9VWCZ9G=npagwfROQ%Xf_T#B@pC2t=aZQy3L2x@PUnON;S*SXPMpCK}sm2Iqg?Q zjKk2tddJ@A|=XHOhjAW&l=VKOtgSMRud;H4IPV53Uvvg*bKpE3zFrvi@0h+L2q!DJsB z;9LymW>-D9^{OMuF@#qWNaZk(1MJ-GTUZu?(`gjw6!ERPl~61k;=URC393_7$Oy)% z24k$I6PY2-ts~}fY1{O%>09`Vr=uW>(I5!3;6nOqAqzJL-G-RdKjf@#!`mQ^_?8hanmB2(idhbQ_1hR0<-;$CZoqAvgJrA0ECE1;_DCvKB&At9l12M0%j} z=VFaf0unnk5^E^t`e{S2sI)eAi{cC9pDrJG?n-TNF-ZGxsepmH)^rALRwVXI6n-8a z960$kNMIJ!UE!_N?F$WLeZk>7mW?*^xc;x9(Q(dCoPi;FQmQ5}KrtQ2bHy!}+PLAZr?s87cqg#{d4^z7PYat@QtGeDXH0n>L`I1 z1!7~&YdNDRUE|;KaqHgau7(2bHr?JUi5nyhj2{?V*l-mmpV53e&&DRco8Q%QIPZU- zl#%JRw{SU(2bZfclnQ>6^Ri+`tu?!~3g{&rp(`sap`Q6=&DyA?`*YO9_Lp8MS}eDVq&nHw7k67LM|Vn*_}CujI?aNwjOb^`0=^<-HB&Vzu{o^ z=V~gjW?uC~mY1%IF6jR3tku?wujg8^?|$N80?ifENUKhnICi$T5S(L`7pd9l_^%eCZtU_XcmH zL}T9?)1JG$iBUjgZ;xk2NBHSeT)>FqTH8?ILUFYgqq18qO5@-3r?`s05)Zn5LNPyHM>-;adU?$|zVP52L}4;GB)H$< z0*0XHorru!d$FYF(GkqF*Jb_bQ#7Z#06RP)O)WGCZa8N&nW(qrgb{mrje1<=G9}!R zx+^|1py>2A!9)&uyq0UQEVVRQP4#`b3r*RYQmdbd50AONTv*t@xLJwJHML3*uq(M; z^+b6ML;l%mjIhjBE4)M;Bga_d|E+_3SsL z*W)GVAU<*P;8%>s#ny>y$K?o;uj@UPj{BBFKpq0L*Iupj2ISjApE(S)A+|0B14FP> zw;!881ij~8foZOFhk!APpXUYs`rCEZ4R~^QL}Pz?5q*H<+}y&Dxd`XiNlmFF_16z% zU1it?Bl)nnA-z37-Xn{9hTR4C^An?)A9q4hh5AgH3QamRq|Nh1Bo??H0S2myMJ16t zhiDX?_x|OYc3pqq-1k`<3CT-YO-<5RoMNN%l{+5GsE&x&@5&_m`*w`rOV8xtd=bDXaM0725OOMp|00Fv$ryB#`ESA8oR+CQs$0bWwXijk>$Ax zTs9|cN4zZ5BnRs>ycRFM~U5rNl zGdVk%1Z0%!r`fAp&%B)20ikQ_-Ekg0DhiHBHse87n*oO=oArSl;(ySc&o{kIwoNum zeX)l9xSSTGbwYs*)m`Zt`o7_7?QXHzaU<1P0*~0{%keypTCjDo4)~w`F2vc4MZ>vcYN3Nzd~#=e^gaPY4$1!Xvs|la-YfTX4O)_BJSG zHJ`J3yM3xKF)@ivP26?6uCwj(KCW_+m7z3hO9PgFZY-TIE0VeOCvVP*yw~49TVttr zbPO7dG`L7pB?=^jr0DGLC9v0Lw4MW{aA^|bOPoAj_QR9H4>0}6tw(H4=XAm^J=6m! zW1O~LyKTQ%)NSdF=JsDLn66`qR>_?JKZ47_n=_|<7nhU_6VXR=&26B`?VHp4SnzBl zfJ!pH<{ucialF+r94DGm9-Yr#gtjVxU+<2v~9(cTdR&9%Vhvn8^b&%wN)= z2-B-Yv1t{oTH6fZtbn-#V<`svKsO_kMq_x7W13x2Ym!O1Wdje$%tXRr=}!<10FfRu ze442p3rp&jjBP?e35d}u*T$FnKZK=o&wR8a$BrgcdKD&Qb4(W>C3_2QUAa_Gg56wn7VE2vCqx>vB-f0AAlc$zLzZ5if2?IK zMGW7(c}nwvJ0ADI{AQDQ;Hi@q>02_v@T1M4db2t_l2FaW0LQc9A0{G6B?QTQ#&@9x z?Yq1Rdff))76ThUqgS|M%LYpgJm(bqq53t(lzB%fCa(i?r}^0IG40mCEN^;6R~~;( zyKf4BWAgNy;Kx78xO_scZZ)87+POG0w?+sZpQmF>%fd>#oBb^DHS*f-^#hkH2pA!? zXb6jZv<4ebUG{j$;E-a{hGbjggKVVlzR=+Mk-wQe!N%~lzTRvMJRg6JC28>b zxd=bq4Cew)7+7BsT{WUlApB8ph4m3EmhtT^n&Nzq#>rCz%7Kw>UevA95rr;iA-|S$ zq_4*p1R7*-E2=mExQGEJT97DuNOYo0I(BCOPh^3L70vYY^iqc>h0pUX4I3LVY-yFX z0g$f4{)kG-Mwe&GFA1H&ZCj|{Efyb-rKHv@eOQjeK)c)?`tSe~5``mAG!Ze%!neZR&g$%m>-G9QS5kZ>yCMTkKSaF zReUmKaD1l=&;(G`l<-&`&|zWM>TK@4I_*yJk^AKg|A}$V*_wB_jpN^)tiy`j6MyD4 z9*#{uZf~FTc?N%LH{<#t;=j8~8Ir>nF)@M|1mf|)v52m<`t3A2Dhsd*ZkQMg^>g%6 z@A6Q^6gAb}`9XkhzByb;frS20N915b%fMg`^l#2C%;o3)p<{~50~+@-(PzBY(Wbac zE9|$MW8UJ~%%gTj!7OAptwXv>p0Ru2WOQV>!Of{wjYMtlI7ukq=tf=(D!a`P)Mb>HM1O#pWoi`m*Qyjow z84cHNc?gECD6r_(2i4are~ICX%sfHnG}ueO6@0!Cez^4cCobySJP(nEUJ|k6U(N5) zh_#^&2!_g$LSj48(<0feMHi!ce13Qt^1T<^qJ^Q@Y##4`l;^F{ei1u6l;a^{94sf==?;Zmwgo#v z&NPK{hoW^8OF-td>q|NY;;SF~t_leCpTE7twX14PW?}BwS}L5J@yrs2lm=s*OU)d4z_*_uCU<6e?l| z8#v>VE8Xx46YJXAR^Zwp1?(6Mv>Jzf0gV|fc2azH*?#?EO=bYwEN$ONw+q+$GPrea zM2cK|xNb?nzjQd#ah)PCBBQYVvXWy0o=|>#rhlsdbQa}#x{?L26a~<-BcRrk-MWfV zLXPHZYPFBrkJGh-xQ|+X{J0YeOcw67jelk2&3|PfL^Tlse;`=JzIOn3WB3W|%-;4N z6SjSCT9Y4e`_N7=RW-Bj_@xg6YJ41sx%10M*^a$#`^N(adC3tRZ}M#2`A;Ox|6iF>V~BcZG_G^A>)U3 zW7+aCt*G){dh$KBtoVj5+ui?h$5=fNu@yHq#!?V`gLi7*yIj+@8?-Vf6nklQ<@6_4 z@d)}Kvc58^%5Lo%M7p~{y1N_cPLb~JE@^3`MY@rc1_4RQO^38}m$VX6-{Lv%i7~!k z4BdO*vEr&VuQ_irUGz$deUi-*+TtgUTh>hG!jC0Bee<`HQjxpiA)Sq$;^Vn-K}mX@Af5Q)&+ zgz61>;R^$Sbn z-LIuBt!hXs3SV5G1fHS=L6oK`c?U+U6`Sg9##EY4Qr8+T@F>| zUCFIfe-pN#e=V5st#xE`U!Rm6b{(+IjGPx(_39z@$@f|!CB897QEGS)ADPl6b|e*P zVtd!__|=;%0gs2`FKp`9woX*@aUw-(ELsATt%XQElIAYb9rvpOmtP!S+wCN$LLR@p z0WBzojn%>#W-Or}Z#-2u_W3L&A-(a7AwYPSJ&seXybCEn`J^dQhVA0~(s6VkKdbyg z;58XVCrWY%Wf;F91EY@?pARO7Kvm6w3%}x?R0a>2Jb5^vH67(8prZJ8bkE{4o0SCK zLs?qvwbwsVo60+lLl^=pp>&gV%%l`5+CO^4|Bs9juxYyg!|>SoYNRPiHxW?(^&QA- z7393T1U$##LpWp0 z^h5V->~B;HWyYBL#2-{lzoo~4g$x{Vsl5rendym1uj(MsN>~+?f!Ho~T831Z_{7aQ zf^KBO_(H;W_Q>06{79*B8(b>H1TX_S9ADAAfbS9Jb}+{`zb$p{w%4 z4OX$qN1r9HT-V@1#8&7KAS8o2%Ihie)2pX0WFN7~w9x}u&}eF@X(cS)tL$j3;3uVQ z!u8}rq2qW_Nl3N-qbnjsJT)Mp?6YOUiP`+)OR&()B!3?GMvKBuZ-$p!Q+-xk)BOgy zOIL8_p+q|m1>|@s+OyvLEf`2);+nTN<>Y6h`pCCu#+Uh;zz%GdY`CP{SLX~3$pI}| zMs(iVjxsEV_{GSrme++wE7J$rBoiRx;pT>uSBfg|HifGT3^m~&zUufi!~ODXpQy=F zb5bN{c@)Qv_`Sn|`g_N3me=MFa1Tgr>Tk7F7en;kXj!V|vF>LMN01gTG*JO2;V=xk z{sQ=`icB~KML?_7)7RIRn4A0Bz~8^E`$Len<<4s}bMy1t0MfuoJ`X;fvt9cd_wgG< zkFoLZeW=L3{e}+IE$koh+eYMoEUsSYfx=Rf7O=9Rv;ZLQJHW`@!LxUL_0+LgHZE)0K|YEj5ug zoiY~|6p%>^EOYB=X`$4l0lvr0Ei)UWu!T-XrXdCfkJDT~sgOC5I|VrhWswtA&>e2#n2^ zc+u}~19IQFLmNqoZANfn#c52kgrYxr;e&M5;NAS%;C{;YJo1)^FXQAr-9Mp*q64j% zmq)LI?$}~t7zqU`gZF|0sK^X^Pq}=49jN+VRfVS~(XVx#IFPk$y{K+G^^J-7GU@T@ zQs#OK-&>M(B^Benpw^e%}IqIJ{92^{%YxEPE zDtDw3PyQw7We4?5ayC-J8BJFF|L;I@5{WTq@-@Du0Rw+ZG9M?m=~#*=jV~9 z4S^4OD7_sKUn&$d&9Osvp}L-W$z1NMxJ0uS<* z{YM{MWE|NwvW#B~+R=rKVN~jzf^^BLSP6yV0p?N3!+H)QukD9)hJIzsm2UF` z8$rTRUXF~x!@`=yo>;BR@Y!48v$H8{TsH!$@@vkv&r_2)+a`wVQ7CD0GZvc}9k&p+ z8alw^Nf4cwl==NDegd`i7;6d3vRrfan@5kQW&~NK@vh^EH}l-*N90Ds=GR8!z%q>L zccMBg`nh}mMPGh5Ytw4=+2y+CN%|oKC|Rs&`P=_cBfB5DYkyePkcm6!o$hMS_3PqF z@+0@nVfYwn>cd@f|63r?<-y0P%ZiyTpf)9Y)Z(Pwi}^ILDfQb(^A?8(^T=+$H@j{khNfL>KTQY%=Olutq`0S|ve$88oZga!q?9Om57|tE!6Y3ZT2z zPT_<+5VFwjVicpKC_k5$eoV%h7xe6#EGQR{@YN+uwMnTT$I(7ntd)#w1YvK<6SU{a}-Ddmx z*U)EV*3b4%+M_Oj4aqMKKQ}1VSonfIM-wYU$eZ<Dp~w$i9ASKH_>ovy9` zfb!j?}I57XWPrW|R4^eLUg-=SOkS6ZG%FBZWqq{h4NO)xTFq6OpG~ zvZt#Z=RO{lZ0yPkQO-o)Lh&TB-;zMO>qwnie<=+l?DwDMW{gV)<;IZmtRN13&$e6w zbv=ja&G&T=x4o)0)NDeZ)cOEDcCL>tUXZUPZ?{_5hXK@eZ?VqoUyal+3J?y;5!)}i zIa8gPH>>R-1?7xOsLLjIel8Se7uh{5xT$qB%nm3IrzCQ zeAKYL_>WGJ`p5T92L>Fj>;N=saXx(PF@7-GzxB7l%^Wi*z>_s@7WLP=n$+h9y*LlO zfe>HHtIC_Gy7GMCJGDL;CXFRaPMA1z8Tn*>wlApKenU95%Pv!i-a9Fvrr!I7oOO#0 z-Jn-j^1}C_gXWnV7z8K2+&ayHTtJh1Z*J*y`#yRP%E?RqogEgG=?E%Diq@Np;SX#Y zZyNEHuh*wMtK0t)$s~|PZ+%}a#4-xJg|(~rGUbt@R-3^vACz?>a*-i=jLkSa;``L$ zEiWgxUXtb9ee~!2`-9ldb0sY&t24lYT{7hMau?IVY48rZCb6Lj|!L$%Er#enI8&hxul0$WXD%ejta?EHcHJftMq8{04 z(c*%FkaO&DOVCPkj903S6TY1iHg`hKI7tv&AF%XxASVEg!w8+`?m8(qNu_-)ANY5? z(L7mt64Q~?l{Z?X>k-7xb`QP~*Q4@Sp*xbto5-~W&m~^)aP%N15)?nl5639Qoo@H7INQfMLPhyWj?j7(y+A}Ww=y`>mqTi3_2CXb9-c_r)9T1ox5$dEo+-VtR8))#t|gc+-bVdPb4K zlTAj-0)z@Li-Mn_p30zR6@flTHRp_h5MD=|X?sOz6A=jwyT}bs<*;Ii7RVM;q4ri6 z@)$$(_iB(@lq1!o4|RAUi5?W$4pOJ1t=EjCYMYWyd=D&2>A1|NtcbGS6GYcZWxlUm zd)xDwBOEvZOpdX+=Ag_9EEHM7nNsAnP7CU%zaBL3c0@xbKcWwR(lU?0_4c+N_s{V0 zayjWhpDG*2S+)@hK8MF$lCIdVbQ<2#91v#2lDXqe@lM+ovK-kGz07#y@#-{pkx zn4|ZybOM>LPk<=eo44wdU-*EA0VL(vCAhDTnkb8C(fCc6;}QWG4D6&nQr8l%6p8oY zXaRh|7%?9PKDn%&9V2So*v$NVQkpmKI-c$yyU8LyQDpp4Dhvc{^3&d?m21Hg82kB3 zS|Opxaoh5AwC!yR_T9>coB5*}tjIQjuGa=l?EHO9x6~O^-%sc^J*By00etvURx#c%8{FlTl`Xd-JWG}$pUgRxaNYZ>uU;Ax!^tbN=C*lR)nn?XVT0x^Z`yRrVf zjx1IW)tnxNMfNgC{AlXaFQi|q<4~%9G@+Mxryz{zDwF*JJqqF^fMAp zI6>ZPv-Sj+87XzG@6gILIMJJ29^jZl=t_&z%SLqo{j|T2%TIlNa+Fj%Puejcc)Z+| zIcO{B%op`hz>_1$$4W5Os=-ke_KwN!z&KIaOoJKTE^~4wsOvHjcwJ{+X;<=2^ta^H zR9x73s?N=L(Xt_0`c0tMWE=)vOv1@a5Y46E62HNH4{dimNBQY7K#0_2hC!Nf`g6Z9L{o9*|-za)Hb|ZT368q2+#}z#JnnYi!Ue|=R=L~0g~K92Hk5!ZLKaf*h&Bg{AUkH>It!e< zqaS0-N$G^^NH1GMS9^p|4dF;-T42w0jS#W2W}QQ%`DyTSa6(CW)l#D)ylQM3nV}#i zl5}~wGn|&Az}3}hKDXg(Z7rkh)|BKJy=Rk(@@pkLPDp`Zu8a7nIgQiGMU<_xE2VTz z?|aUCtfh-7tJlKkl7fukOc|`r`8*8v zDd}BV>-s?ccvA{aS;J(f*oh0Kd3Xfq5_a(N-p0`=eezm(@cn5qJ->X z#JnI6JQF3%AT;nA3WwS!BUPS0zZ0>c^O3luuLY%GJ3Bjm`(^%S*ap;qyWb_UfzVHP zZEN)&=admB?xm!tBpz^}d~My+clqtlm5@%mi|E}4#VMTY*X#l`8EW)VmU_l54Fwo$ z)c@2?s=%o%J4tbML59;J!}gAcnX^2PXwBZ>pEvzgp+DTXJohVV)>m(U_DQw9zo0!J zTl%tDq9}Wj1I`LB5JP?M!!v~crlBt%upIv~o(ENReIZ~wnwp~VOIdeL7_2XU+$j<+ z2t~@CeoM(vYyw=Gs4d-CE|6Uw;hO+BKZOcggfP9*ar&6|C0`d43MWZoCMR)vitJf( zLb+=l?v2nlqNM4~G&J4}&0dR2?rrlcEp0pnzM~PkCO5gP){sFx8HZf*X=qIklFrA{ zu<)#oX?rans9)I01D6!ky*v2B5*O|@BOgitb~-fqV&Vp%xbQW5X+aD?r0 zy|=6Hi0kaH|FX-L@&a#Is4}x*Q#Odga~BqTTD`_-czMyl89^X@83qb$baZq-Ikx*7 zhkk+0;;`!Pg}6+*U0$f@_nVk*4O~$Bsc93Z)!k?njJMtJFpj6|HcS8LO+x3~;U&TrH51&QkSBgbaPH)eDJgoJ8Kv z4NEbVx%c$?qp{lefw-fC`7W^>&5v?&N}mhcvz-hZR?ZLKDGq$WD5Tmp{s0od&2yVK z+OrKdvnm&DC9bPwofz?0NYV)5MPWVaO4EhkI0knOcfb+5ynIZ!T9_Qagnw+>@0phs zc9}M4GEfWOiozlTpJ-v&o_G}Jk2mh-6X=*qvDK%g)R$Gj0h7|mK)nN~Nq?+exR@xkE{X~)Hn=ySj5mp%FRI39|n)uQ6ko+3V=4nw?9>%|w) zYRzt^=AG;B$!e+f$7$y=b#5$m<-%*yHR=P$ehSH6ppyUu5&c<8nr@f>1V*YWFdPT} z)O@MQkpRiZWAabxQ}Zas*yt!FRx}n;_!<4lZ*17InlDs5G`Ka|y>Q7}TP^$VFK@T7 zRVUk=#YD3OaYtPB|Gd9TteMgXl6Hlm{^@E}pqF}#7saDYvh*BW+~>m1@NomGCJ)&5 zR^pcz`-uePkeg`isJIX2pbLz;uZ@ta|Lz**q!UUZ=EK2EIaghslXrn6AVfd zD~RHcSK$}L9UV!LkYbdMa0?~lvqI`!kH}&a7$*fWl02Z6nhrA3Bv0?F>D>K+k0#Jk zN6_U3DRrzO9m;0(UCjV=3EOg5VX&!>8gBRsz?w9fP_1=6l5~2H@p~PA`CKmgJx)8$ zROiX*ezS($Ex$F_$(OLKLPGLYnB~tDtywN9Ej3)&>Be(H!4-GGq@MywQMP~u3ZJai zoilHAZE)IoRC1OFN4ndUgc9>(=y(~<~Ix4tH%)^)X~y7Yli z2xi%B$7Z)?dAz$7s@Z^pC~v;^9(PF~CG892b3P8x?Z`qkH7@8y??% z%aY1>ucJ7YU^a_soOBd&$y@8`Ep6|&Ic_L)Db}oFwvlP5l+_%fNQ*)_ep>7|KkhN4 zL?Jq$m@j~ms{Fdy!;MQby~_>W^H0be3gJKXTimav3uhb5>0$|DB9DG2kB=h14`-33 zxe(w&bxP#-#uGF%^vaAJ007V7z9y~X%$qIKpW1>%SClJ zDS=L$vTDKLqTme<1a2Nco-J|R&PtCoGta~Rr^9<+dm%50D&lL?jusA|RGrNgO`aL*e**kY!Y4r8IeaUjLwkE>Y8KXMKsOa;lZ|+3>{dXLsd@wX(UBLnk zqUJj>vnb@eFX46S-mw4=Yv9r?jY7zonA`F0^@tKhp6te!YDt~vkyWSnHM*Rla!E^N zGWuHHuX~G zW+^e?eO5Y)dP)aW!A|-d-oh7*2@m^jxq;j7`0l8&XgF9Sl-m?C{2|7=jb`v-L1v5z ztL_|3tM7uv-P3>lrZ#$T5eN!$BonRaHYRV6aF4h)3zB95#d0(A_WRo%U637OqsZKN zbkm-6*ivd|3#F%t>I{HLBm=TZ_ruMIBju#jQ(uzHF zdDr%;KVuz!c>4KVgxIU&hT{@n)w{|v@S{CkG{~tcn`|5!a?iq^(e!24uhoE9yoPrK zE^neY2dJ5huyyq1<=#+n1d2VT>kttgJ|AFvuX>`F%bzdb1y9<3^3UO!Lq4?XkaFUU6+ZjRkanCNWA21*i zWB1CEEA_jAQ&^I@p8~s+Z_+x$AIiUcDF!VrKQoD1J&uRt_*Ug=Ry)*!McS^;Am%f}WnrpQ#}nHfOKKMV|a~gRX2#R7bk&92FE43B)!G;Lr(UA(Qe)+jxWC zP^f2j4`neD;ATdsz%Xb0U0t&9KIjP!>~O`=X*1;_=BwPxC4YFCu!&dcI8xLd5vRY< z>WS>V?8}EX$-t8o5(;P`O!4)uCfd81|(cDw}=r%mCHJPj~AJ9dhAV>TxM$C{t=NhM_$-* zdg-akX|Wa{;DhF8)@_Rnpwa4s{PlfEXyz#MM*Dc;lguJCaz>`5DFcQLoOZ-#-fs)- zT}Iwje{amsA)1%)FY?hd>OWbi%lh#{Ly0S9Vy{%cS(uZPYh_d&wZfhlbaIIls6{!g zv`v4>hxbxc+^DEv^g3Ra&o4*JTT{&w4H!~VrEzGL&nj?90XR-|V`E4#bf}#CaUVc$ z?$4BC9~>M&?uBMNuTfnWBJlJ4;t}_9Wdn`o=S(EI?dof6*eorJr6@7)9|_*!;Y`wS z#YG*%MG6z8<2fwX<^mLYV#X)wr^g4V_yhj!se;1x7)an9JxEY+_u|QA`=FIWNQJJ| zfQ}uMp?lj@n|5cGyxR=#8`$9yCL0Hbe7^*L59MM30yB^xZhIUkD7axEfhGUi(h~OJ z?;qJ~8^}zEIxamE8{OoLRN!k>n{s<+T{KYmDEuZcIBD7&{o%3z#<}ZSbOeuWGsIX} z0x;r2GCG+1_}=TU4Rsgg@ISgPL&e-|f;vUt5O#FtLcxBL){F-#C`@bNIxJC;#7@4O z)z0?3q;`E(A}2(GK$QA~LGkYstY5!#I9E z?KsxN;X^KB$)aNGhJ4sekyRa;$m-P`GI=T5UBOn+=>xiMiwpGi%9HyK!BVqDNN(DeV=r`U>LmuJ ze!Yg?mGcX$5$oL4OM*J|c~OC%1@5GF?!t}sM<}avXUWj%%0m{xyz+0a!=Mb0Tne7MzVybn>%m4tEnp={tF+puj$NHl{+Os8*XOtNWYm4 z$SY-|#P{xr`e&68BiN|UgzX~+&eg}~=>15F43Jg_0RY)_9i)k3CPa^%)NsOeIe4J& za-2?p26xF#uN23Vo4&wh+n4_hNz?J;N>2+!EFrS7d7NWOW99O)ieaA1V!zhB zuIYtN5qFO=7JYodH1A9&I;UzYjeG9OvC!1pxruaf={7i~^27-N6^v5cgvUJXN^Kli zEv@Ui;7fY%<X zMHP%6>0ABP2nr{6}x(36kq zj2h{=Qn?)IlgGy-!!vA@$o4@K}L7yi0 z>}`QHDTQcp0Yi>>bD6J6&F z6-Y6gwADbum6A4MV?(ytuzxb7qq8vt=|8WO%}9!tZ@_Dd@^Jti()5c8pB`iDvcQ(k zk#}-lf*uPb>WPK^kHgQ;$=@M>CRLbT5{^{n=KHMG+{v4bRz1G~rNEB!S_>Bd5PljO z%}<8O&KIL0<=Zj>D668p5nKesy(02oy4{JPp|*P4-V^yHi+%Oou7dB{Xr4FLbjFLm zJ8t2h(QAo7prhuoru~wz#Mbrl>&Kslj|pjFeb)QS{>R%veznGYOV5*HwiqqR)O_96vRjDy>t(LnErZ4<|V@80T z)DU8znqV%{^Ja^h&O(wpqI|={t@y0Q`wY(_aS^=v_4o}s1@I)-xsEsiR{!XV9^%u9 z0ap?dcr|fNEw5h;rhnUUg?|@0KkXGgWwNs%=00ydW4f3ZO~?84{~&(CZio){Eg#%r z=;OC)-JKbTn~zJXJEOIZn%!-FBy92fpypKmR#^`0mChFO+7Dv4_|KF?O>0Kl=eOT( zkf6PpcOCLA(id|lfj69%Q;DJC9e656z4!tir6(2On!qdf%|{h}5BbYp%=7vg;{?Wp z7L0*%fwl~DG~E}tVc0EM3>&nhjMSee7Xu|$n`RI6ZnFQqR}JCUBBm3z^6dj{(ZWsf zF^-YL!z`csaz5QAs}Xt9|5=9z`C#oUFMU|h){u`~^B%3gX(4zqMlt8~(^mtY?%zfN z!BueI1*(_>gStu+%e4*yrv}7W1vuhMO4k4XtNos#W<;C$L4rcwFzT9LSdqH@Iqah# z|9_uu`Zd_hp?BBYCXOOO{(o7Bh+wMnBB|7KeUGV{PUtsBx&Hbyg#ORs|0K8^UaI(( zNUUWCiOlbU$BNA$ZsQ!vM2}W|dN-b!wXjz8n$0mE4AcKTaH#^g1Jqs|u}pI|ifH<` z^o!w8el*Zo<-Q1OJ=NvCn#S|L`(MG81R_943NV$( zuLOSj9|_;{ub0k%LU74ytR!bNyE%sD3$JT!Q^QAs__89{}`}xV8B2< zMW@M*i+sXJM$3~F7vApXBn7$U% zAJ%LiT3Fvj;p+jqSb}Bk_jLampqrmUPEf_26yG1Zd^0~CHM@@Qci$gqdry^G^8s*> zp(J)bMzqw^2g&E{_piI~^UQ3qOmctvHL3zU9%fu74z9Mw8itKwwcM@mzsFs|Uy=kQ z`K)sjz1ORQ&8z~Ew~F(ZJz3K}Ctni|=G%mdBCh)Dna#}apT_F`$6R5>Z1JnezD0?k z0?kz+w(i=sfg?^ais&v|vwQA4;pPW9Ykx+__O!v*!dSx5a&!O;Z3G&n<3X+g=B4u4 z{<`g@@1UFC5DY!iO{2LOzJxyy0}@FYx~3ks6qalF%^?>GTdV2hqjH-hJYwKRI6wwsW$H%hN&Qo>B(ewov%?;-uNM!%daugyQ`G(D#6%v@lrns%ht#^q?zJsW zo5%GYBw1|2XEn$GaCJUgN}pd|>$+tHfFFqQ=H^Sh{20+P1cDCy_=fx$EK6Qz2M}^h zBv?XjAB2yz#=%>`g%akH!Og2asKH;VGbG$JgiAbQ(3QaH{6Ae;@Y3o4{4@Juuh#QH z!DA(~HCB0-vKjc$Pi3exTR>YFAJOhg>T7kh7qrQ}yJ7{;zo zDp19}j=*8gOl*O>3;;qYJ8#ga6C~zaa`#o4{oR^y}PLE@@``eZt$-rl* z_%kge?@;pDW=knT6@RwDw@(}GH}{E_>0L+-hny9bF}9wV?(ZY|w40`mWvS$MqJhrp zR7)(xNS$vcwD?AMh7qy3QG{{Xhg4V+_i6qGP{S0UYI4>cKp@(Jey6}_>tH9UyM-kY zr8y1_hC+-sLNwsc^^&D|ZqBiZioUMsu{5bNFh10>GD zd(b159lF|kJ>$VPy9VnVnQ>&4TM{27Wlb~Gt=g{{@4TI@H;Xm*MO+9<2x&_7MR)q8 z2_h0&ei^W4x-p$c4>4y6#o=C-Hh5fdBOyg%dgwoZ1`6bw6W z$Ya5qNEt;VQS|LidgcHnEF-@ymR0{dQlqDNeTT)mHp_AeYODf%BX8EOL;Wxb(^bDC z<--@RJyzU%j{h-dGaO^|8)}Ji{M&N^FrzjpF7z`Oi%H=l08i7D-`SKY#}C?5SqMus zV5Fm*V?L$=2rY)OY|IPLof&W!<8z^!U@nA~O1RT`NB-IQH9C$oG^D$pc|cV-?bdy- z)@%{WD(H&PIw5c0N!+OtSdXY0X02%(H12x;Rqj+6`_$3my3SPS-hssQABZEIs(&!T zF`oXxr$kL)0%7ctqw)SU!;q7yTIQ_42PFN})^5y^M!EP)*IO;^2GEZ#>T_!7=6=bJ z5^6*3e+c)SfkZt;mH63|RqakU8&MO*fqCkSa{WjUbk0K%p?#Q#aE|(Xz!}C54RN*4 z2gRkW%@NiCn_JXk(&VdB^cBe;{290JrS=A1{j-&Z9hu+U ztwLZxN-qCe_jwI64L2#9nPU+OTD>?}Tnv-IEZnGlsTy_zmpoqx)&{`xVS;mFsh?f) z^~@jC=;gQ%cRx#o1U|fT?GDGE(peKXbYw|#A%G+a{u3n}49ChW_ted)hnqWQfwLEC zoX-N2Qtp~u8zz?=uvXz1YySYCF(4cKp!6kPBN{L`bg+pRD`MyC?=KA7@hIkZN@}F- zdg8eDZ&(x#pWN(|6>(p`!!pG=UHtYYOQ`Z!qDEs4I=^8Oeif6c`3HC=1H0SB|~~cQEyI);t=IoB`Mf zFM~v=5%pRnv-c5RMYjlttXG(=CvHpB$fUK>VIWldI}qbY7rvr-Pq0=Tpd^KmApQ!& z;Dx;4-M5(s_qs~OHGJ?qA>wBT63L%0+m(Cy`pj4{5TG!704(HXT3-{}v4~sw9gGZ4 z2>2nw%RDECrOvX*Xcjz=5OE9{pZtG*{rm~I$SVwgl%C*!-tb@Fe!egV0!++5KmF$m z&o2*o#jOVZX!VD4uZpU08z+ymUAks?i=Hgv+n<^_1}5(rmUaE}ZG$8O5A~1Z`qPni zDF$l4K8*~eP<7Lde!7KNZn*w+7Q&ryJab@soKfy3=O6?3f>5E*zW^ifI<=c8QPgLU zuV&5W-&g?8mG&DlDJ@d%_7KjP7Zn~&oiF$2ieXJH3EwO-2&s)CH1kc;2`$qdyl`xd z@W);XHVw;T2~mXZCCZ(J6bIXe+8Paf{?}MBNF`I_%!V_M5VS_{SQLDsMx5R83M8lx zCN2qa)E%skEzEu*q8j2Xu{A+s{=Ao8!RqkK^coicNDP5zE3oe!9s%E}*kE0dOAfP5 z*O}|bH<5Qcl*3v`jf;!3%v@*+XJ(?Wn08*OPqKihnGp=+t5s=g6ET}-4%FUqDx0U5 zRaI2%#Q`dx`yC88Ff}e(>l*7f(VE~i1KXpq8LYHcQ?LuZuUxOn%IG2e6u2WzLy}D( z+xs*B*1cDmX=rRXpU>v(@W_6#*&Ds$&}_F-m$~&s&_cI0A5%ItXJR$rZt<*JP*6xH zIy!!1d}2)*T*ms{-9nomx=^!oQE4;0bZUlxH7hbci$p551tA)F_2!?iU(S8nm+KFC zWvnbsbWJjO+3q)J+%7NDIejUiW_kWN+?bFuX;)E#uCzL1tmn1xDWb59zCz)4_4wCP zYslgUXNxz191+zNBS_ui+$$N_$1 zN_nh^5_L{XylH%9SicrX)X2{6_i7drF}+?MrnejCKCa(HJiMDOH?r6^uKw!OZt_~_ z4m3Gh=ytPvcscneRD`y5Hw`f`oBq6~@$r8|CSs=6l}WXz7`b*efyn;OKA@x&%!D0z zo0KA&yvk)bL&92g@!jctK)@^c*c|RqM6O+`5u|!b_r})ujz?>K$LAb==W*1f)@J&6 z0IUq|`Y|&@dZUG5A$2U{1g)w4n#i11g-$34<*xwTE3jnuWC{M+3?Y=S{q&h+i4QY4 z?9n(l)c0GX#d;DTM_UFk$jz^wi1-08bBYGiXjpPym`9>CV4#&X_x%bqx+;TAy}CJ9dd2zSmO# zMw0k=uer_(q-(J=nr9vlynkjflzHU$b&ly>L~}X)lC-ug@mA@CBpG|yAZLNNnDQUl zK?0u4&nZeu)8fgN_v%wRC9mHok=&X?gg(?$gSl?SGaI?9!AALAK!3;%6M5)1HRY8F zhSTK!x9`n;l1@o?lBD0_-|nnzn=%R(CVU6Th|~+_k?qj=+|tg9>>+o&4KKfihCeVr zRruT=a;}Ri4tMLt+JHGx}sn30%9F3!#9upQevh_OElBfc`AqYaN!POw2l`c6_ zzUAO=%~N0!{7uoRCv^t!Oh>Krx`B5cQZf(?^`?&{t&9q#<6!MDk5CKJ zk~PmmBAvSw+#I`@A&mun^whPyhf8VIv7c<5@jNEaSa7VHqmQl06M1RqJj+=4Ed-Z0@@pW zudDcOe`t4&$1-4(O2Vrw#98&UoMRJ;nPRCM%_44Oz&Op0m7vczIQ0L?77ZXu8yUNY zMF!2{DQV<|#l^VVc1TC_9TSz`E{BwqDG36dJi^k7N3_rSoXG%GGv{1`#sZ3 zU3D7)*VyW-x2bD^Y*}l5sD5(mRm}1)Upz=j4X|IgX338X_j98-EDcP0HmXH!$1?wr zjU!7@b!`)QL$;uNyz!8tlmV0dM>L5VQC@?;(VB@hA@Y2B7g|N12N#~6IY-H(lPQJ3F*f>wZ$>&pykbjgPX;1m#Q66Z==(J3=8>xJ*2vU(JVZ>V7v+eod9; zi;mYCf|k6kz{HxT!xg9{PDyVKl5;^DOHrpfZk*q!S$qm@Yi74Rq5P?znM55e&xH^A zGkuO1We*(e`**Hto$q7@RC1-w6a@9?LEs4%jfQ(mEY;3kI{zh6W8(AF1<6a{0YBoR zWddXUZhZaRCmMlR6-sIRdXfOcbLp$QP_(?fMcnX<{DRKh^acKl3uN{lPh_MI>V~X` zM|P0`rf7~u`DIarn%Njx&~ey8%nJQQqdkZK#s7uGbxryT;;I|EkS zn)wg5`@a^x!Su50w(RRse<$VjCg$D7$H5>Z?CylCUOOMh^z-mA%|MKoG(E>I|iaVy_6%$g^aabMjD3+Nv1+NNBFbvVB=9k8*6IQ82 z{J4k8347aBsdZ^5=OrEcq1})b&ZMQxh~i~O-tT-#Z@7`6)+H-pqLk+hux@qnYwt^t zqb2x7N3d@$rNLO9vB*73iYU}2w{d}$YN_dJLPw}u#E`>DtefikZTXe_LMm!g+{m$v z=Qm(IlnfzFjyTfNXpxUE@BCc*tS#SYp(ZTto^_JylnnJ9T!PDo{$(#Q#Yjt(`#DHb zfu3f%|5Li(6Bg_s_>B+{KUDj`T_Neo6_xx&Ko_}3C;{5udEc{r=Mz6=MDX^xOQlj^ zaF*3n(RAfw=G`<8kb4p9S40UqKaXGfC~bynvPXWM{+mgRNU5| z`uoQxl#UiEK4Tsdp37wDCAKKY{m|c=&ZVWWkl<{c1*A3X;8JaWEUqe;JK{1B>TakJ z(!s=2%iDBAt&kqajrWu1lGd0^3c+)Qr)~o|rfU?6!!$Xnyk^ ziaJM~gxcFzH^`L##8@$qCenb!_IrN?1qdc4W{A`Nuhp*~l*t1JwY$!hX=B+)xeMj6 ze*d`wYf#ZmVc6s<`|+{!Y}e|Q@wjfUl(F$dt@SV#Ff7>zhi20y=nTvxk_vW=rK&ua zXKdu#S3;*|8(-&5mRx@I+2#Tu5C5!xa&@(n)mZMc6mo5FW8)jjLdx6T%Ly|A+JlUY zH{|7%w1N@U@n{u{OhZIGF=X*hpqCWQdFVI~nVkj=Ocyf(HifqjlHZ>H;d z;gRusxKTm2Gsu<^#XQooViZ5C?d~$ci)YXkGt__|(eM+*Xt9oZzt+BHY&R|M z7ETP#JyC%wG~0?K<=08|?4Ie1C;)C=()56O^|AM~tVS>la#Y;0gY(cKQpP%ehLjvu z6231oJ=SfgPmrN0ejjBasHb}Q_p;0Mv0gu&zjunu-chu>m1hD>u7tBHpE=!_$&X6d zg;ZrQ<)T5j`Mp}^SA1DZa z|NA$*y^I;=@zl3%1GH%orAS`IJha( ziGUy?zAzhg^!)B&L+7C2qz13aa_jPT!mq?q*QQlQU7Z8n{|{3OZt3dugy=-8_nPU? z-x*R;K2aY&Y|Sm5tdC}}s^szyoEWzG9(s3eo%o&5F!qcX=5=H>ula|T(c^E?D(!ws zGqSjiAztY8L`KGAHQQ|*y1(x>R@YURw|d8jg+WRhx3q&)%7^nD(Sj_6l;4y=zOv;( z)LQwi1vT|tRY30X(Hdoq&xw=#N z=C6<^dWc0OfqRahdt;(Y`*Dw1YF?s6MASl>49DS9wt`Io)Z(qVPT*ZY%d!)-{O-f- zM7{M0JWh&I4?d=}g$IgzTJ`6yn#l3FY2ez%{Az^9Hb3R{k`wlWxU$ZE`VNQ%0iLX$ z67P9-^KQ;zZ)fw1U*R}$dBcaLWF;Uf`8e9~< zM;oizvA$#OAT7`X`Nn{Q@Nk{ z1cXVvc5vWylQFju40#l#Mg*phut-KzjWgPJ#L0AO%v)XGHxWC|6RMAf+O^m4y5XMd z`q^`X%UW3MfnwvitQ3g0AEV?XLPSf8lEd(j3Xh2DnSZOkeBZ_WPiRw(ls!p&#;D>& z;=EAp^0_`4^I2`?2EO0Ik@y}H^X37wv9SrIgr7`AFd;XW>y0+~>;7}I@^aDl1xFTp z+mz5_rF!Mn_TL*{_3Tl0>Q{%KzcFdH2DsjN zpbZ4Sa%Atzs_BxEKk%vN)Tng;x?Uzny9o%eFx)(3mM8bOgW{@crJdEOn{_lk2Ar*D z3*gmXbmK-jF4+{Uo9stZ4-LljJsuO6e-V_L+n4Zvlq0fdEH7V}XfI}pjwTMV%^UvEA(T>o`oh%&M^x? ztIXI23^(7b`wB}Ql^`#4@PiOvozt6L&HpzjI{C7beYew_~LEoq(ceEk-uXR5JD`-wVdEg^+L+oBCRJFt1=kw`UfCFKM^^0bRKjDk(D`1; zr4pOV~62Wjj1!4eFzNDKL8)p4Nn^6Mh5i0=T$rkoa zw#R4PEcwKg)I%rfczg`ZE~o7e3kxk8UcuzTO)Rhn8JL)gnwulDoDKVb2{hC?PIBjD z9@^P`Nl??)R@9y+tTt>+*MD2pbL?fFkw5IRxor!?ng%=-)3z?}YJ-z>7iZp(noi`d zFdO)jV$-UKCsD_flv{2^9(~)`)t8ee3ZX#D0=5Jx`DFmb$J}6wACbr}gD8`!O*7#@ z;AIgzOv6h7s=GCM0J29&ZxEQ#cjmDm?l|7>u^D3&IE()NfR z<>Do)Nobm;v#qEqwCUkaad~I5SF2T0`UOT>eQ=x{d+zl|a4fPVYrpU?b;nKaOerWD z($6HO==GTH(h{p=?2O)8t*OI_STnCGWx-A5j%*`3C+@ftC=mkHfM+6tH_0oFZTm=~^5EWO zum_O&_HRLhaMWU?b)F%YJx<+MT1C$WR4byBETb`#oZ71u;Sc1l=n&!BU)VYwtgi(= zaiBC}duZVJ&b1ur!=9?C!)xAkooUIEJ}r?tP%6bpJM5!DTfl~UbWGnX zz16aqM9s;2*rw})KrZ|5x?)-6<*-^T;GP0$#G46Fo?O3-^Ek?7N#+TisT4<^eyPCj zG>;V1xG`UdHyVLTe#r_uN->YyKV?d||G_e}nppVvdZ=7-U-RS1(yJi^XG5@HL#baY zdPiZCLjMy(p@3MvqLp3QJ$)~%kbW>G#!=rSlv;6tH$5Uy1qtvU#}^!>`Nto+P5<=I zPRqT4ZNRGrg^ODPN#VC34NBfIod=AkWHUq`EeMzD*_F&)VDjl1V-7!?lOg1&zrodg zTg!6P9>^3EQ%P?Pp^<+jpB};CaGy+FP{vwG!H{aH`}(bg!_qA)Cn~nI*6sge>Z_xo z{K9Tk1Vl=@LAtxUy9K1XmF`ARxP(YMMx@%~J`H@2p-Q95y-(BBb_n*N9%bAy# z_nh-Qd+%rOt%bkZ2TKDvrq|?Hnw)x43ZN$MnW=LpG)%;nj6Ix?6w+-)QeyaFZh%ke zct!BhP@W*z#}Ukj{S60yj!G61Sxq~;4;%aE!mq+dgF=v`i7Q&0zZF8%(M|ka_mRj0 zR`Cj`0`*dRgGH`b0O#-R6m9%X;;22;Ngy1Z`VJ*y^e<{glqzbA69NB{ABnNCakiaU z7?W^#a^ec1ga`EcQUf8(28};A`_^c|V-Rhgzw7dh@>06b1&$)H?&*Hz>24?5eck2c zVE58&a^L$qLzmAJWE{#&0IM7Kyl<(*f%1(1eN$vEAXS|ipZ{?)s)M-cxT+7QI9tx* z1CrJz+lF2sz-u1A+x|Kgfs25*oxMftNJ5j^bZ6od+&Y|d@j8U&S^*po1iElEH9#nXg#F6fD>38?cRFCT8hb$u}3TKa<)qy1v>q+ypHcH7CNt1 z$Dg&_Ov$&L^+l+#j8F@4tyYKwjPIGzjGh}O55mc*{OQ8sBL&M4c@eGKFE2Ka!<5uV z%ehHa!f!bv^=+rdRvD*V$^V0-H=HzFQC%O$pQN>Kku;62%}#@D8{4REW(RVyLUqY* zGS)U6*!dI2i;e>Tkm)5~@#q2*Z3H=h2>V`V@qQ-^R}3)X87j{avlF=%K#FBTX8NFs zi`YJ`9H_;O{buFT?aqpMq(3h14u3@Ky!sm=T!nABV`Eijt7!=q|77 z%l|rh>aRcRLyp70>=pW%_h=PppDi?r#&Bi!6Rek(RO)fho2Ws@e3F%;fOCe1#7-8M|y6c{NY6I~AvrPQx`iG-Y$z9`mc%7@D z(I_|apwWkUf*r`Z5kLrDgmg<>^?e(lnDvGM;-*0~H-=~T2W_g=b?Clw^4dJfO{0Q1 zjiOwt^^YOrE9AL$iEHz*`-ULnjTWQYoP_N|dZKBwb~Yh-3Vt@D$%)B#GX-zTKb|bd@gA0LBH(S}& z1Yi7aZ0V%$7RDf~-L35Gur`8OXPGgD*OHD>?uBHcP@zCQNO8@@%B&`|9A{WJK0hC7 zDjIwjz53%#+Z#6CY?GPVaUOY}(K3@3c0htoqWlGx#6xa7n1My5p{1Y7vj8kzDlm-{ z!6bN&-c5WVSZ^A=D$>otVzlCF5*xDAY;Vv#m$+VY-|}C>C~L(>q(Q-Zq|Jv8quewh z1J^msu(Q)xzG}2oUL(CRp0ZA%r$3^=P)E$kx2DZI%iI0qYr)z7BxGmVjGQn_heUnU zHFb0v;*}tqo|w%Cr@jMZ--2>KIT$(cJYJ2Aom`zdpTs~+DMfjctf$qAUCtEl z#5QBP*56$pAk?4k7*ZT>Aj44Xg_45U!BP#O5z%;=_fCXqZ`S)0L2h7XMZmq`npFa6 zs;ABJ&%os+jyuFFsp)XQ$4SH5ws=u0BidOoFXWM6p}MBN8Ln`84Gj)I4up}gIdTb2 ziErQQ%9Hq~%5CPq3=C(9exAW%^l2e?fMukaDQsSgw?Cds1(ALv1!MRm*+Pt;1vw}G$uB@d+ol>k~-FrS=SjuMf+F_|N;^Z@O!)Z-k zH{7#umyTWJ77c}3&ZQfj`JalIVl^UoQX4)1@G!SrZA#>xBMe^5W%=-qht;FA8iBn` z+LMdTV?WdrBzP{ipmDOb z-Y=edf===k;tTDx!$OB!Ilm@hPSww$oH!X(E`k7GDzbOGk-@Qs@w@$LBQ~Cnj3eos zr{zx(`*4QXYi{hsANN;&ruu-lT)!&%>zO8)lvVd8IIQqZeOTn4Kbu7cNHThn{CjOY zY3NLiFImLp0S)f!H(81Ot62v$Y@9?;j_^3yWNRjjJsZ$-fX?cQx-i{!gzKbFrK6hl zMPTa_chK8L_VUJ`Q#B?@@Os#=DY+zF&tbV|+<>pO8A)q8UBnhk7G5Mk)fPQi^{)rpFSsueDFfM4SdI)gnU^;NNR@IlM&EVb5k+Tna) zr;x88(cPuE=qHd!Z?3!*t7sYi?bvUA{;wOQcbQS7eP%aHkraaLk-cZ+A6wiLL{>+loilipA5YqbZQQ8Im4?=un+U<`9P*n=lXp{D%w;U7vc%^5 z*@JJy@9rP3DJ^4AU!ilZHQ<%}DFMkmaVnWyad)92OiWC^2N_G2nRL_arb?y?@cIPN zE?|K%?*(H5CpPlV2=v7u!i1ijxF=Df@uuP({v)^6K z&wKp3l};!Ye7TUly}dG-W?EESAJKgHAd<|&xu)^D{sl6IPG#UOe%o2c^ie6cD!rl4 zRwpoT${1+9TvS#yCL4QrP@HGuhZd<3lTLR$lCT!Te6Msd!Gzj?=;dNezWpDQn(!sD zn~!a$_lG#!r{i;TeSnZu(XmE!EGq*rG8%CYE(%}3kyxijBKzVatx3Rx;JbJ4GWh+G zjPIZG{qaxu#ci{E**LCx)PUFb_3O!5N;?1>(nDLa%>x0|9BQP0QS`rBfOZ}2Nm(sp zJitj+I;IO)23^%IU9YBD_YTb1aF;;o2e6Cm!@K#A$_LCb(Kcxf0o|{INaHZ{I>KZo zJv_t__W6<(O1dG+p<&xmC`q=OX=jP)M@rblX{Ye3Odzs6Ov9KBZ2<%f8nF@Z@r4Jq zB}r)-^N=#y!eJHvCIU$HlYMX3ixm`Vq{0{oP|4T{`o<1x`r>|7>*MiYfl+~$J=L0$@pX9l>8P^0+npV2ijA?d!F!B4 zNBFT1(&n~QgNO;nA#4-?&PVccmc&BQs|7W!Nyb@=)V$nT+o-7%3m{IW-Xy=iK8xhw z4m+7evuTihpRCAP_G*QlVB7Am#((4B`%ZxYt%C`Gc*whl6)EH*9u?C&?4+psR`hsqr&H840 zG&%q?kP77plG2k$FVLM+vc;0u&NRX8EY82-m@d2fbNU!*jYWhftz?5?INb_FHRPPG z)NCLAV842(f7%LyU+-8qC82n8cNUY$hWGX102dTj=%5bijAi;z5tQNdj3^--I*k3^CIOkvNsr{wJ=^9Jl`F(VU--M#YR8M<2 zj=zG2PUwY$fRScz5vKSPb3w(%MhpvoXnWQkydv1Ap561GB94GhL+DN^H7-70mD9p) zwuo!?))t}D?Jybc#=6U@HfqAd&9t_z&dHi{a5uB2=DZigIF>Y{cP#jxL$|v;5if@VJ*fI4noFj??}GSI)Y~Qju-AQdhB-E zRzKAeSHIQ=g@4|IJ1DINi;;PgRdyB1@)h;#j-6IKi=oC`bY9t)%eYtrig_ zrI@OaeZ%_YW54UZ`gZ9b^42FmP=F%g^Z@3pDda?2YG`d%QKIB>r-ySNcn_k12^3>v z+-_)oi`)(6L1)KR9f}fC=+)t;zSlSP5Anr$0Tvua3aOIZ4)MHvT=sK3ujMuqO*Ir$ zJ$X-U#>}7*SuTwW!?~ga+#+d3=s5JMR^7<@e@rjMdzt-?m zK}tzAOO0hW%+4TEaC$+8fzS*nBDlHu^Ryr&f^K#c0G8#lrqkMBk$X>5SML9Lfuc15 zvRQoIuAZ1<+A|zBefqFt3wY>qeOHp`0<^Xn=29h7Xa1*CdhgESHAMAi%{~uwgFU~! zf?#sLivz7sJrDAq@AS&4ycvv7-&eLaM@%trlJW$i*7HwVFLhvMfIEZ3Qp|7WBZR|4 z1uCOs^wse;v2Tv)z-QSXtWrQVjb>VHZ4wb9xipH_W;<9+7hMwaJF=A(t6Avd7umnz zr-}kwm=NbNb)^Gp0t~foWD0Y!p!s)B!+Y`#ksjN& zyGyHeJPeXFQ7fZr7E3}TWG_cL=V706!)tvY)~N6isV>l{3#2YQiB=pL-nd{7B1xD| zuqXCuF%dDLaBe#iAai7G5H*p?e~U<)0)&q%9pxjn*&=E{lXc;A{b{}ndqRHQ+>VkS z7bRX_n;V<))%4KL@0(=Zb6O7+_uX;5$Zl@Y&U|1Q8YMNi30QIDq5| z+ii9?REM+p6T(ml-uX6Un?BqXpPgOgEB%|Cl(p_PKdZEjpb0T2B>h$TqqPiOKQuR& z+$7kMx1#M1d$zE;;US#lpGTZL#RDGezHv`q568z*(qyf7>Ae1I{N+Z9esV&Afvu!s z0f}(>c-Q=`#_~}Nqf#Z4AhDo!Fr+osKdi#_goi^uTKD~#o%g+Ex)T!*=bZ2DtfOR_ zODI)(i3S0M6h3(c!F1y)#mY%gJAvt!h)>TupCf!J1sO+4pSW$CfH0(|uh(+5HiM8r z)=v&eK3@C9KPc?;j@t?uwx3<+_ZT%@T>?%{&Z~QJkB(<z*S1M0oy(h3Fw7EQfxLT5*I1=HRK+DTk)3^Kva>;v2SfJUQaW3z4K+X_W!nPzo-Y@`!1|2*qR{D)UFw*`o0Pz7u z+clSdVGM}+%5N_g-n(CUwJ0Y80VYuYq$xdEzx*i$4PG^kC7>F|)%ukg2qjQSaJ7Mc zP}CH;7pWBUke-t9ThCVy(6ZOD(2eQ$@5xS64|M;PMd~v)HjxY3rl~%O?t;H#=VF7T zFw86|8%c51Sr>eyRDse62eTOOmz{Zd7BIaAfT_JC%h0jHMCg4yMjQ~jr9xF;(NAowU_2=)74pFReo5ZtoEr4sp}$FGLvke| z?{6=-%vWiuC$tE2^2W+@U>Usr@AZbYgz#x&g-Bf^+&1EevfB;>X}^$kJk~vek6k=m0eOtr^V#3 zGE5_x27LXVRRK>Xwix$RP8YRgdKT78d$-$uNBs>CZ#a)Th0{{mM|{JvFP1g`hXBP$ zcz-0r!#dz?7OE?&jcA9;f+o7gW&5EUwbcAzWfC+rp z39HSFa7Cb56Thx_?BekNxq$kWM?y-0K%Q(b1nl@wb1iLm-83a7d&LKQcdKEmltg!q$l0>6FaW zaPkSj0p6)kK)D<3*IBQq17~8A1D)n zoEJ9T4o<}yy`~)}mLUruO>8-jpr5IGV0A-PPQ*j3hkOo*-~7Ad2ItD|eV1zG!73x= z#-!|YEm8`LqZy%|SsF|F>`y4}$d)mCO+!t{k)D52gyEyCmjURB8eLMA2^QvcQzI^z zIwF(md{#qXtbU)=y%|-A@n!kRe#%~ZZ$Z-UJ)0({t6CO96dMgn8cbUC+6MeS@0~g; zIR~m$82+g%pK@}!pO8t*G6?vL@x+~W#aihXff8pimyN4h{&c+g_pb^jc}*Q9y0IUX z9$cx`=xM$AVt->kTawABx>Oj3U6EF2H?YNT^#6yiUO7}N-_6;+RbZ&yM?2M`!+?0D~)>H z8fbQb>7#5z&TFx6k*7cq&jg{ByzZ3t@b>1keRx5$ocWPpT*Fkodz?-?8xgwhrm3eL z`(jIg^Oxel0C@T+BPu8*J+#pb`d$6Y%EY9Ul$d_mZ+~HVrT>P4K-Fv1j)@r)A+5O9 zSs&kidwVT@R2p(T=+bBeTw}0bJ7ah(xaLiIlBHCdOD7ZNq{v!WkZ#h$$J57$9Q0lBmu5S)zi{yqR@xuoOIMTK?Hel*6z1JGm`A>?3@5X3Ww=x2 z_Rb$6@Z&dRc>7y(dib4YM|Z9;zI+WkJ>ts{FAr!@K?~^+50RF(4A?AyQu)`P($@q{ zS4MN@WI2jjMO7a+y~u;sI1SYD=r|cOqPrvdnHiRWeXiO3Ra9+l?GdQzh0k4Lg_3E; z$7dP8{shdx5>Iu(zlCu%<8?_Tx)Cb6MfsI0Mo@_X`8B#<*i0&rywRaVF@oo0%ivX> zc=TD4AW$Y!%`C|?5YkXF5$mUd?d~9+@5X;LF-IH;%JB;Eh7&y}JGAP|%X?ySoOqPO z-JS*3wSSzP!;d7Zg93i+k<*{9$1>zrU7aqcC*OPQ#DNB8ECByW!^vx@XF~*LTq;?! zfEd_jB`&YC&f&sAf9x>mf%?PXP-6Gu8-#`h@+KjJ*`q#X+_)^M_vJX%tEci@)}vBx zulte>^`ulBM6#Alhe*c6CY&~h^AMerVD!M{J5fsv9}nID<274 z->_3f{C4Zj8GKy^BpnuEvZiCIyUaser9&fi=*|<9vwg8)Lu8oglvxA`kfGyngStQd zIgIZ3TvW8^ANv{OX$D??zJGb+7Zs&SXfy1}b&}0|g^G=Bz@gymO@Qnb)bsSYed@GM zGT6?ocevKVd||u}qoaRWeh;^J2^#OSiroJW-W(AZ=_FylO9kmwM?S4@75k%O@n0W3 z%xzxXvp>e^=3db{)u$yh)+ExR1Z(r?H_AHrIiow@uXxKq`k>%8PuV2>VqB6x{$fu$ zSM#l@^z%yN->BH=J|6TNfB!GY(aTyfM?jBOZecZh+%wZ`O908t^f}lrcKOXE8u&bu zIKgd8f(TKNnv#XC_)FRAc%MHh@7_xZF&}&ojyaQ1Is}4h-1C6T_c}V;+alecvQHXg zmOp);f6G_0bA+BqCWe(HPUi%F*HsYyoO;!=@le^6h7b*CZ+}&ktq&}TjqD6TDcr{TQ)OfxNyW7A zpEkpgec{WKn>k(I<&R5NQi`1TM-xL8C!iD9xD~&$t*+r7!#N?FLdKy}&-lVJq^*-$ zW41!}Eyn7Ldo-w+48PPhildzgRYsx66GUOX9jY`z(S~VKNQCpTG*y z(TVV-R!F9nDE&wofHmF`HhuQo!NFEMzeGBh_YIx<_WArj_FUgy->S3>5r4|J0K^i; z!b)m6?t=em+1!mCW(0BD^G=wcdeyr%-+tU8-qtVF_gt#~#R60O-kuiv%YAG6 zzzX!b*)D9*j{S>jvtGxS2tdZ_u<0_3F(r2TihuFk8ao-9?z-=Waj>XT*`5a)NU?xj zYr5fvaLaRfLSvEm*_c!)bU{(enD@FDr-~NzqY<$EPTY@e%UZGjcctJGWo8-v5(r3l z#i64bdh=>q=BjmVouCrT+>V|_B(BF4^R#^Zq-*3r+O&~PDwvAB*;HgNBQHhOVC*&kCud_H;HP4^Ti8p%$@=`xlui8Vfeldt%=Nq1fN1kM3 z?0tlMSn35E`CTu&0%21BJ!Sw=1w?hm(6~pw#~TD|8DKOFAB29)R7A zN>J|T;w1I$a`!)yAbN6EW@e<@d&Jies z^c(CrfhKhGR50-Lx{`GWiykPB@4tjTr<`Ja^Xj1}$yy%yhufo5@&s2@beudY5{K&N zKjUGwxgw*-;hB=`QK;p`1p1bau)fU%w2!)WpTjW}!I6Ui=qwl<0Y;1l0P=xjmqcra z-MjN!w;pj?`-Ze|&~mI_7}frP!KG7a(WL2F-EpUvJjF|4Bja;QG_xqdg3!r<%wmd8 zz+yxTw?)F>WGaX(D|@17#?sSLcAak-xAm{63b!1bd*SCeS&0fjFq}vO(1|+7q_3GF zMPdJ>D8UpH{5-$ZNiENzpsG9?AiMDV$6GS;oA#yk{j}UQ87gFv6b=v7KD}AZ5=>q$lGr3Dc%rl_jX)&i@#gy z559*b{3!7D{89kot+oZ5Doz2)~2k?N7QYyB!+il*5-J=lA5tqEEq^aF#V zMa9Jt=M;b7dRjP^N=i`)QGIvm_c^5!AN}bQ#4iYE3*8zn+x(HB%*{F+EU&^m1~JHJ zSVePc|HJiA-3+tMD=sVh7JSu-sSp|0*TpGgXP$$v?=_bgl4yV0}-YhS7-h-SlY%(0#tGBL|aq+n(Pozh5Gz82Rp;L=sB6yWyMMVMmY*TX+ zAr{4FCP`OC6z7(@a4lA{AN0MJE3eRte_Fqxp!jS)ww=5RucTt&qMUgC)K@UiG7*+Q?g8YE*9WZZ3E&`5$?xXG^J^tv{;2w-arB zs&;R@nrrkC5##^e$5E+*!+r1oP7w=!Rua!r7JcaI6eHdnat+mU|#8+l2C{Sc3|rQ>5Q?oq@tjpudI>a=ITx~8R?>NQzGl`d$(Ry?{_Amsd_x2xeSB9ONfzoF^_KCF|~Lv zct$fk<6tMVJenTsk?-5$E#aq#C|{BV{~M1!c}`b12j)E(zqJ%_c{v26?L^rwqrLHmXad%8>NEw`iT2x??hc~aAi&Y55RadHeX1HH*2agu=@jBlOJ0XM7p6JGhsT1 zZ|_;WArH}ejR{N(cL-t?K} zI0{Os7$U1U$}bqC0_5z8J-jZfEN0)S<%xvVCOTI#$NrSEx97B8|90oN@}e)6NScS( zbx8z$R!)FajH=heMV}`cK|6tXfJm$O81nc)#%(()!;ki!#Z;{~lBsAcU2KNT#z!A9 z`0n0W@UZ0+MV@MJzA;6jLtL+6l1CLh%kddwu%#t&y+j^n?wI*`Bl5tj=NO~{5j*3S zN4E&`rxcHUXBoC`)Aa{kUKsVb?|CETr~zJ^e$|CoTUVEuoZL6eJ+@Y$Y-{cl+sT6M zQe1I%eop3;RU#Q2{KY@`TA9z$V5~RIs1M{^KR`Rcztfy z+3Y~obnUn}Z)H4!V(l)5ef1|n9zAv(03uED@?zL?Wu2Vx4eK3>>%91nePZKC`2N9Q z-DIZsLIcmmHBmR(&qRdloGq<9d7Fx=d{1qJ=3tHR-=>g5-pD@3#XwtDR@RZTbB`*U zeW7G2%JTcJ^8>@*lv?&I-@jMBGUlJrHB|0BvRLI)$r8(n+nqj+$-5V}Rmm7`0~5bB z{`{uxyRa*dZ#NrWK^IU8ZtFphw%gX=l}!BX@ABN@yA~! zrkNuwHN){XCh@Ldt3N$Fy7Dl@!S}g;E~lQ^7tOy3^{ZSgv&BQfG||G7 zb=}QG)8Fti~_xd;J0XNe>Mf_>`^(R#-j9mX!&Ii$Xzt~vYab%gH8 zNy_EQIdb~#2!$C4V=Q)MIN*WzHMKhEwZ^(Mj5&6rK79fs+wX$*inL9NYiBP<{js$% z<9^Wag%c%M>eKxqnpF|q#3si0uR5SpgsVCtDfgSSvL)GHVLopAo5nSQG*H8(jJ15a zR=>-je{jL<{w=53?#=IrOp@+-zkh{5S@%bOpyqO6NT)t1Wx&=%LdkE#Y`Oo)=h)|d zZ>}k%%66EBnLlqbW@-64;xQ|E@I#%W-bml1aupc~X#|Sa7!@mZmhEAC+C?fI0BJHF z*8&fC$e7ifBvEjRa&yu#tic7CwC90cDRURZQHCejU7{VJMk_P~_wxXO=y-a-2I8>) zU9it8=B37a-tazzzdX~2n-jav5QjQk6aWM_m>RJ#$W?*=~XV=7vXEcNrOeeQ)tIDq#K^YM=4PZx_$) zB$|PVBFYkmo0eb&Z64x8!+g3?`}4|3ACLb#Tu^lTkV(>$^rCtdN2&St0EiA6kdO7P z1m9gL1hnwr0k#&fkSlxcW7O%m#4I)k0#07CZc4 z>N@8PA|@5Wwtjan0f92x?9Cox_DuTni6?4k&wE%DQ-NCjx5fE`CTylYSlqe7ND*)@ zI@G@#uTx=+OoVd7ZrsWsW);kzgNC)X{;!svc29O={X4!ELa3LsSiR#ySJU5*kunx4 zIec*>Z9d$LjGdM{i2@j3UIc+a))5eZn!#lmo+Sw%C*t;caUTfyl)o`Qe$Z?Tw|+~~ z!Ry(Vkqw3xl==ahp_eA?MJ$IC zYRjA2PBdytF}COzftoS7mDg=$s$o|gjYKG}2E@B1#N1Kyp%(RGeG(?Q2m`5$IF+?jF*kFKf+1ZyCZ+Do4=HrfL z1(Jbp%(I|=|NbLXf_a0m6%;lv9Kkd!TNSjpAK=l5di|yBjivc zUucdM`Vd6zWrRWIj-r~Xx9Q*+FoBhcJiD~;X~9j?!9t_O+CD67{TUTsXTzgodE=YL z={h(2$*`V=kv1+l`hyV6P(ZIf!Hglp9cV;Wj99)Q1_0I*Q1{gt|!2LmSqyxXUWxDS{-;SZ`>A$c%hnV)XO&%yS!8!qbaB#Sy@ewu0 zku}{W+toIEAcG)yF(=nj->y{7RGojHRW&xx4Zrh;6$_N+qn;SJHe*A6j+@d#nZz-2phxN~B!7rS=-Hzd9<$Gcz3}-I)w~q4 zPbfqf1dL$z(fzFp^xzo4``yJ&t2yW8W37;R;b=% zyz%xK3vD1L^ExP9_r83HCUI`c0GabR+zF3?M6Wu~NN@kS`?t9E#@8(6gHzcv;(~6c z7wx{0_)7ofrO2=7?&RJf--pKH>rwHbyouyc>M4R%_;-eX6L>%KsaZgX@Pu!R7%7B~ zT)1wgw6xTxMGPFD(FNa0!n1xRm9Q6)ATkIgDMUjsIvSbC8a_$UfyQHnML4qJl4bQ-bIY)^o-}z$gV3q zf1C6m=5`YEDa4{a+OQj5BGtHTb0|}Yg-gig^$dB)t@r}%KDKCkD;!zY6E>8Au-W0N z;YpS-EiXdcE5tN}M9MQF!7tKNVD13(+J*SEMEPe?=b>4Qmt^JdU^eKp$j8B|hb>3L zk_Fm)6YeqV9Nl|WO$Dh?WuYD(2@x|`vvSf2LoUs{f*3_akXXobejhFuqaq@TJ71xe z@+fO^G4;|?b03kYie`un4Bw`}aurLQ-Gu%9yogbZ&9be+WF?FHkqBGhy{wm${usLH z^`cp&Y-CEWs{|BRZVgHCxc!la4CQ;k%O|^F`UG`x(zgPWx&HI`14nbr72``wW8d=H z{VMm5=#vUQSsSz*-MOQYq(WwG^B6()YZM4}rWCV@|7=58Qp!hIDL6?;j)}Z`S>rcu zn&CG3(`tPqu(Wxqq*N~06mw|FC+b8Kr-YFApg~fKQcMY3;yNApti3u`EMzdF;ZhP~ zW%rDg;Y)a_-a{YuWZ0MYGP5ZE!yM-3mSFW~veEs(b&IjXRV*+h zvT(QY$r`VVHQ>>HR7jAVn=J(Ac>Aqt-T&v|CjmPiqHXLTUuW5v4`7R_`OGqW%iH!uqmBL!{A_kLXf^Arz#TeDudd2`9WBu7Vjjg zkLO>qz=N1$SfTu1`*3R55&0o0`h636PrUm)P^a&^Sl!i`G8)hfdHQ*wfL^JcM--R@Wj(r&6<=0V-_ z_qfA8**+p(JvRvZsqm_;M6Wh*CHZ8LNK=1@yB$Nr-cYbUg_On*6@FgtxXAIhb8-Ui zAt0O`h@|OoU*G4|l`*}+kO!@q+IugIrt-k=ZwEUNZXd$&O>!@(Odkewe6;yrEeklA zS!<2385kO9V29wzYL<{{%D%Tjn!4SS*6HAJ1hxiBayIzgZthiNM>{ShzZ1w{_2aPV zp-OY#SVF-Ust8aw@y+q?ZB-e@!rm4>Xr=OTl&rK0!y=?xc6Ls-m!rh1#{#rJf13N*`Kq~&=3V}A7_|F~Vlft)4=3wCUf|zNNqPX9g_nq1yZg4Vhd?xTX2|Agi|s!- z;6(YW^T;O(Qn0ts_^n)e{}V6_K+0&mzPbx})bb_*_RF%=wS0e5lD>T|u&3B^j4LR4 z8A>@-W+3xXOO(LG6UT-{jfeO-L~hcP6lQZ-7w6$so1B`YYCii)TSwUGpSN*7Md7)zbKjc6U^QX+Ll-Td6Oselt@V0T__zWjgugL^UAQ!fsXJM zm;xgs+c$Dq=^bud=hL1Hyy8FWZdZsOZ6UPF5l-|qU$M#d;hkx+<&Rl30=5d*tO3L_ ze`JutUsu7cWErAw&D!i?UM9Kxd8}Fd*aw(ef)+2KHo1y&AFzR>2I zM9?ZygNJ81Q7vB<{;E9L_x4@uyag2raAI0I+>EaX%2}ZeJCkQM$#{J2%xWaTf%_8K zz|gS4;o_T--|TuxX=ss@y0f^t*o6SeR0SF*nqfg_wOZc^-f_+axlLHO&+~50T z>dw~g4{X;&+%e0=nH|dB5Su|@5@HEs_*70(k{J#cNIxdLNF;eFt2vI2prhkTiaZ2v zH%`JBBxEk9rP+g0cj*Kjts=sXX0`57hnF7?FZnds!8cWA)Dz8bT2$Yh0<0uJ8A!-! zgH4{7;KS3^m6mG(DdPQMV>P}oD|y~9knMg=FwaTuc?wc1_$rJC3UnX4zVR<8PF23Z z;M;?*(;pTW|HcXCkg07?t6^(Rtx73Icx^acW^ukceT*FX-@#1RwXTu+yAMJFl@6T& zXbBN_t0z4kHgV_9>~cE1Y|RH3ouA^~tQJ05{Pkd=kr}`+j(_JZeJ&^ocr<49Tl0C$(D)-h$G3Z&-C$*Qf9uvl_#jBXCX2E=z7 zf{$G>=|YZ7of=?rf$tb*dLMc+sKh3)$&zUx>~m5j4}OR=ZG4GnVUvCP7(k&edQA9u zv=A(#!wZsrrWbs0aOmS9g}W_nW|U)M=PyBPwD2~<`t*uAq1s;;ed#9RP{Y6^JT%-s z6B26(eM|b+$9FO2Ng)8me7Uqa3`NiR#ctIe>`!iMM4;V|1M*GA$+eLT}}cX z;L`HX@PC!T{H?}0px~R}szISGb}jjvasC@0IyEmbvhnw&lp-241CX%BC^Y1q4Ljh< zTE0ydf8(Qfw_{o|+ky|CJ|#c=cmz*>?{@$%FmrqTQTHw`lXbV@!@)FTIiX_UKHG-q zF+G?2set3g^=GY*&$LwwE9$c*V@z%Lwz(PDDyZ<|D%bvQYVyVzw%=2~$fsG#)=iu8C93wZ0eQyP9xWS!{z^JSLKtsrqr-PO$&auCw%{_OK6W!Zf7T z-R5{+y4`Xtek2xnSw?ccq7(~w+JMpC;a-~GR#dbCixo`q`!UnRw4BincP9h4HzY{K z_AL5s(VMxx*s4$tOV{M&lnnn}$Ji1UdZ+HLuweLP+UCmTZIlcZVR$Eh`#IUp&dyAW zEA_&HG1xy$``KAmr(jC@RSt}g=UJx5DS7wVQ8;}VVrCzSWi0TW+m4ZN=yUoI(~JhS zzzjy5`v&$ANsp?xkYaGKcxF+Osh)z{+h;A_tx3zay=!&B^zA@Gm2Mbr8215tlML($L} zw#HZJ{0NX|Hp6$M&a8SJou843jCCYO;&UAI+Ebl_FDZz0be>0f>gb5m;mGTn?T!)y zlbnW&8M zN!n$)9}GTtJ5XUC*!Ff^Tdl3Ru6*M^*@#iEwuRU@Jua#%j170HsAOsK=3H#hfr+DR z)QZf{1sx9y!VPPgjlf0;J|jbIe&GOKD%R}}~)2DV~Rr5`?@ z1E+Ay!_l&{OD`?aAg*T-a|Qx4E}u?qmL!0js))#P;>>-fE{M0e-jPO-H%E_0NzRKr z9HI;vSESO}0*0`!a#Y~}?P|M?6^VXacrJ#Er&RX^vp zF=X*Mn9U7mpbe?fyJaIgRA3m^AFfqJkgrV)*}5P2+TtYi`P^*VUO_1yJ1~QM_=~Jh z2k+9r35}QSKD8_wbN@o}vg?q3Qj=?8bS^EKHIx>RLmF+goPN zb=d36fHB;(=N5E7l$T;|P0E)2p)mx>rN&)I*neBZBa%@o;`zUse<1A$qth%hecy>& zRP-}|j4=54xXS%rrXt#`lI{rcP>3jqkW+)V{**}uV`O0~0yuK3=Xs9>{;c5ak1uyJ z`_z!#XIcDCG=j9>Lc63?Am~0{zonTyv@NXgLyZW!`%s zHT7{4F(7P;Y&7uN*7gKVx7}h44E(aPu>$!k&p`Q#0MaT~kA3v2eHeixEVhJLaU{3Z z%61c5>BLfh`Eo})?vD-RqU=l-?$g@mul^gDLLX-omJ%CB%-I8FFQ~!f-+drXdU)up zz%+42$NZhv(%GaF({PoU#aKoP>=A`4#7>`~Zi)^NINjnSfB0B3TN^&)-0=A>dBvly z9_wINR!2uJK2OEaof=@F?jZTMQPz|<=PudJBLTT$EZAyA7t%*?1jh_7DVqfd6MmD^ zcM_yj>wE^Ll?O4PZ)EsQ{@FT9&xTY-XMp^Df9^gB%H?J9*X(fX*{HWj|4lj2vT{e% z4m&u&HZ=TEOAC^7Go)GYJL_0Hx~1hVIOeiQTpd6{sVk{4mIK$ZU+aGkCel3fV?Y)$ z+wLzMqH$v8h^sTnP)0f+tc?E;Iw|S)q0h`r;nnfVQ@D&p;tN3b<6uM#jIoP2MMZ~1 zT;UC+zSGd_Sg*0ofAN8%|J*dYJK3IN@X+OIotLT6~b6P zy@`}96nW^EF3If6kN1+()^Uf<8}<(k2^Mk3tAGAW!dGJt_iH=(>-^?uXJ+d7cNSCh zE$ZnA|3h??=<8I*8>ASar{7cy7(_QEbr%d6rvs!KK@87>CPBQEM zTbPwqQ=@x#p!SMVjV!tVK*gOrsuNspRU>d*6CIs`aSj-NOZS!{lu+1SXx#40-RerV z=q|B|-yLu;+4n>pnZvkmUGNEf9*&o4k>S*-s|x*x{Z|t$fnb4ygEa;!?%la;n4gcR z>jl8mO$`m+xWxlD5fkxFjn}tcj@0xOi5DAk zC(%l?)i$)b%9qKD$2F=K^Gae z_6~N-;q0TGyW^Z>^Q|WLITFQHUg}d>VN` zfz(IE15<1bLy5oByLXA^4DWfQw2J*xSvh_j*o+B1JQ;WEqy3EZg>{7lveOV(FW|h} zo^n3Mmo|G&m8k`;Q|u;R2Y`5fj=dGu8aXxSQ}X2<5H1MEuKa|2Gmg#kf$i+eHr{0h zP2C!W^1K1B$cxn)|IlMIsQoOCrvuq+4}LNJdcBWn9y+HPG6bHD1K*epl3eF@hFVYF zct18RAI}X|FkL33LflaX21D^ok7Hs5us0LtuNGU{a>~p7ieDMcgc7`b;tJ`;f!=Z3 z`b^5f1iiUmo|TB>;ird6}?r z?+p4>j_SJFg#GZ4-n1}`g-{{~Z4oj-a=JlyR)HWRW7}^vv8r3c>%X!YK!y;m>#IMt zfuI>;@8q;LEK*VxF32n1jt(X!#g#T5*ulW#FG$gITW+t)aXddey%0fT+Mb$MZ?L4r z!iuN(?Eg_EGOH@vuYMCg`=hd*QtD$Q1avUCvb425z78-gmIk$iiwj_TvH6`0h>lz` z^>V+xVP$NLDYh%Da_(MMyIRB8UuaHHpI!{&WWV>4u+t0`<|C$Nr;qjjjl`x^Xn!WE z?YeP^8LzC!?al{`*?Kcn>Zf)_-Lva2y${?gWOi*4{9v_2Lvh@5rKeT0a~<*DL;-6Mj8Ut4}O+|0>KNA6*`Nt22J<&+Y1}4B2X5~ymDw)m_H&Rg@L+%o$Xd0dx~WE z5g-RlM9%tfg~Ng6L;cq7=;^7>BfKwV7*4~jbTd0MGOVoB1i92R{K(53fFS0KC24eV zD1Ijgy>#OyCfY6Gm1PZmU_{KnBp{j`yG`dytLSw#P^1dLJOkL?sJKbE^b2HDo|zq*F>ioYb0z?_N(Xc zJ4bsithxd#i@$}oMt>c)g9yUT+)665GN?buK73G}M|+41ON}d>`;Q;$#ZSh#QM<3XBU*l7Q3wDx>!*xHfG{6BGwFx(E5nfybp~TxQZH-0sPNc)` z$(BT<;M*@jx6B)JZ@MJpSO8)kU`aqo#L(b~ZLy>^JnDU7u(jmu@tQQ}*W@g~;|g`v zu*Z#uHeA{suwE>w^{Jcqpwbajxtnfx^bl9-WyO0NSR_R|iZ#-XKkDyO4{CT?gR3N`a4-jJth2lW1(@k$OLvW!#JU za8E7Ru@13^)4_ejRIZ@`j?lRDXT$kXnH>M;+GFbMOm1m}5 z8h&(QXS}_K21FKIJI}jhKx%|X!v2D0P-5K6u+*W{MHNzDD2VKPMIVmE2^#B2&;z$TF)_H9c7LWR5w7AfJ|tF-oRvPLR%8)sUxpJ1M%M^% z#vJ25iKn(VEIX7hl0j=`h>mjSdoo2nNoWnk2CpPmTkB^rr0S83-snu zTlmwT#eM*es@}%cxcd2238v~tr4QO-;Cu~g`-JQ-cmfM)XKy#Bt}rZbf=wnWQIaBD z&vl^`8vzsyJt#vkvoNC|=S36q`$4y~rhD%_(y;&O&hOXCM-5q*rsKQwYl-K9F(DGK ztzXR@q|&}E%d-ETipXQXu+z-`2!Jj3;ObWfGa5CYtq4?DPyJ_ciI2Wwcc2ni1WybR zf|A=z>&zg$5A^%m$(tqZJ5^vgzLb{J10W>GgUz$taCPB})Udq#nUN0Mk5zvGOf4)ZF{N{IThiBJK8y%l623){|O!<%r{>jia_*c9}RCl^P{z3WkYqW1Pk0&STW zwH$!DP;Yjq>8YJAvglQ+*&6QO@tUFS1j*lt->Bdva-;!9R4O<*w%gN3uUYAn8|u80!R_;CeY`(1NXC}xms)rLmggCs<+Ac% zE}Eck!5*LMa^{!r94^$ZVXpDQVcij{I;D?Ez0g_(02l9w5wp?bj}KCKXy~|K`?4@ad91)oD+*03b6Bg5?g50%ScNL37?cC)?;4le z-nFQBr-<3u(0*p%A^S~XrRcD{pv z_$(F#rV88_cEb6+;HSQha9UfT$LCZ_Cp2I1fmGDI?Tu9~4iha;tP1|ymr)Og%aAKi zU=x|>*rRZ}eNM8gtC8o!-b~MbLGzZr(AE_Wq81lAhA~rTL4bC@)ysvN<~D})r!mMV zd4Ikk0;KeQ_{|bY6G<0%bxa${hV=N0J5ppKhWlY{e7HnpBCzF$#~(h&zJraJIMB+L ztX&rdCJG)!wrqc1HLQFmPBoI0oLzM2>AbV4wSXk>ejsXTaT6ck(3Kp!Vy+d;M;DZo zM5VLyg62xa#pZA4^NOlM?(RIB1&-|IsY`_J+f}ra1*013mLj7~75B0Ee*o_zD?cA^ zkWFf|FRQfqsfbBstgL|uf1~x+*i?s&i$xi=-Mw9q0{|sOg>}z@V2&-<{?bqFA(2-fP%r7w1(z%L4jUxEH@dA0uUrjj;j4kS5fF zAyosd%4F0UU~8`G-0D01qEWkqd1fyWd#^?xuMjt};)hzUsq{m#X+u+s#wR8u<>VOJ zeMxw$_^`v2bXbYu+3eL3QBYQ^%~So>xrTs?t+&crd`^4 z`v$5FB4xkG^N9H+l+&OPt**!yuh}M)lfr<46sTyO?jtdg98Flx#swQ zas*gEW6RSbD%RdPGyAI$kgd52S-td7ud!z?lRZyk-J9z=pKsAED&~dz1`(nUp3?xa zOh8g1w2eg61kJ;IRZb`rx=Y~i6sv@4r`!H#II-tHwZuMlHnb!3d?h>iI;)G(*2 zWn9b^+^GOJxz;Fqhlf8sm`g!J1Uv==p{4xLXj9!@K`Z7!U`Gq~c__GeO9guh&F zLmLH>+Xv)bEerOFKBXaff|&JX6iF6Vgu8l3{H>y{qpyTZSjN*X?&|yFUll}0HI1m^ zYs;?&%i32J7a|3Y68(0$tY6LhHB!NToGj~Qshns(c**9dq0L`)$4|V}(wG{8&bkQW zr^@S{{0gD2Y51p&f{0++Z_YEmZ*N?ebLZkvB%ZwrvhM5}hUX#9L_I29{7H_sG^*Nq zAzNHRhcK;-ac&wZV6E&hdhoMqh6&g8$z}Vm5~8Jwl;^w1L^qHgwwHIz%j?@6T|^Rq z7ua@v-hzpZ&3rkP${f6}@kRb`7rfOE?DUGcT`hAnwGntxC{yT)0P|$eG2@C9;q$&S z>iSjTH_vTN`kYy4+zGieV4bTg=ha70|CvpH4EJcdXGF?zUva{Kam6~TJD}KnrdE~@ zo8P)!L+nZCakbw0hXneh-tBGg2)*lWfIJtQ;f75080TCJj3GxM%vVP~A3`RKGD=n} z_-v)od^d3qWTxtZBXx1{Dp$-BZPzl;m?W&wW_@EH;{4`_NiHP?h+)yJf%+l?`3U~a z&Fw0`GDVA#TKK*8ms-Mr>-zker&{5kOF7R*Xj49=PNC?jM++ul#gCTr`pY9$pe@zc zl;r#DNg73TC9mC!iLbFbqJX%bKv|S7d}kvGvuW@bm6niIT&VpiVRG;J0mX2QF#R({ zS78X0W#YpqrU(jsCqb@)iC1tJob{z+U#|IVA0cK*z5=bnt}yKhpZkO!##<6}#5jQl zY-^b7T&QD`S4wqOWL=P!-XTvYi{u}63G@G*X!7r~FBo3|`1mgir3>+&E~fwdVhu{a z`S*>W`4}`F^eMH!a?t8#RLvkqu9U3It zmQaDvR^VqN=!{2V$PaO;-YkW7vCHJP8>BLxBe`Vy`!>A~n0G;;<*ko&=>Pk`C;ktU zT6>f<7XGIdC1jRb%M~<_Zr+*_nP9Kg{e+EVO=&HwR768h%1(LKnrUTqwB~a8_<65_ zFKTySEtXXmx(A-5O_%Jy7Tll9DvhzD$SQ?&%Yep`dk_U>Z4g_(tq-ORyo!VF!dl#A zpM%Zu#tWMd>MGB%&XTf-kbtJvzT>s#D35Q#U*r*?bCz=(Gfg`cyx&P-hMC&cWwvMZoLB98Lo$=g(C!`>DWVNEcKjZTnpH)lz4 zcI`2=(Mf9T!3H_-pWW1{cWA&!z9@y~9On}-u5Vc|3M(sXdswiS0BcpJjUS=YmLx#< ziQuXvD13?tcmKWC<@fl!yq-2kRlU?(Y-)OTGuv25y_Bjv32i?avKE2n(%h1m#Vr{q zD&9XJ$-fi)CXkE!?;-SEJ|d^&c3r4wIi6$D_Oiet)+($ijH)6JK0Vhcr=Z2e)ifdX z{Ls`EEhq>1kE_g% zRFOrvnl7U1WEj11N;TU;`XTmRweSy#ahO8y^emlbSEiRVYa?SiG_C7TG+okv!%XYg zp`PNDZWO;4lwcwi+lOvI>}dOUnew(ZLU9#j+UFIvU6@)hVs@|$u!E1ao^is{5 z&-}Nb7$Dl|MWdCbz+S>4COxPrKBJ+)RTe+ueW+zdBe9R=$c%1qk! zgcHh{OMjiZC^t}Y$M8`_W!zY5YU^26DK&ZUk8iHJ(t6n0n`SLA=NeN>yIVk}3TNnL zvmzwyi7F=*OI z$P7|&)B48usc@Uzh}Iq~jNZY~ed$^Ixq8tDRXSIOw0)qs{Sv(M)D-Nm*~!7d7b?Gh zJNFF>D`FO83IuKIXmtdYHC0(5j8~hQn-!K69zD|leSYz!;Gu#QC!*&|mqG9S92U;- z%C?VZN`?2MHp}lA2tF}YL=mCPjuT<9Ed>u(@OC_0iCTj*-A<9z+1WWpShAD#T^J;v33Ku{UzPg~(alb-dW{{z z^5d-6$Am4=SP;*wKb(fnvEu$`>1pBbg}HX0yJ-x=!b06yjsmmOcy2)6w%nBBW&nMo zbGdp4RWX26>MNgfx9p`Sb>Rafs{D=(P8z!YUM_PDpkD<4-|5tUt%&~-L*aiP%Kx}s@_+uitFB!%2{XY7S)gUh z4$>VRFJ4BaQad5bx13>L@;@L&uBT1hXGltza6UqsdevL3=X?1vq1P)e%Vz-=YV!oT zGWxh%3ZMzz!h2Ud34IzVA~nWT-m?GJI9(7W3Np4lU|BXR(VK0J*?s@GoKUg87{Ocb zFk%@K>rZn1u>78j(4f0XIDdMcgAd7xgYWGE3r+5|(KL0rxAY4H2g+DD)T>OUJVR%TuAOp7xQc*vdwyPCh4P%m=;=2(k zys&jHn$V6k3xJa8J(Fk#aFqHi- zp`p6(-sKlb9yPs~pWm@EUJ^ttf7?{~Tmz=UMj(?S&0%!kDbvAtE5qWD<;!|6>dtXp zaq*sdKO2X6XTSf5*@^AdtNApiy{t9f=Rs0o=pqZt zQS!N}b8tsBrdK0OV6%m?WTv4cVR-(Hl$6}Y9UgUbN*YX;$87Wc!?xvOL#k+9EN!g# zcw63jWttJ)^hy7=PHrx%^@fo23kN2=h{bbeXfx}a7cu{=-z%GCMINUJdKw{VeNW_J zguzy!2s6({bAFrFOWKt3=;(xJzSATd@{gWDlR7r-2liQeJV(uscuG_es|kCIU6!HL zWC9PKC_dgR+#i+6+YfYyZ>&69-HFP|yzQ&U=g_(6T4(ygY&?HTVFcAtDq#CGhqei@ z;b=`u+47p6Ulo}v5v2r44m%xh4h2#GAmo1yWNZ>5K&u< zngeJIsqLk#R8O*s@zMAmkQf=&gw10JQYSkS_iAI(qeBH>c9?!;e*%?ZOQeW@&lusD z3>CSD%Mb*NhJ4%6W1`^2p0sIfhpCAWzMJX!z9C6#y2qjSN7cE-3B3>A zyuiePDg9IvGXHqY6mWyXY%uWb(E4 z>i$TPvgMvbe}mPuTfd#%5Kg2x!sz2kD;JC+I}TW*^;)R*)xWRY*PTZM4qO?M?Cj^g zpJp>X-i?-k{w|O{9hv;awn3erpmPSZL{EZo{RP$rMxv@<0Pu0D; z-wV6zks1~4o8Ms}+~RVAn_R%MMjYek7r(fWeYzQ7q~n`&JZ@pK>Nqo3>(oRD^Cu;; ze9!dLtpaJV0|0|j5|Z>pyLQB4~R9&FWBc+9EYK=hs8 z-0-iF+q#!;6;kHyp@MGSA@zSYugX!Yck{baQlekGE-52jgk3H?v!kxrtsXxQ@~)1k zv$%BA!5)EzspZAVNh(S8)w;5&J6}jP46%=|pAno;Gfv3788t86kHrh|06$7{!*`R>c0K&)ZJ_D|`vXOG;kGX%`)f#oDhJ{5zyw-TjE_y%|1-rcR@OgpPjWzm?X1nE_9ztd+%33#^( z4z|PH44G+4?KTlyz`J(6s7qW$<+51*o@7}n)cU1}as!rRh1T_Au4vP^?-LXc+Xe6Y zCFQN(XVK7rnq21gPm2q(&D;y$vlB$Xhf^hsLR*Ueq5t>l(&O*dBgvaw9IQV18l4c> zX-$b9@~eWzrET8Wm}31L&eYVDjGZ=n(PQ#Q1cD|@JriSWypC1J-g#`?OchROd2jG> z(uI`s#S-^QRVXGC(Sus$PfSo_=lJt;mV z?dOD)f$L5FXCNuOnl4i`n!z=Fg3F$V9NgK%%E)NRx!fN!+N!@3TER;pxH2C&+*K6- zfqTk#vQJ=DvM1!JjV(J}r8d;{u}lQru+LZj25b8y5h1hC+y#8xF8-%u1YsH)8GOz- z_PyGZrI>iDBZ(YlZMQx0Vhenp2wCXTFUq_BMHtq;U_B24??+H%2p4?0f7UXKBX0u4 zX4~C*CorM(>ogEQzcy{`p%<+8h2$ati8dr}Ji1l^?vNPgl2p#%6C?_%dR+GJ$c}UF z?SbTq&8O5SRSQI_qeO5?8PUhre$?a+8x&CvseG{ku}+`k>Q%{oYcc z+ue0t<$M{9kg+?GQ9j7G(DD(0s&X#R9^S+H^~hFK=&P4Gtjx;!G=gC#zx`oRR}~H3 zT)QPBzopw(7}4io-Rv5R!`^xsQmi&)ER9snZ80a>gUs05Y=XD)J4cf$l1P|~P>h)d znU-<&W^hFRD$ARKvi^@wOfbkCN)i7g{kjw3ywft$hBvG9D@G(iXn}c_khdIFtURui zlpY6sfZuAsZFGEwj6+FO_;(6%w7sZ7Gipj&zj1jy3HzL|Bv6rb29GBzFxezc(o7LG zG)I>WKbg&&3$6jr^_~oU0kt5VEun;gFMT3UH1veEf6nAY6MB>!1;vgme^&lAUH<+s zC3pC5Xp!SP^#7Lkr1kaLe*sXUI23;W1v!nuN&Wxv&-g{BL7pm`?D8Hvk?i!?`IW_c z)zZye`L_M@8E2JA7Lz4?|LkME1CzzAbf{YI(%G=A=?_8wE~8zgj2F?*D#>w2Vs~?55(bTkZhbO*PzIg{yC%d`h7vT)SYGgiqidb} zGQDo{`)aiXe|bcUeJH&y$&5Op-MWVO#CytSu03XS+V&(cI!UHSZqRaBeVE{ge!Xiw zNT2sh+a_9|>uz_QdaFAuc35&ObtF`BcNp&1`^b*Z*8lK#S<)FPIEa5H^6Iw|dc%po z88V)Necw6YazeNLIoSmzVjOW6jqRPC2o3!}yCnx?tWc-g&Vn*AT@Wj`-FH%-s{P=n zCCe(fiu?jK{eknFKlPbOro7)`vjQzDHtU0zI_y8FC&8_d&Hqt(ljPAYWO&}iZc?le zBLWa}H$RKMepTLhe1^KouC*SJuLDYPG+d?i1I>%={XIr-;g-$ie)rQr=qYNU`@e${ zC6LNGgAr52Wv(Ydj(p_BManJaF-c=7*W&gXt&EjV@EIm}kvO({&gyQ8mpH_S70jQZ zcC9;$14Oj7@tY{VTPlXah|FbMGKS#v11xsF%K_mx7Q3{4{VUb#O0+|R&q(njSdP;3 z-)ceFS0%&u!!buP?a*Owus{j}Rcthh#+xhC*+k1FZ82x@H;Kb3(q@Ws8lGcG10^=} zdi^Fk*}1HG6Qm=lcIX@>Mr}@y`UlusBO2k;B!(S--ci)2Ck<0!ioKg&jWz+kBtECM z8#cVi?JGkK=Z`gZ8kCQxv4eODDQH6WAD*J|pW`c0N03p|m1()fj`g9arbVR!Gwyq^9?yFj;V%*qfoPWxquXh_kUF}2dgJ@H&WF_H@XeiI9>^Df0SZX>?1 zMDO<8(N;e>&xfd#Myd=iH!}GVuhfoa8LDt%|4Ds438UGV2Dg8?04Qy3m$duN1c}3G zq2+sbt4og`wC11xWUY9sKh{eJy7zK12yA1GX+{ePNkiN zQK65+(FUT>+X8eY<^9@wYPY|q7yS5gB<-GcmaRY|oHO4aRl$u@H;(GNXuO%6i1T|F z5*xQ7JkD0TKQkOvk1ede1D`@a6*5)E=5bRdH-7>=c5sk>M}bO&_F z*Ys$lpI6ZV^#>!tS68R(GRbWCpIuMZQZpzjni~QYMFy{~BXD{ix9mjBOwEmkgUYgc zV~N_XXR&~JGCKh&tZOQG0_+jXhYS9u#n3U+yxMHDwoC&qLduuOuR=v#@6+WarKDHl z)+M}qZAAWac>`wz!9^j<9sAiwW@Ocm;kzNqsS=iKOM&EDyc145)uwgQMe@9=EGH$W z`7JiR`sc{V92&Md*V#{11it;$;VY|;BZc{sy=O|jO4X_rk)~|o+HyRwgGh7QHEKik zT5`gxu17KF8gGDSWd1$_CXb3*;Zt1a?vK=UM9j_9XQBS1Bzdh>pOZ~w%vF1tI|qx3 z%c%=`RCoJFWQ=@-S80f*7RS~fH_`TeurkpSyxJWqT7#!ay7X#nJF!e+qf?rfPyW60 zT`oWp3FOfncxb?YHOZl|>PHk)v~40h7hezeieBAn&bZBETE?YctK=dce4-{XM$(n6%IiYX~)e-z>+PXrUZ7&NG7v)6ut zqO3H=lYErNdd-dJ+2H&l+cwWC=ToNOmja6oBa?j>-nv1*`At$zx(G7ZP{e1#Z`JPb z3S|h#^m0D^Bh>*Eq0qOuso1wuIbJ~%b(v5qy2#45B@~4EcD0#RUSCz#(|;DWjOI@E zgHczO_s7F>gZYs~t0U!Uj%qUvtlXfuCy*twm-3)wJO|5o?6qO{^ua~lNr@~QTb=$K z>vn&_LDNiSe$IFse_k`L4{6r`d+NoUH#rj0riaSrth(~xG(qi?Eb~u=QdvL<5jyX^ zqfZA}$^Wj~j^FPWug7TobbGn^gjb)hdZ~N|6750g8$I`{NKr)R>H|tv`OOiJjE%y! zmQ3KMlc7g^s4B@w9+x-#@FDR8J>e^fS@Op)FHR=SEK*eLp6c2r{o zBof$_xfKCiQ*a`$H020H2Eyi0Xd!U^hIy2VDlyX+pV;t45Q5O&bel6{JP(qRwq^O| zqu1ossD&y=$cbDrI;y%?J2tbCt)s|b5R|xHsbL1Wx^lmFp0Zk!V#3`@8<*GZi9;0P zqs`4?a#!O{;CHC}u_;cfUAb%E<{CWya78NbMo7Bg!hyp27M6|%dk#1QX?+2yV5T|or()S5hprs z1$dJLkgKPf92Rd(_St1<@gt(+qX)j}-B+ov82D6cU6E6poea!j>lFUj>a}Ln zTkL;@0BU>=$q)tMzb^w{E*r2Q{C~yPRMJ5JP~2J{2iK3xn27O0Jp}y((!F{U5uz zRS;8a`uwkVA-Ze^c{Z!99L4yOZ0vxPw%u>u2yA|KmhaQ5q)^6}1>G2V-55gSjz|t4 z`uZiibQNwIk^Wh&GcKs*-F2xZ=ESN&hc78*ukbb9f8GoZ*ddM=EnGB6xR{@HDWt7h z5*L3AQ`B1`)AVfhi8GKlOU*!p5DYgTnDE;3HExP- zoqBalS!@J8Ov1`e4wndYf4{5il`!-ILHGgne!c|Xme*>-n2N-?;+68Gq~k12pHzNM z0h|xhZ`tU7;=gu=(NI^#Gs^Xj>{AQbNp%bpK8j;6n_6)}Z1h@>KFbHCqn#jVNEAAr zlfG(1i7#{FjK#&-edbxhUx+_0Z**F7#{O~6GFxN~t}owH8xm(3$C%NY_a8PESK;{Q z;Cg`~8)>L?Qq~@IhpOl_UXtT%Q&!NzH~1;{9_Tdo(*PpiPAO1QN%L#Za@2SV2M81B zTF!4uQq}9+IN<{vZJ{xtz?WVk(@t-(G5Qfv2as4R)tji#$$(0nm{}_EbWAYliopJVD0qxFLR=BQgP1SOQlI`5|(c?NL5MFGRlg`*iW;+oc)J1;MHNurm(z`+gSej z4AZ6V0J>i^lw{ry7h`PjN6%3b#J{>6nCVv3}MA+M0SO|7l+^j(zd z4t4&j{x1Rf7Cam!$qPdi(l35DS+#{ODS0(?zdOAWz6#J&zfc07v5Vgvn8O?tznx99 z$eGp)zE^!*#!2=?H(U`eCU@pvY4N2s+YDc>DgIevnZ_j@zd|GoB7;VqPZcor@tP)w z5(%8g)*!Jd`@+g-f_^zPNMqlmwY=z(%@9HUn6pUUKWj>;zVRv>ddln5Rbm!6ip@2? z6yZyA4oO=x(M+(rf9d*I&Dv-aUi6Rpl|cVTP<+Xu!Q9MWJrABy9uJ2w1*76e!1J|| z^15&;evS9lC8NuxU_^qI}J)qx|D=&iv_#Z+{LqTOf>WNgq z?Q$pmj{y>i{8w&!qHP*ey$UI^oK=^gz$fP=N6a0wRTwNHKt_TW%kIX|?W_gG%rF9O zj11VM<+T4UEn$-(7BLV-#3jXM#)Bj7G3e=-hSclMvkI7STH~{qYgsh93Yh+@G(S*? zohNI*u2eHuQoJY;JAwRNjsHuMSpZ3@GU+S$lB(T^ns)4+|6tIhr8&VIFzB28nCQ!% zeByt?Mug;`1Qn#eP%y^+BQo-0|Dqcp$-H$|-YOtim&U(%_fI47k+XkfdBE5=U1kC) zS^Mbp4BzgzEpq>erORLnXqfIhMr7CXXXJso%uv+;yk`BnWV<<|c%r`-5pqxQ4~F{B z31aArLHuX`ps)WAmSeMq5q;$rz$EKPyFv&V!QR$zAJDezJG zU{3*cwn_oP*OX2AE%qLG@}3R9`{>evO@7Sn?ZlI{>HXZ6dmLnVMEHQkRvRFO0>y@RN z4KZfp1%Sak35Hm0kd0cRT4B69Q3R@vUpUbOZ?+?l7+&npdJ*;Lx&6rwuD{tWxdp?w z2V+>-EveW7&-cOT2KQ%cqHcIJJq~^>_&nZ2->zO~O%x??W2zHurv|DyCGj}Dp;IaS z1D#m8R#Os(75-o%;}Li{_@1$)YppvB`nfDV51u0epe``a?1L=PowpBkzz^4>J|8qR z=AkpwdAymvyP0k~ytq$k^om;JRZ_-^>KzAyA9ofq^c5-=LrFVFR)lz*0x;@(48_IDWqzFt@fojJ}tCx(RBkAW@BvJu0ic z#SRxYfPPQpXC7SSAcGuK>@bkoaRc^(3haB54Aqda1N3>gcrF-+9!F}_jYaLmYF`%3 zfTB+eNCOG$_HVa6b2b;m-i3iU?1PgK*8Lkgf3QO@ZFq@Z9JFQFI+7Uu*HLW|`Y$8) z|M}p4&h@w`GYBj&leiyXY%CxD{oDTIsIE7dE-8A*OQg@xc|2<4)LRGN1UCTZ;+< z8taAQGW(yLoV22Dex;$k34R+^KJ9$Z&tAO2TQr z-~2~Re7u;mvomxiGE^9pl$7B_yx4W~i_@!w=ryx4AbZ51C!E`S4`#)_0mL6jX=#g~ zgO)3d1w{^69sm5wb^iROaJ>I3nMmX=4-5q*B}gl^{a8U0my$A&#B4yrz;HNq|K?^a zgBTi>`YWpf|LFY>nAE^FKK9DqtF#_RTbx(r*Li0BDY5}X`M zd1dw~>jgO`%mN=Xf&P#~hPv76mQcV>L$YV-AC$7W)ZRSgDYi)UwNV{mpdI4=Hk!k$ ztURq$RT6nNAqoWv%~Q8j7|VzS;oOpOG4q4T_f1WdQJRVg`bK2(>q&33Y9R>16H}bg znW-VOX9qlIAV5CM>%4l20NR3UP22J8$0cqVa9l3YlA(uGJCCF4Gsi!(#zqI$rjITbItx8}Fvo{La(d<{Ox(YxuYq+zfYAW-P>4L*Ioxh3=lY=c8h-|*6- zNpY@{B9>s}`XhV*m=V`yR(bMbk-jRua?>7Q`DN!ZZTlM0xlAi6O`jb!AbkFvL--*U z1LoNE-m>JIH80giS#o~L5b)bLZ9b|`{N5baWk1b-FxC5zQ7KJNe^Zk&>YPFXAu25V))n6hz+MEb&ZB85ViGzN0HCryt;OZ7 z&76vqh!P#3K;H6m?lz805jB|so6e<`6L*an2glH$P8|x&nJCjUD_ijjZW`xDXO5q< z*YL6fxa@lwdedUh%7Ykg1cEpA;W-@eg#Arr@<}-Zn)lCO6OIs}grC`})MtqS?VDm+ z324FOrSr`gKBS`7DxaF1D~iqbzkMsHnuYCZ6RhbMef)i=eQ))obh$YeJ1Q#1pAcXy zO>f(bJg|PC&~IFffuKPTJs?cD($e-((dF(rpMl{P71_KljJ=I&3^E2GiJYT`$Ui(A zn|YV+yw7x1Wnq!NI=uAZ#Rfi>8A7&g;FJ7o5JPJ{U5%tr@Nc1?uOg!SZj&EBe}`Fv{X>2Kw*ELs^w;|rd~Sy^^jo-40{ zg6eg5hfmT_c~we20~Axw8@sJ(bD*}zLB6E8eEaCp+Yi7{AY=iU8>tn%QGQ0Bi3Y$a z=!jBbIy#VlE|K%+&$9qM2JXv`BPl$u+>7)ywWhmTqM9YU%RlXNyugkPAsNj8KnG=d zPxDpmWb?_CL}2GDq4qsA+tt}ZCWo64;9c8N3@oCJ=-qFn=M_)@oH`sHmQ%-N$$J!K zksdz+0$9SQhrxqVj!n-4JBCucpKgzGHH<^$f}7{a(>E^DdUcYBr%x^kye-F341+mEX)} z)*tW3Hk=2A!I)Z_Z@Tz+rS)K=Nm=8pn#Sclqi$>7VS&G(`?IqP^D9mY9SGhV-W^P*q!{oD};AV04`xL-W~ z{5ok^JSYz5G+=O~Lw_fI>u{Q&&TcuE5d%?T46AQMax-CX)aE_9v+-c0*4_4O-M2EE z4(mGLZi~N@gAYNJ^YkNayB;){VE_I#W}m8{c&1dv`#SeMu0Z{F)!m7O-ObELx6e+g zE-Q{Rzu4*@Lh)n>`Rhg0wWgEXY-vI0#BWmno#I+QMkb?V*mUo`%VP7gv!M&pXL9gm zoY%+Wj2DExuNZht?3;%x(UiwsArWZmwf6MbHHczQ0@{V%moRz@)NeZjMVWMaa|_~# zUxv;;0?z?I!fxaYBgt#*jJRTyGr_0I4cu&w1f6gHuv%x3K&RIk9tcv`haX}<#cgFQFG`AkVtIk>GqUc04GL^6nZeudg#KuTEU|cd zcfy6^&t*ChxY&-i>5u}{ScxifKRzkbeU<2w#{I(OZK|X#x0_QtI|^9Ac_>G5e=LqO|C zLgKP!$EXcgW)(SnwcdNUOFq8Dg;K`?8T`c^jxa&(;XxZONhv+lCUg8>-!GW!-0#8( ze`jjgG`~z8Mrw@ISFq*v*fvWjHsiY)@(dRze{9|>oGHc5@Y>`jzB%GMY_{U)4IY)4LzDsO6Wm`fI8_?UPd66ey7ZY3+x7~%_EolqG=|zT z+#>`ZP8#JfnnMgr~3A0C^8S-e|lA;$NJ;!p@ zGMj1u`90ZuyNcv}KRyU7h@s*NPRLJ#ikQUM_AA8zo;XhY2xNkf1ME2Rg{0I0Kv>=q zdxiKsY#SXu97HS^UAAZ6fXf9gAzoYK4mu#Dt%HDM!()hQ->{qkkRj<^mb&|2>;aX7 znwl=6z!=R%@QM#jkUwg9*_$3GTD5zP>RDF2;biW{Ey2krA%XoWEHUN5z zi2U&S>SOE3k+=8c6AXE69p7yo4N)mQxuy(CZJ)10XPDkzr&t?Cg+GWe5Q=?VG%Bwg z1U_9*x-7V}8+E&R)|&G_x*f`%*pK6}=dDNRfORvjvG27~W!0Bd=QAcET+Y7ywfgCy z8(!PZ0+CaTH5QT!U*+b3fx zNK9n#MnSL|jwWjl@Ddm@om~=v0011oH=PKHEVpZ{&x6PpF8jjxE*4VnP72=hdihp* zJAlK+mPiYBc4`7KuaN2$l7u_`>N*6j{;^6GPfg|Ld1AU48~%DbwKiC~rIl&HmgaG; z;ywI^+xBf*y8iWo+3lFrcyTuTPSfzja|B_)p1Ha{$N5!3QE||;J4~!T+S2%?c$eq! zdJ#?Py_A0Y+NkS(184uBOfD&7jh4EYVv-jGPt$wpd#$!0*f=OXqKTv|>-(Rd{JD*T z^G7}-)PvKu+g8(1Ltb9BY#oH~mA=NdAGhDn#k1pw-(96RG(bXY=7{@1vJzkZhFh0EH`e~hC zt4}OSrbi7%+q(P6?i<$biU4N_+p9UWH^U?L-F+AhO=#*`fsB6AF)HMsoU;n<0%@6O0}Cl3qGvlfs4jvc4yn%3R6TI za(7dh7@HW|x}Bt8d%nhf8DE!B>AddzaM#9$hW_$jE&%7()cBs9C{;+;LLJ~ro(RBLoU?A|Q&kt;|H#b+|$3?gqteW20P?+vpVDX1% zrnJRHMl@IP;e3P7d6JFEQ-Kxy?!yLw=vub z?n%=)&hRJ0ksRU!ujSlM|KQxG~>H(?O{aQ0Zwxo2wGdezd0+APpB|jn`tK$bfy7ZAU)XkN%kEy*gn-r%HuqX zRDc+iIg-)+*(5!D)>L$SKJoPCXfm9ljZD z2;jh#bNPTMYSN?yhZ9W&4N}cWQdhDP)z=kg{U1qyiv|JFV}+`ca#j8Eatr+fuyAhe zX5bnEC$PbD>LajM2isp?B6)ymS^Y&!2UQ8obFDoAro9 z-+Fw5pjL(rbs*dsHAz~l>@2YSbdzRrWT~0krR;N3OBi|5cN@hyEN2^* z4*(aXK@}%DK6xO|uJhvTSLo>tEHHZjReO#IqlNvug0ixTXG1iY32S{bZdmtF$a*ky zR;e!#BuhIS4?@p@duOJ2SjS9#zGR0C;pqI*exC#gcz~SMzS%94$`*tsaP6-qbD$uA zi;NM{Lql)=$bIC+Z*6uCvb~zOTdtfs4t84%^oN72a3kOWbIK9eLBKcC^cvf-oYU^E z4P7J}*lQeFa0|l~$Rnv?%#d?8Zzi*>`Gg9}R`6QQRAXobmoV}X)eXM;UyXfLSkzzC zwE}+>3F(whN$CzL$sr`ABnOc0MnpimWoQHeY3XL9ySs%Uq@{D({088x+4v4@{Cw@zlEvED-xtj|jzsxRx>7e|krNvoJG>!PB4=gOizU*3NAA z`#1xowC?qhk~Tkx<6_9(GJ_N~9+<2mB8=Bg{pFE=OO=ebToCxcMypw!0Y~X_L-0=F zi?CrUkRQ7XqWMoa)qYh*DdAQWyIRc9q--^Gkj&BdAMIcwp}}p2P^Wypt2`|fXESe{ zblf^BUgpNMUZ0yB`=3h#4%LhB3#B38EGgK!(2->Gk~I%2L9AFoU=`cDH^n{z(jPp`Mm(TfSBE~J=s@;R-0+6_V%NJ$e8V;w@Ck`Tpt&@CL_%7!AEH`q>RCzbe#h!y`e+x67ZNDvXr90k~2v zELFq?E95%0<#s&cAK?vpo;IwKCG;bT$_4Q&r;C)r?I1N0HOnk z3pE$gC}xg9>M*0}bIO>-+&gvvkl=^AWoa$V0%D4yq7qGI?{uWLq!1C zAysDSp*6Hp8535ELee!L>&v)#0;=j0$?V$s`BB0wF@Vadr&OPRsNF&B}&nL%7B`@8+-q{^{fz1ZU z=iAk}2^+csX8U;!IkQjI%ifGDx7tuB^KAGQF&EHXrV7|#0q=TuL0+tN%y?ljCgR=1 zWP*aymB(Q^z*sdC@PEuLb8jgy3>1`Us{o@3Zr$!e56)`JC^ZdXjQZ-Fw5rkDirJ!q zHnQseIn%@7`~2(7l^Rd0os)`x5Zc5Qo;aS_6RPa&-KGLah5aJvAvcY>YVnx;-h%&| zItc~B) zQ))R`$C~A{X3rE&z4AeZ&Qp69P-GT4kKe_mgb&;1H`P_jct>`34ec=h(;T#%w!3&} z&HU}-JtfmJ?gB>o@o#K2Pzz0K_NWnZcEUYAwf?PgUZ!87S2h5Go?h?Sa$%DeQ(&Wa z>HR(<=?^$3Av&?}H;53gp*E?XGDooc{Qtn}dV0~6d=M!v_xvKF6*Dr$$0tb zDVLB0(##1M?^ED3hfrzu)~@V5F% zaBhuz$$jX!bxvENc`oni$~{`j1Rt%7y+i@+$`c@{~WCoNCMDJXu2*U$nS!1C0lmwRD9dinwL8|p6mYf==1<}HaQD} z2dz}sk`TVoJ`3}=Y)pB0oyO+h5DzBb+KTcg?b8feTV5TZf~lfSXyS*Txl9zcy$nD# zo!f)GN{uGPdNw>v>9{~EVYn6@lI=2I`Vu%?xs`g&{o<536yO{$xv%nm?l7f`Cj~G_ zI}wS>Ub3l}gh?E6Y(-~dzfJwxb2JRJPD&;;{&dwV6xu`o4Y@IdVw;A{t?RO7tLuv} zX;Z&@sW8N-EjNgW{{AQZ{fHMC+HFQh{I>B(lFO8j6lf}c4Mp-e+S7l#oUFWI z)2|MopfZV*tq*475-OYBg4$aDb^CLGpPik1x~gmRmMyK|bh@c*DA4m|a`WDpI}AV_ z+Zh3VikPcYRkI!3cC@OZ!EDdB~I|uJ+<&6i~nErGLrFW z*$Oa`Ca2cd0Q9O1c(~zRuvb>EW)0nLXjT2LjB0Cco}$xJmJhA62~rWMqRIvyxb z@~!CAfLD89f$@uPLNCRyJxn)i&qaG3v6V;dPFEkd6ZP18nyJ~L9WYvZf^G^dba0Ga zw>Y+*_@}_HOyTe;`)POW3z5ZxD1}+{Bj%LlPF!<^0t2>04&|LY>%HYxbGLdT4DL0OZ%o zE+s4#yt#!_i}p*4H#Y?(_RoCxFsK|q>QulJKco}EB|#4}n-mx?@KRWYp=)p0NO@Z_ zfHMVNrN13_mo_%XpQ@k=h3&t1x!{9rjsf5v=g@E^f^7{x2@sbQ+gInS^}+}h!P#@u zE35H>FLpi$e4STDv*8cW?Ah?x^GP>K^X8LPhib=bYxdB(Y*UJ5#aVZeJ&f|5n*j11 z%Dwt+OFnI8!e@yI`&)o@h!&h12m5W|E615;>btX-*%d3l90NT56EHZ!dOSIPXUKuY7E;^yiUb@VvQ#Bh;zes+1?eRsbv`l0ROGKup=c$F1W0Hlt-=TE=! zu(EA7B^9@o?EK@l?z*>sbVrI6qTlL)Nu*s1VqzA~J|@DOI>GkR9cGuixo;K)jBDrr z>9@G?18|EZeR$yWIOX=I9f#Gd)5Td;ZGN-N7X+2C0U$Tzb+IO6R*RCHu7wS?Hbv-c zcZRGBwv0o3*Z{#V%hw$*vFG`RblC|zf!g#wCv|<=f9Q%sJ!*A-*Uhl#^=x9r+VhZx z^P5N?KgMKK>`5){+DY1)Mtz&RQ8mtPGl4Y^;khb*!PsH%#AfQW&LhXxg5FUL5x0fO zR{{2WEyHo~X+uX2jrfWE3ZDksXELY7ggqZWT#goA!ym36<1|MrLm_K5iLvzJ9N{xM z)R-xy8)}!5gVYY$!#|8+Xf>w@u{PVK`%uOMkQ`&-iafQ-068b}4>R_N>{z&pOG0{o zYaG^e&4__-T6vzwgeW_HxMpQDaZ2aN=C&H*hRy0H$O!mSr3Fu$tpP+;Qxnz+wvrL2 znW%Yqprv{w0A#kGwy@m#@vA`Is_hjV%0J zZCRN=0+u4n=a@3h!2che9^A!L0AMd6f4eUEEnl}L*j-scet1+ou7u6l3_Us};j{#t zS|IVO25xan(|e4-o9*f)4}{!5=rhMe!V`J&4v?`yWDTSoURUr_P-S)LqBGLhuW#kP z98cs~CDM?YGt-;Z*d*=&c^aso%~#m(4x4&UAq})(Jn$h(9vBeM6i%+J$@3860Fgq+Jf`_z0{+sR{T7a(db~pE zWIvA)M3gfudQQR}>vIQyK3;gRp?8ltbQDL`Y+UW1dEQ5=8k7K$Tq%^bI&9jEu6>iC zYP4b0i9zMl;5Zve!qI?fef)0^51}8y-(KN_5!K(0nL!{CvEvW&AfQ*J;-U_`C)&>N z@QW4fOCVU*W8cE*mE|L+XFmNk7~5KV#k3;!fwS|jx(F-+-7VWA2OKjXefngp+kyHWu z$rb2?N5Y8PR{zq7zmRm{$rHK_!mO3X{+;3y7n_>`c>@u&2A5I zcsd(W3ufoBx3_ow!TIz%8K=IZzAKlvo3*v+*WIg<%BBH0#Y_8NIOg?LC@ae?vENJ$WM|Ea`}!2*IETN?r)O{q;wvtE&)x1<4A(d` z9mrs>s{Vd=8rY(mZRMm1tu#=yRpKE_s3BEFt?yMXP~q9xlr=Mxo-+PE)Gu8W2Ws(_ z=QW#*4yD;_ln~-Ax@$v-wTZfa)XIbQ2;KkY$zkcm(8RE`eHy~i!<=e@VTR|e^q<

@I3U8G}nf1|Rl@bm&z3R(o6L1?>}$}7@{7wdlakAkG$Ybt-JRFM5@*hBDqnM9Fw zq&$7(1 zq9tm7)J`y^!qr+-c2OqFswl&wud;hWlU%Us}r-RE28hzcyXo zYW`SPcV%m}MSj<=t|u?z!`7Gg84{s#^^LRouI6LPtf+=4Tzw!$eMgT|7?~i=$ZW8< zLpJtCg_)`DVw07psF-E_jpPG%;i%_N7sXP<#lsDsR{j?`!MmKrmDy!s;rbP(sX2$Czx0g_hta2Faag`6L&pHCT$b7 zN*OO?mzpd7y9O*J_#Fk3>>M34KV$$#)%1aZnK>R7hnrGNUa1$Qlqv@oXnL+MDD+v2 zHC(yqoLbq;3?*NVwdUr}>T4)zu2g5B+CXpOoi zsVKbsc)pU?uja_r*yrAvoY}b(rgWk$>?LLz9rfV~lnkuH1IbMI$x%#}(CEzao9pHy zv7x)3wDdMLB_*C*G!4V9+{sBzP~b-{@AjmLGPg$kyw+jFQWJwMg%eGh+jmAQF6*lj zq>g>7^=2w~P4>^MQ^G(J^r!8Pw0tHf-%SNEEsmrGqMGR$ri+u1k%oAexw*rB-U#Wz z$YkWCP0`CQvd8)aE=6dK?3n?oXLq}^ zr0N#^ZFPUV!Hh7>oDH|sTr}w#BiL_xyNfEmO{Vt^B*`%jI?5`!;G0!mg^nVok}Oby zu1dors-)#9&4qf(_kQbz9xyO`dHFI*yp+|os>A=U$;6qGk_wHn@g>*}b{$cVUUya0 z#V@EO%iK2m3@MiCN!b*xrc4mrFgE?R^^!KGD2mv*mt2CFa7o-ewV6V)mYt9{YVerB zOe8y8a0bJcHC~xI$A zLP)zs_=FE>Rn%{{#=Nun@^AdGc+j`L(SOSVs>xqQIy^g-e(MT^n9<|MJTP`Ie~D*I zl@|io^H0%&hhTAD5QtK)jny=E_J<;{Ua%JOBb~%VMrLN^m@VbX#_<<3%Z(cO7T(TO zwc3^z3KP~6?(w@jj3(alP01`gmI@PZ>6y@H|4d>fl=MZ}sAVhI#78vk@_Z-T0oOY} zx8^q+rB)(7z9Iy|;6=ba3nvU=mD3}b^fKaQA$|63I{jsqMQj_MG>T`ZB zYcFZt0!E1R3*qsek0X5@ji%1UhZ2+(6{}Qu8%>_$FGezsHk5QFakGBk#%5Tp?58yd z0A<1PJ)PF_`U3JE&z3h9dPV|J0|D!LlfJ?2KvhoLCFBK~`(F^~P z{hOWdh54Y9i?=U=3P-TM$5PBBtoxKgXntm-JI0tMqiezQitv=;gMx~}`zh|8v`dc( zm&1WspH?XvscawINp(G4TEb`J0kzqvy(3lc9sCXX)RmqkClPH|ZzA%d8kYbORbt^m z*r7f}-+fK#`=mW(>HJTE+aHOzv^XzBho6W(KMgL_olxh+u9yw$-HS}0gPLZ20xMp( zFY(EBNREcoVmrtxwA3T5XI6GGzoexy!1sH_Px?|WZIoF;L9ihCQR$6z(y;)4@7PVW5W&%TCh&88S;+Abb#hgt3E%?%|U zGwDGNS?$FQtk=-N)U@Pxdbp@}IiOtXyUDoXa}I4e z-&GcCy5l@FSnAph3^biU-6|`nt0D|%NLFo*`AwF+nC?ME$HC92>F)gZN$1qK6#AzXnWDb0tX_p_S*V} zXn6z#1gV0)=ucv@Or=Nyz8cvbZSG$~h*yb;U-7}pz`8#<(CviCpijO+eP{mN-e%4U ziijD7>FD65xMMl3Qbrr@?j!C#yEonb#@HGuWfFdgw+)LFTwRnqO;vtGIz01J{p?Dl zE+*=v{Y_Y(F6$3=uC9aQiRFsOFBCrh0Wn$Dc_q4?>q0g;d@~ScT&ybpQRln+N1XLx z&m}|@%IOj#oVl--v$NhKE=EBX?T1VCk2K?<0;4x{(rreqSPX!F@>=xW%p=6URcl4iR`yyj1 zG`JQ+n^uE|^eSv4v2)jlR~xPZM-nP5gt^5nPZxhAnsboQS2*XFWDjQgYxTT5%$gMn zHcih|!^s3ZJMLXl^TjN4Ep5WYyg0z_zjoTD^`Npw&uLIs1WyKN|42|2Gfg)1LexF$ zB*BSJp+xW-FP0p>Zg7EVU4UOwDB0!@mjYubvp7d`V|DSodyX)^a<-6bsxqbj5_iDX z&MfH_+|eWA zIBDMgNCBT4cW!eW1GA%VCg#6`^4A9N7rz8&1yFM83fUaIa6Mitm+@)|NVDpJsxE;d z#G|3Zw?a;Q`+P}-TI$9LypYMJSmUY!-y<%S~<-^)iw_Vc6m)gOR1d2Qsn`p?en=@HzU+7d!6ADKK~OT^yF zCSklr7ykuH{lHWK(ny$G@E8VhqU!D*-dN7)rO+(LqqSC!Ck>9y1dS0YUsuFq!DE*4 zaB80sN?FgVkiT4Dj#LyyizDbH2n6EzHfa>g14mZQ&^k# zlakeifhWSLdZquUS6)~5f6=X|Db2wd*K>isjq=*4eZ<+8w)fN87_}8O_|Ep6T7A>X z^p$}POk)IjxrF|4+G-nFmW}@`w80$$+W^yIMH2)r8(e(O;7k~q@)qVg7aD#I;*PxhwlCWszA!iZ6neXaF9 zzu*n!HB88 z7j-wuwF=VO6vH{Gz9jteTc1ER)6TC*!p&{XxB5zN>eJi|Foe&!CFc?NSjBmlZ;#dKWG|6SLAj zX|c9j)X^mtoFcaGpMhJi{O_3m3B#fTU2A*eCVsEO#C_TiXOXmF%33mYM;B zXd~=NRw0>o+^CWuw( z6@YrlkwuWgJ(!Q5^>D!&Q0;&T9rav$esz3}(sFfI59-|-tOa=Nv$v9qgB45cIzywn z>Oqzp3v3HgVQsgrJ1I-{e3N0g(2PF!(_1ofi$6}%IC(-eXIpR3JK%09?+e1h zUp#(O+2KtY|A`vh@Qnk6$tO6(mv}hFaM$LXX=S-4c0yX4Va>NFFSeRQb|DMsWN-^NCoqNw8_dB}~rHVDU;VH>6jY?douBa|3 zyE{M(UY)0@0;^=pkf0T1MX~DbLY5y=EV+x6{pNM+gba)rrT&MmbP9;_C+BP2V0(lm z9!iK$6Lo83osca0?r1;PG>jX}2)(Lfmue_m-)QszvC>d!s=VU(c|X4$g=TR)qwIzs_>xz%37yi#XGg5Uo@QcPqZC~Rk5`hn0qgtLHIMp$$=Ni;#$>U z@1bhZiH$Df=JuQ>#Y!DUZG>Y(US&#NrTJD{Njd}NI^1ygPaaeXlud?A*@sEu{#JrY z4rG*)3g*RYFay7B8uT}JV9guhUTB^o9U=xHKrx$=S?Tb4Q0LA%n3O|oO3%%J0$ltv z+%dRcdO6BPjEZ`j(`}8k;;!Lq_sKOfiMYtRH2WQBzba(p0IB!*Y{a(9n(Oe0Lq~Ms zHLtsN{uS!$5#v7{YcDV(kukBtxLE31ITjFq#-R5f!7};pz6L#nyjlMP({nCDx#1~G zDFd$mgNSdtBuXWuh7zD710HcSAEEae=; zqa@S6ed*d*l8vH`0}dutY)ZKV2YDt&1y?D8uQ|X+t2wsYwh&oN9_juW#I3s}gXR|> zyIAWnZ9xh|HUVIO;k{Z*&R>;gV9G@R)$;$FZ|-+IZ51c}vzk8Z!Gf%L9CF+%`&FV1l_=*u^F4PxT-OFzOX{i~LB8%x1^4e0uRL~rt#1GAf8D(9K57C4h+hbGel;O%P5|T!(3r?Hat7^`#Iit^$ z-v-$Hwe*va1ZYs@f_za4XQUE&)LiCS@spx*mYAfAbPfUZ8hNW3NV*mQoiSLw@R3)t za{7n#ciK4aFVV-}`X2X6SxMHe&JX*>Jl?>(bvQxvUBEAAr2ZqGt#-*I^+ zeoYv<6XsW7`t#x(>koh^HPV7nMd(vRZl0o{XeANJb2=jWKhE@ZUl@b1dP$;?sn|Zh zL|4Yl%q)rHr%m6$^`JO7njnnSfYQ|W4o*vO*p`J$(clI^rn(CU?C65t$4!<|!q^3h z*&_1VT*D^ibSu6NoJfPOH7pxL>WtgXC;_7|O!z$6naCe5|B7%OoEZ7jSIL`l8stXi zoX;u6ZCRBtjp6(fs>+#AI+?Cg7Y+<2=!7P7xHGBT*6{h#6RDJO`I=6??- zg3o9XAOH9GrHYHsg7SZc;A@4Pr~hXxq0#<-e();rmS8i3TwM ztU7sl4H%Ut&Hw1ybHD#)us`QkY&2vKb0tb3lR*Fe?#2JSwY&DU>>&K_4EjUoTf3_C!NON&daTXdI|m)DvpD@e9;m@_V|*%-{ZHK zHU^W$72CJ09U2@%iW+MS`MFbKLw4dY2(~UltPXN=s~>P~wkoyGP>5FBNAXYz1~aNM z@ry)d+@;B08p%;m(Cp$*FT}0e)w#Hx=o|;-AD)ccj*~-iX;U#aqm`7~CbY$H@bL!? zu^B`QRJpIn&jYtfkvRxJ{|Lm|*d3P7tNT-(Ox z|DBhG;WHB4u}#KI7w^UA1iN7T`Cejo#w#++ndm(YUHtP33J-IE=ovp%?glr7UYLir z_}xPYG8zRP*`cQCWF3x-(f#?s#iawxR?z1b=_QK6dIs*IY0{AD?673Xf_K4#D<0vS zU{#h|51M}}=uqi2^JRvE(@x#$eGWBM(HA{Mx)Qz*>Y=Yb-}9(g+zh z(!Vd1XuMssK0F)o$Z|T}LWv(#efrG3S-D4EP%u+9U6op)KzUKzyE>~VXmW8;L`aE; zI|Um4~oOeCcLu&uq{yIR2-%9`e*JO1uUpCY{^7FZkIViwf@Ln=b;=(xLkOox&3gNni`C#p$#RTICen zoZ22;jojk@vrO%BurP+7@1y$U^X9CVRcO{H&xQ7ujx2~=uUqJnQ~HH2bRIHs=Ob0* zhYpCn5nXy%+nVd&q?yYTYwIu9Yio>E#5LLtq0|`N8RNMLY>soEtR|<;b~H^7{)#Zfu^75P z^>STe|NiW*lqVS;@!D%|7C&I~;RY$miD0ETiM`bJ?)cz0N=H<9-y!d246-lfYYS&i z+d8dY17^98>$9c$Ufgn!2Z(v>z}mNl68ux^aM7ZTu$H<2sR_DwbY$M97*WkJ>>jDR z-|al_dLHBzb%LZBgytWtja9(?Fk~ZuB*23I{4T*1p03{HlxsR9!7hsLxO3LNW2@GA z>^bnuvu9xcv?kO<=x!zz^Z7IPG3HT_e>fMz`1nMeC$%FlS+TLHvP1UU(Wsdkr`xgf zaQQMtjVbh=C-KWeGSuvx1sZFw_)Zs+v{hv1(T)xh+szA$On zaHe#22{RkEPgy(O2s~*n)ZyOIoZk=!MYv{%ix-02&>Jd4(leTT;)4Fwhn|iF8rD_(O$+F#)T@kPG z&q6HC$!2)mrt0`p0{@CiW9_)c-Bmw*n^UC8mDYJVvM1gPvR|G*?g65U^)$msvN9fepW7A54Osj;(e!^il+StQtBhnR2@$>r zPyLr>F_8~9U9cA@sGmWXK_!BDl0K?2l75LSB)%6Y1M=SA<*ei9=o&3l}JL0LCrv;Ncg=rtb^mil_f$J}G zQtShNE_{B!r-n*tA82~8+a*;%LhXqOX4-r54+!2K{uNW_(+c08dYGE+tqmcj3it`T zn7npgsQmV`^quSm=E;VC!-s?-I!(?HbN0f|Jmt^d6le2vb{v09~=G?Dm@gQCjlD3O_+f_O-=kh(X(aC7%!ci2isjJ-s#Gol$8(hPU~)b+H&D+&w< zHzTrC!Bv-aTDwt={d#>?p*nX^+~R$72j$7p$3O zy3@41%e~)l^x?e%gWdysz`DB0IFh$T?h7 z?Sq51EM?PI(yOfTl0&Hz2)S-T$TNvBEOEB`rK&M{@JakA+N*-3~e zfMpZ804<-Bq%Xv9h z71H}=Zmgk%fxqMxekdRDWsF8cH|^*$!_S9^Zatb3A`;vCMaGa`9r7KpRk^pZ#xlll zT-m3!wYRNu1Eg|yH{A^FE zP{QMO95ZhPo6dE>WJ5ab<8i#gR%2!S0M^26eHuoBuka6qh#1`=!WK8Yr1`eXPPP47 zTRx4D#D~VRn1Mz`Ry;Q6`O0s$0sA`!ax>Hm*Dj10k*k-3d!I%!IZ6#T6_`(?!u!^w zB?FA-^RI;co}*01)px5pOnzco@i62 zCG78ixVdFJ=BG!B-W-=%g(!2&S5%)a&p z&GU#wYGjjd{~0`p>y&SWO%Lo^6xcKi$vQ<96y{rdcu@6O z6C$ANE~ac2ce^jp7TgH2&*fNLR&);zS7v7c);S!_HMQ7&*HVk@(>D-}6fo!6(RF$4 zvT9d%xi!WL=28!6j$@e|OE#QGBc`s-PzZw-#Q(<2H6$le%uNi92kke&!|D|dSfFj3 zT-qND{}~;s?c}s-S>SW#r)^2TA#zRao^X1Fz@nN&=&Kb9%9ev;ZzH>aVd;E_K{Sio zo`&T_(sg&bhMFp`+k{!adP<&ZjVeacNJe6VKkOk;?t*AjPOfP=HK{~lY&_F=?3`7a z;$;9*X6^p*xbTnXBg21&s^@#QM(~l4PgfIBXb+FhS3tW54PfLVL9NOJ0RquU-6Q5v zX-y*D>$WJfgQ{S=*iiv+b39dH9T}r5;A~Bd6@(I^(IqyE%513k9_{v6Bin0ecEzX1 zZtL#^X&h9&!eAmC4!JcqH{IGb%oywVl7BHhw-GC|FSzUP!g*|pzpL9A5z+0Uc>>$| zz@Omk3DoL6F29-@Y;d8yz4V4R3;O%0fr@eDPB@kyfrvow7yZVazSWmx%diL ziUf>dBMuEBr76bY*}T9>AbUT_-alR-PEJe`x6C)b$ z5wi;0VD7kNaf=<>QgPzR(Yer8BkMpacc_THA`%+P$4rIC*Rp2E<>c?v!tYM05fa!w zYL@zS*#lY190}=sv)@q)VZJ2QjWwr^1N$n>^)ZV*pjYza2<=>~iyC{#U0gU)=BxEO0xX zIqO0Tsj1VvEYB*Y_fpT*3ajlIYV047?ynCn^75>+b0)p#mxVX8mVGP{)wr$k(C!ba zgvEZq$!qCAeZpDp+iv3HkObzxGD9xv6e)^P@nROu7C9xSwiu-*v2`KN38uY#_rK!XX`nK#){ds5nG zX3Ye4u7KXscgT|YrdE5u%d&j17w5WnsaIbh9aB2Ct1+nah3V%Ye@LVc4hb{r8^?b7 z8jrwx2ujEc06sJm)+i$8%qW4BS?91P`2DFn*VlaSc~jiR8b|&oo{%}O3pT1XyJ*Sh z-|m}FPtT9S;vgB-=`j$WfRA3fq9VR4nPX4GlV8gixV&ah3ZZ4t5(FPv5;pDfBum(9 zQkFC~L~Tb!#`BNO2UuF{FFo*GaZmfMn<(#>=SFpt56_#wqiqRBqCWcJkMM>VqYsE8 z6nicV2vG^Who6g^+~49=q4Vone}6h}?X5y{kw$*l7?8|o$t$%Xvt03va^8LeYR+3n zV!_TMCcB=gNb@r|U=097c`D4xYUh)lmX@}F0m1J+x3zcmK?&gmVy-fznodN^Q+ZE` z+|KD!y;eR6i3%qhF>6vWl!!!kl!;k(MBkTRF^DPiI)x9er! zWZwY2NTzB8uMz7ix_+LuS66z_bq4X<2DYP2DLIRFP)b>zO31L~4<)MQOs8Il}@>tdW zSc21K&~6BSCRUMGY~3cd*#-JfKmcloUKNXJGEX>pTps|~6jZHo7uCBt1)tq zdt9v#;tz4X70*<)-S!Ro8Tg6>bhC;s09y6q`R$)Zl6|OaNhxWr@rhfU4u!wGajkIK z$HYYDn!Yl0*g@fa*r3cEr`c~_e-}N_uiY^)V#>P$;CvEypI;}UafkkH`;t(j{^&A zrU)$-T;sXMy6vZZgWyaKcGm%7XiGok1skyLEHNmam*HD~y%GBXuk=^dH(`(y3K;*r z`TGw4(B{i>+4b1N!>E$6sZoL5TpLf8s&fl^=faqsFX90D_RjLDkA^@MvNJ3%}dFLcmaWHEcXu zHhu&N0P*5!a$jy15G!e@LjkVZZ#+U5{QitHRiT$B=|Yc5qt>L0;Qrt|?E{V7Wxgz! zn9@nnoqfCL0RFgMT9-sBm4>63W25tbH9?IA82DJXiB6vjFy zV4;r?yeHKo3H#yP{OPmXcrHVNYY0XUGji$7p0sp;@$#+&X9|N}Mu$HN74kpgvwPYd znOBo|-!YR~^?=lmdAR^c1sMJE4D=H^ z&tK`PcL~y>PM%!U0cE%6Lm|>BoD+AX4J}Hzm|HLwuWNF=ki=h4gl2UE1J(jI7t$*l z;*!7H$-OqbXd*aP8iJu{4d<8$jo_*i( zz4l@PDyDoVoT*x7anE{A+?U;u6PB5S%qtKbI3rqq426r2M~4O9ua@pCNtD0rAK9*) zvt3270umVPTCuzHuyvJDNlg_{P{E0!ME+eTOLiWLsOJ)q@&(bU3VdnCCqtyssuQ5M z*14SV?l;(z3Ow;VJ;!zVdxds+IL0bT^Vh{|=Lu2c<_ycpnc;rEv|U0l;z3<3iaAz> zA~jcn_Q1jYF*=IO-XFH=k*PmJwZGMh7fQb)^&J_k#f&UW3+--+d)nWKD$_WNNksl; zj1F9NnDDO8Rwesbq+D*YZ(udOg}Q<(gN2tki_7;tvS#)o^<7CWdX{2a`SUTCt%V%` zm^uy0k4q*wP8QLem9!TJc!&=S6(xBC@8R2-Tdkazvc?Y|JUyOa7sm%lX02`Yxf8kE z8YXHsfoAK$&wGe;ypjdotk;6oy<4!EWo z$c&7LBOhYe<~s@Wm&P(1ezX(GCpXOt+*VB+@Abq)Y?vG1gT}kpY>_~9u}E+h{7sy$ z-+3V$C#>wkYl46yWRp&pUvFvhi`WJ+7lly6bZ_xoOX^3yIuKQDwdK6GL_plWN${B3e){~Ty z{&l-D*UdMeN4$86v@~*K?MV3x;jtXR{?>6h!9dO0RM4Irh_9srw@#i0(}dORk-xFs zarxIO>a^ScR&D@?WkA$ixE@0ua z*0n!)thElVEVLBqTD)%Gf(G+Sg;WuG&RD8c0rI%M|*|}}^g;||<(UwcwXJW~r4&m;d<<3@i zWB!v64PU|ZrKKZ+QG3a7GNdd)0pl7X#-hYfD?YZfqR!C3!|0|;9)eC`|D#Tynh$4% zS_nD5{?8SZHG}~70xD^#nq~ASjtqr@QnkV)^BvOcuJtq`)DmASii+ zu9olEcIRYIP-4AN>casgm?~h9%Fw3(y99VO)Wx|#f>^HEmc`;-f^|5RAhKu{Vn(Y1 zV*Ud4*!V6HNFDWyX8s7zZMwRorku%=V$Wrd18KIl* z4jXaFJ@xyF><~&InEGWq5uj3Tz$7@oenr$~zy{tTKt8{N1D4f{p5WFQ4y17ffDR3G z(bb}{^3M|ntY+jC6^2{iwz0Pkf)+mO0r^*BreTXEetUaQ2!ZOYWbz%7$P=yNwkLGk zyp#1~+pUYRq{l`Y1bZ{g69>?i?cLjg%gKTyaQ`v^m-hxQ9AK1DlJOEhQj~f|L@!lU zbzp8XMnby={urpzr*0!%(*tR^j)g*gc1jYczFfXBz$rR$-?yuir+PcrXiMKxcV|qx zkn@f7n;-sLhwQSY$fb;!6W+-zjUv6HIcmU(o%Kw?CEUcJ0){5Q@#b8!E2+kix&8t43p^GhSy z_jH`zL&Z7+ShQFL^A&s&k>SuaAJOl5Dw2(rW@KdCJZIp^Z(&jPG&H>NEs)cf3$x{E zVb#RH^Q#lCv)OfAjd}cK*N$g-N{q%=aN&TI@}+9}#oyQ53>vo8|228)pVXdJ)WGV9sPMgeIdn_wi z3cv{%1dKDZWBb&-c+3pU&M5+huV>v)7Nc#rwWY-ajP>kpOD*T?4&WJ^DpG*{n5e-M zPBv_&Ock@wJY-ilH>O(AC28!;7`axQk8#39iYe>N1UuV22?z@KydQi7sE8t1U4TCA zbL5tUjoyexCH(#|LYJ`W*?z)~qUpXS2-|Av0kC@~qbY{^|x*LJyA!{YO|0Rvt=M1^Gw>D%5vyz+s`FOuLwR z8#j4;Dn+ayuPCE$&tnwywn#KYG4Er6LZ*B#40N%!o^xJ4u7-ID1C!x6hBqE}>jhly z@56!{%kOU%+G4O7&!oMsczx116d$;34#1#CV^2as`uPHl$Zl>`Oyrj;jjcrFO+9g~ zt}G=9$vxd}ng+Y#sQMlkcFx-SUQHg8KTnyqw36>j#*Li$F`^}tWhqNqT3&W|@5p8; zFRc~{Su>4JOyBv=xIvn}Ua*K3DW-GO<_x|fAOw!#NdCAQ9eaJl8Qh%BI-VJx1{atY zw~=PZlIEA6X9Xy-$ZR^^7N}R-;2n>B%dZHHfv)34%e#{$Ghk+BIme@i6os`AW~@)*E#gf;F;dmf$F@Cw;q>Z;jw6B2!SMox8|&GF*Ag53 zzn+%RNz|*1k6!DsPwu{r@$WVVkEMtg%nt#81ZMdh3t@YOXWYvy#cf<%=5UQXg7ZBs zD+Tf}$PHFZ)qb7`{v@OE%x^M)&4G5da(3a2vj0kw8K!x|$nCfW1sV^HrW0WnFoOmf znQz_QsqzYiB0q2Z!CcXwOUWB+i6KPAZeE}%u5);vF7QNX#<*%Gp5tT=NwUdNNBG>C zU=ZtNmdY6&q~LmB8WZ_BvM)N>#S5~W4z4ZxoQ?n}`57Y2`-^Bz@;uTt&1B%FTY37< zIDYVyC90hNE~^(m@%?dYQK2>@X&zC|_EH%VGah2F9`iUh)7mleGbMNWct7&m|= z6cM4+-pxbYw)jcRT$5w|>oX;a(Dm-LBGEjYX%kNG+@G(lrfUJxGCmsC)qQj}0sIq( z(HL3W0%-|XHs@uPWEUI0>T5jSQ+2C~X|Y%fjsHNSElPahtM`Ph-<}}VX@#B_63>Gb zhey0roE!#F1KL!heN?yp713(JF_gF$&`{PI$8<%STA*azUwU!4Ld?y!aTF~DHnS+m zhS3tVfI*j4n4fAI3C%u1+AmI(#bEj*0m7AlBw-6&CsLjk0{;#XeJM(k zw);XY-Z2dEW8ewBLHF)h?gVbsQT}r(uAD&NkqC>_ z=4_sx;^yX?6S4MZH0PxNLlQItNrHQ!$rDFHpKlaoUCitZiH#Y^kSV9|j8VKwv#OjE z$8+)MF~WoVM5Dldb9tJz0dbj)IF^}GswoL*gwjMc{%N{3`!7rEe<>(@*>cbT3V9U@{S;xSz`BbR?cXvU z0-&R``#j^jVYX=*;vqN2dDimaD)CY5>)aojw{OzF0l9n^mC`(J5Vv~Zc#<9vCEz84 z1OWNK15D!h8nNL~&nKM!3cRaQvm#F zt_x;=>t5)eei4?bGJe8>aZ&Fy4yT5wzEuo0PRf|Gf=vuUu1byRj~=2JSQR0|;ca!c zK<`y!HD(5G&^NL#%$h*I1wI>yRe@{Qsa|kmD18mt8XF9W&+mWdB(ItYcw)Y;pzA0AKl!%@g`lqCcouG)}LWD*nqPMWGTz5&bN*z zxlZk&qGO1%(4I-FE7nPO&m~|SollG!Gab#DCrQ9)y7j8S3;hs3@R*x95Xb6%!iC`n zG;&surT||6ajNBJem)pw8X-ALNiYbRpr-V$`#xB$>Xvx!GKkQ`u{dADH#YtOhUUUd zr9U8=iJClp3{;z7a%3E^WQ0Q#SS)XUqVIUV1yVA=fm#d!mJMNw@`@r#=9F$|#>eM9 zZlyDXsiARN6he_?=Y)L@o0g_KPv?X#KhY-y$ZoEuGM{o0eo6q>Zn}DOG67KAmCdXG zYFck*UR4xuM0DKE@d>q?Kw!p5T7rag_yL~}A?G>bHH)Riuo~j`HMx->P$Vt4 zmv(L!s%^)u{VoLpammI2!02#vHf?ltW?N#zEm4c%!eK!gicw*%iur|`OmW-&@a-aROJ+P)ok98{iUQ_>kfT+cQ?=Clyr2!!{2|EEo+0=KpLeInQ!Zh320?>k{<2Gd11$4blj1 zMAz70ID&=ry1ycd><(U;fvQF(=!$wOynQt1LBIpVy2K-e#Xd3O0`iOcmow*7^94M8QHqPJX)kpy$Z?_L?eZJ+cgz^tgRgMr*g=8nzrNs~Mhc-o_Zg7} zGw$W)Z@cv_DBKG)Br+0;$QcA@$CyRP^;6(}OzpB0H9Tw%BtZ7d-n^pXviC zO5l$8X0de!BR`5n6Xy&dg9o67{@wGJV(wPWg&=zcIN8>XGy#li4VZS_u*sy+e(tC4 z9xq;^{%)#p`?&uM_fZnL(L`f1mqb4L5CK{=fGEH_`bgn3J=X0is+SA}%9>h(J1VgS zPitSY-u~tMSZ9yu=){PSk`yA42_&eIz!d7MxsG+&h{lA>#QF_d^(@;ko6h0rWz3NV z4W))Vam!-j5=qPdB9@^i#Ee$9y%2gJqu>q(n-;JOQ89l7C4Lv~FvYxg)L$?e;(m1L zt@1z2_X8F&GBMo|@~L=v2!GOR{SFeV(Ato6v24SMi;q1>kIzVEI$&Z|tH%afD^|$h z-tA^c5%1X{;ik;7D}?0R{ha%_2C&|?w|19HU`;(@Y1se~Q!WpnN7R&F|UY< zxZfj-z2o}Aik$Vdp{pAV?q1sB_RmZa+@7xRP~rO`-W&cdU}G2O8EW4_D}4;2LAzj#b#HT1VpDEqeRG1Gl}3Z(TRuK z-T~Ux?}im~nN?&i>+^dC8?nsxlE|5v?cp|ZRl9(;ZDtwX7Y3vXui9pk{(Oa&olzh0 zJ(338a(=*>FSjarFQ%FRYILV>s~l11PCOS^ zz)rE6$B>y3gG5Gta{^GaT=(t>fl~-%*zIk$&lOy70aq`xU1?0{Q;ekLQ8WjV4?{=Z5E)Tx`M|-d?bbjvdz+22WOX{O8TsmLm3z5ugU7Sqv zg4l74C~Okblm1HxJdQz(uvQDb>FYC)uKjxEC!q3V7xf~kd&tVU>U)Lm0)DU&cf(n& z*66Q1W{{TygvaduXhrM~N6nay&NK9ZB(67%MQ&!W+D^6mdw(96^B5Te?C3{vzD((P z@4DTshhuOkDygBxfOj?L&@7g>FAL?P9^z_zq64OmOH2I|z$hPsKMmGR!7Y3j3<<7T z@dL&*nc&_X_AJf~j4^tOTPc8;As_4S&GhlyfLCY~j<+~+o-cKY2`6=`1A%p9_BRof zif|;EB4y~Av^j8qK@4=Hh~t&yI~NT>3o<22ib!qwP(cPtCkJ?`O|(I!M+>>5rT*K} zM}7#8OW<|36J##dk4ysC`9Ba4nSjM&Hhz_(4hIk;p>;|u_QGv+MmZh`oSB+fi7`Zh zjB7{d8mD4U$Wid<(b>pR&W#lXS#O$$Sh zVRPULS3HvJ`V|GZsV;6i2v3Iy_V(M@+kJ9l^PKSNOUyMUZ+H?AQkHepab zI=)vNYEYKy+OY#v^x>w-H#kcjLwA(m`av%$cFUJ@VFI_s4ptP0Mx$g=F}?kFMBkay zKiN$pa`=MS=NH_fKtQzrszW_Uyln06cX56;Xam*u^r?FM0I05Zrs0Rkg!^DU9wM{xrN67)PGDftZ7#(ypxdr$jqX>0j3TJ+YvC+58Kb}?f)*&=DYrKQ1>!+u$vr&v(Iy) zRoFqAE?{h(jFrk8sn1r+Z5tU7UcJ`3@6GqdNj0)Q9`RZAKzzU{Y+RE% zac%{y#h074QnU?Z0g%iajp5vw)Hn9V=RF>bXInQ2dto)Q(1V8y4dDJwgXn5~HaojV zqMwxAa@IIH-U{rrug`?v`0x0~92iK7_srx@i6kXV0No0A$W7o7P!BeZh04h&_WzmN!cf+Vh8S3S9fnmxrO9tZb#b4JZR z`x49ax}vD_NFq$T=TK}J`%lmaGFV;d41rH*OqW?^fmm3d1)<^|5br6;`EO>Fd)Eij zK70ddVXA_{obJCqijFgqBfS<9l|4=ueR5hTv*#+X?a$rt0p#D~xoEpmBGX;%AM+Z;P=V?6m2isv+ zsh=S$Gg6<9=kPU6Ee|r9YLV*%hyHf4jF|bipgqPSz~PA!gHeu%-6b9aR`n_1f&eb{ z1L4YkIj}BO;SGRtk2G5}GokZ`0w8o9Q8sdsWRJl&Rds*SOrx_%_0CYdWb@3@LO%dv zf$|05sx&UY-&$w9fW!?MncYiTYPzEIPu3sP!!hs(de@GSfI2a$yZ048U0EoZ-2N^}zDM*a4wpfaHFl>e%2j0Kp!-VNo_#qGlfE8}QiXhC{V zt1RM*g~h}9LHdt?F9udyRz|1GN$4vWIu6ihVeHDW2Kd#0teOf$^^h|y7v{_M zumpi=DZ&s{2CyrJlAo$aey$Z6OGz}aG(a4D6+=Ja1G%BN;4t7rPQ<(cQjzf>b2@sZ z#FwUS=>(#+In~WE-f+YWYTQAk;jI-M>m$=ekB2#CxW9@MrnMg59~YtK1OZ(~QD^>V zT1n{3I2d^$KZg)FT(IXBI<_z_1q^j?jv?gh$DYFS?0`(%=Qyt@+B-m4(~TKq+LR|b zDm)I5^u&Da+eW8-xI;mv7BS3tYaf&~gxX|=cEP7=HD*NhPe}9oX?CW)=7QWY(Cew~;{igm8lrH|qcKffTtg)d`>++&XfAX|V<+4BNeL z#X7*|pa5iLe*q$AV<0H`lv-bpm&*m5lDXvyAdcICDNYx3TrSr9mkqlpy z{HH}@y_<#AO2_lpMCiS~w3`_xqlduuJsFT9&QL9=v*{veN1XGSZ$daH8u|s)p0yu1 zIFJ<9Ml(7#@dGu z(s*%977OWMi-1&d*_6fOcN@0j078u>k^LVX)Z-k$o<{`K9;R(6M9VREhYb{!%Z?JO zC2+pul{!dKFK!+@xTZySs_A?^<_Hc6x<=Lb&(WpT_vp~aWI{Vy@Q6j5K~;uw{fT5s zQEs7M@SNg58m}OqO8>w8?MKOmSRBSbj-lsnMu!ki8jh5<5UsWQC9Z3i%H4Pu8J#MR zZ`SyqKQ+wko|u!m&3MEIC5&7p{~W7pmrIBr`Uk1;e*}k?KnCAPb|YF*W$ed@foOX8 z>cNi8?$(QJIZ42;J~7*W>~sC6slqQ8yb-{B{P6M#Ekj9Gee-jWA5~0$2ORRt_!ldp zXla+K|0s0=m&d}d|MfHf{mC!z!g}iee)!M(A8%g&`%M3S`|JN3kE5+ymrr?7iJ(`K zJD`|=V$$8WyHb*;@;^rpzrS;T+ka61L>D_}tV@Z}v-O@--Q*7qn2eHHkKPuU1kRvp z>_AGphqIQiBwP7BdqNS&i`2;8_|5=wcNkd2LkNoET6zxd`Y|9ckFUDK15Q~_MzD#of>l>r4U*5GI0FB__yk%iz6 z28ysehHj&JDBnf(i8c>wVZbRVXQmd8I7cWHBAl$6Z>RIS0^K@XsluYJSXq{ zTmwjHSJ>X!X+;Jhf<#9QTgc)TA`!UP zt)JgZ;R87y&?fu{N$jr=z%$r#rhvVesZ8ZZH)+f?V$7PUN)1FwfjkFBfHIjh3xN>1 z)&U<5lE5yPpE$yqK3Dd(Pv^}Y@3h#F@udZQg5>}~(?5-94X6orXMS(t3Uw>Ib#Kq9 zA>dd7kChfcJInKfZt4vd>>yF!RxwcWaB2M*!Ut~bz7#R(|JL;-dy8rZ2i%A+0*x(a za0eFi(8UKEo<4m&ze*anI%jbB;(_GQjd8ztiQ-))d>aqjF9`_Hz1L}J#Sl>*TxeGIuv5jl$n zUG3X*j$>azeksYB=rQ=+j)8WcoO}4$YN0lEC6F6yFkt{tXK!gg#k^LaNA6^<{)MVC zQ&0pFHGRv`xefocFg*lLtnp>+aa21T4r7$O1~Ji&mgYAh8hvg0T)fu+S$qZ{H$(^w6h8_I>KbpC$nH^+y<)8Ib{*`$5YTKw!f^N`PZe zV7_R~@QC~$P480Rrti4|kT@^+r(wUNU4S*O2wRksl~}62xgP?Derr#%Q9y|9mm>Ai zi0d*)e5&t1R5+&{IYt{V^mwt@UvvF!(kM4jA8c~gf0doM@QjS?3A!S?<3-jUIZbfYA<%qBhLP~`)yB0ar1A4mwA)ay z7|VnGpa;(`d$Ah3buV{|&7fkcW?jTbrl0dhH%XQ*9($^VSTFgn7WUNWBZTCcA#oF- z45_YXmK1RtnN&2(r9-u433FGzP{cTThTi2N;(P1@j@_jpMlD%G8PX35M6nFXs2@G| zhb`yb#}ye`J~P;U$V6jG)vf#1d5M!PM+5h(1}0Y76EOC{VNp*nV;JR`7nAUVH*wrp z=BFG+s97JLETrHO7z_mpRj&yR@-+254Dv1SeGjvlooC@$=P zf7Q{-D&x?BQyu!GB#rH0cO@c6XLHiaB{uGpr6Af4ywLUHTyrsgw95Dg!}i)Xxbb22@hLL;|J4dm5C=dN0I6d4o)Y7UT)qYnipRZg=l4W*=Ylg zKA6mGp`MwWSC@W)LiU@_ka;Pey%}Rwz;sm0X-v$|$ft?V*--Es%uG!bd%Wbw>%I)W znd6&BcuK;mLQXNmw_8CK7WA3wG#z>{qdPRuf6J(&SrH@8DXk&N`x*&Vlx1Izst{uW zMNeOJs(IG882`uF;Zh}wnq>5hjcYwH*tltjmB#6 z%y{M;dn;&ijs5dA^u~%33pX>La~5|fU%x<2XsNM=6XGaUQzk&g*U^1lVr|kT;nfl+ z&&f;2g#OR%1@9o{5NEk+Cx4WV;qCoB;`3?mNsiqw4|g$dAzt2#eD^f^J&W5W;13G? z`*#6;pOic}&{jv0Zsz89_p@n=zSUBr!^4uvD#)?EJokVo%ZTu>U57q}c-c(3XPd4# zaUsmcCZ%*U-mlYERyrM@(wbkc`^bGMGokycD^}_S^((q@SsIC}-I-X|a#$E3Nz2Ni zc#Z74b#d+gYJP5dUPwARDV~a>52?&sK=%Po0_ni9bas5+e|GyF$$neP9u-a! zmqqVNWwcAP^CSu;_FAdyjljF(YxxInv{j*}sem~gZjF_k?3HLik6&)0+%%fZ;V6qN z%c~C}#?l%~t0K$#r<6@^yJ*Rt6BObx!>akj#ASmi*{JWWJvsinD4jXeT$%xTi4^r# zuL@8VFn#fhIn#(AHZyPUk3OkYyC8hg-i%R6+TJEy3JltK7SSxG7^$b;V9F5{c=8jX zZX1yr*;-J*9u<=soKLkorP*E0X9(COid6?EZfo+8A@-2rU2N0sE(g#;-fpgzYPuTV zJaO8kUDa)Iq)p7u*g;@V^1Tzob6wk>RA(}OnxB8%pOm!CInp7rIr#L~wHgaRDP(DL z_aif+iJ>(W7Dun(?yvi~Q@^^>Up(CKk)ql*-h3o~xGoS&V5|CB8&3spXa_6lU0JO* zYG8K=2`L*8r6`YwqiD;f3xAXMRCq!ms49PK7SWnteUz?DG7K_4{v&1nGvtVgohM|^ z4eDZi<9UCTnj|()8T4;!5PWfD>Nw;_m7lLyqb|1l$6@A&?d@el%~9`|_2GseVZ2{o ze4(=E@jPQ>R1A0REg^?iJEPYPtL_c|1&dcV{QX{<)jFbX!?!g4OU%W~k%wf0HY47} ztG|wo6_#GV@qBw}dE#>(%vh8#uC7|#efe+KRqofZ(e!Z;kZecXAIv$J-84SHeVKnp zO%iMEwT_3U!F}0RLY$LR0|35@=WP>XWLy+#>xg~`@6oO1r8Cd zVv^<6C@~=({xzD;gd1udwvEkj=8MyOYGo@YFv4STrKUeV8}-K#g;^6M+{ykK1p z51rjx<8ju3tz9^}yX_eUz3^-2z1)m@fgm)s$G%^GhK!ZkW-ju-RTQJ=8BHY4|Ll7@ z6IifL5x3ImLee3O7x1Q5eBbhE41QCHw1=S`UOy$U-sxPgjEcnc&!7TVs-YqGxk{r~ zQV!u)Lrt1V*h>|a?QMLxs5d+%9{e3lrWU4@1gKGo$=*;?;@bgMnd|E&pAK4%>Pn1P zz7le>tw+s6Mvfi7DhlG7JsGo+Y|DsN^fMQ4h`y6tBe-{Vxrn}s20wCoit-tcg5n?r zIonjPLR~^47{6T0Tnzi!Ge{)5et=zr=v+zY5Yg9b1o59i6znr6>5Jd~XYJK(!P@`# zmHv25Ou3!=zmN1V$%Nnh&qJK&NDBY$5-&(Z1q3nwJ6;5TDulll`ES>L{r}>})-i^M z=VU#UcBZZT{`+D`AfmAq^WI@WU*Ze3P8bkF|9mbp$;}TOG$X-52KCk^|8w+6zwS8W z%4CKziIDH8-Au6U^@ZnyRN9u)5F38=ex{2SYF|KE2ZTq;h^#JTWI|XtHqxabIM~+|xf2xAXgVyCzudQe2;&h46$3S_`Uk;dA z@wMfj&DPmoMTTMG5foXj^kFaP_08oab67J=1lX$4i=9y4cRudR|0cIQsf68otrzuL_BCTCoBYr{P{Ltp)7g2Bp+Rv!4B9j85FG3$nHobNO? zn{F4(==m*7XJ7KnBSE8cSKgxN{T7_8Qbx$XExzA&RWX!1((_>dm{++xW2RBG-URg$ z3!2S{?p&DUaD6~0xb@cSvf=7HWo)9%l?sYT9k240pnF(*2Ln~03Hp~T9`BJ@K#O0l z#hcihMd}HWqtFkEFizbPSLxco6tT3ilZ6u8!TO&`?9xNLD6_K-A@{PfTCcdSjuTvm zN2^snC-v!98w5`+F9ju#jf1YkWO_~giqB68u`to2NBQ^12sVXA|9nC$&o9zd-o5Yq zDo8dPE>_I#>g`CFUh;PO0)0QyVRJh`KjB}YH)Izd=B#?`;=C1Lb5Dult_U=d9?2?rf80q zyN($*`JZAol>3Q1wYZynfHlOcOeq>9G!!1fCQ$1_KJa7u!`P<8_GyC`63Zl43>1W2 z&VkdqIheLCY48w7i`Kxy2v(|(1`rrj0d789$sjAbx|H(m0{!f74z8@zmC%S-)BEE& zN`z{u{y9+n4_9pv6`frnnx=sv-u5V3(vus^LMmWP{Ub`@z-vlQEpa}^x*}Q9?a&lnf*NGsLq#BmG3&T zr%Cej3fd1N&@#<{Z3Xn~0Az8xdx?6DY5;f=$+uqU&E8uCl)fubEg=^rI|lGwu~q;l z^K7>%W^5*0i4CbA{|YM+&-AilyFI_OSlc{xnr$e`%ctG@J}2H6UJXb244`79d{7=e z!nu#`Y3;?}zy6x@J#F=^ol#FoTj4c3I8-UX*dA6g;8HBV;Nyxe!t3O+HMzH8C0SIG zDQ@6lOT)uJ6qk}HxF|Z)cwOx8&Y?i0*kN3asWj%AA)D!!;aE$eSLH#Ut#a0eH4+Mr z1VFmumII&HcR_)>NeVjc+4BxqMQfd3=O*F5w`70ab?0r4PiUcm4l2FqS%kf*#6(DE zLeGlxK=V!T*r?s|#quhbv-R_RM=t!OcU+>LW&H%t5_4#H*nA2hZ==HSAGA=6v zi@bPbn;kOET~EwRM@^Fa{p>^sn>5b(wmo`WwSg3YKPvOErgPYeu!+YsD(EP#5t_JD z6+lX0i`B+0_pEU7i(sP6aGo7jerN0+SOMW0ZR}~RIP@RPlTIe?{=ECw2kaqUfU&4f zw4Ef$p?p!X_dgAZUc%w-2LLfU6lVtkn9d7XeyNS=SpK(A*DM*1Hv>Gs0H`p~vv&p* z6p7o%_~;w24z9J!c%K8T6>FFWJHK;2$y^U`#udK>ZD#%1`krw!p#rZC4N z??#5g$mz-0`$0A1jOn}HbdO#Tkk?t=%=r3QrgpPwax8<#tvzj~Ec}@p0dzfWdgV6k z?lW~hoNLU#d-A9`oE>VR_V%mT{+T;*9^R{;#f>h|UQmp)r}M?8 zsE3QI>FQ1@Iqdq2b+#{x+BG#;TVkh{}LU6;)Mv!%I}X;in( z2swz-Jepy% z|A{-91Nx!3M4K&0H>bQsVj{Lop{2^)pHX>*?YSrg#wNs_^WT|JGW31POTH~KynL!ZTAc6}1Gu6}^8U zAadNue}btp^{4gApxpe|`!_EiU!!JZ@xxuDg>}W+%!z|P<}gYzTfDA}G)~px#r#f( zYd2xbuNG&c#YQMz{7l>*Crcs}u}#c<4HEd}k>lyh#;FiRWd)`AG{aibEDlcM$4tM1 z*}PRX5)N0D#cb!;GG=_Qj+(QmLEh|dnW~A+h}YRFGw$a7xinb5KcWv<6RJwG&@qvc=-*owsWxj|7Dr6M`ExapO%_{P+=4|21& z_Tw!{_D%Ru)uNL3E5|=||GFZpXprejid7+_aQ5gCDh3V)3jDqEE783*g{4(G!Nmev-(R*?WyF)|ZNfs^YB`C*pNfQPsJ8j24LDk!2ZJz(nFTHOccU&jg{6~C(9S8PY%k#!l2JPAM1tZPh45VKO36*o1nJX#?7`vcD-I zj(`|8$7rjEpRG`69_Ev=FZ$mcy%0G~z$4qH??#$WCCFW`HDTP_>sd3sj z4^5NlQ(;bHMC_~0R9>08S4-8j^zDOVs~slgdyVy_3~Y4wK12@7ecJ=H27t>Fj$EoW z=~(8Uf)5F181JIivENv4Pc1^@>EH|Un2EA?9DvX`&LyRL@`6D4WZoMA%Pxwt&@8r?9#;enk-q?g zcRmM_E$~mfrd4st=e`cNJVUtWeag*3XBmDDjbe@0M@Lw4|ILCPcU*aUKf3<1v9WGC zc7tA!7)|qB+`QeBIeN5mSB@_g#%(+3;Z&&>(&t>0ljs}ry-N;a)>8b$GPQFdT<3(U zs0Hc7>HeBY)s6w!KO<#Uz>N8_iVRz@F=sjBZq+u+cbMsJc5Y3&8<@QL(&kHA8v%l` zcc68lOdUET2c(^qg@l-I3(xMqa@#GXmS6}NUOE--`~kDdE3^kA@SX;1RM^a^zjoEf z`>SfVqQpTb&TrlBwk4q#HDYbtUu9xqnj;7roC9;p!B^-^DyjGur>w_!B0UUOD`aE% z?((t*l6(fk#*ct1ozH=5-;3EMO7b>Zk1n?PJ``x_3BcY@^-LQ59LvVpBu%u zuSPcXR$WiX#YWq2+D4L-iR-v(((Q<)YxP0i+g;}NG7ojJJCz;~=f6Btjgy1^eM)@b z>6OpJ&uq9L@qk>x3Za-HIr{!jk}7$X``^8ie9VPzG3x#8KQu%8>X*R(!I|VzKM()! z&lvyD58~$hhZd2H{Ph3D#}1x64smTYzP1sN`p;KU(ezB%{X*Pv3D#+rw!6|$sD{j| zO3SsnXyfFy;8#wPtPef4zl9%!!S9A7yk;a{(KT#Z!JFx4=;DQd`C@=6>O{Il3o1kO zd5$5rg5><2tM8r>;qlpI!lUf~fm^1{rpVggW?b#N=0>JF2?k?y@V>f-G1R{8q^8FC zD6LOe(6D(75gTrbadriEom-q^6R`IGFh+~^LKc$vZJc1_6SUaNTLfSPz&+S!C9N?M z@qbV7E6s`^9GEA%JxF+tjig#p@x+9|RP{JlA}0q&hLjocFBt3h%h$KbjCQk`&6Sv1 z*UPf@4?eyO1qiz(U%`UMzBBN77N&=<=v8wm82a<7`0djcBjWEJt(x|=fpmw3nElnD z3_h72_S6I-=-U0V5+E4dNv1L>NUR6v}`6Xsp7amx%#xtw=&&!$c0v<;O3I){m@m(?v=#hh5*Q>>r z!n2kc0q$%|)?njBr^#|1+2$UW*-6QT8ZHa+9Kin;NP2+VE-bkXhACdTF-p7$?1erIJ}^!H(l>Ha26;YzV~MJnloI}PVe|TkZ(9u z4%VzSqyQ8f)=%lST{^FYblh?y1H_4+rEAAJP`Z@)4m<;_uBXs?Z>Emo7sSI~AI1j2 zYXh63;Sx^;sX3UHBVu-*2*qWm zO4LUyLX+Z}=7vW^)&bZe8o1SQaE2(LiU|8M1C2=)89`@r&cY!YCj?JM^;?m>@nqor z0%cO{4^zwY8wx}f#+wE@QzBjca^~0d-tv&>)o3z~*XlI-yFS}+ma~3kKg14d0&BV$ zn2dPcf>USrIVs+6($p=dGDL;3cZ7(8Ty&NW>6{FN{jO1L0k-)6phj^!KqDQzYB72Y zAoZh==C>fgdCbQWdAhGY2dnw`Q9wh3HJ$*gM2v1}BhC=#{`q|)NkQ`0W3E>psl!33 z=tD@BS4Ks*P8=?BZDR+SFTlTlT{`otRU1!srisB&t8J*X82EAYh=Ow4foCANgdNlf zdKHHmik)Hj8gLYK?c2=$?dY+$Sqw334g&*N@0DG?e26W2f$Nq=5QFF_utgJe$V;X2 z-FymiK*~{7{KvtP4GK5xKJeh&E849%Xm^m>iC3AGZ$Sih#@3*)fy=K)Hj3P_S5~wNevtCvZ zFi^Cq@-B-X&bnTazav2IvQuc`PtZ8I61J*&I8$GOY?T@M%Zph$00<)*VvPM?xg5`k zh&rw%8qs2=$I++!Mh{Uxr*v2V7f+B-cw4m$WEd-|5P7Db`+ZL( zS^z8c@7%yMZi#bAZ4AJ>2w!D_Gh}P^g{~8U!KodKxZ)llQ$aYumf~+k0y% zC_Y$WMvB{6FF<0PPWus@-mZJzQDKa1z01J0u5u)I1G~IRn``_hj_s@Z?nvVMQ~w6% ztahz|Byu1oaxI4u{m=qpb`YFVJX;e1m?Ps<`e5U)n^KqjfY2Sz6Qn+vR2D3b7og7w z&pkf#xd-U&Ih(drcQ>wb4^|?M6h6VeS0Fg(s9RTT1`y8vmw}jiH zeV6rWEQPr!1ppee++2Gh#DxU{NnV?tz5pi%&*1uZ9;ak|cC@*xgAuApI9aJ^7MN(_ z=P*ZAuB8FoGl>8{-oWJrXSpRQKsSc~|9Pw=xPtPCLtlQx@18J??7%kRIy)S^WlH!B zV@z8APUf@fZKp|j1$m>x=m2Ti+VzbcP=UZD&|@CdvWOZvOBgu?W5IxJB)RmCc;9ncRMm6&70u2+gB*lYJsn zC&=T6dk^mq5A(&RegP7=SWpxYR&r4n6}M;~NQHtidUd-~p;gq;sNCNB582(9ubMU)H%aEPO zBywf0`BVl&G2Klh+aVdC#j}0?n-owoo~uDJ19Gp~W1a~RNeySemG^5h8Y--LZg1vd z4x>2qJ1RPO`Yrwc0al@ZFQ%_u{9(wyu`ohj==GmJExZs)&lOj{%hjZ0;Fibi4Eud0 zY65x^`(*@rRUZ--!u>a(U$MCrfxlH9$u51!6#fYY3&_2R>{484$?{Lzo%R$14QbQY z1E+_V%?)q%Oo?^0q0qaO;LW<=&2na1ti zIaQoVhSzIK(baBci$B~!rL;!hP08gHOV=G#!vAJ25HQF3Mr!ncS~4#L5S(``=v_{W z`fh|cxT|0r?GEU=@76^}4oibZ9H67;E~&S979&w@-ENEiPYk3Axy$(}mL-QY09zO0 zJ38q0X^jyZJ+`ckx9_>Jf~K+rprcxTjIkpD#d-745&n-BfJ>YsZK+)ll-zSm&H%0g zU@MxhD)P+pjfv>B0Tn}CaPU1;0|{G-jCN`7M}=0fZm{4rx3k`7%|JuIGUt^9>IWa> zH0cXJCH?if75^6g$tpFnPafIHl8A#v=Hhm`c#3AVxn|NU*7h5H$~W3)WHAqPG%F2PW3;YflDW=9;aj3 zWvIME-&ZpFZH}PoZP8LZ*kT2P{TUMBJi86HGa{7=NXVSMXJA;3DK)10`k5AE zcx$>9oz0Z~>+`=C##uzsJumnt`#``U<@VhcsVCXHNa1%}QgvPFXM8T)4YAOql?Ll^ zbnN{ks5Rg)P||pIvL+tnnzDMbjQA_(31l8_9bU7bgoE7H2bBy$zx{c2{1pq;&uL-6 zJ#&dC{;0>s)P~m{KS=nA8E~Bg#)o`tOK|+L`UlulZYLfoN6x!Daq7~IYWI8z6qZIJN*C)Gmr80!%V2Q8T?Kb33qQtZyZ)aG*sq{0LV(^_4BB@6$b zKf`YnBhmB)#{JJ2*NeiyTHO0E*jf(i``EjeG(hp7RbfP0u4;F4-V~z6X)zdT9NA&g zvWi`1eT{YhBQ;`5*h+l1CC*bFOzAlcJ*YuB8;l~_ue|l-9&Bo0^%0lQbx(@T$ZVxs zl@;#E01PuI?wtSSpfWxgegTl_)CoBl^vprKYev@%CZ(Qr#`v|_?_53_)2j=WTK;*p z?r%s##}vKQi$5t+H{tsAQ*o79lS5w+3P4h^5D~1s8Bikx0hxLdSpdfW2fX9E8qzGK zP%EPOhoALHukzk)Je{qa300N^xE&vz$JyzbW4Wr7xbwJex_~=3$})rONbS|9S}?4O zPU}akp8RuM>2ce)-O;0X%Whn*Cik2R2y(4R-$7l$$zLYwT@HV`YEr4o)J^4Falc(w z$LT&$5YfQc#M4%2w%OxHR96bG>!O2$& zx(wkt4ikeD(}x`_XsF~7GNvuXVIU-a1C&7i@q?}~N1wy!@5y{W&uG$_{(-FRYm6%? zSaUDL1ppftml-E_g(k`Pk4IcQl>0v<0%y~%tStX**5iHE|GyLE|0MSypZ|ZHmTUF9 zp^9UFdQM?a9SCEzsApPq?&pQ1W3jY=M1zdcNh!SYH!p-WHGIm7?D)!emb$>IyOyP& zd59O3a;LFauA9ExT%yt>~JDS%zx&17+5Gn?$`9M1@~E(8~u#jdDPUD9W)BZ%UY*i(_3*F zFW3G-GnpY2x_=o^ z>}??e>9e(@S{S2(46SW%BFhU63JTy0_OpVztfa?LeWF)ML~EP7RQtjDL%hI+daRYN zTH5c5A`Q>k2&3>a#2U&>Fm>U(GOAym3xKcw3PTq;C11=Zc)tdC6zFFlz>H%10mcdX zthu{d>vJ^2qodN?P0B5uq|TTC@~w^E?z_V zL15M^#JzgAg}d7U;=^AAYrP2|*b-9doVXe*wqo}4|G;ot_en|?CJu*TfUNqPaAz3a z%(sm_F%9Kl0sH34j3h%{#GPic&Z^v!mzQ$YKTH1=6f*PerhqYAk{V}8MVp{yeqG90 zM)eOXX&QX%?#XFvzaF0e&@La)0UK$$ia@(8Sh1>(fEt zQkh@bWM6JQTz!VM8PJ@n!%7N_%pnW8KIKR=<4oHT*;OA(1xP}mvZ6^8ZkJ`BJFLs+-Gm(LGY-633-xF{pcCbrC{u1* zR2b&AZ&}_((5Y>^AI$xnIWfo&pRprrP-^hkSCU=w0bI%Pk`U6dK3LD0+R0#Ydsp9i z#*PRbojoa_ez)c$6JEsQpw^d5btkiYr;YDVi@HTYW@o0`A3qWXRBJ!A07nMQZE$Ez zSy6Gg49x%v1(>hl_@w^oJdB9x`?pT>N{k7PAztlfE0GxS{TH&#u)kHO_st;QyOZu4 zB3uv$L7VioE%U?CnQ`Uq+#HN1cy4B~nS(GWSGPP|?OT32X6RPo)Iw}Cb$RNW*DSCY z@3?VhH(nKR9RlV}&x*`}Q?i1zZP?o&1!<0D>cvOXWpW`cALWBFNx0w z+?y=&jyuh|1cubk0NI%zPz9B2>o+etkO;N627O0N`2hlAb#`U9DndfqR*_vw2wn&< zPeC2^fv|o%lbl>ewtfWCDLd`a9j3Ph^`LxJ-Lc<)Qy-x}b&`J*np<5hp|-J8b`KrM zL82*(3xDKB0NHa~j*m%>Sip9L4zJ6M5xClbSD-pJHdE2j_@*p8R-G5p#))yV!;xE* zA2s|%`VIPFnHK9>ow!++asoyY;VSaA}v}gWsqxM5jMqu2l37AK3fjkkQtrZ-hQ7W!TQ z2H-?EtSwzdupSqNHCtEkK9GrCf)b>smaQKU@qH5~6XjGvch4C|XQr>fp zr9bRjmtE4Ys+)7l%0sFZ-qqXvU$s$FUUhWL%tN7kF9Or#Qt;Opz^yp@|?FT8w} zT{@uPYD-~Dp)W1#$;i~rAlw~goD8OW4UP%C1a=Y94YL%QRdO;BrIR@yx8ZLPr`old zfOx*cR4UAvta}}fSdC3g4J>JPx8+uhAO1qi3q{VyG8ZT@zk)(B+FlOvMpwg!MrXUK znDQ;d!{wJuY$~+@Pq92dihk9C^U%|jI6ecg`n>!)u} zsKmjq)J({M=kYXo_VFc7)&MwU_&A;_*pH;h1@&I(dNZg}3V7CPgF0N7>oL_Y zPK-rU(_}5RU$Ff zW_V+jTiiZt0;Sn@gv`+3P=6|>?(crZ+yhIBk4B%XhNY*K81B65auTaC zFtn>1l=lL5NK1&A{1eA5D_aXhX27%?(n&22_b+eM%{`9NrhR_GK1oJ$^Fz3pA~T!O zdHyQ$>=%bRsK?D8?jLmj943EHO(*mbe6!=49Ko1@<2|=D%xhGEo?zp7M+E zR{GN;N30(z`g}wofc{iW70gVXd<6FLRg3k{GIxKH(jT*OKnDc8#Jfw%lI9B&V48m> zMj*ea@<7oyxRWp^cluj+Yrhy87X+_a;-$XS)BFx3BU`t{@njz@eWzpJ!BZ6#Kx!`s zY0kCsLIB!Ay2ZwQ`G7zsrd|7U&io-s5(pmIoXsz;Nc^%S{p%N}Vt4m`w-h0u|FLHoe9}dKHL7~n zcybAMa44>2SWwUH3kcS-pv?p?o=xP$aXDXsk&RLy&q>}#IK%6w+3HR}EZQj}QHx6Q z?5y~x?R4izlHspu?f7y3uaRJS=S~yyB0j;78IdOJak4z3SATWi$(dWb+L6T@`%64A zRZmz6uHsbBdI%MDg^?H8SoBTl{+5H})E83W#aGWw^tZ>|x2w4@ z0cvgr;d;Qa0v+iy^dOS>g#JCRUvi(h!NK8kjRNlIb5fcNqh(GJb4X8295|$iZPKlQ zZtHT;FWc)}+7Jf&CYa$iI|C1Sw>n@kyTx>b?E&VFGR$KS`ZPotafWi2haSLmHa5~6 zYRNS;M&dFPTl1a-ZB09eUK9{Ed0o1W7r(9Z_VV0W7O=9jYFh}^_^$OMvE`SVPleL8 zSelC7uNImFUjAwzfWIqxC}_XK%$GTruAMnUy~l4e`3g7@`LKO*`)#Ak64Yt8A%Z+w z28@zJji2*P0n6m<65Xdw`yFzwaRq-zh7c^JKad6QIi9oglg@CCmsv6FHq^%h zAQ+j$m|kr}Pgxx?p3F#^rhC5KrVKi<+dkE*1Ck9q*00T{4sB4P*tql$Fe?{VSER%E z->TmnaRpWtMkgBVTB0E}HN=x5!sjz>%9Xc9LPYvyC_o~=vqR&lL!QL03-o=tu)0i! zn+s+kQ|=T2?{4oX&0jfIHWN)T7s2K`4cEdI-0D`A*2@csEYr>Y>-1&^H?w-Gar?Hw z!5ldc4d>#pxK>e>uK?FwU!(SB2!+8mgsIim!F;Mt*w3^Sf%n`BL<2GcE}8zGd@OHm z=ij?e{|ZuAQJouCd}V;ulh}(O+B3Z$Y*%JF@T#O9j4n2C?lO8(-(d|-^4B6}hB_~g z<6~ERf+eT*iVjBf2lrpu@RJ#z|J>ISN94e`%)Ei?t7e8*tH2!XbX z6Tg63BIMH*Iqsq<&?rfW-G~Agoo(r}^VymyKECvDJjDI8RrS;(*?l3$oQN?^d$WVU zeLc6oCipVO%P`Dho%*oeNDbgW+hE_@3**iIeiPN{(X?xh2JVv)y;$$($39(m9?w>f z0wwl^i6qUxlcVyly|`gHDvni&08f0n;(8G9yg-rFWM%jXh!*q5=brP~h2!Oy)U`q+ zAOKDZ3zzG#O?&ip(9(6}GBJxc-!8G3kgjy0Cj~hdIxd_ahDJoKc)Shr# zg%h(9GFrrLQu=qVFhH)0h#(u0z; zPRaZ=vwkBGC~CYiP$EpF!;MVR9OZPLl*US;c=+P_8^+mn1Kf*-#ENO!;kX0ne)#Ps zyL30_=omyY26G%;+)pc95#n~u>)pTSaG|eMjZT}|^lHo~=dL@60PYAVr2v{IjbH6% zAZ)B}lFg^N&qyj(p*2f{!it>quh9lE1A2QkMC}A*frISnYBl-$?VF8>(JzI+XFeD- zxL5-zLMa`G7C1yiZ2-SfUL00}M{SV-b82);N32OkV-GJ4S3&du>4lAtJADJvgEMuGO6wUQuXa42e{cRTy!h$@oGFsvSDXgXby7eZF9j13tAr?C_1xNv;2 zUz6V6@p@=t2x$IKEEwiiGT}I z0AZ&i#xP0c%+C9;vvXGkRUvpd^Z@8JH@)(%v{WAlN-o9pnV%fVk8j7KeNe~8*MQ{K z!S9t03@o1W(BwY1BDJgDbQY3cFMPFBpkr*(C72ph{nw`fwSMOH@?T*Mnfx+pBK?>L zpFn)3ZAaif4&;OcZ1rkfwHW2$_3})7!+oL++HY+Fu3y+oQ4@fd09)|e%jE@Ddwi4G^ab@1Y!8lO)0LePY0mFbM z^XTYa>>p09=ZPum3XZ}QfybPt6@zkbB6Gjj3mj}jS(zk*>KM+btCGN%aK8iBswW)} zHOBb=3{8dfSua>Ze3$0>YxG?75f8v3)#gW?oG7jICO`NvM`h;Iq6K>0wDj>{1+U@n zU&G)^(3rqBV^G)C=Cv1Ar93SY=hT4Y7Z%2(nnnSD7FG2{8lP@Zpf4p7gZ9R+t_0~O z#KcA_D+6T%1%$5-^A2?KVNc8o7;-}}c_DOcbg|zUu?;|v)zB*^r~5#gBwg~`Lh_zW zc5zN>Ub{zlXUw}_n{DPl)p*6TOphVpiW>RbJHd;%s#=&6R>YSn7{LC{c|LsG6d8i# zZlGnW=4!FSGBwAJLl|Vws;YR(CP_0 zjrnQu{x#427Cv0L-P6Mb)ZWR;lhnq!>#d)e$4vvEEht+BWeTodscGiqTw!Tvi*W0o zdG+OUC<5;Y6Qj)P{Zqt-@0NN5|Or9SVvP z>h1JDFIA({N_$qIW zV(|$1VgV=EI4>zeC^~INW98L_ov(0{{#i^X+_qp;WB;Un%2LoZacfHv3lM4FIJ1h2 zBVByr>B5?B?t%GT9vih|oGzFHs8f!_lyAOnk{Vc_EGDm>T#Xxk&XVH9*^{8+ESQR+ zJ^xu992^|>T1pE}lenw*x@4342Rs!rb^2#``i-{y^TK}K%Cku!;^63a6CNdq{uwkO zpW=@d*R}XeR$v&xLOg98 zqoyFj^&2C{b8;+I_bc9yACwsJjnrI)N{|fNvwGDZQA5BL$%&gxEKIaUYof=~?{88U zRo&@0c=_D&0y-`*MaJu#IjY&}GhyLstqau3#U2lbst{XkuClwbFRW7W=%s1pB~|eW zIa2#tYbybVvL{j`{h|e1lpcI-QHfDwc?ObU0L4%9i#+rlFto_?dcCpSs&5};DI1<@ zCk_TtW9l=Au%Pz9YyaeT{0_Sf`duW_xOo43sLfR$Y=k%D3=;b|)P zB=VnV5K4Pn3ijOo{VqEV+pnD}xW~(ueZf9w?p>cKFCwakPi}9gIlka8AO7*JHYFC0 zMp8e|CL`4*;VQ>i;90pEM`oNJuB$UR&pU|y*v{Zh7nE{)`-o2FA(*=mt&gVNXh)+^ zYWORz5VPj|(_akDNyvc@yvq+tE{NI`26>LE#^;a%*m}Il znDdjuL{v;nhN}yg zZALbBqunMNGjnMsHa6-M-s=hG5?RsM_KGbRB6Ntl<8%ZQ%7)z951RN!+OYJT>#t%_F*;c;?e$FE;Ffa?E}fNyYA9^I>?3gsI)?!BHLrtJvPwpIy^$Tg*aY|>bc9i76wmtk zoi7x5N}JBv``EU>ZPb!aox97)-cBFuX+WP7MmZEO;4>%-IKgWZ#%6tzh6>aEs9ma> zrQ})dp9F7{{}7Qk^atvLDMd|9j;E`A4}jxatnsVHhp1~cIAEb+kL_f<`b&o z+@C)pW-g=4yyuK>bF{`DKe|sY?3E5QJ{M@g;BGndkw`zt)zkQmZncAh3eTN1wu+#1`@3$L)dehX?gDg@0G?ym2c&TEB4_qSNK zCcQ&JcsrpG?F7DQkOC5@%rHigrsbe-ua{%&qW0@p@6){i?IHTZor2T#o%MG*+qBce zk@>~F#1>?_MIwITqj0RZrBm&(rkIwgshNWZueipX#WWz#aj_h$c4!Ng1pbaMA*SOC z$%ew3{vvqosEQ^iTVA3}IRbni4chlWq~bUu^(eZaOIW6RfcohBn61g^5$UJkSih3k zv4U^ZN$ct`kCS|Xi3(qA+iiVvai{bjA}8Fu_@^QXGOblV-5qIvK5zlm+P_>ev;MrK z<|mP)qmA`ZY*X$4_P52FG6)V0e_{=*@hYkXx!x->n%RUYtIbH`7KTJ z3^>IhhXYo&AKML0D`L@Ef@1V5`3PDSRRcv}u4L6)Ii>!e+YqE47D%^XWZ02Yb?um9 z2QQo7@lnsPKzc!be!zD9iSycT$7c#)x^SR!dUBW(L78pZVvcAy`T-{-BD^B!Xy zSj}!`n)dmD?$us712|>LI=X#>WP~~2t?N(&vp13K7qWir3mo;en{YbOW@}7|i}lj5 zju(n4dM$kdY?5PqhZ28ocWW$(CHgP#IC_VR-4D=f_4MmS%lpy0WGFo!8nj^M~F}TQjIa)<5k8b5;y_Lq<=O{Pvfgnsu6d`GW7zGx(l_nEYgpM@GJJ06lU0^RtNk zy=(WfjpOR`zsgxJNS|;ydtoY+q=mqk$Ke4bR-zYwW*W-fP?aT4Nh@fPUhI_?O7Gr4 z^4IA1nF`*M9(+rsO3wOOfC45T9t-c*-xb-gd$y)9`07 z!ms>Ouhth>x0;=99kKSlX&e~Q)p?fu)DOWRf1>+%&U5p)Vedf4?`Wtnw4-%c5oWd? z7qmXf+WpOx^zd{|_{~O%FE8oJ&XoPq^4Q$MUiqV)n&n4?{b@q%VWxS02v>c{Y!sft z5s>N(L5_hCz+e7+S-eA81e-AP1h@%9)2UbS7#Q@^n}M2p|d_iFZ_%1f|HHceusau zozl=ua2)%gaA)rDt?@emGxVMT5B*`eE!xz6*6#b5S;VHj?fhy_mTcVhyAFZ5s?bz< zf*K+%X4<>KT+L7782TqA9BpR;$nCdYH%3xu)5^by-77>q3i!yyfPlfcc|{fNcTws} z;?m-ytaJoR0Xn z_?(Qbhu$g`{P-w!LwZm;@#<+v>;#S9cNMY5bjhJBt1bPRMp{U`(JyM!u&;UH957hx zAC>gkCO>dpeYs_z$3}_PuRn3K=Kme-EOSA1^8w<2HB=MTwZ{tZ#tXYC5tC4_Obv5KkV(Nco= z#FfKu0R#-A1>o{`xFq1oN;XYW2|s>V@ZZH|;KaCn6vzs$DDt|zAR#BG$9)o;Kw|3P zKr91QQJj0fY$N6q~oSXt!a{IeH?`;&zU zXi8%@>(=c^@E~GYYpWHkmlX7`6Img9lzQkd!nj9&d+!J$H>ZDBq&Iz_Ac?79%})x1 z9EoRLl4opwx^J4~8-=f^6vH!?;-Eb~GG7@dO(KT%;mBfw1o{gamv^)UFDLqJ4SPCy zmcp`XG9)MZd9ZwNZmgYa?0EVp`MfOod*0&0TH~2~z4Ik;SiKsIY)YDE=}K7DPME&C zB9OJqPj`vylA=D)@~BC6ac_J)dE?U~!RRR3D00L&v5=bbyXp6tlc&Gu{EL*Vq;cOh z#O}IIWv-DUTaoxz(miXt*ME1nf8&MR=l#qQ}5?^6r1PG0)y6vJ~v^L zK@qr_x1{=O9`qOI=X?Z#$|2ZZ0}NgRuRBX`=a6#)*caqcHz{l6`x8z#-eRiXodyo+ zBUy;NN*SV`tm@n-RdJlHak=MQr&G~z;JZt#x$BL!Enk_EG{<01ot|gC8b}jVGWe#{ z9YRs-A(wv0|KEvyIDrw=|9Z9m422|m zMXL%7>py?kKgs=Tq~|}sp!Xp5e_y`*@879;{37hdonQU;ABShsxc_tX<-&_l+VKDU z6r^P`DjcWx^f2|nO?T5hzQmtCAiZibLjX>Xj$oBfy8ImYJsDXixFZ`8v7JN3p@92v;+Y;oW=SQmr^{8W^*P0_m_p-c%0b{0zy5r=dj#sonh(1UMR%R3 z0{`ce7G?mT^n{i*q{Ud5H3NrTWFSCJ?s=?Bxjr`6i=dva!?bSzQ!5vp6F+38+@>Fw9>fCxUp)tk6Q~r z1`@}&TEr7qwiZT(7Pb}!5eI;GND8)eWc_Cwz<2%M?*xwgzs8yVd$a#9Ou=RK*@Fcb zZ4Yi;!SfzmIMPI$e-`biKY;6eGb&Q8q%K!KFoT5P#NWmK=d z{ZAfT5__hXycdk-SvkGC3S&V){>~n2Hb9JeFwB>p{kA$8WZ|D8-gsOCtv@5SGwoVPTPq~2$O`xh}8ReI1(1&Bk4&+2KfRX`#_-Zw2`H1yCfXvt3+?4Zz zSkXKuiyBH9Wl^G~n_i6JqC02rv@`csTP@O96_N`&hB%7N+oFA?C10`jtlWs$FJ(?8 z&3l^8*~`bF#3apX4W#Ybbo}9qE9j_7eFI961F;z-*}3&uLY1dBwjD_C=x(c@g$?J|{P-+fW#>USg;XAO*+-96v`U!=YFKb3#{Kc12m5t5a? zlD*5yCS(^OWF?!dtU@GvZz3b&SlKHX$38ge5VEq8z4!Ow^?AQPpFiMxyVVcf+&a#6 zUC-M>mhhxLAyFIjEw5wVw#u*=F!G8AuKUd~ z0&LLPe|<#fitzuH^v4x6CVxB>B4rY! zP*7#n9T2LDRZayzKCCHbo2Se2on6M~or&&tdF#d%^gROfY zJSHtJ+9CV96S+98=oEgTjQt9c4dDVx`qZ$?43fX9pAbEM{cWy|mV-ziS8d}Na zzu-pwNOX4etXlfCiP!nB-8BuVa~%IOZ<8E8>0796O3Lu(&QoycY6m4!#H0RC>0mk>ZodVLZL(9{p^p32Zr=bBs=)x-I%i;ox74 zB^CNBz~%I+rCGgh+XZG%d1|uRcprXy0vS9LqPU6?MbSfSFY74r= zc}*ST@1k@~N$gpM{bLK)AAZ<^(bX{dg=3tJM6>SrXGgKGBd&GY_~#6xzG+R`HoniC zylm{^K{jt!YLn@;!xU;?fBqnQJ`L`sqni{)f(eqiQRTMlT6Fd6R?Rzy<6w}Pd4g&l z7&_AF`T*dCgwIsT#f~-Z4%tv>Yr}*24^M2wM&8>us3AD#iTxL^{js!uq+cVeW%2qL zNB^vECH+2{kd!5k0wC0DHB(>l6k-g@U5E;33=ht-{Kz)qhS(p8Zf0qe%l_-A=QyhwleGxs>^sbcxJey|e%oED?!GDF5K5Qm-Ec~mK3Hgjm*5R{l$0m# z`P}*GJvSojWbrQ)NLrPguCH!8PA7j1&Zg6%G__Kdn3kQ+Cq;*0xIq4@cZ&Fz)VJA; zu&cOQ{UC{0vOvDdhZetgz&ANx{jp-W(pt-|k&m$MTHP*A_4<8za0Vn;zVpoN4H!e~ z^LbEfNYy;;dqaBBHfUX(Iu>-(^>o53*_*rSo(e=y~$7>-0qtzMpU+(YSQ}3k~&MF1;rKhbanR}4CZ)!w+>|Ly_iEI$|rB> z#b3Q@mP%3ahh4O~+5e5FgbKsQIWanh881`A>%rNKbGHI_CAz{Dl#^9JS$*g30K3i8 zGrPh!AGq3P>UAjV6=j}@Ag-NWk!vSogY*_a`S}SW^xLyeSvr&WWMeF!{xMpD? zf8gkUc$)U&x=$|JB?rWfm?Ld<%tEGW>XygvwTnH%;1jcVBpHT!swO za#SeX=zC)+LRDV{{rA4QwgkrWY!t1$yzgE_fK8Mk=f+M&Tb&|pO)c(DzhJF_n0+hm zn3LBOx4(aT28sYC>g#6XB9Q=)y^@u=DIxaiA9gG@hzj)+RfR|w_AJB7>{R>y{nu_f z|F>=;SDsVeui?#z;ym`PSg+fC4bbz&u|&c9*>eBwr*<;@=Ivcv2tWK@A;EGIS4L#G zuU6aNvbt^}pRSQOzZ36-3IvuRtHB(P4`bD|~9ar`>Cds#mox9B{JZzaMEk}!Qo>!L_=k3sdWe~Gr z$FDQ}kfE3Kid-8@EL(7Pp7k3~&%)=SSKwc*Z)VOXwxcaWyY=#lee5O2_i4?J;yEF= z!gIc#DBa%f$_d~!bPdF`pYlrLnww>=V=|_Di6^^rdq}y)nJM`o&2KJ?&O26qqP^8} zY}QNS)p|enmHXAn%Pg0aN!!|B+kd>(f$O*%M@#o_!aL}Q%=)kag2d4I@n)%XQGRES zAEnz^O?r>lx~~cC(TOQ~I7*+-M>Rik&ZakvVS$1vpfZCN$tuVU>^utb707g{a7CF>KN1#@NQcOX*ZGeS z4`LzFED%6j0l^$XV#DS6dqqWj=6_kpA!>nEY9P1A=i<%^QRle3T&?EjaVTY>3vc)s zzrl;cB{)*;sf&+0UTyHYP2yL>YtMh1x84T@LS9{5R+_q*%=OrRCJL`Jm3-T%+*hS9 z6#g?#cp6(9M#ST;$^2EREeF4!yjNg;@!@;6IlI@^p{O#8dh=<*G5TuiJBaA>TB`3U zwuy5#Qf7(8Cd}wuaMx8}yek+uQ@eUAGr^6smtd^lxqJo>fN)~ zel_LWVYCeh&{jh5Q*%_7^dafg`LRFyT|q@J8^-y(cTjgDz6e#hZ};9T<@4?&cW83P z!i~x_UG*Nv!@V-$yv@`S-8kp;^^Dy6`p+SZw6YafYEeI1bJhh>pnB1YM#;yX#I04W zJ1maWhzNK*=0+FjGOCbr+Z&(ZM<8nnPCxk$ik#oe<$s6Asv?_+q+r`=kXBwMb5qxW z^R-JOsgy;UH;k%k#G*5YkdSEZHNyX`U4#i6_VnoWdj?c}X?neDSCF;KM_#lN!{7c< z3Ag9m7!sZ*fS!8B^v#>>WA>9z!3j177M6m_c~`0sH)%CK*}^0MgR;rs_o*=<~79sQ~!$yk-N_4Dpq?-d9sc#{?V z94JuDjgiYbUpRPqD8}{huF}%f!iL8l6;vu&n(dikuU5xY!fV4Tsjb=ZNy{%<*C;DhDb+QcFQi;lQ?PyJN^x7H|A zSI_!LOoZH&Xjv^Q;_%E=J)ho4p4*Uc?CX~JMzbRF=_P^x;jzhlwzuOf!qOEsb`{>Z zE>u4gorb9aMQRZcrm02w);IdH1S5bpyQn?ZzmY&gf!sE7R@x<)t>vLA$D7fNu2f(B zTWa$4uW zsrk>BsISO5*Lxp>eyzjRSXWO5v%6DU$(5!o)}EdsY$RG5oIQgb5-IG|ztinWmo7G` zW?+L={<(F!?43>P$r##+HUv~kGjtRbmp>me}NA_oPb|H{2F^eB}PY~(2 z@^_6jMX0;K+rsHZGHf#^k2n+igG;={emdQ6!a4qqyEr4plW%EeKxep5YYpAc=MUj? zo@%8TK{iht_kOaGhGIv~4UbK#4hsQI)}3Gp7r(jFBMM6)Kc|?omt61)f(0=L6dSDG zj-MIF_xvhu=;@95ABc(X(LO&DuA&T9gmLoco9$t=CDIu$9aqi9L?Y(~MWd(lFrwRV z#QCi4u?7WVftpFoZ;2 zR2&}XFR?KiMX!pfeJNxCuSe3<#5X6V(4ss4#D9DnkPI;p^SEEcDQJ7df`b!caJrZH zD&sS(QMKOsX@&f>dNC1oGR(U@gxND6Ur89vxs>{WMaIS%3r1PQPv0N+p3imve=}KUe`@X+E@y#*`82c@pN2qAXi{}LFuz@ z7^SJBCo)qleX_@_t4F^5Ekks3CBb&|=uGC7Ix9JWfbFk8JGyR2=lATfiys1BpXKgd z`~vCoS6BUar~Kv3WOyQ1p`(k;USUxW`+h>(eAG1w6h2L3%Q{{#0*;H8{qYtBH!uDe zr)UH8OZ}?XSBNK?;!Pj0$B^g*l?o-=yB-hQ-b0V}Or7`gLjRs$R}~0*wd?73+i!sj zKixAu_lR67E0ZP71?1ZBGyQk%0Zrf+qP2E%N-mY~xfQn1-@YvY)rl9J=+PFTIRQq{ zgu`0We|;+9Q18G~OE>O*+hWpNysNiYR!0{moh0i%`<_HsPiBx(@rT!Zu+o00vZeFY4nam;S)US7N2Kt#ct zcjz^CGE+m(NK0s%Dzg8(JgBnY{v^uZFMTWaGKf7cVuw_-S^~F*FJF8LGO<+ti5|h0 zD<$2d!QUhO+^Q5#lL0AniFoXB3$+f~7hwNJ8jBZ`?|Eog+Vv}K6k9h1CV!M_FgYKL z;zwrLv4{(H2HZn0!9>?s7AQKMB>lbGmIeE1#eTtMz%tYnEF@Id8xnGxsJ;`|1983h zVxBwLNR3QZ@!ly94b-JrF0H5Wa^6p*Bl_*t3VD!xJN#~1Fy(d3yX-oCvZyy_Faix5 zlAc$&$>?Lui0P;ugrRXQN zHOslB+q`6k%Yq8;4p)~7rWc-UWkiWky2JAqVvjgTOnY)&*q$UoD}`9$r`6EJI0ZxC zumlPk;rF0YIpnS?9e&CI1OaErMzi>LW3oRHK~bn3og`?* zru1!a`QMs3rkNRlRahtkJHK8^VAN4g!)_6PIn#={(Dqgoa@>8cXfGVIaqxXI6E}Z8 zR+$BEP9%V#0H-8Nx)NB!Bt$^b5^g9wwjjlin>>yh{yC=ZrhpGMob%Qz!K+?l@=S~u zN=A#w+tTXBZB!NpIquq56Xq3`7wcm^=_pgxxQd4am)K(w(WM8(c`MX#aR0mKL?{7( zMIzwvvH8+-g;h;)5G@DNA5y|47$aWcy3c5b$*U-SpQ6JKiO%^pGgzrbrUoL%*GJH! z6OR}^y7qtVj!&R?Za|T^>Xcue5Lb{!`GFk|HxN{D(B=eKj?Gz#3#Y%7#|U#i3_}#9 zX!;$$2rXXfxVe1m0=KaSw4hJWwVR zC?DN=5c?|Ip00u`YSQETRLzQ)e&V~LqNVzWOlC(_EQ+_syQHw73@3(AIPDVR)8`(k z`J{t4S*W;r9b4~J_?>6@osdV)Z7jB&C%h`}yc?>Vb0BfDSBxbmr+4Zct$Z|xPfXrH zKb3EDEclTn)b!f}^fx!glvkZBQi?p!g!N<-Pm%hGNj&aLSVdgsl+?^$hV91by$424 zq<{yaWaj527vkf_U1_uwW4@J+C8v;hQkx=Fa;;Ma-^oY}JvwmKwksAXUPM_OQq*N6 z*c1$Vs}Q)WPn=VfpPp3^j6d>V*SVSU;2V8Q{?+_t>CUhJe)yfD-e%jrNIj=jL3aq1 z_EBLyaV5Q~J@qM=zK>Le-M6h(b@Bl~EuP;^IKLEeW`C64^vbCfWuv=$cFrDmHf)62 zcANmb8KF|>zU8;IE^BW4XW^lMjj`T3Ts}}1M)#S37BjL@iN71lq5=wl`wiY;HYQmS z`8Tc6a?EO_p5>$9K7T`ndM1qguosw2jNm|3k7W=NMh4%UK#LNC=YlmC95eoJ2?EgK&M`cxXL^MP)klaqjnm zz@VKN9w|wU@QJ9ufzQnM2_jsRzIUzs4fW*odFb=Q^J1!?kHp0{9gPgJY6bnwj4&!=(tAs5z%HmlHtEHKg?3)17wK@Jo2l5Ac>hj# z79Y3Qt>a#clYtivYd+BZgPPQiW6yxIu@VQFWxw4b6AGOLOfy z7aZAKUG2F4|M0IDq!Qkfd;fn)TKFcYWX-_`n5uIVZmBE5k!DLRb%94j+Y-cjT6pgW zS+rh0`@badK|Bd}q%<=SBHI!o_ESm@?reHDJH#T7%l9hRH=F_NhONk=u1Ekx|i9DHyJ0g zzEYPhtrn&{5qYpa-e3Eea^^3ZHmg&V_5M+eZN# zOwbg0jQnAEv?czyJHUUU;N8H{VN05;UrTJB|LZ7%n#i~MD#8e3&#s%of`WK;+9HmX9u@IZ1l|(`-bb~P~-x`*_SF33P{>peHIC}ZblWqf0JK* z>C>v$=WU}V1gx3=foXvo?1ikKyRdPE*Q8Q+exsy*mtNkzKe9~}?tLhTT98YPvv zU4#4TT%MDh(CCK?ok1dAB&~lt10`QH>R3`;4}BaJL)sjewy_?tCT)Z|KdCV>yC)(##h2CEDt5jymG$Sx z7zLr6Tr6v*x7Te{;|>Md_DdlY_#bXf%|^JT#h|>iuGIT$ZTu^$5!3a!jM@fz0-og= zCMxS=VO}7V*{Ds12J81-*ndRyKnRr)o}FnS}pHx zL!8;d`uX9eZotzCUeGm=_*J%x_F9Lh*Q2)w@_ivc5mzCmZe^jPFZuo*UnO<`aT?9( zA+yB%g;?v4?wc2w71PXMtpR%l7rz*#^=ZB_WE*P?e@&MB6l|Ep1*;3#>v0-)u;IvS ztY2Dp`2Eh(V8V0K2)JD`%x)a;??XR+wWjWlgZB2JyH&WMqmlCJ9|B#4Y#5XPne+Kg zl_7<~2@_uMi?T@)?P249*$KtZYM@P|gGi_~_NP3v7DkDz7Y${lIgQd^4d8EGtw$<$ zf)Al@UO5Vls#Ldc++7n%eR{vE`-AiNumZ453VP%N;lC3zS~GePpP)Lje)d#J&x_yH zO1;&YR!IG#*n|Go8QG7)Dub6%H=Z2ycyL#{{uF7iHEgqS^;(S|H;nmCb3k*<1|rBs zZp;m$5D)_xV_w*<&+URw^Q$GuQxV#?XGq-yeed>{IDPxKdI;zG#O%&s3 z{#yN}|89thLhLlckYanzL;|(4BC@SCb#}SGpfBzuiM|Fak}llki^tWE9D-0@s4bquE%8DlubAd`vD?@v=Au| zL7>X{$xi>m#z|V{JWls~h!3$+?uR}G1RqF!l-st|b8$aXr{gs_09nCU`M9|{(~097 z^Zw*R4)SEDZrC6}dR*p(l=@5kXs(_Pg!9v#w$^}=`<@0$G`!>%HS#8!&r_&Hgt4d; zdpn93<&?oXr^P6sb*UeTRKU%LGFCG=tN%7UDXyDj@9u^b6@i<(!e;!pYq>^1kGAw) ze~O-}fwR=(m!T0kUEs6ZUO3`D0djO>aM7XN*|fU~v!M|s*#QmU!NjVn6D=ep@^PnG z1B(pg1Nr>obS+OTwq%pE~XYssNOALCiTANrVJU z*jZ2|PV!~793qimy<>>`(#x}bm;Is`vuQ6GKt;ziJSZ(0>)YEuB?AZ6;gs~DF!a01 zsP`{kE}NqFeC3%L*#Ld)tncSC*`!9SL^P}*I0@JXgv#wPSm5CYB!6RFpsA5UAtuH$ zv}B!rx*Ta@I`?yu{MG_Q2uYuHxB}ZCTEB+UER-JWl0NC>1qa#(5F`I?mchXZ=6e-! z6lZH(lGh!K%z87TC zCO~g`uscKh1<5=&S-MTAx4MbS??&cyT>vvPy!^ioSQ>cBU$ zy&p^(qps7Gc?wtmSXgd^6+E-r6*t7AoCnIGtdo`SlPD! ze*4GMpNy9R!NWp91StimX-x^^8rj;4&lP>4=za?;#T1YqXih}=qVsjLZ3u`8sF4#V z(X1(NTg`BA=X4Wp#R*9U&#~Pb<6r16vV`89Yg|$5CLJ~J}Nbrw!q6fX$Ll)AU;#`tmcMi@jMsYz!i5M0-QQ&RU|Aj~Ci9fn1OQph- zL$|2R4MgDM{nlxSZ-nB+yvdTRgLBIh!~6XuC0Gd8F4&rM@=nLRGXH5921Vt&c0xZcCCsdJ{_%N|_Dz;;gqaecq5 zsm25eSUo8r<;i}_8Ba<%!)8!Fv44GlZ^&OH_c2xfwgl|@d*OG$Dx9II*`dim5m9Eg zLI=lzqL9K&;o_9(LpLh_tp*cWJquc7N1M4R!;E8^u9QQX%~Md5Zzpaas7lJVUYefj zccTq4C$c_hojSqNvF+jKrs=KV;OU!hIUB;@zk79=6JFZw(K!_QH{1jpth>*i$~}6F zGj%@aNP8VQ^`uw<31r&nkZ;@vr3f=-fAx4o}xJ=5;$D~xN$pHa%~5&*68=TuoC z>hEqw5-1G>P&PIz|60MtHeab(y{7*bSBbqbfQ5Sl4&XftMjX4n zyTtr4F6Bn{r!Tiuw&EOM8NAQonD8Edo@u!IsGhIHehd)a*)POX{U2^&Hr5s<^%E6j z{6tK=mUze&Qpz5OIl0AH;G@4PpZWir^hh@z@me~a`n4LrY%G{c)vx^NcLR3pgEuT6 z9=uVn#2T+{#|)%R{1Eku+wXMr**-e@%@XNKR@07S$JgY+_(1t%Fw2hyA?AquefJ)R zm9ugbZNKtm?9PuB%~?@g#g(W`$;INzfoG_vD_*f8CUx65J-q~2o(F{^jXOu;T*;E} zdbXG@x&M=FH#r}AQa8JmQX3hynl9<=GU#}}FH7=W$2Dux2+HKAWj&^I-VFwIcKjd< zOu2Dy#XU3HGG`@VEz{3$yS52_Yd`}@x zjMMvxbh}>=!CIfC#1zO~TK~w^5Ld7uLWYcDv$ies3KAmcklQ{vLnL5$v_$`$^jU1? z#rdLbhkFUNA1W_9v7eWA&{3K-Q`&sq(%nD6WFzjgIzUs1;9y=BYeNW=SBSYczC8+l zoM_BXUr36+`yq!TOW>w_-5cdQH)Mf#^%M|bYPAcq1dv$%r#(b68?u`#CYV2E3zd&$ zu8I(gR8{ie4Mr5ya1pX%1Aa-^K1=)3uES082={rRJ&Q;)J*!0utnY-A6FZ#eBH7Uj zUIzGXyXv(FB@=(JDL>lUm*?34B>U> z_7Bywk#@7(&M>CTe>+zXB0blN?03AyjUSX*Ue2tAKiL?Y9HT#4P(Tgb?&od zKq_5cNChcv*2GYcwN?-Yk-*Kfo~XTsjaa#Qx0p-6_mW1ZjR=xjj9?fKu=uMH50@TZlr#6WVjG&@RoQbMXaxOCP`^O1T%M0PW;(hF<9iq zeacQ`EUd%CvCcT5Hqr;dM(<69yMB4pRQk;wiy^{zS&1S_k`o~EF-1epd8%uy9cY1pz0{V-q$K=YPi`vdnqbLJ*v`eJN7>RSy*p#R7aJDPSf=;tN4f z*0$_HDj7lKZnCtk0M!s*X;WROy*Nl42Xq17*FPQ*;c8=`ttcZj*Vl=`&MJH%)YqNw z03rIfMG^Yn&8;hAo>ub$eud*T3N&B?mZw8NhVBRlvIr^VjJwNDsh0xuhW@Swe9h%Pw z2)0~C%Pep8m#lIb3*j=t^!g@c7F6?z2(xNf?R+q6GIh}R*6LB9e_4tl6R11te2%{} zqHy|)$M5%S*u2HhP%Wo_@tco#$CD-PFITUcQr=fV&M&t3;f%Z2?ngo$=KScbjDi-q z!l9Th$^2zzOTIZ#&vOAWG+h{bs3LRvXUBPKVyTW31D#sGF(zO*?rD1mWJw+DP+bw| z{V`g;$Z@_oSZU-jBAdvQs;Z*JWB7XtWsYi;vRmoGon#>xj{Qp2C(g zgg14t#R>Ui^3VC+7LWwVQf$g!?iDDv7u^*P-B~}>5}i-9sc>7wI@`{+u3OEwt@Sy3 z_2HU}=Ss$^#8%%+9~07QE|Tf`HLAcR&6lPw3+4p~|0QYSf%h4HdS}sj--ELOd>?2z zo8^bFlCCBXBMmJX9$->8P}07XnBDF^yli};MJ{QKvvIyUbz9gM45S3yMn;Ni8b}3H z+)!wHD8sqfx$nER4IpUL=!47I_#5B0S+88-SB%FN%x+#JBLL4s+;27!H(8>}f(SW0 zJ~v3Bmr@m?W)o!(3^*|&RiQz;3@)6_p)X>yN zu8J+^wqv+bdaIuF%b^)kcD%g$8(?acy0tZLX;ak=v{0es(ED|-9VF?G%oo$R(tdBm z9~-N4(B^;<+7Qult8H*o@**59Hp82^(yaHft?W z?F$kU-IHU9p&!iez7-kS77r6(vVRxcDh!4F&8lv?Sivo^P& z;*UmKrc`sVTlXlESL~Z|d)1kJxK??Gvn&5IDB%UV-zx&wWwzdGeo3B*BJnCL2SDTZ zvv0l@QlC?{mmEu>DmL=F$E@_nbg9gBYG&u-r(BM#7c6~eZB;?C0ZvOls&3wzCyNLk z^Z%S!=JuB#%?DIpuh5J2e{2?^ua;*|L;fnWtqMNmARczhh*Rf&wZG?#u2Q8m)_S0* zyZ9~Ue(F>4OB`J&HeS)NCfrCf%2vOv7c3kF|LW-uz3!=H2_(AFOj%FC;R0aZJcKw01UKtg796NeTlL(=zy`I~b<-m>@g zOpER6NjTT8v<*_~Ndz+Z6r;5;E;y)vF)z`MAl@c$Z%f>ZrW@UoAj0ue4Bhh08LD?6emh?sd$K zu#WEcPvx1Zaii$i=`^&p9@An=NOc}!m+cSoZ@E_1nH^qMjJIHfpu$K#l54TwQ}eHr zLI}uvMIoqZJej&%ncWVwXAd={awyf&Vy||vhu%LDv$zov#78JB>RP_#ll51N8SL@4{1e{ll2?SXpkBrg4UfZ-xpyJHl2N&<(_T^rby|p~my9hw2lsqX=HEv-sZ*a80^zpS*Iit{ zMsT*86g4My-PKAhx5n`egc~4g?I_HZl3Z7Z-<@ou{CZJzKB-qL3p5R<+Jm_p0;mdz zRqz&%V!2RVRsG5$HuJ_RAlhw2{f8FaPm47bi=u9nTG=@#@&NU zNH!(2hG%8J&yWyH?{fAcl9g6N*&dfp2AN@pzW8(_ZY9ZhKx5sXAiMQPs4%1(@`FaY zPLPc;$n@-A;mIVi|07^rbo6A$H2SuE1Oz`#l=<8smfR#rC5eyXnmK%exq%;&ENIRo z`wcL-i(-G_*#FcXu1OWf$+_)D;4yyw;`j&ZjbtG|LWpH#pz|oCHTXVzRq$ZG4K*|} z8A1Y6l5LZP?Iq?dS(j3klSard%Tk;y%3aRBJ^OpSR0(6+3g2X$mwpir#fy@6d3kxU zFzI*hXTGHJk$L(QV&%F66)1O@Ah*NyoSC=6bU+tU$h>xzN4N~c;(E5Ujc(Cm?iFxf z3si|lMk1#Bch@(^*)e<$YOLcPx2I1faSOTbwz?T_xl|&%>UQ8!45ak%()&eb zW=fH4ED4qhdLLmI-R-^9daV>OH!mu>)pov5Or@vwpRKIl{>?=$U1O88_!mUe#gdRf zS&z6q`Iz_EE0}B4zxFK|ds>~_JmBd1Dyp`;H<`l@hhRx@V@y=KD)d{HeIZ`4Zsq6A zT0}3(|5WJ9)UUqD8e`R zx-iA?xv{6hEBP(CC}!D+qr^T#th%kQaBk?Usa5mW+GzE0_e$q+ho|HBQ-mCZ@>t)2 z=|!-*J^)~V&4Gms0CWQ&ts!5XPF0LN=au}8o0hD0o{qPGJYuE2?mRh?WR}8auJk1O z1`+doVbe*Vzt5dJ+&mD(5?HlvXAXg`pa^t29Z4dq;9`p?Q51bubXQ4RHyYWw?_Pd* z+5~ADkc#+1k^Gjnv6kXYH1gMYLrU!H;-U(2Mr_Ao|0v1hC`d_+w@vJmL%Xp>mdHW? z@6U`}_~x7DN;Ah&nd@A#)kq|&B2{w8>5|fn_xGtykMAZKFBp?C_z}?rsKJuJB6uzJa>Kl#?%3opC zl-5(Dg}_djjn5YGg(=4AqB7p2mm0`9MAw;*2yp2jcYVO>>n16ILhfH>PkXv4kwq1U zoIMuMv+}|occ(Kw?Y#X@S{wNz)coM@?Ym$K$hUIl^{Z#YGo){vwd25N`KLPPhX3%_ zwd%D|rTMNKx={o@Bapovloz(>w8-6yW<}AYJ%uFZ!nl{g(&t?Mx$*Hy2_)AIiw$bt zK{yOw#nu|=12sD7RFK;I{#}*<2KULZ_KlGoHgW5*2E?G{|LlrCl?zl69C#?}nz(R_rrkY z&R$t|CA2>WCgtgC@6JKnEuEXMgYb$J4~JVU9%n1#CuYaQ*<_+Oo8w>Yj%7W4u<0W* zs&V$`iNy6#zhkn>}^s$t6bqsfGhVhk|gx)Vsi zvFw^(YIY!On;Oi^8YS6~%00eM^aU?k`Ij24VFzZdJ`|7XX84fy;%&dvX77hfJki+(dl zm9z?|=c^T~Bsrhx{?g#|4~UmZYm{F*45`}w82%-#xiDnfmt5}mF#~VUv~?eQ%uYy^ zzp4K58?;o2bwiLY4dq@6)$kglGWDt1V(n;d{l}=obkmz79gkFZ6UyaDk#6O;vsxLt zmhJ6dj8m&UJ>7^at+1V%d9`tcA?0fdw9y{F>n}6tN4P(oN?a2)zV!r8z9^~8UeveG zltyZo3Xg6h*e96BU2c3W?`M{u?i9N*ud(}qu0QooQ{>8w^19sk`)Gzd(PHkg$h4ki zvUJ;x2EUCHnT>V3^*4>}zy9P66WmnLk}~0ZzeU9-ETcH8JQdElXjP^=tC!So@$(OV z+e62rW(_OF_~OqgPl;U2rWo+Cn#tRbj>WX5!t+`&>-CvACm^&W>RI-CNT^OyEyPtA zo5YzVZ7ja;r*$bN+BvjX9^dMOH%;;eU>H=F<=#ipvfwk~r3Bo3(q}dE58rwx?Vdr3 zg<|;52gUg~!JX+QJVWZl>?57|?S1}wo&Ofo$Lj5i=Iwv~q+h8bofnKQlRTPRD~JUe z(C?PEtd%^wgE!$CpLRSdEZ&ql;9s~aDs*^qJ>6T~MBz{}hLlSu`lj$QUD@V@Dsy?U z%Nc=7+XILEo>2JQt>gRvjw~#E&n@lIm@nz;!3*-6JlT>bJ%=g}`J@);{7iaOpNmJi z_|c^L%kCER96oqBsQZW<#)qJS2y%QBv0wf)x!3Ypq|oTSZkpbJQjs*c_qF0xLwbT> zV#oje;x5;9!E6gZ`JX@Yw4WLN-%nw?yr(Ji|9%P|;QBFuqi05Axf_B9$eW4X_fdjEaUd}DUeHb)DYG3Lg%2NGCsEUA}i{CWj$$VRLE%9^{$`4F~6 zF0?$JlMyk}S$fA)olHMJ6miXm9@vfDMq;tY%oZu5kzt~LDA7W&1u}kfWv!lLkp3uD zn!S>oFEd=d>8sba|9sZ#jGZ7z`A%pDX>$JC{K9+0^Cu7(n^<_oRGbIlz1QpD9@=F@T#DnC)9j5)gfJXG9Lgh_Yj~o+8`P^>fgN8xL)|=fRg(|!R!N5%2DaCyNfwzbi zm)z>i?pN2*dC3o91P=7t=FsDer@{9fZHWZ+Iu`0~EHcqcyQ?<|RlfxBz*% z=d*(?i>5TuQF&~IQ|-G~ZBKc>d9f0b5aGZFOk2jwfFH2}wUpA!6&u@iY6=c=S(57p z(9|%BvR_kwk^bUEes%5V*G@Jx6OmrN!B!if54cR|nqX zc#Q}Gpc1;K`%r?8j%JI$Kmf-y{{ihT6w>~x@Ed`HY6-KU_RKtwSsW1} zy4cdc?Xw~liD;bu*2AI1fZe=4SO4s&Q&~gu79-eJM*EUUE*oPuB&cF)d(ogZGWBv5h~ z;a9$%()%(vs1R(_{w7>_6;*v?zAZzblvf$=t;>Xy@HU;G5my7wr~~#KQ*o4sSD)hD zI5ARh6EER?GGGEelXK16(&xKqSUxXO!FD7vb=Ff7&PngA7;S(N#=)7LIA6MU0n`2K zBaE%S(7^Y9_(Bn_Jla^kCJFO^6P&s(KX^f1uAd$`;BdBieryiraj%WdC!-!4l=(Ig z5SF>PnIQhyrNdHid3}AM@Ya;+`rD`98Lz20NdwiQAZD@2d%j@}y~G!(i!I{t$A9lt z)mOK20KGUB6TxWCD$SnO*T)ehu}ux-pv7!$QB+j|Qi#w9H8;A61OD1E1FDPR7Su9= zRa|iv!wa6if{`n+aS1Aq9AcOtmZwSwG&kKA(4h zQ7`+xvWXqdfmOv*je((aUtl2Z9aim!;B2U!Td-8i5DEsX08kWLy&=y&x>(?Yg-X?5 zL^iQI)y+^$+Yoh-s@1BUEcg@2ajS@7+U~~ncQ01{&0Cn?1@kZ5!Mw{9XJu!F{tS;G z_XG?h5GZO;VTu!+T~HJIPL={Ps9@H}jnE(vj&}|QB5xz}3Tme9)SYh4ZCbUH6R)Rx@#38goJY7E|ymvN>+`(R(r(W zh|qlIUbIer`StPhrFunotN5e1e$Qsq``OEC=m!|L)YNehwC8R#8??%m(2Gy~|lIeV3+U&qGeDFC(*IP^&|APAXh z*mfG#sH|ssC$Hn3&wlf`&iFz=mMt|KvD6u9)9DpxQD%$QVMrDEyiP70WXSv#>d>J6 zqlop&^=W=u%qK7#uawrOf1yB`?R<{mYVr{QLm+7Q3c7ke zk3!ldtH#9-?G_O^@XUQxygj3)_+x&3eD0hpV5t{b-9SF{e*Q2#bEw6#v)jROr^kAB zREzR{coE0PoZ_I&=Cd6Jln^2K*F2B%L~HHVbV2m@aM*prH`I)htHnjC9x+o-7o6?d zVOi;QlvhPtSYkahVS~q5rWVLt#qPD8Q8H0xcf)pSGC#oM78N75_QRje4H3;}lwjW2 z+1al=>A4EyTJ(bCD3ns4dhO*^^`+bkt@+u4ocR?8K^rv!Ha^1V8@$9$$RgWhX>S7U zhrg%Xq5&Cv_g0@4wV%T8MZ5poS#r!k>pGpyY$)g+x&u-g_ZHaxJ`&knEuH9@-!35T zmErd^hG}QcD|8pZEu@iwi-#79%s$(hdf_z2p^K`|o^A7>nzuwwuke$Uz3d=$Fmxlj z#9KP{?b;X2oNDNzml~CHDjWoFK~#1L@HcrA|L~ju+Du=|+w*xHCx;$uY~&T5NAoqF zrzQO|544Yp>)rA1B8=Ye{P+;RoshjkTPUd_kun{r*9&S#oat&k%*Out0X?n6>vV8{ zOpnQsD3HO~!Vk}=j|gKl@U?q{C06QgB9H0u+Lhv|9jUlZJpd{0C11WOhXGTWF+{UE zt?3e6+X8=}p^gj%W*0An=rNb^H`pYGehfc?b{-s@+4ygIhT%kn|A|h*(b2K-UK*P zr6^G_slKL%N`$u55t90a)IY&4ktMZ3KBWA<1+>i{m#KmEJZZE8RQj;{R0HID^DU-$d0!2YWX^?J^kZzC?X{1E~Y3Y=d2Bih*l5o?YB1nmVgwi1(AxI+# zTSB_?uI=&n-9PWRV>r$c*&FuzzR&ZlwdR~_t`->oqZqiAY17ryW46*Z2x6uLi@hvI z+n?c!(TB&=CG1_jg>@gIvu7@ZzNZwPE_!Vg%8(&v&v#tu0=MrsxzCahp))MD6gW`* zd1ZV^tQgDAgxDRDjoBW0q#+~(<-f0AOtLJsNxdyuL@e!Jtg(`FsbWKm`;YPTl;@6{ zhx(i^F(U?mt*n%T>?j`nqi93iMz$&g7!IcLJrDI1q6KtCg$q$o*&tLaV$6(C-tH27 z&u_6U26$*M$-sLR{_F))w)5bw~A_w)TJKlw|xu*|LK| z9#1u1?G*r5a|E;@mNl*jbi|f1h)V3dK)Z_Z=l!QoX~iJS^{Ha5ayw%3J;oFp|E6l< zERs=F;XM3=&d*u+<8<|lViU1UN{^4+an>M%_A!=3e4RV+QNpg&p)yUIj)GlxSR9{B@T({>VLQK^ z@wMR%I6FHX|G4qU(txpy^Jts={i5x(%Ba(i{*mYTgZF%R%1i{(QhLeEBy#LFSExVn z;l{|E9{>4e`TI7$SAhAIi__rF?e7)+`KvoDyVVPk3%P3W=^r2y_Q47!`Y@|X*u zH3}$?OVG$gqUjC6=++57oyAT~BUkgIOVAi6Lx? zdEgE{c>W%Synok*rbuS9)lQwZ-Qutc#w>DULXMq3D}9Cy>infus2wMdKGSFlcm{wj zDUGC%K}L14iz%^26Qp^2A4LUijxC$Y-S}hCiE(s5`EO9=d~L@@^JmfZYbq1cH^L15 z%8EL(CEEt;lVD^nRi`UTYXm#AM`_7oGSR!m`p>7yTJ!NmE>lUor@ST~;{islv|FXK z*35hzJchjSjQ0j8Nox`0zrLyPd*BW8!B7MG{U*DNocBRb^|_vzQ?=4v3*&-xgCz-{ zGQs8e&~nK7Pq-5b3yi9Klvop@ym))^aK;%3#NX@di@=68`65*zp~N+8wE2At?3%yW zI4oZV3|#k)_1~~x3}K&b$;ZTg?|GZ&z&kOwGD~}o!>Gb*Vh{ZiWzI8$9-U`#7=7|! z{GP&0LW|^Q9y$8Dk;Y4U7&*?m=wKm&5!y` zx%tf_Myrd7hWJO#ZERV&d(@}_MWrQJ&pHk(q+?eTuGe@69mqn2@A=q#eC4Wpi^l;5 z`jWC(sFnTe?!)MijT4{~w2fYB3Q&G+WAl8aeZ6o^O7|`o;`2@bC=Sxa%BUuv$um*1 zeA9qR%r&Q?0^FBkw;M0^ZpVi{7!!A`d@kS8;R+f+HW}Us9N~Or*2M^XIw|;4G!r)1 zR*4eAX1GSm=z}*tuuUwSf~q!SXpN2NfRbMq^;Az}z;S}eyFL@RG?4LP0Uy&I7nCYn z0V)>m5`x8;vdIgKVCQ1~4gsCG?c{zRt!@I`3k- zPbQ19DZ=w)HKM)6e?aay(D&ynyA0GMFA_Gx!}%D!h2rhIcuN_#AiV~L4@Ro8v2nWV zCoag=OV?g~Q0dZ7no_QhDoh#y?^tXA%cLtl;-~HOGp*3(4hjH?)4iYzul2e!U*{%g z?YAqfQL0Cb4|neL zMwtFuh8~Qbwn54Lsa3E;0_(uXP7_K@2?a2S?kvKdQtIss2%BhRyjk5TX#*Xu#<8N+ zn;XskG_yOk5Rwk}NOXlu6$F5*xBe8MNhkAU=0)3}5R&FFWv?$iC` zFVf0I5qZT2n#D=Pi8bol=5!>T4+>8jw=8Y~hQTJtjPgmTCqz~!$`#%GW8^x{W#6F- zQgd#}ia^ew<3GGaSJSPxbL~Tq^bKcbGN)1I;KA%jQH`7silPW+vJ%u1GOWp}bo>0;i+|q7Kgx*}HmPyrAOHFT(Hg_-@qV zcIW@J0Lij`fL)yq2zt>jGm*!n5Fn969EalZvN}m2kR8*43wsqS0H5+s!UvDg2 zT|GE8Br9OI^Xh#-!rB@iVikJ3UBHQ=J0CdQ%SsNKL(o!bl>wc+FU}%X(Vi`cff#PH zOR%JZHcjHO0Vch`>jylz(CP#8m*8TGI9#OgIU@v-Aa5r69l>6=xmXfO?v+*qnHIfh;SIIy0jX5&gpIb>^g zw$2taYtIh@Hv^^sZ?HPTzQah;xmC`U6rvPYb>YH2+jQ{2L#|UD(@Az%2v<(?gC01- zm@O|>dGE#G(TMp6w_md^)GI2RJ(3PM<0tFO&LwU|sbHH$CzR*`!Mbz_GJ3E@Q=a%z zxw{54ua-5kmysi2g!eK6c~3vSw^~IQm0~}fs3*Ep z{-jj|q?IqlJulZ|V#U!Q*$!k>pzenn2|x)bf*|twVH>bYHM)*AG+r?tgKdp;@S5q0 zYr0@N9cVsjJ}ln2z>zte+z`mMCPh(ZvyB_kKVo5A#s{eW8LY~~EIOb0ia3rdEJxmn zirzlj*_i5+xi|}23_6>p-^zz~2c31Ag7SkSXlvT9b}zheS-!6)OdUH$UZ9I{=*QGE zI|@)bB!YX8%}N`;rF>tUf40@iR_~HJ(mQ}zQ}TjUDnMl(CzAy4kC4zuyz}ZfPbb92 z@XWaS#ckZltqR;Eu&e@-oY|hwZ$f@%ruLQbiG703&=`Gweih1F1@h~0&}4i%7&E81 zC3VJ+2v~FiG(j7x>~S|AaB_lfC{T86LW(nfcuqvDlGfBjp|qN@ytaJbkbS@+c9s8$ z+KmLQNb<3UyG%dh%biU08xdb$urGAzG7&mX*ZtMuLS5X|+iltL%eA5DiJ&LjL(qu! zO&(Mt&A8od)b2!%SgUdvR6V%{-A-z+bd&I(0+i;bL>>|MeR!50odvyuLaxpr1~Z>r)mWSVG1N>yu>*03Woa(w+&(4Hw$DtTnYt!Th!nf!%1-0Dw3u z6`1iTQ+L53IZ(WA$vn&&YqeOZ;63x^yjz0%B~u{_LK$=N2F**MvMAo5ty>81K)lCI zRWUAI1yIUf2i;CI=leUvG(kLHM2*LuwAk67=kt682Yj&aX|3cWFE`sKH5zN@^8m5F z9H^EK0**R%_l;0!!BGIAPC)PJOuJKD)60-234P@_jIX5zpRx+Qz1bT+UF(pc2v*CG zmaEa|rA$chMuu{S|GJCYk1oc8nsqYQI65k-p(cWU$!=r9}PZUOv832AA#g^$_?sz&q{<)-%2AOH6#`9Xvr2qZ>;j`{aS*@xv>!DNmsh z_Q|@G+U)HYd8afTF_a3<8lwtcB&;_q6=HHm-t+RNKjZ_NLx#`>rl{`j?+Kba3NI+? z0mX9%8`z9Dk8RD>?u!p9Qw)Dwj=S;W!vP<+6D@fA3j}QILlx9dL3$PFf@~IgY&h$TebOAqMmp3$|e62kwlL<4z z34~dnc09yn4bcqK)O(%P!n?DNV*<6h-Vax1DNlzeJ8{Z(+E(CHd8Q%l?Zp{c{>T% zAa#uCY8x9w{i$8f;_zgn0>?p{m4b}Bl`TohX1{|Q-o=^HYNM8`Hz>0OT`DlOSqN*m zSQ0IVD4(En6t-1*}32Z|@v!e;qUKVTdQjFj8R%nvO=eKsjE?q4(v{Sl^{3`L29H7>xB_Hz~HiTETRaTFnkwCe->ihf6RqbwF zYOshYS`q<>k+}NP$W9?#|V%s#(-I~!Hq8td@tq>R9G542(?IpwYpk_ zf&&Hlck6VBufqI~RFnJhfyS8G4(TtgUDWCKkHqMWdt^z)_Kb1ks~bIt^*L^&+C9p+ zwH5lxr2EaP>_y3{T+^p}8=l`}Rzu|!kKOrqKak!rGhi)Z)ZtY7{N&W^hGSH+nE_@I z(Yx|nQr}MtZ(sR~?MT>5#BD#vQO3Hd(djhcIgbV($|k|JNPuXm0+yP zB{*-?CAWV1FoYv^Mh32)KQT@_uflZ;`5dYCnETdb%sQ5oUY!_jzcqea{}dCmj*}qS z!BFQN7k{q6bwm64tuOn+V(gMtr7h!+*RawMo%8fliYeFP2xaGN%Cps2oWeUuFlUip zoFu+97rxE(|J;oJBi3CJXYEUA#1^BI@|ZA0Gl0?O%I$#;1)ckdZps4L5|L)sXfghg z-*4fp^V;MuA_Z;Z2+p>0+4bdtG#$j2FK$4STj0s(b9HQ*F?Fm7%*@h_?D1@bJ?9t8 zp4*Pz^peUw48LEU#;@x~{v0cqNchX`7d*)G$Fw{SN+zJDK^PS29|cfkb>B;yDb)_|lQ!f5O&ZG); z<*%1z{{0>Goc~G#-~;~e5Awg~|3CRa|1p-6~wXN0~qmf^|BD- z2mErqgAJ|iMQ@@sQJp~l{mG^i?$PDJ4$rL$7`p_(w1H62t@<+NLdgX&brKe05r>(X zme+8czn~3U_04X*&WR*p!~k)XgY1;P>hpzqZ$!}k!lhxMZyr)-7Xg4#;seimR6TMe zzmiq6Fn{tz98V6oX$l?H30Enju`9QSh1BGfaK$4wPJYDtjn#O?HCc-h&nGH^2YB!&sXbz$DQJ@jP!!v;2W&00Z4AuS_l zZ#jUZxm08~e?o@`&I6x(U_jd#(Os6;pyKTtGgg6)I>f2~VKfYIWCVdDh!P2)aS)Q6 zMZo*E0!**y{JYtUk_ABw{4Rrxm8Av`#^n|fr=j|4A*1&^TA^IrTj7n`4+N-$Y&|HJ~~OLA^5^? zT(e=6C%ny%7oz-wg+`!U4V_U4CWZ;&l^F=cLCr4q=29hLunW5w9G~BWn1!|Q9uU3^ ze|EhREqI{?6J%q(W>;F;SuE{q5p8KMuGL)xHU_M#qJMs&`fz@2<);f&gzsg}AiFAj zm(;SoJKnPP3PEcb_Qm#&5{1FTuh*~HFbTyJoBBuF{&=)fV82g)s~^?O^wl;L;P!-c zqQ&;_8$+Um7E8&l5Y3tcj)h}sA6t%AZ@r*3?gsUsezP5xV9|?02Hs3Bk&RzrW24&Q zZWvX?nr%;jBl6*fU=6Q)&O6Ygy7VaDA-KFSXeKT9-@-u3m&$ARrxSw3hxgW=*XuH_ ze2A1@AJ^Kxd7=oN5f$M>lXBXhi^5Qj6-7Z0f{Bki`Y>DE!bAxf*eydbv9pp%y}Yt+ zHBmrSR`-YwCKGn<0Racibih@$J%e_RR>oAWmtTURC;|+eyY!V&ovny@@2|sdYZJpy z>8Ydml>+%+5z+}qRjdm>((jw<5(e{oUP=byHsJ=}SQYs*_o`1~Q!1`bkPVnV!9h=S zbrPBqha70#1MRTECvypu$*=&y5&t zv!xN&(~Ao?naOhkzXRGE-#u>}U-&t{ecPX);W7M8p0N@wfr$NCXk`{luZkN*-0Y#x zl8=w%&JuEwa#Cipmu|AMQ?}-v*& z+qRv*Yk#Qqab@(4VX^+|+NXh;OfNpCZ3-O@a^(TnLekZl2}L^<#@XYE;vqvnE?bAy zIT*7zzkRoeueL_!;<%I-<`9Nl&eK*fu;V|Fu8icg)+}mx7dk2JdL0_aX*xSt zL7IBKSe@g_)dywMUGLX@LqAa0@L6i%af~e}H8(^EuZog9|A7XsBIzsLdVmZ%*bcn^G!ZlvXi-Q4I6Xy$&K;%@^1;7MG*2vb~?l z$n0{#e7W8CTnpU_y+?nfH0MvGi8>436vkj7{NdXT@nBU{{srCJeFy)1=YRm_WrW%F zXf7H-b0S-Yp`EjxP0P!lwTL3lb)A{_FDF*6)~vt7>au)pS2}3BVqfz6_u8YKQD3fW z`?StKZRMCPltVEQHoyqcLV&MozLXd@m5V^pMr#KGp4M-w~>@AaSL+^Qylg zN`W>{JHoQ3eNXbK*HyM`0**U>@9Leb5Ec>zfA(;l9C-WU#^VbNA94Q6cwXl}iRk>E zP?9JTbXIUDa-@-{bDwUSp2uD~>)kw!@9!7WNvsv-U};fFTnd9*~EoyRc7icllp(^dWH zLuXLIUgKnLSZ=;R_n_&V>|!-mQ^0P`MTpP6M=Wr+#Lu8AP*BfQ1gBTPPHd(PZ^y>H zFGW!6sGKt;9Lc#*+^|QRKJ437 zvG}d06G@MezC)=xIDQ?uj5L8;Wwm{n5NfWxS>~Q|-9dECthI>N=$3=PU}OkVWk2b^ zB^wZfq1_fi98LvNZsEMxtat2N-ciaU<|_q*4SV|<&=O^B=6OSw5H8XiTs)LnjMat< ze#!%5EG*#q^-9BsJv79|LY*|nn8oZDW)C(V%ijG)H44G3ycQ$k?wOqSZef*bd`b~- zw4B5C4f^?dpQ_i?Ke8h&77*2&x)fKRtj%bG+N%|7j99baQ_08!Jpm6b;m3`QNj~mu zMD~48S5!NU#7M`kVYkLNWYMTbUHiQf8|1h$p7l6chb0lP0HtOJIu6o6!lCg&b&Bxx zGASu6oM2d5%-C}E3$FY0l8VMo*Ac5EF$(2sU|Gns9^}CfHB3$kXMfjE̓{Derk zn~R`UzN-gtZ?7pz^zqI%c_7I8QV6DQqH_I@n)YWQowWxE?KF0_ED5Uoek&L}*;15e z{3Wf-f46>HXBg@>79}&0#S~m?xhzYVn3kl@Ma7t){7m&DRsTRQ<8KbClH|M+i7$iU ztO(=dn{_2KzsE<>0Jy`{)%!*Zg*q)8C#NEz{kP+QPb=PmFq87e?BP(K+ZenyGkd+9&O9-D2u6a(!;3+Mxzi-zyn*w~^OuxI#ZATw%y&|aiRruXVEDyg`%hIN^*5!~vt(Af7J}$lFQ;Ca1b^x-h zm5tSl=1TwDl6jBg4cF%7v{iqeTr%_;AqmfTrypuNVzyHw#V)7)KqoZFUWw=x{%hUT zH1G{=O{MkY`05TgZ(%Ka+I$O*S}%(PXHWdI??89O^WlQmOxq(Orr0xtD~Muqac{d1 zhJ8349&?5Z#ix^wwaeIOs0hyu!E(ua6Gjr#XK6Fu_6Q%86>BmcFU&(6D%4oKxB0J! zGM=eMvG)ut{Q2V-setEJNeh|-ahKQ6azpG<>4?z~H#UNZx68x3(BBuc|SM()T4 z^1vfw!M+2{HbQv#H1^O};{|FX6b^ji@-MGNL*NO7AbQBx^23T6=7BaU>JrwILJ*;#wMO*wV) zo2hyfhL~1t9_e-W$GQ&wAYxB(4mvyW%bvrUJ(FO4LD}<_W5MU}O(8}2qqg{GC}Vt* z=m&gGL$+@@qkXLU4Bt)GrogVqdsiJ9PSVE(xhJFpsH4`RGt+xFJq-Xqo6Q`1$ytjt z!^!b-I|&`zLs-rkh_nH^>lZ>w>H`Lwsl8f&A9(;Cz$?0G0e;#ZLaMGP_o zW9nlblsbALPKHvGzMuJUF$vxk@yTdbqW7C4kb+Lzwn7;Syk(Yq6Y9A1I=$-Gmg19M zg(1U|Nw4#*1b?x#X?K}^de=sSh00aG#!aeZ%$b$Svvw(p(n#FvDwRU>5R>E>vd+o@ z%qk)+1no|hm-^E01e%DTfe_g7M?=Vm$Ik85Ff~W@XkE1Vb7U_1R>;$+ZQ_}U`sm`+ zh8K1esO`PAB5ouQa5>yubyEYC6yAxHR<;}O+)TJzd+F5{;ubxUua$2zAe;Vd#iS#S zs;6)4Yp%rlBPvv}<0EZ8;8DrFS|C!^n5>h2TVW21U2ZQ+^f$-tYc*E+gBY?;b(U#u zWC_ivFng3Avk4@(@Zkj`O65{hW?F`++bXz{_(sy_BJ46=S|0~|qw3X&doOC(p>=gw zXbU~t>w-x`YM@TTp{uV_x#04tmb>#n*YKFcMhgSW2xF=hQ8?AC<^cJyP`Mh(zyXe2 zOs=kPEXK09BgNHTp{+AC8SDx!^eVP*ME0-5>2|+z6zU#}=Ewyz$aBCOl2yH~4lVQO zsdB(SIK1WW=lx$AOXWTfXi|?1?=jsW-81vcr3`nJm6?Wg`Q*T(`75XCXMI5iz>S zfB0Ve@59VeVu^Ia{87XtVQ-$baQA@~J5BFWW%|Oh=^#O;4#mr$ld!yjZ%?gm<`I#w zNsieRh>h8O7P2I}`gbL`M>ryh{<{tE)5P#lcY?~72vc_Ri{Qq+g|?=8dsA75=%6vEn?NuLil&q+?!x&H4%Z_P4K z`?PgFpa{1u6?{fIdmzh!i&K!5rZ)W9)e-j!f_%>R+%%xcoSkN}L+E-g=D^-o2!s1n z1-Ij*fl2KIf;mB^-7m%DC;IeM-%yu#aYs1Ws>x>9x9lgoy zsLFW{t%YQy{pT7rkJsb%RfvTcZtz(VtS$=&>5kEW97p?47{l&goxq3dXHpCgFYfKO zjuwnk#AC}C587ns7%P06M~_~@iQ}nEVY|OBq1O7`I$4K3CD62xRJ${`C`cTf2-4lJ z{dY%?F>&%D1zRe)S{QC~ggF@=%0AsF-dLdyf97OZB6r;Le_8-`vE?ljRSw5q*tQ<8 zw*sox{&I8GX9f>`gBu`5dNwT&z*E_$2AfbG3I zZpGziMGNOFMlLJ%<+4nf=m`g&8^AmrwjlM7CRiOOnMN2(ooK%{d)yK=6(sK!0Feu3 z>U)3m$;#V>L0B+zu%qa~`9gMc4-`}?Eca}d-{Smt?K5%kn3Oae)bF`-UOB462>iSr z5Yg4!S5#d~*ed`{?yo)_00Hp*{vwE07wVV8O6@3K7IhCU!~pF=7%k7v!2_5vN6~|Uc`p|*Sv^uM1pC@p0z%;*> zJ-eM3CR?!~itFFLSb1Cdm5ink3eHN$MPCu8@phS@ogG}NZ`rA%PtIper+b+-xfd@^ z&unml31<(EPK)1L&rI2|_yyC(I{oyKei#9P!mU?bPr&Vv0b<$v#)|Y$>we*vzAvg} z3WZa@N3;s-_2-EekUtk|Xz)e9YZ~~fe&T!shxPC7#%Ao7hGh_!Y?lGi%m)%*3Vut5 z$tT~d*87}{JdcE=51yBZ&5X2U)9ZI3&La466*QiZnbz+;3?KVGhs7vMvHiP>cWa(= zRhcD8-Z4UR+J*8OPj*KxbIjCE*CTvd@mK+dbeE%Fo@xAEODrto^0#lrk4_EsPfkAB zS*9+toO>!@#QSTd*QVTj7=N_!L&`)(PtwZEoZJ!#+2+JM;rMUA)a2Gz#skB3>(hMB zmjiU-=cH$x$J!=|>O+03xWb4H5)6m~uFGFlD2kqKU;)4RBD!iUmB@ z?yvXcC^2L|FFEG zmLqXDX;7dGBXGa|8y8cuPoBIup)>eOzaEeXf&yOchen@CuBGh^ajqT?*_4@odwTO$ zeLYmiEuH~t!Nv$tsFe_+Ly190#&;#lr1 z`wmIka^2X>ph{#%rMhoP7gf*aYPE+NLQu~1XzkMN24vSyTrK-#FCuezG%dN)Qj+s? za<(?6f*c<-)%>_5y_MdMKksrG9p9vVH4W+L)_5jT&~XzD`po%oYyM0OtRIJXbds!1 z1w1`UQ(u_JA)jw7!H+hl0Q2eXl*fFJl(}Ievt7~u7f1pkP*==@d#BQZpNGaILML9i z9*WLRO(FM&ij>*u9To!vZM6C4Eb82)1v+$pXpNy}w?9rx0$-uM{(a10A)J=@6o-!$ zK9kNFh7&Mq4P=q%hAW6jufc~q2r|jr6!!kSxAXbEZ7$NB3>_yP4#;U12p02Di3Wdn z5Z#$e8nB?k9Ok9F`{Y5ggmWF43^w@2z+||XPV%z3;^w;SjUZ%+ZfXi)cm^cRj{bgZ zG2Bj}REcj$ImVc&V$gtgLix2dg(w}Gdih^%)fy64{VzgFs|K^rztFmxocr6D+8$`! z%11=K0wCyOa&K{tSV5qvDzDZIPeCLb?6?#MY zsqkfkr%`m~6e!fu{B=@ISLm&_1N5lq9aOT0D_9zCJhsr?&U+7X;WX(gwAN5pa{Q%r zEN00%?<>p^cuX=f5sV>kWjR_HEN@@v-0VHx8jv{@e*Ab+PTh(UhqoQh9C($0NH;hwtO~|EU9aUc)A*0Eu zWW>>mFGcKx$ni^=eg>Ntp!0Bu7St8K(&xJ4;D8mIzZoDnE!8eEUS~s4GU_y+-Sp%d zxh6$;u32wCv*f`LRXjt~Z=z7f8|`5^xj*FvTO)MyB{v(MLcCDKrw_F%lvvSEm8A&x z=uE1v`5@>#qQ!NszFw-b%BdrcuAiFvBTD(Btu6h~p@rc$2fM?ghs(}dw?^2n#9E*) zzerPVGe3=_>WHE0fbCn0h_k!NHT-DfSu41jr||~u`#MhccpU%BsdlA0#_67l$`7v|YaWWL;d9(Ej1Xgq__VW%A2- zci>p`mZovGMQ(-licPp&?oIq7$;6F)2Mp{eB;45Vnmp{QSm3tB>wQp$+#Fm`qmZH* z2L0r|JCdIM=Z`H`=qv+_-=eQxokn^z%E_?0y2Ho3eN~JoVkq%4c!HpiSqRR_!Tb9> zh=&cAWi}}V-T0hnjU6YoHSf7on^Vl!(^1!~+w4umz*vkqF|r&!-1f?pRj__C8@Uo9 zSlSr&@2E+#gp7kJ#clYCq~AGhIHSQJw%3#|t=HKi$N3Rfb1t7uT-mzw+mfE63FKoy z1X}R)`f}gY#cZ7I5|Az-i8Wc$gT_6|>OF1_v&Q@s^^)mu?;SOJh#BTnhfAlceseKb zxBj+mPe5_3YLBN?Nt=)2s>g#a^|7yuUI&t2yn+r5-6|`=fqL$^geTY8EU1O>$r$~w z=L)^)(mq@tzAvJHwV>J!j;4cQ8St;w1kf7oT}&GA7_lAJ88=&9y} z&wspR4P~q~iSMQuq*4s2v@`PtK6{GeI6L2j|pS%^zKoC7k;qQe+peR%fej zosi)+oz&qXEp8gZ{xHOf5-^AGOJ$ib^ahz@Wgr%-aC4CuWBG!ZyO&|UL6G-eSsW58 zr+Y-Q!UcN|knK7W;l2^c z^f%`83lqzWqxU1>&@t>Ega2j%ocRBKNAB0n=q9FDS6pk98087VFn0cat4&<)YA@na zV2+B<7oSgI^1F;wG?SkR?(|n}Q|IvxnNdYWGRMsS_tH99xIIs)Lp@k6CE~3B) zSrc$KTeJkw+6)SX<+<(!|0~L}7@;V;eJNZAqOy(g(SzhfPe>ZAd zox1bIzeE{+d=}IR|EtLUe|{A?oc9diNwS!%Ke_%nwn8ufAZK9zwtV*Y$@JfHjfz`( zpC~x?#s-eeXYNsb|L?a9epHFJaDB)%Y}UIk#gfQlp@=WL+I0ObU-EoR%p@Sa39VQ} z7(d795`W7j>-?w*%hfIFt3sa8i)kibo~-1idzY=qo8*WQ+yNEi9r`#%f07tkg#gNTq z4pk1^*11BxQQ{ayN(nb?^VcU|58K9}+!Vk=@okA#B~V|ypca4OP?n_vG|@&tFjcBu zg(p&)thqL00R>TZzLfHm6fAy$P8yyIp+@1ZUZwA}wc4=R{s_+3bbg{?K5S2A2Scoq zF{ekZMSnaz*(d~FXRIy_6g5;+3>;|sHtP$ul)P_jhcj<;ak4Bw$V&X2W8hyH$qIla zHUN2HTLr(LbNnY~<(@r(P9O#aWF1@@3Ew08Pd+3A-D++RHrMdS-)40nRvk_3P(7fwP&X{uo5uE1;Rt9P0$4V4n4cRU#fLze~U@ zgMt%t-OmySD!MCrUs%sFmuG9O`U_hf_H-1 zkwl#}Fx_NmyI16D=M$r!E7ArtwAFA=Ox!Zqoxcg^Zb4;UatZG%jf))Kt71OICl zOl@W)^Yq^N^Xi>%0P~osCr*mh4Tu9jQ^rKfKb;fij;hg#CXNrYno(eyQ&g^f_ar4J zi+3|lEj5bU!1|gVNOX@i_RgvY-(ot_G`FkL zP_cq1;ykVnGGP5_v?b$PDN|W%!*tDu*&m6HyFVmcf zmsultHeUf4cRc=6jzaxrR|%`LsKX^aXH2}e@abW~U!`7$>!sJxoeo7&3X^HvIp%lr(U)R`&WHXjh zfz{4D8E^8FA?bLL1DQ$o`IsqqH9fO!E2t{TWFzB2#s&F=m#t#}jl2k}HgJCu3(Du< zg_n|NQ=F1#rzNczA zfZt!4TloIs)JYdOi`Nvft+rbZr%suTO!NBeg}}B8 zdYx|(!6R#bP2?H+5Qbk&cV_Hm4hwUug#h9X&w?6?-xpNkp^GJ>?i;PqIIU={@!3=9 zK$gd-mjbxK7dXPFQ&vJIPUKSf}p||t60~lX#pKbVu1>QLF zMzCU|->$M8M|B;*D8ptoaI01Ql9=|^XKmaHbOfQfAvax(31qMjcVqPU{9S^QgTd8= zE@0^f$WSo9-!J3}u;MNC#?*x5T<^}l#N<+iZ+ zk`)@i6E@CI9{;GdB0q~_s|c`>O6$++vUyw^s*CnUHxhZW@rHRTFfX?6JVgC;-iv_W zbI8`Yd6DXrfnnL#2#82)&E`mbd2^224x`RLS{mx^!OFIuM*`x`sx8%w*;iJFhJY1LYf2Kdu#-CgB zHVc#wk$@2D-rtq5Ta7%lO%IoKcc4zSN=!;p0HpI3ei`X6B=BQ+13TKPRyB@Ch=F$; z7RxIuOZ_s^s$ec>JPk%}%}*h~bX?1U8pyzapNUAKYMPtM6}q2`-V|Oh6_zDza`1cE zJ@LnHIhGAYh~FB4k7DSxX0>;$?!Q+<-PPC4x>#?sW&bZZzsN`re1qj4qty)s zNXMYoUBpCzgD|x7(*d33cWMbAzfS3I<$kl~I?lH#!a);aar)aF&_TL`t|&!tInDVb zAuCI5x9Px&inW};2rHXcwdLR=E}LF!#l_VcYFQby#3vYl<|a%n?Jc!l-t!4 zH8eT{8Sja=(*j-nJdW1QX>NsLQyJI^;PB#C7PmAXt@!96D;9xhPI5~HcSjth2G=~$ z-??&q(2)CkEf#QtE4@P9Q3@(`Jci)=@u#B^#k%9Rs^Q_fF0mIXv)o&rklvVJ%GWxS zRkpDaHK#x%ALJ&t?D*H$C)vV4Oo&Jt?suu3dlWcebZITZtEY@Q40+<=#il_e$1?A- z<}Db2{CEJM!37$IsdY!VindNAK9P2(zM2|m3f06 zePM`CNYy>MRaUC!ma$F%e#_pqOH^_j8rwNd_)QxOszJ zSk|uW%#8@+gQW*hkoM#6$yqd@mz^A$OWgzf` zJTPeX9VV4n7E=>@a3$4r@)AeXADaF(F~F^f>$*2=h% zw4VT{>1@|o9QT(Ue`&v+Q-Z)!4X@AXVu38#jXrcTM|)?IAN}$4j74JjM!5VurND{x zvX}q9FYt1TuG%7+G9NQi-ZzJhQYrX4c3a-8`tg8Wa;$YvGAlBvj&&JXKt7|&G5?$t zu?h+&i;FLq>-85LptK)2t-Hs;$!!M1vQCdRstx0&p z;Ffv1vTT{?65j0C(SYKV+JAX^%}y41^(YKr$JD)F?x`eIhPoIiGk^@K&<~YGFByjv z@J+JP1FkzyQoCo)l#~l}M)2Ng*w~z=e8?Kj(En=vJI8)zrUpwZnG^{Fl;pH!MJn`v zRd+fVvdUtEq|P}@G;DRL&l-t92SZe>@2TIZ)Z_-=*FH5z??th%lILpzs4{w<9U4Di zuAFpQKb5APiU@)LW~pmPBHH*!!!HjI{HV`Icr&Ry_{zv>U2df$)g5~GA}Y`pkhz%| zZ2+V!+nMBm!+YljUn9K7hr@0<-GaJZ$lGbvgy3T0dwY)B#IQbNUZtUXX1}~b-_&{Tj?#T8Jo10}!XGcDpkr+?wLv+Oj`tZt} zwo5@XeFhj)I8Ht~pW-m$_Y;7toJXOXkTrwLWryHEb5FHOKBYjpOj9;KLv8UIKX&Ub z?e0u0v){j z)l*3fx(R~{d-Qv(CXs)BUYqB=Cnx#BrkE_&}z$`D}rlLfnIa^Fia6 zMgkdBp3-o%uTk^ooz3lws{p%ex8-T0hQbYp47h;YfktYy4FG=k?^eTa-m$YLxVX|p z9G^uTwVrA6LnwQ)Ha@V!X|k{b7LpoILbtbxTljt7un6`A1 zaK`a*eljEe5I;H-c?x^LxKJ_#AMtS`A!`iPFD37r+c(w&g6YqD$LegqYJrY!Ku*fI zSP}Ql;#|T4DtT0E_Qq8RJ7TwTfihs~Y_1CEgM3oS3fn75oiUbLPFFxid-|*Y1pKVn zvupQtAhCG93RSN%B)_00|B~WfWcdVrTx3n+N7ssHX6;I)-3vPY$TDx$O0B<{bLel2 zuNwg%s+O1xIjr45k68^X9d6(g8VehXcJ-xRcs2Qjt~>zXW~g19N>n35<*rSPEu@8@#WtcWz6Ja53L3G2mG zYEX$_Da8s4fPxW_z=uUekpiTuuTHV9z|Vv3D2uMoRLQvzCBFb>*4@`$VhKKHO(>w5Jb#2BgvVqCY(pg5MqIRChV-B^!#G>ZTWM-1{MY*fZ4E~yTX`PfD)5>TrZX$ z&a|SOn)>%l6%%FW{&-8q4M#LbaNRtsok8{e%;ij3LhG82-O-iuQiO&1Q=O~Be4D2X zRWAkANeac@)I{Wx7Fo@o$S#%nJbw0-L7Du8u;2MQ7GrpBxrR^RhQl3NVxZ>if>n6~ z@e29W(Ps%ZLl~-F&0F4dHxW9Nji-EXS8xrv|6~-W)#Fcw;IRLKJQ4P0$;=aT8ST77MoNN<8K@>|8GA2*dny)jSZf#FHgU|2mBxcUL4a`Q(U)s^1^ zpU&R9Ejq&3oqW)b3>;&s5tU;{D4UOql%?Sxf}~;Wvyj@I(&Z?&<=En(0USB()}%5< zsyhc~v&fMFe-YbPh`5Kv$X`dq^0KQ*P2{sd8&mrsbFVgZ99j@ZdCHK+ozt}-o_3#{ znIvmm;A?!J%w0KKl3fy}cR5{PH}=9-X#PJffY^a!+&`pbm<@o$&mz~wwNKEa^P-yj zw4%B#BDD2}Hwv7zA38Wr<~6WnM;4Y}P&!XKfHZ)RF&P=EeH|<0)mvJfOL0*h;$8oK1l)A9w2nB=u%2x|K}OO4-^6r|NWbPe)NC$ zT^F*7j3EKL#P#cO)^a)37P5aM;}_n5{O%*SU##e0O784-!1$3z(RG60s5m@Ij)GF% z!#-HWrFJB2)&Dw120NN2l$Sdu#GxkGQGr!HF2pzo*VP+nru&>-1sP)5S;^saVCe#J z?SQyU<5|3@jC-&AxeL--MjTiTEBc}5Bk;C}FUq;{QR`WW*f+<``lwS!hyU~h>if^y$8 z(=9nzDaUO+-yNXH{Me?f$O}5^R%9W6VTaOrXoXoeY;Ohp9=bs)2$Bs#fXIMmz3#9G zT@idX{46`F_#hO>l=F_t0hR}4&_rxnS_W#%JK{9pZ%}iv5S)YlNR|VxD}Y)<7xMl! zXZ25DLhKDX@6}uh=-vS3ony^*em$(XH&HxCUAgO?%j0Oktgi<%TOc#PzM8~0#Msah(1#WJ)VEA^@Dfd5e2Uz- z`eK+oWK+R(n<+t=f3QDWli>C|zZRMd4c&1|aY#u-)yDZkaevdac*7&`?Ni*w|dCaypR;F z^Rz-Wfb9LS69+nih*b24ozo8C82iU|6FLc}udVmGY8MV2&}&71I6vbv&`Rt+>QVRh z7{(zMw2uI+AwUh};L+s6Vk3SM*#~n4+fbVcM z@1>{$MmD-79-A(vTAoK7XhpOP6ex354(NblL)oPd2O5p>J@*w!hm02PHr~q{NUf);vSn+sm*5 z5w~g1Dhy2ZomJOP*Eo;?*&xs>r9ePd1FKvig*eVRt>=?m6QuyuNNE|E`VhI}{XQU`Kn=g3G*=$&nq zasac)t@xH8)s+MC{TZzaIk+tgabx~Q3YxS(si)QULSzMFItu6oMIxW$!DpoJmj(9L z9VcG8!{$3t?nF^MY?ghlAV2XjrAv%?t{-}#B9l}77l5T(+fgT-K3DwUjWN1GxG;sT z1OdJXR=)FO;c5>MXF$_-rqYY$;kdQ6tu2*a`w#!+D9gd}a$(YOhOMXHP$~1in=7_c z^b?%2N>)K>3-dGy6q0Q=WOEJpOSfHQUX~fBAZ5P#+TMC(w?@RotU2-h%}~wvx>uR7p1h$gdOmGktm=Lps|9e@9snr9G&rTtZtbK zhpt0ORc|KRTSAL!p3z@)^(xZ@?_Wf6R8ktNAbPtwpv7qNmFHE}6!_?T=@wS&G_5Vs z2VmJe|MoCEmboAZu1mJo1>@`M_giNrN0WVt$6bG=K9O0cAY6cLyoCBFLq1*NZQzN-?RCHp=71S zk*tYobWQy4Iwkn(~s z+Sui5lJ;|Q8-l`zM8f^<++*Sr#MWE*xqZq3NNdL2uq1b#a7qPQi(RMD=NJ8)82a8` zFNa%xMp!bp`i>)=<$R+SVQ$`Pn8H?Tx%E}FrNEGp*A^Tw=o}Wcd&?mRPc%g zurNstPU&qyGgrgr3jNOgWtHm|J*nr4L|Eeno5@EOyrGQVnvBN!tJJ^p`s9 zr7g($mNKmC$Q_iUtY07P-(+KAZu(U&a6??(jDP;bep;tKIy5i%1)`x6w&)bo_VzXy zxj1&{)PBbliYU*7dOk@CC*R4Aer)f+ih)D(Rqj8$XNC75V+;KzI@)ThXr_=Q#c32X z#S~CM8C+gv#o_=}?BK)zuGoOph&#!3BhavizN_(;@jEtcIcGAT*Av;qQYcpp6%P$b zep!xSKrpYJSjd#RRW@ zInxA!B;5k9EUe}2@9=@z+%(4U2VH(2Je}I4qn@zp2%_I)dQ;Lrp}a1CO@@RWi0LGA z;QbE3xjc|6?8i3_`znP*A|Zwelq-Pdt0}`2t5=`JP!^Y8eje@X;^5J-)TP0fmV6F< zn&6KaOHi{61KjQA*B!0~^`e!u^`(Ku;6d@?fH^aNur%dOj<4+B!H<(3pe<@fnJ0Nl zNy$XoqL>J@K!NCfgBr`5w0&yn=*V;gzZE*%aBF2ckdS(h zz7@Se2N*7;JI7PVnG{MOV?yiR_c_y)nyOftLUb-|u>2vdK4X-mw90~?c@Qv1|Y9RP}A0!cs%3q*L53^7lUV#^nZ z?u9VVMad~AfaZF5^MEGlxAUG+X-C#GJ^ovThz1h(dXpe!P{ z-g!Oiu#<%=2#>N)_7`1lG{hUuIpUjTf1D==;@hwB4OrujjDspY&)i8}Z=Z6097q{w{bpk(&Knx>$=SA8VNx>Q$-1k3&C5) z*7_anmYd08>~JYb#(x)7f&0a~D@3L3C5cRxFwv*P?t63I6xOLoFF$bIUJv^K^}-C) zyr5Xn^8H>M8Ly%CP{vY+>9vsaKtc-|MW>AWL-`e*pPS3|b}yC1xAaFa`YSi}zXBF) z{N6XC{&RNs3;KN91EXhX_A?E65jHa^`7mQ3;|G9tIU<2{?`Ds~Yn_9mTL#<8(~^tJ zzCn$VMvYOng8`3BpMj3=dw#h?NxjPr+g}@S441X{LX7hv$c5@o>%3Rqa74r{?w2j! z4p(jtP4~v7ZsEkI2)OIW?%Xdni^kcUR%ov;wgPvMByBW_HLws(%<}Vgv_otM1hC0Gy!)Ig zhxJ8OlW~04BGOaPaMm=VX^vP8?qoRQiSLFV#D6w1G$w|$(BQy`+j>DkOM(lW$yB5q zgww6~uecAgb)1pzZqBJlqpRhAD1k!3ev;ZD+2fqhbK~JIb0d*)Bb-M!s1%anPrWzq z2Lg^}l_44(j6z5#Xy*$dTtm)iqdCP6w>4#oOiU(T=ZUAIeBQn&0+{L7OpH?bo|kZ1 zp}!;Y0`V(ebWBXl`}un$D>Olt^h}^jO}GVFGci@taedtI+&OM48n*A z-ltdd1cKQ-_(LgD9S|P_ikQ>RR1!(qZ&|qDzU$`Qj_Bxc*_i}?BJ;0vcHlm|Xa3gF!Z<#-jbJsyp7HZuUqPu|ei8p;gg zzZI>xJo~WwZ5mb=BhKpR>a(NZeN`A-RP>#ifl@(w`0avjb>h6o4l72$p9V7^{m7K7 z96k`id40Ywt)Pyi*jg9=H}SB^=Qxl@N-^9C*HQoWk4&cb76!8cE4WtIN_w+WKm@C# zMA}iWu*rx_$0dF=Rq6$8_kJ^%;Pn6luG4UyqBM3U0OtOM+43nB?`Se`(TAyAyK6`X>d3HpoL_2iEhdzw=kG_Gm@GE(vnX5l1k z@f(ghA6xIklUBgz_bF|<)J2!4andBgD!`3e{j%pO)O|>CSARWr;&z&%0W>~p0aG2^ z@qaToBHhdt#Z^bZxk9!(H<%6I418j{oe-{189O*Twj`;A8uK8_J6=|!KXz&7#ns)3 zkcrZM4fTCom>EZj_nC;mnmVH$IOuWG7+BvA#y{G>F4-h9G0C^OiVC;C~N|)UQPkxZ; z_EO_wl!+!ljh?a6G^rw*jUVHOsj{>Hj- zY)us+i^0vh>@9EMC)xjvuQ+9*TU&ACxEl9TJi5!eO93hSb52gfO@1EzW*}MZ4~6LZ ztP6VkT&#Mo-n71lh-TMqZ9iRe?$35~dFgV0rktvSGk5XpWbUkOoc3jA84m3E>hB#q zm6qDnR-tRb(GYoUMj4=+Hh54uoCZ@~+O#iPx8n%%$w|QJ_)^kQ z&secr7$hM1k`!3KH9@9~IedZXhED(elbv3)zEA_;P@iGQgJISTwZ8SAVqU$yL;2uf z>F^hn<49*OFEbMXN+jfzLPKD>6+jQ1Jhhe13@}7j5RU}cD$OYY>scTnE_(&wR+Q^;uAH- zQl(hIz2_*DuC7{L7Nyt7AVn4H*xze3z2u$WooD@&KU&Z`6FD?rysM_DbY}Q3ri?V- zbD?mwO&yg8Ljs`0aDRsZd{lr99=Kt?2sej)Zf0eTlY&mGRz$CK2#$>#A^N?Y;?#a2 zEz{4iHTxqOOfg{5GWL_>aYZNZ<>OMl(D$f*$!*I}kXsq_)0NRGB|Rgw)N-?7DAC$9 zK0yNv4EH{MbXXp5RQMCdPB@Gj8rZd>G!T_g8v8-JJTNJ~mkAKwFY4EoO6Patgp zk{~3^O?fQZb2YUp4_mI%9hI+(k)V>Jeo+yv({-tqi#rWfP;YR`4gQxH{VqugYu)&; z6*ZUkB@)fZW?kERy4N)r*4-@CHD^|{yA~M43OQ^c(`Gs`U`h&;RW8rC9vX6GB1hOA(s1Vnq3ClXXf#zf1`Ds-5&B}I@r7PN760qTPEp}n-1*_Oyt%FlFJ+Ux}5 zpIOelqjZKH-C-4~!Q9Ru=()5{p*c9Anw!_l8@`|hwCdk>Eu+v~jM60FN2C|T*Bd@? z9FXI<74Sc_9kgU9E#Bd;D2nusM~%xYl!B(02dK^75aU6uZyHhk6(?`NY|TGe=#lj6 zaW~;NM4m-xd7s_GXRqp0e;*}#|8m#Y`P2IQ{GnxIeA}rM@`6_kW{;9Je&t5wcQF3P z{SeH6XRj>X!xu7 zlLA1VehdWYdNhYZD!sVhjETe5`Y00k`zp`bNK7-%FHk1kR7& zo*sG1>c45sZq;DFcP;^Pljtl2vFes6YLIagV z#cJikj;lsSlG?^x%QFx8s}7^hB;Rz*wqh7qBq4J%bm7NyPng!Hz-;pFEWr9Z46p zY*a0nkW5f{w}`BVJigh)sI<)Pw3~(UHbgbz@l{vIMmT|tN=Hr9UChix?7MN! zu~lq1l_*JTF9%o|egETwPvrAjDiYp}ZK0GuUgVXoF-{AJ!pNULf6n1X@CZV?jk{Lu zUX)0u>ZFd2@c#~ljsNNkS*d=i4ek`M)ZlKibInxL7VPMJaG+Fuk13k-S&ys$7j*EF z`Drhg$uc`x9b4S@tl;QB5!G$K@-bacCGj=-HS!{H?xajJsQqlQKA1+|HOWG!?Vrs= z69x6N?!XylS+TuXkjJ{bY*EBQ1S7zcQwwbyrL95u209&JC_ol;T%7bAJ3lV9iRrSs z2%Bd*;XzHY5oxZ$G>Y)2$K4mQI?5TZqBhA{>0%(1y{Y^)pwx1LhkAN(BqHb41W(Oa zp2zcwA`H<7{VUI94i3$#`gAo}U`G2(E*v<(BpMR?WIf(@m(%s7vc|>;5)u;V1iUB( zZJ3^6VPX72bHDJ38vYPIP-BNQU;lLn%{a;)F6pDr=QDX*g%dm#x( z-u$NC%V-DK}an7w0XW=g=kdYZa=BMKeP;@3|D4bHCy|pW<0{7sl2RcK&Cd zBn7Ep6~PtY(ko@y_-oem_F(K>4%N1ZIeh@!q}?3zvKK?CPGF3z#p6jZ^OsA_UuAA! z-D$$7-+cIhd^wL$#$o45)|08;fq^d%2HC&;lj@{*y$Dr@DvHFV*)(J5X&|<|e{c3) zGAI-Zp^B5HXP^gz+XJni;ZN{&2Oyn6OYSs|o8ZI?{pX&b{3yYgsa=_fzcAO;F=Nc@ zu<{Z28TCI$|4M!V5cY~z)lJ6#{SN*X4tH5Zp>KJh%FN+rswETx##;*Z|_qv-&H>x-&ImA&EKr(MisOb z$&pa8z67{1tgJWx?2=LyL$(I%L3xl?xoDpI8>}n68Otqo*c|YgjtuI%a zi}CwnoICr+Q(w&0p!3XdC4cZ+oUU1YSqcQhcOPicpcap0U8z)7y78-d9v?;tgK3;{>1d8)7N`k3{cg zE0sCrDc9=|nR-97S0lM=$A?%;d*M< z0CF9g=QvZr#2Qtli(I;R>}`N76iNe#Oh_c2Ox#Gx6E@O!1`I zMAVrrNkQhvh!+>|UUPQMl^8W0h2raf^j01Z87#g3%H$rSUC94Mpc~7OM6v5bjqiX+ z`|acul3CFdLjYbslFGlr_x?TlEW5Hyj2!=0$4+NKxSCLs=xj^L8a@D!c?FKA!^w+B zYa^C?D}Q>dYynXQDl!Ef&b|7UFPg}8EePL@8zaL~qymNTjk!mQBH!1|sLi(IZarSK z7{?B$Rcs?{G{`LwT3ZynRDWKU#Z!>Pa1w3PTr*}A9=|2f6 zn%niHlhur}A0(wtzioP4hS&DbXYfW#m}ptu zffeIww`tm809@y0dfSFOyz=Z?AA{M)G$dPF#`WEAoxh~Q9kqw;1O-Kw3f2#*Y<5V2 z9gdDOKic0cg~d!a3!?b_l2zN`(hfVp_n2GVw<&o*a(*MRbR#3u6rfBM5Y)v4J6Fydf<~c0C_~q*L9%3vJd@(H|u<` zI`2};_EAZ3ziCwl8vW|m`TPy<$h6GxKG)pM=`(PE-LB{)DeHcfP?e3XH;-D1WqF9n zAlqFoCZxQ&b17SEJvoSD_S)6G$wPG52*!K+J3 zHFfpal!Wd8%sJSGO+!k=PXZ@oBDdSoR*sEb2R8IWuaI|ujrFJPG5m}rwfg7mT()Dg zXrS1|K9&_L@mPrP0F7LoWidLR7N$^(M%mJkOJC zGz3Ft8TlEdSykaNT&u^W)4q?{%f^cdmE^2m%GRbppL%z^;noU2`C0nV_e^lNqS(f&U@e1H!fN_GPmyr8kX^wg_Y~{MQaCm74Oc`F1_1+{HTeINf?T5ZTR}l_}byF zb+HqNr3@aZJa#&HLFGw)9r|_ao(;B^TPl*+E<895rSc|+9TT-UPRjlEDo+v-tivtv zBdKt;y<_%vpOU?u+QYY7E*=#;oOm`+_fH<2{zruwok;MDtL>fk!VlNF9RKX}2 z;P*l?4o>|1ko#dGL7l@}PULSUpa0_A0}-asA<;L4!F(beh&(SAt@}%})hqa$SK2d+ zBOUia>J6qnDPDi29v9@{en(dAposi1phm!^{IXs1l!$=mcIDa zf;Rfj$DrV21ZdQrqV~k!vq`cgYLeWoil}wqNvHa?8w0Jdve}btxVZ)1D$ejO93%-k zvOkg?7F;XY$1OfdSDHES-Oz7a*f@ z2Q(+w^p+kIEzGF()h&B%&ND=p2>b|nUmSg#{3y~z6RU!})28!AZSr@OeYZVxvIhl3 zxhijj;fq)l!p$o>28Q)H2bQ*p4!EG#O|)S@y}A!dr(qrkErXkEt06sdx1G?Fx+rmD zafGzR#V-eM#A-LkYsmmGsU%88^b|-HB&s{GiBRKIBA)w;S#Ls@xJ(whKd>bO{c_fKhRcItK`g5~Al3t>0pO3Se z>RYL$;7X11(v@5mD>yNb564@Zq_iMh&gw(~H_osT&KCPUtI9E>x>Csl(t1X%ia?!K z7ZF=v+zU;ls?}!;*#7e#&K>Wsl1hAkShc|A_(fR<<`cR3rJ#ek{#QS0Mkcn)tD1rc zSCL1Xb&zywKX~TDv>x-?83LlmT7Xl}eD@O7b^F))&CVxj>Ns3H{PC7)?vEFl&-6VF zu_Mng)INM*x4J}OZoXwl*_=3IMrn(hKHZ!NKim1OqTiAh*6d+N5-iK|fWDFL!F_dA z-?h5M=;J^rA<@knB`Yh7R?z6oZn~|uf45_xEK{*kvaajX8HtPMgq%&@>YJE|_k4Fz z(b<`(<>82!hoUQ(66Ek*g>OB~V8i?R0|ul%ali9{N3a~hXmIQ8rgqCiw_EXol8m@& zE>p;g-T2FKK*+0~J6U_S@8eFbKC$1V{B*P^aOcLgWjN=mC6f#*T(aJ~9rx2tTKz#v z!pCib1_eQ*IK1e?>+dDEyZcGfHB|L${-|?T^9=RZxxKfCKAB6%F3c+irKzF9Maa=j zm(Mpc+0wbv`swKQdn#ROkIu+M`c8cA*?Ab#JGPw!q&aDT0oc+q8N%FG3MBHwZ3t>oTRJQ=dh$UX8nMiXHi$9Hm^Y zdA!LQoB%819b?OTlRqpVHimr@TZqJW0@_n&QR=_;JjuX`sa5`wlxM*eVexL?C7Ion z$j4_Bp8m)8iUC$B2aDClfdO8v8Nf0DJw$ewg}}A7wZrz`gNUM8-p!X&Wj^6#x0}Jq zK?-`-OykgD@)(PPqB;WK%x0OQG7;a`5#x`L$)&}yDRYSV`c9UKBrn=FhXf9f&o=SD!@YR3s z|KKcx$c;Okq(adNjsBb_kAZ->L;}P^&9;@(?j3aHuawT zm_lFxa>oTbTzk`E=_$ywRhIAJjvdATO(lNS|MvdHTa+U@LxPd?&u)8@)Da{inJc+- z3f7^sbmT&m2%W4JHlNF?C6ZBUsR{L4aOMH5{>m|9&%JBD_z%10Qw!SuEVTt zxnrz@1hqacc{SW_Cv<;!VY*vpncuVxr`mIBeEicef@mzRyPs!NcTvvUj+qka;_)$$ zA3LK_v0RVR+Ua48B)LYbc%CGS`x$L6U(5;*@P?hynwj(5VTw=ED2H?+xnJyw>+1`H z`2oSRHPto8ot|X2yrbFk63g<_vngdiqisS}_+NvA#y7~b1R~DpI^3do*XnWOMY}vfhn#7GPk02>38BQW#@5gGiM$6oAX|w`S zCQ6M339b2kG9lR(sD5}%VE6tOAfdRe^ z!7(FHtW|BKcivsh4_^2jf{y-He|~SAvZ!pI`D&08IsxaG)1N4rxCt)-7)Ix`-OU#u zdbECUAG9ofb9nXRFPT#YzP?WPNm(&fjJ;HWE*OIDG{+z6sbSiFm3pPRVhc-&<02SmKq1@@lX5amg?|gF7n1J8GT+yt(ejHdX{txhI zju3Cf7$~LURrkt;kBy|0r`QYp#h0YSBZMfwPV{^7f-WibPX5wcl+h?I0lU+R0dAI! zS}Ty}XR3}W$czNeSCQdUp+_(Q;eLOB@E!a$sIuRCZd8F%KLfGAs!@JEfn6;V8zrmm z9x+$U$*GsewXEckO~}dWNK$}HxTOp>>iHzsGB7hM1&RI@-&TI11mDQWTRktdhElr? zAJ3p+eb&(W+WW*Q4Qpy5fntAvo{GJ6d~tf{=`k zcw<7m<`|#P`j?RHu1&RG67tNsqT%#JQmu=r8siKy4Hk)Fhr@pL_lr%n*>!qRY2#!= zz}P1zi3(j((6zhn6vYcLp_LU5`La_R-R~r%t)tUBFtA%BZ<#tWm;TX5kL2p=on8nPgWIYbP}HNk6lK;F`8u*^x-eW03|rd zI+%eCrrVmy&@zwMtFxS67+j6M5DIv5zj|&t`sjw~5;ys~(aZJ&)5F;;atfyztwH_O z3+H(C!{D1t3cLzF+uvJK36d1T-oRBhR%&!49;NVf6ZzqJnocYyC$*BbTMH2p^qaBH z8*eP753^F)QC2bNABo-&R;pg9*HWL{YIy( z*7Xqg?k~EV(MROZF<0#}BPA^L^}HbWPG3)i=N zOGz?tkKq_j2l8yxuz`H+x9P+RGX{U4rBx0t)CbnnNTOJXAVlTcN>ijl*&Mc$qnsKy z*2^6y-D_+X2a7p+a_tUZBW1T#1R4h1D2;LKE-zHoWv|xDCN@hh#=f>`K7R}6j{8?t z&%;+EvAG|(_mG^eNTVE$ayXK73bWtzb4IRuAI>DgJ2p#vrZTF8=ulVLUOqk2oMu*@ z;zHjeGY3XveopD@4GZch7g(uKr_}Fx@k4(}64D*U%cd(l$e?Z}Q}B<8liG$8+hMkv zrh#{RhwQg+Gr@+M8UDn2^DPGttGgD4t$4np&2Xh#jKcobcsPBKW! zpqoBx(pz~k-SXo}!4qv9I;cExuZC?i@hm$;KHt@R9?v=P!^m8$$vkv#AVs)k+}TqE zUBu^auGZ~sbac6s2j9kUYF7kZoUOJASv`|V^*X9ubnHve1z zriHhktpEf(OGo%l`5CZ~k=+LH^g~grjNNT-m`V|KdP~I8qj&kFhcNUK7p)stZR?!sF~w8k)ud`CqR(*!4ihNx0Y zpc=zRN|jMQAp8s+frE6bh~ouq;CSjYhOyC_C~NG{8DQO8$p^on>|gsVTsz38nmOR%M^gs5JBBAbAfUl9}WO6@D zenay4xq9393U+SH5KIH%h4sdeaxGy+NDrkbLAgE7P@5D2Sq$5Gbn9mnd=2S7ja$TCZFKusTV6@`5!*RLD}x295t$PsgJ&dtzlcBpysBg*9D*bR1@v${(u-e3M=uSrrjp2>=c29xigS71Nx zRORM0iMOC*5H=Y&tB^^yRGq&mP(*`yxBLG7h9&%JWshLSCo6Tt#jyaVpHNBV@ zZl`vCeR*RMTGK)(J|#MSx$ECMkj#oQKLRv!sejZQcJ%{Z5&whptRT`k^X5+j*coVl z@hr^rtcEXkayoL#qxsC`B=c6X;13gu>nrfX9UK&`EflINX)OAiZW9ExzdTVi|C2)Fy7QWp}`OtK>UlXhw{ZoGG%+4#zg*)+R z$>E0`akT5e-{U}4UgKR+Kq>|!ts9}WnvI4u^WpaOS7_sOL;Xhc$m??#6EfOy&;3+@ z;d3g0l26i*_4B?rWbQwmnRA}itx1~v{7}U(>bO_Ov>OPjWtpjVJ3){<61pdy8s2`X z$SQKKuYoshyin2m&|NfY%!=MDD^f666MhaF?G*r1yI(&qGn{>6vB&havrWa?3ynp% zHAJ7fIYn^Y(SPYz);2a8fR_w zsoKDbmIS?%HWh=#4hEK1DYqFLdwct2uOU7FfI7ar!x{eq?NPr!zsyVLwjx-iiI7D8 zbTM^un`>V5qeOxS9kin>L|kNRG|HiL>hOGv@F)(d5Qzml>8<;8{go4AD4qSfZYP3-?Q0X~NAmyT0#r~UkveI0)c{Fm z6W9ah?reacmj|(nM<>z+pi~Q!xfj3noFj(i6_JPAE_yNt+~8GO+LGvqOoyAMS!lcZ z?Qzqzv$tVBH&gGj0&YCk^8QoKH?KcoM@sP5>|Kc^>y6wKkGF+MvJM_fDpgXWW=3aV z!&o^*JMDySp@?0SfWsI1`!k6gg33a>fruTD$LX+^W;g2)-LJDI)p1rkcAkX4?MP=e z&Y>HnYs}3!xO(>*Z?VA+e#(FoG+00iXokmQARHNt*E~ql>K+!j5w(E{N~PCZOdDE_V$p3wZu~ye@FOfn+}&>SR@x+A;;Nt0R!LD+gTiM`y+YBar;G!J6HA%A!A(Q^^@QlObW4iS%&VEOq_~8a8~BS25&c6X z!^ptTg0YN3fJ4E3?mdKP@p6t&*RCBgv3Pob#2`8N+0sxe6Gba|+QaSf6Z-SX@jt0= z;UncyuW^Bn2Upd!-UnDL&ms+8wA82#0A3>?qFSa;eVTU^BVO_N#pJy=)P4^Ogm{#< zqw<^6P&Ko{Ib0eCBN03wR^jFRkt-x+XYn`aNv?Ww^;ZiWmQR5xcws~M6umX!ZmPkL z7;H;p1YKN@*sOy!8hTWw7=U+_76&*KMTU-fl13*cx_mru($I-Hllz%lV~dL&Z^=LI z1u+TUPv;fuU*VmwG=)IS)1w^Xt?RwpjH3kysuV@Ul%q2vh@DNax@$hp)@0lsZ-`J9 z>M$c*Uu+~K85nIu?Rnm#8BpP|T|Mk(xOl!ay{;{zD}-u1`GUod+KluTL%smDNK*;X z!$oh(X-aSBd!yyS%kH2s&CTYE1&a7Dh%d%G?Ctx0UPSYu=G5)nFI-$OHx8`_WAd7t zWtwM74+)-l?caFdzf3yWpS4}OxY?SiqN%Shblb9J`MijL88cRIocHxL3i-2g&zToy z!`EMD51N91{%nyFm9}HER4>cdYkdChT~Ho`KlOXg&NVeK^1}XIs^5EFqC+4o7;qdW zW9D@WKRNlqaXa2W$CB}K%R|A`9E?w1tbCpx3dMW-x#HdAh!ci9$E)&L)ARksVEM!p zUI=@GjrRh1_ODneQ`48TH8#2CS>CkYdw3jL$m!{csIyrw(#q;iN+%)9LS@5FXJ$12d~jZu?)+(|X~4k4cL2wnFg>$R^&+a%Fs{z+ zEs>Xsc7> z7jsbm;!auRlMp;vFv2Sp67|+6^#zecp(YMr-dl?ncZFb}da3iKXPHs9yGmN0^7B*ivq|1B0I-7zG$?I``V{^e)7 zer}S#Y6@(*^F1Dl^S`WBk=SlvC5(%X$=@{2sRhd7BM8fs^^_Fke(*XE+#!tj6dtX2 zkUTaIYg4MUKa3OpZl%l{SH0Yk?4R*q4Gw?-frYBc_8Z%emoL3tE;KXUJ_=^tmOq_e zU4_z7Ud|7&HC;_=-=A(ryL!UElYW;-Ma=B6Ivh=oGHuQ71;dM()}wKyMsNyVoUSaR_}6L`6=uGWe#j*L-f6IKQi_G_2{y@E==2n!IuFl zZU^C$bKZj=SByLAPQI~xD=zLNT*)sT>X*$b{W#HvyI<#wGJ9^4vl&E4VqysX!Ke3= zFIHGH=ruZbZk*WPcA>gE%8HE-Onhx>dh!hI+2-^&93388Xi<@G`~+wqbNcr6@pIeg zN=i$kW~izVvVJ7bwFtxGe&yOszr$?{24{m0Lr{<~31y7JU2z9>vuDa}C`;mI$7-zE zQ*ByC4iSPG zNxa5nrA51^`}wZKyLY^mR*h02_=x49AY#jWr)MBcWIJxMh(LNbDyOJb>54t5^KH7Ny& zra(!9Me;eB$wV?kIo}Y|3s*s>pEel-;?cKJ)4#BYo=B>ltrTmgp%<8bu$n86`q866 zPQjd->Ykuu(;PWHtvRPah)wWS_)F5m`4jLwP@h))$k$=t--0*IVVgB`Sw#g8k8ywA zapJf;5n8TDgF|q4w+-&@?tY*5yLGGX{Gp24TG(f&XS&ZheR{A4 zPI1wh|9nl5EN-XXX5oT&DsJ~Bd7%?Yet|@chjXW(&+DQ$%Ih6I$4B_rFZUu3o6$z+ z_vJvrgpG39loU)MPa+Y47@r;{(p>sDnDjF*^gV&4F)Yl`Mm>%bXy`izhYutRNm9KA1O{+ya|II+co3 zk!IkWl%fh_aG$G#-52Zft2ajGqZ!+2@;>Ux5Z1}wcO^7w;LdYdsf*zK^3R7aNn?b| z6iQD?;Ql_~2A;tx7gM>E`wL;^?Oc}zp)r|~(gAiM45nRuXiyMokfAExO#4@ih{vr} z^LAdB`mGN30gv{9<6!uWcRQ{EQ26>esmh`0<2DF5o+443A>Fb&3gBVxtmKFHygW1( z=8FAY3n3#!DvUpxXGJK|7jl9_~ zdFt@Cxz2Rg*l9&Y11Vy)ciZ&2a>*t1Pq-UZvAFyL;h3Zi`PFw|y{#lt(K7w9c&yIW z`}&OkaJkwKMDg(k6SOF6A>+;M)YZOagY5AfG&p3<;xG+KAYk{$&Bev_}N z@k|6Q=nFI_=H?Cu{eVP;T51U(DlVpykdi_tMg#0&=uQ`^Eruop@VIPv+p0|)R#h-L zeCAjcW=-B#<{1rIf>N0EqavMnq<%({|65o{PWMhBC|wsb`9qn?qCb%L;~kBaLJI;v zG&Iy{c>QrskU5%X!)H|wtOYCrF@jyW*14a*y4x6kJdH`JGxSFkrKqGNljZF#F3+}2 zR=tc!MCzpJaZ1uyZ^$biAALwtk_o@ZnS@zc!>qj7-VvMM)y8VpBukNhJLON(?%L3> z+rT}*pJln(lP4gzhAjywS+FDeWzEbYy%X39{h4F`p+bSA4|+b{0pudVpi>o*Bf7|Z z9LjCIQP6b^6$d9_-FW!2dr4r9b?T8N(R}HzD^D@i;F`~BHfc~vP7F*EWm)-cz41Ce zOc4q>fIw0KV~P6^*!!@+#b!LMB7zwW+K@fmR?DP?$LCor{ZLRp-bc%PRvq ztlSg)M)E^iV>=6YVm5uj+Vu}kU^h%Za~Ovb&WD3NFHHaSOjR2EO*qy<*$S`o_kJ2| z?RcNpp;X;#=8(R9lrF739KqYj`kR%(&w@2i%n>aL1_drTfAxY1LevP-NkA#>A4-ag zc-s9VymQYW$ZpD6^EH5IH~eucWLgs)18ayNup~VRmbk~{V$kiyLH)xt2d_Qb1Nmd5YI$iZPr1UFgQ5D=LHCZ*M9Yb&H$d(2TM??Jo=v| z;@$FQoSjF8I0NoB1@C>Muy%TE4C!|s$+b3vWWvmy21#;hlSLSTm z?(F1Wi+DYVC(NBLJsLAPQTthWlQeo3{FklT;wf`3+vl8=`oVgG2!Z8CWUX6uv{qBTNgkOBC2|3WgpDZpO?N(}m z%4P@^18=M#457S?_ORSCr%+pg5}ZgV_iHAfp}*|v!?bb3GTfIhgBHy^QmVK?{o4ck z-2OufWYRl!0mPo`t|UY&)ZkagXDr`4ZJ;6NVA;Hk@YAI^%B#xvtJ^Q&@GJWP;!?%| zl)ALEbo;i-g+$&bE-Nc*-m5GO9DLkIJFJJ8KO1rvp8Z2+qKX)Ne5rKRAXtsezHIWQQ z(zXo7jQFd9n3!up0Xcyrt;W|h5>B>pYXqs&rorvwzwPEZ@j)w%0An03H>V&?>hgJ z+07wY#KM9&7%Z5!-h0{^@ZyF{5-~7_1}@ynP4D3M2;~rcYMSoYzBwDVD%l|v);jL7TgAmtZ@14p zy5uC%)5H51#D!=kyCdPimhiDpP&>-2{~(o%s*1`A<#l0ZH#9 z28h?A;^+J-yC`N9GD`2c8*8JXw2!B3LED1-?Gl`r7@^?p6#2%x#k+SGgW~lo)(SPx z?hue{H44Ps3n&NmOPT#fNb4VZ+Fr-w;QdvR;j=Gb?TXIBqrtQK{U1BYfYh|9+!Gu@;H{enUxUTv%EvEu2Jf`3Pstjtt!_d(ai{~ z0Q*Svf3TcQ4$BHP8~%~VuF2f2*;FyuwVu<=Lk4W{L>%|U-s7ovC-yIKxFRMd3@d*x zWfmRQ2~1H|n{0=hsxq%$A-%A&Cki6~^(gA33Hf!o#Xle~FI?`lrQs`8n&qSVm0M$M zYSQ(O;O=-ax5+;F%C=-!uKj_C*X;<*peD_!8A%Z|>yAWaB~f8L!&eNcug1TnHvK5U zhWOJw>X^ggrvLHwdz~L0w=D9Drvh1*HlkcDSPpuny6fyxl!d@;;7j7nPnBwXU#jSe zkF$BWpv}X6-OJ80{yb8+fAjMN<@Dm=$h)1*n|qxoLIu*(IVq{BwZ4bUm>TweLN(eA z@zK#P4%uv=jvQ*7QrJs?%;%(uClOc0RLUMB=l2ov-1HSbUv0KmI7XAadgYRni?#+e zedS*6*a(;2OAwwoyvlzE^vK(8{H^a(zE)@?t4A8HbY^JCgj0KV8+g^N4?a-L)q;EX zbavmn!*e=)K#WtEi#n7|5@4ED-{Y%KB_u*!58RmB97rP}gg>q*jE%RmcmrZrFI$qA zmT)OanT2xveIK{(p`COSOR&@UgthX=06d@@vD=UgILk3O+SCrOK>}1!*QPHjYFf&F z4rXHsf6jeZo|$n!=?H*oM@))ji~{tga*!Dq|gWhxZ|>tLr9mgZ*evSiC+W!4Q+aZwfP7oHl-?T#b$ z?O-2K2Ztq7MFkKpLlM(!3N`;IsfC|}vWJ8QZ%G)pH%=q2$1ZF7$zrV9jHQ+%Ar=j0 zBg!ICg$!$vfX;vI&-ifmo<*Qko}{U^oLzzJc%0-%6sIAdm~0R1N{nrsQt&-fR9oFGjUi}^qki|1#FWjk`wh>l zSO2_4QENxZ^U09o_c5L4^&Q#VR>l!?9@w!oh;!N;1!rgT1#d6Nxi9!-YyN36e)kP( zDN~VSuql6}0}^BR?&qJ6UHa2|s$Z>V8R6Bl>*-O5YjUqpar#&)myCdd{o1yNx-T8% zO(a1SD}3DcLMrc^mTROv4MLL`uO|?ED!Mh0@;7mx23s0ccHu^=6E+wf3t@E-v-0w>iGfE9Ps= zc-pDXtrJ$W2=_j+sddZtaDC4;-@=Vaqu47dW;<=+AJ;xnv9R_T4H_fIZs5a_rb*e^ z;XP&GwE4X4);pr`I4&vq$uYmwF5B@EB2y|jey04ZemgF=d^$HxxE)9iJSf&O7~Xce zT5sOmLb2jR!kl+U%AHPFzi7!*E>W3p-W2hkvlEFZIaBo#;p%Zy z5lA%O0-*a@TU?xQgx(z}qD{I|3~j;;5mTSJgdKfcAaf0==-1-W{JeRBKV^I8nuNN8 zY2gowWO?upWMt;38uhl{9tLyKNHgF8qzv_n0WK+Wx6fq~34<+HOx2r7sJl7hihcEIzxeWQa?l6bFUSQM3w8{I_?uZAdXNt9lgmwDRX=Tpg7_5;UKt(*_@)*e!tn9)94 z%4s+6LcO<9V~}7?Iqx$HiA$&K4@DA5&ReIW4pt?@xEx6cjq{L5HOd}^|5&Wqxn-za z^GT_k5FBvg8D^iZHGce3-C2Obgi*lfL>rMF_=YJc#4dHe^U8B^Fq;;TCw-WzzVJ`& zyJmm6;O)wqk^nBhQUp?_UDFTkUn_mUA|Ki4Y@gx$MG=8g7x*beDcW;*o9KT-31G>` zYh-wE8L@_WQhGL-&p*=PO+A-pxz68e^!r6HCC@y3clk1+;UP#l1-rvaBHmr0-}?9> z&8o}uDsT|!f}I>Rmd-r@Q7(x?>peH|>p3vrvLhRTfM6-sWAh+)Xs$AriG)k&IdscWLM_l_|Hgcc ze;1ol0c2b}y0k*Y>&%`890@JE)xL?6S6op#z`a-w^GB#q5IO3sqwgkN%B)SI_^w~o|>yZisW=3bCR}_rjnM*7eoGLS~ye{UMI!`U20^? za&OM!) zA=aW^sml`z2tKS-$&GhQfyvBhG1JowT*%c)AcQ|H!KTm!b8#8V3o2EttE!+`!n6r5MY@r%?LKkO3 zeY6fCG68u1mbwAm^Wd+$^ErG%k2@Qb79vWngp#JIh~ZP%%ve%53C@J=1W*0J*)y>& z?Z#}O^2P01`8XjiBdJp(k%lEFAm;~AC98_?z1m`Ytc*f$1y8~kwNt)Gg$V$dBMVE6aL)%Wj;Sijvw( z%(q-teoFj!PxmGqXR#Tb0+z`yO@*2f(*Dq!DSOFZfO3-G4pI}#DwGzE$-k}qHChSfY`T~%DHsFsZlgh$-FuDl>B>bEdG)O!+k7=p z*C%ECH@L1A0RTD^`b`M>^8h1Ai3T6dkp2$R-0(6Ik4)waC;TANgf4peVw@Gd~P&_sab2a-kYaf8`STxJ5WyE zrPq=zyvY&onUg-$q)&sp1h7&tC08$pe?}R~SQ%)_@p)pEO+^y8*Ipu~ue5x5z1u=h ztIx(2cV9Tj3I&RPxvN8u8+$4_gd6uHR*E4iilbI$StB6C81f*Qdq18nE0Urbjm#K_ zwypC9v&<&uJHVh24XtP}ly^7)Cte=y7<6LR%d`W?o#+eh*B7}B-$$kczgHq4!OGh@ z)9%XQh-d_dv|eThR|Nuwu2Q=*X^-1JGAhb=v0C5Ef;eA((IHOAqN1X}`moeiZz(`b z3?c@H$!InHE2raZR;a}_qkhLvcU#Tt!_rT&80_mf1JWcYpjreFAtiH3=z6=t#-iV# z)>gAv!oi+9w>KO(u!;)qt`P!$fJD5;80K1ujS}fJ++8mH7^vN*!1bKR#Uv8?aN-_L zu)O*2J@wRS3u{`Umm7r0sk!4*l!yQuQzQTxMQl4I2JsBmsC@q(L@5jS8#lO(vID-W zXHU*xh(z2eu}0-v;Z#2ka|07Y513l~58V9d8TGsHYie?kiTKH6$$cNsjNjY1)_Bjc z`^5C)c8zc??sK{ASL*^d4Ngw6#MZc#EcWZ|Pc48cbh388LQAVNCNrCzfC4bNL@x#k zppA08UAqqwrAbQVZKM%NX=rk@1)4a{Q+1sMif#*3pn7Aa^y}=tR3#@LXU)~s>3jqE zb50r!)>Adg*(ln`!6FiolT$2r2a>R{sb-B$75F9?Li?{*vh$-A||NnyO|i7 z85jXpd8a!o9G)K1_itfdWAyZaBcvk09zuyEN_Y^D8TV#D7BxAFwyer79HYyP*-mO8 zijwA)WsNZu7Zoh%fuloVO75!%;1y&2g;Np`K-p*CRc`Qp`S|j-zx@ZCmj2Jd!LYFT z=|%F01MDW#s$ynp-G7Xe0iCQDBsg}JuuR&+WcecuD&-FVbFIIXy9SzN{*KxSzbepS zaS=ncPXJ(w_xtTUFeND{hfdb-0i+pkf%DT)-TH!pbEzYkQTFK#KH=?L;NxMN-KU81 zzp`;V`Lg+HXLx*srBVVF+NYRORbw}QP&gUd0 zaVB3le@(7RT1e}-=k1*U0#F8%9r63OHx2FAUO!~HV`6I>IhKu3{O+P0-2Y2k5zZKe zcru@}!cX#-n8Z_=XpZ)qY{3W)LUV(|x+t;Fw(iHx%)FqRE6jZtSiS?SJU8La^JAKd z?xn4u6sDw~&@UtbW!AT@>!L@S=?*FZRjv?#P-}D~nx+x9+wPg=Sjv1FTFTo zBuZvxd_zzQ4&KWn$w)Pk0I&BBC2%Q6{Y`5jb{?HCS^iiZ^jI_76t5d}?2+C(PdAz=^^ zh4fob{X*=qXx?^fQy`NAPO$f~ni|X5zUNAvx>z9TzVN-`v9O6TmeTp}bOL5aK&ckV zr&TLtxgpg#C(=fHU*f+kY}upZ;VmD1rI5AY{}=9VtKDqD1qZ>L7L(q*-rFMzIW2F` z9xREX*6v}tzA~RBlr7)<4;lDaH#bwYz^Sn2z>`seMnEv!-|ZjEtgki;pkR0r{mV}r zKfqv7&S>b$x%^)qq&rFJB~rH(4AAzAixs*&=#jMrmCdY|4&4mM_V>;81n!51*a!t2 z$PK5TgPS+}LK?x3-HvTa__HTj@@lsjwc?2qXoF0mXaP7W__}6bM)z&pESow1kZXDu zrA%}a0wE?4#Um3D7vO-CNDWeQ8KcNO+G7i>L@&_`XB*W4i&|~YKNotnii?Wa$A?p(p9>f&>Sx@`m2R$48U8}u5cdHlxH;oCu2BgZhTO5uu&?s zgG&}L|LF@Y{zp*sI`y{43K|uf;yeITm1Q_c?co|V$VL_%bIr{>mh3W)TO3tX950!H zWG=ti+qA`_&s;I!G?pL#^Mx$S!0sqLyn2Ojvs=x=A`za5S~IEk-4hqQ{}`eruQ9ad zM6iplI6i7qiX8tjNu6&CL!3*ZFP!!bkby{fBLz^_D~ch%tUE=~^U1Ns^9}5aq)rC- zo5uTuT!cJ< zqzLe+VcQ&Dqy^bs5vK)NzsMHMqV)9bZ2l;Ks$D)yV?<(zwipXH2J+|7YFnAP*24&6 zT#EtOCv6WXYL57G^=BTf*M#+UJ~O~O_VtSsd|k5$yrHvH$~{O>e*2Qy@8F-SqlY~b z{6n$JjlF=X;El!fzkQ6*=8#7KlSHe>PNM^I<8ai%#GjNc-h%uqy4CWp31&OrII}vJ zB_Oi*gb(MTaC?*qzGOO*7Upw(Y1(yIzk*4hhelt-lmO@9RSc>Z6A?3kq}RCr_$L9$ zM@BVI#*Tqo7Amf7C7@D?PoB*v)EUGB_)1g16sqtpuke~3|;gF-ZQ6w7zwn8Yt&FDFB`h^*sgyBpa!BaeGgWw{=KR>Bf z@mH+9xKCfEe|H$nq{&O_y)`rezhYI#f@&~{{ZI~=Hp2tu?vlV^ecDxKTr4(<%}n2S z8vBYHvIq_f4x$RO-4#ac7t`_l_p>`SG7pIJ9~5ueTR-rbZuFPR%+YDZV~V z4;_6Q*0aeCyyGZ3wHT1o^k6phd-(#CcTpGX-|*ojb-ur?)=8uUQlv(j0HEb3hCa_E z)NVl^0QXdc(D8njDGk~}?*dURu4#U8 zgkkkIGRuq9)&94h_z)q*1BvZ#FNataKC^$KmQv+?f0H);-yg*OH0Sh+dut|z z>y!Lo`H#m07LKW==!@s$PTFnmf*}F|ua@fgf8fynzjjFe?>~(FiNo2l@@jK(4UPE` zaxVQJm%_;S0T8!N%e6V9z?*$Ce7~Ok?$i?>Oj(G8;qh&?(xWv#=yq`lq=#XLkX+vz zIv85|$lkd@q*punkUM@W5k1pWwQK9EiK2nZ( z8W}pljc9=X&E?2JqlELB;LoA1LBr1;DlEt!maBPgd3u4dl=Tqk_Y+J`L|jX~&E0Ag zR#|!X@3iLa3(lX(Hv`3f5*2GSl3sD1ggog|2~?;D^PKH>NA90mdQrQO$oRz)V&%Z*XtjASmWKDu4HrvG-hG&N%9glea`;Y{+~|9#~Kw( zDQChMkac2WVFBvC#6(p@0-@lGuRdU(8BepA+QBzBat{~FiYq~GeSP8qv*Ui^QM+oT zO4sLEEUiEuWBuzNgf=@46*lAdiFkY6y4C5xA^G}&`Q+++-$ivdZ~*$B1dwe&L09B) zKBQqfyz8<$%e=jA+}!&kM0%;y6;`b}Th7glmdbpd(Xj1z)|wg|oZCfK-!I^$9s)C* zYDeHpb*4PPtoV|Wl8jU)j8=~mq)<00 zW)+aHXpC?Zh>44u_1<9;_z!9z;xFZ9t@-_z&yl*^7tvAD&=f$&S>mu5NSUc)9v?&Y z1cAIQfeZ*sD~?FHA#~}Jrr>wjU?7Gje?nN;pm|)$u~o%XA%}F`UI=W9i4#soKvAB)CpB%(TDHMh6bXe*wgfh&%Uu^DnhC=?=nt*am zRYgUqCPmZlV+T>H$X)EuBb&V#ezPIRZ&N5>F7gt8X#EJ5!}UjDzbq=$BR z!ITBG_}ZoNEf-@#Zw?1mcJ;9p`UeZ|Ku7?GA6BqYG*}Ea^Y(wmYC1j3+E7@Ce7C*YzUnnFc_*YyB#waLDh2t8O|5a)TPK0VMdl2WX*G>4@t zs~`5VQ&LHZ+p+VSKG1htaw(9jF_vH@ldW(vrWndlb;pC&3Z$ z*zJWpZc+nG&&7IsgE!#k_qs>HsUg|1H7T2v*R(L)(Yi@0%bsY=Oiyp?eK@%|G9lO( z)Clf&xseStiQGJ&X_r+*D?*4bKHoGQ zvWtqEI(}e4qAT~2iRl?xA%u+AO6T7tNG+YU}5Tm=}~!nYi1PUKTsGD0tr6cX#v-Y_^SscKX)(# ztY^OMaO&F4Qz=kq?z-{KAcbIMBHzyU5$Oe*8w$NUBdk7Tv%g+lb}jyIJAR@qnJ=~4 zvKR*5^DQcMCfe3y$40i|8X1+ua~3s1LE!(t>-XzJ7a& z$|({c=m$7E!pYcU9>^J>6~W;7HRf#7_b0e@=QWqMFChJO9rie}vBd*~dS2V zHXyrn&TSC5e+f)8M_Vq&V9;VL)w=9*JNdcxJ0A1IgLV64wBz-Gz$|;D#P#q2s*(!_ zAx4T(e-@~(>m_+alK!jQr9p1QfFHy#$MhDQ=PshNN%MFXQ*}Yfl=L6$S-Y!PhMbA)g0qKx7IO`#2=&6SLz7z^GpLK>3z?Q(=*^Gy;)9_|%$(4FA z9j#ISz{*T;;qOKyqfb%uHn&?3j3&-Tk4iwMVjPfF>?E;6-=8OzP|Y(v^&;-_hLYzY zv{;^7-@4vLDT@pSgPSmHAOW<0OZoa}RNFYO-Tz&$-{0EMB;jab07YiLs|^mdAqUFPq)vDR*s+{Cm14f^S-)AM_a5gGS#Eb{wF%<_LgB=#f*z^H8< z&Gx7K`h|gyuheib>D0c~sGv~feVfXgjjWWzJG5x%5Aebu8O03~g=9}&?;EK9wC{p$ zxXh(7P3QbS+1%hJGY0dIOSEEGo}{7S<>;51%sC)ok$TT-Rlk3i0Bj@tUyHeX@&RsR zuHKwnI-XeUFsqg;V>)u3b+zdv?RM<2SJy!=s0QZ(i79r;~%JQa;Y z)B6gnyYoybiOA%W3Y#90RCCJF@bztxMJ{AQK{;z#I^YtH3BtRFK%L36e|;Dj7^t;; zWIhd>?c0H)d@a~p%6~ei_CKt843QOjP^S51HR~7Et2l|MdI%G-({#!qF|*&v&@CC z>gXoqWslHTPY|TCa0NZfNjCI5riFso*1JY{l`B|_V@+uw1Yu#$8o0ExJm zg$J2jHi~Zx!8+>*LnUcpAPsrny1Ke=B%*t;1u71flzVoX?eHD75OqpT+S%UnreO>j zJb>6|0<9;cxMmhO-&AxIYo=snlFXuMHNQY204pXim{L^RoJ$fqOpnV!u->Svg=dBo zVuZa?w>>;7OHJ_l(9&w2961Onv-x`eu;F;26Gt^s6#%;ThcX?=zE+_aMPp}Jl$_mN z3I}CW*ib8`%l(!oHxdCfzTP+K-9J}~38Fm$+UpUIAz?WjH=5P8w07@(&?Ik{OAN`Q z#h{w(Rw6Y~g#{>2bxrl89HCG}0DIoEqRuzoMkE#t z)vU_EXfYDhKpKk0iyKxO|HJZ`-E_X9s;MIfB&$Pl1Q8XvEM5Q88z%cCM2Ln&K%nAd z#~TNs!;!*4L>J_h(*t}KnSBo!GV$88L! zK^jc@oBRuDG(-|5`{^q{-43>fhVjZq#%-m;4&B})^CY1XfP+J)^@r2KbDr0e!oxv? zwh;9K?HrcEvXh0X8gZ2z#d$WN5&V<%g27%nBl*WL0I+N9Km(jtlvTb27M&h6TF6RN z-DOF}@BHa_99~cEz*eL>jSESi$YSzo-$lWmDkUkG5;u2oG(#S-V>}!hcK%?iuDa&%3 zKh0kQVUJnC4KQ^L$whYvaN%h14EWjEL^DJp33c@+ZwAp5=qK0sEDu9UUu=C4Dpk}k22C)C+phNv4$CQW`Gd~*sHpt<0tm;>=^M$qTC3pu zQ$QZ&yi5+abEmgMqgHc~^==(gU4tGqEw;eCnUjq=BBDyH&`*EjG*zXZk!TW$5 zFH@mhrlp}fSxCOdEo-3w2Yxyto!|-{YH5Vv8D3D5`4>wGxGAIZ?UKl($O4-VVPCAp z&j(Yb{WMkm)BPMkoOXbr<{Z{~{RDB;Hv79C(g;eP2o{2V2pXhp>2yE|2N4MY^jLro zW=U{&I?1A|a%G?BumBSA!9TfGcKu_4FLJFS!v-NSAHaeACyLjTC59)nj!-g+h}} zEw8Q?OO8ibY4F;)9{&EnLIMuaJn_#Y^8xbEp0V7#r}g@9?f}h*A<|3 zV1^S(mR;GQp*KGyeIn-`O|3e8Y@DTg0yt8n73>&mI&av`fBl6EmLc6L)P2lZd+hO_ z=(xwu@w$=CXtwIDFP5Kebd{<`QcJo#^dAQLzPt`v551m$X?dM2ch{P}a(BJ#xFYI1 zu5D8H(I%;FDp|U(&Xy&xIQ^%}uAc5wP{8iLsujCd=upStY{Z$r| z?oVZ5K^t)?D4sS8MBvsh@}C|VI#Y4SEdUQikRw8s!|-r^TGJWm$LY9^C|_FlX#DKo z@Q)aF*ZM;8xxua2DW6(tqT95;VXHS610wwy3RN#cDiV~oZoX`u#O zu0%=fymfziCn~Q$tL6B)bI4;W?&Vu*f>t)fDQ(bWblu#fqiF2dzlm?PJo)p}jsCz$ z;sq>!2il$WWE2%Cn7(F@jdhkeiG>B91{+&ZQc)!X15MUvJ>&ZBldzb7rsnkFT)r_r zZg`S398TnXm-x}>Wky4K+9daKF49?HY6yYt}0QnbO$+po_2p@a}adw_~1|V zw2}nn3!q!>pN^-qnNsud9WOQU{Gw(MfK^=l6475qc=~s4d0E!L06e_^>A5~avtOB)CR;02Xk zonybF;pOCFSbe40GqLyf%$*<8E_ZAV-|1f~{=mV6C}eYoI4Psxr5ix5#l|A~__VzS z=t)qZ=?!1EJ;0M?>FIy}e_DW-&O^u0m>6sA-zEF+pPV0*3V%K!qX6GGIt^7g>D@Q? zXU&^>wdV(%8gf1+iOQ-!fhl!(QM1cv7ONXRQrL&A^}Mjn91!|wLvi$ZEu=9-8b|{e zsh-%zI%g{?gPtF!Y{dQnM4(|DHFiPRMRztgB#=va`GlCEhZ0(O*0sAg~#|( zGYP^1zXIRqxEdSpuZ|jQYY8J%W=M^-y(afM#_;r5qLPx+#k7>&M1I8rHZ<1`b_7Ww z{I@uaCikn3^#LI6x0N2W!El%Wabtx+UK`{K8vKSYM_XFkPU2sys-)=%*x;{TJX=Hz zJg{@S&NWM>e-Bn?uY%XOfH)O_Nft*$e+Uz3c%5qFzcUJLk%ty|jR$f&Y)s`;*tE5` zMN0Hl2H0{TA>9LR-tda&idVF?-XLrp-Gq9lYpM;`R)fuyw>Lkrd{hBXJMqDo)~c%P z{s;nE7Ls$WpsyFT=@}W}B^7Rs&A!fHLj66B9eath1cj!nEuFyQpHrj7)f|~35&(m{ z(;WG?KurFX0;AiI0$7O4%|V@V^_(zW zYGNkzhv#zGgN%YpLd_OO`2F1_;Qfid+JHA_^X-u6Eno$oQ)7QhdBSotpE}@mPq(NP z>iHzCn))l3gubc3^0BO*pfBUe6Ci<5c$AAZyq11!=s`?+>(CKdv?YY~} zzXV$DFG&U(?Kl9~)Y`yq zKF`hXnU$c%q_5qNLffrrjQ?@Gl=2_OYU0vGL5-pLF6fI0SPsX1=bd8tY)snR@P+OE z+_2PcwcycW&XCYn<=*slqSMbtbIVmCPu)tTYG}EhqkB8|56r(-;mGtPA;-MCu9`L! zbrz*wPsGjiT>Md>qW4o)H2|ij=FdPA5vO7`D=@jo%dr}v1TxJq0PnSe{<+uxvEFFb zWK1e0KX1qJRfVc{!g5Fd<`c^NI}&kVhB(y{AOn(i0G5xq8`G{(D zwY=vsKG%JycR07NUVUgfjvnwj9z6WbYYksK81`99VgrbrXHuo3KiQQ^60c0}^i=@Q#!5{ChK)uWi2E>~g zXz2cJ=fkkxXj`lxk(H(E3SyLwE|x$TTs(}Sx+8k?{Qz8nqjw+*W2wm>R>1ROtD0pq z&QQ(EbP_+n`*Zp!E$|h^LNRmV4I06F``J>|8IR8e6Bgy-@Yyogytg1`RN*mWXox8y zE$5SAkg8ZcmLTLl{&YDSqU89h4`EvMo6b<^wW(@QQqs4D%77RZRuPSTgX+!?7{~IY z^KWXdL45^cmjx4}F)m>(q}GpXuG3#Hn|_@05<2ilZ(9CLO9nh|z`C=P$l4r{dnzhygV6tGCExh?i3Hop8p@dOF8Z58akijtJ}YiuXIupC#r=Y@#tZ8ss; zB2XWpYqxEfuUg)dawBJE5NyU) z)N=lzGBaITlPeBHs<7V?mV!q9g$!)|<-f_Nj!(FJeChA9m{%1hQn9pDDJf%_ ze+(>#r?N3|(ym$sF3CAKu*UJ9bfDhp6(^;a+uRXc4_NvvkIc+10Rv7efNdEHcRyWf z@I?uel=Qnm@JvijR_Y7x>+^$$kJ0Y-K+5EHASb-oURV|CkHu5#32S;#iYK%-Tc~U` zGdE|i_v8E_63O*v)8aIB^56V|^D&l|)A~J6UIl$L#3WOdonCi5Lye9Yu<1XF1^wNK zGBR|Q>ih}htJ{Cv#j4xEMn}t)t+hw+XjYjWR4(f^8iBW!eAC?=kq0Q;Us_E0US4EP zjO?g5xEk9jkhqwS+2^H$c`Ke}>2y5n@`A?RYQmwYmcTh{w<@ZNRTB*9XwMy#?<*VR z)hA$j^s0Y)O1ATO+&MYlG4)hY;gfw~U-PGPdd8U$2UPD{dhCTo9)J4a(e)@r*R9sq z=xp-E<%a#~Z1|wwMI4KuiD-c2>Yj#5VSLCV>*H8>SorW-Z*frJyWf7(;Mh z&70Bpia?#n<^W^!iA#U`=t~_O*+%wmOH1|mrvC-}#q&y>)ygP=K0I5BHU1I((gh&g z&yc!g8-8tbG>^0fEX~4^JuY!gC9hw+c;g=himl<>4&v_IeWbsfwl&)u)=Ov{fBFk( zAA%`D=EB?Ss{%c66BEm>K!=yz>A?BcUU##<^TVL?+vAl|II^Om^z(=RqszX=qRaez znz7EtdA$53C&_-Of5+|L8O|AX$N9R`oG1SZ`uCbRdlKKO7vezvO&l;F#OdBU4dMf1 z&0BH9ceswAiC@+)%WA6jNj~=lp5BGL6EJWH^_|)7l4(?hX3`sWdEFukJM|l1bws>L zV8qBAIZIK+5Mjg@m3~iw7VoN9jJF?;4H6PI?ES(Qy7i=ffG22SL7%t0YH0LYTD?Cq zL~B9sQmHEuCr{6)_=)njQM_Ggv553YvvNAE*XG+EUDO?Z{oqSDtg_X71|ghkbGmYB zO_EHjjdQ!U6k~KxA6WZ*;9|uK?R6j>#qh4UEl3jKAR3{r@5Ct)r@nzO`XMLb@A7`XJp6(jXm&P`W|7 z8%3l;8tD=gknZkoln&w0NJ;m%_}zQo_r8C942NR?hrQQcd#yF+eCC|bb2{~Y-^<~e z4C^-^(2GGGe*firFmc2(c*H0DL(b>=EqmDQtNe6$5V)qYwNnKInJ`Vk{7sSl`h(4d;jMp}j(%yB zzE~6ZF(>EatHEVIL>~8S>kdm92rw`_N&%0f#LkiXKWa57Qc|vSJmV9iH2R8t_~fBa&uX|Mjq`XQ2xD>Wj6<;fC^7;eH7RY~V(t?<8tcv?ho_WEy z3AdW%TVEfvlVAl;Rgw>C9jY9Eimt8u|Hv?bt3QcefV(DVs^eK`=~1WG>rDTqq-JOQ z!=hva*=r%yB|-NV?qExI6Eqa@-Gc(nga*3*9(=-|5XNpWwqW%p3) zQ?NieD1X8&l}}m-tsE0G+f~Q^^VwgWD<<>D2$JyPi`=Nzn4cZ){$+Jej%W=rw&1!{k)#1KlJ9G8o_67fy}3$ z^$5P=|E(H-v>}6Ir4?S~a;|NuS|VVB*SpQF+hj_)yo{@m2lqn({;S@ZQA`o=zXrYBqBf&W}4853E$pa=XUzL6PyuMz|v*By~ zjN^8!YHN@g)i92A+E84wM_(+H#YIg7Q0*RwLo<3B!_%nN?>rY22xQb7u5Wr1VOMY|dp z95U9@TMH#j`R^6=G)J3JmWM<{8(&wtwyV1uE+<8m@>{~NU=KLYF6H>-9)HQxvjXlRw3) z^-g;Aty}E>9n&RmX3@9>y4CR#b4lav;^XM*k{{twA}S*wxRLK(qI(10oV7B z|7#B@N9<>r8jSgV{~_EJOXZcJqis)z7rEZ_B|T}Z$gwGieaQp!2b01l%6;!acWQ_1 z1IT|?Why}qZ${2HMKF=zDWqhK%;Ky5zGUi5n9ay=#zX3;qa=%=_{NAQ10|^9(ij|k zgYuFr5+CDg+-+7WgbwJ4N`~di#Y4bT_Dr}6DI{{g9h;V$)`~!PMOnI-il}XAvc;b@ z5KB>HOS_QpVE6q#1+f96y&%(aV@ zQGG$US+CYocv!p4YJbc>k#O5}S4Ok(@ZWV5go$K?n&Zf8x<5l9=jtn|L-d+75Yi{##3OZnD?Ex$@SZ`v_%NZz?N&h;VAuS zQPq+0GjZ=@)E1)m|MxvgP213`WBsOD6TZAB${zod-FCqwR%x#O=pVEHM_}bi3HQG~ z9G1IR6A#HBj<}j{HL{u?!W22Vd-HJf@14HuE(OtOW>B%Mby`HRJpGg1{I9 z$iActr|G#?RqrV8gsF;kJ5t?I*)8_f*#j59O3C4IWYy_1rM(ATG35kCbtg{IzgERu zwvqmL%<3oh4EpgIue;y&;wq@`NjUOY<&5RQ z7|!4_w-_zi!jxe>I9}uGU;RTu&4}H@_U&We{P?? zE}GP1Rz(TY-bS=Bs`TQF3C&{ul-aGFE#_wr*#0y;vNn z`A`qO^8G1%ndh8tjaUL@_2%W}t>KY63&Or*`hYoiGE@x{_;RgV zRsR0NS_gCX{YHrD1W4KJuQjSBgYI4vh&(^UwE6w1bM}fm=Ux;r163}LYm#_Kmf8V zAtOEt)?i&6!3QXS6h*R(Z)$$%yX;zs+;8BEJT6u1w{8gO4gE(}Wt+#KsJY~m_~TX) z9Uf{L_G~_>kSmdagr&-hx-&6+(}4s!aFDcMSL!BupR%v-2i_|4U{a7vDo|6jYyyE# zdoyb^s^(qGneuo2!-__E71jdq?OORyd+M^keB>^^(iZ3pECoLoQ~w*i~s!5rRXE@Pn0DGVF5DnF5a}l`WMh!!90Z z{MFhH*3NQ!EP2&AuF7go?3i460uv z^1Rw%aK&h~weEI{RUpU1Od@K@69W@vqX@5bI3NQM(!ki5$<2r!Nk~k~Et>O##)lcF zpyaZvc`UGON1~Zgzx~t9 zc&j`eRmu^0f3T4OIl325hz)~JiMqZPlom$`0m(G3f=(@%BuIrZoF>`=kZbcmUayN5 z5@qcLEMAaJJh=etOIuBBl>?O)&5Uf@yJEs0QK`pBpLX4U87S}pp8p*&{QrDsrbitN zM}UNJpldnr)*4b#v_9Jjue9IO-}HK&65s2F;c~7ub~nG+`1`Z^%iR^RkxOgyr498?$zk%|#c8Wcv?kV7z;dyYv3u>LLv zhMh&ZadA&on3n=o>oD}x@oh$;XeVnU`n4=JgiboN$l>So^p~+zhkMrfyH2esy6PS7 z6dF@g;Ovl4{{^prcN|YMDIdH=i@AZx+%=p2cLI}2ZV!7+fN$Qr`?b27?`2>?+stAt z{{hJ{9_J6zuNxa!-J5f+kO)a0vNhxL7kJL>aj+(~hu2@a;&DkrfDxduw=JlAzyXEL z=9b$gdJM(I@$x-3KgFfBRbGU!!!_{CP<3(KnQv}j%D+Sfs;R)@OX^R!Vba8rsES+= z&-{ER_4X}b?aD4GZ;bJFwaVnEn=9)4m?jkPuqwWlP`~shzyV8D$j|URTtBCUq1F59k!J(12hhf$q&hiPqtKw@%vyRO|O^sQygL zJyETD=+$ETBg4lJj|R-9PsdBHygGpv^qb4Jwsy-E!LmUn-M4~?m4!DRhGJCB_vjm2 zzTq*f?^ic^i(XJOGh)L{D{*+NYdN$WsAxe+zkrAn399aW&|73}BQ#QUcn2I0U?AUX zv%%)&0*6yi60S#v*60Lf%@kHUuxW9oNs*@#feT zc+BzzJeE*>$w-UIB~P^sY6+qdyPj`W7#b~ln1D|fyNATs!%mSJ{`I8~GPB4|^USnf zligk(ZWNCDp+ceRTAx4t_MK}p;jLe}4wN4r>8hiPqv@HaQ2>I0NQzJZKEAl`rkZbb z6*hVp(jf(B4kS&-<$bofFR`KDVL1UNyX9evV2>%0-d8=p8%MF>9Zs|7H~yu7Dk_xf z29y39ZL08lGRO9F;6Y(;j|q#9Kf}ID0~mJiPyWE5zAbIOQltKU$EL3v#vdAxLdu-Z zLx(coUCkXB(b2PJ$_tEC zSyAQZUck}zMalhkV>elE(zOi2-Gp6D)gMZ9zDom*7nuk4cbmDlOy#M;d9NB~I-a>V z6s1?G6Z+l7G#_6h2*gAe+XlzSJ5!`nrq6uIit8QCZcb+me1sF``)Q$j^89UjY=!Tz z4_lKTDlkVqFiswx!f}IzZ6zh z?w4ev$q-L*hL5&`h|q?QN8E%~>yG(%xj9rOl3fM+SKR&9Aq6r4(+sgk;+R!-1EX)OfTd_T?|bEA zN>tpU2_TUMIKet)n`>RRCOgzdq|czAEF>k`c>UKr5AO_aq>K|`m`s=X_EthlwyK9A z{Jb|3aO*NF#AVc-3_^dBYbRu;tL}d1)GZ8$%_T;Y4ci-CA?Nq0bcmH9{&F|KXwQx+ zrI@O&QWzhi7Us{sNxKJ*D+#~%)`x>zX`dzqaKRg zg$Q*m8?11VSp0$4QipaeFaLV+J+IV{LM#w&xN5?kD#3D$mRq>IJ#_FyzrT~Kb*sD# zHsMk870dva$sUV_#-V?&C?_eH7%CMso(*}fYKfUffPp|v{p9Wi|V^&XZJNp zfm+!FQgpW5pS54hF6ti4!_5{GW5_<)qyZL69Oda1(n6edS{f!Lu-8Fmdshf}y%j78 z{SSALB;QLMtk6Mu)$Kaf)y|zsS`?*$%8ybg*zuVOing|I0;lz$9}Rqq1+-j093H;# zI9eKv-*+(X8zF^sRCJkW9WHm@HM-8}7$_?!FqOAoyfW*HvX~vCY-zNm&s7Us6!S+h z>raNkHF|qPB8JwwF%x51u6K-HKDhxDImKklnUr?(t(m$kZ~R9C+`9h^k&AyWBu@<& z2odj?sdaRz05QgLCSs6+e$@s{DT5ECzw*{M>3f8vl`r$8eCkqA7c8r{SE*;x9VQB! zbjuW7%D%;O6XHGGO^mOjEirnmH<3vh3QKWdM=npRS>a1fU4vdU_TbqDi zi1kp{sm{)5F|pHcjqh6L+QZg9y)(nce~#GrcR^K+&yu1H_9ZP@;U!MauDmGh>u%=A zfR7Qin9F}GRfQdKQ&aQ2j=^ZDpljpa5VI3yin#cN)r-6H@~g4-RVi68hmHiZpUV!} z;uAF0ew%Hx7NbQ+N82ql#O2Gyt~ae%_vo^O;G$LRtSer@j;OX)AMeE>tgQ63w4XAC z>$x2t5LW!m=vS|99V`9!iIQ3U!{evQ!AbD^bNun`Jy;yHpP#@HHm%}foc&C<>8T}o zRVx%E8Ty_)6a9V(bpj$I_h;PO>XSCRO&qGLrO>lvZj0bmyQsKU|4U{!PdJ>%e~e1niQ=G?#!{Vp!NI4ps$`pK zOOUb<6ckJ(+RTSc&o#MoFB^!`A#tfgF+mUVG%Z+$#9YHw14Dx_Sau_NzjK%jZK=<- zVAccdliwEe<7*#nKJV@bwcmIYi?aL}A+aPfn*OZK_4ei?!Az~KYCf?=hhM4m+_PiB z!ke62=yI>W!z_bgKoEC*U(C8I3=c3c*TXH=0s5Y)I5TVUg^@#h^3>X6F0QJo#>3?C zshKHhSr0aL(d*}%Fb3S`$O>{_yCukO}=cO zwVR2BrK?5>gj}M3&N(J|&V$i#WIh%Y(B)OiKPn{TeNaV_dZzsO%ee8#cU+|mkpwP|sMwka}ll}cKZ z7w_Z>RaA2&y4WW5M1WkoT}96u38_1xGKQSH)P}6dfkL>f1g*{Idt;5jZBTFC3R-YvP)E*hp-%FD9iTkTVW2?urxm3;)_b>dm-5vmVPUU zVOQ_xn8WAgtyNLL9#a#XC8Q4j zthr-g%3Gc8sGh#{R@;Pd{m|Lx)M6S^Z7=M47t^l~vJL433Fz>mCl^*^3_Tdq3c*Po z=sC-%$Kks^kEQwCnMju}ib8#;-{A&P^=?y@C2-S%WwDP(`S5N%Wnf5&d;%NEcw`PO zx$O$U-90pwCxB(rI`Pqer@p4PmZPPCfIBYd$B%G@1V-0o%vs9)^t_I$loW6%r*b=D z)uF@sp%o^}Zv&iGFT;BCSemXhG&CeX@bf|l(A2efGA`>)-#x9+N2Z8~;;zG=GpsrG20jDJ4EFYcLHu{C%Z0b16u2Bv?U5PB@`(+~lHbI7U<(I)A+N{(JGzhTbU$ z%=r!AQuI8Oec}B_j&2>5VLU_5+*O|hJJ!C*N;v;h8uw(hH1M`4%)V)XWjd>w7z7g z%XE=7{45Nz(YxEZU1elsOkoeaj-;co7Mqe*R>q8TB7sgrSYDZ)?ZiR6V6nHa94?_c z3Gr!fBqUzcVKyOW8km4q40%~gWPApdu8ACBJXrJN$&pezXM*bTKLxxxo>k&?{d~Be zYly4{jC@H1k{DPr>S6tP6lJ3Fa=y$lurC=IZw9|t78HC-2@b7(ut&d z+steJ`^tvQdax~K_qNsSR&C4Gul%Ke*;REdF4Nbr`Q*axo_uvQ#i1MD3`j(fg&xI% zk%Fuxh*y#Blj#1?>j^C`TH6asst?NheS`yWB@cy=ys9T-abCQRu9Euha}YIf;9Z0G z3&gBTcanCCfasV;bouXc<>!q=Em^3NG?Z6=b}bGiKvKg6jeq&X;_nK*B!Hea*I8$o zhOy%DM7&1_zo_O>I6Atsir+44`dw0qt9n?zeLN^HTNr4Q!c;0H={$O@!hmWv9%Z+8 z{Nv|;$`$dq9fv>IUuyk6{zJ=t{Il87LN|a9PWXc2k7r;&97yi!BbB`siA*nl7gcBj zOys)A+H~ws#~PCkYZ&a>eXh<78~biA;IL(XSSecwRlwQa{EjXhyZx}0lPWu7^4yI6 zBWnMx@x_^@>eFe~c771Zz|5WBPA2=@`S1$>dZ;j=zd8KcRxI~d;wiY}IsgKq;m{sl!}ZsxHaRNK za=L+3cF4Yvb=ulF+b-p{)#40OypWg^X@#ot^zrpGffy;87jo0Qd_N6)i!H{T_let7 z){d(*0|F((u(#aeAyNT?<0p89o2{huBk=XYW!=NfGtXbbNf|hS(-z`pzUh7$2{TO)J_!X zUMx3diy+FeNIPm8t-Kf9Y3d~8Uy@w@Xv;D!y{|msbt?pQ>GGcy08r4OBTtF(B9X^g zEB3nOde3&XeY!QB-_q=tw5-nP`c(x9b<{$7R08U;LiAVRF0ax60+PDqa^I_!m~ysS z23ZM?fiXn{mD$`YdTY1Tex0O^yt*qYg9k!enKvcGRqF?=`rd!TyyzX5c!nh5hEE^`jV6>XDEStqI;HML z9EG!<&yan5@=8lKmO@3(xzk3xkUd<(zap#n+4l_jv?On00O z!p<24#G*{AQ|VNn!XE6{JYzk}z)!QM5;W9`D4zv%1{m)QL&{vMVx{(kWwU=oa2d1t z(h)Hdpnb`Vi#PyMwZkBTO~UC%63~9sjrDYFKMfP4uR#j=%*Eg`SVIgrU46)9f>HD= zU6Wpqb)T>22{tU9`x(ncdIQ8Wygq|tak^y{`jzM@otPnh^QxOt@B=!vm}I=PH?g4J zZcCL5tz6o>!SPWVvdC(?O&^fRQ}ZoR-x|;8cv>GN{D-D1Q73T0w1zr|8wC^d7)D{! zTkFc=nXlX^x87U)*!~Wr?A5@j zHiqKDwbSccImCX`$(7AZ#y;aKzaBGAivD#ix%bP*Yp32xTb4A=UBML4-^bUjV8umB zi+D^mU}R%2ALr&6r=jAVkfar^VI!hwwLHs#%q6=I71sHWe+}zLrc1!+4lUe&=FKdk)(2Z@pL~rY16AnB zd)6lfewS#5=|L#dyM1Yv77m}E^I0H8Urm8vxDISn)d6irr4s%VPN!R>YKD`o1%0w~4XyzF*RW{Y9vnec;9KM-xESav$+7061U`C&iHs7ylZmRJswV zk-wI`mh&YB6i-%Xsc4d&aAV$DGT$I-?`Ffq|1dIhpVpWi-F7@)8D$kVG$i(-Z<#!c z!DJn^|GQL)Ib5Tr)hj%!*0MDP{7(|@Is_Tg)YRkMiQo8Ui!-cl9yP#`8!J%IlvhPJ zS*Uog3S?POCbUL<9i3YL_={2H4-JzhXU7&w$ms+hysMv>p6>qs&t+&>?vH@+TdaM4 z`=Z9i-8njVVge{N37R^m2Zi2On>jYSRRaZo1J*KhTDh2l7C*!bCOq>d#evT+r>US-OcLJI9TPMnkLkz#F zY@-G!D}c+g?9-ntFh^ofDyrsl!~~~hGZZ3&SsTaqxw%_#^t5sbiSZs&vlH8w(|!#f zpFx`eW>Yl@8(?R-@JSND@^QqoysX1?tE-Po(CPRd5&pe+A)7}HO1OMHsT&x!@C-_~ z&WWZdtHx!D0YZB_y-T7((j#RTxU$RCUr`uCL(CIA{vGcNipeT6av^1lQBK~u<_tB7 zufL0mbW2je*P`u@VQjo~7n)KV&b?1+E#g^$H|kUj*&rs=)a63xubZzk;axjq>r?(J zq2clhq)Y%vLS`E-LrahxB@HE{S$k3J>1cKp<`UFdaJsiz-QZ;XpW`5t@;x8t$Sd6uxI;} zYdfJo+I%S31(5o1i+)COW#IH(5I_iUJZ$!V;ZH(H{6Ypk8<| zA+H8DJ37g-{O-p8E;J_i|AvD8+p0h#-f^*ef;IV6nMmT?;{JF@6LRhO`Q5*V>`MD# zOPVzf(CTV(S{R)eODbjg7L8e_%yc($ygD$D7n+pxcTuMov~YVrl#g>1`(c<3%c%uk zJr}<{qN)y9CVTrf&D(u`ct=d!3}`ynP-H#sSGQE|xdT-tIj9Bw?WIn&$APV(QCmhN z5sT!s)(gKs@J|7Ty}kY4^0M{KZ|o){0Yh>r*~dcGWIbl658El1(<>`urMsH*6*l<5 zSt15cl6g_br`>Wv_B$yF6xXXl2t=sYN+CIaDr`=P0&ZYbCkrLRsh*PvE?m=2`bXP! zcS$?>yHmb6A!CKRp|5{&I`G3?zUiscC&K zi}BEIIp%>j*T3+MkwTd}zCg3RfO7h;NZxg-J&wykp-;YNb>I!9JIdwc@A=MTcgHHn zag{f6(bTNm>BX7vbZh@Mu4H$M?O`A0Ul{Y2x1aGSFxddiG5t4la;44rKA0$V&z!WX zf0b9ysDXhU7ro$!*lR_GtFx#++m*Ai7wg(NNf^5xR4}#H_z?Bwkol~gH&Nhtcc86D6 zPRQ*uObZIdi|vK5v6*<8ys$j-*45F$W*ucEz@%Eqo~yAB-IH=J`1UO>E=z?a>(B8d z5n3eLkDu=g+RBnQ5(#8uUNI8zg!SSB+SPFT#kwyUfMl^VSQ)dB=9m@7D`KtIqn6G zI^z?7dUUwFAzsgQ>q}PJ$it^vzenH8e+&OMmt2M!otMl8X=P3f)1f6R>(|>^W_xF( ze-~==+u!Iya~bihrVFF>t2cx!$1_J;AFl)Fo9iPQs|!Ke-pBNWB*nlPscfB9?u{~< zb9XfVNy%;Cn@t&XQX_RXSQf~WQ-az9F6E2EImw5LwO@zj1x3vXuOY$jeW`*LWBKwS zXkak{oF9Lfhlzz$0%T7`mkmIL4dpNw_+H`W(dwu*e;+b_e(-+5VXsxEMAs$Gw-ZTI zzaknlcmOHYuysMYkLe7`Ed)5*`;B_wT0<9@11Ypa1Bvqm?P7;;714>5OW=Mfh@vE2In` z1KGOtCxaLhQpzG_z=VBqiG()6I(`DE5GZVt#f#V2Iq{fMd-pj{U|@t)%G?d3m~7)J z?p}-H6(cKc$}{15T>O;RZ?&<0j$#6uau?g13c<)c`H7?LTH@^7Z`+><@?HxxTfLJ3!tFQ}|b zgN{EW|2s%;^qNdcO>Mcn*iUp^?HNiJQ#KitmR69Q4*K5t5_Ry$()slx)+PHJuFenH z;`fKdQB1FTH!m=lXX7nCZ}kab9W4*8C-LKC1F_uwzX3-ESSd$2HFjj@yh$XvtFp5^ zrt5eO=i+T$#y$te$s>`fj}bi^Zh3jIE_k|Wo}a`$;e-0lqskjmOnsEN3Oc^z;MCEq zD+^32alB=LF^uMT-EEx0G$?+}YE=O;NDhZ7H{_dJ0R!hR-jT_gYFu$vf%oFSpgLS8 zLrO!Qc3nN@3mHhMA>lw`M^=X0am~fhe~pPjDO1M7a1F^qlaKGwPE1{bfSf!XJq}So z-8o|>naH8_o^1wDXF;LA35YjxO-1S2n>;YZR^c3CL;G%gKrsWUa9tw3B2l$TH?oj$ zv$d`5OK#>!6tPF7_=NZ`hyn(By_)ThqW*^LY$@pF^(lnRGs2(?pT3R1i z0mZbQ-}N^WR%~^G@Gt=*81u7tu@tiE6eFqblb=Z~3v1WH!lLN-ULkx)or3`Gg)bKS ztU1$6Ft@k$2Dr@3R^w%vN@-k4QHgYEi_JfZMTViX`id@+EDRi;5BdNJ>&aSfCK0Z~ zseebxR~VBO5c5K;XKGVt-FZm9YGg^U8lJgZ4wtS_IlFU#mmN4LvL+G^SGRf31AZHC zU)Y0Q!nnj9fjctL6N#!<;r13Ihl4%+1fOAIYHGy#=#$$su4GgtnIY^NpLm8r_P%7- z+L4-pAqzA*Ztrx8*6__tFVDwJZ>~29AJTHy!{H~0Ibu7u-Z2)dP%*w@AaYdYmw^rG z`kgCF%k)o8>5iYa-_p-6dsAKa!b(vbr_JxvwiT2Vw~Nyc`?mMZm-n{iRg{bJTanrw zKU{1v;3a_K+cK1}@W^eYUK62r?@*Bu&U}3#nLN?IN-4BOPa&<#nSN{O;$UAmw^7K( zTRVK;JgbyiI_a3TaVX7i&QIFpU;4PZUEN3h{O@WbQVL^G62Cv0syU*qniLK%57dl9 zJ{O`gMj<{F=P%s2Q^h>jZZ`bghbfP4a!MaoifsRhBlTdIQSJ`E=*M^ zueLHPe43qxp7j|R=~9sCmc9>?+{KaQ*4;4bm4D*VTu%@^^H)AkEQxkpEL~8i1&L@_ zawuIeVRqd)UNO76z5Oa;_M!vnn@B(QQTM?Ghvi={<_Y68^NkJ7w|voKG1_}$nWWmD zEYGEGI;5Qi1Pz>1%Pu^UOIuJS2smp`x5+~!3{Aq5D)aY^CEr@|HGVd;DK3}Mgl>Fk zi~RlZo3qRM06d;1sOtIp`n{%TA*%C9xIiY`I)41l>BYqK@?hM*%#kK@&XaJ|s~gr) zVyNaI6N#ddK7!ok5zwm(L*Fa1w|f|j%E~r1Gdm48Rx8PC@x$IF-PPx@!cw1{{L8*d zUTlS#X_f};QRolNqSHU0R=0##Z{gi*dGGdg+D#AdkVMWV>aWMT#dChvCXJHw)1puO zhHZMrimKS!l3|PAiMBm{qH=LYB122g`0a<84-&{Q#3hCB%O zjTY{JG*;bqJa#%F``&xSae} zOoLekMa6!^pe91d;K)$nw?Yi?X73w9b)+=9+tpo>j!zt}j_b#G1rFMhfa_Oaacah6KfS>UQW zU!0m-IJQ~rGJEOKXtjUWrP?2so_ky05yG!MJ*C@!aQP^Hc)#b_uvu-CSNM=M|Nwnn(diA{3#o-g$+pq0Tg4x$o^$nMg{-MSk9c81AFsG&lw|U+uQsJy! zSGLV8_Q3S7r^G=v8bZ#m@QX%ewG*8fkaQ)2zo+VEI1qycSy=s(w0EsW{{jPFy&_nV z+_r>?HQmxCkwWP8`FsK}3Fb0&Ly_jBj*i6XD}G-=sw@5-M{~|kyvc|ALfX*82J`f=(F^E{KlDWB2`KgANpGF~` zu!ZBN5{AJn2j(-QKq}vQd%AWn3I&_p?kY8DbsC&w=fg8+E|-6$TraviI52=05+9!& zPKFWnZyn}G6=ITu{ORv<-A5pPtWoVUAv<_gG4|Wpd&!GtsfK69^>73_m22o9TW*+$g$Ewr9R^b4wk!XNV%`3UB@TpCglD6L_oQ_ z&6Gww&WE!oB_Chk-Mu}US6udIG4^(Lc48mpc@0<**=niZ(~1 z-3zR?OilA_Ui~1QSIXiH4f}3QV`fUq?IGgtZ#ZN*(ut2NlgOeDjKnlyDA0!lCN_yN z#(DnVdrZG> zQpjZqc^R<|=s|JBvcLxt9n_(3KKC_gWwMSU)eh=ffinE19-S#bSvi&i2T@6|7 z0BW;{KI$+8|JK&Ca}P};0~vpJ`jsrUn_C}+H>2kBwe|6-@yO5Z{I_{U;wDF0yr}J! zF^}FO=k5#b>NUz&^@Pmoa0Z?vJ!jCOSdiQNfmS$b_+gP!LPdhpcV+RlhOLkS(=N{p zwA%I5hle)|65-}vmye8Kw|d23KN^jACx#F}1?pJLFX$s#M-wNuq>>3$D21ipyV9nx z-Vz{mRS**dL8exx6+LxOzFAEFJPHw;{$)HTbN1;ACDvZ?n40e)i_Ypl(qVOL0#8PT zcx(I8?YYiYaA7jr@i-%`p&;fmER-1JKwpJ;ffi2`wv_ZPXM9xTPtyH;)XXYlSt21e zL0|_e0q;7@Iic`$D{Xtn+Mb$EEbiOvimaa`4FUpq0t&WO1tUl7GIMO>ebsqCzlv@j zKE7$t~c?< zFLNp_PGt*KGF5!u&@6=UA$1Pz&4E2)80gNLecMHRJwF~emc(4Xei9l1>Xf>X(HZ@E{gF18W+n$4GjCzB4fDKu#M#)|sU-CZv2`4WQ*;g>WDEIz7xw3LJ zA~b2Q_>~_#rnB_v{k?xKf$6MMb@!LB2k!0VQR!! zz2PuI0NaV1-9+jA`lXeSm=Wb@45v=ueYJLkOH4IBGn(E-J`Z?&DXBvo^|;$q+weLVI7ta_ZzCj${dWEh|_h(X)t^UE;nV%x?E zOiSG`npRPR@3z407YKqM=F@|I>gnsl#Xvm1aC>(UI6$I2EuBngiXT6rMQBjJ5GT!< zp~uk>kY4x^cZvm-ia#puADwnxNFk^5p55X7g6CJkKwMsEk@v%i(ecHCc<4+((t{Yg zXy(C4qZ^Z_|3iD@{X;qIVApgyz5Hba&6BOGt^8QxaKlr1;y_S@&$)30b9&W%^NTlW zE?By(>6+Wkv*u(eU)<~fUDbqyj8yMhJ{|)>zsj6m2FCDj0bTW^h%sPn*DQ2kh`Hw= z98Tip>aJf|9uw#_X!M_@&>q#1?x~JnR0f%i%9)#b9FQ*MN!p*296C+Y^Jd@%sCo z)2)>{0ZY0Gw0H9a!!RTE?vnO-GS@>}<~xA&G1lj7+_M%U!7F1<%}y&Tx_+XcTKui> z?)11L0fg7?HO_zk7=qpoDRXn4w8C{Kfv>*T8o=+c9CZa@=|2oI+Y)eD{e| zM<0^<#qPD%#qQf2aLfT%fed5Lp@@%4_^%QHdAcej&stECLZl*lW(MH036GsTZa`V2 z^=I_`rteo_U+t@0U-NKT0c#U1@r$+KmLS3G1wkICc6=A>pd-RC(dKW=QdtE<)Rf*TPY)4A)GXYaf3p+3;-aGdBImb^ z4fkcuz-7k1zD8;=P(eeF6!71plla|3SuBHx2;W)bsrs}HK0Ocmkh`BzCZOc#iBjHv z>w-;Lbk^b1#13`u5NPE;es>KzGABbMKT^~08 zF5K~9*8aBBzvSYqJOQ^KIOzseo(E?hp3Y9=d~OD`w8HEy;T+2N%Fw|<_Vt)?|ID@( zLxRwt?zIi2Ufev`Iw!`nqT$i1_l{-{UCfhi(N|Y=Pv{I*5qc~mo_f6e@Q}&j<}e7- zyC&QV$J$aq`PR7}{zZ-GQ$>(?9Y<(eqN1tko>t=6My{6}s>lB*`o-ew){PLb6+Q7K z4n3PLxX-hWq@J_>`y^5FYlK33#f87nCJ#BN)aX{E{QlbJ(Cg2>m!vB$eO&&nrwIu% zjB&iCG+ddP{FRjwF2CQ6t8to}yN8qcBU@R^0~Ww@=xBwrcT%5oouXOWluALN8Ei~< z#2m#W>CvO&q{3mQW~Zn!M1SVO6MoIk{QFk^z&NjGgUE|tMB}nEfjiTF&cJ&fyw2(%!jUZ)0h{c!QwgV7Xr@mY6govaowQ}=XJu)Lp1QCX!>*v z^tli;Uf$n8`U{r$(pu8Mfb!cn*cTb*{C?`Ll}{+v@881?eIK5EIz1(n*>}ZfhRY8_ zpqIHWC@9c)_s+G`9lǬj?Efx0ODOp@0hyYH^A#hqcw^%ces6dkV~Zxp%JK{ruY zj0^3W zW9Wq)@RJk1a`(N8rJSlS+ZV`mSo#syu*3y|iv0Sb$h&n73sZzy9@`d3T@c z&nW-Qq?(cAw|*=ePdcevPay)O>5ZOnv_hqXh^ zII=odWRFizkyCc(1-zKuYfcq@y-;)W!ra|IU;bG4GL2;kj&8SKL8akG)Nmx?);b=f zS{e^A4;%KUL0SYzdy)bN@M{PdD_w_r0rDRjpd(<0G{FOQz|57zwm^*WC{{ zK7;P}lo4CaA2EZ&(l<1Omi$lna}F-9(V35ms;XS}$EXNi-asfeW}wQf?(75_+Wd#j zZ(@Q2K{P)nCo|yAD*q$Wz_(VW;T_pFqCX)lZBePW`++u9-={{CBR9HZ#n$Vzxv8eUs+l%2D z!s11auVkK5>+$37rHA@929E)ip)Ps_RXHp=S{%1zEE&FWiH4ySu9KCg&XS}?#f*^M zg|s6!YCP^2g7_s`JZ;_^%rEa0$H&KsaEn!DZZ;U)JR3DU_O1IOaHk~WOoAI6&D`(1 z&A`FxfsIQ7+Am0~BN>A_h+^m9t-0hE6)&qKApphxfV4>zdz>aU#f zf`BV~moKdd_vp6xV#m_$vL=~T{+k5>lL!V<|1bkBJ+ptUo_8GG^nB3xy1`PkJmA}Z z{3!6OlNFmTH7S;LH}}b-9Ah8psgHdjM#51V?do|wI{z`!A|-EQKMFz)t&}sXFRRp9yQ#lF41s=lyQYq}^~vETPneha+R8!wC=n4#Rm;Lb4l}vXlZ* zOQY{UR`JLpuYCfnKt7-Le~zdOI_f~CKs)EOZYauCXwz2M2~R4U7nU2u zCZ=t?=8Hwnjt);27U6Wd-FUc>T9~=QzjTes9Qy6q5+K(3;*Farh;vd3(j@NM)P*NM z+`R_jZ{YYgH8)GL1-mIOx+dCjfkntp{?Ln?_wsl&6Vo8~ebQ@|wK6kG!>H+i=(sU# z^ym+$FQ=?*B`D(3tg77E`NpKO$$B!%M(~A--)Y&|(@AWb{OoFrjUzaE-dFfIgT71yOHycQ74SNPte~SBX4f(Al(0&>p z`^DptfOyK>LGV%Id?hl2*Be*V@7%T}+=3YJEyl*#uWo$3@#M$fuq*|RucMijWw>$@ z-(SYl9${X&o84>4WwCvWnxJ*UV@~4_HOulyvlYIg1j7Qg4(srg{QPV_*`J|Y8=-|q zI|ai_{(E$dC6sboN1*)?@Cixsop?CGw%IIq^_|=KRyU+vO)Y5~JsuJ=4Q-HV^u$y2 zZbGFM$K#d6D{mp)s|6Z2YMSlKi%%RrxXIe~oDHR`7ZT-m-Of!9V-#2WF|ENcJW(+R zV!VQ3G(_oQmna+)aq(Mj4EX+SeGq%ApZ4}%@5i)&f;>Tme*ZrpGcF1aD)=pSJRR}5 zAvxbNlKSr?p%xa!d3hzlAd{D*?a1yPOsAiQ@Z5)9Azj{8iodMo2%lV$*89F0xG@qB{Yw>$TqJn8bjP=j z1kAnY_4m~^9F-4=!t8(db6Q)oCeGwa8&7>!aN|*s;CXaxO6xXEb$z!rGOxBT?Rd07 zc-PHfO9@Pryhf?EUj|`*6D;Ol63I$Hn#Z}4vXGTCgY9AhxYoWL&1P?FEuXDKzHZBhenUQLX zVV&#Gv&+hoyM64&bJacUpYz zcFtf4A|~UDK??*i|5u`L3#`A&N~qqwOAG3{GN7&roc@`Y_dNj&mc~Ss4Dk0;0B7&! z_9iSMg4$Q^8FQ%g$Evx#LyBx5=NUD~sIAb8Xv1A;mDut*Q&85oH90DZaZDKxHKd0Q z?a%D2q@pbrAR>h2+WFYzTst{Cjm^(XP-3?&+r`Gk$^2u;D7q?^qf>}Z!qwV4H_385 z6xt&0U??!jd46_&o`W?TMFhy7>(ng1QRf9kzi?_{;@a9)b-rM_r?7~YB}4z)w>;mY z4YCjeiJ6AvX$$j%HcR{dOf3%87yVP|=pZdGBk>%Qg1_C?=Ui6k@kbeJOa7L)vo_ed zQ4|p=-&n|EYniJ5*CAxKpU7iVa}wHK)Xa)q<$lsvryCzuaKC+2N%XVz3tF47t2ee) zBxo1$yXsnt6>0PXAklA0%Ij0adL=b9r9ehp{v}Aec$(t(zy88wb(lOHpi4JqN?aKr5$(b&(XlB(6B7Kw5#}7GHoqYBSfA z3f>VG_Deh|4^OW<BpYxfg1Yb-(#^sm6+C6}P-0UuxaQAa8;j15 zPKi0mk!FUydH#$7+=a9A3w=XeqL;EBs+g6A;VozZenmyqoRfIzvBulYQG}QJ{hz^7 zj>F&bWDI{Kg3x_{eby7#G{v+>?GKCZ>ZiHYxb65hf0oJ;|6MKY3$l{cgMW(p0l#~= zP40Z&X2y(Y!lMyzv_riwm8vU=CzQyG+tJ?lJx6e60PWc#Ta*!ZqtO@`s)Tm_-sP0) zChUPK)TsGAbFwDF#?-q?QcVS1pgrkbR;3pAmr04uU0z4 z2`I)K9phtL++1XJ!&LW1mO2xhk<#y~LD=PcGiJA2)4t0_91m)n>zl&2Z!0S7f%dDJ z9s0xHJl2^)WyluPQ}N*y64KQ=i?8TE|Dd@pcwZu}ivdWF z{Im?=7oyl7@sS%!F@kbo>*E`opGf}eQ6pALaxl#4ZeP= z7bdc#Tvsik;q8`17DaSn5$8+vNk8}g)|t#Y9E>`X=_s?Hh`hmkooilCZBfMc#TNu+ z3~2hO2wKDZot)BsG59cZ5kBW_{vw76swRxj!rG#s{3oGC(u2jc7`}enW+Biv z07BT*0ya)s*xegOVPp~&71x`N5A6@%>iqznh4ODA5?%i(E^uJd~-VIc|NhfH;NMUicj$lcMD>10wYwa5QAZI(sm}cVwSo$DKdz*a!{~=7v!Bg}=0=Go zyPyMg$eIJXJ~~V>@DXYddiM~wB??;={k@fgUh_ysTGi%G^*iQ0kh1jgILgR@^wE^W zgbtI0z(jnp1D8nL5B}^5R1f7$d)YlhuH>+^<8epn6Q*AIQ}( z^^QqjgD%E&^)8uO1{4rO_9KMfRTlplosyH%dI6{ntQbZ!ZpIoP5{%`>C9oNxhR{WK zCnW1o2ca^BFsc%D5ee*nlLSXR5c~>1`i1>{@>NVjPy||pbyim2N;sWr1 zhJ~TLV$m3=w)i&s0ag7C?jFoFHd(EikT?(+#Dt{iRS5rq*d#}$`wo#p7GHSon`QsB z5dYrQT{8P0|a8nph)|kfdoe??~PW3Ckvz>33Y=a&)2vHD6D` z-b8emBiP=Hcd5oOjo2Iy@pGJhad1 zS+yJ!6(;w;ovLfFNwV7Jp~-RI^n&>Q!4{7gr8H19Iw_Fg@>wn8&? z_}?y7rH7Jxg{iPS5Ow~Eqa)nfT@5BsJ6^+!sQ{yu_~!V5lu#n=(Z%)EIgRjU*D>10 zNV=4!CSR-Pof4=+g^D+n>nZtx+{f15mhsqHzZ@e&p4FJK!^uf;vSfgWt}eOBH+uG* z;wV%T6S;IgL=Ahpor$-kn8@%Ca4`=XI2VTuW(V`U35oK?`_SJ&+g(`8FuQ(l8KQKJhso4kI9hcz~#ZR<>NU*!SkW z=E<>?=@qH7zxesR5z+CcncN(1Xn2Xc#rKo-PS@JjIgcs!gP4{5RI zJ!g+%O4#@|p{k(~96UUbb?1ysw{4=DU)1M~p_O6OcAG_v+nQ_eI5|C)k(JTkJaG6@ z^!s{Be2I>MiO4UY!|>s1PBz6g+WF94lciwk@6_1{cnU**2=J(rat0av>3Gr-Qpr-L-#BE1Y9sNY{K1C>Dz^aV|O^l=Fc zq(7W5CGG#rtM?u-9sXIERFJcJ&JM=6o)v3P=wr(yZChEIjCdZ7jm|~ULf2j;u$o*5 zU|KH>56jz9MNlg~tRNd3Z`vQPyd>qXOCC_}RWHAK2lx}LVkUgKZ*b3UHEMUT05W~? zsw}^>As+B!M`4pM-?ifKRJ-!W(>lVu_2}riGE-l?I-Xw@HtOx+u0M#r1u%`hx&oAt zqAy-Wlh1T_N2&pugMyhQ`>l(W;bO-+qozB2030u3x4>f;%TGQXQB_?kGV7AT<~_6? zg^Z5v2=NKk@AR#8LEikexFpGaS8v(DcvWa%*@?= zIlB^YKyVC4p#8o(X^2Fl;)EDH`IP2C|*HOKvnphv39)lK+Kw|t{P%NoWZXaY#^ebz>FFmo?q~T-Dd@4B0ec`ew8O# zG654~%{60lSb`<8^Gdz~YQigR4_+doR5t45VoeLK>dI-@}7Jis-^Z#_YHg!+I2W zJZ@(QfG%LV*!=?A?*gKVi;F8QEiHk_k?o}Y7UaP*`0Po+!EMZ@RI?FOI9&A?IX;fLX|%-j{bP z`}yX;_pcAFA45`hnkosq*@)?Ch-(UKMU;seqgbbhUF)I$NZu}=LZM{}WwDLeLyEx3 zNiXo&_XryCsm`OMyH!-Ht~~hos5duWof~v0**o-1Lqovn)1W4m|HcH_U;|<#px+qP z4<$aKvn+;(hu>SQ2|Osp3@B2t0c8ITJ-N^MmUVxM%)dI0hqw|df0PjQVTMy0Wdjx7 zvDs0aVV_^czc=@0*}>RyqvvWmH39zqK0a50Kr(40zwviuqM8nB!Iu;uf6W)v zeG+1rCO(IsbE3^;+j30IZaPfM%a&gZgVib5aD|ZDf{$cTT^_KwKoKM*#NSli z(y;BY69$vlRkCoy;6xAnnZh%n@AuH6n`^Yf`Ugh>M`!vcznYAf;d`Y~d%_S=S2O-x z%4HW%zzrDZh%-*@OHub|Rz6y~InXTG9>RN5h`Bn4%c(wNlR|uRyrPNzi-kqFODj}ex0RfZ{gCL44 zMlVX(qQcE4)X1#jK-uhUe*Y5 zO6Mk>U%~F#z1j<^&o2_Rraq(6E72<=rKMkXXx!S_ z>)73=18G{@GT+FK4r*P`^Opc0to9_rVG|HYfgwzVjgbj!SEKy3Ae~WhT}wrXP6j@~-6>sR982kH$let$8Is{Hu#e4GmY-@AvYwE6=_F ze(lPI1UC8=AU*0#v!O2x*r0~Dy)HD3O-hwz{o6|EMiWN;LTyn*&Wl=Ws;nF2;9F~x zgVl5ub(hrv=j3ng#mmiB6clW9gpYyk<=r`O=3innhh0{_DaVR+==u94TC-ct6`Y&q zwJt@1>WAqfp^LSK;(k3lg1BdOQUPC&eA@7Z>k=hygq^_eHAaMAO+DmL}IflhBMFaP?}4P`a0(1IfE3M)h+ zA|e0+obWO|PGlMy_^ux=ecNJu&cq*f)0YfadtBA;$KKKU8<;RP6yTsE#nDcRJZ*d#JUm!~OZRQ5wCX&;vrr z_XQr>xToPJ2?-ot_qwI(kbpqs3wG-p#x!D*x9I}GTDJA!V`KKDLSB8uud#`U!lCOP zOHsuC!ILb;lA_~I)%tc_Xk=n=z)GYQE!*+2VOXBCW58>uf_VC2ksP#G)$b&E0-k{B zU7pv?o-s0gFqY)sG|Js&CmYhli9Pp)9SyU)=sVJpq%tn2jhZP^=tm z_9EIG&Y)~HC%xBYA>zF*ZraAAmrLyj{JcNTmitcif;nbD}wORsz zksIa4HtzFzArt>mEGd#Au^pO`mei47X|D~@e|EXxi3O}mvEC(8ktua(M%*IHsWAt> zWI;A%4AD4!mErY!KxQEL_3M{`-nCF08s&lq^y|FqlJ~^)q+uFTm6;wW@KEx-BlerA z<9ROh_!r9WC6x8D4R8NP|G(ig891b}(qh=zEe-Fi$OP_a?HcC$DoGtOt6p)6f{i4T ziMOkp|Je>F^J{zlDwXAEw#+;9te8|61l%CI6O8-Cb*%-M)7Zd~;B*v_6em>(isjT% z@S$?`c@S12#f+wy3w`}Q0+cy#JQ_Q9i{FHwc{bWN%u9UeRfi11&)it!l4OM$ z5QEu9ApXHdaMCGk9g(&2qSp7`tX!XVxFl$eC_vgiFgF?~c1O5_2Mtp>mh?Drqgx@- zrN2;e!-$_O*AlmzF=)uCH9GtZ5{GcVt>~FJQ-6&YR9&pAWc;>ndy7%~_Lbk-8ZBtL z`^Dpez+)@xwbzG3O_L`hBTxQH`|aCzYm2u+QcEHf@H>Vgr-07N_y|%L4fsx7!luu5Nl@F+z@?u_2CE+c-&f(|ykRom*1F z&SWrpI#q`dm=$rqsM-#-Gym=?x5yMzxaNxHqgWr|acqpF$udr=2wA?G$X zTTjU4jIyHRNmi0Zg!sJvi6n}Tjp#2Tvfh>Yu4&P~Jn10`w;B66qDb#Z13#qN`pqNq@+Y)@A98ab&+}62SbN< z-K(#wK)P-slV4oII3aO;*_A z5u@zPodL9@CgI4B%3&FIEpGER4!4;4y;DP=iw4vJ?OA79>iy1&b-P~E)*#UjRXKy0 ztMHSuPO!CxI!@%^p7uO50gTJKZSxWjk3dRN1NG$(y0vo>6pkhP*Q97ls-N29u}s;% z%=6}(8n67tMnkl3#Gqc@&=4qqf(TUHn@N>c&dbm+J$PAit!p&x4fS(UO`Z#Atxs^X zr_1SXqi_4{W~Qvo;bKslSVCf=!}hwKexF~9w)-Tf!1)^93|AB}X8;Dt3-u;Dp<3@% zE!y7R%9iX{jNR!`{#Gn{Op2yQArQM7o0+Y0<+vVtZ49N#fBHmS-+bB+9oek#6^OE) zz1zU@rR3_FZcvSYBAz>+%lVu-i!Ebg)Hq8NqXdRxu0|jF#LUm{alI(#ixy`kv}&g9 zvQHz37d#!TVAQCNZ56&FU~WG96mdzRKfLF9y))e+YFHdIFb8+}cpY;#3|&ojU6PlV zCmU(HK?9%%ome1crwHxUpkA0TeaMKO7b;F6@84N9?SW8=rrybET`31BnPv8RsR*RA zAfRMoa`K~|8gxZc_U9Xxb!69jgya{XG|zL{bm|6FD1MgwDsc4?N=HLW;Wp#q_SuGZ zb-SU~+>u+67<$>9+?<(Q9xNcxU=~NW+@0rr{O zk-o?Jnw`Ec8->@=v+Zr7C^G(okFmzE!4#qIXJ_a=QM_b+&)|_OO^3czRJC|keO6($ zxsyaE<%@s8+!Al`EwkO86bX~4eRw~(SgR$4!KN-TXbu0L%R{4csTVTP!7d7t-l+g* z4n&ge1y@R**l$b8v*Yx~4~@$G{kyUce(i%RN5 zz>;i}l2|+_di}>oh+|$>Y=N&z(JUNU!;n;IzwdB!2HN}gyIJKTTn@W7W2gkH2$Gzm zf=49s#kDUNJrA38bR-mAi@TX66*wXA$M!zMyoX|5LKKK3++aMoOGM=5^7#$Vel;7w zN0l6BAv@w%6~>vIH?<{zW^QNlZE&4KAttj4dn~4HZK7v8iC-rjE{R%4hQgEzm9@18$9~BEDk@s* zNpJ1iq}QIAEBI;7QeWRp#O6R-03CW*F$A*UvdbItd$U!^Ih`RO<>(W6R&7lEs!smR zn;8imZ$ULZPeC>|A57hV`KIjO?I$L(se-3E7kjhfj}Q0P8~d(*xP?PM=DRl>l`nVN zH#RfsL8357rj(U+x-qyH27@A*J0LJdjZm0XCL70N;3Xla2RhL&nUYO*jGrYXc`YrO zY(~96P)jR-jX+XT5)7WqEYU)nZSm$mK1TIg)mk#0*ut5?L?8}KNKUlxnXv~0W(;Rb zvS4p!^~3;J12)4#DDzodn7qNVDc4IYV_5^L?(SRO{WG?ITh{34{H39}fUJC8tW}jJ z%iNqX81=b>>uh+p^WnbR>*&EVir0t{Pe>T27Mfo`)kjjMU^qy$%CmYFCvmo(nz4eO zc9`;#XKH7V`lNysMh_B{I7Y)gyXO^o<$f#8{BMQJDQbH=+YIu;zDB+l{7o>+dyQ|S z-I?^&5``17{%R+kkaxq15%%;rBqjB_STl6llQOs5e7M0N{XmOLU!`UX=D_T#F;h)U z^!ZWIpmIzYX}zLR5Uz5!t`20EB7JJ-IT|%0;ylQhYJBFse=D5#n7yp7iU6ww9x;E! zuYGT!{_D`LngI+`ZQhO{Fyw1buX%?R>o{ zlDT*P0vk2d?Q!83NV3?^rLI<3Hw%Y*5hKOo?zX!|A(CNie$&=w$x2zZ8*J1I%P5*Z z5KsO>>J`Z97q&q9h490vCMD)jd*rOcFXwG_sOyy@CPR(4V*N`tEz3$497q;B>ospoYR`JJ-IF35C9*m|lYpBY z*~{H>A5wv=Ugs@WN7``#d}&gF%jH@ruAz;_+Zm}lW*C2_g%~aAMj6(9Fkm~ioPIy_ zvw%R@hc>d;kCtRT?|FDgNgur2<-)2@`5kKoSVAwa|DL+K4Vm({rU%~gi$FbGtsksY zkknmHN7xrr`}Z{1>uxhW`v>K$Px*0qUlNH(iicIs6_hed=EEH8=Z7K-_%Wl$1^(eK z!@;%CL0DYBusgyf0BL7dP1{H-!VgfgeNxhlDWU{b+A)t>vRc?zBiIaNyeTsR_SK>x zEJ%ERiKuVAWB=GL+nmA#If97q2Hgt!WqfMg#faF{@oT}XfDeWJZ&UM!u`Ujsru!Yo zgybZJdtMXO?Cr)vILuUpu$rrdL!N-&2AwX^gQ}v@hc`J#R zYi^){6KB&?*|z?^oGed@7ISF49E0(q)Qv*k5px`FLPy zINKo}b2=|PHGM&$ac;b61KQ6A>A;H{{&TW2ka@zZtM`aN_X#;qJ%- zy9m7#aKYMT(A)O;E+~#eR!LcmaQ=J!0WkD`E+wV^=hZp{OmK5lez||OvjeZA6Y=k@ z%0STkq${z;s%*w={2*m%U$0H*X9BxwB5ygJ{Jou?>^<*&N%8Y<)` z?>5Fz%~p6Yfoir(qrIol!~PhDyrI!uot*p$9u5xgByCUcSfMKyn-5DmWZ(3@;Jdc- zF|S)Qc@sGndF=xSZd^>ED;iE*=am;ZbBi6LtIukK3&m2U5ygw7(!BiQ_`z!Y(v~&t zN_J(KwWS7^<3^eOP>*#=LHm)Ycm2`)xO7wuBITc%E|}x1DwAH_o6SwT^BQ$v;B^O(dyZBllelr^^gp@ur*CpA%^!4<|dR0ON^jT{VVb?=} zBX-%vMUH%Q)ZfL}!L~*Jb*RZ=>Ah;6cfKXCZ`6UCx9djq+I)QIN&5;*aeE-LzOY3P zQEzDQ%UZN&H;W>lze!o;fs;$GL4j7dU%9$Mf|$94n=kDPMl?F6Z5#GzFBHIujqct( zE;n3w^>B3xgGKF=$E42?>ZL<$k|TraQl_A8g(Es*I^s0GjhDAz@8Ntd8hcauEOD0Z zcT~PlqvG)X!p{v0BkkFDVY~j02=)Tc{Gni{dKvy|ak{Mi@N~tc@#ing>;gz;kAB#d zy0E{9a=OtB$UpI6q?KeowA~4;SPjfR~a&DG>A=#?<-(xEdRcdC7FM# z433=xATZ%6l@6t&C6t{q>4P5?XY^=f%h$HFm+Ie0T{aOSGEo-2xNrz ztiQir=C=I{6d&pyE0Sg875?sW>khb^MbqMke{{;u=&<(GP%DRrLfY-k&CwzCQ<~r& z@+I%jUeIm!Oa#ay%jZA@2~8==ybePnY%2lewNH6inO@T(u9NDbL(Ejg8P*r0NE$48M4pF z3&8H=u-7C9nai@?p`mH*E~aUD+Ic<*N!@}CeoojKsiwNB#2N~+@D*uk3sv7-0GYOP zzdJfnZ0PjrvWNzq7G(c=2J3@H>MyTHl4<*mZSiY!lV{B1#vfZ3trj8a>a8(dS3J0Y zMG_Oq`$hH1xS zU_rnhbS&qIC!`Qkczc+!oi8Bf7t(&B0IiSrCKFT0ngnSzWT6EgK^8j97U!}udiND-h*CcsRw8`K~%Sk6=a{$aBqtWonpRF`IeEI`b5J> zgG)Y#br=VXl*ftuxV1%8VDtgg@FeP5;C_HV!*}Wp_{hq_Wzx#2NBRCnyE<^qF zedgr;qjqm~wemo~qbaP*&j=@oGO}x3G&cJYm;4Qk{V-NMe%2FBE@tROdMd2h8|6;H z=DW>z@iN(de|^)jKiG&({#$i|L{AiP*VFl~(nn;NvTm=m0-url;vhzFt}7w2R+ZCK z8B&zSH%!D&dT5Y5cEI!wOkf-)}S0cMnuYkwnbq?-`<7$`nu2o$ z{z!}VzrW@Ge=p~L{-h}*qhX?!Y@hIvXRx%Hjstl`I1M;DTNyH~FE@9L^@U@s_ z#{VmPbl}pak$$W8(-zf2C*N}3orh1`ry^ZG?(oAUsC-sdTatbhYUW$N>#eM9;ux0$n}V~=l|l0y+3)NOf4(5{BhT|T@kgITQEx{g*Bk5u&oh&xvV}piTHXFj z+eS=3mEGE-HQB@R3OfSk@xOOfQm4&jI`TGUQBy`p#DPr$?&M{PkA62IH20^Db>}zX zJkbmE((cRWvrk?f`QVzlf^DcuiTJswZYp2QFLr`Y8ak1%^^G0|mbKhtqpRsiTcvUn zZWYe+Ca!(>6NmTL`y)0qG)zR$N_Wp;L*2~x$=8H~-`{aPbq-+23{B@yd_S?%f*$t10p<{VX<`*JD zV>_ff*kQ6uG}g+EHzFK}6L|Z)+-VX3mZQ@QZX1MTJ*QW3VcmOJ$;VYokCCm92gt@| z1-KQA#ZjNX>=L_OHk)`=f1y#+@v_;i-`#-+4{vP<|JQbUpWA6O zjVc2YZXHhly}{1|43^Te^0YvEn54z-nHJ=5{b?}|8hOVapy#{m+0orDySveiSLtKN zwXs?LC%vV<{Mtnzw4C92a6=3Lh>oZ1)u`YjB|A-G*1SC)b8Y`(?)yx)V{7o6j~dQL z0c=?_9+PGOSZg5wX7Wi@SH3+-2X2Cs;GPXgmhC=M?d$sJ^SPoH}0xFKxSKgv#ffe zNF{i1d5a){FB(eK)%yPUUuSTdsyBM0a0Qo>6`qgf1#($0h-*kqCozK;rO#E86f*bu?LVl3TvgF zS`k10Ix)o+o0j1=@o;?1=GJ^Lb@XJD6fpnicB%%RSX;w{zGzuRVS!#p z5FoX04h!z5-1hYL;$mtAb-c2d5_p9sb>trNaOK2$CjC!TUT)=v(JudqYL`!0GH}a2 z_p4=baY^$BLg4u~ywfEnCXVr7#I1m7o6y5Vo0tn*e(-&f&uwwkZRbLEe$C2x{H{_E2`t6mpb!XG&&2w4^Bs*FZc`hc-3 zC7vC3O;N&cs^gQDoS|z`tlb(MHhFPbZn4Y!?)Q#eeYCEd+S5Ww|4%pq@Q%HyPdR!m zbZzBD4|(mvJR$?C6eDw%oof2NP+90zoqA>}2Y}9#UA@-;cbaWx-ZN@e;3Pw71v$e( z&!}oCgK>|i?DjbSw-Axo@1C+L9Or^Unl<6efj6wnP2Wew;Pse%Zn0kiV^5)ca@AuinE`@bdSFBF#(> z6C|H30`$O>B4RGvg`pG9U;vPCb}!>H654#1QaT^T&^~>`ds|j)y53MCm&O+ZKE&L* z#dzXar7-76`Go2Uq3-`aajZfu{k@Q8tBzCWuRMTx5-_)`p~PpVJUpYet&be5+mID{o%U#>VdnI<}F+1qe7gA$X!sX23AuW zBw`dhu_giHYzq_wR1PGqX(rw}b!!FH8>JVs2TaUAAj~3iQ8Buyzq+oxOJY=1r$1?b z64frwYRZtCx0yDGnN(6$`f3fMrR(|jJubk#ORVM`<12n*!ZW01PZMl{-AxgVm-hBP zD@I1qx3|FM#3?F*Jkx(JY5eN);{WyYzpm)te@Te`Z*Tek=*t6dsqv$+(WLn9n{c4H zZ}AU~>^pFFjdro57&~ zfXoy&%KP;NL@Ss|)X1(uZ>FI(^EaX9DpU?G`FN zWPA$V;xwGj7!kq{T&G10L0cj0LLMn4N>v3k;C=czbPxGddo&01MBYT_zsTL z7&lAfxpsQ(K~5=ETU$$gKJDx3UwI9X%>Bj)xIpmO8W$A)b!h|w3WTj7(>zmY!~%M2 z*EUV#zNdP8)&rnmrrt~#oQV+3!Cnq59gGc!)H%B{!l z4-R;kIu}URYzjYmryB&`#3nmB9sTECP@l-Wk>Kr@>!j>Cw7j3)JYP9=hgrefHR@Qw zl)Ca16-}oX?>|pYtiG4`x%*B+BxnT($0DC93%Z`V>0UOqx?$k45JIt9ods*0p8*r` zE*-MhvwNy9$#`(JGnv8f!UM-J_3~u?H+u#3E6D0!o})lpo!%`2c)L`3a326}(At}C z%$jRJ0$D__Rj8WXbx@V&uIFX*k0!o-Z}4>3(TeFR&@Z*_YdXXL2m^9tzW0~E_ZIX% zeE5RvUZ09UoGvXZgOJ8zb^}7_RfqJuQ$^QhK5D<&Y7;Era?;D{QL?53M|PKGLH1zb zQn>qKq5CQESl}(D&6q6D!?D_BnI=an9P;asS>M;jAA9Ja06=*23 za5=!aK5qS{?dm#i*mwc3L*FcA-_e5>O?jqzr3Y9Z_75D_mT= z1iXn8xzSq;V%*4V-aO14JW_xxZq+*S3NicU+ zLM5`00jRdd1}ZI2&B^Nz@H_C@b5+JB&kDe#ZGOR<*V6wvy=#O{u9?abZ%7U1EyU|~ z;!ndO&+#Y-I!y?^%UJ7VJD0>YgnU3cA6eb7WTxik|6Zpqj66`JUS&_>>b3vQ!vqZP z@u*vG2zOhsQ7wf97!U%gMbYnFHhFjeVq%}U)4t|JW?i-m^7nQGZ;J$dAYHr1cC$h3 zAX&Hv(?e?Wj8t{pu;{E?>!`T$)&*ksR}a?HN}5VT4MY6VJF>_A4lV}^BiyY{h#Ew1 z!8^cuL#h-g{^_dp+kpDow64GK+J&lB*E4QqM+^{CCw+BSZ(I3NfA_Ni(z39Wv&zG$ z-jHebdgw2OVrzfLI>}W(8TUI-Ab7gs@IVq%0SAmNWMJ42D?zfk%z9^8JH5xm*QQa3WqqoC?EjB8GXYqZ zHDq($SV>2VVBI#qIoO7b6xI&OaJd9U`>}|3AX!zATZ9QL)5F-n)VcY8_DzCM43t*7 z>@!v$tO!Y+wx;v-QSR)nNY^#ZtKhW)7sRZ zKhtrsfACX3eVS3yTt=B9tpE^L!Rljwztorg5z_zSaVGRN(0;~ojf}IhY1G!9x2@)U z^oY71kTLu-_Qd6=4=hx4HOmFn7+;~<@X(AJH6)}?%kNJ z{D@@TvePuF4tz{$70eY*1x=!rdetwnC`6qFB#%fuat`+k2aYf2HJF`gf#9^jO34DfN26-@vB{g z>>Y`HS4*J2ZLezS#_4vR-Swkt#bmqXxZp?KlcS;y9Ww`_jFAYKnx7BIVb?3d$^hZ@Qw%z$`_+T zW8bA-=4rde!tF+&?6lM4Nl09S1uW)p0SBY~Um5iCTmIx0wvAc~?u(+?hxCzXYlgS& zhaXN((8|s`b@_z5eg{WItmZE_!$tK*Sn<&5RK(;y8hhSP(-xK%Zm&K!2{Fxznux=< z>jmfKG1Y2)h;itRcwm!H_)i}XFK}{+?KPL#)gfc2ajFD8X`_t~PK{MuR@zjx3Z&bQpJasFbAZ-+xk57k%W$E_P?^g9rx61` zzp$MDafSH(w}1J+{_Do#w&);z(UI8?0t zZeyA#EYO~qQRq%P{QTmumzyNijrqEb*@0xOoi~Jpor0K*Nd~Id4mODXRRoEjtiFL^ z(}odQOhybiDp^~*;bm(3KK^{c79n5*NiCO^#odhgsQW97@+ncV=JB(W=__Rs+I|xN z_%}jUA1QuDN%6D1XGxTh7i&n=rIQuqKkX>@Px1jn6pg4E#*7g6bh}GN*=2w`%qoxH zyW01)gAD;_=JuS@oRGstX*dZ|g#G2P_#d+jyZ--L(EoyNZm^c}k9DOE-v^(%;rtcA zYaNX+o|AY(*}KLfOE+lJ+rmOqgp18pfYl!Yuk`ZTAKT;RzNDmC`iWM`b>|TLQEB>6 zzfav3Mfrt%?N6}t%$UmMDf&Yy&@CBrn6dfI*k7=TU`LD>EtRG35n2p-jIf*aZDzga z_o2KKextFH;d7It%%t9S%Nd$_-oK_%zl1P-Up_IR=M+?>E({s18F*%K3v%_<5H#t0 z@N$?eEU?bbD?NSvndYBQZ2rP)pW%E~Qt|KIBz;ex<3#aMVy;HST#2rNStnGgSiX<> z9|$goaa776mN64So&QI;SdwTt9B+XoR2q}(?VRR_`U6$Ed7$Q zpjq~bZ=C(78UM{YgTXw~X$3#@Re#&@x#Nv1Jg}@&)e$ALb!i6|qF|!$(nLh%a65e! z`Z^%qtvzO$qRyFu!!nhGWd@N^)~_?mQyBg^uUP^5*lge4(`nUbv_JmtJ5HF$S*I4| zdLv4gM&L2nH!Njh`mBSU*HVWO6W41j==K?E{wjX$y58;p?H(NIv~pT^Qnz?9B1b~W ziYk3<_VUb$H!@IkgZf_js65w+aY-5B<6mh7&~wvYSywUuN!UPfgQUnY05r>&T_Mx!vE2@_?dN5k|hZ*;@MS0GyOSb&{$5&O?e#DnC}Fs zht6lyx-8*a(jNcTVZ#F4omx=}RX(7;gTqeWnIhe0v(nk_ zHu5sZ*rl}?06ybnx#$FuH1`gEzx41w#@BL?f`7UXcTI*o z!4K@fuP?q?DcKlyuFtXKu<%Q}VhAPviCgl_x{2hnOp!U>Y(pc$ptEf~zxs`SDs-S( zd465&S&nND{P_6zFn{qVUi|db zXFN;zN()`C1a?U1>tQk;zKXZ*06GF;>>0?1K}Cfy-}kp%)Rr=2l2Orkm4Xv;(@dzv zP&O3h(;*^kiJGmTVX z)V1{o0I8jNEP`$V3*Ujd2PF$g%+op=4_&j`sGpwnL7PsPmXu?3W{8yt5jM2mejpE;y5ho$Vi zyu4!R+dop$(r(~0NM=0TQ{pyyyu1AL>64=q4#98pDVnXJl*uV$$G(9C+D0!T{9gUL zi(PbdbVn!ZtW>LcnJoV1`PN=cEUZem^Q}^b?;=Q%Xp6UeS1X)~s;Vzb@+H9aT*iR=e!osCfBqz6?%GY*zpTZ^T4qp6ki z%DwKdUK*m~wu$j{(<|_D*V)-1<9WWoV_koQ+xyYoWH@!|rOVU5G#ei|71h-GGF+BEf=e}NfQB4{rv93*vk4M*HP*qJjE4&QghX5J101$Z@wvdPja%Sd=mto5sgYgBG zajl=9{-E7u+pYZ>L%V~(rIf<}`Ql_`WG{0ESOoClrI}9Gb{$ON*2^$EIL8%yImp>| zxqSbBX<0eu8Y@F}m6sMquA?9Yy|^M^<+uwIWxFNZW{w3(l1+dila$|qVk^5@UR=%s ze*)8v3%&`icNOMRUO?_#9m|ff_Jn}{&O9NU|JUNb-%&Qv*Du{eLPB=I5Oy6p$EBwJ z{iT|F1n1?ul~B-lZ~oWL&JOIybpm~w0QW@4#!eg_H~sszY{>pUUIF$UudS`Utnhuf zby4{p5qa0BLpU#p2(&}y^dmyrOD34O^&?Ns-;!j)US51~aBz!Pvfn||vMVY;Rl3Pv z%Qv6|N}{pTzNWwx82dke{($YX4VU-I@;m-LA<814d#34}pDzOVfrSM%glm!K8}B(+ zIgvmGkHrS$G1etRkCzUMdi-}7H0k`s$9TE^50KJ^wP zTxWHMwTCnYdyQ{_XRUW&=Km4{+BNcA>#QHsYYYcTPp<$V;UTw@%kWS3dd;$~M*D^f zrh;d7`l|oE?cydD3f8=5nR~CDt3!{cN+~@kZLQCP1P%QHgiQt_?}Q&gDCnqn;!O$| zfhgVo?s_YbQA^OkbHVO9L=BTsK2uss>6NOkyAI`NcS*6&h&C;(S&JUh*t4x4W^}zF zK{5+b<8qaHm?;8>-Q?#i3x}+`;rZ*6fp|CI&g-E>iej@@5!Gr5pt?{ljd}wjedx*d zO`g8(=^H~XmxW-%8boLjKvjGtr{$PHhiA3EKq+myNoVkoeSs{}Y$?8k<1Se9z?hnv zz9i78S6IIV4Cf82g#GSz52(8h0bn+rRNf%%dnw?&fLBuY!+AdTNbe>jOq+Sp6c=m_ zZa3? zpo2Nhj_fBlEuZc;WaNb3wv5Zx4iQGg&HRO>@xBSn2;A`X)+; zH_2uS|BcgTfvU81?O|l^U83>%$O1W?W@SqJ57*KbM_&K?>qz(IZJo4_&L%Xfa=hDQ zs(+`O#EO$!jjaBxcL@RVDbvRbvlHfWwZlOU3dGQD05tny>Vsoli#PcD<+U|wjPH3W z&vno|LZwq4Mmz^-i?~2QRa$@G34*FdE0G-7xFz?fh;NN2b=qo)-`aACFPG8cIFX)Trj%%p6yfH!Amq87Gh*yjD7f*$IDE% z*`@ZjJB(nD@0Nw^IwX~Q4x7Zrt<_&moFas-u~(SwTQ6zWrRK)607Q5-ai5W5`glJe zG_4t6CPWN6VavyxXK-JbDMDwu_7F8wT8-%MrD?gWZXm3i++Pva78|E04@h*e3Omn#On_{1#BstnOWcrOl4K{LABIa9|CeXWY_hYx|DwTUGKga0Heu z*)rcYS91T{qUX6{v6?0|-^1nHztGp>I>py2y=s-kvi`{29-mo)RdYAainvk;eHhCuCaCRu8HI|(AZ8=?-qR73&6!|vl z`Zb|L78H0|t$cxA`4I7UB0?BuJV6g$h7F50B2J*+xHMjdKs!XjhrJofO zpF?gIAk41$Eff&=Fch+BLGy=OdByzK6^BVB3w`Oxs(PsuSP?|$6+Ur9a;%Enb5-hZ zZwJ@of}^5H0NB}^nK7VQiA7NPcsI=RlCr3vN|ddeWx15voGg*){(UoQDQ?tmOs<-83G677!Yimb{c@} zNXp8+lr7lk;?&9;r}lb9Mg40<6+qBizZ!8C1fr()YtMpOn+0XHJDIQN8XSmx?(V}L z)^|Us*Liy7Pq{0YiD6vxp0MqIIMh4w<(DQne zv_8KH9OhALC<5@}Yo*xrk8+`as9fWuZ2S-;lhzy@^mIuBcghUdiIb==6s*Qu9nSNC z!uo_h`nYj<%@Qi&@VCvZDQr%J*L+v+a%_K0ntPvK&JCA^{4oMJCo(^O2uRMYp06Pp z>s!w9^shBxq$pE`Ze~$-JNvoId-f;o*C>eL*}=#}fNG&&a5pww*9;%W+!*1I;y>Gs z`pZ|E4O&BA?hhATYTld+=;VT++4`RAT=ishJ8$9-x(PU_4eYl(*@wx}zfB#^P;oF5 zV{i37G2^gY>Ia&sWU(${S>WNNFzI1UR;?ZeK+_`tcL;JqlvJ1dY@W{O233fP+;0C4 zqgyU6KJb$D#Kpz~$!XvHf%VOJ4zv-kiRF+FWXi&Qd;jocGg@h~UQ=+D)u=}f9!0-* zMd`QB*>tmI`Evxhkta)C4DpMvuq-=Ix=mw`MG-NPLGQr32ftk z9UJ#9I4mrORTq8U8Pjg`QQjfDBo^|~KBZ9)1DXE`K1ZQ$@yZDia!I!;Re@8+T#6JV zc7W7m!aI=?wD`miQD}G{2s~x+ebNEx3~nNikd*~F6|u4C^1{M&d3HPNs{_@VRI?3f z@f)H*5q*>k@7>>RI$oh0T#LzHHkzn%160yGB#E2OWnDe(_N(=y>xqr}hoiDl5TP-d zY!I_dDwqEnxjlG&(qU1lp^N676$C@%^X(e5T0l6!sB?!w5;J|_}?RuIT>NE~%L1&FWG z@>m~8100`4--}P3v78+!Bk~Lc^V8xsCzDd)+nbdYIyKVzrq>RTg=CZzRZp7ovU1rB zV|^D~(y%punt-AOX&Vl+oT$sY>s?@tWqhPx7ggr$IDWd~wTL=xAp&VVUheQ^GHy}c zZgU6(@uLT~w5}(os;2NxBj4? z;*y5bjy?OnkIHcE*#!6l1Nx#{%H2CTK=OvPu@gNQO!TyxBWtV5hXOlNq_XW{4(kvTz4ouHUDFyfY`MVUIAW49%zQ>k;5Y z)mW$Tf2nZjeSYdLEGe~c$&$!QIe0j5iQrJ(=zMR?k^D=rnL&x*pTU!^V;i_oz&&-H;c^lcL|w8kMut z@!0p;&V$r73)Ad+ zvGiX&Jv`NQlE=UAr${?{^dN)~BSW)NkMNj@ECdZ_nbK?Sv76qN}?jS8+IL-&h38wcMef@ihVCnX6V9`B8wD_9?9YYyIT6wW*eg&U{2 zJNE8_ck{AH`&Q*te%sk?(O-N_Pok3*g(BQXDa{c*l_t`TDzR{kJ| z3pcW;pR!xG(NeC<%NTlF&i&QiNNDx^n9ktRx6Bpmk@;^1{?zA6rhpw^vQX+L2lpF- zJQ=g8PIbx|!~xNZty|Hz@~zULgGC}w4~{y_x9g44!E^40o*mokTZ112G}@zZ9{4M^ zXVMv3N6wrY`|q<#DXeQL@lBvtPTl)0i0H_Pe5x~vic77?qIjQG?b$w*4VG2z1<{>N z_tM@v9WJ+O$WL27?KaHMf0orqVo6R3B*;S{YM(EgFG3<9%#4UrJ zFcL-HCH9`ano=&4HZq`}imupCr?}^&T~!K$CFs(BR6^mC28LsE=dQ4r6BI=hK~KIE z4F<~(WSQ>WCW9wjP;G!JgPZg?=e?AH&1D}QrQPQ41{YTq9PsP4`G=$ET zQy7!A_Qrf+8q{<7KvI*+nXrjaT$wsISh9B&%O)A3dxyF`$E&&~x$^D~`DIy@{; z?z`V2I3#)aP50&)6-FQaL=+Jot0yry$ASS<6Ra=q>cMH_1zq8-!!02A;n$CShH!GB;Kzl$VJ|vW}u8O_2#e zNgrhF9u~P5+Pj9UPzxCEgjw;V#oI43+@L69kq8aK}{C%&_0Fhl@1@E2#-3fEO+50m7 zz58zq(UQ!p%{m+C1q`?TC@IW=Bk}3AtcH61L1vye$;sdXg+D=y6!pbma(d*TAE9_#R{U)X#pdU0dCyPuwR2Up z>ZxZ}R7jD_dM^Px`bvPqfjCuDrl8acz9AFEulYXG@Z#jFHcb{B%&pkwSP=&HxDaJJ z7}Uhq`vJZCVpmUE3mk4_N^y)!tcZ zRZjgI3Hc5EiDZ3L>UJxRs&+lL)x>d;+X`zq=DI@F58krw^awp12R!c3lN1QsGu0H8 z7#hPCE+hq8msAJ7aAh!MH!#dnqO;(vtyGn*YPZIdjoX6cNsTeLN( z069VleJu@Fhz815MFevEK(3o;@Xa%mX*DJrDBjnv2^@K7&Sb-rH8nMF->6W1sFSEw zTlm8Y**l6J@Q~3Eh+Jg)UtH3ckK% zvLtmdK3>&7$1I$HIhY79GZQ*QEuivE`+bxGET1B&q?I0w0;8wICPzQf?1i8MA5i4*W)n* zd(bUDe~d3Q*m((&anmB|3cu_iPWK$%=S)%A?RUx0X;-4@=x&&w?cpMfS%~ZesB|-y z3s*P~j!N#P1fRZ#S>KrJ@bwLu+5(o4PsL^+uy&*137n7!CG7AG#{wUVEj5l0vmHCS`*mtcfEHZmdYrwM; z@QO|Ldkw!DWh#P|Z3FMlawBDAMw4$?cS3O3xc=G>N%Z~YxOwfm(r1E}=TpkMMIExP zU1l0XK?OZdt*WY2y_&zMzmRp7H#4b0bvw9Oqi>`hJ`9eyak9Kmnj-NOo{&4ohsj&$fLmaA7pp(lTrj7-1H0XxND>-A%@ zNCAU1`Hd~)FB1{XHZ@~eD4L>u{c1a8rg<3^e6Gx(9+UT`fj!wR{n+?IS=nZ(J`mFh ziC9zB!^Fgp*P${rfuBf^&K8JYE0PA!8Te1)|$a(ID(D<5gcm_x*T> zKg1Qrp61h$3-d+)Zvd*kmjHyGL!F)rv`;C5Z0D+D`w=Ws?t&?(cSom!=Sje?nwqEY z!ntb83904Pi5&{*<&gsxkdqf$D#EYXs(s=>B$@8Pu%n2+FM7XcS1xbIp0q*b()>ZF z@6?XEVOQAU6eY`7Z}TEYgJ;FNjVivcU&ZG_D5SS)g%$m!uw3-Oz8*^LlV9SCTN~qJ z#@tMBvi0EY`|E>mQTyPhnpIEqcz@Aw1bhp*q_-56h@XP)!*Z#Thp*%;@)$o)>-X;+ znzE|vv&=IYp7jN@qdIVEm(OJgc_Y{w961IaX(}o%`Wjofo z3&K$t@MH^q*@$cVL+;l;`h7GETuqTUYTANcb=Rx-o1+4AM<}LvatAxKH8w}im49wm znvGs2PzwQ(kBVxU@6S<*$l$WFEvu;YeM*5F(l)JduYscJwnGF0dA~KW;YiKOu?mWl zuz@)z`>V=o&0Khl{C1o!L#8dF{}$sFnWqt(s2>Qp zLtAh>2LJ@&tsyJSS7S4X!<75xwXC8o zXL`AspI3)v&G$Lej;n+3!BOL1O|a9O6+(fvUr)&2A|ZbT>EZy}NEPaFVhn#;sS@`F z`u)s-PQKz-ebaPa)qn#i%9Fp9=cq)*5@kPJ$;i9bl#Ka6W$LRVfyio2pKgoM1)>v2 z0j=4Cg}YM2A`;p0a*adV`UTZyA`Mwg{JTTmts!ipn0x3ImVpuuiE=p(b@buwM#6oUT|n1hDS)8T`yo&L)Y`) z3No9OEQAYx2KJjJnoO6GDin%&MHyW4Sluqp#bgS$p=DHns%tS>`P8`9f72ItZ>>}E>D|+(y zc}A~oVK(0Sw{#VTtp zb8)uI2Ok&q->r1rg2aVg^B>pp-9IWs{B_RV-zS9nx7f&0nwFCsF%q42%$oPy#Q2}C zEKU+91cQ+Aq$db$-oF-VI%{;(&&m?s#Ujx{Vfdu16EzPNHy3&VS(xlG&lxOASHc0K zbFWA3{AiEx_BboVyV+ySe}-_ol{RcD(B-)rmv;KNU02tK^c6n|eEk(!fG-B~%#a|j z?ExKjU{76)f2sT8r6`%fBPEPeRf?Zvm(DpqXR-rQwy&mmK1?`cG7rYvExG1gwC%U2 zBb3Yfwyo$gxE}tFezsDmQk1EPRyX_G%Z9UU{H`mdg`l#qT7~t8r;A!+*KOptwfYj08Rb0bH}hB)Ia3AYdzH^nB9pUC_ryz&+cZsg2ajNZ@9FYXPr|*; zN2C34&<;~3fO@4&Ax0Y0>Si8v|5nR?Ez*Mo0{a6C!Mh4jEeL7d;3K)X@kMXE9nNgy zv8yPqvve0J69R@&+UWMaBN9%0qTdJaXJU@Sg(&()Wc}IfrDSF^vgs7MhvNkSk9S8| zd?ELdaM2z|r2IDr9tb$LXcUo1t#S{Il4J{7({@NZ0~${(!YJf^z!Mcx_MO~ado#Ux z)n-{i!a#9D?OvsW_^KmcO1sChnuM8SuSh~sTOh5PifU`Xw#(p|ba2yeau+`3Re|DQ z&N!8S?f~!|3*zCAx=@J)ExSoESt*ypb&)bejjar4{i&pW;*Yztmk_u^SEZB$PnbPz z|5kty{2BdTDj%r<3qc%hgJqXJ%H#+kG`EdOl_Hv-`Xe@XIr4}uU6>>aIfusE;$gU? z-eIDc9s5S$U5wF}o}ZNhtWbCxBHb0C6e9}O^Nk1b{>68*7p=c>Kx`j@xhlBLGCfVl}SPT znVgq!v7*64A1&YeD*vZv6KcWvnfri&7==dDqFn6~Kv zn)7u?|1laH3!@zJCl#@w0@20sA{sy+P~mdPy2M}-q%=yL0gE<^;;=p%B)2AMO}N5% z@`Gx{z>eG!iE@DfnXt)2V|M$`4K^RhsarX9z3mR_?7nP)cN*F_()AV@DSX95_cp85 z`c`JElJOsGaq4T9R2z=sI5Cil4Gxt*IRl0gb zg-DT_Jtn1BvfDDDub(dQBz|QD=UbHkbDIelb4E6`7!&cg# z!jbBe;)ZkAjbrA&1Dc7x%6$*eDD; zy11RiGJ04XEx(umD)P{dGoz0`I?OJ`A8OzP^7TH*jo#Uw36XrQ_--wC+z6H~flc!e zrBX&RtB)%Kxojrr{x}^0bx^R2#r1BL2joD7t>>S;e77Ar!h=Y6bv%jY zGI^-0ALvYAjJ%W^zGv61`LG1PBN}X0&7T~GIR)MffQ}lvU0M=t zqQ=xX{1*Puq5@BpJgF4c0633eRF)-&RvmMGPQCV(u8f#4vwd1ifc^mB1M*GwojCVP zhp95G!v2p1R!rGN+UGT)d(g>496v7Blnkt#VSIiRC^3j=Rbf){uzea}ED{|3F)LTe z3*zyWb5zm&&gE!%I)iZ@F1Rl|_)%&KN?-Z=KYEhQ>an%s}oY}p4?&u8jkdaE5wEU&}2Wl+?7?|>L9*cT=e6&G5F7x#B8uY&{2dsJAn zY`;{@op#r1j`J}?m+|prVa-U!B>sh>2*UtJSw77EEOLi<-TdfnS;?bk$$BpEp{i;% z%%;|0C!62(sDeuy{_fMK4}uH{(3iciFiM5kr_AoaFT`fbOwtXtJ{|Y;9n@oc!}fd- zEdJAX{_wC0X7n<^7zY42u*pP_E1s+57m}gtUb#P~JU?eC6rArz9H)RhRBe@uvad zL>_G$cS;u#S=bCFP2v5n=&yyzUi;Vu3HCcxQae=(%o8jj8$}UD7JI36xb9{*Uc%p1 zh)EdWzr20rv<7T|dp;TDiqbZs_~hr~YXD9#u_0zqJp83V4J*q<8-LK6vq!WlF0yzv z$Ta3Mq1?A=->Jt&!k=gHcKA7QssAGtP4U*T8w3^2uh(y~Jq&oVPLjkVcG-d_iv4k~ zR6os#FvN-f$T4f>=hI_RS5)*8qZ}yOg9s(ARxOt!>k$+B8UH<7#Nn*yZ%^@+b5X&X zJ5}{DEhY$=F{*Ii$Ymf~_PJO5fT!j|6I5JKUf4>kAp1X=;V(>^|d+vGgJrS8iS_eQxFxpiyV?%s)%VF($Sft89L=X15}Lpr>z zSN|U=H_42ZR|lU~{`$XCON^Kmg7Z>}RZvkxE9ao0DTbC+_VnSb?4Ca2bheH>OqKsfD2y4`@&cd9AkJ)s0Nn8+tN?JanYSQi|N{FRh&Bcx$8t zS98c0F48-?etQ3fltK!C;TpWpTiXiMn~;>RAOuGWJpq8iY}HZy?b7|-_elebX?-9S zLJV;R9@D7!BYaVmM0EsURJDpqdZld`13|I2qBrz(g~IA$^b`>|JrY{7CbS%f+`fB% zO?-203x6YlK@b;-Lj?_ePa09rM#F_5&RTQC7eJMPizrL~;*rL_Gi2JXvCB5YeHpNc zV;8-FIs^cTH$6t#C@N0*?#7AdmX7;|nwQom&NDQ_hjlil+*7sZH=b9i)qk-2o9On-(Tu9wPForh{ z(I3fYZ_k0bFARRUbv-}1^3N(P4;fy< zX@DJc=&|Xam-?HsU<<*vcgNCr-X3y{v3-*`YEG~@!IsOt)Bt=^Kxh3n>i3xy5MKf( zC1e*(LeJG5WRf8-J(zOIrPFqRWe60te~iez{>2F-HlHW4xG{pDp#yF1C2rHn&7#mS zOeZkPqQ`2Se{rP!C_p*fJtGPNPUbG}s%`!J z3t(2>19;6|4$C)>YKhX>h^X7IUU~e(D`ZrvP(N|<-W~#&mG=u2hL>BG=m{!@<99D!@ENruTKmy)_{L3;6c{chkicR&+m^r1as}Wx4J59?x*TYb=>ao9W#y z0!Hi8A@7+?x&*;0*6+OXVyd#0ee*Vy_GHSuH1j#eBVWRZ;N7p86+mAi5eNjCHe&*l z_A>fI$!za%{O>zzLLRae+|M^ni##sY2DRRcM=1f2m2lLtE16wD2M!P ziQ2mI`I4CeuqQDLAQ|riXF`aW9f@n5a|Ku9$nnaZj`e{&BCr&`W|K8sOw@IaSjzNz z-I_7b`~BQnL?#|n{oVn}(cqeqYc|sh{d`+y_bm6h^=lqA)uz4WLJM-h4TQpt^|}r) zeJdYZ<MaSUaZ7%QXttp>dVp%x_$lYM!^Y8 z8#!H2QJo#EEA06pwPtEO;2x{l&amxpb7kzizxy@0;^++rCPxf(`Q=XyCY07`@gb)4q&vtUpmNf|`wr}}_sfa0`{Cc)jUM39sebQ?M z1+A~-#Wi1Zsdzn)e?^N4QvP+IDZ~C;9g)m+YvMihvbtK!M2}L0W$^i4nigFs&_4`TA8?x1L3^n% z?4Jhl1ZW84lJEo$7Le0ALoz?w-JFLZiygp}Qun4=SjsgyikgT#pLRL+c0o8}the3>^;>{<~W|%usbq+yqi1?Mj{eyRu5Y zCo~}FYnx){<(7*K0LOr-min56HQedj(ht!_5L5i=b$YZNPJ&WkU2+>6U*RWk!lS=z zBU0P`xnCaDh1^l3KtT=vUhKs^Qk4jE(~fFmKkqP)r)4Z1%{56E0xCrOeje}7E{)FV`CUe09E z$wNmYGY6}E^?Gw$<7zkMQTqU*2WQrp*~x(N`OSNDG4HJCyR4(&ZaO4<9{-ZZUJ?U! z0EG{w+p``eb8wT&yF(KH{6ebZex_5RR*QEZmHAb!xTAPtIGEV``5oE z!$r7yqnib=NE5%x(6nD@ve@-jF+W8lVFP#hJ~G{JbQ`MkH}>oY9ONZFc7tBQ0poW~ zXMcF<)T;@I80SEp2ixnzb!L|yR|u_v5+&*&Eebew8^jxV$Pm2{yiO+9y;Yua&&4BW zZf02Ip^R7X5Rl#bqF;8;fm;#ktWISR0xRLbNDNdw1iYdv?xj^p5-`MwmK7SWi}SLAK*eo8hi@6+c#ri3fNX^Z@+RW z+s>1Xm=ua406_hPmJ@~r=MuO-r=7HEE5ENnQtbQby4&w@a+ykSbFYd=Y=X1EZpgc} z(8C^Jf{jb_6JIGLd9(>PVVsCR3mG8qp@-@c*^0C$2j3l-+;7@~XNQ=;`K}jobh@=L zS@%u`3w=ThfBVbO;J@M1d`qu&0}hEV%0t~YaR~?I%PQA!WPD!i|6y>@$2YqBT1=!& zdG)sUIJ7{{2uZdx7v{L_FCfh|rxgM0a(d_RHhPEAI3ZX}fqLVK9~GZG$s9u1_Wq9| zYGox~To01};AYR(A`BorVix!ypRey>ZrUJ$r(c)=DJw5cTkq5}MEwD#Ia7;44DeH4 z5+iNf=YGcO2r|+=e!+VI=svFQge@A?P++zpPzTpC=PC6@5L)HO*y5#dHdt^V;42h0 znw}0kOa8`3M73xkXN`sd{Nd^1!Cxp}^V{1L8NU}%jGdZ4?VrIDVnsM=azZ$2@an)w z!(b_Ao8eLV8NG@uzZhim!DMxEGi~+K9Wc446LHsi$LHW9FeVV55+#06o$4zF%xYH7oyErLfdd;o^i z)l9}CUG4)c3FI(2k1*`lnQc&o!hc5MMn&iKYfyk-cI%M^#KY*epHI(kp(u39kXsn;{=_mU%&Mj<0`)g+ql~O*J%4uz#DgAilyKY?rNd?GqNyUR4vjkdEWGSEUD`21q z>Pyh<&1R|&e-A4aavCX{j8HDNc>jB{)~nrvO{2o5jrAmB4Ns9^r?2DJ9yMs!%a_}zX086qye zD55_;)vF_=b~696&<6`d^o}peY?K@&CNW-UJYb`u@*L5bOW-X4qWV|8+S+k_40f i&*u^Ue}CZ0Gvq<&k5r~F`F|k5^-)Ytv{YEn@Baa1*C~Gh literal 0 HcmV?d00001 diff --git a/resources/images/03-interactive-confusion-line-chart.png b/resources/images/03-interactive-confusion-line-chart.png new file mode 100644 index 0000000000000000000000000000000000000000..4af2c7df7ef6cff91940a7a579ee767309493784 GIT binary patch literal 135676 zcmcG$WmuHm8b6AnpfrMjq>2K9bhor1DGW%8ba$tKbV*5f4=qTCv@}QzjWED~Lk->h z7w@~z-e1o7aIWi|4@fxAz^rGj`~KBEp~{LfxLD*^XlQ7-vTr5dqoJXzprPG`J-`4z zv7+do1D_t+z14I?L&NL3{kW6Bghv5>i0LG&AceV(fsXs^j)7OJ1{&H^G+9Y8HMg{_ z1=l3CwV6}YZn8*q%SmAV$zqe*E0Q-`FUhqZEp;VznXROfDX^;;PQ0+_lDO5!)LMbSV|LoxTgQ`8s6XLLO2teS8Rk4Xe`crW+8i96)Gk~x>jHtSjo-I)H$11Dtr=Y974`nA&dgCUdt6SUFrHL>%5=RS zJ<=zqv>sSUljn_`w{6l~nr^z$`h}UvA_n31Ia_U!Pvu&fvx&W3jOzfMxTpP_`+KN) z2qmk~JGu8lCyGxbwB$N|OdtB@uOVxzy+>4(_0JlqU=V_Q^UB@5hqc=RlJ@2=8L*xd zhaT=sMGbEsfR_r(LmU|soO@KeyFsf4c^D* z_b!NkNQl*ao$;F6^nSu5ca2R<_kya7VKvu6^^*q}XAXTH$5bNiF+_!AbuCNI zPbB$uscW}I1{VW*i@yu9rAF5D59NIviCSGV$zs3?dz4a9`a240;U=_b+ca}~-%jxz z75o_zdk5xUA~jpgdAGF@9M?hDH{YH@zc+rXsNH(WLl>5f-uQ{*($%SSl7FFep&7G9 zueb7gA>_Lztq;va9roM_rC8xOd%aSkZE->*6~A6r>h91dn!uGZfQ>YRWyfcRn+<2!`(>~)Mn0ro!#NB((pI+ z*yL}Lbx~#Ie~(jgbD-azR41y~HGWw}Z{&3TUHJ|}1*0XSs`K2gyfm!ql+44~+%r=9 z;^7)D*tp#zZW&Zi>f!3{$~Yjta_!*ce1Zu2_yGSjvtEOrfyaYf>b z>h_oHdP$dcK4j>UmKl3aPn9?zVeHI&JS!kCElg(!zmOWQv0T~+KSdYQ%e>~tR<~M@ zZu64==Y+2aoRo?BU0nJwGFpy)u35bYmM^71MO`IwiKfehGmeaA&Wu00x3~XD@XqKc zpF5PSWF}(F?CC4^+A)dm<7?SH%aRa?)l>n@{gd|lI3hN3aU?@U4g3J}tzt;0m53;s za1j*T7*G$0rJnU$(220Df4`u3aIg3~Y~|qoD1}p(olytdwg2w~LH}Blfu~yH?EuFSR7CG~cy%I1mv;y~7s#F#7hi^ArM~Sf_U=m_1kQ(UgweuRjEZ%MuGfde539zS1uY4YbzAwv zYtIB}11W4bdeQ5a-Wqr@yqWQ>|Ll8ddFP|`f{cR!rA#!bJu+Zq8FjijA(B|9=MlCQ zL5v2q{F~HdB|HGz`7=5u-Yg=@pInSXF&!yrOD#L6J`-boHp5ikA|m2-rKx37h+6Co zKl2(BKr3iF=SrWg{iCD#*pg@4WNwFci{CBc_rArU02TB1aWa7{!MY_cba(zu!i!=H za;DbVcK@~1X~#Xj1PJ%EmHKSWFQe5_y?IV|F5?83f)TB*j>oC8A>r%t_D@c(M|Srv z0`lm3QNx)&;)rAS!E=X~6)nOP>3Y3N)NSdzi`+4w3a^3k5#9?o+>exS+id84ez&i) zR}pn(`Z2etJ|aVRZvSNICaEU=-lZSfJ9TTr<^G|qc~|1#aVgNK0z6zzW`}r3D`bKz zgoBx2yGAE|hGd5xjZVMd;MBkNy1WBAq=EjfV&pe$jDXjgEs;_sJk=-4caF(1LE${y zn*G)X59ToWkQs6YvtH~R(enzAn0T@1eO4F`nPl@`7q8tFmSZD(!Ac)DM~7=Tt3X?s zq;T)97)jY|$6<1~oqIFb=~lD$pC6uFQbHi^$H6Ci>2tQLb-rix*xziQ^YDbhKDzm5 zUo{2Rxo=Fr^4Z(^$ndJn=x^TgB`PsGXuPd)pm_EuCxzxrV&W}A68&B3tlj#`|L;Cpp2T-XG5^W7&*M^`IJ$h`M?b$muFJ!|; zBz@eg&*w{xc>SUGpu*>En;w-rGM}c}@}mgNuwGBA#C@_uf!Vs@wemjN2J^uzU(b}; z5?kLMdPj{;JfdD4tC~`%MOV*sNO+{l)`ey|k1} zR0e~=!n*Kn8$y@CF0K`<)Eca@PUxOq_D<&bWG0!_;sLkG@If(yWjk2@m;tKI!EuE9 zYt8CN7v}2I1KSM!6F;x(<7FKS3nW{r{Ov)zNosfyJl+ie)hbL$cy!D0B{-QOB}i@j z95qNc4bC42PdD2s11v?->Rr1#;B=l|-T@_*&u;Yvs5U}3TMzodPS{ zi48|mhyc@{kvbEJ2{OEjh zshZaO)x*tkwx;cHs@JvT2Qhus(8;AakM54B&$E$b0Usf;2e zy6=;Fyu9m&23}J5NC*@fS+0~h65WfSC3t|AZOpUF_e*u;CQ{XOASCp=K~<76Bys^W zs@erkZD5!~Hr+(je;;{rc1ehYaYgzL>in_m$ zvo6q63LP32CjCj}Rh!3|gu3l?Xy;~+1v~r%bGinO=7~owGyZ3aBG_x&-7G5TitXF^t;$6d+{1G?#q+W zx3JwQENZoj4>XH30oDE`k+gx?AzJDHF zphv+1HEXIXwZTDD0HvUN5F+y&Z|YnLzX&R)4B^*)KO9z3TkW-=NK!ui_G!`Y2Hkgz z+uWDlJwkX?f>QC5k8BdfDzL98?5Oe;ux_zrv#oH*d*b`Ki=P!$ZtD{NO!4J@@JVcX zOvg9f;15+cm_HOrEqQjGf6~b;ZoqXn<86DfK@Z-pjEl*m$zy@r=G0@2Io+_!P{O;jemy6i zu*72{_|ubywF7w+_bufYs3;rbE$C|rF10%XU3p{ZRhrE6TqaMG&1IX9cM!yBj0M&u zRzAn4R4?dzbJ3WQo^=57idD$Cwo9m+cyQ2S9Ix(GsiwVpW!jsOyZn@qm^kQedRnQP zG(PUpUg=_Gc(e&?C(Q%UZEQ2VjL4a*$7dQuGuxU4Qx`6x*}bQppC6eid04!ULyV{( za`H;C(plo6F8Pn=rmSX%E;3(>O>*r!a3pbgJl)np*sXS%la$Si%bLIRz50U<+MLnq zS3N|<!Sy#p(g+MDy`FPGYGNC0*$)oF{vox}fg?3UbSKvWk&BQ9q^$$GgZ#$zM; zlVTj9tgG6aC6a#D9uUW#iepqjp9^IS%jwL5<-(Au@+ZHM5^YGQM!T=AZbu}Fq=|$S zhHF)xwkGo-t@T2BwOf2$%kaV^J_|Ggtazu!pd%R(V%r(#q&m~VUieX5TtfdT#rb%? zArn@(TvD4Ck*Qq2yX(5RR^2ay{nKa5j0Oe|ax4^#gbTyg}@c|u*q;z_4QG(vC zN%-}L)=>7&^Gj{ji{V|FReP+3&g{(+o~`Hfvho4yxK)7@m8gd>NC7hHPZ# z!#ALJ0njuwO>@6uq!(;lvfmX@|@>G|x~n+)m=r%544DGuj_-MM(9slLDv_=RQv9IW&GGE5cRyX{Ze*?D|W zot{s4n_1C#BcDi0L2$u&>e<}4JJxxbK8J`&jEfqf@Sxo}De02b-dt*;#aKAw9R)jC z-Rnodo2PGkry7J%qiPNu62dP486Ud6U#J<5V=AHHP0oBmb8j()&TSOCa|c`N$|nG(*L?*kd)7&D zlT%O-=98mnj;&3INbGa4D?VS4|}Xr zZqy#;JXZyq08pv{Ii+%WI%dASq_t+UKcBhSx#_^^dxp^yy+um+_Vnt`Ek^yZBqZh` z_Z&@Epl1DIpwic2>kDxWkwMH{CE!eLnT?D1ju{Q5+;hcp0m0RIyy_wI& zU?*Y8=5LW`+Fm8c)oF7ebaf*bQ-pW~(xY}4e6dgDsT54K98T*1ad)U52e;5eK}Jte zKv&aN@QY&u@M?buXvwfYCc=QVX^6tuyI9cH7d#`w5; zykt)I0vJcyF2%gb)i$yxwoy4SPKMoMhV(7kfjujw~U7Ml$$@}blMEi z`3D#Q_X1*yLp8LY5@Z4W#=}MUC!k~9C*J{@1Gd$4rm57EP3;}vXAe8m5(*}9|A9JAEU>t3C;L~Kx8nu57B7H@A zQ+KM6&`FJ-1yav28#>1=sNiYf9D(Q)96a#%b^DI*Gl{RdSfJW#==H0!xD12a{K z2lPsb%5LkF2j6V;w?bMk4^e_0n~4h4=$V-*-`Sdy#Pc>tg8>`p-+G z^;T?V+^HRz@|7?FI}afRb+cw-g@CTpUw>W2Ah>Nf%ET|dbQ3gY&n5?GDxHRS020Rt z@S87Hdmp<}Tm;Q-Y!x?9oqOY_-ta^LL-`*mcEk~s0D>o6+%l?nz73i5=#RpW&%wSG zR`R_mSKgI4-7NZ~nco+z3zS{;6W>C{UT`P{ zAM%|KQ<#5F)4t)JwdG%Go4?;`X9lOONQM(2zsn4nGA_ovfkyfZsWc9d!m6H0nyR8Y zBhc~UA=9rISxj%Tj8fU8=pE^a}#)Pq|N~QUt zLh91^+)94^9i}X4TWJIFE4o|fL+7Tv_g@ z#P0Ry%)$x@TmUjPS`TL~g-!%M@NYsRK{58#2s+&DPl;?g>%+EPMtSgiZE*o5q>8LOuW0-ufFYH8g}nYfz!yN8O%6BX_yyUH(jezyRciMF(pe3WuQy^|RVx3oB zf8}4LV334|&e27Nyp>=UppcunDp*$P3{SK@e=hrvg*4@BMex|T+JGaOEg6SW)cu=i z+rblSEfZCBm7y+`tG+%t!^29EEq*6|&hE9#t?s(|o7yTTv()f{z`Gff6fWb{+S)sf z&J&MCFF(lB5sTxigR}Dq$bd%q^i>vDEQ>cr56NTJejN!=Nt`4t^mTo9#sQS7 z!_CF0{=Zr-Tf%Z)I$UiY`*-B&Xn9KRt9pkXaK2n?zP_gPaIqNxdmw^(HWkm>f%PJ< zfPu~7Eo-Yzqu+|-*C4kHam=4{Q1^QVK*u#h{a`nzYz3aV$|*$Q zi!O{@Iy{DA013ou(f%vIje*03Q_56n$oYdMGe-P-Nw{9a%6{ zwf8+Vi)oOy^wCy~yNtzssCoMX+%8F8DjXlx(1%sGD`(vlt*oWqJ>KRWd{G#gui8Xn zMjoG5Vgx_Fa)7Uv)CWS@?Jm&0*mu7~RE#xg3%-8@-#hmrPE@xq zsE-FyC+bf+Jau6zh*;L~ivPjA0MO#XkF6cp$Pc{)e3=KPtV@){E=@kES;-S)VUe@> zo=Jnd+OAKKIyuM;57NI(VRyML==HVbGdIZ)2yV1!G(cVZ#$R4uUbqI*c(#@^qqQ{F<{P^RU>;!4c<$Z9hmn@rH8jt2xe$OWrhQjm zv}4Z-xJZ7i-4YobWK~zz)9eJF_SRx6_Ri4bA!?4})9o9$**}^1Uq$KZ&V6@=eX^ip zF&WnED`nMKw!bi2q6-FFbF5~ReJrc5ZmOm6N3QDJH>>$p03j&?+JF9fCQN?B74c*$ zxOb;1w9S_<@zVdf-Z}C$0L{x2ovNnq8r%oHWm(L=tXKvsf$EY_ zb=$0{=5sEH->fDfw66YxI^T1<`YE$f-;kS+Dp6yY`Ao7m{$gy4rN` zWMHmX55`xzn!VZ>rAxf=-uKbF9Kea96dZ~%EaY?8QrkE!VN|64Tnpj>|7HQ|Fd>s< zuAOI#DnG9Ipcdns!K6D%ox2j}F3aQYB~`GgDz_u`*4ak<3Rv)rk-_gIztV*o3eU)D zm8ygR-D=!(7h9$G2CrWlCu|A+V}EY_aGvM#AgGJDIPuwicUwDeTw$+6ej|^_aIy{V zleU&X;?JLBV0g#T^i3e0v)6E9mI|sq3|^kb%mHV+bgnrVh}~mj>OuG$iXIk42AbkJ zIBjP$0f*a*83{<&s*_QB;K6`nWMrCWcQD;9pTTw*Hh1@HVru(truP@u>xR!%p3y7& zZsy5USkpGCTxqRoPy zrd4hnyWI))nn77acsFvU_JVB<;sOlgjm2VI&^{0aRRPaEvYkkG!pl(&H;u>>@nxiL zMXwQ8P&ogWXjAWot011>liV@aobo;DR|q(Kyy zeXR1%!r4_dKBwU^2i{s{2jXBnUxGS%$(0k`!?hrQzY>{0Pvjw_(xUS|8iX3TmVNrYJvd{&Jc`*NfxcEFw2hq5^pw-Yw~2 z@!Oav(jO`(l}{DTt9II9#S@!Ga1!}`Q%H{nIH;tQme_rvRf&{rG!O2*DgjRV83@oU zqdt*3HVOf%p9N*CVpl;7WDxz`W+*8tXB{f12d`J>;Sl^tMg0>!8O|f)>eyIfn349S z-_!gxNVZxBgXL-N5a_#5sAXtqt&|R@US=lr@2p)FLG_HJ+-D#g_nClEOXKFdGpBjpmOh78(HGkIc;P>V$5L|%b0Wjah>X(5G(M-`d=I+k* zTsPg~OV=E+-_kzoRpfq$25A*y-w%w>JKby9I68Y(Q3+^arPfd$-ODecir7adc0>cZ zzmP{N#;$*k&Qyr+r%uW{7+mr~**?JS-XraTcB_EUgQ|*odr;M_=Tb1B3it24Q6Y|fWYBq`s`6xZBtFkA2ieB-xYdL^VS3}2W$i0m z95l=ZE4C#&8}SKgJ+VQ zZ~yz~p{HW;|35ugzkZg2fsrM*8Hy30hUij`6 zbHz$B{m!*$86tAi@oh--a_d~rb*h$&Irk4mASpk9l7rd>jCyN_Rv;=A7dyu$#K?Qd z8N?kBlca-eP0-#F`~xe6HLew0o{59()3yGeo92uG`^I^%DmP)E z3j^bkP>maeQ1BP|{T|X@1S3iu8{DrJ_<{GwY7+MlB#T;9d)b^_0r3dp43_0d-@$dkahp8X z6PF@r(4;|+0f#Q?9Dv|AuqgK-yqpLObh_NCh9TQ7BQAX|orO+yRphNFG0*KzeC6Tv zrcm|6cMqltrJFPme(`X%#Qcew`P%p<=I-_Bydl8+)!w^=i`Ql%fLVg>K=pYBd+NIh z+{Wi<0v#x#E2CAamuKlSFS@$z2I|{2oJIfLRj0O2U_pUx&hb7Djg2Bwa%K>Oxn$>> z3j(sNoA4cLvO>sG6RukX;$leTl)%Y;ePe-X$-7g~zmt_$6V^QMWJ5LqoISfnp)Fyj zw2qwj5g5WPO?8D38|msf&)PhHWih8fFmvn1t>*Dj zI@_3dH^kCYr*wcSk2<@Gk5^woor4fheqL!TC;@1|39h^0&tw+F2ZcO1ceq=oI`JT` z*9HNCf93VwV4E$sD3KU)r-BrM7l$pk#Dy~)Kr38K3h7+GD;Y(Hzk|JMu!&_C&t!H_ ze%?r`u9Ka%`(W$M#5(BtAXNcx>*|(Nfxw>%^!H-}2Y2w$2>5&*;T7J$2HQk>|M=)q z{D61-DfWXxLGN&CRA&C_KmL*|5<|fCS9nqdAm3IOFmVe?Met0g=yyDv%qiHFP86*_ z)Hq<9h7Fj`K8zi%n*mxn@KJP z8NNS$bG=nJdk<~M1^EoDzUmdiYh^p#_o7fB4@7_iZN8kM_o~&$4Y+V_&EaYdkWt*9 zif|WV+m;3wJjiW-<0D20d|7l8@2c3~ofNdsFr+E0)$96npm$@bgw`V<18l*Aj!e-U z-4aS*2X;j6T7J{rzoLI9G2 z#!ylT);k0!YwPdiLhdW%LL0vU)g9#X>XV8>+#jvvfYunVG5hjAY0;eI^6*CpfJ$!N z#q_$UJW$L)G?YEH-gDm!gt|(#+Bms#F>XmClyCrfD^T24FA&UBQ^Wl!o3<3pR+GuhGP~IkIr>`QJkqyY<6W_b$-yP3Y&k1Lq7&qpr01 zzx6acqbLh%z_!88rQ$GW#+JoH$fdhceP(%jG(Z!ZL@=-rCxbem-!bSYx^wgl_PF+0 z5l@46fL^p>p=3?=C!ODchhcaM5ESMmAp86KH$KrcqCB{sWpOv|JI>dKbwfk?p!11zrf?u;bYZHeI&)k0)!2cC#%u{C*=xFxeFgQ>993*^Doh zsatjn_6|#HjJOowmMayNpt6Ir8Cj6YRMCULCa|tX%XVtr59>LA!1yY)$_OWSdT@6K z>X*G|8j%F7%{&29%+*N(_R|U658M!$*wdBPqHUh*%hHC4plR;8wSa(vEKo(1M77^X z%^1CS^^63pNP&48Q%P8n+K2b*_ZgP^ga5@5Axy5ihmytxbYm>6sew#9GI@Wu`Q1Q4 zcf{GDU>qq^b-H)AJtQOH4O_?vf}XC2BxC&m^FytRAWI$Z^FNJgV%~y|dmFNNYotMi z_aO=SmUUx1tf{N#IRsE>mHma^`I{GAdaAeP?B-ZLw}&@;u@rQbu|{JOM8Cv9yt*2Q zZP-{?q$|`)jdR_`ikt8$;RzpoqmRoR$%n=ndE+MX?x~l~5!%02FJF=cT?3R+V7ilP*iGKSz9wmLGQVQW~ecf&*s z)|ajm+r68(ECv91bVvP&-k2;C2Kssh>%$7d2N<#na(`Nj4Q1s+mIYnsf4#FE&gs{C zH<0F3yUQ<^KHjMtCxf2-e)B|$;xyU?*LGP6$I*g%|`l z0teP^bJf$OCg(1@Z@|KWv~O7x-lqzCJK)5~H<|OLK*y?d-vO}%_}U=U0CMN2@CE`o zLdy9%CUzAbAVi9TvOW7_c)3r;mR6AV{(~ce1dT}!;|}G0Eu-(oh-dps#ACVdC^9^@ z@WAOpD=IHD+-)ZUwozVX(U*x;$qY9;4r}c|5jIL3(EX%=b}s9s1CQRO2C?|E&cHsi zywV(U&q#Dn1uBq#+&B`zINXtp9}-uW#!44ltvdPh5JY4Yz{>gTpK>{HsCFXdWWx$I z>Rc%KeNw!Gu|aGX0q$q6E>Vm2e@;wAp_xKLBhkO#Js5k@hxosnIS~7QGobMQ@q_E> zfZJ}KEvg{jqz-~8o%8t=j~zpytiqw|HV5U zej^WZ*~YE}pmLg7T^Ap_d3)_`KH6zCCI;tbd9z*rD^a1`hk65|3w%;##6E#>H4t6I z-tFQn8m36lj$9pZkA+RuH+ytQqv_aoKRrbbIFwLP3IWuz@0*+fU5 zh-&&T?V7G^_<=KTU-}2fb|`5CwBT0P8)lFTw;xaPn`jW)ILbaKVfa(zc#E&@L4J(! zFqK#)i&zo@sT3H}y5FsjQv~$9O?lMALj`T9LuU*OhJtj3uIB2_I$5dnB~s_52dt)R zGe=0vB<=`__*O^#%a;g98~=(;gop`~u@_;Y0rUShLsh3hDOO=)otn0^>7c3y379c@ zPRq?MBus$guz$$UV>37MwN;m2-7aXujAFAml;P-r@2`#;jBgZq2x8JfG>fU7|FYQ% zSWHGrh*$;wjXJ^s__!dx0f;}CtpJCm)8q#lkSzE#)I+?RH(HF&PVgvHKo7UW9A|ipv{B9iT)Cc)8TDi zgKEvwO?aKmJrf`Y{WP1XHak+^X>}$BOle-&*eTb!0!V}l7Y9#7vSf0XfN#RS`6@Jm ze7>a5g*zmwc7Kq_H6}HIB!kD}tu6J{3=^>Lt5pb`k9F>64u2d1(%H0Y{pYN_n}7OF z$W1^AwWMy*@Framw0=H=&i7-b7ZC_SN?E5X8bF#U8XP<4@Yg>3)7z^ig?cJ;AXqX&>fPP(IMuFk zewnz6M%01Ay&)ORi^KJ?GYh`vW*@jP@b^CB3f$oI41cG?ien!{#$WO2`gblHZSA#s z?fPl|9Ve40b_VkmD{&2$MUD+1Wx12CbpUkbj`o$?m?LV028GP@qJK`n=T!3*wshl< z$Y_oRrtsEc=1Af@UN##^(Ql=*w?!M+@V8!(YP13^H^1LiF!rfIp9Wy>a9bMhP`wHS z>cY0bFqOpXW(M}F@9kRMh!?4p%JZmz5d?WigGLv#ZXgTHG_c;pA|L-#t5@W7#-ILmSZAL5bvs!V z;JWyBqC@xgdrk+3;J^4U8*=!UIR=$7VQu4o4?K zHbKIH&2w3cy211jfATB0HnGO^fwgQf2*BRyAtQg|wJZQg`q}2mPSzhM**Nnr|MpF; zUS~o{Fu>*2aLPodL`JS+l_lju9(}#_SlxDhC>|vNB3$ieYy`$X^s7@kZzb`brBP9X zbinlePE43V(kqN1%EU`4KPRmclqH&pi_0opydpH{yr|J4SV0r;@Qz~2Tk?sK|XY5DlafZOUg zsqs0pf-$wakLT=RIb5@NpJ%KL`cFSK?;jUZ3TZtsb8BvuKDhH*w>lDEMALtKn~vat z!%YoEG8@!4?!Y3Y2b}TS@D{-M9phJiXdwCi6}UgY+e~}ksh?j69DK9w+B|0S8a?A` zr|ng&G8*E^@LJ_5CE*nL_=loQ`&Kg)55d+Y6`M$ob%0t>9&SD2S7dzk?AsJGC%@b3 z3)LQcT#X}3C@+}Xsj{EDgB30g_r(ey1`0$fThG`<=$a$iv*?AHV~)#cdzU4pG>f73Urs6-d&EXqfS?0*RW2l49*>g0uZ$PZ zoTJD*Oq2jf@%dxZG}SX-dXe30$B%#s6>0vvM!Gla6Amn2o@_D`%!-I)G=)XZ9UsiU z8-F60!|J*qz?hctV6?(i#-aK>%FSyvQ>b&_c@A}P1!97skv+Lo0H6UsUg#wEqTY@d z!Lkqnj9S!%4TgBHY6Z-Y<4MKF2Q;f0=daOiI^EIK$#T*bW;!3hl;$9-h6B*T4mT(T zc1WrprYi3 zDoP7-pd{%#{deQMgRxHGOCog7SW>8UXGd9BgZrUcY7lq_HyI8F@tW6Xpox2=|1SDc z54Bj%`UR{Ac3q1btD&7|V`#Zz(TfE9#~UkLKX1Yp7iME_-6y>pdd*GQ*E&_9In~BO zC#&AeX!N(OI>Qo#8fz>QhQfW5#cndvHx?V5yUuST#U@(sC7-&3AWi1b#~~`-=of8& zaDdwIS@ex_WB?#@tE6e!#){;0@O*S=`o;d)0+JJ?9b+QM9Yhjrr{*D`a2x*ZS_b@7Si9`?Xo%IghzokPU8r7pCdQA_stSW!bB2urX zwaWojq_tw>^;rhwVgFyurgH(;|fYk8a820Jh zX_p{FPtP3Twye3+WUXW7UvR4*i3NeFL@4wdiuVv7Q<=cyr%R)dhMHQ(HtPL*t-kcS z2po{Y0~mSlX1Zy2qp1JT556SmP1kbr<BSt$yC*F$) z=lXfE_JQc8R=ynCPR;6P(TfX$+{~;crJr{FI(2+E&(Hv$YSyFq;d~@^VcR$NPRiLj ztG?TOlzcbwtbT&eGXOn3$FjaO)e-^ zl-2GszKWyeIO_`fQ=MB%9Is z$WQ$mDk=mY#`B6P9wd3+{5RS^*r_af-fk-WPm+daVXcgzY7cvI0I+HW#f zN-|p~yFMPsv^gz;8$JW36wXR@>KQ`k{CBbr9>@E8L->Wd|4K{n6-NTykjFV zZt{b--80#T>=9ED)SiJ(y8sIvBG!}CswP#jymLt3E;X$uFPEK}^HnDSOpvXtjrlMSpQ+ zQb8kShv?8kDkyk= zZ$TrrZTG3?F^$pn?;kqC<~XELe_<23k4eZo7SV%~Ieqy(0;mJuj0IuK9KnA->|`g8 z@+k$3K2)#JbZc~;WW-e{x|f0s-C6!~(fB4C*&!LI7B+JYw}%k0)%qJ0X=;zZdy7ac zk)iuKs%c|%cxr1JB&ow^z93}cl}Z0C?GK~`6a2VE2{V_XTNcH@U5WQ_eO)-9U<{$6 zi;Fp({zXy;vbuod8B`~QMq%Mo&LIkGa>&6QG%&0}_Y5Ec!vlJSx$Vp15J-o3>P@{! zt+(;oBtw|EffpAL(rxX4B0Y+9;!9(>y#8Z&3VGbL0DjFQu0@0-LNEb&Z~>8Hf&$c* zcWMU0V9v)FVDuQHg}MSJ6EH6Ip$HcotT34##lYYh|KDUK7Ju#d7P=$@L5DH7YaD&m zkFQ>QaPH-Gx(SP*;C@>4e3@{P+l8Exh4}vS4v7H96DoTn|20~_J^ZnnH;vh2S+*9L zA0frIc8@HoK^WW)j2%;?6-7>BrXEXy2^ylugj4ayq+Y^4?|KEF1jQ`J!P5a-wRIG6Q&#o=}pYp?p`(H!1%lv=Z@^ZsbQxC!2T(u?5QIMmXL}{& zBAL;6)~XFFD=}n|qPD8Hi9xAuW1*YXiOeG*QF;*Q;w|B2uXNQAmnaoO0#c6T*)>{N z*Hwc}hen42GO06b`hwS5Ro4=ctCaZuy?UTx1v&_0YCPd*2wq0_%s8A+t=lz5g&o!F zP-7hTnRI2PnamMWvA_?cN4hFgpWKGT2!neVQnbs z+Oxr_!!82j%6zxY+*5?p#3v92&viXf1VADShP3Ac!pVw^)$p9eT+Itmek}Z=rqW;>2B(aVz%`;eMvQ2_^CSSY!{hX zX`@PgvgE@b)PtOEDE!)6*aFlJx|gq_qD8J!xGDDCoc{j!5a(Ee`SHGT{P^NF{n6F>g4L4q z=MuU|fwC)bnv+G~s$h~t*4deA+|(#dKRqjS+F7{3+dm$>Kkstn#v;31B>#T_LfnmWGihql^B-3#JRAPx<-TRiop~7s4d@LZ48P%>F`bjY^|#3`#uG&0^HN!x|rG zcAwwa4g_cV4EY7*e+ix?<82f*3|_;aGCWIR9<-DBAMo? zSzWJ|pX5C6s7I{70}|6EVp21LY&s5P^m#4gpwQ;i<3do?_I?R#9Bg(Z$UosFZV^)o z>Aw59JW`rNYU2R#RBSD}|u?dmqI2wfO^ua0T2OR)}H z4$a4k`CniGUkT_aE@!_77LNeV`I`|n9r+iALC2qFpb9!JV-HHdsfzw5%uzPOs`X*z z?Oxsw0!izkx!wRJ`9f&Va8kDSMp|M!KZC8cWLdoA}em|=Q}L}1W!a1dY{SEfz!<^cU8IJMa* z2;8dWlrq5*^9YI&@7|a$#s??W_ZrLOco|z;c%Tl-^Ai3q!KU44P(`yN0UAb(foc3jMcdTU}M#6r-&g1P#tM zojgmnnM#oncbh%3gAo)&uiht*OMJjXyx^O)9xw3bFIDsm{t@esKliEp*H$t#(bbHp zL;tXC+c_)cHH#zoTLXG!&ue?-^t|EyZoaJL_On<3jW?KRH;{UmC%AZDVj>%jFY5#0 z;JyFl+jsomxky}r?-Q8j75Xs~KC0?j_imgh>u5v{TJ@M!zc6qzB}B|3_iSGC@BN?i z+XhPiK81q5zz}rqKgh^ah^LyJJZE!hP8J&WMKYeJ78bgBw`A-`yg&|;W6)}3i+tP9 zQ+C;A1dvvYyxZ8>GOPP9fX{(4etkY&d5D#R$MwUKal}F5adAdMGO*mL69cZnrO$NR zHTlZ);q%TO`d|bIP?`0$kxrQ~Hj`Ph%g*bnoo1H&rc+8jd{qvA<-GF#WAOrreHk{{ z9r7NmK`+;`NRE=Q`b^Mt~ zmuJB~e5nN`e_+*@tr@_F9$i6?&+?cCFi@Z#1>olDY0)IuA=X}CA%b~K^(x}e#qBM+O6|E ze42QTiRk$G&#%?=G?boNK|(*kalfNanQahhoF5;fR~ z#%cuwPA*LM&o;s<%%<%75$~Q0k9S{+DfAwV9%Ccp1H#1#IW* zhXRCE^ZOT{GxGhbdOp;OxIoaeRxI{3%F&>H`Sr9>A`w? z1@GhrdXV)Eg4N3+&@P(|JfH+Y2e*EI8(RWVL(0<)P80wR0gd`-K9E!)#Je{E@k!0z zbnkosg9vmamGK{MPw=;9T3ULup5ju#6o)d4ug~t$W8ao z6&J6LEohhKQ!c>)?sO;O2W`x0JU%{qe5>x| z0|8oyrkh2Px2>%m-!h|f zx!nX?dP3a2_gLsRj(wXY-SWdn#XX+=jK-BKJxFx}3lj82$Jci@3-ytu@!rGkou8G8 zh%^4X75*%+Bn`nXi>66PnR2`Jcs?<5Rig`@3~Pjhpk=jhOF=mg8eLFqRdJrNCM*1) z;Q0F3#2-^la!MFG7uRT?(uJOoKD?Cf8EJd@kh=BPLCglf2W@*0jQRi*f34gxzv7%) zW-C-N=QOO4aP&_g{d6OG0tm47&N0XvANf68cK?!1>2#(y!rYSFV z(0b3lYW!S?sj}rN5d2s}_C)1-AFG|6?Inif-}jzytj5YfYh$zAQ1JM=NRL>}K2^-y zFNW_lAqJOXVO3DY=r?yD`d)hyx;ri|dG4gX(k1hL{cd20^DZgj(ub*K!`ZXQ{K5h% zHep1CiTwPMw_I!yxAv{EN6I8Xj5AT;!l>C0e^o~dh63?9Y9qnC z!1`%knSBg<^sB3xZ}-1yoza&sLQ~nH?pqQ4$%W+fp&beux^0imN6%^@XDl6^wz2Ay z>>yk0-4C*>HDSj8qWe{W8EX?wA_(7Bq|M#)N)zW;fMlNnJ$65qOBAqY35G)3ii|B;RhRgMuVe zYDb1#j_^L-eoh_yFa*G1f^VN?omazDGYsIy&->h9y;>wh$=eMV$LL4?cb%GN0kjJH z@hN%B-T{!7NpU#;J=ewV*#Dnda)ch`KQ0LHgu7}z1Fqu3`<rS&S05*SozL-(a%FOK78~v?{hv$-L&$G8hL_fhq0A zZ-PuG%+;J_HETHjWEFClWve}wXcvJccDGuy&-m1j3~pAO-Kuwp+nx<>%UcAW$3~jl zJDem#9ufv>=|z&r=sh)t^qdcnZg8X;tx=)Viw8=S;hhZ2^q~2U%Z<0 z==n9aYdXfR$dXt|>G9_ufeZHgg4+-j%v;G>+94rqi4dnT@WR}-LK5;_`IG61JeonI zTe~6e&Ea~N=Azf;%10szZ!kV$3bUo|=Kk22XdrmuTK&vJ2<3zn88Wzw+nE{J~_7~6FQSYpqqZ~A-C?NsTC{}=Y~h;G&~8`&M*^#uz81&fHhgX&U$ zFu%Q7^jYLwe`vLi`@x`++fm4N(+N-)%gWu&%sR|XtktiaoR*V0vB-f3`S7QH-lemf zx|bqVM@aI{QsOvG?<^BYFmBtttHY3BWZfciG!9PJ>3w4)ds_F1#=kEC^ zSYTjyaC7g0tzQh>%&1XuDxi9pxKg*?IeUhmpkh>b?SJeECmOLyZO^dZK^J`R%9~}T z^yf{s{Mv0p&BTY1wK9K2hfhLAbmrCkd5m@}dadp@a=60n`f~pB#8vwKyj0e+HAfa4 z9^0kPn?V7Udz>U&dv+o=u7}p#_5wlubw26{SG&6nlw)`>JQn66s19f=YaA}KJbHwk z23~%e{z^Uo=r~N6kAj#k?(m~GJ$S!JE1pWE7C!-Yg+xT_TF}c6FoK4VRvF}rn)xxv57qfmYxziV{_B) zP057 zR=}Ju1H;(%x|>nOXE7Ltkk{j>Pq=NBvao$|W7be0o!BD=;*d^I@`YU&SfhU5H^3{a z>-9FKGa9!~Sv%G(fKZEwQutIKVjg-?$G*iCs-mjvqNj=$JZJR z*ISi2v9TIaz}`F&BjxlEtb68hFFWKAI|Z|@DR%1R28QMGyk&=x&w2fWP2EM;>;3is zQ%I@%^^%!%A{}Iy0px!kRpX=9Ad*vy*>UZXnzj9FdiE4>3e^F`h`&Y-VL4UHpnT`n z_HKVg2lPEF&3s|*`^_vs=Dik=lqRLF&aR4cz1ztXLrBo=WbXx<6V->~zkl|G9DcRl z?K0Uln?0vO+Td&qEN#*1)uCWnAH6NfkqbhD3<{zUW20GMfMtYL0#B5CAg*s_bJv zzrTE+LITSB^P}7QbpldqI^iVHdrU{yCM*i^gWno9X#Bf<+jOqv`Izcz@_x~?+Y5rV zlR7_ocsyLZ(`AF)wd1S5`-up&pf}pASyEWDZ*5Ej%~5)l0`anQW1me-$GFZrCs2z{ zM`8VScK@a+n$iv@ZPy|nFZuhB+0YK=(7(DQyH_IH@% z$$4UHwq^Gge1k7xjO`ZVPLF>QqUWekU%m*lAJ%OvX_j=}{v|4*Neg<2rlU>W3o_mT z9L$B_c0-ZUshD`u;os3Hh!^`(Uh>rVl~KV*ZFQB=74K^f>D#u?e#T;jE2{hw@I@eq zB$EI@urt}ynr&bGJjvM$2OgMUobQq2$ zR)q)vO;h$X=j0CY9DwW0Pg&NGb5mYepl3O2Owk>+q0qyqZuruDRB8lF#> zDa?_*Anp+Ty;5;O_32X+480IS+n!4u;O+zM^SXrR?Spp8+Oj+4l|hIGK9uw#>qUO>ULtd)VeZ z*bixA!W0~YMlQ&vlc)NOH)ESqfMjGiXMUk~Sy8pZ`hRn90#8rWFcH1Cr?`Nwcz}k~ z)0CS;l#f`%T~Pnw^q&nF6DKS&qX{X?=OB>b%F@A1>4Xb_pw_rGy(6v@BJV-l z?+nPgJzbr1A{r3@CUK>^nj!$; z)YW=-&IJesI1{SY-9D&q%uJcBIoG?LZzClazPh>d@wuEzaNpcWJR2CI-u^Z3O6hMA zj*Bp_Pw_SW_-!|ZA4N;7@a_p*BL-6*ZO*N*|4%wDE6mAe6kX4dmj*sqJ#pu4pwozdO% z;<>6A;IdhKIHdS1xLFT#Xh3eVLSrR!FR>tgm-VfW03!$ZazaCi4;mich>;wcLoeP@ z;fEoo@6a%g_xQ8HyZa6qqhQ95ao<}^On=Wbt~s0?Mo&mp(hQEfK}1q&J_6Kax!_~1 zCo(EJ>D1!#dJR(E@u7y<$v-vBl#eP{ju+AHnf|YjM4am90mSCeTTO7EFWTHYTlvUJ zQgg65w99OTlJWXT(swYnoRqo1u=fBy&zUh@3AE1#^~c!qi15QL+^D6)z8(8hwzHBT zskXIwe=HZI+E8*w%Mze{TC4F2l`Db+jnB)<8JXIleZPoNt|F$4GMI=1ij=OrY2{)j z&_rih5rc6ZNOns^O6U7FS9r&)r%GK3R*m0Wdvph8oLf)AR8-XagWJCa-7La)d$qdL z)anaS=BG3QFmRU6B)^~tJe+14!E{hX@V_N!dJ=liz@Mc%xI%sPq!<6Dr}<=A3S^C9 z;fg#1==sg2b8cPnN%q7Q*r5f5B_{XrdZPWEonlG)FZuQC@R{}c!PM#ZoE8A}5pMu_ z3?i-4&a{E60cr@4Y2Y;DGGNs224v#K&=RB*)qZfJr=P`8+3vL_eQB}LaqTW4#7smP z4q=3k!;gWPyzhidXSxz{w1Kiee+t<(b9pKXu7v2 z)jHoN0f6)hmv9X7Q?bSJR{w$kkK-Ibn9p!Uz>8&g7h$^etrPU`TiN^A;EWH!{@z1z z7AgkDkM!)LE>Li-_R*Vo%-K#8N>-+?AL*^1sI~FQiS$V}4pp3A9{sovg8K@>k5+FJ zba|_~+ske-C265wy$wq_ihl%l5WJD3U?PKaBVC!dq zDGv_hAB-$J93PwaYhEn$WO!-=7<6$tdvej?dnITwcEQkM8592(a4KD&<=?0G?q=yp z9o@Na;Bgh-`H);AAQhC9gJh2Bnxe1%(=q1kx*nqr+=tVh&AuKH09qu1n89@-ZNB&f zq^Yw7#pP-$dcF3KcVf!#8-PO5!EyuBr*y}e9~d;kFA!dc;a#Teh^iDC_V4nndvnVbk;3}HQ*vARQ}0hUHRqgP zN16v!NL@IFRw-0@0ETc>Mg_Mx9w$LSXjFbH^s_TYC>5K6f}W61D}_3GcCuyfcx7Amx-sA$?k>-j2&eO`!zABXS;4m_E|soAuOkQDUQ;nefkQU=U&AFB z&)yp|4!2$-V=g)(II_Kp)fhjS^*jY^1o;Ozliq{-yS4gDAi$>qxuO6|06oOjy-$<= z+Y5{QZ63Tu0?U++po9HHTa%;$Idyzr|hhdl~ znLu~(%lW~OJyMPgS1fq)Z(bpFk5sLuGVEom!A7T2>*k+G0xS|TQD;*^Kssd80Mm!T zUu1Gwg;kR`?gxDZjJh@PiRmnBA-==QkkX-5z^yqx9O(iq^BkRdha|;6K>PUGOSJa` zZUD$-A7RNml^tHYydB-fO}o2i0!m+0H~&hmsNC`1`NvX{c(1u#$5p?SRtt~0s9jGBF6AT2S3u@)tt@v)nikk}K0m1mN z><*qJ0dO-)njn>1-jY9cNz#wk#EN-gax`c(<7Q7i<>Hap zMwQwQjm=CYuDrVWK5;)yJlp{;1kUvlK*l@~h@b<~_wr=kh?}@uNwZcY{F!>-WFc~B zBPPzsXiymd-a)Z$V_a|<7UG#O|3@C`E-{H;;nKPK3b`LvZzp2dRK!xA1AGY}i4FK; z!~kFhpgpgJgS}ZYE`XvLBKk`o=uB%AR)%(2%obPG!Kzls$nR#WVCMjkiurzS6NO-W zt|*wY^aN_w0EEya+8xpXNj_8X{{?`ldx72Z~I+BzR-1n{?e@Yg8VI(jEpN%(lq<>+!*axRt3hz-h)ttwse#bOb3e_fm@UZ{%! z$-W=$2TWvI54xl%yoqKCyooUqlDT$WQ^wf3>%r9wl!_ogC)3sgyT4_w>%d!5p`V15 zS^v>c7!+JKQjRI<#xv8N@V#Dv%9d3ikMdJ}wttTCWp6gJf8%;|KT*(**6+r7?V3l} zNU8mI275h-52ehrMtV3uk)O0d!^j3wVK5E9^ff7sn%dm}zFFWjX$Q3U_QW5Puv1)*0ThLYm*CL7%!tsT?@{>q6IRAWZ-_=T5urLxVhj(eqj7N%g}wwcpvgR=O@xcq6h)KT!; zZ@g4f(YlS%Q*-+j4tkoE-8hmfhlA)07eMd-ZLB0<13|Lvs?WC%fFi@#kYg_gjc?BTlmcOv1(J2v5@t7#c#GDs}J(!&qB zT0tpeFEo%rT{;E4%?tUiyp|Tc+99PnA3bk2P1$U3f*5ZuJONqs4cW2rOWVeUs>Y#3 zJpT;fp-QxD-2v{kJynDXA5k=)O^X7)X~;h-0VUyE=0o2KLO)6erBr4fI$6iN`%50A zxC6YWb7#dl9Sq^Yl=lq);-n#eoYHw(Bmf?tsQvsA%chi?OSmOWYH7d_v)76?jR(=A|`E` zmswl7xl>m0%ezR3Lnqw=lH&yw@^G~lnZ7Oc^4JN=8D6L@KsK8@MkP==ku2`?|#Q@>VG^B(_fFmnrL(N?j02q0h_q_ZNRq&wK zde3OUQUPoo@L}VSwQv1yPGt9SgOcJSNOptLj~>=7A3X8B+ZZI47_kyw9o*V_Rhn_Y zJ2hg1Pd+?I{cDx3Xer6XTpRRdTXx>%UgAlE)W4r&oySexg;3IG!_8ji%8lrk21o)h zO>8GX1GfIM0+tLgKcG=XrB^AUMFDT3PDr0w*q*gsC|OCNA>q&6vhEC`a6!Gr!Cdlw+e}Qegpgm& z171!?oA8VR%NS_d2uEm0BB!KX!c(had2h}K-gKGej4DL2_Lv#h)_lT@=o_G_9T`H4I|Esuv{SXmRBjgxn z(ph6A4Jqw6M!!D_rm4w|{)b$-ss>8BV1okxX^S&Np|F-~@<&JYL_mnT-vnSD-Kqn1 zny@$%?h|WekxHGa6l_4J0Cls!FkZack^=)D7{Y!}(Sca~LaTjRV)^ECRe*nZ=O)uX zsq97zfsn7Obbj$ZNVCEV9$0HZT$-r_t=2x2aI94tYTEc8Hf)vl|6WkF%K7&f?SFL& z{=DeyGbK-7vWrhbo$E>5fM;F1`q?uWNbJA?4CoTCF}`%|qC#N)d9We6MZtuE5(m&s z910xw_qTR40I<=}YIwMFbVcC@FQVoK7mL}J z+>$gPDq=HMR$4X5oHqC{P+L^%0FJupt(QHK2TCB{4DNqeGoV8Ds{WSwI2Sn8;9i* zK8BE*S!UF4*P`2$Yk3WT%_o6xI(+E3HpmYh=i&bn$9W8 z6;#b$`J)Q_i%mSQeUMS>aTBx$(G+vjd|BCg7Y`9SM+6T84jgwezQT{>Kqi3fsIs@H z)0Jy`4M)oR;a^pPuyN<)9X^XWKzM;x>HCB+hHg+MD=QC354->-GDSBMeD6~saJD>Q z)ZjEdmcx4MV?2iQANieQghfn}NZtVF6H;l{X!abC1YM>mck^nv0rP2EUJVX!!2$84 zO#gF@wmlV&m>0wE3BO`Qxqb+d0MLp|aJZNXu3hWF8~L6#Hs)4~7ni~}q$IVQPK&|1 zAl5PHJp-?=gh5FPFUr@xwZQ*ifzfy*byrQIj0TNyXR&TT2_2`fFF3{#3*H$}Qpp1S z{$L5P_c#ExPD^ve_xN5(X;m%TULb`s=H{9!1&3QY%T2^wNvepK4K+s4ZeD%87^%3& ze=lzvdSzA_f^=B-9h7{xhr#;!lM(2XyK!L z14MA!kWj$D!>SJGap0UA+LT7Hk^=yA9+N^ix2LUZhsm5k60mGc$lv_Ecg?mT*TlU^ ze=)T>_*=c+_G|$YU^a>wb1AhU|GSccfb72R^d{t~>^`XgL7!Ldxg<*NyNn2k|V-B zaGVNMU1qlN!h|?vLn~vS;Xsm|EMQdj+?S4yVRC%-ZU(tOD5Tu-_p_%!wihd5^5X}P z@0glt$hqSeZ=KYWa?Mbt`9s(7SO(7KBP#I9jbQCYHYSRteElD}GAyG^nS>ynCm3w! zr>bkSSPn2$0U$K!yjZv`C@jap0ps@vUU0ru*g+M!ZI}GOePQ0oxN!R3_T;yya&`B! z$bilG0a7)AJ|kdw*IqE}``lVL47KDA=3LK481XPb3MxMgz5mmUYqHzTy!BZaQ5uctFy?7n2kx#hl|Ui!O$9)R@T0o`}! ziA1`e+m(AFiH;!iDwGk?&i@ey20Lk*y3yi?5w$|FuAC2k0{taB&}ZgIfANF^@=e>~ zf3@Hu6q(F7Kv^_z1M23n$qf`Bi@=MrLo5Kw4mX)jDb%qp`}@7*TT$42bZz9>xPQhc z&Z@cY_0;!%7qmbQ=-UdHSd?#3_|x!1r{GlrLEU*0@(+@U)|vAZNG6MK+6De_^D#1j$jW^BnV-abS(ga2 zZlHcY3EX61n45)iQXHS|$};X53aw_EyfJz79iIUu7i3t0p!NO#NZC`U&^&|?0=fYk z3oo1=3X;e{@Q|*1A1&x2;AGwh|2Dbh1dPpi7w>E3t=|TvL%6v3F{u;p92ou58tv+S z0eYZcjl~NT3{Eh}QC2FT7=^DTf>95sf`5=r2H9)ant@#dw52Ck_fs)x*jpimKwSWY zIMchSTj=~?YOmXj9tFe34@5FYHWhzOCMJC)aFYh;ZSYE4F8P$2ubxF2Q3^W4@DxsU z6MrCrejk~y{TGcoR7OcbBrjo|;TWpQsQ?{v{;$caOQ{!j3QRQo%@}?UU274Fao{qw zQn3AAwE8Z!SVLHvxPp2q>b^~H$q4G(hkfe3FASYp6CdSD@7!^o9T_VR;Kj+N`OnRi ztE4!z(?_jHO42EeZljz>Zr)qY|B!2;yUtrok2-MF&tfeUvhCIWqmRF%^=WX&)juDYY=2iy($TAAQ@%dewYZak~!1%IX0tIUWqrs(`N&uCA& zJ^le&WLL$}bHkllyOe5}s!}wlb01uk=Ke0^qZ~ZARb{YPx)f5aRQN(APlWO)!?l38 z8UvF*)eAj%Qg(u~hrX;#DoZ?{ z*3-Z9QTXmNYGp}Gc#iV%v_J{?BB2q!)=x$1hp0y^+#85Io?zJizJpv|pPP%;KJQM2_EkL!{H8^2x# z$AMqH0f+S>JAbuOr~aYo3eT?F6_3U!H`B4aej4Z%UlmuNh4#PBp|U6(FatfPd7Bo6 zM0c;m=YI9It!ZYwJ2L+&jgTlNRb`fhh z4xuGxsES4r7G4h9jbPmG&bzJiW!n|k5PeJ!@z*g@&%9dNd@+!4DLy*z!#|ry%(OJD zeDQ`RNG^)cO`>S?Qrztqphh?rqASBT9gG` zXn#W{P{UxekZA(@67Y{6p*51@;aZuPB!jZ_N|GT@G{Hu*UTp2h<4TIcD)xx82crPb zYTuTBks2m$>5oWkv0#HSzE@9Iv2G4L#(N`$7F16G9kJU{L_bJD1DRvs0v0yXDWMEC z=WlTR`@bg_zfKsVXxoGP8J?&hE>0#65*LYp#P$6LEycW`UZ2vV#UGoZQsVGU_qpHJ zaRX=`3srP58^5#@8%K(HIzAG9xrLSNmdUd*1qgjqY@iax(ONp+51e)(ubP z)o;*}3Rx@!{%O>z@Dhinrw_yOd=Hs_SPVGBmGSUCoooR?|F*`3!%?Nqx@|Cg5dYlx z2r#rRNdZy|Q2Lh1Y2#Ij=`mrxa~{rkpQa~$!+3JgAAUN>?&5%-I|6?0GygzMWYqGp zWd{|tskR+-0noa(6QUym=?Joq65?1Yn1yM6ghgl_XmHKz$Q=5Ep&iaeG{d z@jWx}Q5hcECq@dx4VBBtrv6#u${0iRhKh3)hqJ-7$kcTr_{Zds#mDf#z;41i?u4nS zafY`N*6SLS!ivv+m^aYnNx%c?$J1UC)~SmQfnnO=OL#XM!-r`U=NTxP-#wiQSuKk* zRV@{T5i}1R@IjrjQ^hp{I#s|0e{y}lpkY*<^z2FDy2+@in0}DT3luHAX&!z^2X!fF zdL(L7IMGIJGIs_8UCs`elL|{JkgdD640$?sP?1`Lo!$gjXv^zzeo=i)-X%BQ#RcLqU=u*UE5&&Vq0_)M07=f^}^zfVxN8>HMt;ZwrzFv<;?F zzfy5p|9LeZKk^uuf*d^s?{1G9kx{Ev)HH^v9=*b^<)$3^0>tTnviV`k8aR6T&<>a2 zzw!v*MY}?@BtDw)$M+N?Yh3D1*AVSKq-xgw>0YSeSd2xBjYo6>GV80pR2;B-D+H>6 z_+3R;TXuL)9w@#6h#3rSE8w!NgtZv~!I%ne0MNaFP#vHyg~qC?xRs%SJNS0kObT#C zRAO;1wL>`Gt2|$eN0VYDODi zhK%*HjIpV)sj&>TzeDwlyX&{NS~4$RjNz!tq-^2}FgqSLUzRW{G;X**)>YVaD>C}o z%3fUi2%kE#pC=|3dBWyT1!27Ht8Pn}5BpXv&x>qt<*Bpz)3+95pD(?5qbC$SR4yOm zdDsw`*&*n2dA2*w^F@$k&4aukR@_K*NS5NzUATzH26iG#)h84A{AX(7P}e9Iqjvc> zosz_Xr0}`zxb#8EtjKfrrq3sYiw0$(Oahne*@dKVkR&Ou`Hg9CH{3YIJKJLc&P`wJ z0j#S9Lvw0>ELc4`g~XqQDnGxVT|!M2F@42%K@prsW4lfk;oWnX+)x&Z;ZCKdj*N$# z@egrq<}38^C9{7oTih|>)}%h3?#xjf?e-e1lqBbljf{6tDYg7NqJ-x+&6Kz_(Q5Cm z!finc!muP2%qRyktK4vYl1WRO>5NK8KSenwn0doA<<-F@nO#$N_bDfu_(}tDg!tU4 z^YE5L0l3DqAgyLhLf0Z{p_ptY#d50QU)!%)>61o@kps(O)B2AKehIj=*F zEz3RzmEpsXzaP(cS8hhwWvz*CgNz5aq zDU3D{UBhM`>xB-*r!(I4J~ct?kk<}7C89A{nYU%~F%O@*i)X6*ZhG)9C+gDQ|I{facGAL-L0Xo{ts6cV_|yrk5?^{`**OyPJnL=CD$; zEq|sx8&o*@*N@nG#}b3SdyetxAEia+TFLqC_lfq2n(AAtHiuUft!DbZUf_k-bTjKOUOj5IpNmAkx-TbhlJd z-r5rPO22p`o$C@UCiDJxtQh2=JR&c+dljp%gIFNo$E-ME&_yOoibDSR z422ZRB>WdrX_!uC+jlpjF&g^Zv%XZgXR1F4H`LTOVhrFW{Ja9uPU+||E@q^M8D2EE zEC(hFbwp8PLQKn-{R|5Y%--qpcdzvuI1%wI(va_V@G$ysMTz}3i9@s%=;BiAJ^eRu z4IuPH%88Bj4O6U08UexFg11s%z914=zCt;vs+YFOT~Ta!gOp^5%}Hu))1RLiw6E3JNYlGj8CszHBLa z%Q-*{KW%sAnufcB9ZiV#zO?Ps`wnw~=2u}h;PF~YkA$meTkns1 zkDGAP^VU2^SC`WJ-K_m7Wk|PoD>(#IZ9Q!pw8;^Y*h@RZIucR4hJF3 z;Zs%x`2GqD8=Ktn0t5!rsPyFUPgcCPdT|OIzX-guYtmxZqLX7}wW-C}&u?t+EPHO-FS2m`ZW2y5Jni1F(BOPE@}s{xF}Gj89ByhqEggDCigDZ~ z#KY0_j@B6$Bj{@L-u0+o+F-fy@t77R9K=~4*9+u&pBcuAIguJuv2@Hf2OPz7NoWjE zsq@3-xzZ&u%oPJ;f@Mcf#Z=`gu@oZdDWPXgml5rqt=w)VJ>>{K1bVBd z)ujTuUjia+#jOcUe>m%jTlZhy`1JmWD52>8PBv(FWvc})*i)=Ka04WAxMMX=I?t9u zZYn1(wlwk&Ajszi*EqHiTBTFO$oE;*9D?GE6L=-+WkcDJ5<4rIwcb`iBotxKAIStcln zO>re9=_CsI(w!3g$>hTCmE}V#BKk|lV;~85&m=^!u+nZ%=YR@^eB|$7-)c;)?qJ3@ zy!~gHSG%+b@dYYB$qpQM2V)AB4|gr>+q1lK!1ADsdjAR|;BVg$@AjI>F}1?rAJb2{ zuaM_x=1aa(RihIIiXOZ*02Kd+91(r;e57 z3cJ)E*T=q98c3C9EB9aFbBc_s1Yf7?i&kDVk`f2ipYmy|$ivS&S(RIqtOdWVc}!EH zicif|(zKM$`bA7?lIFZTFxk3l$>fR`p?f(eS}>Jm^vyD9t3iq}{&n2vGFwzA=d9nm z9Nd;t#p#3Z1rqJ&(tc?D70PLHf>B+kep8s=8K=vwSvbswObkEK@o5p+u1!EbTcwxm zcHtnCd!Gz9ad^H8A7skb4XP%o!48>5%ioh0H^Dg^(wCTM`+U%JZPgQAyyDkgq*dbq z4^|8fG4koyZl#;=gX%%czP4S%7oci5zGFC4)>f5YT7AA6LVeiM8Z5geb=0Sm$6>U` z%1jJN`B%|0{bkGltLhYIn%e`{$3IK|5`-_2OOn{Xh3kB&u(;NiLN9uUTcO!vMHN`$ z2<1}y#qIKjXxs8`JI?iQ|DdtqC&T$fqbq%of% zw0f_8;K@C@M9-%S?;W}c$yQ8C$E)V==4`QyT7;~3!g z*fo6?{nd#MIB>fD=0Vr0b{YYoRK+K2yjZ!cgf z^j**oF(LRf`Z@f~c)OArTO5MDkX&LdVOt69!$!`0!nMrPEJd{&j1TQnAFu1XAMbO! zGZ7FY;Q8u9S%j8P{L*=KxdxFC$~C7x>~ksj4bFWz-il#4ogJtjNU8p63!3$eO#ibg z+LGOqtIE>R@v(o=c-GfzmB7I{=hXLChK7SG6{ero$HCIvy=y-#4&|c%cav#J9B-+* zG}47L+}fkY($ptVNl@X^OaA^AKPolxn-Ouber+Pn;~77fdR%sn5ac*>A4?Z_Am`tm1RaJFq zR@pGc&_tN+<$qg;Z7NSQLPwFd(S1@i4}a&sG0JMK6`Ei}hUf|1p$Evx=vZSECvb{F4U(0o`b@&re7sbtE5?%u}2%D>mw{$wslVe$`O z&B6BMoSyKbWaOxcckK7Tn`KA6a(E1OA<)`w8R&QXnNoP0CUf$a!eD)4%G~iV&t7WE z1)za{$KrMqeKsV$&QD#-ye6c`y;tA1o~eEFEWcSKWC-Kau84WN|SX23ZMJ zyvz%=#Ry2&!o^bBE<&^L8}0@p!$d@cYrd{ES;1j@mZqP(rZk(hE}>=&ejx6(2zOGBOwl_b>l+%RQMR}RO_&M_Fq^toV7uG!08`V?@sy%1Jq z@oP2nIsLy-%ka0`YU5!PkNs1@{$kRp8@6g5?zope(Ohz8~5ogbqsT$ zQI*C!fg~n&G&0Zt2-(xY)4%T3c8<ArVdm$q3i4KX?3cQVtohI&F`isZ6wXowY+$g` zKpuhf0=uCEG_l@e*efNlsMNT29`d^6T63o5ZGxp$SgTKTfSiWYaO%`(BWtTr+o%g! zKd1Y_M&cgC&A;_=$NX7jLsrubbIl&c-;y(2IcfmbnTFt{K{2mt}u=4Bgdl+P^ z&&Ou!VQ}_M0_l357pJubSJW#G`QmhzQ!b8>4{!9~y@sixK8qmi4%FDpb)#}Df=OQ} zu!QYCG^}svp9q;okD#V!uG`7=)XN~-k`^y)x?V~FhE%0_2ZTt7fS(IVEx0-z?*r-& z{}8E;-WF%d2C5}-EpDc@JmdX^K=*Yx%do{xI!5GNIGIBrwYe$+Hz^GfL;Yo_X`h$7 zg!OPJB{s2%n=j0ow5u8YUOgCgpTE~isQ8?2s%m`*9oKtKD?Vju7joQdZthT5ljieQ zGFy^LbFzFDQ?x-|98#j}r@Ev0wq>nEAjw+=#kkyU?mp79lKy2%bf3xFw#ffO(^p4j z^?YBed?@KoK{}O|2I=nZ?vi-uP`Z(j?k*{%;X%5jyGy#e;T?Y8^{&NVpmXn?nKN_F zKKtyWzQeoM`AizAB2wELJbiUMcJGTlrOtnx*H9tRRoCcvX9n)NKgxiJil&>iNmjyBR z#MYaUEFcb^MmAJbg9TA?M)URQfsDi0BId?KRs(f%a4|frAc>zn9N0}84A)Ci=Hi4U zs)`;Ce?!|ZcJ==3L3Bo4GL$+?J=Uh<QwfgXh*RgLdrMX~GuD(5lCh;#l_04l;86UM5vq&g}wMorYvb6QTb=Yrt@NXYv!k?TWy=O7t@7umhx0oy@K5jUwCnLo2MjAKo)PGU0Py>YI~`(&D`F9+(S(dD zy;0wl^j`ZQ4~m|@Mv3dk=GNN951tmtII%o2+aZLWIqDUOWP6k*33xW=>>qynQD_y| zNk-gz$Yoa%WtJM)iF@k)or;LF^aTceI{AyNt!;ck-zPT1@$_(KyPVdX%(U#xAYuat zZq0=x0}vZ>&!y=4+=?<{VM=95%sAxa8W@lp5zU-`(Y@Bp(~+YPWu$lZLl z)KSC;QOkXuV|mKY!iF8p?kG+#*|Z}i^&CkmvLAa-A7nw4Bq@V5!61k?F*(;-|E=Eq z!)FzmM3UpkY+LR~eAe%C=ZOFqg#&I8rrv~RtuGRg^;!MprW;WxSs7laUuJ#^osWXx21QaKrVh{M#_&}7KrwXS3==!NfMFU-hBBGU9N*_2 zJ1#z>Jsp;zc+WtblGymD8b+i4o^s_s1XZX2B0 zLv)mehP<8o9i0{qF~r-74G>L&DxBlg=eoT6*?jCCgq}+j|6ck*js0CN#tF{BY~kr0 za=>;bi)N#)!*gs(T3Lf_>BvxhlWfy0jUcHmUTRvC>p{lmy+B?t+Ip*p%+1;e32;UO zTY-$Xw-}f4#{Ju+(a>(JLzVXE@OnKr?{pjmN~uC(-I*fbvZ^q>8zIfgXs=P*2WfyG zHk>S02h2TDrDV8nv>d^CDPvk4Capp;M$ZU&Pt38eXLD z4zOx!@kwM#Ufy_K`=;;^-)BC-n>h+o^ZaV-A@f3gp6G8s9xd&yHphAmwj}M|fn#KeM?j;23pE&sUjHd~Yhro-Weczdg2ZtEg8roKKLfJXH+(TsI>VmNO3- zMkOo+Omo~r6^w*FPQeUVS=v&k$U63SDakf_V*)Q2`+8Vn0>U_v-C{s`20C7Fv~kD* z&mBazJ=X!NU956 zS@V1E(2Ts1p%`5dtOuB~yaaMinzXZViLT1hUF*eW@(HYoUm5g`wFmD3*zD$Wc) z%zS7+(q~t_k1^ta=^Ot0`JJ2j{54K1(s`rpI6k!kasM|F2=E}ObY1)L6Dm(sM?Z5> ze2`W;_D1e}Ph1xkXeUe-@q|MKj>&l0!r2Bh_@SRHrFYjG@ma~ktKV?)iQx<0vr$9= zO(o+~u2a#tIDw!=$RN8oa!H4y9y@zY4Quh zw46|ou{E!2j>0Eb6g1BB$z`XClIQu!v8KF|zIPGg1+B3Qr7=8xlTnn#?qN|Ve;B*U z#)6D5FpgGuptmvR_qBtWjAZ{wFd(;(#eM}O6=A7rDFIu$2 z9WY%y7>RHY;pI%R>}IS81Iy9t?6O}=_0pusLi*@;o8&2NO;T4q&=vBl7_mk!K_V&9 z%qWCW+t_iuvmIXt^W*Lq0>DTIgJJnIa%0h(P^;ZXP3S%lQqN77?V9S;P1n7BTwUV< zIjB(a4!b#egdo}6Sgay!>(7j9ak7QX$N|5LqbdUSVfS034g3mh2>>k{5fjP?!wWZxxtJDnziv)5_)o(KnEk%rArG5txmAfrOtW>N0OlXW8$CepI}ufKX#39*-$nGf7-G52k>wJ*<|3p zg;hC)UfV^?=(D_{{irV6+_Mp!#@8c%(*HM56B*NyyU_z0YwaR@p__WV5hDCMx-oLJ z;%9QmHKtZ`sH&ruB7vlQG~kC@#R3pLyikZT_h#rhwdKJW{qvG%T5mn{P*J^N9;UpI zMEON`=_9)*eNdW#tZkPl>+(HYPDUCFq0On&+tL3Mla&wg-D?g-%1}lR>v(8{6TGWO ze-&Wk4SnPf5#kWYMEm)Zzf2Pl#&o|YDAYJ1_Z5u+!Ccu!D@*z&~w0E@|?e=oG)&3%Cev9Dv@KSI?+%XR9T10 z$F~;VXf~lXy+(WLFnwAybiN(e(6evqj>n|{H2R4f0eaK;@^Ya$jB=6tD%1n>dwrp}THxA`o0j?g#C0HgF1(Wpm(ReL@cSIjDI*7+ zkgZ0cYZt(P$Qa+{-%3SUnEP!vBIUrVJkzy~L&SUGi@|R|iQMeg8RKUeD=RGYZQa0c zRZ$f=tgD0+q$_go$N12g*pk3{CRiCetb85QjEJiR?DsLN4Afj)Mx9yjS@hRIU=CN8?wm$a9RWIDKMEJCR7z5`N?-B)Fs5x2S&KzHo=+u{o3){%1fIwF} zxZP>M-p+6xz}#MNJG6Li*9Mpi2y7W-)b0OS-jm9~%s6^DUtuzKzPBAr-#Zs$e;f1M zzPd}}FK0T>L6X%vLy?l;O8zosR?v{N1)`#c$dewNS)FN2Qg&)hgfdea@D)W)1Ml}F z^(dI20wHeOA83eCS=`2~C&xaP5>jH)y+v}mnTBzbLWg9AiW}XsX81irgN{Y41iS0o z_T%F7EbR{W#$N8JvRi?HIw{qt_bo=S(|}I_?-ol>@O4Xa>ODw}{!oEaGLcYa%Wq2m zHZnpus^)rU8_+O-qq-Ed44JY5UWUXCWI!>rqVQ99eF)< z5GMtPl81m|+U@!hr=bomXw(O9pp3(>&V?+2YV*(=Bd488Mj>+AO3J0GN^4x59U2O3 z<2+)EC;u*C;~!oQH|p9?2`}+}c~E65AYT+vOmQi9F#s+l7j5m0zgi99UPsA2I7yLP z!$dD+@y_4Br4RQr`3s)eI3j_T>mzxKf4LLgn)9lvfo7)dCqAlu)LQC6S(#xFOSG-0rFLBh za5~UHw2M-xBMG|#l>+1&K=tM=0nv9ZPIeSqqNkhWb_OO`_yHn^)0_1qJz{uoD@|Zj zc&MCWr7N!%AC?1M?c0}|f>r1KtQwMu<$)yUe?=K(S@rHHe!eyW_dtS<5RuJM7KKyK zhhl(C*a^SI zkGh=Y&`@mUYF}?=Ly*KXSg@5RtI>OP4QAk65Ya-)e?ZoyuYu{JEbP>;^7_6L@U>~#}b*_F(Yl= zvlvqVX|5bjR}fKQd%k?E{GJuxJ^k+f=E+a6XZ3Xfz-Ru`aXZ>5nA!gFY+=6|E+Y;C z20@<_D-y3Gxu@N-tPU;(+!=bD1UA2Iy9|TJMNv9@-HmfMzhmPaNd;iT4c~7C=&`A_ zltkP&oc;!QAsnuV)fh8tOQQlduw#pSQ53)*dbvF&vPH>*%n0!HMm5L*T2{tHBm;oX zS4|bp{S8I{JdBmiNiaSQkJ9D#K)&VHdZn6(!{(}qbDmTVYY5~a{%xAGT&^p<0x6Fu z4TCNqqc`id+Q;puU=d;0nYnbbL8{5lVU=(3r_FmM=lK=YYhat{)R!!rfV1ot-TVZ(1#wUMR$8*vH6RQ(?Bw8T;0{qf0asq3@@ z5E+fWdzuz$`JYip4|3VM!%?a{yVJooYlFq$eoc|YNBSpPnha{ z6Gl+3--fbK*I<2yFW|UjhTk*y95Ag5&sqOnbw#@TvAL?glIGK%am!y_I%cplU(R9< zcSC}SkEFc{q~77V{<>$*zrv_6ZI_@)QX9c1VKz*M=z%Uj`0vrqj}{BOx2DTRAsIbe z>g)a3TOp_d!4)biv$EuyqqB?Bl#A6$RaW?2m{NpkIt!J*K4ct3D%QJa6^VVr@u!km zohu3`2}@E4^1G9W`fC~b@0LYJ2|azO?&m7f)Fny7&v2xOx6@X+fRN?_uxXp)kE@q% zcs0j{A8;PSM2lw2$+s?cD@3KuCyQc6OlxL2uVs zfQR22{nJK{#mzG3aZY(YCz#Ewr#&m}b;qYGsE(C&^y#d#L-to*hn9!M7NyPj9l^l9 zd8%XyRP_1Ul$+78BHwi2i++|b>$*LhQ84;jWu5qQSyE4gEjDzBzg}->XH9Ksy;s}L z2kZH^ZG_p}og+z}@b%Y1t9JHIG&BWRJQQZ+$A7)Yb@#-Zw{Lqdo4dXE-!-8E_O$P4 z?p3Hb?SBT|@5O}3*kw4N=i$n4f7xlb#elm8@ zQ!qZ!+$8{hVlVe*EJLj9*dif?APo|rGwo=&jQ?`b`&j`EBYk*4OTflC=~ggUdD>uM zV2e`h<1sq&u;CN()&B${bifA;u_5AFB$1)4wu^Y!K-H|Mw3KVW_Z+!1N{xM8Il_E1 zao+xH;1}Oppu)FDgtOeA)EGuGpi=5%XKXXx4Ppit6R7|9k_nY2DR9VTJzqdxfsRyb zfgDP_R|gU^5I7WCtF{V-V{g#rL=&`95Gfs;g?b526h$7NG?1xnw(vS|ze=k+EUbDT zvaa7d@1m-a80Vy0cR0U7B1#7fRemRbk-?IQwuTTEPIzFqk9fH9&BG9{UjWBa{*19D zn~U^zuVHsndX0gq3{JGZ0Gk%#sk1{DP)r51){a^>AF`O1gxGDfE(Dx$D+=o>V$%u@ zytSEp3nw|*&!2tI8G+w$2G})_h7SxBKp!6YliflmxJ&8`+U&Lkq{ER$*`sRWgcEqrJph#@((YVnMd z9^%`Y=G8@ZW$PWz4_EUO>E*>;0O4@2keC&4EoVp0sCu^!D2yL|B1TVg#3thIo-~yI zWhW#|3j;|}F3k`t!go)ud1K7kJn07!!6?G&$-nB7)n>**P`~|f9z`W3cODV{UHW=; z!Qz;s+hc21s`WuuCoVa6K}9-8(Z!Y2Z9uIQAg*2PC>^dl6vy$Bl(&X+O)5Ylln6ZV zEWqFaLv8}pboCSSD33e^)E@A<2Tp6gk()?%opU!IG8oR?B(k)RI`8p{&}?yn0lZRp z!^KdcK-qv50giyCVDq|Tfj@Z)t>SWO1g&Sz!?#{MD(oo2WbT`08E(s{&^_KGCj!BC z8j|Dnc0}MGQ^&d}{x%DZ27I+J(Qwo8_H#agbb)bplwL=WAWa*jboFW0duUy88O*qvw> zbG)K0x~xda&~%pw3OPDHg^ZJWGEp~-^0BGD5uV%f=6G&1^dGp@R`$0yzr_H1=MCfe zVvbLf`6oPje40w23EG~-O zh_5G=tYVo1;1e%zfQB4lP!y31i4Rw3d~eis<00rIqa5u6T%=FPw8sJOSW|u(s@+2v zX6y<|8h@mI+kA!mv%>Hwcj{2iMJ0ML7l#O+r})haJr5l7eFK*|3t1*laU3A?r<#D9 z)#(OvBcQKM-9JD$3IS9d<7pDn-Elk-0E?uA5eizPzeL){j|VK!+wKLrL+5fUI~keC zq~-M9zt>48m446M7bNPnN8Sbdt4$}(A#ztoV^wwy&kU#@9;4)1|CgksilbW(i?&H% z9nV{I?ZgHtZnYO^fYSE->RzVtY@8+G$A2{26>Zj-3^NX!Sx=8f;;00Fa(@s>cE!tP zv7&wj@N7ks3-a@0+V)GmIB;EG0!F4~9~gq&SgamLSJ(+2Oq_r)#nS^MK~(kyN5H;dlDJ8>AK0 zPabvG_NWUshl)QT?DT;rsuAuDG={zrzB=^S`Ui(153D2Vb%;;a|%D=|< z6^{u?xQ+{uBtWs8TN7{?((gzQVyG4&dkOr;I^kR!T3;A-PFFD!(lcYaAqN_yG%fas z{ZAs64QnK-l;IbB=%l?G;TNG|uBqMM?gC#}RP$pTN**bn3db5zYE^`=KePTY27weH zw`cg=+w}jH%xf{gz!FC>2Z2nR^(w!Z0z$4V8&}1Wn?fi6@%sAJ_@14@WAl90tAV|6 zEr8S}zmx)MZqt0@+uT#9!#QI<4!XLjKPk$Jb zlosRh1?_4Yl0Q%y5D?8+gCne)El(iY%5x60^-;UKi$x?^z>JTo8+O}Rcb&;lOHl&} zcslQ6zxtYmk1TEHSSgR|f-}rO9DpSUZ_?eu09Q)Ggw2L zJnpFenOZPAUm2SZ>&s?!co!P5#IlIMe+R05N1`(bL8}TQ1m4U{eZoF#G9MrB8MJj2 zPCo-rcAbK5)CChJ7(>4eIj#Od zDSSp;8{()uX(k7sn$A;c7lI$}+3nk?y6$RuI>m4Ju9f2!btR^)>x!SqH06F4)6NdHskm-fr;icUeFN+r-Qw%p!i$1|Qb%XOKjr+NE$=;* z3m%0gs9siK)rH6IVtCPvQM2wSa39I(SMnz_;_e_1OXd9S^odJD>APbRmbo?s3VyxQ zg35;c0xQ=4T~B$9sP;lE@>zgDEzHZAThE@2oL3eCvcKE9Ai@Qz62IJ@W8;_AS4KO) zxrDADE&Z&k{5IE$*`Z=MD-#LT*v)s`WSuf=THW-h8X!|_61TL2(vHHq&2k5HwKI+Q^1Z_3uOT({jUUl$P5qS*~Vop&6SYeFIh#)w=e!2Br zhy^rj5*s5lu&PBs9vr^A+F++7UnDE{&C^ze4T6^67$(Ch-rJD1A4w?sSs11{M~x$9 zvtP2P>8M}!qV0)K%LQZHW&jJ?0rhVShMZO%sYJB6H=sNaX@D*-lT6JFxrE+iXVr;y zVxj?Ds4r%NElf7shURPQlHv|@ z!p0%&{o;sZAJH@Pu^=02cv7#XqLOj>t|R+v3feW?pJ6_Vb&q3#YUHlD0uNMqCB(2N z5yjN#R=W>5KD>Xv&(VT+ktn)$4>qc@oAF)tcEAX+Ci3qIwTqC_n<=O%M{`?ZS1Y{8 zfQd!0U3iQ3>~Nx`&^o?xN5sEg{gEX31v|`A&L*O?7B_Lw3Yt??Fg=XBD)nJ~2d+J` z9T#frnalw1ZJL-WmrH7pxCZGNRINk2!34~rZT|`w!iP1b_zYfl)^QwzyHXi*+y;A% z7*HYJ74+HpUHWoCK7H`liWf+|){kc3cax_j7*!r@O?J0aLOAt=vy4hVLKRP87Xn`7 zG7W3KTlbSGJ?GXD91YLkza?2-+MaEPD$`C-3YaopB~IbXp#;u+piGlWbJe&!p9sMb%&q89mX_Be^X4Z@`m05Vh0K0-0ooB$5e)%!rs%670- z%!2>-D$@|2P(uBQtimmI?~;}Yvs@*2fS_m?AikLcg%_-*p~9ZTNMMLCj?)>eu=#c7wABZvA(a#$LEU;34DH+_delo5wxhK>AVa2BqJ2n zw8D-0qR(xs7%eTouJBo6*aW?X!O6NM!W)Ty3I-=cQ}7lK$UjIWYGCQrem&Vz>k5hP zq&tY%8fce7aD3WxL9cb$q@H$I?yvBHzcuXFcB)}xMu927j^1E)>ihh3YLnH$Oc~`@ zXho<==DtN2!2K&Gk=<=aqtMcR@5QkWZ1_SK#QFhKq{qlXFJf60tg&%=2UL$AlzDQM z@w^k&WA&v4;A;;nig&>YUu7o`@dPu%0_NuolqS@nsFTSJ>I$U1-n&KLA||S#Aar3D z?jdI>oTT{jVzMSDfvc@4O_83pi=znYA*3Mm?Gga!<$M>Tr7VzX7Un`G{X3)8MB69) zIJB+DT7&)bgC5@tX3=r2M3&}0gx|3+Z8S|v-C|ECUuj%2NfXHB09Iwb#)k zb%)p-a)1b<2qg!ZTPYKpe9sjET<_%*kbLXMzSu3p7i{m1F9Ap`Srg(AVK2S z@G^-&mk=+8$g|_}g%P<}_N#wzsDqsf2|{h9T}84N(8#0n$tJM#OShUpFrqZ;iyTrD z#t=lZR&6h$T#HzBkBAkwJ{w^u7GT!v4`&)P6vscZUSdrai*|Z#lQ1?G>aiZ?_tS4H zhnN-L!l7I>y4Oh9M40A)e47hfsh!>AcgGv6U3^FgLZv}4oSpLo;DbImil_1f9ioFg zIH=CXQlObnrY_ehW4mvC-|2RULZYR$>hZtzSf>PbqBfsps)dufk2%-yW}{Cifi9>7 zm|&8;!giUB<+`LERw|tK7kxyz8B1&H%`m(bYF>tb$lrZhL_0x!HLF82C?GkJTG(&} zM;fN`vQKoNGnr8}Znj-~PTx<0H-GE$$EJ+evp9sWoN^pl&B*2cdE+Oi|A^;2hd@EW|7n5jEVIv$squUT?-+YIh~S_pZ#-(b zxaiH!9SR1;0)v7s@bZx7@j7GpUjJgiYt-;XO~n4el}C<|d>Y=<1mOvOJyCJmH>}Ri z-q+#;w&7B;pRHX&s}H~Wp-=}=;+WGI`)3j9TTlcB4~BE98Sn3x7ECk2u#?5o)>*qG zfRldckCykFE^0)iEsXsSpmnB2T1E+f8F+I;qXFy z!Svx#r!Wy0B1t)t7b@E#b30moar7WXTXiH3X?qEU^(Voq+@_`iUl1g(U~WhTqA^KX zqem--G()a1mmB;O5j6(p|2OK?E#MJkJs$shINF_|JDiBHDU>%n2(|uXyWGwBbSd=7 zVa54VuSfgn@9f{Vf9sJ^Nk*Rpy{_L`Kp@+G4-n|#bmPP~x<8{{O5xeL?~OZatjo3J zWRIKEY(F*6oym;Y*I1cz&QbR0Vd)&eDy5Q>zn6?%CfGwZ+iP_mtj|~>T`@BJj{|Vt6jCG>M~~Q!Bjj^#K}G!M)SzVoO9) z?#DAjc-*tRJGJ%h0LsDQudFQJ`v_Hy1h=LmJT(5n^GaySh$u||4+ zHaEC;eKmQ5{RaZ5HaWrSadx{Co?mEeW|m<c9vw;>W z?~RCSVovrQ``;nurwdFl_vrE$8hjWMD>Vi>}6|G|u$OIkPq((h^Omp*dh8lI(( z7QDX;*s#0ul6y`Sx`#f{A&byt_IfeDUFnSx?MDXFXM@!9)Edb7GvDrEs{K|YV-Z`d zUxkJ^7ZCINu1UQU2%K@*ZpX(&DU5VS%zB4;o^CE|B8m8cn#*F#=tz2fASV!y>#@Sp zs;|bSdz7CUNp4OKKpA?t&@ssO(qaL?-PS#tz`*yX)?}A{N!Npl?KzF*e=67V+f8&E z{ad!a7b^-UeG|WKdYP8Jrlqk($cmT9k~w)1@>D9W2-r2_1nRK>oJ~7`=(!#=<8jlU zf{lm!zJSt#chR>K$9p}Kh{yiCC-(>6-Ctr>?zDB$boe7^baft_o34Rd_BR8;GjdR} z+0HHpxI^6rex`(pDMi0HGb8la5SlFvI?^<-maF0pvLjC3hNG93D}WV*bdXtpUa>xE zuws2a55efc! z4IG#c2dZ6|7~l*Q+cG2HaeuE*`e`;!MWOYyOf4Ob38V*!(IW|$Js&B3pGMgZ7W_gp ze=H3TjO19w1tGb(9-wQgS8*nwW74UqAcBqNtq8tius3EEJarvZVs20Td|ZU7^1d|p zy}jRV+)t#_bs9ql^6{NaB%aZJkInb^v-LE)vWcXR*YU}P!)-p7CX^~xzURG3qb^Y~ zD;`VS5B>5PCwvc*k$C|+E| znE}KnLXV!T4Stnu5O11%g-ViFwv|i0_nfCT_END@+tG-^tz}+ShW%ddnF^2J#7jLB zAPHBmU5?cwE376D9d;Tj6ISmn3NQXJzyE>Rav{u >+0yQ$IiyI^Fott8#gn~oO_ z!`lGvUYlMTkBTZ?fyn{NRBe~Uk_X3PZP~W5Y`)yFDT~jW&}^Ui=Cj-g$w38g-(Qbo z<|+q;Y5URws+9GWwp*>HA2_euwGQ24hF0(BHg@&(o$7qkC!`xt8=)fAWp|j%bD0asU?(Vfz{OMQ{l2lYhuMddmUx}{HLLxbmVKp zmwScw-}~Wa-kGNmia8=V!YwE7!L{617@jV)J1%<^W$T26ZI{M5ZgxriVf8;#k^7|@ ztlY$oXgPm-&Ir*>a`_~~h$(P%$-R){>IPbgJ6jbUqrDqVn{)UGV>lSS1V9QUeeGFC zpXXG1-5HbniaU8S=>a|-!5aZqVk))=%Gu)UZ@Ow`b0@G_nH}&pPLO zjitKZbH`AtIj?`Bj_`@QVnWAABmETp2hOWi$gThYZr zMPD@)zT?F2&lA5Sb9c7hn}Xk&m)EbL_eKpB3P$A9 zyJBr+lGt4cTDU3cOS|`A|DTNuldqwR1;G+qTOYajP^VE~v(hnfvl7lGLagNHiXQWE z-U|7&t~TO*_-t~99aAHn2J@k`w$aJSn=ULQ;9I2Xw9vl4UwpVza)KeDe@(~6$l^bu zLDt5N9)@DxSy3?$#OAA`?b_QxK-*vtyh|D(3;c8bU~)tg_y?j_qeV2s|5P5yM3%wvs!>|wHI=g}t5genhj>!fbid=wA#W}5{WGZ10VXcz;U=lA7456cN5X-~#)#WC!PXuZv9(5H!D{-s zGCJBfB;%;fPcKB4dX{Lw*=Y5Be}2D!9UV?~LOhMYsYAoK6(C2SP-mhAwv0{mlq3N*OH{qFcG5Bdp+xcDAOmgDaGlHu|zNH>8!V;14MW z6^8l0{U+}-+F*8bkT@vm*19H1QA#4WoibeaUY7|&_qUWR`mnw3K`%QCXe;6YqkBl@x@f*u2tx(NW$qD*yHl8;1aA*vCjN)f<#7x5wpV|n0dh$+bIM{ znoZUeNl{4Vwac2nnSS}sz@+JH!AkWi!`XN zmw9R@`ZsI`O`X~6^LNzM11m_Ii+!)5FvQlDIiot-XNHk`H1| zdotpho9P(=c}Jz!uSSM+|FE$wn;sMk<&SGE>(u|K^geS1f~KV#E7E4ee+idAPlKLzeb&eWj`Djno8OT2# za)cA&6y&Kytw??2UEh>438wVPBlw#R`7wJHxwyG^L0 zJb7^-bey@gu(CtyQP1Qf1rg(JawAX-`XO!d zQ63P>tC7a3JcW0a3mUOc#wR~wf8bno=K64Mt_>REKnv-vWfl7#GXS*OcdlBOI& z47!&oV5Y;!lrg_?S57jBA$@CdxFl~ptg;gYA6uyXF`HI;#!)(r=Wtf7H?mPiv&H)Z zJdrlOpeHjp0a2~N{o@W+pHZ`A`AO@CwQU-FAi@a;-Q;EZ8SIsu=kY!%mvLy*>i-}*k=@PzA zF{)Rzyz#y6%jj=hP?oiFe?cNXBQ&gu$5_h7sd|aLyu37ezDvMlpq1fv=!Y}~_kHaL zPK)p9oYRpC?Ko0kdCbve<^xBuSs04MrU=AyM*boxVQOqZmd2Zbfi z&GP@oHw5D^YuBV2@Sl;-fb#S0qvjM0k-ImbE;W3kiK`;Ss<^_Nrh|R0^@o2!L;yPE zl0#r~iHciopa?u5Jrc=~LVK-IvXc_h9krA4Ntj3jL+=#VmtB4#una@8Hd#|C!FfwW zWHL%aA-kA)_@Vpwv^DEF_Q|I#na`2EzYe+3sQ48GlU%7kVkC_+-rt?LqPbn<6?C3R zS_xZ>n}F=yu0*UdIWc_8xwE=>1FA2jywll-P+6j!dATmU5%FM(dTat*W?4pp_i$fET

|!%T!AFM(%H3_x}+&!<>E9*ydqEXVld$rU&Hjv zrTX)lB3y}?IEF<1VUqtUfzHT>w&vksa79fFUoWAcU9=>>_P3XX5LNM{C*sCDc`-Yd zUXm`{X*xqW;#`z(;OC6O`t&|cHQ@N@r?!U9ENc$Tjs=8@sivJ@Pe3ef0+I|yV?RS` z{|(RyaM%7!d@2Eol6iujpz zqd3K=KqekjRzy)BTby4-!GGg>1+S#}6<rr|hVziMsEtffTE8ao{W=TR290qH zNdT`Uv%MVYLoR*?EHU0%(=CJ?^Np2u;7qHG@zJlHe)IIBso%2CHV35wmaeF#z9UT; zOu$8#kPSDczLeAAQ_x3vR7~KbqQY;=X2<9lRX7Oqlx9=v#d=$k(G?>xkezT`fafx9 z^^Mv;7&GpH$Kl1S^#ZNdHPqsu*8;3)iy^+*u+B?_e>skgDs<&{q8fL+Tq)+21D8GH zM|B+DtX@{MA1;t?uUF5S^cX8N5ZBl6cAR3|Die+^OH%OKGNziSob(_i!(S^gUu!AH z+y6P@c*UN_Ph83jsY?m|_Ma{%sRb|2=D+m1lwzdzlE0!s6r*1d>>J6tf+2(^y|;X) z<#I}~U3DX??eut*99RYausEF>{vpdV0Oi2|^mR zsn0uJn%I3BXLl4gkiFZ;qI90HyIGRK&`N6AbFAyIb~(b9`#eN-lj}_%JK-+7&wb=g%a_=ZWd}{4 z7LLi;GkEP&!$1CxZpT2MKTZ;^cn6d|S!^3g?>JelXMv zPuqs!E^|p#-y>`^u3o7A#PdoV7w>)k&bZ!VU_!PP*AJh*OM=MA?lD$7d^z~4tD`^j zjRgEt;iL?IV(`8dk~N)-IM>K_?zsDKB4e#wpFSEc#X3$xn#@;k^^1_Lc6i1tlO?;5 z%`@{qzlr@4if0ZL`efleH~ZQh8obc}kU_?YE^hghOskzqQp?q`B7LJ}{{oO~jmIhD zjI$nOwpBzilG*mlO79>1g{!EpEXs%rD!vD2e-|Wxh73o3LNH0N$V9HaAb{oe<5ph6owBi$Sh16>QwHt6> z>@xJ5eQq^TM8y)WGV8Uk(Mrn|ef@+O-4Mix)yeGsFsE_q)1Up+dcyBvN~k?iQYqLM zIp{5l@?S}&3if`8xlHbx-i;|EhYtkdORuTfL^^d5i|T_zZe6RUsP#m$HHy3!mf zvpJ^3&BVA1jaKh5fj*V3mD%)uMDp|1TcCCjWwb;2*7$E~TQZ*ca8WHs_jJbPY@GIo@35-aOjC92?yN7vXb|htX~S+69#)( z4hIk;N!ilB`FOE89|?n?l-_rkFml6#~>)jToZ|f zMpa%bz9fEE9Lw%r1VAXn6bSL*7s_X4E`gF`5Za!eukeYRm@r`WA8_JQ_+*j6+?T}1 zj+?zKr97ADyTcR49~UBlZjwls3Liu3kmbq8y?O@_nCbUGk&n-Ls0RU^#-WH zbot5vlkYi~*FNfKs&!t)6FSWOWo{|BNo_uzt{!J*14f$)r)GmGRa*U_@xRg6V4<(3 z->uF(-?QIebD~Fx&FVLYY)w-Ft;!tN8G&iLMR7{ZLRyTXmX^TqBeREf&Y1Jza1PmK zr#EDSd-w;x7~}0~y*wbx2K3UmSrfh*MGXHpUqCN5%5(p1>Dbk-`}$#0q&@CzNjhd`~Qx+RuNHV`c+SbgTx|rT@r=)sm9zKl^%X@BRsFffG(RKmU z{i2dsZ=G)IoBgZ$=KXM#RwYdBbxpF``+SMOw*B!Rw7Kw?d8fMV!W!?&4d1DIvMIgD zFsND<(PcAxW5a1{bn;bT(Pw`upA9v0+wp!#rQh6+aqvJ@8$bg%OM?I^dC{wtWhXR0 z`AUdxxPTg~$ZWI8WiJuoyfj(@Iu}n*V}luTB$j&oCW4LI!-4|Sd-;VwW<6K9BNiQ? zue&-E=fsaaIGX|BFirh`)V<|jmG2WRtkRv*A>G|AjdVzNgLF42DbgVbNT+mnNOyyD zOLxa6p3Cp^JLi8mFU9@Y`;NIL)~s36YXV3+eL*5f%}bHQyO$Mf)ocm_7USogKzACR zRUyGGt^T}4L^#F{PXBcCoOWeMj*f+CrwvHr-BsZNkkM0c=;!?@tMM}YNz=8CSW<6+ zU7g@X&#+ahl&Ij4uABz@{e_c!`<2N7DiL|Y;6E4A&ho4HNQyswLxki}Boz6mo9E>u z!AfksF6IY8=ve6J(uW4~yXCdDF{FyILXUC8@^%wOJA61Y=xaCv-ua0hn$xC`O7plH zJ7yBLU_J*%FfJB_jISJoE;cGdHx!~ME5Q$y8Y=ns@9FkVnuNT z%BPB_oKnD7aN$et83o(fQ`T!q+=4>_0rz976j_&1bu5H1aWfb00&5cj{w0qSs@Wvt z#qY^Rsjw;X(HXNVO}?9wrJfEHgCA2f)K{#n71&J2boKmtsjzY1q9bY_i}s)1RT78q zdf%zCI~~acqyKewFT4yr^une_yz8PlSwFWlFux&`(`qqhh~8p1pYlY^sZ#8BNQM3N zF?H9#D}5sf!j@&o0wSJSaa4|kXd$_r0+wgFQZtiWhNdC?F5TN4#atQao8zDW2u;GD zr1e9G#~N{UF3N=6hrL9#d>ej+(GSmOh4=thOoN;@V`L*#FA#wiCRAAJ-BzXrtJ!#JP)XBq6yG+xxOiXX~Y88hr{k+w0e>>@Aq_f3{M=>EE7*4nIgoRNfgTNm* zxrlOjT)?Up2uRxUP{L4iX6u!2XCjVWYteS z(wrVV$3i1?pnB9Ueoj%fF05Z?iy;aGo}v#i!-IhiOA+@5EK1ZUh^xG2F!?U3o6W*i zR>5ZU3hXHs^XvXVGk{A_hc+h5t_Jh2(;oWsuhElUx0?WYXbH_y+6sA?7G);0nFe0`*H)i=HTqXQ;& z?uQCb$yCrOECobO;q)zgeF&{SePDk|{Q#uvi2BWEDqlx-c=7`EvaM7)tUUvRp`lqq z?HYR|iZGNcA1?&HrOsO_f5;$sLxP5z5Rw98$HOR1GCwbQ9?E{Fea-0v$Z30Af2P-W z5P+;~KZ)|VN+IvZlq1Fe;w(ROTO~Gtj`&QNrgJ99GA~|S(zXu(s-IYP#~f-;a4;Nd zx69I3;UezAzXpcKu`;d^7t$Q4T$a-RQX53Cwdu0bZ$aSu_jSl59^m_76(}@8d$t(u zPdSsss;*d(J4N>KA=~Y&$t}Tqi@y?}Ts;>j3qEukWEYv{43vFi=#EPKp4QA5kH1~e zd1d4Bvo!&5DG=cVny7#IN^6ZT%6O|_%yFF$5dAx)A!1)ToxXQ+dpdho?0*KvD^8A( z0vjHP$D{871LF4%X~*R|LhjQn-$z!U37AlK|76PI2;v`0z=b^`mJ`uZXSMv0T!aku zH1QW@cv1cYP-1}IZt*9v{rFn6j&NskatzN+w)8N6!oO38g+9I~a?JL)0?D+6@8MC2 zJ|Qm-_I1rGDpQ;^lVActT@3v>5CS?&V@|icJCOp|zf*r7Vl|)Ql|m!!VeyCXu05`@ zq(F95iTWkyB>TN-=&0J)p7}Zl*3K6PVH++}d>8Qi?;H#_zRC4hHax!)dCBbeJfFRX zCu2j-eWIjY^)TdDEImlfqaA{~@RMMUNE(9XP+NN<3o}SnxUhNosyT~gyd;rvkJU@s zl2*O1M)$a=2|u11?tb=as`?BI!wgbTrXRXSQV=Xv{sOOK|7fFQ-x_n2HTn5n>%I`8 zp;uxLLk#9(HI6Tub;x_y^ak1XE5K-oF5jOy7LnlmgkB9KA6QeF_q11_hS?W11HQ`i zSfQyC=z1I#)aJ!{G6ohPaFT(R#Io}f^z*h&W{$fDv4F>1wzap9WY9Y^YrN*@0+=ra zTnp~{bJ6h~Q6%5$2)_ESKEj_)QhO)K3{Q-K9g!t@lhvV877O}!KTs4mxj zt`KI0JsWi@m~E|7xPvOq5oxMhf%qCTyukWS6|YtX6o=dM5P*bUt$67-8BZKg| zeK%pyf{uZyi}PwLnihbyt!tAu1v(vb?G^`BBIth4)>p(!Y;zU8dL2o36#?NK2jtG0 z^3*)$1Y<=JXT?6BhH9N$mAf5Tt1(~p;wZq$ zsW>h$j}H80ro|eWe{R|P10F$(C5$-S?Ab&vOYAUTViIN1(%O543fYI7a-*wCQNfG9 za_^|#3Jn2OOD+aYhfNOBmM9rY`QsCQkiTZ-_}~{9pY7yqQ*Nq!i$G*`O_vb;*?U@U z@wf6dc8@7GcF)}!jX@4q%4SI>gf=^Nc9L$K6Zv0<>o%t2Gc#vu0-aueerfGj0f&^n zEPt-Q&fFc4ZWpj~IUI7@8lK*A_)pKSJ&|&g?UT2<^W;EhYr7*pn$W`=(k3T*2pad< zOoYo1=XMPP5efXfGQezml?FX4^&Wxh-paXZfXK@FXN-RNoun@mGxL2b-tJr+Tu5mSNrIpQ+3_GpL3%3jyvSQtEeT^p$=M|`rK5JG!d<^7X^uniL_-mZ`kS3AH7(6+?;M{p0iWA` z_21LI7`v!r)T@sFX~*Gx_a1SJ?cw&g_u`iO?4Y&5%V7nFInxm%z^(glw5Yr!-?U&dM}-0>99}$RkNvji{xmEz2MqVXoiv5yp4V?%&>H`}eGqQ8*tW8cP2 zyODrN7Wlc|Xc95Q%ZqtsSZ=<~Qlz;YBSy06eDQ-GkC$L7wdYamQ_!|0l${5PZ67FYK?A?7^AFtlP^WUfEHYkT?Q=oG;P*)KrgEEcR>~-e@l>!!L z1LfcXYPe^l7I+|y#Kx3qHG^i=@7`g=fXbaeRT?i;am?MyP5}c^yC(-jaJ>7LDm0ta z1>qPQN4K_JpK!eKtDUBQvY!uKFrUo>SuzfVpJv5a@JA#}MRK0B9SIdFK)?a+uSc zwDgR>Z?~OpWj`iPE6B3CidvHgXP2P6Ew+hByv3Hm8JWAEZzCfhFnWZ}l%BS9Nc}%t z0Fq&qRTSqY7vIVuYjZrun)vjy3;DWfX(oL61*2u)mXrBSZ(%l`?@zs8BS@?;bI+C!L zr{h-cVfN#BzS2sRt;74*(m2cZ3+)kY5LDLNQ4c)sMpDwI`%kiR-zr_hvu!wQEj$lG z78tebVacFj!triboS?eHkbgS~H%`ar{A8k+NN;u_$w9?>!--;zHxL{8C$)3FF=L_& zCU~bcwC=B6ZEiEepfbE=53O?owW(6ZHz9W-{~UB=6yLxC>|NI+z0c)jT*PhpUj`nw z0fZjmRf+10){yrTP}~Nh8=(tJr5$5junU6GMe_rBt2J)UjN!>9IGJdfZp{nZ(gR=2 zb@~|#PKQm0`rH)6t#Y>b6{gWA_MM{pIfK;6qqjEYJ_wqqVsr4#9IW5R-zxoVf0^f0 zK+2eoS4>-A7)mJ+o56Q?{fZcpWly>c#+}p|I5(XsR!cjg*AGHeDJ&ljE&?qUvz|8yIaJ|Q))X5H90+Z~ za5l#TJt{OZ_~Glw#ESM8>hsBpUHGi<9XXgCyx$z*Z?gFXk(^Lhi)Ff@$yf<)0FUq| z;Fj&7Tz96j9%R=x$pOP!*gcAq~V3a*{bG>T%qS(%s&elG^G z2$e1u(JLrK_;TpwnX$H78HmPY&WhY-T08NN1EH*wI>L+B9GXqo$>t?oP9LG%j1HRGE%`gd;% z&`FNh{P>l>d$GFn0|N=J;C0^Enr|n0!k4t?p{)kAB`ck|x0OASL1(1 z&rF)Ls>Bnkg5^7Lcw<^>@WFG{wyVZae60m8?x2;TEmLM){k8{R;LGy1rcn%W%vza% zzZaV-RNQ&sR7cGnj#Mhn9p=`$L5>X|VYd>r?W3#CIWc%AkZ?yYXQ_Cei%p=MExR<^ zALyx($qv$hpEL%Yt)C7xUb%hg4WaXGa?1KlUI&tC+2XSW%|lIv|40eoF5J9u|D8r_ z?JS%154E8|KWsEj%k;j~xw7>=)Zs1FleqA76yaHpXdP80uj_HbTFyu|`uPOG-LcO@ z4JCih^V@2pAT7MUtGh{|V?A^Sl3a;red?gAm1n*2@v5)Io@7WJL?p# zY&OV`A=*!mNh>U5BKlM7yQQVBOf#4-=)sI7ej?p2Jk=%tyRvTEar1!O?lr$jFox^a zWqdb#YAftqC{6FyiORh#L>7o*Mb*CsN1s`Q4jM}T-v4T7Q7!_;h_W{9)SEKCAkaGK zyD1CCVd~Mj;O<+TwPIpQKefbbgo52fCW`c1c>9+bRLM2Ccv8w@R(PFK9ih>juTjq4 z%lsC3+-QKSxEcFQ1KDJesPstOH91)jHM=$uTjI&0N$Yeu&xHZB3QwwSULkK&&8se^ z3W?CJPS|!J;`TtII){-VZPgE3dQ8ZwlXjlV<}3skOUOzjf+^le^9NZ5UX&KwV*4B5 z4DHJq8)G!-ogCG5iF`v;krh@UJ7B2=TJfv89qE7!C)bZkL4e@Vyqe6scK>C(;f2bI z;$dOD<*|R9h<%@VGF_eTLn=C6^KU0VTO~|(PGp63l34_nwf{X4VXfm6Z;jFgF-8K5 z%^${;h&k!yA}nGvkbT%G_Rd$%29<`><>^{-IL7S|)IW=}cxl}4RDUUYBy7OjueIL^ z(VrtloJB;OM|_Ku?DeFg8VH1D#}V(_9MD1*Aqdh!?s&4nM}jjR7NNIt(;G4>I6Py- zBtp}u$8blrxzzytW7DIxAaItLW-(pIIK*Y9yBO$uf9-|ns|0BpgzM^sCd*{y zFUqu@zuBmh1FZKmp}dLr(*rkzQqBivVLrp5ci3Lxq}OAe?qXUsGC#b>lMsk1(fme4iS{MIf=eGVl(HX z+Lb@UNHRsetTCduO!oL+&O%!DS8AmD?Z$@D-8h-xF;wR|XJX$(wq4^9@)(sGMu4-E zEr~RFdnCLOmKaCtPyQtm_uUqoS?MeMn63UT@DvSH*s6=*J1X(C^@7))n+!ij8tNf$ zz*j#tf{_O6P|%wWdd-e!DCsbkMY9ghR1ZbX$a7M6p^gi6D89x!u$zok0F;7!h1BXF5Fr_p>9S6V*3z8l$XA8GJE zBh|9_Vax5KAs+cZo5P+x`L&z*@^rfl(bQynItb6>;CtTcAf*9Bu|C{W(P^N_uwLF` zv?@r;7%U=`yfroK7e9y=;G1v5#u;TcX8fE4b;LXKr#;;63@#68Pt)M{cc`K8R9J(I zC$Ik*W3)OTdI#K{I5eK8hA(?YkCS?b%2W4uJRd(1r=@4yk{vuPTKbx4!M)aT zA=I(q=qrc{Ui}$UWrviLk5I-HK9Gm8a1=M}N)RVJC^?*p!x>*GpJz>`fQ27J5g`|p zQXa4RxEa5GxrzB0kNLQXY1aBm1gAd+_x*sF)te3eJq0*c!b3J4!pQ`MJ%upz6j#<^ zH_!B0CxeQRQ!=iof+Z1g_cNnfc~*wdL{Yk&t04R$t*?>}EITfltuc$lOZ-B8g(48D z_NO3HQ*G*nqXmZJ|GaG>W=j+4<3b!4@Qal71WZO z9jC-Lbn7Rt5A}N@a1`fl{&0LJNy!jK$(%zjEymW4buxMIJMfkUt_FQya0ATx%lToi z%3uRO)o@JmWDmz<+7cSWQMtBTZ+evcK30*u8Tut%Cwe=fql;cv_SK95^oern-ZCu& zCJ8=zG34aKl-0qM<-<(+|El98OI>2|BaIstWA^!r-9frOUx3?B^ojDDp%&hV+1s}i zSdyJ{;pBPDvHLiAuCd#_Up*mD8VEEDTXYcCiZo{6P??)A;Fs^m*NYu^h(X7ao{@?5o517~OHAS)FwNR+;(hc7Y`SiF`SD3OVnLbmTHsHJRBM}aNwcln0fr=Xv#HkICt zE0ZBweNt3Kk8yp-u*L(`$Y`0J3413e!zEH^3<1hNScqgv59Xudhi zn@}|2*Yw{ml52!Ahq~aOnr}ts!lukQxoKkXA16?V!}FT1WyC|Qv}g!~tFYRfiExZk zl#Sk;tN9@JhZa~^eG1&Mu(C&N7k>0I#j33rtA4AKaGYE=fjJU9IsbLO9!g{u7Up~_ zX5`ZwTezDUQO-!29`u6n*sT4)`{7UbJ(m?#6m|i78_y>J&q&8BFpukt40LGPcb3+l zC&X1trxK=S`MCWXWbfv2vssFFK`D`6A4A zP4;iM!8DB6tOLUkejY;hpX0W1xF_MjDIu?;xq~?m*l= zCZ%h=!vC80P@gA9?DjybC--(`44o>_XH9l!(7>&2Zb*0KwEE*Xf* zULzA+sMIy3^DC~60>^B=2uak9MFl@LW&FQi-eZz$u=1x@&AO=XFA9>H7!!Yoj;3W{ zqP%ZUUvklg%gbxctK9P0FO_pib9tR~xs6X2sOT>SmHX-&Vs@|*aUzV)>1*uql%Ogn zr01_>v2_AEg;?y9?k9bQb#Vo!&&ZZnv=a2h!L)1AHFneo{2ltuU&mjj*VJAthu~h@ zr}IZ;uDRe!@k*5Va1U8i7Gz`9yQ<>vc4>DM{-qh0#D0s#Hj33AfvECtR%K+q7O&rp zEoxn}y5R&pwOmDA1@?W%1+ROYlBo^qF?5SNt$qwMv`|FOOr6=nYAm^lJ9Ajv=dJrI z7A4jKON3_hJFgj?u3M^bs|m{nF2C1qC#n|-*m&N`VkOY9*T;iEJMu%p6n0NgTlN7e zw-Fv}TXD0;vLfb3xp%Xt<$#doi^i*H6^B_-nmDsUntMkW5Tw#V=rF@-=7d2$8(MFS zWU^1cDE#!+S<~QkG~A?C|B7FhHhejWD@zCcVPCSy3&M^6`{7$%`?es`mkXZY7F-wF zxpvY&_&cB;r2o1XJM?)sVt_Q4uRayM8MVWisXy9-{Pogx-6ipEtq;- zQ>$RBG~`+tju5cl^%O2=QGp7$AC@#Z2t@FcwXV@eEpWCXr_Dak?@69$p&X*}lf{6x z;l2P|8AS+NOS{By=3}AW=f7|YaE8C7P)^6yICd_<@L1yu#a!&*g5YD1`~zUoRuqq! zo4(-+OP&jUpXY35-vXr<6PWo7*GDl9TQ**XZqPuI*M8-;*nXiNeC%t)Q<6u~xYJzX zb*9;|8G^V{ z0nQ?3M2?*5ubu-8jEkuD{YM^af?*+DaQ%dNuwtebGvi||F;Tb7xrRFmQ8HVJaFP}DuY5iuE1n6iX2 z$Ff_&oIGHv&3&z}pcyK3Q%#s>_ zio3>WT1Hqigcl{p*qPO|IKLlX9-nu@y4$WGEvUUZf}`cFA*08xKJz2(zrWPy3g)d6 zex36qazK0@A_v$c@*zc+F;*wXXYejpZSyimx0avLeD3PK@XIn9MMJEQB#{v zE3{rW$sti_N9jE*EN9k$)(5;p8yrA8d!Q6mCI+J<3mOj}k=jBz)bP)bHd#xYN0n$uO^a`4+VqprS;oj%2a_AfoR!3D4* zeM6v#K0Al@sG`iW_dtx>fu-xjib|L{^|CJ}PdAxJki?;79IZ-czSfS1bo?%Qm>Ex6 zv_a8R(125++k~yg`Iy>bTz3oxOIjs%?N>L1j5UzkW0F3pVs&72PEW!aNXitYECdI3 zHMk^IS|8e%H*M;vE*fCbFeBuENp&E1L|$ABE5*tA7Um4%woIbrC?RzVQBM4A71L`g zrSkjmdgC0n7(H#Y;5T2}^zKdkYCqE%-7;7U4`Z1vNJ0ptoQzL6(w7PVNXNH{7CSO~_~Cbyqie z(;3e1-w(m?Km*c(dTVklI>RAi1Bb1V12eBBc5yNAp=!c+@pXg^>?V$ep{Peu#l@d5 zf+p!<^uzd&G^*`15uhOMG~E2()DO8Y$9Yz_z6exMb*SNF)ML=q3`(d)q>s0!_AhoF zgC$;g2?d*KZ;4Q8GX1!cVTS*x8mNp8WIwT5(~Iam&wr|_tZ4nF)bUf!)P;p8px#^ury=U%$LPN|6g|9U{P=?dZ=!|JhR5D=qq?qfg=CC~4b0-UWMlon&9kN_ zN{~8J3&1z(*{kG(fgT+YY>z*D7lRa32j?5U#5i%ZzsP?uC zx{4x;;b`(^k5TiTWxJzA{YVQ`V6=+T1in82xmJT2AOE$g-qM05bPGH*RvtJkrq=_SnyRk%GlpAEU&iE0{p&*4F8E=Zq@Wk!l~Jzo`Ka*ihetZMwtYvoRj=jz)?+fnsumQu`0_nDVAt zUY($073}YJEwX2jN3fdcEr24Ie_z0C2Gbaq|1;R05ARrMWb%vhBJBje4GxdJV-X07 z>G;`w<*;MQZSzBcV9Db<>vj+e*fu4!kn$^7tL)L{ps@8mb9}Kr-w1{6@|y=I`M?q4_M!cC80o7UoB?%*ci+PfsbM0e9CnYwe-ey6}3wpq~kAlz-g2qlu)r6S`HSY=sDi()vHiINtYx8>xZXFj@!Lhygonv3kGkH{GkniN|mDE=Ks8 z9u$uo-;nw_%-*wr7FYl0)fGOUqjyAQB#-_gx6Awp3Tl%d>sAKh`VVtm3~&a+&jleD zA2}0-=Hr4U+|D3RMc>5yT#%TP!;T`c+tX`O-9nbazk!Uh^0irh;rg|=0Cx10+tYgm z1U+URAe~##)D*(N%!?HC{*}6l_Gsz-Fke6yttz;?r+2dxw%o?t*0uAxX!jg7I!vW3 z%VT|`0!@$|hBwwRt2cxGWEx=f|Iw^Y)X4OH*1AjTK%Fj%2oZbnKTjwpU|eUmVLO2fw%{oK}^O$vIs=%f+T`-mThFCX5h zpZN+e+Xqyxi;Mb`z)FSXAp3V@?iIn4G+q)2KbbId>@wwob2QcVUC;L*7Y4XU2^;+ z{mo_XGKp{oTNtyK_D{A-8no_YJ>L4Q-hlQQCqg<2EM94AGld~BXf>MDTg$n+ON=Ow;N=Rt;YSn@$7g8RMw zY|IyW>eVKUxoOh0`-h<_M2oJZ*mx^R|A?t#GY(=erh=_=R2E6h7CX$si^*#YiOO^l`Tp*Jw&+{nLY}K<;JcpiF4p(zuOvH52R+n(&Lcy~SC37O z=g@-(Nx+^qYP(|4a^?#dwnP>?+QJviOcRVNFZMvSU}$+6}EN#F!>P%21X%d ze$UZX!)1wES^aA`BHE+&m%lw)stH>v>WhB{Rg~X;jfSUS5kQGp2p;`J#z#iY8YZi9 zW`k&|D2l`5e%IZ^M7e%FuJs8Anm`uf&bt|{7)a~ zzi6%U-=>oP{vI9pznlrkj$!|&t@H2mUvt5d%>Vm+|I122ETWY`2Rcvx{m%bmU)_TN z7U@uxa90`K!@BB=td8{@kP+MdQluB^EJ$-&2FWqJQBCg>Z&FUhDl@ zg=3QtGO_Y!$)`1;fO*5|-*O2ey(WO|POOQJf#W^!vh1eW4-4@8PrYSud9#2)% zpFpOE^_-sZo*iG@`dj$K;Lk-k90vKR1I|!jVT*HeiV=b|;Rg6n3S|G+O z`*E?UZ1gwv9^d=n6?2XO{KrtOBIijOVo;J?3h%FAAt0r`JceqMm>^` z>ejav7aUMoXRL%9#`UJlQ<*!CyeTba#4L)>iD-r60!RLY4M!IH#iPf8eORI;)1x;l zKIiw3$MrNly^bsSTln0S>%4XH@MO_gA@2ibaNaj98|*Oa_y5t)U%SrIuqZx2VLE zl7q?sSrfrIL*XxEPt7km$C!mNST9a>=psSIzg$O$*GDY_#IF!;pihhF5UmHDz!8$a zx1tVu*qLteDMW2q_;;j2iNau?8@UKUf_~N1dNEV6WET^TxVzCpObbi7(4xJ4hR+ur#~-kQBm^;E{`O-_b(bQ{pNAe z1kqspo7)m=nu3IM=rkVF ziLg)0dT>ngMVV(#9UJO)nOnuhGmo?A>Mr5km>rc;ChxYW6>0c64EtE_a=wvFk%v->Q;@b(Cm z=GWl4pySf^^7+7}@7cYcebd7-1%H2+on-69>9}_DCnSYYCd!_E$FU!xAiI~$qY7B_ zs;h7QadFOQF`^gwfdg0`Eq&R0^|$QP@p$tznQJRPTpAG}2hCCiifMx$5p&fY&8QXQ zF-$!}3zn!mt7$CMd}K+@4;C5z`+gQIdLcPQ%P)5fyy^C#sI=?A2n(C*zZeQV5+yJb zb+7Ok^gJ-N0KKX?uZ{B-e1YnK7MBUPAWK6?Y?obcE9Aly98+F>`vQN?2y4TU+@e~{ znh&{IHmD7T9>PG0g)hg30{HBp>LG#?|0_w7fHPQ7JqGw}LnW2c{~a;*^LnWhscvXZ zwK?_r26x&Tf5^;Nvf^`Grbyy{fzrHVes(LeOtO69>h-5yGA==JXzE)<=k7qUYcGe|F=6c*Jf|9oWXt_HxGgDUP>vtN`_Wf9;qE|x< zHeMG^FR{t#eTf0js5J}0Cvyvx<~+u5qv^#CwmXxBYXt@EafN{Q+H;2oERIF#IdbiJ zjj;9R3hM8p5%jL|vOUXgEgJV-KLSO}jWOuGA_erGuG}8Gxtz z_4~JCoeZyI@lOY-o+sx5;kGSO)9pX{6Rp=SmRe|lakIFt7_G+Fwcg!W$~W)Hmv`6- z*2n(dOI|xIoZa92Q$jP9E5{9L8n-l$^SR__Iadihv^B2q31tS46;HBg4LFo2_l(D5 zCQ!Bk4A3g|+xTg}?NlIzzxabY1q(xzHj<{x&R75Aavw=`rr|mJ?VOr0EL^N`W4zYK zF-zZ@QInJAb8>Hw;oeumPu>^-cM!7?3l7Vtcj!RsHsO15F#tI@ESR#}C&v~{VbACN z<}mR|z7-emHAgSlim9Wf^INi8A5R@1cdyUVWpW%x+%Nk~_gM4Qy<8?9=Vu29f;g=I9O) zcMy)VIhS3A_Dka^xx_}p6((3W`=`8U(At!MBT^INZ zmgw_m&K*)v(PdOoJQz=Ln&gn*O$YJR`Zy%FBG=;{o9-7Y%y4mHkrKKMjMJ8s7L;eF zhzNN?L3w+i*q<)dxU@W3jOfVjx67{jKVtxg3e#YjPvf#p9Psa2|2a4jFU9BjsRNHS zS2nph+nswJkKOJkXB@gc#$FkXi2MKJ2940u_l zgG{BD=Td{sT|$Iez{B+n4+KuItc$10(!sptsxz^Nmn2}X4|UFN>kqj`>B_gZ*$Ap7o4itqvt2?0>fOLCxCU+I(!&t@Uxn zFA{I2X5}!{82Y3zY)}lX_2wx82z*=gjpPeD&#CLVuNJM}2*ae)RupfnC|UfA0%CT5 z#EDNJ?kTlK^rY`iYtmyn^nSNe9X1~JMFhSc=_`};ecXO?(zI{l?>6ey`Q&puKtaJ3 z*FyS4Gi}Mdy(l-HlRc<-o`DF$$)sfO$crX;B{kSB2A2!&{w)*I3{n z^&j?bUl84Juumt*e2Cs!m=pOM*HV$ABwC2tG%1{!`TejyZjCSEZeHeqP#2z4rt=e9 zTtdc3Qo7IC{S)z`3-7NFPJ*6G+ky{QOTHJgV&zR{%Vf7D4z?E4HzuJdM_tFFWoj{0q&9z z68&l`E89*h2w6$7EI117DGh;7TqtJwFP{7bK!_I^nL_!(_i^Ag@tdMd)6qU+P)iE6 zY`ZsxxgRGEUO6NytIc`N`xL#=8nFO*e~;VkGgqa;mjVkokR|K+>}xMO-ruc1gJinX zgqzLy>NjdX!3<4i#(fi`R{IwlW_)QAJLrmhgULVnV^z6|>ja`dieP}fz zQk*CrE+a z#NZF}j~SGpJ`10-UwRUrw0!t<*!B#<6FksM9W_>@P~N)@NLfDt?3h$)c@poIn54ep z+QgQo05b7}l%%f(Ppzq~`Ys%_d#T-l=7fz$kCQ(*qx7lFZP)aN^m+8~kX1q243Mdf z0=Q=qt3%Pt_^TK$9!bLPM88=K3nzqQWD#IEMeE{{X{jS&` z@N>W{ui zZMnw1BMd#4eeE6z$yjvU(J+pkDvPZf)Gvc**ZY&geC@5a`0a&Hy3#x(lE=LAri#S+o z^jP(+uK_7@Lvpxj7^}BcCaJHx(NkP$J?fwdx6@^w%iUJZspGgQ3;QQ42M|<&+d)96 zavse$4LY@T;`O??|HY`SK0vh_X*Pr379NgB0|IKp+Dj@Z=rddG!%Vr;@C0&1{-rGG zl90Vssx(OkZcG9bERA2y*qB%*l%M%gKA=-6YKI!HUlTX$G5$_E?)80~ zeRI-s&2FFJs@O6Yk7;s7YD}3`Ob=uzfy|x3vh%D2U^)ssUiZFSWNMO7anlF>*n{s9 z6X&)0JD!>6L%V=Kxa=}5DR{p8(IR?J+F6Xz=SDrdVP)MkmjWIQiHweH=c};K-tRZe zA`YBtBB>wj{3tX^LINL&%G<6ORZ;0xTAWuj+I1UK`%gMDhS7%d;l4(Mn`t^}x7amf zXbnC)!tncB-DSO@?s(w>8s@n+h4M+ItMV@f`b*z;6uw6EnX!ZR6e*oGb1<*nxol7|9N`*iPw2yetGgbxO6`mFU(s&%=CDEXAZh7q;0t(U?L$5u7Fl};M$vUQ zt3eDEPQ1pXIVV67w&TOVz`UUs-Yi|S8#*gW;R8~bqlhW7JAs70v; z(!Ce{aXk;0fL5J9kdy6stx*FLHau$lP0B4c9=kuQeMPIvond&+HoLVtv_`6KJePF2 zLI3~>z7N-36aqycuyl2Gi@~Fy7>~CXqgIrywWh833@w=pA|Fgg72v>S`d@c6g`pm# zfmWFL$z~m~!BT5mFeu2t;1kreaWy+Abeo>55v+=3CDo6OMfyJ>n3?hFq)RW?ziw-Z z$0O|y+$PknG!x3^)@=#I0fB_$!Nan*xvX@>^$6nRbP*p%>$EsDDo-|JvAv>X3Hq9H zMWaK{sj$L#zRUvOZsTr(+$j95q$dr)9=f4*|9cRSbF!4R_4`{g{iO}ub@_P!abQ;u2izqnN`?<#QbfIF$)V7S{oz^j0z8<1vPSN%-odwY4|;8d znpFJ&J(1G2YS3tM+PE_gQy|6=`>OWA*A`po(&gUqLGR&aPh#A@X|K7n;F#+1c6vce zUZ*825DN0wWxpq`_3RG~s05mf9xHzf&For&ZK1)zTD$>|6BJ|b?&#WDcAYx!j6pfG ztHp#9ipuz2#mLeLKfveSk6jI`X}#3=)yI>HttBspeYJ`3zdgJF)9RxZa0oc#Qc*E> zJ#@Xx7b2(V9+Xx3+tO>p=W&D{pJ2iU){vdEh50GTf8+%*$9ycuEepDuEZ)EJ#e6r) zWO7LC1kyb$=n2_IK1xSJSA0+f| z{}o*FtveWE;$;${AP6JxEH^!!mu-7auIJCCRw?1IeDe9iQ*A zJN+PUp=E0f-Iun4L!l8J_CiI)Y&mh$g(8>A+dlW)S$TVmZ?)^PY?s}(?+l+NVSTE> zBqknvyBn3QBx>3Iv#nNNcU)Muksu;uClUlS4=m()W%XZQ{X?QiB~ z69VWE_e6XdjZE2n>4f*{3G46p1t_AF(8o;9a-Dc zZNQOG;0$rYJ^Op9mg2gb0Ni9=MBmw65YL-0g25w*-bT%=!D6zp!=csng8MTNK9rR zCRu6)lpkX`es^wQKc`vqUyF5DuX&Z)WacLP;KforsrB#-p!IW*gj>3(xi;T*BD4*% z$t>DfJY3M59Wz$LtUq0q^HOJOHl$%^k7VZC?~#yxw1R--fZLXioCfR&&ubJv0qvQ8 zsWFHXS0m&5v1lik_Y1AL!Kuwsz;1-8zcG8^cXGYINjlvHSS&R&^|vp67n7*1hF{vu zAzqgqhV1@V?*V$%XH=+N-4GAF@#~P~QtXRrRqLt-)!M>9d;RLgGQ(}~D;-|AQ3~!; zYM6VIT!an%!=R!BAf&)w@{ktUA=;9nY^4}Q5$`DAv}hOAzASBZ{(m%GWmHvNx27AU zOS-$eL!`R}q`SL8x}-t68w8{qq#LB9K}t$m>9~vc8+Q!aD|lr4p>ZNhd-^;w}ym6oTxc5)l6~DM+VrWv zo{46#fc>E^151Q&ET-7 zk%Y%Js!IptWcU!S$ej;4XvMr872$9{Ixq8|ST+|_e1%AE<=%GdbT1_GV8Oo76bs7y z(u&YxX z%#y zNHbIAyWz|S4bYG`Oz&Ive_03eLQ-xL z#HZn7)8i>&vocyNVw||)9rM-Gu0PDH%3iIppqPZiJ8u%q{!?pDCMcXy-Epm=_CXf# znEuEDO}5&AO*)Ddw6d#D#>Z1!RLU55FAXEg$W4Emz}UvB)0`XF^+2usd~E^VWo~J{ zFE96r_ceR3o9_tzG1N3rcDJWAxSU0-`*42uD0H;~55DGCo9KGfsGE!X3fRT4=p!fL#4ORW+7Cpw zUGp*wK%^8cjQ%F}Ew8M3#X~{V*cIha#4E5&YPa@_f!(th7At8rC-5P7P=U? zZ~$a}$5T@*(}(UvTNV<$KQO>%08}7gtcrc{>-~K~{TY7^`IGQNW$V^+kFh5o0U!k+ z0Lyu~i>yvC+XL^+o~ZC(A_91qqJrhASYM9 z477WaAQA*HpUJQx44^uI;`tzOV=@4wq(fp=d`{V(m7Bu<0sZL}ay)mJi3fpA3_-W1 zH8988Gkm~#kB&>&r+4N*_!YLQ!qH}{BdqE*y@0S-r!(<~X=Aub-QpF-+wzgp8aebI3xl=c$KR=bM|bwt*0C)!+ok z;Kft}mm>z+0MShW{_^oK!}9>d)#W01cHb=>cc+03N>_xkR>xtiW4_Mak;w3In|!Pt~yJ`K%1 z05ICNE?@s%6=d;E(I?zjEVrBR5%6=(Ck)h}TG-t5MNQl)_`32f=f!tR)a^KFu$;W> z&gT?qB6CRe*@YGYWcR<#@5%uQ=FnzC0g8UX?3l%4Q$s0k;f|&^H6ZifZg;!~HYX5P zntc^jv9n1$JM2aBlt91kCe%r@Qd;tXIx^Et2_onM9>zBt0k8!HEDiKb4zyq;V%xK?QF#&6Qw|Mvn^K!A1|Vhni;gffXT@^Q4}EQFsx z(b?`kWfEu)4bkp^PE0U0P!|%SyZ|a))A@vruOE7dKNW}S9KHPj0t5D^@)5Re6Q~?T z1q~QbK9c+UG%CM@h&_9|%G*ZBcF-h;1NQXPiTIN6mAf-vQ2?m?;dM%7B4f9&kEf(n zQ}Udpz^-{DO2jaJ{5>U$kG}?53kyB}>CtVrkU#&Y#DB=e#iMSpitxQA$zK7V6G2mT zslibcLeDcbDJwNvc1{H+Y@+cU1!W(^$dpW}x(6Y5@3YKn#EaSqhf$w`|2Mk-`B_+} z&4CeuKB^7`St9^AAqtE7qGID9$V6D8I~+SBNemhUv*oMC6=T+;?n7p1l6Cv{E{z;d zmPk=gS7TALJg*LUW0tgaCo}tq6`s6kn%rZ{EB{JwFC`|@k;f%|{Y&+HF)X;;*p=?M zU%g$+`jqBg1m}FloR*OK<(-@wk?-{>Er(Ec`#lYfffo(fv_I`vWaDf2Uv1}NXXL#* z_A4LzwsGE8EEz_u&y3YDFy@UVe5E2gdoG|OW^&IKjBik51BUaoh< z=fCfOx{$O5jV$2yUbL8Dj9iegA3;IqnO&=j-^p(<-zAV3n3_#A^x6x7&*vq!^Q*?k z+bdzawGRV8+J7y}+noB?9C}Xuz!nBmQs}lBpdnRIx7-`6eQg@3C=9w`Q}8lotlZN~ z5>N5Ngz`b6|WuPFUFt+0m6+*oA{~y2yOqZjAmGXQtpl#YYYbFvAc|8?BslRh4@; zf&N+96J{)ej$D%W?hm68cA^WU#7FC|X%OH7Hv1tV5HhlByfZ*$4yx}HWv#zh+g8AM zG{F9oQ#1`Q*uaIs8W<430O~Tfaz~NF(F;3P23QoJOtk5~`aR4Px6nLrPoy-lFRwTt z(_74l)k`OL*PJE!Ty;cEO!_h&pLuUrXD=Z9+T%8BTORCs4B@4E$r7LghyUTdK4&^R zXh;^g=ieMl3htfGUL=orGy?oq>ypf?_5UPJi`KY+9Hc_xOMmtm41M>RrC)iLtU8l= zq<)G@77Q7OY8are;&U1ZNuVVE3y4uwNuH|~?G4kV{M^^qGLc|f^*Af27*x_JkDX|w z0_8wMRq}mWlKb zbhGY4kEe(~^(r5-zC6B3%M;B63Ff>gNF$v&6fk;18`n>X>swS5LXG_)1JEGIW*LVd zISH(Xu1J6c6AGLi^dk5BAC<@j65K?{1IV9z-N{*al2-1;#@>ON{5n+|U<8(S&(Z(N z{J~Qz^PhbSpzl19U?SOwg`Q7O`9Xa3TydcJ|h4C zKvqsis}xDe&HN4|{|VC@gW*D)u=$_7kP)PsYS>`_RbijdJGOM08Bzns0`MEcY`&OM zs{11en1WkLVil#G7eHZ7WD9-oM$N$S8Q2RTz-X!Ke;6IIAM7uI; zAPwMekPbGPKa5LRz5y+$rt)2t1V*FkxVQ!LPp)e#U(XHncJF<9^^yz?HzOwj-0@2D zUi>=IX7d~sAj~3$=N<_h9IdXIQb{Y-maPJRkb&V6otyBDoX;gCx4NVgl4X zz!GB=-HAT@TFw(e1CotNwzBg&abS3 zG2^!;*J_z3)nA#{dOv5#6R@}9(IkT;93uMc&tW+A5$-#%VSu=b48Fg0jU-x*(aU~p zKU9a=%(9s1lJj-!eHWTgU*D~87OB$ah<-)A_wCCaRB|b}L>CSM)}Udzp*H$omd8w) zv=MU;h`T8LM!!2X-6ls7if8DN3YyWI|Iih*4T=L>P_pQ4IJ2Of$|}iE@OtAXTSctD z8!QcR(8^+_dkiK@PX<2|{CtbR1g)n30U+3tx@D!&4TeGriMkIHuk6$ot)V3#NF#*u z>iQp4TdO0%S%I1Vaesb-fz*@{f5Eu`o8zpzC&NvX-;bJNMsZp(T{!W>^19}zwTc;2 zL(Cm*m%;2D(%MAoNmH}~>_6;0+5YWh{Hb*io73P@q~vG+0`Jg~{keJY3FKP}tJl!RAQH8% zedL(Kd?m?XHv4gcl(#C=XN#kga@35%8H=S; z`R&b+;K)ITLu*2}Fcgka%h|@bZ=QbyXcpS8q@zREV&EzQst@1sn+9ij3`+PLk=;A& z-F=tw;wX?ManBUmtIT zSpMS>tH5D?U!2{IP^hIE<$)E z9y8l4unvT~0&509?)^Z8?&z0wGvfmsiTAT1>BT{9ZLdw8ih-W8gg%Na;wEeM@xQzB z8teRm(Kw6Q5d}pmCN3C+Vv$!@0xscY5%tLNTRi|Gr4`(OihMylHE6?)MM5Z3R$lE` z*xZenH?3^;&Z?un9gqyqyeR$o6@%gi{#YcnZ>km~ENo07{yl*Osq(2c1h>`Rz1_;r zB_SQ1c;YjJm0h#CmaZh=yys>54QUW(E7l*T9d(ONT~anluqzciOzogo=3@dY71uzk2F-Oqhw-qzg=EMn);n6*&8^M%wgmnDP9pVRby3g_N$!dc-9@grXZV!1%RcW-Ev)o_VW{eVC#zjI5-k` zk1CN(@ydqKlJ^)6pE|+eP2+$!jEjJNN;JHubk5|r|NV}eXH|DiD}xDa8ldrEJcn?j zg41%w>%R>K-i31lilUI>je&rA5xuBORKOQbh-?n?2;(!z z#y#`{X4Ac}7Li_D6LM`_5wPL8i`b`REIiR5-as1h zWVM3g==x7pVQ1xaYm?r8hHC`pZGPt9^6}}nit<&-c$?3mVdK27)|kY+v{6tgLjsov zB{O}E0pdh)C_a~FiA$g`MA@@f4yeD9gFwM(MzN{wTq(eeBwt)c^`k}F@?)Mr&LL-- zNmKgmaNa4!1g;Ke8SrG7c|A~I(I^%z?3GpwqJ0Vq8n*rA_K>&-HxM-j@wN1O14fIo zba&y)(y34I9s0cgc#N#~Nu0uIk$N6;3n)eB?zjzI4?8Sj^ zwoMBwsvYfay0y~Yf&*ZW;*1WAFu9pyh6;mGf4(oOYwmV1DA~b{c>c9i!+!m`vtQ36 zDuBDn{uZDV=r%ST>|JU@`C=iEVtjeeE5o`S=SS{ST>dawLTNQDh#kG0m1^VR|{BCaVYQr zbBMeO-kF(y07DIIdTY*4umIV?#qT)XSy^4=S8|XrD=7pKxp6`;E7ca?M`Eo6@v9=v zkgLJ$(JkkQ5T4AEMq#Bn;D@eGyo<=FuyGpArgN4MWTRzZnTekO`r{pPAVMU0=a)1hE{w&N>LMA0}(G6Obt!g5?zdbYSHdI z*z7b<80fbwha$m)`2!cUz_pX{m`!$+!ph|QsgMqoFwX}fz?u$<#OF;e83gAQ6$nMu zx(A`g+jUHtrWsV|EC&kQ@e7AB*^-jk{5ldM2PwIJ=mVo@HUxPnlpjyS9pVy^bG_DB z?_N#T`T6DQU% zJbSU!`w`KC6aSJM>5--ai8_ywD~--9w*)KE`q#~;0@Aaeh~!F|uO}u3SjE&eI@{x! zuWg!_s+^7kB)F09j1dPiC1=bp;Q$=AV3(KiP7#Pzk2*2|+mUY_o*M_%PpMqz>#TmU zN|SzXw=%VBu#$u!^dwXOK`N%iBh>3Ti%8RnuU1@-qSvQ_N;MtbH!sHz!utw&%O4x1 zs@jjb+IiR5@a;nCDj=aCQQF$@9Aqv#WLd~}!xKVrB^*naKe6-h46c8n*6kWUviEH2 zno!D9@9q(uvSQZ7AD@-`Aiuf4Q`bzwX?dNUSekuv7tozon`}Dg1TXC(xs)p{MK+OC zPxCCMoZOh6@Jb%0TTN2&3XE@{MZ#JYeqfP& zG1^+NsI&eYmwn>_dWm%=j~on?x=b8yxNe$V(ezYs@Q_L{_1@&Xjw;b!?oBd3q-kMW z*kxLz=w`%4yV?Ht(csPz>B2ZfO@`7=MGQw(qPs3CR}Ck(FtT+Awr9Bb$~GkHV9UHS z$_1_yi2})#QtK5uwooxh-+F&L5|OcQ$-|g%>ZY0#@}DUwLY9u!no+SRUv9GWbY!6V zNbg6zuDx05H6+q5tc&^^#AV72Yh)Ch_#gE`a{mSI2K1hi63iQ(&iGYJf2-HnD3dPX zQWTUFcxRninnSKGbD7)Utby0T*|jSi5!slYhCe)^!%XHh1+Vb8Dp z1GfgE<_LbfGQK~>2W}j#`*#Yn>MYC!93qC@kDVkD9>yxUhRt|2VHKVoR5UUxxhZBH z1y8c0=aAy#lO&q1*kjDqj9}8lv6b|GQ#V>yc^h#RLI^OTVTu7iNmGn z`!qu?H^+6tB?D96_&hgMfYu&E4-<26%m`Xetw1!1ci^w*Q-STQh_xwP=HkkIlsb zvVu}5(Pz7h-JOM^74}<3!UlIS+0|&{|ys2TiC$0esgL2QpREFuQsX) z2v?Jxbi(TE#RxSLCa;6>V0SdjVqa$bgV_CBsm)eqG! zAE5UXS{TYX`(VOk-(`k|1&J9kzS-|=Nj>klI%Fk3u~SEDWzm?@dN zcqd5~R3s#{hk*_UNu?L#@8{}8+oNzseP$+3IRC-?T}hZ{rvH>Mwzx6dj2znngK029 z+34pPyCEx{9SwZ(6g96Bdz=zcMyU_WrbnGB6{aVwTqjJ7v2w5`Y=_k(QHar$@v>?W zuw8Fq4|zgLkA)a486^!e2K zz1#07Q-ctsrU$W;&}mK_GV@BW&qL-}1frqyvG=qH&f=7JaxN+cio;x2Vx;J)f+i<=N^qI2{ujFd?* zg<2Jxsgcwp*&ct1SjnbYrpL_x9tnp?&#$kw2kBeZ>ILVN!D;YFX zJkQ0}0Fy(M5*ZbWuw1dV>7aAZ~v=2$AbIcL!=^zAq7^fOqoOrXNbh@hL8B7!37UF z5xDOB?{X^cJv(`I3_aGzC|H;UuJnjvxg|n|6hx_~VY!_MY=G>~{|1{fJH_iyv7nt{fy*$0NJhQ|pCV}+4 zU%gZ@!2z#$m0Xm}>5}c6Xh-KEGKTG*pc5R0a)wh6Np{}8z?FH*ppKyp>yaIdJA8Z$&&xUY_ zCTfIw!hx^0!`J8gA7`qFz37U_-_}3*2Hg(Bfh4_ur!Ku??co|+`rmC zCNe-nnWNKbYfP!p!Mi*Kc=ot;eXhM%} zbxe3X2WZqyLq~kjmeme(ORe$9G?6ri;mIMlY^2LA+f#ZLHwFiuhQs3trO2?H};u%}3Z zGlz3BEpyL<4Cjf=kptHhBb-^I`R*uX6Bw5_;cKl|GJb&Y)yRIVbIw1v%?C+`?LUap z!Rb#l^(N6hCSB$Tiv2?ow*o>MRuZm~^~_2n+u;q;<5_pAQ2GiiokOJZ-WdZfC$CBv z6o*e?2#AI$P&h0pidqAi`aTviaW&{Dr09*J%mgdYvD&`#tT)eAJBZ{@q$O@6VEHP& z4*C!kJxs0|%2FFAXis>4&X@Am%+TZ0XLYfHa;|=`64|LgNX;YUt1OL4L8uzL49H$p zJf{kM*?^bX$W8CvXGl|bd_U^doO@H8gE8!`+i@s`Msi3&i0FK>hb%ilL3wi~INu8> zz$mFc{bn~F9P^7Suf`SI!bc}6Ia?J?1-wR4`h$Q?MTNT)G zoa9p#jY-u;VS0i!>H}R`8RC?A!%C~p6-k)`eQJUgN~d}w7_yB*t5!9P8r9aYt0z0K zP5FrnxfI{JDv&Q{omd__;dxIFX-3Z(*hy_g6qRF``ITq?wBqLOrNd;$%;js2ZPdv+ z+fsj;ZlGQa!iGGh&zm;XW+G!!aJf(V<`I4mA8{A&_#AAVoOSozfHyf(8d7B}(4X|= zbjPyCC%6M#7%%A1om6;oo_Z$o{pRdN_~pE3BgXuw_GIzx^o9IihEfo&SqxZZ1acG2 z1Yo5DSY=LeWRSzJ5d-ICp-50paZygR8#hicZD&#Gx$M8rl72QtimJj!V}+%QBBM~u9rHNvxzF1->V}^~xHude z^eeOjVLv!GKR-6OOxylF!tJX3{&#zrWbYI({>jT z-`Z&7=;WuDcC8Wz=ar>0{d0ZvFNIq+X_wX{#M3f9JP6@$?yDY=uy!vj&5^=ykkLfU z*q;1Z-XHwqRzA92EDNZ%FmAQjB3i+w0`W}Z!N_tp~v?}XqVJsYM#|`oC*};ZUi>p5? zp7`VS=_2Mry`Nye2leL+m>5g+ejn+#sT@<4o7q?ZSCFC5Bj{k#PumUUdyvqTX%u0ju{q;hu=R+(O*KTr))eOu1`(sjO(U4ou%*Vgy* zYubuM3{Suoj&L9KXh*h2A=gc?GV*K9UemQ9cOXNMPc|&RxmfI)=KO_%)w1nZbENjn zBodpwpUY-aVr^M?!1wnrYSJW*^_gEnZnt>28bRgQw%;Rk%gn6C^e+{{i+U}FaB@|; zq|v`4_KEr8R94x?W%;ojWx92%?jPCp5fBHtTGw%L#1VU4ef^3`7%;s4#d4hpU8VH> zi&KR1a>p}>JR&8sFtSQlVf)_N&Y-YU!dl>0Ffwx*&{y&RDo9?K0NQTF{v4tSR0uXs zEos|ExM4v-@*y#FOq!cgkE<5{Dj7lgv1)*G+zHM;D^u?*x3)v)@kHw{mUxoM^62e$ zIrijMU}fPeS>E*pZccj!T++S#J$z%L3)hww&qJiQ`>!?21vbrXO1yiBv210@7{=I0 z;IchZpKN^C`PgPnem;c^hj;9Lj^ zW0u4k$OWYYzZ($P8`kF{XW-A?l71sJG<4#tnk#Lu3H!1m=~z^N{iXR#WMHxTg)C$g zJ3K|d-HV5`^C31=;{GVAG{-(X;m?Fy1LIss8Fn&-=7jQR=y_dhY6k#xLL5=gev!ie zOmLmm(A#_Toy1uq$ti|T@zBCoQ_GEX?$?x0=kXST*o(q<>^kIlK7M$UG`d?}TV-a& z=iax26h=WOWv_WRVjovEfyq4;u(|yhuS#O(L$*+oko9x|#U2?O zp~E>qDBRbCUZeHgNq<&CDktncHC&bfd{JeO!6#d-xoD~@=_S}YwRO2?g$Sz4`ayv& z_fIIOWo`TZjwSADSaCa`Clka0DdBJV&1Y)PQm(6-)mlq1)vN)>X^(#jXuV$q9Ym(3 zYpwBkJy;sQS~}M3(Qm4gyO91(-5ni6 z@lLqG2FpH2*zYb+L|m7`XZ8trFC-9J_n%rYkl@N|t9PeQI}=Htx8HQ$-OE?hFbTeq zuC~S#kth6%$N5#UInf1qAeL-=EK?SrJle7VRZ~UAuH?3*0M*afin0}!FgVq(={G~o z8{T6nx26U;1h0OanA_QwKv{Wp;WVaPS>;Xi9=}~(+$no%{Kj-)e~JR5PiIemS~}0B z-j43Y_#F@T7+;3I&m^>&zES`2K2h!2w(#!#8$srSkNcivsqg9kc%kRPBs<*5D5&sR zr~g^;x%eq~F?h~!}a6}(OZg&K5_OBfDwtXf+MDW7P+ zMy3a3E1ksrkiBo){p?)|bs=^%PboQjTo$tXFBw|J9UG;CaIQLYA|$J`Kg5Wt?ImA% ze&)=pT|bgc<(VOfkI{d#D9;HHlvlxLlI2pxic~v)FDe#REWXlkmj=ec*6OX76b-!X zt;xSseF7V@J=_ZwTE(Nqsoa>0E4Syb^lMK)k8dxa<1gmmNoft;(mDMx1GOrBK+B@X zg@}zIyq+id=OfbY=p7#gJCb40`dc^c)ZkMJbP%6{cZ9r2u$fWIciD%l63k>A_i^k3 zxv=Cbz5ECUGL4Gz+^TcCk$+;%dI_iK#j7wGXmluu*+gc(FaUJEN2hQ{ulXlkUZ@yt z1s%$OJ^S4-O|I)JjLKZ2wtH_xxx`FqQC0lPkxTbevh;GRJ#Vg>ev==G=b8&n@2A1< z-`Os#4nl{+g2nAtjg8p&U9#w53-W`WN#=$al!MIgS%0V){pr?%h0>qg=ea*Ptz>xrZTY{VjPYaGTj`brB*b<3KZ+jLr;05=8Z|E@p67NwNvi&&%gS>5m}u z7Bhl@(OP?1PZS6&W)S&^QKPQI{^CLY|?jw7C&@Pcx1!y-Zrg_DvObgFU15jHCXdL=GOPUGax!S+R3^R`MggLE_D3ISK~Xo zpaO{>5@ebyY;ES)~AVmT$KJ_zZl>7%CYY>PgoBN*7u)VENEs=N`BQdHn_^aZ?)Fd%MTioZq(GUcNqm8z+)cX(v&CL; zHAq2T-k3#LP#tkY0NdzJ{96S1D)qtUktZCAwq&s?hVA+IOJ7s8Q`6=^U&HiNWF0v* z(z#L*bd@zBU5V3rTJ;0%9^!sJ)VWaDNv9hNZRmG4lwxc;<JKq5-Z6excCa?$ zOWi9N)^gdeUR2RdB+FyXKIdC?Mu3H;ohV>fB7yFQ-Iem%)A02_PocoL9#@NS9c1S{ z)Q2c#TS_~zRIEo`b+tyK)w=?7#ww#1MJitXHh8Guf`|R?NKayOUo(yQr z#d-eO0%coS0T+=7PV^{Pi>DP)1Xdd9TT8Bua85vbcH};lVBti{~j;2XuWAmZV zU!+`4Kgo%Ud9&0vCS(}ndzIXakyCx4_dcIVod;cf!mGX{jqhIwao0bQzBNu%qbM<( zyIvQ%zeU=#I&zhS7Jzy9q|@7_$a`kt<$O z^XETWNK!o(oY*MetREai9>N^2u3Nf;IyQVLn|Bh%_wW7{DFc%eT5$@teHK4wsmtOC zFK9dEWI$Xz6~T$7+UA$IDcbdAIL|=ZavH+-y5&x?_*Pq7UpZ01y!H5}ZMvxKWd`Ym ztr;O)8f(^g^0cGba$kmqCY2LWnx(eA@zDSc)0`OquAuF!4QQn?hBN-VFl9S&SX))k zKxxkTm0g&#M3S8yZ6IIn{gzB?0i*ljr$PzAkVp+y9z9i!nxBP}ux*1q8I%H=20G4f zYxgPjPeuA)0JEa7$H8Eh@Re{-z7mjT`{~9qcB|Amqxsk=)FwKm{A$fwOaeMzqOgMt zcG)Bl#xU7Y6tWBDIk-Qk1YbHkZ!7+ykJ$c}&u5f$7Iu9?-`>)$b4VvV9Z{a0BPruV z9A9`Gmr_HV%!>V_CLp=pP9oO3iWcd9{X| zJ^dwTG2n>Ls_9B8*uvg?8kKz94cfd&yjd3~GrH)Y)xKCeiuF6_YT@*jz={`c$|PO8 zVO!8N=i;5e`jS=q`@V`*9O>nOjtHfGJ52HG$DY)cOu02R>wNQ!zt?XrJBGE@zC;>- zc}8QJ+ihXYwfuK)?{^^F!VcQYt_Zf@ot-^pOOqP*3ZAthPGgk`WrFYy7Ksug`eEmd?VtZu-Y)_nXo zdAR3iQo!}lm3H<1Eh|4_#AQpN_gy=DI(@VN84>)yv09cCX zHNsu>KVgb#q_1UdO#1hCKn&`cB;Tb~?!klw`DPkol0>IBA|NJbqp4(;cE#zIj&4BP z3!P`t9vr?cw!*WvDc|Yx?2Za|UZ8`0^YW~VLSM&}Y^m*#A4oUaq|LJT<(Ors&hqEC zfGZ_9xMcl$GnO;2W7Kzjz6{(F&wa>+ym{6{KZ%;I~_Dj5h?I zws8~3JHu83H~nt}FUIfbLDaH0`*6)|z2wh^XFAwW{a+80m%mxV+n-3wnqPMA#V$I{ zxu+$LTC|<@ihlDxb`a>e_p;dY*>Jg9(C@Yrc>(>e&=DhU$KPzm8jmElNe6uz{B7Ui z4Sq%BZsz8j>0*G54MVHlsL<@P(68wpQYCYIZSBd4LoC(YzANmSV-rD^xSe|Aah5Mk z>4T_?OhpNvttNLuE_YDMqAg#>(|=2F>vG5fz#;w0%0{+yZ~6<_GLo8d~qAKC6GiE%H`jJWiQ858Z|Fn)8Av#JHOeaEQjE{?Kg)f1EQ z_A|@UbL{+lq38}SyNa<^AG!)3#{&W8nKq!R)Vi#Xl~MIoKJ8s2%MD(>_)scs>m2u1 zPfhII2cf*P-50d4u(cz9&-p~u+fpnzm7Y=h;vw`)rp8v(U*k&Brb@5z)CB!RHV;7w zHket~+vVDTY1%XIH>KpVXl33G3ve5kLsf12)0^VbmaLmE%aV2*%~|Hi`%csFXT?Pg zS&o|zWKGCrj{UM(o(xpBq|w`AnK+&dEo%LQ zXtNlK(P4jgew=AAB2yvU!z5zd!97=-gBzBT>EVAzLDEadouQIz;>9P)hfS6|xg)^x z#oQRbUgP6|Djjx|l&x6MPJ3&OtfW8cp7?#CTza?Uhg^ z*wTUzTkk#SP0~uxr zMSuhcZc}O^Iz0HzD(Z)Kv++WgC{x~u61rV)j(j^aO}Z5%ox63phrHZqkGC%T)VXv0 zHc{NIoju{GuP+m7zw)jP;66EJZ^?Ku#9n9p3!c zBc|+}kdLwTqQPWQuQ~KhTc}4_0*L&dzY#|eR441yf5Z8d5L%;Gv$fdcAFd%FZ|)81 z-twx7?JsX@sBjTE?JvD}9Q+d{rQ=*ynHSN~U^4`)g#G^WU1s#2mb0U(38az_n2ki(d2`%}VJ9-uXc|1YWt@ ztu;sB-4L0K1~1QRXrjl#R4}m?RTP9PG=EZyj(@o`cs@hl4!x5NE1Ybk$7vZ%69SNQ3M2&m!f?x26HsZ6Ug{;cy}CHXz=K%F{vIWdO%XE`wat^A&U z%`v7x4SzUKKjO|uwbUuV=AO!9333b>&&y^||`I!n!t&-!TIF(l?zlJ0;4pzu!i~A?o;^Ng5`+>=;Nt2dnv8c2?_#*b-t{sA&(JD)#6M{;~_1dX? ziAS>_X1Ylt8-R-o1+$^=w?nuBn6(~=!Lg;H?>cZ${SZ7ai?;on0fV;ER{*~p5o6`wAE#qaC^BF7{)MV$dwNa z%>-Fu@FsRuR#m$%LJU>Z4a6x(s4-$x)ir}s0)DuzrSbNjJ5KK-m#7Jfro%$vvYzsf z1ofZz{ekwp*FzHL$=dIg&NG?mBmm+F+F+q}rlEzAE}We1AK@QE$%|Or=Ck(l$CRPUQf+7c$DFM)`XVB;rM_HgmqzPg&d*W=t}?;5%1w5KCY-B1m;dU=j8?52r0FmlsNbV9A>Jq zx-)5_g&t$?Rg;{OWCh`gYsnRl%AT|vif~ZN89>KxPS^QA(NEBep;o)iuSsc07QyC|_`uMOwamDRl-P1-a_Xjxy@_{4KgU&H?0IwQG`t z@6P%Fvfaal9~>Rhg0$FR`1CpodAH~5p-^y(AL~+B{jbW_Zhn#8&I_Ln)+=;b%zFd= zV~l|r#X=Vsg4ND15u{AF-Dep(uh|a@nWYBl3dRW@$X{hi3O1*VWJAo&6+a`>&=IvP zMM7cDnz$Ck2a@Q=pZre8|GG!Yn1+r^L$G%Mw+p6&y43ia&AJ6RaXD!D{F_n%e^ZQ# z%4@f->G5}+rSj6XMn@C<<8N4QO&qUW={hS))Tm=`87d3Kpn4|)Gew`DA;gXHz4=@& zMPzBL*>1hZ8Xk`L&mVFnZdc($AXRLN_iiqVQ$m9wRg6}7=1P@}4*PV4T6`#>Lu8L^ ztDN=IOnR@SJA~p@*u>1u2{P=O8&ztg$&Bj!W{6Pw4Ka6Hlxs}%4Y+Y|%)Ls6y>bh! zR!fX1GWhK=uPl_wjd~?}^kR2fxwz*szCB8L`QF2&TQ=Y4AYN2893598!Z8yK4{|7? zHM!TjE(UD4?q?zB;7Y9yxeE()`0&qe4E6-vJ(Q~@M}lmL&Bm6#dn)KqSQ{9r=h%)k z&L&gpGEit-)8@wx@*P5jTlmqKi(9C`&3oo|v5sGhI)#QTdu}E57b!8(Tn6jgAc{G3 z;ljf!=tKjF?|~%oP>hZ*1D8W|oNP}tS;iJ>_R)_hxi1ylu=#_j4F2CX?`LZx;`KrC zLW|GSng)GDRY@uJK==oL8AO&dNnTRSL^7NZ+#Dw!a5Hda<_cRZl%uQ|w$lo>49Peb zNC!R}&)~E{L@<%Vnb}kG$wY2F3MX~KD1Oc%_QPr%o3#lR%Qx=_2ahws2>?>JHQ_Sf z%g}=q4+?V`diLU=lXjt}M<0cLqvgWo=fsM%l|aYk?ub;|7B+JetP|-D{@EERnq>2f zPJ-7(L6b(CsswaEM0iOA@};(Yh>mNbU64Ql!xY^di;lGDJc?(a1upYiL0xUzhxWuo z&@toS&;3yMCHj&BcOpXzN%fgfzpZop3$gU=V1K;pq`7=~4O73fFkr_fqVag@%(j?7 z-~-2+^Kv@goacJ3sb$jsrhpM@Fd^PEcm6%;FzAt;m{_#B=>}q^FJgJx``go}JIZ-2 z>lxO))M)a*X);oxvv%>_oOy5`a8ZTHO)(z7LfA>l=?k1Wo8T2s)i-C%hNcq%Uxb z?so?d8xmYZP>=tRaHky1kBUoYR&szT=`%Hz)LtF!>SWB}N4OIrl4$Eh8;ijsr&NLN zH6q<;8AJS)39JlgGOEBY>7!YNSR-COB(Gk-aqryW!ZuDXk3Be%E62@zcR6JL5ZTa# z6xwaRni%w8zk*2nyj%WER&3=;1P1Kr-Ah=a#gfXx&n@fsaHm}_7}vx$Wt~h@r~VOE z_V&N+0fzbB#d47=PzsOhd^SyLeD$*n;c?0pD|0x<>2ro1+TuT@R`f69d-T{(GdWgV z6We#3-nTc?F6T~yY0O#E*#zo$%g{ZPBr)}Fy$Z#~pF^QbuyOVfi?M}X`Yh0hPV<}F zgO6)JPNk-?P+=m@iLwoJ-3UuKZjw#L{xfssza~908V%0ScfB)7Q8TOOC-Hyu4v*mc zi;6P4F8F=bp)1b2MMyqJ0#!kPS;HRrMMgT6&&|y+w zxtZ;eG*HCZ`K+cMrxuB%gBw+k&phdl9nI3xb@8G5Y6t%APoQ5+X}G{jyvN)s@5sZZ zH{*MuJO#Inr^~o*#_1jz04r#NpExeVBp1~m9iCqPW zNnJ&qWVR@-R#jl1E#>E?G#=$RhqdTRKgjN*d&o@boH-YY|A=e^$NpAeMTSb+t+u^c zyh`UZjowTVmuo&-iMJP=$eTNw_Qwp)>9_$jg)W=ry>m}TR;n#evYchchCpHovIRyY z{-18;nTulC{58r3Gi2gx@v$Ov{W?EL5I&j4&9-mfgNU6MP9W>?my5Lo~PTrHH0rxbdQ>o2kIOaM1fQ?_IE#+_S}=_6ar z?;(Ncl1tFZM7P0MaL=6m_e6U1vG>>IZ#l#r*NKtC>AW4Opawq|axA_JGtU6n2=H7{ zx!sT!3OOUQQVr6$58S9Bl*9&hfzG7b`t_fzs4gq7(s&%!r9j)(_s3NFi`3}f4*neN zg#FVyJRvPC6q=%r*`IY=tFyIyPY*h#Yf?m7XRquZl}D66_ZpM>>{ETwPjsNM9|rP6b#=RglMxU=T4`;$eXPZy2^V{=-k1ky_ zLUPWa_{QoJ{sXcw7hI*c(b^<1JB}PU_~D@v7b@kUsp9dDb09{1Rg*;cKbo#GD37Mu zV!>Sk1b26Lcb5exC9Tu-Qh0pSN8{1DJsS8&P?~5?sK{u zcjV?^9muT;f+z?PpG6{W>{87!5x>eJv{XNzC`onb*S#FU zhC%l45-5G^hC3$Tb&>ip*L80)3$(TSRY1Dzo2%NFPi{TSl@8<`A8ojBUQ83!(NV+d z6i0FNfZWxVBYZOdmS?PoZ80@p_AgGw!r5~KV+JD~m=J39$2^vyLWKg$-g$pLcyi-_ zyx5~w<$woTWlGFnE<(-^^d*pztjp2XNuHJi#W=0B%jT~LkiUN?1^4SDUcQ5Yvk zu@U2^J}Q?(O7db4GKBS*o;gl%B7{8$;DSPYw{}ezl{dZ6)PP8C*Rbait8feO6V32s ze@{qE-U^D|>3)|hE(IBzF9%@&=d0~eBc3d2Br9gfHn5rLx!bd?lL#(s2h(Gwxy&*oB|WdVXKhyn)aE zxo_v4HG5~z(@WW$H;Ytiwzfp7%r<_=an65Uz%)oViclEw{>JM{)D^$eYS;!6D zGmTo94o))sM>z_ySL4+)Tqk;7DO6x(ApJ^GbM#JxWCJr$?c43~Z@6%dR~EUyb^_XE z!X$V_vcpD>DnkCj4l}qA_t-$zbo|P_@PFmN8~pLyklXY5!;*)AL5*gPcKN$N>CZA_ z4CmF@`{^P(179qLZgVM-(t}*8Z!2v_SyA8fX(0aj zcu^&BqF0mjsExVzaUBsr9Ew?Ug8%#4cyVBcpbFbmRDXyq-YMzfE`og0Vg09?n)Ja? z*&z};Vy7;M#46|ewLh@8xZYy0_pU=GA0w>)gGN3%=eFNfR5hnBDKtQ^axJ=~(kF>s zrQQBNRwjgjZmxiG;2^Kpm&JyscN9@=<^2D(0QbZEp@GwRKsulML*&kCX^aA69=32&fpZ3vUIsEug#GT&6Eld4@{O-4!LYl_K3W3u>KKxpVZ#zvhsPY9`;Cytnu3?ALU6geu~O z$Wdt&rYG14?kAV8RnO;E7k4K|yo%*lC z5eyiC)ymZz>auvp9^ns9uUy5)*v1^g77XtSJlR8b;rE9U?FHdq9!TGu#hdZJ6WB~V z4A;A~CnnCrE`{vNf`*R^EZV(ZiwySQWsbg9|7Qa4r|@Z44?rnQ6&~LvU+;8JOOSL@ zybfhNV5U_STggDf#-^w9Nr=DMjgOIxjy~>9pf0xh0X6>Pn`(P9!vG4u=zr_XCquB*~I*4y3H_;%2_(iJswzpH(D8h6Rvu7{8G{9(rKR|*)gU2=vv z``=w{KF9Cf8UA`DmhjYVh0f$m1&G*)2iP)seQ2s|Ru`T%F#*Kda0Wqi{a=N3+mW#@ zGX2v^fg%)cFXm*G&w!}5O{!PJut%kqphRDAnpZL`1Tso0!sH^w0;?ldra*PD$rVje ziGTsde@y?~e1aqh$7nFb+1S*__HdXqwT+|3{gn1jO5+EMhXyhvd<*aRU{5H4P3+au z7jML;@riON2OL&Yy;8eTXn}o(3@Pd%#Z0FZDe^N5o>FIDj??$d89kW-ZL@(Eq1v{o zo&lM|e?(@!5+@m_%HSq7$Eq+dUEwj{x!2fWZE@V89cPXKvK@rs;R3Y4q`4?KU?7S|1O=VqQVxj;@yK`bW;=bS zXNh)sm|OO}lIh(FQxZ_=2srCU?K!`BO6Tp#jodi`{da`O=wM3Y2}e;HtpBn~D96Tg zW&kxVz=n!hb?qm1mNor#b9q*JqZeLpO(gS4cV_6vt*qTGGH;}#M^kCF1;VP%d|KQ| z_<80F)}nZRC_mj|kxwO7xNU0XwLVW-wFRvrV}=3y1e19jVRTrZFvMq;e}gzGc{qF? zC510HbQ3OraAcKQS%@M+BD#O`SrS~6TVTRuWBf?@DTBDW-zUa~M-Ilxs=kP~kLF41 z()SjfHV(gl|F!Xvo*88^=}M1KPzdq8a0c>{uq?emR#6lA7~QoRLz4vpUwBgn_{(Xk z*4J8{YjtjDDk8lJcAaP@tEkmUS?y-CiZ$BYX|lYWUpx66*u5h9H8JRJ4)cM7Baeah z)ab3jw~D3&SlH6I`H>?H%QtVpyR%XBC0>7lqHFpEfy>x4#%4vk5Ia3Q zpB`h7Q~4y!dzeCPYzz5NF?HC9i!pO`ys*6*!ZY`$OfHb71tgOP{8c3O7KSY(VTI#} zjcrwtrKOa?d2%jHR02a~Qli=M67w14(UDRKCJ)d2MX?_xe?fxa@V^U@HliZN@ zvOM6CUmgB+heRa&vvrRvARKzT>4xK5`5j>_n>w909kKCJinMJ~>~5@1tU0YoN&Qfy zwths3<03>}yVj-yHn;<9&dv4a@}YKJM&FH(N3T11B5jfy8}TnhiIr(66>@kElue=x zZz6#tsUcD7|PHTsZO3?x0hQurEq9>H2)Ym#n%W27#du&x`zS)|f{M8d5tfD%qV z3qD7rT;I@Su-8K_x&btmCjUf$?~A{+4gGx{i9f-iVr;GN-Iuke=#l$T9|xh$h$^dq z?R6_*M?aF3kBYwu`+?TyHPfy_o&qMG-VS;%OB~)3 zt67NgVt`xv1X+8|XlCs4`HvWC8r1xtELB=ct18itp8XH5rgJ71PVsTq!UL@l+#v_7 zY}ylOHnj%>kr_+lC1tDWHY=6h#yiT~wyOiH8?ICZs_3Ar%?MpXLDAWkhe0^|pX~*y z_!_$R=bf8_9Za3PE5AK*ba#h`EM@&W`BOVfP~3qngbYTb zhzk(VVkYm~SR31uBglowG)6o`y#79BxTkSh9HhQ@t6(4w==K4c z$P_?Y7hGhu|>LQ*q#okB@|a@iE|A*V}9mtj#8*p zeUn$9AbIPv<4o;=0InQ?Vsu$D-t-ewKoU``(T54kVbVOQ!f6!sme>7+8n?rbCiE-- zZh?&6KtLz$SFZnFk!&Vk_}i!Gv;MCANJGxjqSNs`wX$;(uRCViQi9#`zoCCA|Mamt zW$QiSCCR>{+U7VFm4Dtf;vb*e!-7bG@vV#Xx7vt07jz z*_4=w0)d5u&~)iei*z|5!>^zGIb#R+!=l3FP}#n}PVn z#*mZxzzS+Bqb1m+c#KZ>-#e~O!1G-ZQVNUC4-Z%2%&v!hle-N?X8vrbk z-Ng;aV6Z2kOp<*n2Tgc_z@`-w6zx2_Ov7=PZWVDS$#o)x4v!sGqR-UDHxph7g;>qX zvGe;!^!}U`8do4@$W`7#$NIC~BDsM)cTgf{==j4TFl&W|KeY)FUV1$1D_A<{q;sY1 zZWgzFJJ`$B{cZ~`@ivzD5sNMp=&DoN5L)<4@arlXG0LAONO?NMZ7+#9b3Hi~@=D!o z8;V$CiDz1|SMsD+>i!m7Dw8U>aB*+Ke|H*6PqK6$TCC8S;fXFm$hzn$ZbIB=mj1dB z&7eZ_qjL*5Me8b}8i^hjP;X0OM6Pej&Nmfl`7mSnhTM^W=Y8U@EBtNu*-3{$q>an7 z9(UxO&F`^bEM%x8pjnE3JbiujEr1|5Ihl`bAA4REi{4X(BcBn*cwl=-5oz;Cd+^bg zz{t^i!_!~g8x!joN_|db_r)qR6}-04pWD6ud}bH-%jlo%rfA}85ca0k6Uy5;PoA-} zDU+@T=T67Q%uUlz4~PlQ@@jg5l{EAx4G%6m$qO=d*gY8rOr~HV2YPW3-h3`uz4$H^ zof3gDcGp453mT#1%{7&Fhc$Fo%c+Tli-3plJ!7nCQSzrQ4%GLNxD&S@YkFK?;e^)U z8vHC6RC?R8CqP*;D{ctEYmAkjZCV>lzc2t=WEOP}&xG-4DNn~O20{TF%=$9o&gvM{ zsSII3y2x~H7sO#z0_MJ?ezFJwGUIKAv9rg;i?elx!*lO`$2Ml+lmI%uT&MxEg4)2$ z+n&kXg;AEbJ=kJ(+7G2Lfp9rjJ8R-7R!sYG_4OQ}8VU0l4orh6j z@%2*e>RW>8Q(w%4=XkP6AJ-QKeof1JUGHo zTq$sCRkR9+S_u4AJ-;zuWnp`M7AF5B8|DlVa=4S%!&%%&sex?2#|y!xbDZLpO{#Zk z>|9}RNK4$oh%?CTmJnMK;bJ50iSuOO8)8VyF+{gN>_{CR0o@=Qqc7Fl@zG~U>frBn z%cnON12t5Fxl2&806e;Hoomk~E~l#WWv3TSGqfBykqwYj`edj;NhnUw#o2aIr4d(D zQJ5?>v4D=qw|4%pHc6{Qpak_rjaSQY?Tg}I4rF!ohxH?vW#*)C1*q`@+GI5KxR3MF z<;Inf6_w?GG8KgR$fNbXbhSsO*tDE?*BXXFJd@tV;+OHoS`DZjA@2T(sNvE zk8;zEqY+);`q`ObKozUIUQ>_4LUPUeQsdwzS$qv}im#!A`3MW5%z6;fF`_X54ZqEa^5s$ar!; zI<{aXdUpR`J^-7YrhgXTW`on5joqU-J;zK?ux=($epPt+5eYopWq-Pw-UnuwQ$iaFY##@ed<=I*3_QR)yI+MQvJ zyo2e`nM#%`vZkb?@^K5cBAB%GMag{i9yxGS=!3}7O7<*oGu@#yiK}AX^P%z&a$|bT zQC#tw{xzxpie4%$fix0{1!6Gc;F0n80aPY2ho#R{z6FKteNq3t0_BiQ`C6aG`vHL( z_$W!0h<|xm$hkn$gX()$Tu_r3-Z36R%)tarhFsIZyXY(=A~M_*dGmY~usIxNkt+%C z+jk|tU)++wwPVi3Q#c*zF5NAQ)YgVT+#Ogh5OTziH~CyCLi zuS|CCd#Oe^Xf%fdudknJlmJ{iz=kKg?8W-(ELVo-E@TyNiBZ+NY&LnAxWYmC4Zhf? zO+^d*+GT80^hIAyQO#JG$&P5Cc>+zzN(~b0lQq1V{nS!DQ_sbN0-yJ=B(dH-{lpiC zZGuHZ;5D;d(?OcxjT{JHN}xuvxI|$MQ4K5VV85}O3e`C@h)L02!FKz~C(lBo6h$$D z1!rnIb(|ypBsp;g5@3HaZ!zMD;i3OcCo6Vvlh(p^!5r&Z*4+?8J3uh%)0f9MikELq z$Ob&O4>9`sv;8FG36YC&YyV8x9DwNf*$bim?_a+!lpMlB&>i)m-0a%F@9o)sEC`@`b1X-(1XkB{-!XC9O{oLz1TRtAY(9$Z+;{iSVSxZHvaD#!U^lr zqIO{wYZX{#vq*AfF($SNLy2C>V6c?+TjNg}3G}j7E&)tfJXGXkOxxbge4lOz$RQ1! z9p;4HMY`gjN5xHOdFn9>>ima14Wdv@->}$fK#cTUv#-XLMO~}_tCSv_#G2L^ zK}>V0E7fZ6tmEUAbjOE4jjQ3Sq(rQYW9)?F9_39Sj|oQYB!w=3N_R}5{Q6-E^r?8& zctQx)o@Cx%o%~vm&Mp+cg>;+~W&5Fi>zx%02&aP~TISR@K!ltRMf#r3or~-k8bgO{ zPpCc6d&~F}d;~qP|L-3Awf>%WJO&>65vXeis_IDRpa+6G8mVRxhi>5%6Yc7DFhUe* zeh7WR1Rzb)ob(T4q{2ryb-}A~XCO(6H~i|4lWJv@Ne%InP$VRCd~S=sxRhu%v$5N( zSZ1lN40R70pzfDR|5*4jJRD4$lQv?nJovW$wG_@039Dn3qa}LJm|0Q8Awr~N(d-RE zx2!wNv?|R!7m5{rp7CriHtHfD{fqCivc+R7mVDrKY;X0m(*pv`IZAa-*K%fUy7zA? zJ78E(S-|Snkw_UFt6j<}3(IVm0qILsj&z`QEXjs(J<2FzsXN&XO(6Eb89wo_nAo0; zUrj{;y)Fu84n$L8iaUze*0KVGFLZ4UH%b|a5cv@deoTHh;F2?@j+^LBv;sS0xp ze12A0E}ukAnPbua-=Y>x2VE6Y`_hwsMX-lz*>tGev&U*ho17KklOfm>z9vN!#e-VB zkt=cI$}jZ;+9*A~Fjg=7E0UEV?`arCu(5iQFAuKR!u_gy5bxKdUiv_J%><-!Iqk4D z{F&`)FC~ZOK~LB!YP28hY7x1gXDOGVv|z65_)dzrZ4Z4jswP@;s_*?-ITe-QgU;Z( zdVGmiJ(@4u89>A}16C^-W1=&OCp1K!>3Ba7aDk#npJz%BN^Xhxy`^8?%=A?>hhE+< za_`%7lN{O?cF&uBsWWy9hjPn^b8U-W^8kM7Ga3Trw{`m88{iJLv)Q-tQd@nCuW~ZiIB675UJIU z2A57sSvUEK4c?7Sn&SODV$*-BMTSrN)YN4eZ;NBwwOo8^JC+W1%}KtU1&>%LHF?=%ADre-u2z=P_7JqUnQ39j!%qhyuP6-4a7BlIl^I!P6HQ_q^WSJ0+ zeyMucIrf-du;I|*i`ARHJ<7o_hiQfWbIeY!YZqt^OUZB-J#T-O)67s)9~W8sS@mvLB#3(< z?D^ZgQf1l=H!84xs~@Uakl5GTuY0=K=y7EayWCGC*loq;g&k@(hl$VxCpxB-WXsD) zG{(#i0)oN&)BKk3wWU@O)9CTnjhq%w81V8rcsTAqxJAZJptBO#r$QZZa0frZt3GBH z0MGO5k~;^td#P&(QS?J}E=4|jn;4s@GS?R$}V6>;@$Rp{_5jR@Y|oMZ#V%zC1ObzY?HIVFc5 z(YezOxY(zol74?~eqTWh@=?(yLTY^i^h)lfmmgw<_}ptI>@6DVJ{^)DNZo?NxhH`& z{C7xXv~{I$zs&{A8-2z?^*)`{h}#?1CHZy~`w<9s!jIxJ-6hcjCF=#i(V9_E41?*8 zkV0bNx^Uc>v}tV0bV!$<#ws8ViZb-_|8rX6e}auA*7-1hs?J`2m+L@kS+|KlM4!*Y zH99!tr?c}!S#7Ouxn%}K?a4b9Jtyt>8pCRz)y9D@9B|`R5->^smA|SqyHyfTYfT}Q zoQ{zzf3kgZO)TnY_bU0X+E>qYIvBX8-FFlGYqTo<4eEItZb^nE&OB!u4NOswaR=e^ ztyz@&Wdkr0Cpt_F9yYPORp{UWGNVdCP=s4A0^CFqj^4hk3M~eR>orK2i&fg!xa%@V zWi^hH9j$ByF-s~7-t+4esfq2k`(a7g8X_dBUR{#uGwomNPNkE2rl1&n+d%41Z2;t} zD6RNW7%b@j+Uc|0P?X_1OqJxeygWC}V&6dm2nE=kj{kGN@TKU*P;o7`B0b2oXhUW0 zmtM@xSyG4J(1Rx~hdE~HC@UE(-hCiNwt9P0w6t+P6^cW*g`q$(?CG`~D0!+r* zcuHwE$pG;(UU+|Uq^aA#+|q8iQmevb@$nZrFLAu$U`D%TNQepvCq?k?{;SeGyF@+F zK}8n=spRQmryhdhKwp!hFGz;CE(RTHqy;@Z;Yo)~Req~|Lu{2u7QT)V3Cs!^MgnvH z+TVJq2<~fOgz4J3dWyBvq2B*<%)59M@p>u_&j=pmbOCw!i=uZ8uqh%L!w2`9()v*W zEmOc7;*agqex@J<+14!A8jNHAVbWe@HO|i%W~g`g)4VgV2eXDJ&;+NF?P{T)1Fp}lyD_|&k{e&WC5-7g-bv2-F}|SmdOE$yEbDT=X{ZF* zTn6%L)>m1J2F>I&RUNJ1gKnSmpMaSYwHL!Fi`9JaE*zo+qpXr}ryJn^!47tPyA`7ra$-J!z&%$yNfVpq!;hPDJAitn1AC$taP z1G(~z7Vk@C5eCUq>474Z-e0@J_1V6^6cfi7W#x=$SJogKf@JjDzSr$J>fTY$`6tfF zBBaTT)B`OX1aFTSlG9RW);iMUVr~@6YGJTr?ZC6^6H2W@gPAD0_fNeK@J*)kLoVLbDPk?&wB2p})amj?0g7$N zA{dzYLxB8TQDs8jpuX5m&3yon)pOg zc;2@v4c@DHER1kbIU?D2hYFXZLz|snCi11>#y@0(DY$e*k=mg8sHo}AVkx*RXX?cD z?)ob4?cA+`K|b83HIv&!J2gx_Dz=6g&@_HR!HNlGLx%P_Z@-; zXWM1SmM?*4!;ZWM3o(Fv4Pb-|C!IR&)3+ z110GtoYb-%{2%D)#}&?BASB=s5iikJKK8XJa@(yA<=nCCMnz8>ZLAeJ>Bs55UgHI{ z?HIovJ{b;hdi#(pDeV0<$gUI}UEx<3q+ewBs?>kf9r^-cDjnB&HvZua( z%3fi)0(8&^N|I=31IgvK_Hg9SJYN(7Oxm~;mE9pPyoYfA%2hk&*fKsr+R zH!yl{)l4YPhr}xZ*jTKXaNf5hn#)M64dDOUg0P#{3&9u_sJ1-)ynp zV~L`0YAZgR0B9$J`EY?Z>uA~LUT#GZZmx5UM%i}tN~80z56h09mRZ5x^SnHfv7`#H zb|iO#_nZI}309Bt^#3uzoDQmQEF~`~tQF~hi4&g4L|Ju4p(x&dZdBe{($Vnx8+oA9 zYX#@`f?(k3#+PQunuiajzHH2UO>m7I%E-%9(cv9t@kvcWm`fgx;9+@TCR#XEwY0RC~)sLv(5x8!=&NG*fYpQM5Ik6n5c%Fd=1G< z25+7{6!(sfRM4Gml?A`SN=bQXQ@?Am-3VH+U?5M3^nnj+cklO_k16lFf~x7bw!Llg zsQ3Nt{pnwYPP;LMf>za5IE%s91#qe}5aZQ>#xIakVNSvxH&UU51Ryk87KYvJE9D)u zRw2nRDkOl%%XV9d3>8PE4MT@L@V_)m?XHhKQDU0px5hN7Yf%787sBE8{3_f#x*tT~ zprvE}laZEs^%C&F^mg`SSXf$tEdqc4;BfXn&Q{NPdh8ml`2L0oEn%!9o9}FC!0$1W zyP_Nd8SdY7Jf%DSwH+3xkTrUx*5JtDBkf7|JG!-3d+)#QF3NK7-O|9u!8yMyOnH92jew63 zC*-hUM-%KxJ`vD;SV*fS%f&Tco&I)dqIP*{qUUwE4A2TLr}#8ZYqQ`w!Hqp{KjT!4@)9nN@H(MGg zkwYZe!;mQ>&AiL(**;BGS9NpY%w9oL^Td|a7sQHe+`y;lv*t;%4@K899RxQj7nHH) z0iI4fRgQO;G(@k%kk?E@6Z>aLNe*dz)n-%9N+vzE3Zcwuu5hquVjAucXH3B`raawT z1|vj}0~ice;r&Ehfr};n2dLPjvt2bIP55==i->d;?r#8=u4q&diDh6GjFF|~Df_m8 z!0}K?@|;ao$?a(Mo6dHnBN`Yib`|2FKeBt_29cbCb2*b#>-2nFjy-r&hOYEPT8xz7 zJk+K@Nnp<{=kY662D#KxOu zEODns5T6WYPnozEPg`Y90kg%#mtHWJ4?MwZKh5cXE7A&_H{RH(>#?24p+Zq+JOn5? zch)6Oh5`W4xHq3}(e!p@*e(pQA}b4dp}wDT!VzltTMxu!b#+a=1MrtzkjU#ujPKQx zNIx1Bv%s4xGyk1tF>puYP^4_Pr=>OgDda#Gud|+#{>Y>=G#|MG++rRoB(bI!GdnDG zCN}^m#@-o@-HM6^{qeJ{>`y+kulVj9vfgUNcgCClq6sna%Sii7bIE zL{sw1$<`#{{2e$8v;RWpY(4F7VFE4=S<3Z-mi2;o2?ZO0QY-bZda~?$n6iLVv2mFFpWKLdub5RXVBU8JNZS4<6HeUoy zZ5aN;8sujB4rNIjy6qc1(y&i?pcs8j81+OqKcKhO!>WTmsF14C>voSy@M#XS=4sx` zcYCl1Z6%Ek8Hiqq>=Q}jlVz^jIDSjkiii$IIqUmk#1jPj#N6L+AiM}u9l_gchHQ`FF>IW{h&c!*@b=K6 z)=X1n3d!pYZdnzr$t#^p8G!}>G?)Obbv;0#S^zqC;6^g@(Ljnd1uv;i)V`h50EJ*c zB_@1-J;zU{hp?-Q=fHS7=c!Z@%eIh1>pV zMAG?M|HZo26DXUDcI{@gM3^r&|3LLJ}JmihLz> zEUP*_b_DSWnl3t3;P$U)jI7%A`L*e7oTI-avTT0pLN0MRuPt`(Gy;x;eQ6nK9#}b3 z$;tTDm{-GYP)+r#rYt&4`|TesNcDYd7Z_DFgJ1~uWkx9}r{n|EPq5uD(7QwAp#!Kv z2O663ps<6diqv3f3V4fflpNdTca`TAw=9Tbbn%15));ZwP@=~#f ztAtj{Rp^OYta8iK`)>ZUSH!t-`^~7^>|dsJ#DWP0x^uCTl;3*#2t+38^1dRXc)@jh zyXwv??mLlryqMRN-E2$YeRe=wHUIM>JJ!Szx9BIb%IZ1C%^!6`7VZVnA2}AAylr`Y8c ze7a;e&~E|CaC(y+dB3dr97up%-ga2nt@M~8%`zYP0xPdFhuvw8! znKpYkbT}20A9`Qc1n7>H1+BD()N%k04kU=9o?4~EC%5-&%Vmkc=X~aMV zHf5~i`j+PYLFvwA$1YA)Lr0o5otm;_(8;#Pc|GiZq>G^0jVb-ZtD*kDe55I)cBhj- zz?}n+)1?zQ!)Ma9g|qp5i6gpg>ro-YW1BHp^b)+eHUQk3Lufr-M5$K(y9ZS2Ve18TT>u0^F`~PdMDexUFdE;t&a(Ntc zDWhlczsvEJELQhDItv)W&*Ke8nifp(A@<6ZnpnKJA_*|H%yP@hx(5-w4aW7n;19=+ z{r04KXCiBQEQt!lW0hQ14YaB@M9C8hTS^mkz%)R+zIwap+irbE{r1!#$*9N}Q=lM| zeE3g=$`=n3n*|4R2MeBp_yGW*2-R74-3oiHTa9xDAkO5k>uD;bSm!XCE0y*7gnPH4w$ zjyn{6Q|=GXLIyNa_q@FSDj~N_r1E_}`W^3$)5B0*pr?9SvdjYv<7=Yg!VntNWnn_x zwqw9T%|iF{`KCX}qt}^AMu})7;N{jp547WB*z0YX6`kPa8TtdGu`)Uh9ge@{;ZtbX9gG8lpiya0kA0BL5E@hTmf;@S0Ukg*AF@cYx z8u*Sh=f<%ljsZGZRd&_rqR*Zm>jhr%HAkuG8$Vxv#op_9BZjD>=uo?8{%8r#iq`2; zQ1W0=JNEC_pPkVVx(nQsfTIf@}oIv^t}+M5eS-0A0&M7 zcpDBfF*-)1!qgZjs1jLEX1g&;xlO9A&SF0_75TY28l1Lb=s2@KTjhc2b=qdGbD5`* z=9ed#_{n==V-+4XF7z=6`y6s~YP5t5xaAq89G=P$m^3C(4oXTW;g{V+(AlH9BA8IN zGU#sE(8NikF6BWO1mw56ig#r5%-yA#t>fVXm-v^zsLk^0=h9dXDJ>2q+ zvGqlE@96<51jz9I*TUtv_TXnck(b#oZ`{G4!y%8HUaDv3LQVU7^-{%7RSI84OIkFK26N41wy^EjM z&c^yEaN64DXb51;%mWGT&CCJ`U}QCGq!H>uBkk}8kqL}Hb)~K&&F$S=3egDsrWDHi zqc7auxbeDbipZ4=&brx!6iY6RQ7lCW6~2D*0`jf_35o5}Sj`sliPgb1&B6Nz$cV#q zh}87KlUu?Pc9i%F42yspxO%Q+(C%`ECL4KA4&FJmWdi&l@$^8K1JC9aWi6B81e!xz zYE;9E#*RYN<>B$6faR(yzXYwBhL$?-bvg^qVO0Q-7{9%6EQ20*iNS|~g^Dcvtu%8= zZ8>!dPEh*8kU>EIT^zNvt-QcU&Ilh?ZJ?AFo6Jm`H(YA4?t3P;8n~bj`J!`B+TGhP z{ns}5A!#&;8v!Ixe3c|`g3==l)*+GjyI8^Pd{P-{Vx~Mi!+8Qv=?9N1HXxNaZ;<2) zD6y7|0I86;R6ALBChP#ZWQjUHvDY_@iH#*$Ao-~AY2-4*!9W4f()af48COgwgzpH7 z)OC`0$Nna0xnS9Rg2E}0f)nDY>B;u53`U6J@v!Ae$Va4It!-9hPz9cqXTTWlkW}XzSDuE9y;^nvSs9TIp;De}O)CQ=n z`34muz8hn4*^!3}HRVvi2JkpD6r#eecKZ`6o%p|E7_byz}Hh)cw;miqv{Iq>7$t$KEIKS3x0V-Rs?J-e(#>;v2U{ zIPMC>i!s6JBt#NWcQmuL`vB=7a!rVoXZQ=nunimg*nT}aIZBpSQb!JQ1eE&=3&gzN z+A1>s85i`kRiyvy%=bqIn1-+kv&7H$Si#F?0<~^YAwESIW1w^`Qq6h5 ztJC#?4rm^~lypLaxt@Kf&Iy1xso8!LMO?*PUPKPkW4?W4+ z;zmdzomjd{d+s4yj!LhR@>B58>a8DuVi<5!T;g@XC8bou=h@4`e7|zifb9HzEP7nY z?#)Nq1Om6y1qXjJ;&vs99F2Dg+G_LFDP2qW5WevsqY8R|WBcuU89Evn58)wg> zB>i|VkIBvmC{Ubf;_4H`qfThmz|!zRB1`yZ)q{{DuB>%oV(JgB_f}tnVHg^Ts;1rR z$4`vX(nzTq^P&9J-RTYK)1~E!zcS4WtJ7Ulw4=H~Tb&7^#R7Xgm%vS9&3g!piIL^` zq?_G~#R0Q!^MSyg>jKu*jW5OwtGu+Ql(8i7cOEv~KLgxM+3a^4NgeTgcYcXB5T?HT%06KACc) z=GA5i4ae|w0Ej^iaMRLQM3UVB@BiqCQ$VMZw3n*b^XgxKQ%pvasCL^#OF_yM51Vl; zDBgz2@KIdUA=09-R-R8rFwI~$X8fY>%U{c42ufmMH2$LSR0dqevnmim{+XJ8Ob8ru zGMXH+^g<%lX~yqm*-{F4ohJI(7@?>xHn&m}n2-q-8Oda6!iIl{ZG+ zXSQknBFv$iIn$VgjSI9U?W*5+u?oLq&!k8=f1ss2-dpcc8rC~*O{r%ayO7$}m%PzmrnhfUJ}kRM-O{&n97os^=!6fQQ{ zbWuX7im8An$qGn+QibUbXLr%gzqLevURKs>Cpx~xa`lGJ*Xx5AATtZav)SWdNY*va z#Go%3{-JKOhw<^F4$dDkxC4c5jn6@5} z;K8en2k^H|-%@*)sc=bwRrU3I*_H~*8*=G-$MZ3iMV!Dev1s`%0(|QbNG&P>?TkaC z?$x1>y?Lm$4t0+jfyQK^L!qit%tnYQ>_c?lvT=S+kIO&^CmPkMNqv3jNGS&v=eFKl zr~Rwx8!HH&=t7e@J}OQ_@zu32wG+jg8*#xj)gk4dL-n*GF4UCrTp&%op z$Kn3zc>3ZF)84Y3i@22d@7q)#@#8ZihVh&O?WvoGhSYbCDf)^ZtkkeQiA`mkaSu$c z*A|h;Riy%>qVdFpc*aQHn}fX!M5Jl=*Jlg`Eb-?0IQPD}B}fbvIN0=R*_v z>g~|ur#b?-Z(gc_siBRPxPjY+P|1RAs2dH6Dd7?6fp1G74DfAb}M8Zlnw*a!8j zGxo!;43+`wq7T6rUtmHJ!)d})pB(>^$`hn0f+?|`+YUY6COA}trh8wm(>OWjlN3uM zK8d(?$ZaSd7w~~27@!MFrzW+jqRnw%4k=&Ar`$7)eqc~U$%#L3R$@a!%F0$E<9$pT z_)UmI|1Df&T=VC5z!Xxnu-hHtnWIGIV2dlE-&MqR^Xy6?Q>z|ZPr^x`juObxSSSPZuOa^UPvx%YB{BR!e_m7ppk?6H^Ba4Lp9Y7`g6bYX0 z7YUDm#HmPSZYqJlH()@sG(L7v=1G-AQNnm~Mr7M;x!+GKe#Iue|!<>D0WJzO~$Ti3Bw3};Rg$i}FASqr0 zY;92~g1R{O(GDEsmg@J#)T+WV*6Fbk#bOpZxe^XZa${sN*%FR3M`CKC9HIAAcvq9< z2MC9n)k(I-Ql~LK8lZpN%Ct&=pFpZHYmYHKjz*lD$Zbw z8Vtdm0Kp}}-5mnK-Q9z`yC)$KoZwF51P|`+5E@V8);K{M*ZFeq+_nCPd6=hJ^VSPK zn(D5qBm3;Lk4aIK$-x$*eEb~f(?3JDxhKFEAl&}1cGKDUq@|tA<#8{ChQ76sDleKIQ>MN>AA8VncEQk&Y zh$S@9A4<JPvdW-?kEH3ogLVQWg}7YK3|k&0 zNheGboL{Fp(7rtrKnM!f?_#QIW=64`X>hyvvNGfly}prDn){KjB0A(X;ordYUmwl& zkeq6Ou~z7OYt}O@A8~7RTS*v$ZoCJk#FP2#F{(bU`g5;8WV!rMqQUZiZr#f*xnlnc*Y~cN?gYfs-SwOgDdg3unEMcV!jYRrPhEIV+}HB+s@Et4IbH zfW`{Hnh|~L!}3}2M-O?(AzdT*cwB!lKe+PrL#hwM74#AG6h8MT#WrmIbC&g;0vfvrYdwjA>77sen@SkX=6Hkdc&0$f|!XESrj{I@g}lidTmWS*qJY`LIYO$IkDh%DvPl+pgnd9yI%Re zG~Oc5(W&NF7JV?ga9tvEq@xE@4J{uhzmO@L8)L%txE9cV(z*0+s}3!JjhIsGKA#4L zHvRddx)L(cadUgr+^q^5viG)id+yx)&}H<1G`sxgi#yRV`wlyz=B?(lWw<{~_;laa zHs&hjOzjz;4fUG3B<^&y8W?KqPuS0~&|)Q=kje)Ze$e_VE|#}><9F_>1QaP%6b*&< zayj3CCKW|;i%i#X>6FRFFSJQ*ouV}~vSo`JbM!sd>1SqC7^vld$tTM25HGisXlNTv z656nvdbRnCyoG?x7y^%Szt;^$=t7*Nj&*v?S|BZXtw0Spdl<$(xf=%AOKc!#(Jbwx zmI;t`?C!vxojQmZk{d{}U9}1$8#WU53Td9a!wO<|ujR_Kpsx&~;x$#^pGD;@kR6pv z-oH|sEvl{kvIh#f*M$GMY7Nfq{lG5zJC1p%zRpXyg-=i?f>ctnmDz)+*cu5dO8yyF zRE0<5bbx{9HO952=BL{TX8KNlU>q#Uw6Lx196w)DgVSp`O8MmzrBH6nr2B9>+(?>W z5TWo>x>LI)0(?W0*VNJl08DfHp2rGy@Og+PsZjK{+TfKqRHO-eg4~a!tbP}YN9vmuFXmHr zqqE2dhtH?giW!29Wb-O&JfS7NCd^Gb3SW+^b!!jkY4%w`G9r{GFxeFndHHU@-#2 zY9_2#hpJW{=8w(|bnXR>O(7hfJPqJhwSZYK@*So?ljy&{aZKAbJnwHUl_`n8# z>ca5r_sMVMYJ?He@tLqSq9=XQ*)~Y2rOYo7+g)1IEyI0DT zlhX=Mb-hXb2a|5~Uohy~y?MNt-viJ%Z@}Uxx+J!HKrkB1fTwkBH?sr64#%Yo_ z>AC;X@G3k%>5UTQ?CJ8Ub15)% zFwlfcGFXB*n1$O*RX(AOVPSO*3{pFs{L~Y|L74^&E%&Z=XJlpr8Y1j{cyUnDeMNN2 z5nA)rO$@$4>K62MUJl zVyyG?C1t%5m7Y^+#N45F#mYQ0<05Z#qNgi9=xV)Hfy4hwb(u22t2bYyvwGgr=%>KD1SN3Cbizvsp z<^F!6{ZXoXvZWRHQtH6zW3Yv3y%~4LCXSzAh5)#CwdulNq@}u_n;mRE^Nll`!t#HARQu1=kn(ABd(Yu;efUCun)IrP&0(O60m1f^%cyeHnOG55k@9h7D8&jtieYXktgu7O>wqD8;V|MZ6%r-$&3MhLhhgC*dalWh>pwe>4lY) zoj&XoOKV-TnhpG5q6j*)@>DKtVTku3tok(ly`tqQToLs)$Z=JtAH3urg%0CjO}aZ} zr>5SZ=jMj*=K#iYuo%@P)>41}@#YK<<=*eIEX~fz0h+s9GkA3FSuG3b>3aX+JL`T4 zd~Yn&8EZ);@2!(Q&MuTx9{l!|Qm#O1_lG+)fX{?MIRoNf4+b3`^BM&m2)=S>d*VU+ zE3h4_wqMeJU+QJhY&X|ggQt&;Xko0NqKOctWv`{6@fe2&{en#4n^#KeRw=i{R{PDP zNBDf}jJsj(*UMOwL282|{hR3N=E|@2rP&krJIp^=200a-0W5gk>(N&FE!9gk z{Qy(u^LjMI0q&pu(1@lxA-%kP5`D*e4&hQ}Q9bn4f6pFV^Q8(ys|`2NN}nc4{`qc& z^pcUapxjh6Qi|yd)y7SJ-tt8qpfB6%kE|;Cg5Y%y#+f57Fa!}uq^>BRn;tT1H`)UNNBkUa}asuD)=xy?`eB;p{(*)eQ&iTgrm zq6S(&53$HE_C_zv4n7A_mr2vU-9vH=;;HzpKBIfxR6IMoo%sxyufwysy#r~>;Y_`t z-=o~Ca-TmJE93R)PhhIu?(XDWIdt6+J0|#w`#gZmdB(h2k!8rUT-rtF_126@&Ll&(vts}0@~f7vM!hPz&jr0&3aFF*u}Xoi%AA&TJtVz zNq%hxyQ!BbbvQ;((@xaOr&cTkwDT|Nu^gmTzA*L9bUsH%u79+2YjTK@cv?)sTcrx!QiB>&KlMy5B!rG)*!+7))S&YV@PqU>p(qG}Ipl!N%r9xm-KqGq zDS*|FbW;jcuq~-jGi5YA(1jh24%VA7Y9JDfu4LcmkN7mxL5gPLSXY=64UIl(21X-o zSEP&jx~k63SpCSlX8LqhPUK1Xf0vmT_+z~vlEKa@X&=Yx zSomC4hfZJaF?MLf=Jl3F{E_dEftCr}hGRwc`I&taZ&u zouFjCFQh1D5FI{r_WtSoA*fQnIr8Oxwb1CPxIV-Get<2S#s32Vdxz-vMHlw1XO}f8 zKm9jAK>K)iI=OkSx8gPXmM9!-`of9Xy*}=h29o8h{S*f>=CpR4V~3-sUBnQ+ZZ{F-$bH^^^@6Q-y>(J5Db&@9c4ZtbniyhTK7f>dYj^3)taL?L zo$~Y9RpPR&*t`fZQ6QGRWMDI)#UuoAOLi~88W-# zjs{?@4C_G~;{TGT>h3L(tphC9t6VR@86yGyb*W1CBEHnr>i1c145jclTb_imEZwN` z;GGx}(I2U)-a3^AkezxDqcl!xr2HeHrsE%SH2dq#G0#DYcJ}rM7Z1}sn8R)hO`WOJ z)X3`UI#MjT@5s6m;Kay*O^Swjkyb4JD$B%^!Imtp zP`4xT?VwmQZphYS0W;Fa{ncnxKzSe6ROD3XKq9!9aX^KKMxS%{Nf;}$eUB5OJ%AT5 zv&gGVo&1J|I~lHMSAP&Mz}b4SDRlBEzes=*$brZRYldIPI?wi`XbeD6x7>*M?NMG$ z`*tYSqUbUj4bx?dR%Zpr-8!yFmAi~l6rfyr+3Ho-2F0n2TgQf{kW^)1y2~((O?skg zGbAe@Yi|8Ye5Y_pM2;C>0-eR!8Y}*D@ag+(Z=Ww~<2hfH6Z|Y(y!EdI=WY1_ZnwA8 zwn&UTuVbd%iG??5hLqVpRVIY09yGLke<`X=?rS1P(n|F>HHK*FWXD%*^uF96)N~8R zC-ftIB0_3%ss|{^C+!b1_czQo(B0$5{qC0mz`?9|Ec0qzGg~~B*ax4t%j(trwP4Hi zXL8`zf(>+=Kx5?T-KSei&4`3Nc3F212(8tOl80N=Lpd?XL6CaWrMSsG<7V#a*0ztPs<_i1*q+(oI4_ZRD}26^>Ot z;GGTb`BA>-<~VZYK4q2(H-%$GN+lX!DFc23Ly|sK?n)xn3b49y(3zPfg&+$+zF~&c z%eb_vDn}4T$nC%I5e??iZuA4?y_BkJO5cZ%Oe-hBM<3$_AdX+OEQ$={r) z)Mfcq8!yc%dx@PdG9apmXsZ>tex<4(%lA%DnP?{=ZzSP8wQq3bV94Ci@GOsJC(U5@ zN|(o>jT6GetSQ0MWn;#RtyJNurKycBt~F*+p40pas`!n@GC>pG|GM zt9d&A_g)=7D{CA~%wmTH=kl?&go5OPmY=UAA+yZwh8Pr6@xaQHl$HSYX!TJxhd%@S z!_9lU^Xxi9}ibZ`Sg5M?Kxvd3sBn`B)L2 z?@MUBUWeyfs0_B~&+Emee_9YW+1^z8o3ESkZ<#RR%f5VZu#2tehhI1jf%s5OGCi4b! z|1_+eR!7b~hI5wu8);!3ga9loN(etYO@lJtEyQBmezkV5)BioFLkws2V-8=i3kUL`$k@om!1vYih=L5?Z3jn}EiZ1&_$`n$ zwfG6c)=kHn$ax!NEgZ|%?VvZWEuXotUdVPxUCw9Y^%|Q zz5i^&4AM&?b3B2=$%DbwPyE;3cBpn&thIZ}?c|*S3l;PTk0)Qzs6WPNt&FdDQtPuN=bZ4d(R_^qTybcxv z5Bg?NZ4e^q6FWYHpsFfosi>Q=(Z^E`N^8=GmYiQU9O$JE{@jEo<_&xY@EHf($eA9J z-5xO0&Q}!c_3ADyfasK1urg}GFuGQ$u>J$^p_lnQ*7OIazC8V8U_HqWrTvB@E77L- zX6r}GK{aC`{=Mnu4`B_9WyhRdUXqC;USJaRT*yxb&|%`Dn09*K!Dftt^6Z&^XQfGJ zR6(D)#3sk6s@_6ta{{n`yulMRk>eohirXMd#`(ySxhkCg;diE-g<5pRAJ{?g%qiqOn#PmB!sEV$Y|u7?c`=cQ&e2V*FXn>&Cy4$8}0y|F|4{ z>gpXi$tyl;`Vhj85qe_nY*#chGPR#w*x58g8=3IgNw1YJh~x-UUQ|Far0z*fao$5@#VeT^XLb(sC`u z&qOZ;3FV^F$GoFZO-v!)>Kq(*BTEBrLp3y!7`(5v40{MN3OunC)vL|auHbjyT6hC& zz+1wcK|h<^uh5olORI|kj~cTKg5FDnL-l?nE&x(3m=@^G1LZWf1DTS@g?qhv&dwsM zs7ZaoRaW!)m0`8SEN?QaF8|huVP`NidRjFd^#-&7wQyv7^zQ*(B(>bE#-0~q%R!b? zX0Cynu1wcpzAJ9t!4Gb&H-}KQZY`T(qu4*JB<-no4UW@{L^TW4IH4D3WfQ# z9+fc9pyTw#2#!vQTxOH(e0hEvTL9t-TNV{>9h4m=z`rOP!-pbY4)X9~P-|Z=yOFVQ zYx~#dmt_FCSDV|}k<}^IKFjz37bdQJ&?L<^e2jNvL!-sMP%sF22Y^rcNJuEgC4?jJ zML&FaeRcTTucO^n@Ma~LoI3oPmc;893-^_Orp%1n)D4=H@y^!G-3W%w4<(`BK{xPB z52+=8n%y;%vV91BICx^yE%4&$&mKB$i!=zPF}S|MJ&GnR-J?W{8Vweq7M?$J4B$o1 zJ)G$wzz4G^LNf?OX~@8NE`IWR=1J8@T(IMtf6>%gPuFU-1MR@(^-PS9-`~XptyDq) zPWL^YxM_Jgf^g>5RhDMa#l13yxH_h#4tX0;s~as#&+@*0PpR)G&JzDVdOAw7U}Y|l zu^)Y~w8awp%hHXPHy9H6$4+Z<&ei}i49}=T9~6|UW$)&Hw!`>%hqkIPG0nv?6{97b zob_te@OaSr16=B`B-iu zW~YrWLt&08bD>|qJeyOD2u7mnP>dURz!?R)eAhy@ltB+jkgtFAgLB6BxY5ed6>tWx8f}?(!7JHv=lUwmswAYn#Q8J=dqVfc%@yFY8r4qvA7P7PO1Hva+hZ$#`WT zG=pY{xRFi!W;e+pQ;Zkb$uhHdp7UijA8&NEyY%rWAKD-3*E@3$hWX)d?@dj=*=f{= z+1c4a2WqJ`QVMY8aU-#m#x0M-jUQo)kaNEe*};dtj>ElPZ>yZD^irjHNTA1eis>JG z-uSF|3KI9eI+uDKZ&hms$sN$e! z53(ia``j*PJ&4UX(gL?-(MX&+>S~`7`~ynI*-V@QW|E2ZI4H z_xje2zw#nikDj}o-N{F6VrhMkMt>^T`xX);g+eI?PY#vY=wnI68IpT}_yAy8#{%h= z$NAjs$ixIyt!kJMYf#6kQhy%fOkZ@(WWIj@CJ^r!Fv)4+L=O}5wM3n+!QSG^XU!k+ zbKCotkC}00Y)9Id{=-~fp`p9C-c+;C)~KS&FN?$PvKtKn=q$=@&_bND_rL0nJMGhb za$a<zciFYFBo712RTs6&D;Bor;TRCX>b7h7$Y@TBcrSqj+1c z?yt!Eg5F(PNzeK&h{_gPg@zy1y zdv1q>=35+ujx8fs;G8*s-^3hYRf6LdsU;{)?42y~}XL*F0 z{XP&JPZP~A+XJ~hK!4m+LyDAoEzR_?PASP4Q+e*#o`!n=)aaWIgy(fI<+NTlkic)c zBIy&a&DAdBHApR?+;-kRl}QtM8QaKCuo)OEGqC-prX~VTheFTk;NH~V zMV_`WWUxu4w5s*TI1BYFGp|!3}rlp-5+(#RA6y?zSaFnZ9<=YMug(w)R6++}Np0Q|XcnJ!{ zI2AWpa(j>LXO^b+ZZT1z*kj(S$H#zXA7=-Lc=wwSkr7N?rJdiJ!!y$fMUAZDhQCFB z_Hh^Z%y`KSIN3Mxn9*lDYZhsGn0uj(bEAF>9G>%&V+>n&z`e-gX&BNh#JTV~cFW9F zXjg2qqcNNb1%a+^3clcl#u>!gVm3hb7mmxmdzW6c9(al>Lr|>lZ$Ck^97w3(F zHqz#KP9D~RPdLxI} z>i1G+r9s;`c~*zRo<)r|j})h-f5yp1w3W5;2KSrm$-I~3M&sbYEF}yf$CMoAxj{f~ zS9CwkrMJkSbM}9VU2R*o&a~bWA`dWG?orYW^Ki83ZshSU1tuch7w;+)%N(9o9~B%4 z0d+1py3w;@on)6-x^w?Zu)>#i)8RU$OV7O8_OE$R0Zz4tTTD${uBSHLkHf9IdkuCl0bvri=c{sR%7(gPnri)+JPt6Id@LFj?N)NDJV zRnd^sAf5(QqX(%#Z(OP4QyXlc9!mff>-I6+YXWe(n&8uBBd#kgHenasanS{FV`b)W z#^$T|AT-Ql%^K{RY@hhX5XN%gMqjeEqphqC(rWmGp6gNUPGk+Throg| zGkwVCj!Z%(Ah%;_-CxWMau7jrK-J8*ldf-3X0?u-uzf>DA4HJW@ z*$F{w28}{h0wHeUrt|s|X_i=LTldX5NbE1r&m)c`N-W?~o%`T+ZK{XFT>61sZaSqE5HL>%nq7r1vGCl`>?G?s= zh+nw#etP1V&u>kIhs$Z&6eiK>)rp^LDvX%?okl~okb8C^Oe{^K0Jo`0*V3XE%%oN=^-xk~$T$Sx8_yDn`E&RL z-buVZ;9;2lfEk--t#&%(D{%4V1y5gQrIFZ-z`Y=0T3SYx zY6|5#4?_gug91uht&gFPTS^jUr?n|yWWDgX;hBSoQZD>$pqpogC)V(!Bi6M#{^j<$ z+1AD7Vc^N7_0GBL>I#_ygS{zedyj@0u>>*I=jCn(nMxdAZJlT{V3RNxU=glIUo%rwElF>A0b`1dgAkt;{%(0d45Y#^WB%KcN#@E`StA7*&X(?9rSh&kQooV>;g!7<^SA9yjCRc71t}%S3GrlQNhNqJJQEf@20+QoZV&2NAjS3f7+OX+n zNyTI_HOb!Qu!;G{Zmuzf3*j3Na>AW4qUTzb*>}whN+Q;?1d%8Da>m8Gwzsb-(8jo@ zG07oMg8HD)@^de??IrlY|%;3MhdKlCABpzF4_M49M&sRI0#q?kNVz-db& z^2-Iw`u#Lzt#O)oiq(q$@g0}o3p!xkcX%1AeiyfPPg_u>Q#ukc?92JKMWaaDMS?Y_j7^})& zxo?SOde=~3;aq08&#GS9qiN75Yu!~-I4hs3s~e1jJUx&*mR0vQC^0cd1+>X;p=c{V9s()@z8w6H5G`1;zZNljbSuJNsFRN}kHB^hRDA-eac@UoOOrC+GLa&$WwT7#MrF993)&wg&cd z3YQp>H-ohjQK^3?k7|h)x;sj<-pAplU?pSB_Q;jO7>nb|1l1(SqO{(nY`2j*oA>mH zW03J6jMqgB$Hl%v1Ge-XGucYbfIF2PkUWo|A;bL~n*bOWX7pC(G(}8@Z}s4ikUd75 z0tbZ2gtQ)KK@4#Wx{R;a=ERQTT3BH>QZ*&`=_N8c;iaWnR8lp0$r5yJkw>aBIJg51E03 zhukP)02kENEx<&!vn9{IM5-uMww{2~sl~LT3oeyFaqG}fn4V53pYdTqRC_0m|B612 zqVK4lkZW%hTQF#gh-`RskbhS_9i(jMww6mi8)n7Rs)%4Ka3Jw!c){lxU0L?%F=#)N zuA6lFXw*jwAlcN)ePzfqmFCnn<_YT-IY;B(W6LjY%xSu2SbtjLO&`jQq-{_8mO_NK ztqCxZ-haaxW(KS?Sj^*f&{&jSgC{RBaj*)|RJ!ulRh3`y-vfX>8kfUqOfw6;=W#8bf*7#gT zxul&`VwocOpEbPyCSY3^5%b@FEkX7gwcy{%fM0Fl$l(AM%I3a9DC4X=z#^cw?(-gaY!TP(EH6g`fCP*Eczp_R20V@T!uWSXktC6?j}J;Bp$q6PzoFP6 z0lBU+pNHg_XH7t|(su7@rTtb( zSD@UX)0>$$vFDEtr)oby(x90>=Nr%!*qp-e(5tTR{gO}tkE{VI(qjzS5~XAsP&tYL z&KWy6eUhERKk6-jqjv}0b_hkm%%ls$1v{v^~@+59_2U?-?7HXS>E^x!z; z`qTKpx#QJ+)wWfb;PLhcLS>t5p;S2sVFy0%koQY(ViQ1FUJaQH1LCchEAlHLH;u{o zyITS(s{Ez8(Sx{vL`7shU2Ol+)hjgPI~4zs8hng9hLm9%48fZp-w`nC!Bi9`mwQH89= zdu}c%3y-Qr7fFg^qx9Fitjx9{XAqv9Q>nEs{Olf!#B5%jDynvnV!TdL*uIXq3Dd9m zLA>vmBB%vec>v|umM5;urMy)`it6~o4Bh)oLj(CGV|F1gV_8O9r`4B$GCPu>@o2qY zx6}s91#^G+rx#ZG0CDo)%DSLvyRon|oK9oIfMh+9FKZLo3BY|BEn*c<7C6i_Sdyo4 zyzWw(;dLcT+jYLD{v5m`{X4Vyn;?3s#`=_!aS*o+h%aurx*NyTKUq7%A`C$t8IW); zv3m8Ox-f5fQMms;)y{0+9}>B(ke}by+4H*PI+45eqK^>)UKD`k&{He7nz6+sUxI0~ zMcsa@+qdFu)pKDME|XHAh2Uvt(kn++l3Wg${bd2WYcoQBGD&BGk_36 zifa@ZXe(du4*A;kcF-t2caM3XR-)hw{Kz;eAkT6xRX2Y9=UQ*?7YIkz&@7k_tu01o z5O7VA2zSW0CjOlSy`R~ie6RtLL+kCSXO<`1r)k?doGp(rFq#<=68W@V+A)y$qQUCU z^>nZsmB=Om6wlR&aCnUyRm@I!U`rkidy3LeM8^h>Cfl?r z30YoR6Zf`#8IuPX)AYjJp(}qmC~KCNtRC7XmdpMcQqh8?^g{|3O8 zk5;i6S;tCE{oY(Dvv%-Uh_bRC8#6JXPHP%LJ`~x@4O1IKTF?F_-L2D`7OMKeh2HCO z1c9mkxU7JkAY(I#1vZxz4Ayf~&mxx#=qq0RwEJyCpyy{Q;CK>Eu{UD;7R$}*1<1^| zi%-n}yi&gxBqwe{@Wd1q+0X>L&pNFwZ2Gd?&9ZJW4Fhz&a!y@aFA5l?3Q>cvrZgFf z8GcW08u}PZdt1w>@+*^-vW#!%8rE#w0FHq2`QnX{Q8;$xb{xCuT&tQHpooR3%nD2@ zu{)d2oDcz0kq#5=Ca8wGM$b+6oz<8ky8rDe3YbSE{Xc5T4CYQzWb-_7tnQ)*Jw!BH5*`3_P#oev^0Qc#KYHIa!)O3GZAi| zo6d(9Z?)NmC4JW#c;lcu+pQ{(-A(#l1ENGM{vsZK;-CNwH)|(f2WspCc=ABenge6> zGk&L}vN3gLwR(Ems#O3GtqEWSo7y)z730TFRC!84eMNSIAJC_hfP*$#w0bNtZ61=4 z>bFjn(2STp7&TlocEu&0tnPlfMU*nUq=AI$v+nN zzvuto#3BEmy>&z(14(qf`IU@NL2aSG(J(N>H$OAHBz5vi=v*o>9^#bWSOxw3u+Y?> zc{R@?Z6F4z{r3?B1HgOJg~5L(=6V1Ata@3gsW*dR0hG|dEm2_VjxftGuDPkTD*wj_ z_9*3fVZXz$MSwAZVLZ%%X#^ScGA5Jd+}T#wx?zj z_Xl=kQ*wF`j{yw0j)MYp82Wh9q4YQKK+iE~JFD3Q47`rBf1n5n{ywzO+S^E!U4Q=J0j4j7Y}C5aA-AU%M;LUbgn1+^a1VtH#xVr0I)Qyu*w`_ z0hajVvJ?(E>g7_#CwXNOA9gPI5H{IY$HD@Gtqa>p-N5*%vXH@_!8snoZ4=~5` z54ZE&M*wgidz5C*;4!12M$&!#%UY7xrSsu^Nj~?^_B7y~j{=`cm#kNlI?thAEm2%w8_e6yq zNQGP?SoI#?0KL_8?DWyx^s&Vp?4)v6R?%rSW`ED%92a%QvwhOsx6qvMZQ)2OOBzlh#tPmFFm1AjhY?oMWWU(}VAri$mbQbY zZ?`MJ#oa=YqjLgIt9LfrGG_lf62-GKD0>p%Ik@pRCVWIURtK5yHk+NP*a6Bd4_K^p z!hExC9-vf*me}Q#5pb`W{I&oB=)7`wU=_06{@>cW+)}*=@jIvHdod`874tfi9Yj1H$#K&>e@eH51vsCgN^Sr{0eG_~>rPMTP6o7g?_R|w$lXHdDV&2;peu;R-ncR z7$iZr-=9u8p$b5~NN{E-NbCs@ouF#Fz=LiJkm@5PaWhIo?h3+_MihJnEN|~1&DsMt zzvsSN(iLFy< zai1;yxUohmv?r$=@I+4WI9?AD_EG~jWUskY?6A!k!b_5A@RNaYyQ{`HdYH@ZG{S9N z^<`igJ=OiV*v4F+&dG@!psL^j=Rk%@0sZsb<7k%{9tr zV0>l#@9)fU4(=5|7C+)f=3XbElq1r`Ju))(JFlYw*m0Cs|H17ERdW`IKZ-L+zt2!w zMRas@&aZ6^8xy7F;cL_YGOXaYgMaN~&Tc*Gg(~)rRVqBl2tkm3!6empWD3O+wwXhp zpRIUGn6I6HgSA&J1Lz4Cfj==)@7o+6K>v*wI|r1}m2$Yezia%nJ=)!gY|?ZpSsaPw z!B#X$qtus-fCawoNNiH{wnow{jXBL0ev5ItZ>aOT`ri88+t0+|;5kNmPb9Th0AYtN zqk&kksIFeDoPoUvSmjk#6Tr?2g*cqY?^y#3c!Z+eos+I!8zLl46^d2jk8l`e`fE~u%^C#>FHuU#E1dT)zp-b zaOEmcRdYJ#Tv`&Ey7F{MIcX%xG8n=7-uBl;pMV%n%zgbI2+3J|rbhtRT{CWtDTEH+ zTHUvIrJ?m>*$M>gB(sjomQD8qa(Hg}V_Jg~*X!U8ilpCaKLVUvW4fPV+9%I9>zwX- zZ%tb-$i@^kzNFh7e&cStmK{^R(hRSjU06|Y2uN0wfjp0#!V2uB@a+m+{2jRx^Uuk`YcLyU@NFkb_`9+{~In&n5LXtQ&*EYU?4r&m&E z{vV_)&a00_Mkd7p`s3tsjp@EMr4Q&G@P&qB?Dxl?bfN-XAQeVDJ#|VF2hX#Q5Plz@y2g9RoJJu!ti~Ej*+ft4h@lE~~;pj^?`PgjafLp~-`=Bw2t^ zB7(h0JY}b)T2dqSZr^-oGn~vUglHp;vT{pq7v+_$DBc*wndho2U^b zHM4dK2001mz(r}aS1@|5+6?>%2FRJ;DIYIfRy-&ClHcyswzeT5X1k3M0byXB*|;~8 z0@{>kj{Yf2?;cF;M_L%P931r}0J!4ID%y@{-@j%D4Ea8v|HTkVm9_$z6R;chXPpN2 z81tLNl-LQxNpjgii(z*U;27zAE%C;j&wamgtB@-O@C-%8^Q)z& zNpkGJyd1Ck1!`Yq+@4Pg?l~{sd@x%V*FltW?KO6T!>@cW5pFu1T(UFG0msaGFAm4FDAh@13Iwl9*Mx|zCt=KxC9dC8L z*5aDcz;cp}ceJ_u^#y}Mt%s6Azwa0V?zNuPYqX~3^>WVemb^rhFZi~P7*+5iDMRHe zbK7asgf+DoePPhIf*Px$(uTB;wwV$pDoEAThi&BE!eY7ontV)cnGsA33DFt%Xo!=ekO1=o2%7f2z(}?M)7p z*o(j}(7yI^lrhS$xUCld&g2ut%_>hwN}*uHMsTm2xf@)CoZp0W^@cp30Et_@;L%*9 zWl^yw(I{YNq}Da@!~Xu}NsMcGUgn9-{woQA0c)jgzFF4B56iBMyWvvSZaqr9>o~h- z$_;iCY;(@DW2(1NkVS&MR>wWN zj0{Q_wZaIutJ}WP?zp(NH&Q_cB}CGt5`N<$IS3ZGzV3^AvlD2wN|i>|L&(LD<-M8eG| z{=)D-XjO{g(BNPsWGCZjXP$dKW-3Q3B(jVb6i)>FN^&n^TWw&;Uv3r_DRl+sy>6vr?xc#zm$JeQj}8`nKf?D&9zxLHD%t zSI*U0AAsSyb z2;G4xFSkCA!Mf(X4@ooc>>orujgf^^3o;Ew0$ZK1VeCSkip!N1E?fEZre?Ya!H#^S z)ZzHB{;a)(l!PTS{qZ`zPH*lS)|d355*>{G0S-(8BX>FgCd89g2XsP^U(TscgKrT9 z^$+&LBdzp-B)Hfp@cPmPb`|!Yo!`d=mTP+w#w{4|2jI^@p^c{Jy*8#7FV5|WQfYY7 zUkbiD{(2|KIYTnDdu6syXICcAFqYp0^ysVOt7)fvVo+khr(@)V(~e~+JVL6Xpp=hf z%f<@$E@1FM)N?iBzO|&BhL&!_T?i$t&o?kQ5f@L$_~pncy<{;zY}k5M&Q-8r3lYni z`=h-A6>w1z(&~eVfm6+jo>k&?`(g7}ucT_1MAq=IOGvPARKeMZnCV`PYUkKwuqUs# z;c$OV@9OVwoRWYLsmKANd|+EJbG!(Q4!GignaWku8{WfqduU8^U7AbcP(~l;8U>3y z6A1iwquL}Bf3l5@kJ7Ny<9&`AGvJ!lB<2o$m+Ae}Fr(lrWN&Y$SqHXRnq})~pU)xo zJ*0J$3n^tA{?}oWG7k?Q_fMMm5RnJEY6QZUD=6tGSjpl^w_UHnQc$_diKZpn$m`A# zoXLs$IhBunlEt`ph&5me6TY+`%nJkWTpmEx-y%w@-vYgve?l6wF5r2A(0ATrayMIF za|!C;e15i#?(*-5vW%OL^hh|j9#SFU?~z{xbU#cJirkF-U%h>0RFvJnwv9oFbgQJa zbSoiU0+IqF0us_8Ev=+btqULmL|IQ(g7zPb-7UKJwX_0LW+kwoolc{awnbLMhhx_=*~a-=y_q`R!V-z?o)I-|I)D z9bO7N4T-;|9+x@YQdUN1lbqs-KU5HYeXfD69|B)_YcsCVS@BZVW&#@0vvJ4gDpQgk zWwJi0wgam4T^&FYeCr}nzeljRcE>KtKoovFbEUQfuY`OQF*Y2~~_4}aw?GrX$n$JoDk`cyN4iDWh3j@8v z$6A1KCBm0m8n8$Li@8X{%stpL`r90k2VXndE`K7(oCE*jaWnK_ywXDQg=Z_fw#MCC z(!-6Z^>e*N8VCY9LuFTU%3#}TbIubEf8A%5XTY@hgw}FeCAhin7?`jP|l-9NmUZ>7Hj+byqD^IY-U^`pD*&F@?0b->YE@ zUVVH7_;7FC`c$}W)R~*mk4JZdD<}Dt;S4|Ih{^!vu$ZeM4f2p^X{AqdvpaL8@tJ!a z2X<9U5d?LswQS^qj=ODJ0ol}wZ`cv-&>u$~zgG!d^^eT;3GW7qc$HDzX)_Tj9w3t; zVox2dS^xF-?~?#4>I|vm{2<$;_qmL8F3s3`46~Z+w`2%(jhuf`~(~lo;9>My3(8x@Z6|+hg9g1McE5=vz_I2Jr z!^;zEKHn;cJ*KU)-Ycc4 zt^Qb?Ke?MZV(x+$rF%I~2G-`LD&h_=?_YUk`+4+P6h-X6{XP2znL;d64jt!HO%@7; z%^E13`lTEVNY8U;+2?LB-wy31qy@$(cSHNp`l~ zVkE!6h?eELX}|8y%L4L&f>xhE4LFX!na1o`dyP&SqDZq7YO`$N)nbWrDx6$>>a{uL z^qGxI_)(+EQ}WTtRUeTwBpE$8E6w{gLA5r`=pvok`IFcTplAjp$D6lLO(=m#Se2W#5ZyqmwneVv`7`=~x+s zqp8RYe@d%0_131FeMsp6SJtC9!X|NGpVs>bPM5+sfS;vJ?dznY^^Tqp5qug6B|xFmD%sl{)K;q5{H26@KU_*G$~m%uC)(+4mQYo$T^c8 zx1p@cPnXeniBB7qnVWmdJj0PFwkzuAdPVG<<13~V^zGluYRkZVtW;}u%8rik?K?fE z;J2ZV3|O|k|1Bo&_m`|+ThdtsRE8ZVJkpjnR&Br}G~1IVritc=3*{ALg}vU5E}4~mYQ9A7!>D6wQtbpuUUKh zn0`=^2X}*gWp$VoC34<(>H`-J|Hf)UcYbXsGXHm+8A$l~@P9(~=>Ln5y^R!gEs!u< z@?Ma0%H+i-%;WY3KQp~CzW7^-0dWju-CtFS8Amk$0!O$osm_jozM}z-A#H7n!|0iH zs^!5g4So_8?LT}Z#N2ofhWPGLG2u79f~Zo~>#>e~)c*k|1=FF!;h*HA<#wi|jHT>N zl~RenF^_)t$TJCdEBFsZ=0DTDMtTb_Vr2X!pOgzvg?7_50>UW#-i+bb85?%FWv62E zm@kXNQyUhZmUzX*+;t48hr=>_+HKYB>_ZE?VI|otg~c~?PrM-b!+e8(ma>E-1KNJ+ zy?UsRGy;tgSvQ}Q%H@w^?sy}h+_+&)n_5zj)0;`~a+%~_?K}dvk@1Rk z|K|$IDO!E;>vza3vMhTX7}Z0n*u&bJoDK0sm$kQPLqQFtK*DAPY~r>Se3M`0eJ)c> zM$8vWuXE14e2QebVs1$qw=e=<`l*}$j8(Rvg0L|c$Q7W9f{^KN4`G38a=36{qSwf|_b7PZCm^m2d4HEZg`l0O90ugabxA3(Z_fGs-WP+u!?R4xF*;(Z@ z{p}l@zs=AGq@wAL$cI;Fy zu|I@$`BAnc$T8ju+K)X=?39`_ZLnDm%Fb7M+_|WseH#&qD*(~^_u>{jcr`c2gHo~?MMa{K z04;4{p|AP=Dw=tM0fd-9silii8_I@3PqPLHTt<_G+7(YlQ-ioZ6gz5N($}?Q+o0?o zIU+_N*5G@m&Y5XDf!K!XJ3iO+Ktq)74#Gg1i^OZsl2>?PhkH(lyFt!W?GbQt1Hx_@ zicR1n!&EdaKkWaRJL2{-v5m4bu3X}rHf3jf9-?gambb6;(um{yq12%`0xGX){~Y4% z5Jhld0y=iHG#^?^AuA${CAeopAxXIfOzLrost!J{qN0*G6tuYR2I1Xkt8l(gmYsPo zM8$Qp1iNywFPxp5E%Z~hwI37Stuk{XIUO&0Z^3~6?FvlRmz`&b8;L`a@G^AIQC?a( znb4+wIi@X;urfX)MLxYTVro-ME6?JNuR3wiS-wC8d*}gg#bhpt0qBb_7LEm^QeSMz z)xY@-&}Elp;i+Jb64g~ScX8UaMrzc*r83>a((4X4zBSeW#75dNJ2rcY?+9$=MB}t- z&&p|QfJM}Nj3vgTosDY0yHC<#cC2YkrObLbO&pS@2zbCcDHW|o_ zZ4x^{q6`^Pl>e|*gF|KtyYcpw9~F~n#2;lmdfa*dRfl)}P7>~H!82CQ6M zU3`7IA%FW(=+|%F1ec*I@$=r&6PnDncn3;lf&btn$6au3G^KeJx3OWhv9a+E{MOJQ zQVfQM<`pq)vd`}(4)(Kz1k$6OSv4`2LG&lFxcGPo`Kuq&maAwFuubqQxEVgR5TP5= zzqt6>1`363Zel{exTFO8TW4oyT_Y)r zLPA2q$It&uB%CEaKEC-(j1$cM57yR;QN9a+nMzg9XYd=z{iS5b!fPdMK&AbRS#%$-N z^F24%Za$vT4SBdcC`Y%vl4=(Tp5Mr0ospDX_XRh3xC_hHn^OH>d5K1pIs~^%bjr=U zV;HfQst8VZm_~_{qPVlCoCd@%cCIe%u+1ZkFJm$<4-2s0ffGpf9=Bd$K=WpM3%`E6 zZ4?-V$hc$BNcZDuH_#oTnFC!-?gzTHHhQ1~K^Gw3y3vG@a)i3DXlyqfsM31vwi!(V z)85RGp|5j|9TAF1T3F}c>Tpxui@VmfxCcs&b_|1aNj1eX-S#@5Kk6FrUwF}~5osbj zOqKUOg?E9UN6Oct7g=ddH~LHsV+xJ3i}z}*No2nwlK51@z{@TO=YL8uW}%H@*4Ads z=ls%@v~b!K#vGd6G2(J<;owtDQUepMX=s{ zz&3-KMGakDc_}F=Fif69`6{M!Km984bJP@w&@`3y^HQXohU6&jg_+?ZP4|^#3v9zw zJnwEjeH9KCki$+{<94XaUFJYxrxk9C{xmSA$N6fRv?xN=yL$pZm779g*UcA3PFFMO zP=pH^#l>P5yKvC_K)1EzL(SI$NPcLhj9ScMk@b5?n$*pwkIypF-1b01Yhaj;!8ESL7QKu(8G7AcgfkK~SpVKYJaMmN%8gnQ z)P>p7jE|51mD?w;wVe(vLn$Y5KgND-f8Q}CHnzK`2h3Ur1UIe(=1?;jmqH2xf&74f zwMHS!nT3Uuqo2wh^&Bz&Pr&@m5oP(0B(EB8ig zq|y>W8$|9u!RX4=dy- zD5-2X*WYn_0P^IQx=0OTk}th{rd8wQT4@7o^O*A~HjeUlh)8b`Yw&pQlc)9DWrUPw z7e}fXC;_xwLt2Ual%`JL`sR$==TcF`?|yl+jU^tT&Do3JEv?W5E?B~XBY1lEUO}UQ zv(yNKBY@3!%w50TWjG2Tw^b^bDG-J3$v;;ccKBdrx#;F=+};9x=IHdd$ohl%c2HH_ zehjbZ+ZjF%T3=fVgyczD_Jz$TB<@XU9PG{Kh1#%MvWG37lOAhe*^IA50kxg%E?^*Y&MLe;y&D8h#d4zvm zh~BFD><5&z>;;X5612{Z>%57HS$ZPO;|D4?*>7DOR2(m&hAhB=FMl3!!I+Z(bPq6E zZZCU>5Hmr$SwtqSfg(3?B*R>&e=!R@zOC&vR?IFxc_#JSZ=J!o_w|TeGmRcs0gJZMhgRu#IFr{VOO5>bB1^OA6kM zLaM#AB|XNN%xf4^x3nxgN@%GJ?d|0Q88@Q(WWLV{D96-i@62?i7>J8qZJb}A*LCW* zCWJ56^4(|aE=JSOPo`%RzZc!d525j;@0f=5TP%!0y3pr&0Lp2q-h66>ni4xHp^HgO zZv$&_31HvmYv0>dXPwKZ>mrVkHgl_PZxLV+G~Z7C#I*XRAQQ^xixK8sb5w^CL)D*F zmg5172dZhhihjMvIpg8W0iYL?v2Ot7Uvbeb02qv<7&Nf`g58{&(QnO8d1&eD>MWBW zTRK7Z7K(^PF;Th)3?h|`;xn9b^B*QEln$7+00}m)#YJRwT zU1-zQb*FUBqV*K#X>bC-rV4(or5=`^^3UV2{I7j^#B38V7Hil-Apof-KGDKC)jl%3c@nH?2LU11;UYmnWU7 zvnL)+J}YUS&#pXHN3MZWIkQ>DK4Ojq^fgykiWqn7$4?6?cmGxacvtLXEez-~3@#Qj zP=nQx9QMHMuF{1iIt;Zx5VG!+Au?1|9@<34lWivmWPG~h0PM?Gu(Uqgl3#4CBi(KG z3@-MW1zqH!UE$On#y;m)Le)yd`ubuQlQ*Mytv602qFT!Vn7T5aIJ?{#MCLfSx&F!9 z=W=y^Rrheg5ujQA_+9cU&8cLwC!g5>t--k3f6ZhhCF0`aAWAuvFZl7zsOb&+ClfU= ze@45qg<9)X`4=}J_Y2r@zv(%Fc5;<4F zyY6Nl&%Ag|rXQ&$Q%cL_>*dVKnHbA!0roX2xp5P(fLG@UlyjnTwmnB&Z1J^_PQTK46_o9>i=R35C;I`!^gu;a^zG_qvZfF)cUuG= zysETa->wH~jntn%Ka{8ecx*#i6&TKn$&W&yG;x~KosS=lYPYA55I{%?nYFVpg;RvW zY281A3aEiu0ik2YdPwB_aWXX2%4&mB@6)=TP&&R%O6SxA3y3}`6>MALER+$Mo9Q{}8XpVf0#gsnvn-zhPSKq#U3J`#@+d*ar9m|nsb-`KfG50=>EIzq z7X&sK<#e-U>W!k6B2i*qet7A%YlM>uGB34^g&t^YgO_ty&a==k(o@otRS8+fgPW{F zqlC_@6%6@2^*zJNi;FQLUngp-!cF8?dxS0CRaw@h;R6Qt4qimxCVS~xMN@t;PE=<3 z6>M+)tdxOKC|P(bm)t9$Wp8;@960O6?C~LWVtG}?x%~&KrbDBzfwoeF9SF5j@-@DB z7XFZA<0T1!2NxgBF0O;lr4Xt3cAzRr@p(9oVdbsY9b;RLyte5H$mv^8HgesxE3{?xP|+T*Eoo9S-BC&@e(u{(adFsR!t%RMO0v_tq_oxFIEYeHn;#F5D zrJk0Sn->LmG-d0O5MI^v7ayBbIYf^%v?ps&V_!F4Xp0L|SZa8yKj(d|psHx%Yqoma z2zU3s{-(@mfTBRP!zKLkB{LKg?*bHHa*V@4Kyqn_Uo7f=FDWy&+l(x&6W9XNQyi3T zmF)wi*^6&re)j)dh#Xj`` z&_hN>Ci}mIZ2(?l@!GWL3@sKRA~IZhPvhgO{9Q;gwWs)OF*NIH^zmVgKvd$JC<2wR zvMpEPO~AhUw-J8*T6Q!Lki`v9e^pOsr#L{XHRD0nR4nS}wjqiyd z)xa}~#{C|%q11Ku@V2st5#C?-sxW^vf{p-X^A`yMg`7HXm9<<@Q)8-kk{attQaR4Z zD=aDJEBqSk4-U5NGfQVfyHKmW6puXFI_m!X8J05lP#m^!O~pf0e^_5?0@9@i{VAPY zD1n1XNy#uI9X9MUblfh&G?-Nt)kho-uf2RsEr2)8{o&(*tL|lPw6yM7X9y@NbiZHH z`Wav(w5jM?f<>OUbP5s z&6XKm*DWpr8_7s9ybyK#OE-ogDEIlP!S*&tebc9K@musn67uZ4f9p&tokn@u39a0f zV}|zIB}G?tZ7wyPry%Kavx?%+I?bDAu4&ic0pabdnh$7ZW8=)o_j;tSn7aT4wE)7& z#a@b7K;!ZevX*R>6Eqr!F)Ye$vM@q3dvlsPlHCT``!o2HH^a5OF6m2?9!*8^PwU^=B{qlbIB1xGtAU#toSq@ov#s)jfT@9wR38Mm)j9IWm5_)8Kl z?ftUbL(EF{wa%P27bYxS=2ji_O9_uH3_Hl-QRw~zA#RtZ(#*g7vh6v=DGe-A(Yy031Smt-Q#LnJb@;}UdU$6Kf3YO@ze1A&A^10U%n#OWUKt&HtF<!Q6u_S)fiQ6_k_3EAf zqiJq;&yfavGrw80aSBTi4B$%RJQ>)?w_G5&)7`r!6l$(>H~>PLxMXn1Z+4jY`Li4e zE{+mVo-haQ^*AN}byDW98R(i1l^KrJZ+W%#Kh@L5ORHuOJ#`0NW*<0rQIQkxdlLxm z(=aZu6X28B^=HNSTLt!GCRcv?cf8<)?br}{r_^YGYr7$#^68yp*+L$EXOqVu9GifP z&^4w`-VK4{ZY}J^MJKe!?LB3YRCnsdFJvxWXr~5ANew#WNHeud%_*#4=s;DQc;As% z?`Wm~t71&xJparEi-%h8TsQLZJtS0$Oj7u?aEcBfe+yK*tE^%)hT=u{GmCrSgtH zF)epb1Gy`N2+EOUBUk;4Xid!>iERnj7#Ww?A;>Byvbnd?qXwisFF}AhP0(txnsL8h zgnwVaQB9BW3LR1~)*|}+Sx>!1nlf;0JKjxxCM>*lWloC(x7@c!jtf72FyF|PAO8cgtGUZraarxRrXlF4(Wcp1P|=JV>^9BtMT-N; z)9%?#5dSsa@`vP8QCneZk5twMY z^qI`G>G(qgK#@-#-J*Q3Paka2yB$t;(J^Ub5_=2Q2;}bEQzal+yXF75<;2l~0rD45 z3X=Y@vFFprU(De&JQcJ3I=poZnLO}2`-fo&KpSWEEiQr(-sJjX7w&bF1813IziZN&qw2IFAiQcM#<5h@EmZ39#VO(=}2zCIMTr8DW-WWsB+(HZVy71dAiBizc@_ z)9iRgkyFgmCaCbJs3EP$?nx-w*zE*BtCRa~X-|BlTAa|zT^Q4;4&AeX=KIrbGn zR#_#Gg_S;~9=(UUgPjc1o&?oS34ODtgL}AgVed9pb4-@$Z57_Cu+!kN zEi87p#CCDgdKrqa?BZ70uG@ZnpCED!R^F6CLg(EE;%v<%Dhz24_Y+3>+1r8~P2VIh zO<9j;t`Y<6YB;v*=AlQA58V>Aq5C=LDd&-(>T35>lxF$giH-Szs8(fe@;mHaE!TJp z)aHz@mY-GojLnY%SIH%4*ttXJ9^H6}8Mwy4*ig4R$~F zx6SNTQyMq5DgU6d3uUoiHxC3iQ$CZddP97+^=I#BFS=fX4ILqad?3;2C$LLXvU1F2 zw>vL$oH4G7PHlC22!!8beS zyUd3bsy?<%0Kj-0O0{lotdg~e?N%2I7CK$OIm7Q+~eKJ9!hp_ zyh=akV&(C}$}(v|sw{c-E3-m5?C_9yyM8(Jh_ntb)ve0O?l$Z#FHYlhFeIs|!3z&4 zXL-)%!oFW}N(#n`+NB}jK-p5vPql~Rk4vHcoBv?o_LF0bn#8P>z7-L&Uor{^aqJiU z58N+Dj@^M~zJmRO<$>ceqlNwc$))EE3Ca5dAf8{e3o|nPg_F5>fCI|?=6V|q0yl%6 zC@0s78E97;c%?Bn0@FDdoah4;t$_m9Yed%2esq}JH@3x;+&si*>7#_?j&GA++>%Vc zIOe^U_A(f`Wr8U7`HZVicU3e8`63$a(tW2e4@pW|TN<`+iYl>vu!nI25oGp-bZmC8 z6jsRq2+{G&&p7IOLof7X@qpYnoZQh1oybf%R6W+KLL-(OM zisI~ug%>X33SY|>Q!X}T-jg#KxNgIJci$yPyB79V^`Qy|r`ti?;0!kzXi@ZPc`+=e z-vEh;jqm*O7}K~uLw6VIVnJcT1F9nyD!5MfeFWk*jgW1sD(4RCPAg>_7H~vnkBr!pN0H~H|dZMm_QhoP=(1q6ez9TE>N^c!u zfz-~r=ztueE)dH4XK{nCT|2qB4n%qOg0Ok#F@O-%%@W+&tpNgC(WA{SOBj#s@VDQ0 zy>UkP`5ul&;CCTL-!i4-6B17j7Uj?z`)QwLk>Of z4*LE5ervt=*JCZ0GS0pC+;jHXdw=3YzR*x2z@^1SLqj7_elD+#hK6B^hIU5?2MhH{ z$C)qi*FBf#uiVkl2zyX}(37|c>3|QhJ(SfIu-CCL2+7EoQmPZt(C(ut%Rkli&fHz_ z$~2w~Kpc#SBZdcu9VTB=O!z5~D!fOdizeuDMdPSX_zbQgOXzXkO$A40%|!08Iz<}I z?@?bW&(lT5#0Z$y(3IQHe%{xCvfX|p_*2(A^6wRb|Np;+ zH?Z(tWi7Kv7WQia--qT7-S5fCeiotyCBav{@pydfYOHWbN{g*GtV9Ki+G=y8&-~W{ zbBPedudBn7V3j#sVEeVUp+sDN+Gpjvt1LxFsrZDjdvdCRQmq1yC`^M{-(_Q%%({un znTD0>rW0g%9eyD4e_vQg*>*U@^ukDAiF|EfK`8S`NL2R={-aCDTI!frs*&OwCCVH) z70?%&g!Z1D%moF&ZP|$oFw%6xAP#CuUW9a;QtSn5Sw-v#tgrIB?0;4_cMCqE!LXoy zVPqud=_&j{*x<3ejHci5dUah`?r+u-{(88ixms=r-)|o^tT@># z6Q5>}9OYHkkM~(|J_19P2Y$HTD}v;+IZ_73#zfLJgP`o?1kd&KNWiX58Mm|For=r% zW#a&n@SHVO%$5t{=hn3Q8E1-^goNY^R5di^CmtM?FYb8Wp-FOK9R`k z^4r|mnU1(!O>za`n@6mq%BMeI>+Mb#g2KXepf$%J1wDxh&)bzh{LVS~V%4XdU~6v+ zy5ADmdw99e9>wg~_7HVn1uZC>+nqRpFn*kxr^R`ysF6n%mV_~nthBPEsR`Qe`)_Y= z*G$>P{GZ3Ix``Y9Q9Od>TysI>=#>l?Z(j&?tHV1WgxCfU2f$m9ln@)Ppl)85>>;6` zr>9~MLf!q_TiOFspKKP_L*(^P)e9Yyft;(^ISLNG+u@YVblLC3N*^De3fTV%p`x$( zxqevg?JMnf%JAC5p6t_xItNZHAzI~Zb<9bI7k^>hm);|rO!!SO!-7_v)ZHDF-q`(mB7TCT$0~iWTFFiuLDOT$OM)h$~n+?x?@YKj+mr2mCz9hvO+R zJt7^fUkTk=Y)P6C-?kG}qn_^DwIwSlsl2l!DZ1FN8RRKjF_gc#yKQl^+Yj0q35@g5 z!+mcv?FiK|JAW`NP8#`{>1vl363|VTD(OC!CSy!PuC%g>(cAwC_27HDy3n=O4I|m+ zV4EpN==V>QqjNdZ53u})!W{iicVwZHDcJ+U`aA`>m0>gD_@SS6II<1FeEY`3EzV~F z$=RZDS$mgf(<6Zy$kx5Uo6TnZ(VQXoafH*G^@)S4lN{6Vx@6?d=$`-HTmyWxJ&3MO zIL(c|Iq~!Issd`>C%CwbyZsD=f+S!;(hqD4kii+qw-HC{ly0F>}wYy)dWU)uMo16VE zWSK~jq+O8P`4y336Swr)%l=~fTKu{-<))dzyu%RHPrpWLgF zFTfpEQ?zztV5Fp=nzyD1tiuqWSb?PE8yo(wAkU>%4hw>*Cywm7d}N&BFzJ$zURpWe zH{n=qHz50&OO6$2-!l@6d*vy}DF7tE;EiJq3zky&_RdHR@(Bm90hTYO%{qH(|IAds z;b6L)_o5#E^V4&Hx0Ckhqil!RJ8zhnFM-=tS*BOd!6<(mr!BjJ@E-m8yl)A z+V~Rk$&$|=T;5xv*-r_Cx6K3_OXKCrMpV~Efh?w@Cx}XB>M~q|(Gpp7iNKRpSnq7x zJ-+G`P7!dovygz!(v~j8`=>nm#4*C0Cl|Mr@Wp{91JEg=|#N&6&-X2K(mb5KtP#V7BGz zq=o~K*hjR{pS9f~3Cf`%loFTB`$B=GodrNZPb%TBii`rbxh%BRiPh$VPLUOL8Vu-&qH`z5mV{3Qc z3U(u>CRRr9et4fzqS-f9%Hk1PV31^!<6H#CAT~_Hz@A;sXcuoB4*{F|6o=>a7!)qX zi^Sf#8Wrz#-34k1+XhH>egxlj_h8#f+Y+^Ohx{%OiNl2oHiWhv#6D*FUN#b=q-?1A zc;4q~smM#9z9O==???5!?stsduZ5>g0`8%u@RO__)@0z!^7BD{5D)Cb(2atmls7p z0}%sfY*l$klbrW|uzqf6oQb}Edk7)JL>Ct3%nZ-ozj;vm;rmf`VKaGT$5>#snb*O$ z)l7u0erU+l@6n8DT0Tzk+syE4MYvEv-Nre4I2$zOt=#VeE79Q4kbGWcsRT-=+p%>j zm)$yYx6!cNA5`WD2<&PUVUM<#+&W70prFc@MBL56>r)T8P~82K6jH{-+G63v%&f1Z*+kgA(|k9L1@cZa#h?(g&Z z`n3!!kl&V4v{Edr4~}*$KK)7N7`uP;Fg2y`l)MI7iK2&TYBe?pCntY!&S7rQS^MkD z%X{5X4D^(!wEOr;==A-2DQ&c}*35-R_o0VoPo0S{|MWPE@%IsfNiI+8-OZ6Q>cXgp ze90?;)3OHcdgr;D-J2pU4-8pq;yAb$<4b^TeP5$3&LJoVmk%`<&h&Lng1pVHX=0fx z``yZ+5Ck&b`?Sd%!v*MV*!h^F4kxB2kCc!bBhQQe)%9K-sIWmMSUpo2bf!I6^^UmQ z_p|u|*Rs!sTz%DiMFQ2AkqujF;i&ej9WTP3{xbM&(Xf153N?3qUnj3x)g@a042=E} zJMf+sV|3uIT$%vZ27OjmfQOfDX)daTCD)|r_Im_0z z8XSZa^*_vKVoez$eanq@J6#`ft2)=|S<50)OhcXDcI_@IRA0S=o9fJj@mt}S=tg}j z42`;N5Q^avWNzZiuRcZEfNjO(7}wC9buh>y-0aW>@2j_T?0Ie%`;~F4XYj@JrC8ltt?OG!+u?A3t@}m8LQ= z-dUWkAsOzxPE(dYH|{aD($(7Iu?i(Q7P}5>C26?t$K#3l9f;4|fAI};JFg0%(`lq@ z2c9SLRIONMI&lkaAK*299bfDI;tC24;Qtc`$aorYMBj+?2tb3q%uiuqPaeyJliKrK z2Lwo+!sW{SmtFsLL8H3fS<0@MCo%F=Ji+p$wT{xA`G_SlE>Kv!Jad0rtKS(I(fTO} zxhc!3VTu}ZRAJYS+9!sCyibuugMG*E$YeaQPdiMXzcs7MeSKd;rbO8Lc6FpEOl=G^ z!NPIuZA-#0lGtb9LY+}-XZI%zs~(`fS0?6jyBgW+jajx3tL4;9&;SnX^6tCt@estK zipMbbeG`+^*oSYDMmFBs*{+$%9Eg)fB~SqueIflFp)W4)rMT~v+6J@&~gn@lYnW~OX#>>S2xoeYH zctf&xf0?TlyM+W1v5X5{VS`b=>6_%|tYRMU`)1e6RA;B6?N4P=x(%;OQOoypps1{0 zP;mCqK}d=GM%$g7=Oj`mIGygA&x*CG+;D+TCX2xzHn+G`BzrD%?r-`RBa$oVC#`*`_=hpCs{PzsnacuaOMakv%zJ)WhRT${TaZ-c-p}b)Pm=>JG4m5wdZV=*&^%`y zSolsdV5nNy9Ol8UvtNjM4*&W`=!WBexvE&(-Vmm(nw5(aKghnzJN&B)ihG)zqQp* zkPCHxp{M@i*v`KhtJa1Ci1?)#bfIN8_E3wD!?A>ImlahB?-@~wps@6ZUDLwECcrb2I(KK};cye;Qbn1B^16wMiTM7B#FpFasEw}c zO`xD958AYxPZSTWGbLL1Fx#SY>6`Tw;+N@;0(k$b60mLa#JYrqNO(-JO1M7q*xzGp zr*g)qIFZna?xg-ycj0pjeGX9fgIIxBfXsaGZT9mXi*caj=@UuJbT_e?_dg)A&L>Tl(X3eyPt z-Zk9cv(b)==y05=u)mkG7;EHluZ=4|pcPA5CMUn7DU`^6GvAviAmF;k)p+0f@3UUk zu$b=o5q)>vsZ60SnW^@{p7Yw1h92DD{Bkf=uHq*c4u%S`iP@o{2FL)2CgH6^ zF@v}NS}omq{|F4q2f1qT-&zqp97WvFXjaV*jyMIOy?5Xp2?|6|Mbj+|rpTO%`roj? zUZ4Jm^j~Xt&MoqCQEXG=1#(XC+XFUp{Lb1qi)pEQ%8tcS)Id1-&E1Amd|aS`>)~y2 z0HMYNdF*!~pKQ_=0@kls+h5Z>eCC+~KFZ2~eXS_?5@{1t*dQwjpLb?5?i?&3^PcSe zgq|v7fnVh}q`lvabTth+VRM*m%V20h93Hf{e`x+=hgKPMO>uRt)ZPaGU$@aF_c&Y4 zenNcG2j`!XNu&7!SXBF5vZBU5hnz1ZB}TUpBG?YiGVf22x}iOx6^RBg3X zBmb60y0mn4FD}JI4v~OZLF^S?j7k>EAn1Q4-XI^3O-@g{%~A{$SCsT(q1UCo*A@E_ zXwoON?Vi%9moPO&A=v1_n9!-4q4A;&7+}2rs!O=@a87BiC!6@si(2tEWV@H^`Iy3^ zbXkV?^31F*p}93(9)ie^7;m)5Nx=K5xxFi96uq%m0$)~Yjyz5j3S=W9@m!9E!4NO* zQ8~oed6d1&`1%uG#G#6_4|;Z(*3i{TIG*caYioeV$@(VVuXffkKTUPL=jH@it)ruJ zeavjjtsF_!23DH`z0_Iy-+EBvvwnZEjd|Ua+UDRtKjii$9-htrLpNt#{hUP4`+9p{ z$=iR@ka8ra^AMcf=Qq+<(GroD%8_FT2Jnz=aTQIfueW@Vh^mRYu%|GMqVNQ93w6-o z_tJ+^0^WvnaT>B7!{ZD3+X40X-^N&zd0Fa~(XVdaefPS~oNr9~95-qgJyz34%uuWT zL}X*L=;~hlu#a{>nialDtB=~b{nHZuVIO~qr*H8B)O0+)O`yiR%K3<Bbdzy?_4=EK^T~Be&V)u~btHl~yQ9LUD2@^z#qJO@ zaDtuy1g#XrE@oP_`SjPPri(*1B_{r`s(>9z%MEX^QDs4)#1Oz8tt_@5V=#IjbMi`f z@$Ov`9?CW>fE6}|Snx3l)u;ymvgNFkrya`R+?0I3`s!>0v6N{A+2srlB6f`)(Iqpv zGW_LZ?48(lWb_LWDi7* zk&^z~0Nk#Ug^PFH|0^uhtM}=>!Tk!%xcN}O>xr($B1LNz=2({H#;cv?+me1(Hq%vB@rK-yC*SnY zGoddouoGOQ&Ita|zoK!`*8B%Qh0o;p`<(s{V@9u2?fJx60P3oo{jQ2kHjQy+z&;1K z12c_Z)WPnt+1ZSx+P3Nff5EGs161$8IJ(N2wHeL@pzoQijC+htpElDQo_*7*vRpk9 zR}>aL$VLQ2yyj96OzN`T%S63C`O^oL-ARZg%jHli06T^`FhRS$EKYYn${!Xi@^Mfo zkf0d#{Xh0TLwW-^-7o%YkVB_kDA!yotRhm3(e-RU4vmmhHpX>Y_kE6C&Lj9A;G5b#@&Whx{PtA~$PH$Yh5g*$=p{ z{)3tpRs00J5=h+nnaI>^UZB0Uk|26oyj({856ft4LG|t(`dl^k%L7f!$Is?NDqWLt zOLCzv+vvf4{fN`kxBs|)b^Z0E4oUv7vyb{Kj3A5_E3(e(2GXp62dp|@wKB%zM>eP@ zXL@2_*BsjYT=D(iwEyCPhg={o1>R2?{K4J_1*xZdm?JVz;m1}z8)jIpW=%$-<-m4O zcjTD{-JE!1OG{sK{gnkCrrQ~C5^9EjO6Khrt+VizxW{zHc8vI_$KSIhCOBDLRvWj! z|9_~8QdX@Hp#FQ0vMot>K8_=my2O+zAxP2;M=;v+)Op(4*^NcT-=a4FWRO`>%=2foKPkIi0=}F|cJAo@H?HIB zBz%ouKf5$82Y&P{d+_4NRf!5~JiSzP4)SbO>Fh%PCfJy_sOztEl2_KRvO>?Q(*r!J zis5b+HlBU!veesO^PJ*>ll(d+>g)-lx^lN`m5y7bk~l&#Vyq^0NgwTw3Gfx7()tm} zDLMe0!>PMhhYHWc_sgr?TD$kN9vC)9o1X-yV(eiKID^&G@TMpgdsn}q8hyw7^FgZi z4|V7zrCgSKq3pK-1Rz$0Lt>>K_mS=)W6X0YC|P^2lL_`cHu^Sln6w3R=h?jkYRUaa z(E?G4e`l!}UaG6bXr`|jxTSZtE#Yt}(iIMSw2OFiT+>bslkTIA=TsG>`QPAJq8MB~ z?6KkNRnNkJkVw4~wVtNL5$-wnV%8sv*@MD==qjv`HWt%0glSSm%9EEhenx%79I=m9 zX6wNL;J1vS_<=Y7L*)Ut#w5a8rolUiWIgt<5S6;CvMm|;tWmL0LR})^Wn4zvq6ph+D3)B&U%0x;qb98lm^3-q zhI`IMKTGjc(IsC=Ib!;^-T}9z7unUR-Sc}oWfDocEWr=Y= zlmAZ4?X31-!R3h7znCN|KQ<bl*>V&6KQBPb>GN_BF1{E& zM~<3+7i4xYRaoi2`wsEZMK0q^3sTAka_!DX&wi(Lf6LUCOLN%d)=;?%U|b$YNB`x= zW_P8u$T=5Ypw>DnkEH6$!(S^qbP+`(U=AJ3IZ^Y|-45<2mQNmNnBKje(8Ms@sxQBS zGo+}t=>)Q{ai%JJdeWV|d%g&psyx1}nA$*%d6wqSC~C{zRzo0#X|MlG22auCPDihR zNmiDJmnX%kIN9H-Qu$qpi;Bu}t!N0tULYfLq3-ZbYb#@$GUyHY$B+NA- zzf2m~H^DQ-LFWYeUn*6y53G1%fouwpT)_)XG%ZdPpk>ccPg9o08UDVd)}pGal$*Bb zf3&w@FNGDI?7&){F@)nMi z|Je}ehTR$Vy+f;L?l~`2SmMt4N zkdvTc^PH6w#mqcHtpH6QS1H_WxYqNMvC`8R-f42wL8_v}u zpKUtDgAHdSH%f~M{OdN+P6Y5`x$qUVE(OD7fPpB}yT(DRa`O)SiJst7!7pg$3x#`w znIh=+aebwHnUYCLzyM+^8S5Pu)dflT0}fwdjKnd`J=2k67^#?ZGlmMUauoXz4KJ|| zbqUv7Aod@siDr7CLk!?7KW6x`Hl$lyeWdWoVRF!;V~+Ed=Ot3@aV0s*C0kPL!CU7W zJSh1GG%us46*^s$DOtzVFFl~oU)q+;Nv24qAi$8dFqkfJ(>OgbIR&8c{QR&>xXi?USG zcjoJ()-EA`YEFZjQ+TA*V2D>ST5qrIHXJOBWrd$BY=F{$QN!_B`ni@O?Z!w)IBg|Z z?u|UGZ>yN;+R>FdpODyZL};PB2G7~aj&0nJ5$#XnbHn!`GT)n|u4n1Bb~SKvey$&R zAWjLc8VK+`(|XdxqVvwxSPphWdolq`jf`qq(tpZacnZGCeP04vP3 zAZNOmv3YCnbf15XPhL7(-n^#og?<(_Y42BE$~X=w|NPEBn2N1xDrx}AQe(ur(B-nI znYc=S%2Y!KLC7E?2Y>8JjIpVbHF1j$7QQ4H)dsKu$jD;>dxkYy8I!~-n!bCwL zDG#W4#HlO4jA7DKhTC?f*o>d7Mn3FY5Wj$acpYVa=wGU>cb2WutS_U{=16BJNXyCR0oT6K+nC4`ea?S;n{T#ej0G!<5kZ&Y0;j zpvrngH#WTITQB$Rr$$WlflTN$G!(K``o zRiaYhy?IcCoo#l0j3pt_k|ybXNFyE=e?(|D{zU2xZx4y}5v|u>JSw_jV5lq2Xm z!+EJ$)U@hf&tljc>%Dg9<9m4#=jU*Ax-fs1%NMVqUt@7Zm~C2n4<@Ze?mql64Yb@< z+q9dfAXRTkz;xCl+IV*5Q@;2kcw@?WB^ZeqLKB*pgoiEq++DnaIy(HR|MZ%DnF03VFS(v5-%Dw# z!x4)y;;Jk%>@#d6mSHSod0ogLW`;vEv|(kf!PC=G6n_tLl;XU+ZUlR?_L%OiJ!3C; zF$eXyG>sN)8XVr3BWX`mUdx{5K&uvYes*t21+7c)T8Km=Hg!Pnp<2et?g*L{gbO zJI!JOPfy4t@_FqH^T*Yp>ur%k`Uzv%4+qI@H>o3NQpm!=wxa9ei7h1;HEfF%O@Tw)-^q~QaBP`Dg*@3 zASBCNldqzH)PU~y^z=aY0Mk-GnDIfZmBQ$)cA=%~-H%4*w+yt1X@+WE*q!MV^zAHt zKR-Wboo)BxW4a2bJ6{FMsPSg7;V7D-bD?lSL4KENY!u7rNG0nAuW@}n%(xk$3(W%gZ}=^75#bSxT0>kKfs7L6(q%7U2fd##_ZRP5{n)9 zuS5wgvw`8%9h%vp_8Add67NmgX~`7K6*cr-hrg&4iEn_|9vL)J(_zZ7Pu{jYVMSlu zg?WnDqg;maUC9bRxX%oYSPMR7z**hV#*PUnF%p zEk@WbVzE4&)cn_V*>QnZG1*Uh60BEtGWbmxP|Xi{T6b5DX~~K=eoz1dZfFj7`*W2)^vHjQPV~#jTJ_8J+lV?m+_KZw;LQQYWB@)0 zyz*WrZ`uprj+dv!`qb>3+q+Abi|6dJE$7%k5Ad(-lbfjj>TjYhwU4yn4Uxxf@nonE zkks`iS#AYW%QbWTA89cu;4V)uApS6Q>UcaQE3)q(tvAvjm1w1;`Z9XQs7M~C~y?YxgHbkMCk)se;UZjjnrjQLix1>N)BD=zm!z2 zM@@s0x3_7#_;nBd#~51#_ACBHJYo z2i6RZ26Y?^TCj@#brafej5!BrY?#9{_!*|9u$qZT%8g?BH#!NCyu!pBOx%C%94c}p zVTXsSM~wnx2UhG|rvx(unorI6bl;%q?@v(x)B$Q=YNPV=+5utdSkGfB3w>U&lZk#r zQjQ>1n9pJJzhpTPh6M3*GHpcIJbJGteEg1TjKGmCoD- z2O$K$pG)bt+ufU@H#2hrz*|Lo;OELpndC>=L)?6Z-t$LI{ymOf(mmt$4K7nNlz|&j zcz{YNxi8F}GuvT;kVePiHEWItbuS{g5FikDjRuxq)Csq9JdUK?Cw^1d8Pf`n#j-n9 zAnY~QUBI_(J+MH33&hsBoOZsh!-8OQ&_?qBU$UG3PkD|l)0 zH5q3IU5+6d_x8g_HeCttL7qy;NqI6h;%wbs6<5nHxVT)m(SaMtKm`F2h1M`&Bn+?}c|74r@k& zQjRExS9it78)48%hnXM2aY0KX;`VBIuJlJEIXBLM$44#a8M2qsKy!S4z_-5^Q{~6z ze6=uu*0|CTcL4YYhw^;JX%@x|D!XNmGP{e$fo!YBV2yMdobo)2)DZxR;r^N`z--UA z#k2=Z6GYQa_7t_dkO|k-$!qEE7yebz^;}s@+r3T-K$l^QMFk}v#3TZn=O7piC^%kb z=DOcu^|(mg{8x{FRGS+QT3nTHETCYxPo+|#eZ0Q}cq?nIuU}qVx;y-7PH4M%1Skzs zaOX$THoSTzm}S|s-dM3NZv|?)vxEsmt?!_!-^FCAaV7tPORD=YbRM29cx#W4lT(QC zrm=eK=!Ay5^CR1Nq%D~Bj_P>v%Cvo*i0F6w5%f%VdZ~$_t5*qeet{mUECBlec#B8d z5cdh{CMR@(j(y~HDPW(q09UqxTSsC-UW6GF8upRKWIS_Q8J{5-c>;c596+`jzVYWF z3{OGdSyNQ6M9ACB+X2Tvd)VhnAgJp7#mg}24czNixZe^t{4_H$17(wqy)I-Fi?gkJ zpO|`kC;=b=d^t@PT2~KAM$9T#GFM*MP&N6>dpR?m`edLPS#53Z7c{izRPIB%_zncx z|MXG2oks*`nP9}-{gB(lE1Vks`1Kio2aisDfcjLyx*Zl`TX3c zT)_Okfc8a7rbQ?p2?pz(-xZde(pliuL7eE$kgrFniP;?Qz*HASmhu#)Lop{}u&sgh zSU*q$-@s-vdwk^QKj}gYCemQ(ML?r;R1XWgFa!*sn|mXq3Igw(n1~v33p=Y0`@!sRGH3>ee zN9X?8S(5b@j!yt*R(YMACCi#sOQHY^0AFdWVz2XM*n?4GtAo--A~5EOM2G11tCVkG z_hAaff>^Dr63f{&)w6>Un8mr3W{uCBlg#A_)A+*N$lZ-W^d;dcv6RYv)3(D3qnYom zS!Rm}F{JxkfN`6LKp*um?f9?IjX@~);sp(`J3HKgOte*X9Z|oo1yD}8^x=kqkd#}`yvHc1IgcwYh z`Otp0GW|s@x){C3$~)Stv9^#nM>uI|77Q@y%x&JY{Mk;$|B7gqP9-^Tj--yR9ytGU zM&&P)_8dMFB^>Q&PfHp)ZO<#6GLXW{d;qfiX*dATD$!+Tbs;wnv4vWm9N(yivt>SL z2Eg~|cQ=_6D)S_CJm&#ha+KHgmM8sHE4RyV4zZ>zGaxJWSH5{L(U3+SlrjQxkN>eAd)lewm}B9zJ^jrg2RR+#V2Offy80-?#KANf#xdi_!<6t z0jcA&#}0FK;Q|%v!Sky+WMSwQ-iKQjb;2l7oA2T#xiF0CIw-odDqwc6Obh}|umu3w z*=11VLOo-P6^qtRqeTi^B1%Y{=<$Of9sp+)fNqoJuirK?g%@NAt_nQjZ*N1o);l?G zd{EL)Pzwu3eCJx_($!4RUC@x8gp?oZrtd@^PDfogkD#H}`2R`nljcKu}!vQ`uS)b29} zd)!>7Y@faw>O<5|elVzjsR_}n1}gKk_5AAWQkW)i8i)huPN}`Nw?6g3n8aU)S)c7% zz(}e@wujzfBlvV*wui{MDPvIz&Z+V7|g!Zm$evG9UC?7@PG z$rUUvXwb3!Ok7JQ=ouQybrJLKsF!K~ z>OuZ1Ux<`p2JOrb&*`tiFT>Db@P5n#KnrSC9IWI4y88#zfh>wZAIqQSzeR;&M!Ln+n zAvIRbZj*8H)ad__RhPZbLV|DS^tb!3P<>)dHCoxQmVLjEuK7l1BhJW7;9$mMCpA1Y zS8_7UFf|F`w=qc;%)eIt40pxkL@j&|Gw-%L43Pd@!blmKg2?7q<9E7}hoh$SpBVhh zb_m&gp{KgJwYMV8bVIrzeSOtgmqH{pJ)KkFs=M&y0Xs{o7co14n0t!GW*q6NB}G2a zFapArU$nqC?c~>jziIyl&>zk?Z*-Jvu1MzWorv?|P$Iw-_J709E~~15Rya3DO|5IO zIe){K5_b?0sg>&N#%1#w$4=Qw}JoTS2EUy;U7&6rOs_%o9mVBPsK+^#W42yzU3 z{*fgmSyK^I9c>s4R~ue|og+@|IRV%bI7nGPFGdc1y$vMNbHBCjq>Uph0JiIgL)_H{ z%VQ1>{<D+fn)b>S!N%D8l@Gt;qRZXEB>mY2TTtf6sz6kh`oYex zwUp%&o-~h7ZfRUx`%4{qKhay<)+}&#TGY&Phk!lPWNd{R+7WiVGG3He>I0;L_D##; zm{#mi-T=y4dv1-rcU`$wf&>OkQx7y`{^@gL0VZ~!?Ng@Z$6i4>as=x0fk%3)YwR6e z+b45pU9E^(q&bGDi5K+1?72peNROgrh!r9D7i=!3)}5@g*fmv$^-Pd7a>=J?_{IvA zP{+JHOAdUGx2TjaWn>!>kceR@H*f*lg9WWgQ2 zQf?AeYawpE-y0zFQYJ}7Tj0rGkQ6VSW!gxJ`CzAEclCmMooUho-8kUjRU$b>b>Pu( zIpxD5epz(`na}3(6pg&Y$#uV7i064nT%=3N>%70<$c4w4|6Y1PZAJd~~&KbJl0}bDV;4YQEWZOTHmiMdt2!uJ4?BN@m?uFdYo+mDv-%X-nkX zdcZFw0;@~d zk{WK@qHvCK)tKqDTK0q7_VzH?%_@=qky1MwzFc`IXkKh1Qy?j>70K`itSa&SiIAe0 z6YV1(ES*{kn`z3fFJu=E<)D?uA3ubS8t!UpX=@K(%D_n!e%*ST8$86Xk#P0#89i9*uk!9O;My(x(s`yY%M5u>xb6~iy7RJfp^GT+z$QK2sP<)M zCi|6;g)I$qGjd5xOj5+0a5q$@S=?13D-UFeW_I0&I73LbKNF%Hzu-mXLGEbeKXyv$7JF(`ud{W7vYz+hTL z__f?}kKzRMh~Wk&!Zqs8w&t%$Lb3M@x9PW`3#8W#gBWP*C2LQZTpS8(e3f;)*Mg;sjJlsIvaF8zK zgt;RMdwp`@=zQtj=NSbBU6J=bRRlX5^}dUbsZ~nsI1y_(HLBDREq$ z+HwHfDqPXMSk!xY zn2@;ora~zXlGb{xw9<{{W*U7sf_&`+5=s@_F8!*;Hs6ElIyeUT?o&Ue@!F~tYpJ(9 zeQAXq7oz*Uq0Bx-hxWrjN@jtV}AhHav~I(9QmtJh#Dp1~FkHcz8@Ip@+p|t_TGGdjb0<9`gTL={1jof@;B9txD;0Ap?W~l(JWr8qA5dpHCvEpx zePw5d$ck=W{qd&L^&VIq+(!n)iNK^$$8pyCn72ZT3)zM;=c5Ss4F=>h!L*(u32CuM zs4=-Eu0Yh=F1L@U#XauhQMUIH1s&MjAoPPQrY5*}rJV_Zq*I`i!TrgD7&Bz0&;n1z zg>VY$WT-4=tKqCaIZQ1_j0w2Rm@rg?Zv7fgl1?jYKD;)==|6!qb_i{6Pv0;z?Uf5M z>_F}JyFTKem0#z^{=<*L2rI>CPJV55goUtS;3!3dOBNz)UBy}F1oKVn5k+*gfMI{^ z&!1;T_OXAPhAk09Wy^kZS*=;-^PXZ_=|s9psT3NWK42-N&gTcN7MX5-tvd>T8@ z9*B5rNNMrbR+;PL)yyLi+U}CM(3Y#a2e0zAGTO(_NKyC*VhFd`*sISO)KX( zX!-G0d!&rPzvtKOx6)o`-ObAm2E4o;#XQegcRUypvaRt~Iha|;b1SXJtnx@wyeIa? z1UTj&sAq_U*^+_bL?_eL9&5ggXDg5WFK-rgObvU=OI9?F-xSD-(Q`9JXGimJf@fRs zY`}^iM^_$9&h3NJ5)0n1>`N*np9DG)`ZPtJ zf^%ejo~2uziN=jqAQGj+%~6O>Y6#D0cJUQQNcRS znG9;KU%CH2)HB2Dg^|~Lt!{3=YGd)NRF8D?E05i;P_YdC6<#wnm%h+6y_#0BUmmO) zHyt+t<`w@AN1@WL8+~~2iTc%E==4l;e)9H$XV1zgp#?_e%ID`j=Ww2Be!H`;j67m= z@g+h#B70x!gq7FclZFw|cu!34LTYmug#9?Vd0rn2Ky-`*dz)hQ|?ny0KIcC9D-{$^2!|44ji~ z+*1{Z6pECO*5w)!w^4(hW>nb)18<48qj|FdNK z{sHyR31Y%ZUSokBnt|711-*Cu4|E!|Kj#dLt?e`+{D`!LeQ|7tvIn;b=FZv|rF$zx zO@~8|tiQJwCL=F~G4P8YLc_S%6I3p*;3+|c)%W8hWdrCcci<~#*P*cM<2e55z>OBWXmL#X^$7aVr9EuSd7B0&Sn*0;iUOlV4d zjgKh7Vrq=C@!#XS$|=)$02}Q5{IA(sb}ik{*c}s*`TYaRzyBns{W;xTo~D*`!_hbO zU`Nx-4|g3ZIP%`_oo?J8^Kqzxbf2b6&mYasaq{q@EunJ1JL2kdl6`}q*Ln!V$GzzP zA?hojs%*Zm6;M*TyHTW(E&(Yi1(fa%=}zee0qIgCMCtB^OLsS1LOL#;-=OdB|G8XC zTfD0Y8GJ0DwGptLM@NA-d!2Zm zCsjLqhF7jyQ|1_%eG#rijBmr2?j+o2Bw(hc`j*dhZ)O!+G$fx;}ZS5JKF{f9LKA$n-w2v+blj<*j( zE~F#2v&G0Xj8fp};n0R;GpOriM&ccDoEs?UUOZvR!}GY{KkI@Oa`G<_A?SC5P^V_E z3vgO>sP#Jf6i119I(qA~%$|2~)n7t7FWL=JFMD0?qJ6Hr<#F-WaDpKFdf+IcM4A(M z=ItY>n@YKlgAMw9`ft! zj`p0D@B8YN-?p}g+ww}@Wq08eyUif(BNN5qRo&(jFLJl-C)SNe_9&?KGCBN3%oega z-9vp;B0RxaZGr`Ryn9SYa1p-8u~}!38_KoUh6fT^nf47xXsHoAM!5TvPOlnDFn!u) zzMy}O6WGR!>_UQ*6~tn|kB0K2KN}Dh9Tu=0TM|#FZdn!|ElwSEIq_!sN zd;Y`}AH90sPSOc2D(}-?ROqY9%U9JGNy2BX`Ds^CH$_a{p^jTM3OqVkLx$4EPwLNh zckJ!FI``|~YogjOM%rg7`a&T|T$N#aTpo`I-@R`;+nz;-?EPAh^43A8lek19e)rbP z5ET)fi^EmVy#0}+H*?r9B`U(UGlYsSPV!k#Y6@x!~o7}XkaeN0UhS>r5z zSi;w8o0h(zc^_eS=--cN&!0}6-ur6E+wADNWvJZi_E|DamWL_!)A!0Z4gK10doj2s z-jyj#v2V#p5wm`#tVrHT$|ZiApl%r|vA{wxm2))pl7-iw;&vNLN4?ZH)G!z;Qj(uZ ztwK!;(rS0LA%!Z=*jL)(z*@9Srkdu@9;EGY1{)pa>KCBlgmYe;H}`}FV;uD!pY~^b z?7Z`TCV109ZK6OXOS{T$aY6Z1H33%NEC>;4I^frWtgJvXAmR`&le8P7!>Jm@R=dV8rvVt&&Mo{qA z%-o`yA3HyU_8KjCh}khpW@y++&V4q<;VpPi%LlNa*LS8}FjJD=d=05j=CH$Er;|Vk zR^Du5qa_YK9GNRJ-A*O`(v($}^;OfRAtF=cgf?7PUBX%+tx&*%NT?wekhZ9wx8fkS z1D&Q0OBmkmEnx;{WIs(0TR5z1ZnP-lB3!QrRF5Jl1Up20?lfJC+P?>x2z&N%;Sy|| zZp;a+C#w((I5W0}FgB|5pHzr0tpYlyX=aQJ zmz8BZfn9{TgFQ!q3f^#MD2@Z_C%R98B2t zcWo1jrll=4V_&ig#?^AtJ6<5|cUcaZDor3w0$J_nV}rpIA><)1FJ8Od?pAQ-V;rxR zaUpoOq!B^$3!d)NNt*mjDSn9N@-xDjG(zlJoQU1BK$&{-anVj@v&%IR! z3=y%#zp7OMFug>EH7mV~vdMk9qVT$H*AYEA4h;l5(zMl)BNSZJ&@YD6XY8mAL@L10PNHZxiGuq$>TYx z3`5Y9$u;Bps$bABM1q<(iYoc7L;HtKB`yoIA(fYT&1@a?_DH!If#;*TcFqNmg+t=I zG#Gm!1MA=dNY;}x;D={c9Q+MC^NLxX(UAVK$ue;vi;>;{9Ush>Oo37}*qT|Lg zB0Y7yE5ToaFDA?8{dDEa2moa(MV`n$SAw>rNQ#3Q0OTn3;O2ilGk6eV$L#MoLe~k~ z5p9}c=WLpePZ1-5R^P(;0NNUysjuh8P7{p28_J(U!M=qHcmo8e>8h1(bp4faTHV5Q z7!@YH;vcTUN)S2P!?bqU-K(_-sAHZ3mj`Y8Q)+m5hT#)R5c*E|8^Y8RL+XkOwOI|# z`U=_F2jncBDA_P?xI47&N=_4mzV_hj7Y~G5t_B41i3{_CMxSvbOwlEA5ZH_uCZ!bC z>?EvU5Zbq~5{0{2&6UM;`gkOCvvW7}^@NrgUYnqk3ARKZ+!N_zVunLXCy!U#n#su@ zqb3Pka>wP#(!G`GSWKz@&y}#D`E~b3$kOD8Icy#c?HznA*Y#|IHpI8216~ae8cJbcoOS3z( zitU-iasQiS7!@%tJbHUA9863ce@8!q6*TQ<;FoW@TBIFRZjLv2_AKBBz1Xjvv1cUP zbG-MfFWubsstot_bl)W{b5h(=atTx)jV%dBW-7#`riNE0LwVfx?jK7Y?f_^U)hW!1V00SBbOqI)p%QTy+9g+Fwpr?qK>{?7`F8+t=;~ zonuCJmVEC#AG`3j?ceyj|JMo~n~vbTkCzR>F&trba=IpFh*sEx%Z+roCejct3jfw4 zOJOVe=G96GI|4L!Md;p)-U#ZqQ(F6E*~Lq0oefQfK3Yg4UXB*29n+FoAL;shZ+%nb z@^KE`x|ZkG2i_?E1Jl*riGLLks!nxB94%al83XF&^sBt+QbA-^W&jeaL=wGKm(jN@6 z8ZlE#v2T60U1e$uYX!8`YLTlim?xpSyu`|7H*$DH^sJJfYX6GX9OsY&Eq4Xp4VA@{ zO#6KEmF_S+2@&m266Bt%3^mFnK_{01+e~5L+Yg&xjS;}<Ar!Z^4tS%W@?TGmxw==Yr{isjd=8UugztMa z`31d4Zjx2L64)KMQ0T#`h`Y?;jeF>qAPHY_42^v5Z15X z3f|Ns%H)kD(<(j$12H(`TlF#!yF z+VzUZ4{EaKp=LREPiQFJfzz>y{9i94>xW~q4!!+pJZ#*7b!^oBhb(8myVR0<&j`?*yH%G@v1-n)f8Fpj1m|BX5~w5 zX3^@B+P|=}BD>jZ^JrW~KMG8_6n|zG$nNh>?a~mvUMr4z zx48nZR24><%g??y=Pn0`h9Qza{>RpBDM7ii%hK+zZh~tMe8^W}y7ie=Rk(UYJQmM0 zYi`rEJZ2im8I=)`ysXx3+hiOL@2&*WfZ3kyb>icja%qsGLwYvXvi@a`dxBUFpj_@3 zlug$Yib~bZ83~gg1*dYdYd*gboWwZ|ZD6UujK+}@LUkE|@(S=k3pB$-?os3tNQ(P4 zSabeuIp;K66-_sDs`g+sBU|Iz6c#=irU0r|z-P91=@X+b7rA1MCG=Z#|1D6Hu5vQ( z02u>vuMN6=pXK);NwSSuN`~;5FBIY2bKk!|Sy*@{FznHnx7g@}a%|@4`y25!mWldj zlX{4epH-Z55hQ=GTl{i4JiTuS_wy4Ic7QCbt*x2${w)AXD`DZ%iDp)7^YOk`?N8%K z$j6a_brn=oR&-=xy$wSt)5?;T>LT{*aVSB(`&?d4>@tCUBT7?teg#OYoaq|xXLNMN z(`+jL+JZRB=8+V$p{ZYtq7>DhFbQ8P@|+vVQ`-zF;zVW0u{EIBtfRX25v=Ii3h|-` zEa)a0N3?2$gTlBxuYv&`gRBStccPfC1I0t2(kJBb8lBE4kXpNFdz7mAnr+XDO|PmD zGE;#l<#8tP9l)q^?zz#&ax@GjW9Aj5a?QZqBzlj>si14*N zCbhcMOKaq+d8tdC#z7L{Yt1dQDXsEWMu93VO*%cPpr76inslD+6jST?-V@f?Kmr~R zZp+HXPEKb3*D_?T4!7t5^$8BG`)AfAA{z$dgiFlYylrQr#g9C$jc!hyQHGpKms0P6 z*Nl^8TW4xWBv`iA4lZ|MzAJ!re?*fsDO63+k$V7KSCuSz#KQF#T#H_(ZYt={JAK+u zeuJ=cD(5F9>yAViX}HWK!iOmaK)KiHi=94znLJMlbu66ks5 z;PPM7r@9>3{GcHg_xK$kEH=G6%FQT{$##IF&}0wLTO~~+Be9!o@|)2OXa2qW5o#Pk z75}zWf5GBy*njQD7N#my#7Q`6EmRaIX-3@u@I+7^>gcj(bE>yhZTcMPXijB5!K_JAXc?JM4x zhp~SAk9*Th+*c^BIYgVZo*je^v3zGv1{qP8o47M%@r7@_GPoDhS=azm_!4x^)L@(L zxLYwfx3Ri`=R~o3hemsCFNJg&{MSPjWa0SK@m)PzvB`bTjLAJ+AFtB|CJV)(!~8!t zyh*#>zhf9o;mT*Qz~f7)RD)v5rAes04^`HTEZ@NMD^;#5%~PdUXv)v$+FAeWMDNEh zJJ}{V49w^#8c*G|Aeabb?WkgwJ)sanZr9gUmbh-3^zqcBIug7V9D^Ce4O1DQDdE%Z z0mS=`vv|%f04Q2CVtb4dUjFS?b(af(40}-DV5Y--vFvq9EFFV7;cG!rwmqhKW1se! zQY@F9l>U=;9K8stbcOeg4gw%w`^_FR3Tl@ASB#lff}=?3>JP}7hpfS6x9NQ9s5WU+M@>Q0n`KJJotsC;;qi|k)w4H|)DVIo zka18RYSX+x%5~@5Pf?ZDbtKCT2U7u3n83lWmInN{$*VvRKWBM%xXD0JsyAY(axmL> z2{YmFu)s5vMBi|rsIO(P#N8rYVjvX?wS9xPf85FYQnw?`4cQe7=|-Vh4kY5TDU(5Ckt*CjGG)N@@)|h!01GYZH4}};gY%IVS z9*KUSQ@feeWlu?NPht1a4y3O=ml$|hqkk9GCJc+oI;8#!k+LoL_s4YNbv@6%J8x^q|pFyt>}|H zN?J)nC9UwbX;V0d4`HzCo-kl=XGsQl01Qv9-fPq7OTzLGeWSpe_ol2z5i9B^HK7pl zLA&Ad}m;L!`(7RA>>D&16ka`0S3PyDt*{aLs`gRvw(u zVn-@QVt;g#+;E_sSSb}YHNFpR_PHSWZEErTkoeblT)P1})3`JEyUk6XHV3k% z%N(CJCvEQwpXfsXE{7IC&dpVDvhU#CBR}MFq?f@fyVC*nt55v4O#Ru11Km+n3yCaODSCo7FD}OQT?OtJN1HEL1~HxqmF0o2<7{;21S;^A$(#8iKR5n`-czQT9KjPWKK4U8D<{ znNtk@s`wWs3j<|B)xN%DN$bNS7&P7rdj_c3bwG(4{jMsoG?y>ax8&jhvI4e>SKO7D zz}rb}wGAtkd$59If7^DxCPv)VpcNY=h?UCgqZ;NB;_>MAh7xhtl|L$VgY;K_vd+X^ zji|c>;cEpy+gbGhR^iZcFZg{>k{i}acz^LjrzumIQ9&53UHAz0%I4~z>0Ml!4xp42 z$N1=l3fuWiz|TuDm2X1Sl_Bhw+q{0lf?PX#UNjF*+(DHLs2mVyN^*!HyjtF^q($|+ zq+*u&HfB^j42vr@u1u23vLuo6g}Wltulr%P^HYeZLPMSGL3IzbaJVZvyeu}uUSm%x zVTr@W@bMq%QA-^<(@QaX);a`x1JZkJtD||iqJ}FCrs47Nx87}Z43j*$F)8iqstMaS zvE=p_l60&im+uW?iU9wm5agGJbO|VKj3fUq!y2Sxmy^Of?>((46!@&nKN%i0`8U*A z(C}!vu~awgC;@t?_5Nm8ALZD-_F`T=K;O0h@W_ZGk^%uie}naM;0OH{C2joM>U$qT zjg+`q$7?-zFhCS6V9TIL!WyRYUE#;(2(|=kG)zJa{9aLcg^$6$LpO9m(WUACNcg! z!_UWM)Xw9(dxtmsLWtdcvhS3%Uax;v+9uKDRattoYU`)(Ap0_MfEkT~qom#LDtNK4 z?NLxP9iaf;K~D2(p;z*9nTvRb|8k)ejrLSd>Guor8WarX}b$YOcvX+>+;#N)Zqv!HjNbQu z#E4TlJoqQ}L^@<;r`QbNnjl!+5h+iXw`|3yt!75(HdaAm-FX8mX29nyn}(}!D^v4m7V6P!(I;TQ4&`n zs02+Pc!(z=2>CzH*1_X$Y}&QsZNgzjOI^0es~$#D2zSg1H2ZJ5?fzPT1Y0+SjjsAF zdV1L7qT>4*e8`w+QqRe4XiKK`13 zYd@7|ZM+hT2Ot3C3Cx7eX3$9R;FK=~>=$hM50QGOSA}UlXJ~^04veKdR%k+Y^S1k! zyL(I;W!Os?ybfn?f-uO3No=H|+Ow6WzyCmnD74NrlDW)?rG+m=4zR-A7v`Z88v@|? zCYqD~Z_VQ_$(cLg@!-Y>Uaq+ofipQxOXe;@1G`|e{twWu3EePw3Mn4f=`NAIXVayI+ zBnW(LRJDPC`aP2W8LMngtO^=wx7X68E-8c#KN<(2b*`c00Wo#YjfEthQ0OC-^0r1? zE=$-s+q7%nqMXV9&`9RJMDh_A5b!LxwSaJ4fsRQmi>5i*asKpWNooHBzdqU&eURr-`|e@3 z`N)1A#d`N4P_5LMPy4pB1#jCbE+0cXRcg&4=AMizu(B~wzbp-l44kL$>CmCE6ca43zBYdZBZKKOQr=vxTI_2`9;RYdU zE1qNR6~0<`xUn}Mf;B=lYlh)d4Nb4neB7>+PB^faqQKg&MJmYvnJ8P#bLPm$(FpfJ6<0tb;e`jbKde3_M8HAf6v=rs_5atG#+li!D@p zN(2ahxF|yommcaFBOTo-Gr1)JNI~W9f@a_5K~v(0p=7K=^_jB_n7nkb8Q0{qbOO@3 zCOlW76qQs|`V*V4d2K(>S$k1*CB+FX zgP?nq`C(uk|0hffCdIR@-}a*QQHr!KJrLNVt49=cZy#dwe@X_ zlr*hA}G3l`c86`Q3w(oFzts?}SJfOlVDTnhO^l!d!X#(^^c4``SwqZ$v-bPi6MGxL34FR+rv`6c*1O0$HpmuCe+vI-4 zH?1uoeBfLre1H6)t*Jk_CK4r70#Qx0&ndy(!MTrD-$BgV95?GD%XzOQ#oBvcshKJV zm*CC0StY^K`In@;)30@`{nFl~xeBH%@cga&X9xuM8%4Eh$TG(7*O2QMFQL0o1^jG-Cv2SV-f*yFI%h_`Zqsei*2nx>Kp9k-OLL7q6w6ZXjrf8=x z+_iPVCoQW<68PkD{?0{}&3pIoN7UcGbjniA)(t>ZU9+j#Y&6@!ezR~&P$i#1@LmxUWwkQE5_3?eH zYSS5+;1CUQI2MBFM$fPTBAPD`myCeL8Fr9paDE`TdLz4{=F8Ma8-5cgmzf^X{Sw1n z22hiN=p3)0k}Si<+`8QfEvGYZ#wYH|4DB}gDcv`;s}B>k{?3r|{&4X(yQGXu zUL6p3cjAB^VI-E{D+>z^mDlp3`E#8Qyj$L>e3`lfHO9SG9pg1+2pWD+~q3XV~TXG$GOPTIlcD+B0E8QXI%ysCT=O-mp1~8p2?( z7cBz2`3+Pi3-?#v1|vwD>0D$>7#9mahQRGR(r3E@-Q}zeT@aBAg^ht^w3ZMm_=iP& z&jd~91Gu~@?RX=7$G-%Ujp^@4@z8&~q`J3}0g zbBZiVo?x}z(=I0ba3CE6xv??*U%!4mN~gGu^>amAI%nUQ z7MThwqo&46oUAem-UCA(!g$dwJ*Qs;eWwrqHiH>GIC%{$V{wa=dUd=bS2(4wo9J^?f@ z1$%L9Hl+ij?aX8k^gfjrSC+lLuP^%kTyNQzXs=6bsSt4{{}TL?7H9-Z;0D$ryyfLB1EF9bt19AA+u)Sl=!`>t4PivtJ!k2Mnl`)n zmBosg$dMzqw1Zlk6-eghOP3pXam08RUg7jJ1~HpctYm{l%o(L_<>Kth300HPG?_nG-PE&BSLm;OOF0jmQpY1KZd-{q7}8| z_*Tjn3H?JGw_7#|OyWz3^CvzT@WvUsWqyf?#hW5cmkw>ie!l5k9x^#z7CUFKe2nJc z<56l*@Hf6v;kdyK-q$CKFvMH6&WdMPu; zXB9N~dF}%~X+m;PL?Di-THk>Safc+CO(AtY10ATS5~SH2&WIpUaXzR(;JQe{ zvJv!h69<6`h_lg$bUkJSi<;J$(m-ci{BX${s3DJ`90bA;Nz&@&a*qQH5#+U~$!V~+ zRPT)*9IgV%?KX>b+w_VY;an--td6!UVUU)$s0rENrKzInQQz;2)hX{bpu#NEhbaKP zcTcm=>cQjZ%q(lOvV$8C48h(aA;b^~p$9%=V=$@Zr+z%ct&q%62}qyyg?6?utd>@L z?hnXMVeQXZHQjDJ{aYHRAawidh(94l{3Y_&pEA+w>>-X7W1cD zb4h}CrxzC>r6om;1ucETigodrM~g3Whc$Ca|4Ow3ek$+Pbl1>*!X$bkd1@#^%WMaElH31rY!)T26ZcprQ((z=wD2w5AGL}zx!xWvkTY$HUBYJJ-7#gxXPMye4G%SG~mj;J$E3;&y$dQoWokH zyBmw`TN`$yiDW-+?}&#|KJ7aEQ~M>C1IQyCTEBzqM(u=$8A)p!cRj@v=?<_!qp%?2 z9334-n&3(fvRrU)U*vE9?mk_;RN`JJD-&wmVcR#&p75TAsk5^TI;c^8hl2mF#VbDn0zF|exok=?yRFX&m(pFR7lwDkII zGcya5(Hg8q?FZCiluTSKyc+o|j-5^Kv+>#*@WXjtKhxdB8rQTmw6UB(6HJtR(13%e*pqiM71Xk>K$1l3KW~yj}=+9 zdMCFvgdJfYKz0Q?+DXuRtV-MSKF?<@EPUf3`LY*%f0^G2vYVT>WQb5wVO{2c$p-|i zcQ>C8AX~@->>G_I0mWs8N)ytcrlAu&h`c-l=sx?_X-V z>~6%}A6f%Op8xh7(1Z5B-a#i2)vvFllQvsJ^b_>OnN2g1x$4m@r}(Vq9t$`VI!}o$ z2)Fls2pUxiX8$4n3mgP!rC$>qdr1Vx9n!UdQw;HQ(J-$2J7hp$o z@#ngTCME>L9GCYq^#>O}i#YFrlJDTvDLSJxE;2Ggh>n#z`_sgZsPvi~28C6t-i_)V zqc|&U(>VDVTpLo;IH$?dxEg`|#?SHxWVElpp-4;rlpWho_we?aPmT#Ng6D=q9=tv! zmQ1O2ag^dD-be;Fky^q)rh>W~ zSMwD#&e7RTz1Bz}b1&0wID*Ihn!Eh(qUN?b*jN^txg_4>t{*#ZHC@-fQNu^@b0+9t`ON-(Q=H*R=*+2#Xr^>5ayCa!jP1rq=4BnjQp04P`-P$HZL( zYj)R=gwyTi$_nShlRisc$BLk@*$Be!r&{!p2P}HzZX5EFMi_=8c*9NAqq-U!zjkk{pwx|zQ4x!DP?0FN9JX~?{J&j(nh z%7Uf3Xn!e-i?&Zwm{7a(x}kJ!VeivChUer0VTxX!OnE7DHO^b43S8CS1st!Z=lGu& z^L8cf*F>2rPoB9cC=l}m$w1u+42z3q+jh-6`;)Bh_eI>sI7XGQe~`_`9$k9wNcrg9 ze`hR8WB)#6$X-Mlt?PNvM;jPk23indzml8$Gy@6iEcbBon*wt+@(X9)b3u%B#qg=? zUOF=nC`J`~?@K-^O5=+W5xGJcYO0Gm@Z94Lz}$Ty^mZ|1g(+PmogqWhN#?%sMOfDJ zM4k_>&#+>m;*EXvUt2NBF(%+f#xrT@z1L>uwSE0#Bk5byV{{696;)L3PeEx`GWx#R zdIhu$eHj=ggap^*&+L_`*K1XODz%L;_LSnpk{^h$62I8X67s2_v~*os(I?vKk$b_? zf}+mUV2?tyvhpcN|9I*C94#mKr8>9I(*)zAX_$>eO<6**_r}vzs9}Pt4 zt-lz$CSOThy64F6L3VU>ciX-Euq&X}lN6)gpTVD@s`_ceYyep)4qHYc!tku(sNwL+ zeVZip@{UI&u*h{W)V{sa-lc@YamalvdyFC8erOkbJ%Ba}T1b&esV2=|OuG%zp}@?w#di2z-k^QVj} zAtbJMr>CC#lkryb&Y$%zIwju9Xi5>_D85A697yYik8YBa)not@q*ZT)&XN}=lq1Ei zGLrK=EK93RWrgcapx81hWDEjn>p+g}p`#*JL}q0Co+V~`SR!fpl9bcGF<92C+6TMQ2 zLy_pRn&ob+9(_^Au!F^(kOH(v8v_{~7~YozCJKBVcw^zoBJ}}InrEd(caD;ge=?v> z5J-YVvrermx6?CutHt*g1UjZktcjQuebr5l4ky=v4)m~x9Xi_np+A)idExum=w$0j ztk}c$e}p2ret7EB98GZp%d0WT7ecU>)8RfBx6I4z3mRM zw_TgC$&_^7^s`bFs*vzg+w5c4;<=g9<}{qsJS2oYIA$fnlw5aqC0vR3ET4WI60c?> za3TckvV447wic$&mh)zG-r)TQy6Jk|A4NL0+qhQKv_FeR)GJyHW^rYmny*&uYx%qj zf^=_pgK6pM9L~@0{HLd<%gN#J2vBSJ-b`uLCy7zn^6&W_HWCKObeA0>`gH`>lh&Un za?-QD)Np(pF*rc&qr!dN8)e^lVt_Ulflr-hX=Ra9^ga1Cr8K1(CO_n;u#$n8cVb@B zBadJV4GZb%V>bD?m8}n|RQjT{j6vMd;mX#J`Ta|vevoa@ zTn1nA)|yf7xkqYUk=>N3aBsMc^_q=h^Wd3KFt76}t;?dF5RFutwwa8gX#3g#*IY7Z zV^T-Joj7Auy4mtp;^KN29!$m~+BS0R_LjnCb=c`+P;e?-!_66ewz1vLGugJplOhxw zHTG!T`y(0eo4IDCuOfbvRSM{2LO~Fy`_g81*2C5cQ(18e-6B#HVS*1bmd;hg7@4M= zE|WLhaTb+-CJ0OG8bN7oyTqp{qYKKf)5Q`)iqQK)vmPuhFE6e!sm?(17TLkX?5o`H z(*Y9M7kfohwO|s%iq5^jaN(flghpJSR~VZT4HWKaHM)Lmo|@u$1^X=`+>^G|sa0QKBQ5Cz4mhs4 zbMn=tyDewz_QH7~#HbSMKApRzL=oSYqzPF&#C40e(_bToHX-*{d^*~VfxRj2MQOsm zBW^Q-_p^1vp^?Cmh1usT2Tsv#pSWHX$n`v%3VzOn+i;XC`Jqy8%tTZ^a&R>eKTeiu z-WrJqpT$xPDf?@ZBqrxPJKwbz6`#x(PiOf6QSp$)KyeFugJ`(lsTGt|ETa-JUT4=k z%EjfIE$^GIBLxWK5(6>)mV^&gnzc*EoZN12?!IqID@1H&3cDD-B0JFaxsmb{iruF@ zag)pbdMm7uKxbD=+R<5eP3n(V_9gbuJF&jlTQq2#^wnJfC*SS4{UmMw^B1eoDdx4R zdT{x?2YRORim^I=ap7YBNo*;aqT-f=*Fq1y_far}P?arqXsPVDz#7&=u%v%_r9JO8 z#XRx_=QCI8S&6YKkx1=%aT3*aXYSRsjNDi@@Lv0O+lASAwCwz>;XYTp&qi+VZvOOT z=g>=v3xFd6cisMbx*Lx1&p2$qAR$`2HrJj_5zA7~WC<Sf36fKr| zO=mt%`M8=3*P^Dgr})hE#KG-$3Y}B$4Ao=xhC|T9;eq4sD6M-+oI014$dzXCz2TS; z+V0?&O?Pw+--r?cAIzA{pa1zLW(JAs@CwdqMm@+l{qlTjWPQD(hdzNdg^0QCErzP{ zN1cU*BYr8WKC!V^^aPvb)hA}fJ7*LHEo^d}P&X`iC7C`|NFAZ5@gU$hO;dj?2ia$gCTzO?#Ia&5x}y zzn}$b^VM+^)8oAqxv~ti?0$`(|RUQO*!m4Y=Ms{(F4Ma+XDTM@3kTIBrXmUeng2kSFV2z zlYio2>xG$KjwI+c^C(nDfUAUr1@vIgZfAZy)+BO+&IHD$^Ml5e}aD+1mm@&28VTZIJf{Z&@!PvmrW$mJPySTnqIhOj6uWA9V9=8F+4j-L>5M$)3J$h zLX!O@_G?Q>fg`!+30{Ma2${Cd;zA7xCvMo?op?gv)aJp5Zguc4!5@d@A%c*7moYBX z%V>}LUe^*5IN_2<1FVbVHp4+f6uZ^_gedBQcQ+RFxKX)!D$d0_DJgRo zgFeEqEj0z=!ckqpvd1I@nycfk8FPBLv!}Ww9Q)s2p*G*#CDz(^Aw2kz=9^508oN%d zs$CWu!ir6}I&B5ucJ)Uu*c(?b9y40*fDNogg3h<~=eV@EpT!k}La0mAvYOL!+ZAB! z{3Yo5C0yc3FezB+-gWur%?ywI+G#|)7iCPLJZ!v61)2#9Px=M}>?E+|%L(+Yt#C;T zF<)^ZD=ATNHK1>=p9wz))#?>&1MiA?{Lq8_ClgF`eAb_QEKn0wP#BaD9EH&^)5Szo z7%k4!q(V>gk_4$TL1eQb_cFJ<53>DC;6<_E;Cymi4J>LW%fVrug#pZJ3C-kryfSb? z>!>EHr%zl>p)A`9+@+3-jv%P;&F*kLmNLdckx}60R{okPwNWyz16dh%3JaHf|3Pyo z=+pJlrT@I=9^5gg+Y+P+++EqafENYHln1|9bBHPGLn$rmfjGv1Cpoo;g5dwE+L^;? zR1JI8Kw2)u&|QWqXMLhzp&=M}KG!%*YtE9Ms60ie92Ha_>>oVqs8k9|cc@?l}pVSzDS)%3w9U#;oq^ z#N%W*+gj`lrrF;dObfvDs~D%fyUi4l*HO4{C5CJh6DG&?Opi1Qyc;O|wEOb+a!@?X zo!J1*S@qN0zJHCj!Y_**J`JZd5HEjKC1c>Dii%zJgcJ1#!`&E2d1GNu4elAtt}MjK z6lq!cQK>RH{$9r|EhzV6t^%oSulW<&me4DD5SS2(OtKI*Ha)s`HGXEvbI{2qKJR%e zW_{UhaN<3?tt~790z;FpxM#`HQ*lF^(EPj%qmA8K(D4Bq?bnmUU}EHsIaAby%_AcGcRfa{lsV8`}9;KM6nblP{-@YYd;`u;X(P zYS&x&$YYwb@Ug>{5~I@2iXMDx0>X`T)z1<^2I@lCm-E&b@p$W=u%aQmgT`|X%a8Yu zpN1Wak`{|dfVjCc&`Ur&tS~=6G}Y#c(8UWnS5R}N!7t!tx+p`W!t_E$))6|+rBHS8 zVI?O`6?+)LD5q<9pUdok!<}xHvGA6Mu2OKoy9f&2Ef_x zEZO%Dp!K~)RHEP4v-#o+SGC%CgA?hVx!-%Wx&qF~3gcV-^-3Hbxq%Q+&8XA6P%NG1 zdHG#QNqKAt6ni{;8~nZcfx=4H`)bc_q!UV8OCwgW@U2weUs5}LIgsGV#Dt#&Dzm+m zwAgo9mxbbeUN_Lmb`9_E7jbh$ejO^g$6(()4hi+eQ&o=`NNlKl`(yWu-WNYMt))FEUzMf_=r8NOpF}iJoZ<5BTnR7{{T?O3um4(OY6oN+MywjxKp( z5+2J}8Gf5O$xN zT4GQuaYxvb`ukOH-;;W0)a`92{Qk-$u6Anf$^Ea|#0Uw-`4zAJeQ&+tePE)!q)E+> z4_{b&deKVl%DZMyi5V1U7mCB)wvOiD*YYI}&a+Y>SXT>Zd0w%et^6Hs)^qVR#)hxu z)Hy<#FT3FT64WAyXw+|`B+Zl4J=H$^C^z%%jCTmSn=h9BrTf&ud}m>>l_d16SL+`hX%)g=$sE>UNMSA$Bes>9&qd8j_xzJc(>Qm$JmhWx*UBgz6(msZ|A&l-)Gz=}F_>#q6ZCS>83-&@Rd#8cps zjoaC*_?k;4TJyipYgL4MJ?b6CLz$77NE(S%T*6wNji=%mrHhONBY$Y8RzIA-%wj7fmlD6s+dC`^#aCyw){w>an=3^{`*X#+?t7s-l)KmGZ@SOW zSuup~7+vny6mQNmGjlgCdK`o$|60ORz~#Ky3?zbU54d5EowG)^+d~PDKr^$#Z8!<* zqKV#8`G7jV-@0_m@ej$>?(^g8I!(|uf3^o?9B?qRPEeRP;+RWKeJP-sD>tdQI649V%WGxxYRDWaFSvvv-n*Hw^Pb<*8TI-tpB1>__q8 z_FSsDg?Y4&wK~3!_nPq?&^16E|MX}6Kd!zqD6U{zm*DR1?k>TC>)=6xyF>879fA|w z-7Uch?(P!YgF|q4csu9Z`|8#E!PFFgrg!gNYkji1TcfuuYis5}y>xL%`Ro6G^DFj*Dh2N+>;e5KDRX`;Vhn6N?KTC zQ^(1COmQF+S;@v-C9t-Rj{bOjHOwilE6E{y-#2!y;{+7M5Nf(Xs2V^Z0+_ZGd`~Zb z;y*7Q0%(7KnKCpqI7z3Rf}~GWWljqvna+YF!NZ zA@McihJHWJ@_liSe1AMfA}$vIX3H}zYaDFf=0q_6%k_lcF)7wSD7CpcO?c?)#P-<3 zdmUBS?bPSvDgB-)6W;Xig_xn!zxAi4Q&lEfHkk4U%5bf@Tt600&29(vUv2~qjZV@q zeDA#7cStjI1s`tF&M9g5KLi-Qym91s9g&=M9^-Q73zMkj=@SiJ=bj3#KM$XP8#9u?Pol_uviq(p%}Ybc08>mT%VYT6lW(}AreXK zwCq^m?c&;vaUtUqVlHl2m_L!?_5Dt?wz8qI^&lj$9y!biH3yOUyx;%;GBaIm&{!L{ z%lD7<7v`LSQU`;Wu_H4rFT_hH4znWK#O(B#)jjAxl{~9_fFfM*qBqJEdwKqTOaAV3 ze?UJvwWmO(*w!xW_x3zgCNwh)2zU*=ZmRmaQ^3@F`1<|l{|;6rgS(VU9~-ZN4TXnO zMQ$;04LAtK>O6o@TmIFRr9C^ia}Vr=@D;&|l*S_3p`~I;e+spz3oYjOLd>p zYA9EC;Dw*&71!W-lrc?Julv{7eofcU1OQB9?wCG*ZL)b)8vPM-9kN=r6)0m6BdjS- z5yg|~4!rPjzbMuKA-K_W6>dgA{20#_is%x##}N=HDf0yOpacT9$sJ#n@@GX>#VpD2Jlsa%^P70wd~^WTAFJiP{1~sFBiV7|Nin_1 zeRSeWj-MyWEy~2&^GHh&81eED*}EnPI0_{}gfpt^(<38lm=efIxV4I+ zcOb|3t|Pb5nTsGf^D$=#e7l{_M@$GLctVX|uF#NT!Y*Toa)Yt8u}s+iF^T|m4e%N( zzIn`7PY62_eeNuqt)tY%e=r?CHWMIr7Yi$=KJS^iCX!zSvh_QKZ_7ldH;3Fyu* z`?Fjw_p&GMl)GtQvUn><5ZPuhn3OQFmA%SM+773M{Df7vP>T1*3_l9W4?U&y2N#hv-RvksB-cj7a0i~2vJVScDe z!nRkyEi*?YSf09e#qWG{<{2&Sd*9J8P#O>G8WzI#jMsDxbd+HEq;KKEnIL%UR`T-nX}E(ejnIz0~!}uD{PfHEn7Qc^*xBbZJ3@` z{{t1?ey`~NsxR(jx`LX#pnYm^h^E5UpzZ$k&gM(<^ZOO?7_LHLXMPA!vuKg3)5Z_m zzXpjV{>pU6BEyrH_To&Qcm2noOKfo=;xdJzu~14MhQ@5uI9kGg8e4z5UlB0y0Cvy3 z9|3nMrz{+6QP+6ADt)xyj2${HX{-v&Xoa;WeE++9Z1ZKVGvkwHoPe`?FH^KZC(St>KFP<^xS6RFhH0aI*;C*Lx3dbXU!9zO?K zBVuAwUpn1UjzjT4f0m1=I_{_QaBRuKm%c}H<|A%s|hm5vTK!Q-a0 zQX}xkF}%rt3ao*TDO6a@0%v7W9Ds)aziy~G=#v6he}1G6@Dhhd}*`zs_E=NEG(Z}6&vUZligylS1_v9N)cEtc)a z^ZdHToa89Wdgl>luzvk{>CgZdTlJRgty76IV^L*c6aaT{r!tkkMz<~2T8XoJigya> zu~Vf3hS9?!kUx3k4yAp56m%WM>-MX%xcd9%@hD?)m`<;0F<3sm>I}!G8}3E zg+TOstSJBvc4gbB$7?pr91r*9<7$=h3=W`h^!bcjJobRYUCjkG#K`A3q)9+!HBUvXdaZbY+sN8HaY zKAyoD1Elb$uk{wQ_HtuC2;!4_etXUqFj!##W(FWJ!67iG>5IQvOJpO@7St-zBxEBg z)*~?nl+cPxt`9XB-ns^=S$Xt^2*u8t;yjw2m`Oe&qurE26TF5|j-PK$~j*$Ho zh6x(<#{oQAr8S_;e#q2e?IU+9*6XaKWE0?o*dK@6jKrTmWnB zA4PE;tNK&l^ivc*kO0wXGkB`bbLc}Pl1#1lJH~?jMxT4v8%VVeYn|7AbL#xkqnq*A=l`BCH;25h*8+tD|P={s@4n>|a zhf|5~WazOkV$wa6K^AJq=4~V8#<5@Lc`Y9avo8B<*4@$6GYN0|yYH9(BwnkwpNMQ> zRa~yyTJ~D}x$P&$5bZ$F-HW_HM(ryZgY9uM-ID4|rzrfcPT7D2E}yzM^^bFv8hC|O z`~0N>d%b>oI$720aHP%cIwge2@pUDM{dA4HgCvuXlK|#8-=+}@-Pu*d+TJmG;s#wl zpyMP5Ww!xpJ;vO8--z^g{WjwlzLB{R+(%Pt4h|!HBaqiYR_^Rns#S*cSG`XhwY3$` zdH-Rt1wK}(z*XiFi-4a^4bTIHZ0?k~U5}NO4v4QCP62?;39uZP6IahF1MWm$a~uF2 zC-cx*9UpG5m}^Qp>{P(a0-i+&93$%qNh@+%Np{d7xVPVAq%s%&GF>@DtF_-mE3{|~ zDf1)J+f(@DCfV$A>jY`aq4UbKkBT@vu$b+ep2vxp{wr&Y66k#)seS`EXpA|?nR7N? z6>$FkH79u6B_^iFY?2if{|W|@MFQ4#!3QV^r&^98+5t81ZL{iE=Ht3dVO}HVG1lI1 zu!YhfXBXo;g`N#x!e>?yiF{Bg~i3{-Z__P9)f#y=mabx5y*LY`#?$APZm$4lb4lO8{=A zL_9j=hkmcQol<1t(yFa#jrn3^WG-rNoF~hjI_7pj?B0AkPi$y(zv`&=$BbQl>z~^L z$EBgm$Y`E>Yy-Hw|3M2_2OxRHelqww9f$>X1%Uqi7=rxCsPxv0*&9>9Mhxd!m{%tU z^iJlT#0_2wfL=$?k3aS`Q;sBIM)g8Q&<&DyT4{ISnJu_x-`#y&sMh{Iv}3#xL<4@{ zUTH-J7H8?)P6a()GHu>3E?F4}0l`nGjmXhVzL509l^)( z9D0Utk%^lBa-!7d$?CC+3jrP9pwx{u**DAz#Q*IDP>9YXdwZfl?t^APfL0WCdZh$9 z_T;2vhIfDDwgkeFdPV>ZQN0NXI8l~P6A8-!LcmqTtJPa?VL1nFBJW&~!y}`Ablv^3 z@S8Grh0?TAghb@w@jog!Ym}G`a`)srFa6Rjtk6->XDO?|{W_AOz?`Cx%}l^E>X)U@ z%FCMSrSM;IJqhi+jbdxKsL_e;I?$NNI)o)_m$v^KyX5y zl09-21Vvo>oC7;XT-pQU%sDtM@ms5C;nBXt8;3)HKneWyd1fZzR5CDtEfDj?YHkkx z?_X#^H?d2P;NmFGmh)IN%G#Y>35x56)ujG`f!pg@Y$*cSh=_;^q)H$&BZE>kw)ULb zhDmeW_E7@AJpk5~>E^W;1vHfmvWQ_=i5_`8rDj||_eR)n+7L=uH^ zC{;S!oy$)$;oR8CNmS9w_o9D;U;zeEOplQt=lh!*-;kOCpNju8-EzHhjeo8MnivW+ z0xXRZ+{rSX=+f%oU~3wmH8Gsr*i!v{H;k}zL=}Q4dh2kMc;r5;q$bhtqeixHMbQ$J zCjZ)$krtSrjKN{i(!Q%vA!t=YpJ$;xsbmu4;w0&dB7OeDUC>qi;#^acxjs8xNko+_ zJKaE_pr8|##%F8~)`?>IyJOh zP@-4iH8|4bt&!Ev$*vBVCO+`-y&(AEN$1b*+t4CU^S=E|ye*%*cgLUp z1RagULxuMyUy@B&TL^5&`2dfjPt62i^gco!p6MlOYpZX4VO!bmFon{<8jFheOfV++0}hy( z+8!rMp`l4JH%6F14R1+1kB|_S9izTE@*nuD6?DDVm9Ie}?tg9Ff2NqG=?m%d#xvZ2 zd;!O*Ag}T`T`i=-;qvk3p!UG&0b%4l zsA+DLt|@s}R~Ra18P0=In8Q}Az8bYTRW)OEQta4NfY?>_1ptNlY)%mkH7G=~X%9 zDeR~x`exemQV#}K`8E&6LYu6kf)%Itc;RHYD6=KE87+tHK~=#RE+Ctgq;9bpmcP z$*Hz@)~3?(()%DirRND5>a?A&C{LiHRw!a6NqMRmjj2Cc_nbPuEbxKJ>0zGpLmUTH zqO_JvE?w#$J|31iqL}BQJS}pV%c^Y=j)q)__3;2LlA^%h4Z=iBvPh-~hCW>BEb4-l zU2p|sPax;_zl378Ob+@3G-G?{ z$9!vmhsh!czb{Y8V^Y=)*R7A(SYZ=?Vg^7tu^_FLb-kvPGaosH0jC8r(9Ro8%0eJK z{zeebs^u@@EZbo`!|m8g@u#oW6eVVnOhUv90vRejEt=n(e}6u=dz8f1y>q<2>{IfG zQb4%QLn#Lye)yloNKw{n8}~V6ae5Ej%BSrg^!}VkLiaw<)(KKjK+d0TL5aemTtjdX zwZxlSL>i4nL?y+X%f|NTa7zWOG-HCeOeO|WhtKRfm_$TpdFgHxxE$1*HHQMfkHl@Q z`!6Sv_`V1QFL*#gYxTKsq^?KT{_&Dkst+T}**Vwd?*jZmB?TLZUJw1u#5tXp;M?R&_Wks^8TBLxtp4|-1zlLS8MyadGfDX5rdKxW<n?v2VvJKvGbv$V{+Of!9(-Vv{)yt=*)7^Glc}5#~ z7Z3U%XjW*187SxVB;S%B?(ZqZQDm&S!>TGbB4RNY;rGrv9dA84;fsXk;I zP!_W|jT4brUGYgyiBD-`3!I}dJh&WJ*M@~lM5OeIIZh#qe1sUbl@=icnuNr$PE19E zg`Q=W&sqJ?t(Z?VAP|V!&?=P*WqqD)b?~3|ufgN&+3F|Mm$lj^zUZeQj4k}dU7$%K z$+jND9z1+9GrR=-?bFl`6{d4}*Y>2q5&?rzQ8hpm6IXG%3J%ZM;b~ZQx>72F-hl+` zQ_kFESm2orDZ>LzPf27L>R%9E-pOX{b_dH628BWF__#Q`lRqI`zylfS>=QR{-cxc^y&qG|wl2rSz7 zV89DPT*No~7oAeV6m8S~l;Y^8X1{(dkAxS)ovOs_(~5bAk+kO9y0OcACGPj2CPkyB zUUC`vtwv*QoiK-e(J!mV>K$IN3Paf*UXK$Lce{lP7Itu7+6iQ3i#h$_*nUZ^BgN1Q zPoBudZpkvB=Sj2>4%wz#@*55ApKlyk0)z}XV2ih)17jEl0>%nUJWr6AoTkLupkZg) z_1R4OPRB?l21x3zgoH4PEPz`S#L7l~`uTiZ@k+T@5o_GCDLbAow#$}GJct2Z zJ&Fwt`(OT0!~v#9_5X=p722Ag=mrjW8R-4}gZej@TjJk#jz|)cJa~nxr3W}fgmc$F z*xKWA^Gc}I=any$W>{t1G2lbj%Y5H<6ElJA9{@NFwJ_;#RT}H^xC};+B4CN06tFn| zrqr(^E&Z?q4lF55wjX+2P&;f}plB61-3r69G-2*ao=$4XJ2HZvyXd=C_%|rEkW|h% zAguM^$r>(H%R?ib37b}>6g6nx-?ANmjfSJj@5jR1+dFJF2TZ?xIiZZa$SF|kID7Kt z(Ty@Nx!U(rjYV|@xp{24dBj|z@_wPT>rXG!0D@nMh1FL`bodXfrQJs-tPKg66hae} zJoBuh35nj=HcoEz;plF&BMIwB!nvua=@<>OXi=8v_(G&Z3mSYIUWl*5!Z+(g(~M{< zeQ4EBeEFZH;QMOA$Ql0=Y{(`+_DK?k&Q}RbpQi))}U{UX|@SLW`6)A1`sC5PaWm*MnI!v+r_<0s12j=gSz{ctY{!ZCr z=hQ)RkwVcNs?k!x;@|X>q*RHiBnYOSlwf`SIGV7&!RKGjI#zkX`mQrsP0%@YK2m!v zqed6=Vr2M}aB^s)i2PTXRsp89AWIrPFbT7IQ9gP|@DQ;YxY)E(1zymDiXT*Pl!p*u zEKY8;$OKgIWn(;}(v19a1Rb3dlktP5DP!>VQ)^Cw*4s$I*O~--EMN7|7yjZ9%RLrr(({EeIpHJHHdU4nC{%FGd z&X+%O-Mtr>_ul?y|6eXJ2?wmoQETKrat8kNsm({8PaGV4`m8^rNMG-_WS2X_xwce9 zDNc+-l<278y<--K7NqP;g+VCeVODaaqtKBe)}=t%v7}3n{*+2X88f3=1?7Vzp?~*B}4t%okU5-$kzm zs%Q2CgQ%7h+Mn^Jr%OX|a{n`n7b^b)GW1pD!1{E;8{cX2f6R(lwHn}=sCrFN(sO=Q zSv+Aznr%R0$t8Oc7W`aWu01`6jc^xGr6e|8(`N10wf-5ZEytyeLKxM=(v0=z-nj z!((JR>dm2?)Bir=fDfP!tM`dX;}}R}qC@JtL*Vf$y@BzbQRJ!hIaK2iTKjk?OD9;$$IsbL`@Z2v6(m^aL5|xXj=I3l;#z??Ceeljl zC^{3Di=bZ*+)0+1zO#cd#7jA&7Oie?EMD50{Q-5 z%&8gp~Z) z6KDKeZ8KD29mRm970f{jkk}QDo0RA(E{lvmw^9p~Slqvs4Bg#Ak$x#zod>8*+`Vu> zl#a0uXDK-z!d^057MZX0UtDUckdv8zeLbdrB4Xe0g7iJ7jZSXD$f$)*|2TfO5Q5x> zo_OVJdZFrI}XC~3l_Dj)AXhIbBla(54ODj1?P>idpjVFVu%xQU$=!;7yxPW z@_w4+41)-X;0Tk#?54GfRq(E}W1X~OX<>uJe{&7F(vFhQe{;iFMVAKNdYSLGjUct| z+n&C^sgDs-&Y)a_%sY|oj;)7`Qoi33Sb#GMW2C&vo1kRncA`F8Ea=Yr6Y&wHDb#i5Nean~ot3jKi-=iQ}qCTjRG@nQ5TM@`m`uqGzO zzGoEe!s#c%=bq_98$)}4FNF_;46>EkBnx45V$p0gW=iOx$aN&ApMBVm`P<8td5@TH zpS_${N+m7Ok)e!XPakWg(Txf3%=D<>Eq0&%s(6EiI-9ETEYN3mT8G_c?4rpjeMr|g z51j<#cOr>@d^&w;Xv0jpgGVgQD6B+=Se^+@6FAPgS1S*Nk}M`f)lc=#dQq9X?pw;a zyoVt9z>U)*c_GG2Br`c`2*gT`VLRvgN{+3qZ6@}qB#4-J^392`wN42Se9zuZSls$6 zLzT1do)2&Etuhnso6|#R*IG&q3WW}qjAnOlLfRDH ztXEb;da>LjEIitV8NmC`IKEp8r+5O2GSZ!Ao~$Q$;sn`EIG)CHt@lwsrMAI4F;P9D zecT#D^8D{bn^Dghu~;GwBm6=DJNZWmi;uB1mT{ zbp&I0O+Fs2#{cE%XSpgicEdxRF)2K#X&?=eWe>o;Sx%IM5|-??%zgGnN4)FY5))er zQEKM<%bFFmZYU$5Jfm#*^ej0jjQ8rNgT;EHl#4}k_)bL8y(KBo%l2ueI{VMzrSHSs z>#siH#WuE7B|5(KyHh^>;S0}Q&Lc1d$yNcQ4=dH8Am#HCn-6AS34)-~hGhkxr@83x z#e1?1Nwt_bQ0>wsXTc^W>j3Yq{_CNyN|_sUj9R27(c1kk<|kXuJ^Zx9}BCj-S)7*FwhzSWxO z@OOIm3h0O<2FH2YDI`6c2j62)P^p{*j?_H(dkqDN??za6Tag5sWTcS?hQ-TB!b}|tnL03? z4RvKU@WO!zHP(BQSGhT%zs-W1s~>}2U#E#!*H6IxLNBQkgjE`lsAvFPr+FYPJH|@> z0?a*Mhe)hGC7e}Zo?s{6!;2U-MeMQ*E+pMB9R$tmF$m_py)dsQ}nr>?2*sBRH7Mzu zpcnq$*T8PKT}0pHFAqDu(&z6tYRJXuT0})`_VRydMk%p8q@)*Y)y=X5wwLdSQho>yjlzT!Z z?BD6*I_5CY!H8qdb=m^w0?K=4=jv|y`-JS4`gZ~60eU_?LUy<#}3|hx`q@He;;`Uk)S3n$Ijn_6r=|>F{2k2l{u)IXGV=%l$-X7Eo|L zd8QZlhQXR2z4!^Fck-8m_i5HehL4ew!YzZSO+NPu1jdJB9iO@f|B%GS8H3d+N;v98 z+8{v?6#V6a$jN6=8>%n)r-Y5<6EyiB7~CUsLjkqzv5|%}(}w3Z)q(W9tovk?thx`X z_T5D;K@4oOREyICyx&$9yB$w8iDEd;#7Xfbm3L_+p|XrSn$u2yD0B+*mDy&IphkaK0QfSz0aSjf6~>A02KRW=Fn9t+X@!x*5LG414_@ zkA1N-a;0UUGS6H$pw~JpoXhmXWc$4ln^q8)DJir>-Z&VBEeb4~bggau;wK{4!_w87 zLr}kekw2?!+I=jawlP&#zxb;hn_A8OPqM;ZRj|5T%QdL3M;9~U2!eI1QrYAB?5*uD z*}jI^cw5ydiV0%MwSR1z9`j0^ZllP(4jWby4z!gp*Scj@(AV1$M)$bW3Pwd&8g?_E-)|BIU;=E=O{j^wMld|MDQF4B;cR_ixmc1}@@vR8sYK z79$5c@+r_`OBZCiBUFl&p6BT@s32NiDcsyFFNKkW{XObmszG#_cS$?eELdqWZLsTG zY9V+Xoqeb{o=LPcI(MhP^9#$PQ|K$V1y@HUjwsN%mZ7< z^3V*z?DU0&=41vaF?iTDWJB`xuu0p~ee;R-@pN~a-7NYeg;XN&>&0(*&evAvF<^*~ z?hu`C6Al&&IKSG)p;aFT$U{e2jT2c+;^fQ^D%DHigW4wbC(Tl~KR1C4KCLUTVT7c$ z#Yj#zs&neXQ>dv>=u`JN`^Stvd$w5>99)}ofrLfAQSv48EO!c(keyx|!$Q*MqK#d& z^{CM&aG^+)L6RUA2A>It8-szb$i;?3&{RS^zE*t-ybfGks}0rx>DS&j8I|TrgP3S+ zrgY!X&B+5((P^wILB*~G;^$8rwxoxekH;Ml_GR}!E+cKrz#0(23TW*v#c z#ya0gl2m~d1y6r!F6%!JR^_IjChp3FEDz~tYm%A_spWGQ$PvEf^m^Nm{jjL3JZkV4m8 zHyX1T0?`Gq2QT5u9e(zZMNA7A6^7birgM!L(hqNYp7S&@WF|{$N56=~ql+iSbMr7` zS=;dW5rm3;BDLJfJO+;F0M1l|o8>N!O?6~Q?j*kruH+DKH~H#~WjcSI_9JJ=YBT2V zu^U^7qDX5eL8&?8V9>o0u@|$5?j3xp@B4N^$qyDRTIW}ku6^Jp?6lO!l~o5j<*^Yo zjR2^+#hb#~6PoaLaaw~$)_BJur{iO_n>%p_vYR``r>8ZWL<6!GGsg8B&SZZ@QpA!W zBP8=5vY~w$e{H19zk|%bi`kJVl!Xa8yi#cDzrE^z6uEo!@p)G}aGo)alD)e%k%C+A z9=;mnmNTydEtQ{mfXdbV0^wH)3pz?h&Acxj*Lz`FLXZ*Vorp?S`&qLlm@y*%K=-9T zzC^1*lfaiU&3UF*e3cT&E|)uCd9G`6c6}>k@7uM?46T6hgVJepyA=93nAs3f3(6pj z>=1kM_|Adp@!esR9X@2OBJ|S3XMBw(x!X1xl&Ut!zK*o(f$h@AIL>PzX{QzOxL|X5 z)a{V*AYtrxWdXOTTN{|qx=5##G49H{)(a}ll06r-mth`mYcrJIF(?bMZSwKlLH z9M6m$SP%HwMfUWB^Xfaz`v-^L2`L*{5(g?6_7d7^5B0L>L)QnM)-YIs@@bNn$GtYs z{be$)tN_suB58(GytoRmLt?gq^~E)E0;7^}LH3~x=yLZ$a#N*9lzc~>AcH-A68ILy ziy&ioX-@5O1^?3aPGt;UEk@>o&vlgfnWW>peeK=lWw~1Aw{3KrrUhBl7nt6`HO9UJy}y>a;6U6{Ts+Gd6! zw?epm-5kVYeV|@^o2uqJYetK!8y+*WQY)5sK4_e%9~%E2*a5P2m;ES*UC;E@Sz8~5 zXP&T+TSXYF&oU1sSQ66Y^<(WDcCDY#k0aFo?FAUiK073D@g!XQt>PP5I*pUbTqhvHY0+qOUOKdY@JU1m@AiOl+HxW#76%1MB z*9WS=@m5jlfG$c=^6eo*jBc_o>HCQr_sPA-&!wNOkc&B{>5FHNfBQm?e9zAMs&KBD z{Zdk8&L|9IxpRSpOGc~_kMD*C{Exf_{y1GC-Mz1j4k(p0HA2MRY!%3sg4aC%gdiRxg>Vv(MC zzPkG+^4ZgYhAy0Q8b6fwPnamX5Q+zyyW?rQ>(Qm%tDn1J^_%4W7F2Hjb&4XDZXe}+ z{%`jJ&JosO`GDj#>9=xA!HmJb(SA2~51)|Ip+jtN?E0tl!^EhkrG#*72syP7SAeS>?*MP61GAJ(=*sCAmQ zz>Nh@ZR?C4M^~GYa2y{i6=P{ay>b3tn@3WaF%84a%-`BO#Xeb-+4hz@h%J81lfYT# zhyyA-{cg&-o2V`!Sp{UeOS&um3!`u(Yl|ABqeHm+~5s?BxMmcN1mU zhG=~}{l2U!?61H{g@Bb!&?sZH6{nEs4>d=P<7R@A1kFyRx2J;I1n1ngAHMRR@V-Y% zeO|Y-$NljGXMQH~@7hs{{=LnV_qkv;!K}uwCAIzL37+GO>08CaCtP0iO5mmPwn3dI z_$igxc($@-yQ$3ZZS1u{^(!VS`|Wc8?^?gM(`w;l(Kw`Lc3C$#;c< z1O&-|32hTXUwRd)&(DyExs6`Y5)r28pDv1BBy}bZQ(RpUwJlM!?%|GZKm9#q`;y>% zRY2UZ04+hGIzlb~e!aT(5cRcQ0!X~c@4hH_K4;hcI}Be}N4w;B*BXL8BJ=K;LNKf$ zYxzv0NMjy-)pCFX|1t$P<+rY^lNVQykt8xFgG(du`%Uc$T&j&zMgCa$QEHS$%JG`+ zn?dDlBf6O#$XBjP?Fni;5T9Z*AAkK@%zhz9Oa4)owiWT)bUb2Hg&}!(Rhc-ivNW%< z8<&=1;tY>#`n|Lij=-+VbKkPrtXO((>Z4_o!Ynm0>O~jtOTrI-Fh8E5GsA)Y1p(|+ zBHtt{ECDG@+jCbggN~LBY25%a(mv18Nm}+q#xlQl{fW^UqXQXR)Pcp?T6ET`*>9B5 zb_G4o^=Qn>@F5%_-wdvo;#_tZ$va+rB58cDy!X+Cr6_HBo zZH%)=s$d|OPxQA;e~wO2r`Uw@tJjaat6?dA2deuX-QMnf!NQ$=Rm)NAPk&n?;oOnv za;%3d7)#Fla^d<|XoH3M0TV)@x0trHOu_XNkNmI1i19ZlH80IM1CZ^3tR0b1d z{!knP8A44Ri$NQsToG-6wX-M++mgZx96a zkk42F*L1agJL0mqY+>_BH{*=3ic^=YHE^<_(hpvPNdC>f6h?R=BlS$Nf)?xx z4cE%P{dqgZ8;er+0|g!VsJi6v@)^(R7z$#CIDQ<-S6fX}+5AW-E(a0EvA>#gc|VTx zDi$iW(sU5H?wyaJjPnC_7 zc-xnJJw|co`d&DpTX!Go?TC07&-S$45DA~hPJ^Ox>YkVZX4r(YPY8co#>ZRVZqiMBF%4~0R&M@=xy<{Gn zK)$3G)*U_0-Gm;Acj771 z$JB1(5u%06u8^&r+Ge=HeZa3msX|0)G|PX!CYTbmL2jBknVIxHboyL9ouACtSPO3U zzM|8Gtj1Vrulyb<8xF!EnQ|niq$<>roxz(e&rwE0Gni zS;Pusv0pEKhC(UTvk}_1+#N#CX2L`1-PSqE^G= zp6mR=&*XEyR}!k{;Z1!(n144(D*i#FB)!9T`#L=>6y&X`?3Qgktw*$i7e>E9+o$q% zeQk>Dy#0Gt;>g*IRPVi{m6 zT7f!TI3U!p^~M4K(>!f+G1}>4#0=Sz=dl5boauh7w1WSt6)ldvc;A3vMkdjISE--6vdg0l`5eaR6a2*3jnwe5aP~Lqzy5_L{ zt!`s$`&rI-HKX>o?7*mh^ao)hNJHW?Y|MhBxUf%X0b53IT%tlW=OZZ=0nBSKVy26E39M1; zJb}x-`#tD9t&`KOLD!?WlTu-gFiZm_jDYUUt!c(9+xUdLVA>5&FqTh}bYhz*q-W*K zO<9xYTRh6kzZss$<_{@((joPD&}MyDDu;Nvy~GP2z#^`3{Ibz$dQBRIk6Mh~lec=` z&2%Y*E37Qk-;Q2bd_kOetq}e3-&knsNWEVu`Q<|)8SA7Z2Q@VM;_;OX**HGYJXMur z9t-K5Yx}Dpv`d#!Vs3LCWR1^vwMPA)>aP47%J=8NolIn>5VFr?DND9Uwva7^ zgk+r|WR1zbX5I)PWG8FZY=dMUGj?U07`tJAe|BwCpPE4_}q<% zdC53o%;PNextHI`x_#|?c3yLkI(tAF;fJ9&t=4-5yeDnR7B+g82t&i;Xa&zHMd>Hs zRME$K$pDrE;oi-?BA09G=NCgD)7*ZK7kj8}-tpkPF5?3CS$@2&KA+@9c)2!aG?cTu zd5JKH8|^e}I)p8+Ou22&y!6tfFb4w(rnB<%$*b~VutGYlMO)L;zNHQc#E0os{Jn;Y zeV0Ucu3`je<-FSInp#>#|M}FcGf3cJXS!?xa}%kb9Kocr$xt|?EhsAeCHQ25ZPL7_ z%*~eW!a`CU)8D)4s892NcUCmM(|~@J!XDlLO_TxEI2nf0JI4Iy{3>rig-KsWAsn&$ z?GvA_YPGhxsvY6L0J# zZt*O=ByvG#-l#tWjXPskmLzL)sHDWY)jhkLv+}^%u-x>427f)8V-fi=-V0c2=M`Y4T zufblE+;ax^-D;swH+%AMm*KRUDQzg0U z*voXb{fawrH0-%jOa6-cjh!mSHU2`wVL?7%Ay0=-m(}~RCgks*O7SWG@fRhkhtIBf zQJ=0Dr%H;tLF>c#GT{tw1cTg!YzoYmHIk`sd^D81BOhICp5blDAkZ`WK8R7&S&wjQ z7dJT3MN?AD!x~kJt4{%2c+p%|Pt4reW$o$y1DB`F=T&cwBNubOTEaZ{BcwikrYa}Z zvnF)=@B&qyT@=SqQj}d-jXGNDd%BTT>pP>??p0~E z;4|Vh*4wst9_#!4c<-pL@iQF0#{0O~n?_jxTaI&DM5mS|ML(*)+VH2FwLtI&C>7!{ z)-RTH%j|1~U+C8Q;G|UZ!YBsas?*rq{4~9Z2$z|H2MNpEJ+=>vF|K@eo zv5tlLT`8DX1_HrDxduz?j`;Jwzn0M0^!@a?#)a z(C)?l)a|TN3X+#4kI>_yrRlRv|6Dj9vE#`eiX+Z&zBru2sqyMNO^u^b96lFN{hfg_ zLp$H(=;n+)bzo9c8`qPLR>2WDbgCTnxGyLnmXe2{&I8KQ&XLbhauaUrMRKF zFD1cFdl9Z$Z)X9?VCIVzhy-^R=}l9Jiag%V-h=b*3j4;MbO;K%nZzgPUf`9G{IfuV zw&}{MP0szM-`~(NEJe(?ktjTWz1CFt!q#P#eH;$@{SYbto(6`H{kL|zxXEqE1u{=b zLXaDPeSw<9j<+^kR_Hst412#AGST2UVD$tHhQ@P>ByAy&r;V0-P7RKxC@iiEGQ}SV zF&(YQF!P+rw?*Ds(((6>5b`5MM)upS03s1K8-KCv2&X57CJFM65{u3?l1xsZMMQt$QUjzlY z7T4}`2y!WE%j~>VQY3|Ch*Y<#Dt4E7*)I4%y?Qe>)o@}NV2e<$N=5P|HdP^!+VA+% zs;hpCPj#y5z(N9Wp?VSeNLb+0>&=9c&jJ$`0_|d|;LE-^amdgsk{qPb2F9ynZ=-5D ziiP@#T{SB5 zqv5l-pCFtr9u;&so${`kGeaKgCAW~dsSfFGg}wjTx45P3ud=?@`M0m|UZJ*JOm|UQ zjqbPG92|l*OOdwOO;T6BINPc8CpA0LzuKjJug04q1GmB+$cX0+0K_35gHcuG?MQPj zS{tj<(nn8K>x$mh@;K-6VjNmOIyQ)YDvbU)wMBCkuboz1{m_6Rv+C>Z^5U<8N)N2B znR>pW-LD5m&C7EM@RymB&MKA8|5zz?$?%=BoQYhD*i90C2A~@iF3#79HJlX=j^JHg z-^<2r9XI8?H-;shCS|s2`LR>%MGlU5f#(RAt)BRXN?>#`HfyOjLo6IvBAtzdM{xM8 zdLM7@F6|wP3rXWw_3b|uVogJDVaWp(VKhr$`}FnmW5Cn0+>q?2qO92^un6M;RENvK zFSf8NI@}McWEit_J$K0x*Peo;yiQ2j+M!+D**9@S9OkJe%Xnl}m@@HrY;VPs3HPSE z_lh!vSPo1Y9wc}T**z8QphU_9yF>k+n4i}Sd(@p(?H>>zLb@`tB+kMdCMIgcHD}B0 z_bd2@_k2FX6W6u1wpnVl{Pqz$e2?6B<;z<#?m0=pcs=H4`4&0%<$gfTXi>N6b8gvH zj?nU@zz?VVttZi!ZprT|@A4Rs)}y?y6Zn2RjQbIt!xq)-zY*speWVp3hLkh_!#aD)pWhCeb0 zQP0)$UZKo(eO@3G9{k!u$&f0b=Af>Heg!EADc`fnP%<cGp+3lO4=o8FIkj9Xco1X z77W;SMl2&;0j$i=FTT#&gSTUi>c}q$(>2vM-bxQe`NbFsqm%k!artqn#%|5>AQ&MD z6U)^`oJ+}Lk$?}LtCUPoY2m~g)d{#9rAk!~V00f`zkXA;{f{OJ6X=lYG>%O)mZFOS ze(}9NMHzY3b@VK9qovSs4|{J(%(vrXgX<@&^i&z=GgA$4?|YZN`X2sXUAFCrr@nU> z+N#JaF--UqC$c%6-M=|t-Cw$1D=u zQCd2GY!D+lr2zL{nd{H0{yK+^uq=-z?>ZaT@(tWBhtcs}o%KLz;ZhSl$tYdSfMb>h|DNrsA;t96&v z9wGg0!RAX`bH=#t;*9*7pDa5Tsv9$oPWeeyV`^z%(m*uRe)NjCG$5Vj+ zAachsk~U}Nr04(LKRg&{lg^5tB_cnxR7y?tNr^OY3`tO*JL|VV6wfboP5V_}>pN>m`?oeMti?sFbeyU$%1t3 zVgGOO*NBtt9ivMZFwAy`&>~c*&T~_+rClp$>h@O1)(v_dE&Jl72TT6JD=!*D!3hoF zHn-c433e~nQ~1b0iBFNns>Fi{)`}7S9BF*I{$9Jw`oe6FOB-IQ)H##@do6g_k1BP+ zy=xJhjWXHDm-^YZLQ+A%K!20t-3Z+ zU;EaEs~uw;mmd}^K6yUd)#u=R^3NZ41#L^cP1#DlxLky(RULs~m3+roqdW3Pta_v* z+nww;`{lV;dRZvSs{P;FOQ3@n4`Sc=sv3%zIHuar*_P5Yz|T63ReXq0OWrRhq-j)p z?mT6_|4;xgxgsS_7bOnYpo!u+V80Mkm|d8pWonvVly9@MMIPpMh^X0i(A9KIfz>?`&hq2>9de2pG2LFxG0n7Od>G{R~3)};?b4qQL!fpc!cuL)< zIJ-5^{6A?7PMAM?LQY=i6_tl(V9Ddpyls)VSTQmdeHIYQ@V<*GEsBVp!n#lS#nVK8 z84n0V5<{$`{JqXGy+ZQ26QY;BnOaSJ!E$X14q#om*t<+T3c8IcB+m3B2`GzwZmo-z z*_-8nK(5N1uG%~AruuF3b)RYKGYAO38n<3@2p8QS>+ws_q4@$lBH9{h(wml6HKc3U zP;!|ipwHA4z=~^AqnMHI=#llQ_0jR6&hBBC7|q=K+e_NNmzl}PD4Wz(6dwT+Jtlr? zFJ=N1zSEVCn0?3`!WE~(YY;2GkremUJT?tLipJ2%w2&t6iT zotnA^hz3qEC$?{^xf03uYZoyi!nP+eBxHv9k*y?PIEMC)09cX6ZyVh4ft}lLA zWZaaJWNz9yPTC@WTwj%l!;z$cJVB_{@e9)xC2KAhX+W2$CJl{376RUuORrSy>gyZC zcna?-Y|)AoJ&ClI)BJ#G*-#a+B<+jeJ_K`lUE$%1vp_xD{;KtJ^s)OyxN4crASTP& zW#!l6305Cok-8clEWOhZDRcabr|#&(M?J>f<87AXjTS*cF3#iML3og5d(F1UuPRZM zdIDi0m~QrivVb2nj>+7-FVWe#El!=*_75gvSblT?fsVKy3)|nP zX@9`xl=Vl=(QqEk9)~0qtW<3cMWx{Op>tW0V7Hg~V_IW)X_9?QsL`tRE{5oEw-L z>hCC$+wT{0QL589e?6hhSk#lX)GJmXE_H8*iS+h_S3r-3g#epW(v~|`yJT8_ogk~B z_&`}9Qy0OYR3sUqm+~yY)UzTxJ}bX;uf|Rr^&OYt6=N@0t1>&yI$HkI zFK?}j!~Dv&(Pm&DH}U|bODW8g-HdB&z=X-*KwQh9?7%`eae834cPX~SUshbLyc6%< zQ*oBP)CQI)oZ17J=FB=JYC7vd$r90Bd#2u98|`aWGo@aB3A2c%t;;Va7FPbLH<_nZiXY(;{ ziI?WQ0oakzd1ZC=o}9@n$VtpM{_1KEr{}FNXBXz7Af!!C+K-2pGSRspLtZQTkh0Jc zy8}Qn#Tn>Ns_YNofUa^Jkp<&5d3M!lMWd;)wM-Q?mt!~z3e#Q67M)o*_pb9=L-3Nh zabLDh$;-nUhdw|o_J@>p=A>D3=5-o?lz9&5lwg|0_C>z|n~UVrcmZL4_s^ws5hJSB z)WC&P7UFFI-VSqSk{U`AcfZZ#zcEK7=E64j#6|R3sN>37_dq^e(w{k8&7c>^NV+H$z zGeIM2l}R|5E=#yK=Rwk~sZq)k96+0-7XhBKon=Bl`w`rcwU((H@YX#~+}Z5`_TX-F zKfpOBGM057< z9X^+2W^wf*2+#hEBT*d!og5jXO+w66qMjr40II*!yD%i-g|nm-bv#hvnxP}u=`38e z%lLl6aC1Yz>6GcQh5`>y{66zle#hEhJVV8KKT3kg_4*k`hS8L?4?jy;-kNQ1r Km13o*f&T+9poi=L literal 0 HcmV?d00001 diff --git a/resources/images/logo.png b/resources/images/logo.png new file mode 100644 index 0000000000000000000000000000000000000000..630170a11ed53ae8f142cad257a59bf9dd2ecec8 GIT binary patch literal 61395 zcmeFYg;!i#6FrDLAb5b_mJlSk1=oZSToT+NjRtGn-GT>q8i(NS?oNQ9jWzD>`n$Zm zZ)X04S+k~BvtZpm%{jMD)v4Nh*9}&bm%v0LL4$*X!<3Tz^c4>7A7wZ=c<>8k;7a^8 z>kRM<6)dS?2M34M{rm$T$B0D=Ttu;#k`qVSL`Fh?`F_$~w*U_AHJsF^56aG|`-@Jg z!_lPE8ZgthTZk_b#xXlF$+ zoj*NXEBrFiVEUVbc|kX+kT#*R&`FNL7vi6uUpW`A3i_*8kOCEiQ#X1sHQK2TG}Y-I zN`6|u*27khx4G%>5xQ>^|D}qh^6&UhpL{}Og;?2|uUg+cf@FMThkMDbqiy}O2!GmI z2-~@^j%h?kIR5;*E~=n$77>mO;TG;8FAMtLp*;9pu%$@+lRGO9sQB`EIeJ_cyIF9(SJH#P?tD?7k>KRM5YoLnf& zmkK`*;=VdpyFQ%$_#OrSZ)EZLBH$-+w9V?QW@a*&@!ZxKbXMGqPE$1`7b^d~5o%X7 zWkYEqM3F@m1fnY|;c&@$0xerE&!)Bs-|WzTBeDONJaD(c5BQNm$VEA+)6GcC=*@74 zf(4@gttBfTSWEY&MOu`m_hiUv>=zs8w+Bhg19XWsk>Sj355bo*-beViRNR z!ItQgovTspqABK+IFnHAzju_Co0KOTj8D#j+V|b8OMR^UG)$&BF3tMyV%KAz4c8qa z8)kIC{{6!qRa~QWJy<@=sE_bplSL^dJWnb$vzmM(Rml9EXpeYXZeGyxLm|!oH6rEN zsAGE5y{S23El4U1xvuR>TlwmX_@Vc+|1A+P>R|D1*h$ug<*OD`#5hg;{%#B1rbeNO zwf|1KurGj7cEh*q!JZ1K+Co1JNjKU>=Qy>!9O<^M3cUUsRUHV-^;O3v$g8YKAf2Xv4kHo;SF?tkix2EF3^xcl=7g8eXIzvsn;xWRb zyHQ}I?gE}v&EFmU(SM@eD{FYmfZHNB$4}`7PSm=Lw_y&=0U1DE6SI3$5}~DM(pjC| zRteNU?vF~5mi;}FQyZVd1efS~34~-d|5bkx93El~W&$6uX|vPbb6&K2BekHW6m8{S z?^Si`{uh>1F&_Z;kuh2Z&vc+U?U$9)Yi;TGj8{t2P0<}D9zrmqThL8h}CuV3n`K!xPvEt zYN9Qwbu4U&UKuF~P0ZyBBOtc<`n7p4AZCA1#oVXPNeCMASmw;!8vI4^>p!b{0|{73 z=tXd{&jC*-2oe-^0rTRoBp3*L?8ap~ngdTSi`_NE2##uepHVY7>w8nj=N?fq4q-=r z;a!h@_V~}JGq%0%dm6F7c8&`ElEDFurSOwjLUZ#ZlV4R(^)rOSmUL|Ag9PT5Sv?S$ zFtVa!w;(${s9hhexg73^a$uS)!Z9w*ufqRzZ%O4>1;exf;ovK~*G-t;1S=R;4e!Uj z(y!>%PwJS77MRrbg6{M%?mQQ-?I>RcYMQhXkKSxehbjDZ1*%+8quOIz@YbaMiVygs z2u{cLn9;IN0Bf+7MOE4fY-y{b6!PI)R^Mw36_#rW^^=GfD0F|Lr6fbg(>PR)(&v%3 z^Of`cV)-GtqR`8p0(s1)He@$XW$$)GQRig%X2ov}S$fo##)k;)=NH4yVCSYQ9|EECdb%Eo>=dOn)WjcSwdj$TN+ zVmRbr0_c@Tzg4gmqAd#VwG2@MPZr{T_Fx2N*l8vsyEo&-i44J9ckFC0qY~U^syRY2 zc#0{Q6+J2$K6xNs=!2?`@cVdL8(;sk8AdfoqJ zf~a@&z<&-&d1Kn~S&l$)p5npABmQjFU?a<3UpnJ0a>Dt;vFciEWUhWVcXvS?GW0bGPXWP zG3l?9WBu?n@yN$Yg>g=5@=$S0maVI9z9xa*taA)chD|~8&8Ii}k4W7qg7Mfn0tQnk zSwtGtyFLaA111@(G3Csg`Q*3JlQ{fKS!XP2`T;}7Zp-e&Elf>bds`=X2eCm&RFHm^c zuP)SX#z(2JG5pK)GAUN(3CL|yjEED8w&-rwaxI4y6i&JqSUb~ZIy>A_&{YcCcgnoc zTPeodX=h5a`gnM@ZZ-}%py(7A?fwux#{FcAFuwC7t!SGYKXH0pN7ulOg9>_zhQDF4 zW^9x(p?7k#-u2eqS_@~4Xd)uOoYIYvOiUgA%Lzs)=9tbzuN&+Bw=YnP;+NY`d<$2& z1;(V~u6uivq-esIbWJCP#>8~)HePGpLLwjmY z;KjmAdUDR(67YnM4-8iWNFqf;(tM<~wV^3NsJ= zU1I9$J3s7VE!i13$vFO`s9Pm)KAr-v@EBxprDKVMK1|=|cjZ1IRisZxuz$l}1_QV2 z4pM@j3Cx+CWmLStG+I86#wQkbmBQYMX<7N}pp)IjXv*A1d(E3p4;CXcJ3r)_m#s1> z0Qb3>Q1Q@aw?+LG$;dH#!^DYDL9lbTzaf; z8@w{4)!gsPAl9$d(4Ch9bbtb4lpq33=KKA6!MY7+unTtPxo&6u0^){9-L!IE*Adc& zL??v*Hl1y`UEqjf9jbL^-tEa7Z(*|L*PIkj6Kb%lLYVF|+9S zQvh3)Bsq*S6zNs7w+nrOwVpu2q=2z$WKdL-{t>qR^%X2ScF+fmYYqR4=C>yWlQTS% zD-N%vl91+-*YZofrNn%?@#{S`>`s)+1M@9gGd-%?4z9v_R7X!FWKZ+}i40X|LFHhh z*LIHe8>d+bA2)~T$#*|JoW0c$J~@6tUeU|Y5z#|L^b4i=vKUL){)^Ll#8>~GPiC1K zcm>bZw3Rl*oL`n01m9KTy~Qkd*28#b?C6EECgvcbeEIR>HT9V!67tIj5tR5h9>E8}ah08*XQg1uWm;P^|13knE41Ln zakF>Zcv?{XabAD=X{x>4IAhxW2xF#}s1$htsuyf(Xv+j3ikpWHw4?%QC9D`ni$l_a z_2cERp)ZCy2kXd&X%$I4<+MH>ieI(Z(XQ<9qu9;#54D zUZ+kRT6#yw3Rg8VQ6Umem~=$$Dlr8`VXZx%{6ej>bNS~f;P6lTdw#|zp9m>a5SJE9@EJ;?!A#mIV1z}(f^XhAwTqTX9fe~Nz7nCrR&c!BVSf-V6FlUH zhOd=kf5_rpv>&gL(;zblTg7CS6B4D@@Q#=r@Jj^$=pT5nRY)pnxW&^{{>MMXrWx!) zYRRlF%^Cyh)kA$HBvy1qZ)-W5YedZ)6RdGgOJ-Y>vBQ%?*zOyPH&DNB+Et@(-=MJf zk&*P>U0^XoxN)l6UD1Mw;>I|PvN8qt${mHja(tn1TR6oK=m}fRQGZ4nLrq?(y zdohPleVgIH!JcC0_N|!Gtd!kSKVzh(K7$7bw!IFH8@PV04wL_=n}NM3Yt!e01_a$! z!~;H>uD7|5kwy^1eftUu%uAq%vsXr~_JlCMj%V?QW)2R)Z-T0wA5ggq9Zu0{sC;Z`vR&~AYe5E!lbDH8|)VS){^(G0v5MJBKHL#Xex?!WcagF&+; z4hQCdCezB3Qf$>@9W|z4mDFpM%|f5I-mCB8@AR1mx~q!QiuGWNO)H&%3~*Gn#$u1G zae}AA+Cqd%7HQ115;yOXC}QBr&;bfX!VAntZLHP2b}tXO%RAQ(U2!kpPI+&!$epd? zA25?-!VOFDGmX?26BmpZE@}Aq9Qt=POC1I%ogyr`&cLNqF6HoW*Ov6r<(6Vvmdcq3 zV$i$BaLdeV6XfUs)lGbL!(`UUshk#?yAdejuzvDbJV%^pw1o24$qz%tG`9y*Bv6=Gl<_D)or3}`@Y3~7J3wzf^&Q&Si8AVBlrw@PgbJK8JzVHt znZD2oM-f{WtXA=;s4d*g)x*umz9FTEHrPol8 z)YYz^$f>vB=eGM#NssBKhFrF<#g;QiM{qGSh(>5Dyd>(MMnGnS-;?-$Z)g%+52|20 zC@j^eIAx@7~lTYKwKOK-)F?fbnLbnr6(Y4u4kb zG#CoI;oi;VD@7^=k@FiU3wBvws?}TSCEb`Mm@vzq6sjB)Z<{_`S;Q()$U#0)Y|Rt= zGCOeFQ`RU4klDMC62 z>j3`Qc{0U7Z9Bz*l1;%t5h`7e06In8K7G~uwbP)`iDqY`Ku#?pgeONmK5b*-j*94r zp4%uOp7)AV{ZVWDI~Kew2F}t-#3_bmq#CAkkS9tlqli5yvDG|U8`;McoZ_A5c8DK$ zha=3!&7U)-p`fvNhAqJN?5WnA%}G?Af12&*(7SShonol5N`7{fC59aOk1VG`2Zj{J zz)$+&B@O&NuA&kP#%8@6VWYf^^Cmq|r``&my|KfUQ9q+ypEm?wG&*K0mfYn{ayqsx zj5S~!#T5*t4>S-~%l;F;1M%n0)`QGZxJbf~z#02%pUz1d;(H{y^u6ZPGB{8VDGN?v zTwM!1iZoNc-(x@bScW<;P^n>GpU*SZ?Ux+K+wtFY(HDNjiwZu$%$6&n%Xb{AWQwTc zSRkUcL>-+4srDrI|1zH*meg}o6{tHZJ6=(Y8&zLx>LwdSIKA+m6j*J(>a>bGk;`1l z>7rzk?x51qR-hvslL9}?r7aw{ztFKM+6nya0Yje{@TomjxyAJzHt&k z=FNwfp1O@3T>$6^Y3?wJr92__Y#%z|KPR47j|eCqZRvC^y_vHF+pDSjV?lm$u!eP_joYV z*HV0zu26kx;>5m4`VwG_^OJ|z^HJar8edwM3sU`V$Lx-%x14HXS2~)XzA$7quc~D@ ze|Hu~oZdt&MBh@*v~uW&zvOZBvi72TbDM^BWgf{4fDKN2C>-1r=(o|ytUpoTR*CZyw+xBmN9@Gc6!nrIB_9FJ@H_ZIy0sOtgO5LuTaY;v;ZhouI&t=#fh~ zDW+boJS@8o(AmUuyKdqfMrYjtzB6q23Qw)|$ zr~JhEd6|f#RL4BDetmJub{5OX8~@4IZbe9 zO?cq(x>fUZBS^~vOOgha*ix+;e zQJU?k{v()#SKuxhp{R>*QFN8X#~-hJI!L@c+(e+Kx|4m))vS$Ypedf>Z7`itP=b=2 z<9pegkybPzRFhrAA!LU>OW?3>-n{e#&hmU$UMi08KM|8fJygZ+uW*u>syJE?qh_qq;6?$%uCQxS80d} zQbj$Iz`efBdPAL}UdTyc`ZQN5D>mhCYa4L8W-w^Km%yPLczkzL;ht8vz}L=`&Yyr} z7B>ZOzy0UzMJ61C=iLn%`9U*~sg4#z6$-NA%Ip;wsU$xe-458w$v4z>Ep?o@E6uF# z=u=+Q4Si5u8X>o+j)3+?hYtzB3Ea5Wb5rA?JDE0?^Nb=11xq@uN1yD3K^JE9*0Qm& z&Vq+r>BuO?6!@ACi?N>396Ly^-s@S;sYa60EpN8;eH*oQvyyCJwWyUx=iADsGyq4= zp7I>G2ZtY8-5n?`ck7-JC4haglzW*5>VfzDT;*|=P_k+Wl`YdEYKr-0e!X$4qj7Qs z|0?(LoaRcQi`3(FbubEX836JRkRn-2#(-2vqFHI=9aT7XBZMmKX?B!p385k3v7|rN zgQD5@m^dcd){oYYSOS8}eusfoeU3?C(DS?q!<`fiYnd`mID9H|1ibM*ZKXp|MRLtm z#YpbQQj5)J_bg=Swl#3eWNlyai67`)0^ONcl0ql%p;I1AQ&=ofnw*LoAZ$!LyJF%Q z&J9C==6;^Etw~x*=wA@J^6D2r;YIZUNKPWq{5f~-$y-B?Z7k529Chi`Mih?Y!d0GBn_=SI+^~P1ic5)D1zOSw%lcmm(7b(^9+*N920y*LNq&PDDlEqiz|%i| zU?8Fm+hm?WpCn&nP4xqv^l%PWz~o>a}CNJx{cPJPB1)B40m|T1%$#rD@vGh zS6+=>G}aI&i-}_oP`b$nMaRZp59X1XBNy3AH2=vbAYy3ks9^%iMkZMS`)6u?Q7BAQs0(PX!7@pJ z6!Xb;7^v1#XYeA|)h7}UTq3P4S$=PRCR9a2miBB1jzA+1)bxgTBRzJw=QIZ(ZX0Y2 zvUhj;%r4KM?74Eo`19@#-fSj_1nFR}vC2_`n+D4z#`GQP3yp+O*4=)qgqy?|Nr>-!}d#zvTngvj&N(1&?y+ z6jD`Pt~>TnC;`f#@bW_HmLH)5&v_G$M|T%U+=cCVYoh=H76HhpgfFX@qm^2;J{w_U zJYa=H`apu#ze%zNEt$6`(Q0MK*LL;mWP^r3d`&yt{a-JDD^fKCT_?eZtH%8F>;kT@ zlJ-4n!e;fi0fi29$)@nO{LNf4;LWlfd^Tg^0EV`5Ks>029uQUL-(sj}lOFP`Z(J0; z708kG0r*bO>Xug;E1RSRq|R42I?b^CQB=yliWM{TuYwJ%12fzkH}{Q9Q|&J!^)VF( zE3SJEajkiq{94zqML?RT&yo1$YX%466k^xG9pgf6+3<9;L@R~j2_`q#RU#~(MbhTL zm%0U0+mKtN;LYqkcKIDtae?%aClst|hDcsyFlP>{p79Y9cj_v-1N01oF{cds<6uzO z+;10DrZx(KHutYV7u(=)t;<+oR|Y#mBF)7BDG|S}p@3(!23@K6aDpR5HMH{MMlg!y z(j-AneK}7Dsh3Fm(WQ!MXaTGMq_IzbyT11!=R>$`X-X|Y|BRnxp%R8-F-r5s!f0M+ zY*(&!C{OC*2er;kk1Nbo(xM$23)H@EYU67rP14QoQ`e-7MIWCl!)J~=P($SFRyH=q zNz;Q00tn1hUJSm%0Ifv9NO+Fk0jRLoA>ZVBh*N;-s0AFm&~@Biqz}gA72W^wvtTzI}B0wmF=CD^F-CL*y zxAC^LTrArGdrH-pA!>x&;9#9pw=C4}Q>oxK+$(I{VspLhh%Y4EY@B$9TkBT2gmijeJ1C9*1K3iu>l@+(cYRJ+1X*4 zc_u46jc6NDFh^P`56DtElYWb$Ure>HJk;D8331b5TT=RkGSvV@x@aq#6nK z0{1M2rZlEp45d9SI6VdwdU!0x-1Zp)MQ$`jONDQhIM;WDOO3`iHFI=Q4*lh)X@ALL$_M9I-=_;T_k79AEA3zjFpytJ4~9i^ZQMNI?|VuIDF?J(d7m_mB!gGE3k? zO`%C5I$)mt+>C$f&~@pab`Vg`?$S!}vxM08!rNjhpTvJ?F}hTo)_4-HZbxo*SfS~h zrpt?Eq@Hv0!g4T}Vx7qi!4Y53kwAz$;?JzkDgB==ohjRk<2$+ye~1sCR8Ws4ODI%Z z)uEATDD0@27jK`@1u&DvV8C+6O(U@op??#7ZG!>SFWtW@i#rJD*kI)UmdZDJ6sWXV zI=6o?T`3O*oC{ZAy<>v9QM{0{u07(L#2ow{x7tPd! z=d^h`4rB9~Bv;s~&vbUJds>S)1Q8$Ns^9BD+WQi@SH~u$fj)?n9|WZOl~q2}(VcW* z8B=tJuEhuZ=Ni#~8YBENu5;xDiJQk{cFaJ4CDzsjb^SLhUvxLTVRM@T#*&j`#d@;) z2t)%@&+>gG^1dqtXWjBdNUg>c@m5HKRA~|*vlIYh-$~XZ^6B-4O!i=ol$Kd^! zc^Cyc#~vpM^LX3nd{lWv4l^@Jp8HmOe0EKL?5!omKur3UKrK=!H)cUSL5>Kr6~zyK zFv@{U2j?aueAMdnLz{Wuj%~@D7wQWj&8K}P+nWXIGC|P&-f*AM%FJ)CyKCPN_UY}h zX@$nw4Q$L#RTXT)sLx{PR$Yjb+JN7@NaW2w0SLKTB=Npz8qfreX{h;DL(z9HSE zgbeh$HxHqv{S!x08&GZR$wyw_Sqf@8Ps~OaoyDZlcvduZ-$vbLhHCd!{+NSJkB2{A z_@FvnHrBNbrlBynvl~}6GL8bqzn(NQBdC*Gq%j!bxp&n|q7+nJ2T$yNoKHnENbffu4zX}BB#(E0HnC|VQl8zrJ^Bub}ul8n&zeuC<3YH6JU zG-Y%VQua~s@#eg9^NDmfECT=r(Q?yoS&kyrS3 zZ!k!NF3HcWrw&;oMpt4Q_;ek8bVuPFR>r>p#`+0;0jP%yTc3H-L339+K$IN;7nfgj zIf)%jQjv~2)e+RMi5h(zdCQz3WPCO<;*#FD%7ObtA zyKtN(GHICc&08HYm$nuuDKS7`Uf?^GHuPoU@!?Zc$7ZBc{Pn~w88)U0HZx6P|0)9% zjWnN@41KxX@@{a!rM#07pqwtxnyBcbTGm7Zq6y{1U;y)J{J8#}Q!m~|W9jhpSg~ZM zRk75lLg?trIl?^Ei+GX=-8y`-CVgnC(+tecB)QrgCrcKN>J&@bSM3OfEh~3Jbqb(4PJVdZEuj-sBaO+ZZ9oU2wh*w-@ zHF)L=;9+|s;|U5o02^A9+5+lvl!sBII^I^|+c|=6=FscyJ#%jl8px3~<8e%y_;b@= zAt%(Ow{zPHSIQm$NSj3|rwgrZABEU}d>Mi2iN(Zgj|Z1Q(0+uiTz{q?kW%}~c`AuK z1~;8&_tA$zZ!vKTAOPvzfTI5UcRurB&()j5jt&NMWCnK=b04+h!Q<#S;%{Hnjub%8 zT-F>=ayw-B0?l6oSBd6Y*>MvvJ6?d(8I4B}S)(<=qdRbi`Mzx(;%nhzD;{05v*Rb&QFRJ1)h;a(CL(OWd-ko0HL z;0F}1&EA%|e;RWcs;QVUfi`KM0C{^sor)TS8iX$E?D-?B)1XqFKu$rJDPx`ZluNA7 zG(d-$4S=pV0B%C@H~6BQpb>!|n3?XwS~^z2r?mx1pOCSRdH6{|R3OeF%*o$t!jzmE ztU6J_+axfG=%5Jl#wQHBtArT;U z5>t(HHTTDxC?=6*omIIl`_ugVntIn)vr6aJKoP&}RV+EeQ{BL=8cI4@Un_2Gk5FE; zeG(k>`5JafH3OL(I7_IxWPbt#G%rnoPCqfOukvBP@0GH3))6%pzSrJ23Z$sn(Yf z7gugxJuEclhdb&19_c*)!-_gIjUZgZJ#OKW`56;U)~Rv zWVGbm2N!VLJrs7!D4b$mI!DeLI^UKBTl>XvawoPo8MSV#wuwBn{Dh`|-`7?p`aXwXUQc-OIt- z+KOdG-N0{Z!0I%`o(Z5|0DbH6vh+h~8wiM1k<&Jl0+QoWH)NN^g9kzWulbBtJc}X) zUoK4xNb8tAE3>;pJsrHutcDeKiLx9!k1YdVkptMSGt^qB{i+rpERoZ7ssrx60{z971n`R zer`S}vlupzy-pIG?(5=#g%5N=5MMz2{4L2{u?Dlf@)WUom*_2uJ1+r<|9t13><{CFzSPPv6~{LoXIg#LRtFdLT+*cR!VMF#;16Zt-)#0({A-msPxUm z5_O+pU;Fp0kgnegAi>T+i!@g_s~8CXjIWP$J3y=2DMWp39MH#lQ22uqu3JhVYf1x+ zLI7?52oM0t{z6XAf5)I~F_g6(K!~og41PGeyXiUP&fd{WdXi3ZZMzv2H^Emz+iW8_raf<*d-CD9r>~94)r7H|dPY&G0;v z3PiFfir$ z9&Era`{r;tzUVBz3Av%HO_M^Eg6iCy>Y)x&XtD~_brn%s7Y zX$&RoVRjJ|}Q#$PNb$zCx8q^k~V?-er-kIOqFF&S*&jFf? zAfW3<6(Qwl?-h7E?t7G1t(-MNQLc}Bga93WuV^CTyh?{=$>Hc_m&#N9mT!o40aD;$ z{Rp3q&FF4~ougV9AVpO7b+#I}qTacLg$3@BRyove2>~rxM1|LYR#tE%jlNBkcHXvj z_yH($TfbKgyzSyz0!xSh{_ToO=NZW?-IO{>zE$m*02IkgvQ75AmS5%Tn;YMg!e{GCX3K3RS+5FY?LcWuDMmP@ zQIy5V&;H<$i1m1cxPU_wp)Y9V1NM+ae8R zt&)DOo;sj6FSp%qQV2gq*p>-^qNht+Fg8o>mHp%Hw8tg_Rml>7$?h7~avmPHSR%3P z$sA|lCk1*vwfX@4z@Kmn;EE5E7r?cgRzRb~AH<@auXEZ$`k-2hfqGgQA#dzb;#Ja= z(;S_mUq&ro?25}#Z^sBQSMYmKtH*2KNdWE~4UBqQQXNe;rNmKT%ddJ#S-PKvc z&=%M-rsXrY@!tK#5mqJF*0@L5z_7A3FO2#QDCy4C1Rpm-_~fp-k}Wnr1#iA@BYxZn zcM-mAXDcOV5#zJ1pBjG&lWIXtuX{hjNsz0~Ub?8%c~wkEL_t)1l1(n|*;v%wQK^t( zPF@2w>8%0!D4do#e^3(XR#u)IWd%37NJIe_K5@OU-Y0t`Q}_SiHOG@WMZDG^19hHW zeZ?s74O7La6i}>z4iBrPFNP9tw544P>tpSic70%L*bzVzmY18Z+I#F{A}TE!Hmqly z2+;nQ1TER=dN0a+cHy<((~VNHTCQOegtv`tLS6=1yM<6Zrx6JO8Nv7JJ?&qX@oVvy zJ~g_y;gDXh8?`9u;V&ZOPph0`yfW%35$|SoUgk8oiX?ezfs?EiJDU0uu}Q?Vedkqv z6yNJL1^0_$JJ>2rzTUoSXAmK@yz+GjYR#}9%~(0RR;VG>0dd#h;w&ZwpYF*EsdP~6huyR{X6+hYb(7%pN;f={=7QP6suE$%axFy`|d!C9IM!E zUy#K0bi5$>iK(k-%}2oSe=w{Y?7T_KcGp5s55uaOwrw8Bf&Mf%`(DyzMSYGiIeP$e z3~L>ctm~B}a%Q)p8}CLxOOiHSh+WjF|- zPgub(n!lOf6cky~r9MicQ+^vR=Uvnad$_{JabkKb?rHIddxl2>N5s@@Fvn#HPvKJs zF^PrE+bXC_PvIphN_0`vvr2zxkchTckQ0&wId;8#kWY( z=Jxs%{>hiKeQl%JyMeBDDYv^!ToWuGZLJMSnKl@NJ?kY<)s^!Ib)}fFrzPF>&^=oT z9a9CKK=7PWEyeMuTVVapd;_Kz_jeyy%N1sYRkhxrJ%&=Ry8o2qGmjw!eLRQ9L{$Y&9F z9^<-i$W{H-7YEzU3g@MX_W%)c`U@yWH{;7sC-^KzLGWp)K`FKCF4L>$#ZXlZ&Pubx z;!<8z==VmFOp5lwQT53tX~7T8*rUyFig}5Tc4PQ|H;|29H*NRYPz48oHzg#rd?L@B zdV8I3-KfY1Z-i{3<kzbVSFi0$?lA8_aEYc0K`>YSsJMZAff^J@cwSf zquI&n*kP-E;n)#NIw4s;`oJ?c+^(Kczhdl}0jl#Ek}tGzs$cM_pZxenTxs1o z@W-rgpdobp@nqW6N&k+7vd8Hc2koPMx1b2~sF zMfqVnp~JD;(zCUxTfs5H3+1Pdc%&Ef=UaT3ynzp@+e%#X@kzXd)AEl~7=QLql*pZA zyv3)MyLB6J)|JI8EZdBI$|+DM5A5m$I(D?$Lg-lc-hN+x*8MPqui0Hi;KmiKeDQI< z1~~Z7qPV)EOun}IU@wSt2S$-tR)AO?8m&|WAg#^$xexAus*jTXXQYXBKWmjzXh(sc zpi2dUy}-0Ye+fuX5 zhCRc~;<3F4^Z`&;PZKSl+84g>m;GB1bUkm^xiVrvRWHU+>h{T>rsDv9z9G3IIHUUw z8|;vSoE^!$xqiE|#NlORJxRpuhV*8mMo zQtxl(s#kumonSIq*tvYQP6aYn>LPx=kTK;v1$QB7i)Cp~mlzj7?7c}w9DMW4IE(_~ z7)XM(S^sEw~KhH)$R9mNSnRWVqwZJx6R>L4L!j%@6$2AS&s_P&_BkZWOq ziOs-eid5B!tu4+ei?9vh_VJ~o7b(^P#>S#Iwmgcx2r)qmkt+m#`jxSBs2-}vn6C#< zm(Nq+swx}BtmSVT3Z@3E&Bre?LC5#_#GaK!-Q*|?cnm0`Qy!0-!z`oIjssCu0Hm?+ zGdEx5wr{0)eg@2>N#_2j6juOUml|5ADO$UEM#u02~4KZ&?v^@E(A8x@+G~)sj-T0L27>+8d?s||)Ri~EaenaBI`f3k;d0Ex8 zv0{&C+25&!Fb9w*dbefffnuGZ)t~^koKMe0VyUa5Q=oKYw1FHQEggme4HeAw`91?! zUO!`%r{$ieIg}E-aZk;vGdJq8$PRS<(D!9g_{$&x4b9JNFr9$31?!);4MS;;%oOBU zjQx-LvpTyQ0$HLM7?nqWo>J&7#)=rLh?Wu@p9jz{*>$X6mfBc`M(WLX zMfmoKiK)yl_H7Y>WTKzB7_||Z&m2xfg}3*6jTW=_7v)b@I6xhpFEEOka4vrv-R_jS z+!L>z_Oz(Nze_f?Iqz<1H+!_Uke*~S(!#E_29WF$#|Q3SMDz>LB+8mwiHmLhILuuHWySPFRcd?Jom*XFZZ zsDxB~n8^mT6SDi^H5?t{;rmAP^hE3-UBbsdw;k6jIqhkw0*F9>NU$7kHZGGH>J3m{ znVY@1qZPC>NajhO9H0LnJxPWx-3kNxV(fb@d}EkWx%>$S@RxrUAz2Je&1sy^MqL4M zBn2h8a@+XC)G0NalxFj|**xGfHb!0ZTAP1GlfaTah0i7>7Nm56iNyL^3%yR*$&#^h z1O26L^C62XP^4=AaXUq?n_wR_O&Q-k)$?h(EdnHzsE`#q!P|Q1gq=z4x z2f43SE`ctie#{XZu&3Z3us@obB|{FGPSV{_=x_2enT;Z8Hq@U)+_s2mB^>e&?v%F| zgj_!JnY=-z&gw@lv+1@8M|^BX2C;E->zW)@UhP1S%Se*Tq;v4`NZ$jc>dQ5Fy=CPCyWiv;!7v( zuPCjN{^yEh3#yfEpMNIaQ%sXY{^$D2K~9;ff-V_?PeE30d1L zxf9Lj>n7;8eWLfLnlg5^b`%hi?4)?Kf0*APSZPAL<9*14%*>Ss<4Q%}o1e8Du(vwM z@8v+W==Z~us4)eshet5ygk>EyPa0L}%yxa=5`TQVNnH4nOisgMfAn;h&u2jB7itzu z!JijJDMIc~_o~9Drj%O97@e-3@waTYrd!f4>c5-$dkK}8ohmUkAC!_0meU9zV`lO7 z`P&#P8r6~-OQ#P~%QBgtA9tMr#busn`i_&UR3r~-G_OZwAhXMktjMxpet_blK<@7N zs}Bq1Hw!U{bljr?@P(^_gjO%;kA0sa6jZJ!h)0H#;lwI6#aH*E<<5$Px;w5<3=H}teGQz>Bl(mwOs3o>|?_^LVfL`F$Psgy2*zQeHn+-}=x z`UsTBJaWz*j!4j&MZCMKC7v3K@Z)ExAia%{fH(5y7vK@U7BX;0*C(}qB)$?TTy8qw z?8ih>LQyas`@$;UE-B@WTriScZy|`UXnY8_F0tMyxgs|*8D?sl=qy4@-ycb@_T7&< z#NgiW=+)4g*i~w{SWu1UBB*729OQ$qtX=PlyfjeKWo@H+ZN~pmT}P1~Lg!j_fApxF zUe2?Rcn+HiAI4U&0;HW$)3eh=uu>tZrCK&^)wsd*`VR860h>0H zuX!U5MWlS$zGL(I8NCv!T&I~5ZYN;_FEMt|uE?a%?DZnJklcCHl1)d=T*&w~rFX&> z?HFDeo=hZp9*RVNj;OB-@eX62BjsVRmB;(w@mWVKb$)dtfpuqvQ9t$FI9iJdJy_C`_CEwRJiw>W$)eV;pn{XBD7X} zW4kXjcS^+YL=z{5&QtrZDK!?`eb@3B3z$N-Q=zam@=!5%*spg^jU(vrJKaSC^PCTEi|oscr&XL5Dox}WipK;w z$$dt8ka9j~e%*E`3v^iouKYNW#*dIZ(Mv;}u70m}jDZe%ZL)=Wg_}R0H?EX4ovftQ z{ND9dCD5WC`8Mq=jo}Yc97*;_zU`R?vo;~mH8k^mid)sWk);Vc)-aZtHaBDY&7^y2 ze2xM)vCQef$iu>Tk|@rK(m$SZuX88!-DlFNNgFxb4~hwNIf8|JtR}X z@-lyRA%=$Aa482al!|{#?#xCv$XXk(jQ@}-@`1aiJa?^+Lm=m*!C?gGRj<4VQSA00 zL|7OcW6QPk60XP#Hcya1)5WN9Re}WKqF!=tU1LlqEhCE?}k2oE{NS zGd4A8@X8o$+xYcr zf};Z4laCFijSv@ua75IqViWBbbd{b?!}=RG_d~dWa@NxfjDy6BiE>)l7^v+EBQ26KIT@x-_?m8sizlh2}9{)I^$AJ67@U*ZQA$jHTtyv={ z!GX%*l}&RQHGNtwMEdv27q(ob0D;OXD$6-Mf-xP`U0><&%GbqqBOGbwU;-ptQ}5FI z-}_j4%N+eFIvobDq<~Jv_9)!N#plaxE3dW%Fhs6ZBB^#pgi*{c@@tA97?K@`G_q zkAYrnI=PXBibhal)NxT8(K*)^M4)AN!c$E(s6vm zY2-(;Iui9<3LBWrL3zv9t|U~Go*I^(hVftn4H5eGGwGer>Ll{Sn@D`NJj9y&9WqS` z63)R37@d?jL7e2ouyaKW@fIK+8Nz*lRt zjPoCyWw7hj2u)v|1OO%18~*U6`zOZ~Dn86$hp(1gT|rM@IYNnZI)ffCl}j1*vQEaL zES2zaK3@nX97F_z_TYI@L>2ZJiG%F>6MS$dP9t;Yi!Uds3@}0jW$h=m;!L6vt=yc_ zpHDpylqGdxt1cz%lCsZ#%$1Z6t+OWapsaP`McP^8?KL5;j;`R9;S{ZyY01eKt_o$S zI+?b|(BlTTc-bZnS%bF@4jD#HV+UQR!f5+|Me3VC-_XT9^%z%|It(Qe&Bw-LN`6<~ zW=GXO2~z%3HY*L`ri>!r6KdsBnkeg`Wo57<>G1_&oK;*`W2iIeX8hMiU=!KyuwbIi zGx_<6U(rjX&hn0sD9ZV`f_+d^gCk>v)79Fp-9G+F` zZ=hoBGerRHf`eXS3U2bwLf5PH__>v_=V|*Ip46GLwhw9ecOYLIXlQ#&!#dujizr3+ zFQnK~nk3Ah0!D!?wXEz}8@!cR|3P3O-ehl!DTp0K5W=B$7a$u69w?3`K7>_VwaCS; zvBmt2CDhdBWwdKq3{(iEe859sSmQU61|ycXb+y4Th5Wgq?5Acu-~5QWR-X23>SwR- zCP7xoi_&pQu(rRV>i?r%wA-4+^YQ6o1~n-Kl4k_F<^3mWQYKK&spL=6-%&HzywIGx zXGe?^Oq)AHA&YUb;zh@(H^1!9WHiqlL~0_-wlD%-^}#LMbs<|?iXZqKFQ)p1M0dTv zJxO9T+NhCIUf7?txC((o5^L=v7jc9iWYV;621yP-VzV_9D6Nhq&ptOXl+Rm282D%I z7I;}h)u>nVKN^JssXuwtl5ZTH&)RnSy!_pnnc)I6^Z7hCry086BGd=t1ZI*atR89$ z=00B6Y0bN#z8PrvT?mnkSt(tW1{6Qn-I_3Jcg(-&F<4HAA0b%G5rf=M)L>BwWiZ+C zfipQu*wcWyUtCs0bsB*OtCXQG$zr~A`ndv;&gI099X$@ircPtyzxyR{tXS;IysM*?-)-=x6JP2@gxuK)FpQ2+YSiU>f|P; zZ0jnEP)haSOQ4!PUFKxknTdAJbCP~>v%417%rckx581)%vVgNd-uuCcyr5rZpBxFL z)7--g@Z{=#tq)z(SwEx@%xbRg>`#Tx<}Z+?*=rMJpNu)kV83uN!C8%?SXvVev)1WM z3k`E zs|{JOWB(TuFgD>@WNLNss{P){7zJ{i__khaqPl3R*r#mZGH905>s88=jL+QqSK23R zpy1u|?ZI>ksCvIc=Qe#tof<+MykD=*3Dp8bR1N`6>9QEJ*!Tj9rQW;{P|rrt2*~%s zpl{{}KMmMy*1dvTSWIWf8aiu6LvVwZ;_6F4W93FilLS7I4iaz`a<_)}6*Gw8KE*gv5Z?6u|YG|)3QP9zN) zF3aGG%Zy*XJ2-_B1%Ay+F_gQs3Q#NOkv3F_O#V2g7w zSiQJ7@Tb@>_WtcKjpbjJv?Wz3DHDb7{&QOsTi!F z3|^Ye-ld4Szm9ouzVZh~$;B+-Fz;)RQ%LyUDVP4TjN;a-cNaAa)vK3VM)Stvgz(1P z0I+Ru`BPX#7tqBosJLVt`B&u}5OQ0$&1qz%d|!@p?HV1&P%EbnR7(?Vc$#;h=eVbg zz*N7d8SkLOB7n0%kdwQFOJmUBa!(zI4WrnXX?XfCxUsZ zr1|acf%sRaON}M{o8`|F@A5w#=I#?~q|Ikx>?!qEnf)?M7SbCmQ^K@@vo0sU*`Up@ zzYr>FbzE%g{p$Rch*&=Txq6|bf3geg;O6jc^R)`uv8jOBh$zy4`17+FhuKfA%%zPA zsvEicP}h`CgP$1{Imi_3XOM)I?hfHf_MamCZfqYp{Uz)vO|IHIWq`U{rXFmfr)i`W zIN7Gb43ypnAslHm%L3PHC?q#xe4pYDWDc2vbKt{{5SoIDpEHhDNNi)+=}YQZD(c&o z$I47mZ+h`>#5`n*Iyoo8iAxZoEk4Clv-VBO&5g>8bi{rY$M#jO55%7!PV}#skRB1o z4XA2R7>t7zTn*$+&)*G`En-Z?o3Rj*Ig+4)w+vVoO`K$%?@05@w}=cf*i|cEOaaKH zeRQq|)0PW+Q}yo9_*gpWR4#olzR_&dLid{hwB(8Fxs&p9t1{P<@@YQMP)F<_%_7J3 zwt}}Y<27M#X!wD35+@K}PH5{<%{&p8l}>Y&sU+ zH)pL5E}zXWPw5^$wsd}Bq8V+T?5|}usAEhs`s3GAr5PJ;}4_%i~ze8+exoon|$F7X+lJw6N(SBo@egqu^IV)OR*Ay-H z<$cU_&kfJK=5oi@6Qt>0Y(i=yFG0$OGc&^@R5`JqHPm0*%j&bh+NR{0K(Yj?h6>yJ zn!1_3osXFzbP)yKtPVUTtUS>Wixn1%oFr@=p&1BBR7%9;@H49@D2K-8CkG-XCQ7mV z&evbQ5e9Omupnq{7vc2!z!l|}jbS(osj#E56%ex!3`fs|S)=_~h#v99#O#(zv~GBR zsyGJ(X6pVBQdS*9V!PN1Y0FL?zXa~K8VSE_&cD4}cB6qbh-}+Q2?cFp8G^n2`9#J{ zq=~Y^<_hR1CdNy|ns50UL(}DCb@*6a%$i;zBk%|Z<6;{r;pa^C*9wHKa^Z%`^VeEa z`k(5~#+LrAIBvQtDo-P#$km7R4kvx#3j1F;bJUK-RGCef9wI;S)rpf4zDu}TJwx@ed9>xua5y-LYLAc55$U?3zAvGha?!5 z4>a;VErNq*{JRW4cx0pwT_3fU3+h=^|1N4HtG}n~9!ies;D+!Nj`T6R4Y;=na~HTG zuKcBA&OAP3L=+DyZ*i_uwAnsT->jjUd!>7Kx24Zzb2Xez+7s#B11c>yXKF|ubEs7A zDMT?mUbdFP)c#M?=XVcnH9RRNf4YrYe!N7UyRfPjQ+axSiK-1LT?{6l$Cx|gr-3S- z2SUZUY!_Eo!7|buTF{dRmXqRzKHm1sIg--7X*eVS9+wORRYvzc=x92-vE`y>L@;!g z1A?V!cXQp=D$0~`P6EQvXCm@R^yRM%x8k~utxvt=%Gk!D^bX1~mRrJRhX|$ZcDd4| zV9vHUfAw3OKvZwUJ5nc0BiP*iiW#7xe>bJ2<8{)K^*t%bysD;|n~SmpGQ_Y2JIyyz z2`QZ30Yy_$M|VKaB_WwwnSIEcD83H7S#8;07WHYOS6r)sKYrSz6#{J$TnDTYvAYXd zUY4)J1A`Yy!B^b;#8bRJ)*Gf6+Vw2lC9909j?g13W=LS{NxF#WK>^VwYrwiakj-9C zFm+l{p0PQpubLjEfGte!%EB+e(M+8AudjU;H`b<8%SB5LZ=9 zY}LnRu$b1G&AC}|7xihS@8QlOqO{?A6WhP9cN zaCUfLEFo~tSceUjimNgflMX%!NxsNx83AX9UoVPVs3s|hU~{V2>W&vmIR`Um&5ZLC z9~Chhq5r1VQ^yPMM$Zi`hed{eAX0RC-$shW=Xi4v4QpmVLU)k)+hSalO`ySbnP`?5 zYR7Vlh$JM^-7vN#HjFB=)R&W zhly5Bu0z1wWKZg^qcY5(%goXH%l_z>raz%_Dp-OOkhT?H%;g9OcKVwb`?*y}qsoX! zOWt^7dT8M8QXkJ2{=SeZq)inV_CS0&ay~1a&I+qLN7;JCn$gu}>d3YnNAkS%@9!}= zz8@%?16jpf7W}%&&3TASyFRSw>($PAv7-G>c$VYW+Vj}%KAXPt46_Ti79RQ`0<&cm zaw%)>i#`5CbJ+m8wl2r##zpo4+0W0iIEmw5c(&m7g*fWN>!Ks=G5FNejL<0AI3G&< zk>|0+e}?a8WuM!90?ns>_G#qrS!|Zz&8UMrj<7;}wlp@04}Iq;PW(fBLY5SdIg6t9 zCC#4hmQoSv#4MX|tLuTf)zv*{?C_)R6CQVk^>)QW=$rnVLs0~$2RX;icwhWWYW?(C078BGcWN~2 zCh~`z+4IwM*+(`FA4BU`otVTTVkTA64DJ1Y|3YwM?;P-E+6q7x>x zEnj7Ld2)yheq4s2;(RYQnH5{ZFuzlNBrIAvTJ)gS?qn2<|#EC!Jrly!I4^O#BW-6kzsM%2b{IyiU@4qJ>V(J?K&-}6>mBVH4JWRKuueS8(MEs2{N)ISjfDnT^G;t z0iyx4+fyu_rF8f&g4GX~$5&__Ii?eR@`*q~Lup#3O`_@( z${S(ZxvKzM1q|H8Rft6^)fl2YGqXgkWI#yY>htGOi|esnxlN+Fa@9a_n_C1WlVxWLxC z)T^aj^Clet3T58vzM&WJSDt#C6Hl&r*hGVI7=b5ODS6uYbd?XPf|CxDtt0{06 zFyx?9b~^>d0G+NE8u zW86qOK!31Fu#n{y_{sEs&~|^-^2m$p_@(QhATzb@^@SA1SYaeLVFXWJ4_bOO;Z)&s zi$S%OoJ^z=;}`Gl32@z#(O+Y!4E^)yxh)4J`PxwO1qJt=Bn$^a%wAdaX&6B384jNF zdOdVvB|aIAt*3&jygpMxCJxqR4Fsfn$JOAohL$ZYXYI)3Y`vw)7`Oh%{d1TX4C=NW z1`#^<)-wC5htSpChDQ!tO}x^rWvp<5LM%)_H$v1n1MxWsc0*g{kKM*%S~0X~1W)al zMK&WDE%t|Q{NrqB(oEzqu?tZ~HufA=_8f;}B;o%6tLO!jTItqgc`e>VYJ5w17F|<) z`-i?!usujb)9s+>fk>tvFsRy-f}Xl*kwIjXN?5=;lj7Yh_E5A#r#2}5$)j215NxoF zyT-%rcKjr~bW1%*fg7R(3bfM zxy4E%t8Z0fx^RGO=JV`VR9{}rU++DaBnEDm(e{DarD;1=GU!1`#pFUc}u&_*nysft=i$Q-CV;`}&y`J}A5oWR4 zd@Jfk9Iz#TjhJc~o4vNMpIfnP*f- z#jm5|xayRXPO3+*BH&E-0cka`KW67Q!~ogBxRm>&XMOk*ghzb|D7?83bil`~(bJ$c z{&N$%>1Fo}M|xYmH3>%;p5n=#<^_?-aQ#RPRkJnG-tilQzCeC(>%N4(2CLdlSp?N0 ztmm(D2ETQYzU8~@8(TPal~s8!dVwnx7De(RKPP6&nlr>n&hb_c48@wS(r3XmRfPKT zc##1&X7}sx{;f5y2jRk9hD#5E(zglBlmR#61ry`nTBIn?IYbf*!C zz6`L#D{(<&@ESWhxy0!L&k$I9+4yL*-a>7nC1S=+_Po#0Nbr#TrV1HSo6&&y7&`29 zuRl$qAM3cHvaZPkVHG7KkiQ9WcVi>=WvrZ%ImZR%G+5jei_?0r=d`jcI(VA58;4}e znLaK9vWo9Ram%}Onyy1&1?@~f;?AhCEDG>E>0c;bqO$+}#<6~};=un(ccH)By^0&W zJe_!O{(+YG&&X`1tJe=8yo(=SS`EPpBe>iz{`9yn#|Njlt@{{$0IBUxO6a%B*(~HX ziqaY3vflXy2L%!(QPRxgf=PTkee{t+2;K}V9d7U&1wMc?Wz0B|^hVgVnY}mlX^v1a z6_WVcPpXR!G_DUMBbQZO50{-c+FDqpbrUAIkgH*9n!GBO>&pIn{}HzK6@F;* zYcN&`7UZ9q|md$=o(M<{p z_OP{?or$<%5&}{8*T-IB;@C&nW|*C2N?BV-CBzAFA#dZC5l$mt!kIvyP~4DcW;V)2 zFsmzUy|mKqt|UT#SjL%fxY*_p?et=$vf;I1<<6e(ZC-2!9I}f7Lj;l81kiGqa1v;O zSjfSW!cDggS^EFq5wOy8hTGsYk1^!8nhzIOWR#G?V(qxluOGw5!L-ptAw+f%p`aHG zo`Sz#cUo=v6NmE4%alEN0)d5MtKkNj#;!oVxX_B68N34r74u;76pxr_$84(IK_}#L zyYwnHrgYa8Dy7;)W~VT0r=?2fMeBe-Tu9Mi$HQS$je!Y7w2yJ+Y=q#-!SKq>Ie z0Zd=~ovBuED(s{SHJ`zE%!Y4UJN`7p4yWABsC*7Bje)fG@=FL&63&_ARrxCd>T5o> z2!g*Wat1qUCX?R2Eeo#eN!9=gjt$EY?^(PNaWk_)n;IEq=8fGo7FTTRNv`Tv&zqTk zg!yE+6w{|U*D_pNq4Lz^iLwg+TZt*l-nL%%Ij;=v2`P_ZJ2SWOt>ZVs)x3|MyVRkf z;~21$dp_jarU7le6zh0^M#Woiv!iWr5b6SaHriOmXA%b93IH*fH|u<=mfsZkKiFa$ ze-duC=X`^S4s$j$3s@Y7SKV4^o&22Ei6E*F+h~#{rEZs4T)I4K@#pi4b?R)XVi*L$ z^GMs9&Ig1>qV`yVASF+-jG!JxsBpOXftHBX^Q+`2q&yv1TmOJ1AiJ-mKxr{dAMojzH|lfrJ3hbC|IQTNPEv2dl|BGH@Ie88lyB! ze!o7Q1R#jKe~48`(3sEN`3xR=xK~XpX&Mfb$paQg< z-O)yBh4hE)S!D-Sle#Obfc+@qByJDLdcG?5eCOAYGRuDBYU6+meo@ zCAB5X(gO02SeqE1Q51ffV8nOuIH}P{8Rwxu9M|!Lw);hlg-2t&>Z7TaIBNq0wac=hai|J2<-I$=SX+Y|_q63jz%0Yk$ht z)z+B8BQoe>7rI5n4U}Z13YfZe%-t(8Klw!%!j?(tkI3oyw20u>nLTAfJ?tYd7lgwO z3n9Q8aVyjt%13x}WEp5r4nbu4!<1qUTL*DN*^EhZoz0#zkODlj-V zrGyGm(Txu!0iCRY6ts~~+b4w8z-@Z2=Q>G=!k=^9aY6Kc=7d6|Xp1N2F+5cZ1_aAF zJZ|$V(BX~C7n7NEJbm>vboHynzrl*506qc8!a%w9vmOt0Ms43eKw=kjb-fIQUlb<7 z$yt?0SOBl#VF-h55t#8UziXF#>@=#mKA~z@o@z9+YH5C#neFFPQAHHo#?Rkrv}X%% zguvu#L&T=znk*13(Kw>dwUy-uc1=gi$k0^LsI{e#eT>VpfXWZNZ?2G?q2l&?>JjbP z#3b18-FB6uTI$sVSGzUJw6W|AT)Dxx3UlWbu`+*4C(#s=g;qn+SQ5SI!5Aj<-2e-r zxUW9UzO)c*K;+^{sfhmN+eN3jda`e1h2MG;ha%)+i8&z@9AwbW#-=Tubu!gvUw}&! z;U|esWJUNM8$`Q|Q@Qap13bDieZ-u4$i=JU2sq8Vbp@hk6}l1Rq&Cae$JHC2H8!MD z`lf^`GJJWenZ1zZivNJkS7c>epZ{6C=Uy}rS*pxfa1Yu=RPxGyLx8pZ!+;LaJnes3 zO|y~|@DOd0-=8o#hzh$nF_fXzc2mFXEj3CbyO+HB_+qHZf}dj<;n8DqazBnQ=v^w) zk}L{kAwWw01B~Lyv&%S_o|ms%VIW~(E}Ecw2sEMMzg~%8bRq6!V(!ywE^0q27MBy# z!M>(WwrIK13GyuRF&BUXDOP1zLtj%y|ANYnPXQsow!J2kK*@sAEGm0J1*r^8!ino; z2wk1B#j(;f{K7s^Y8z1heH%+7u!y5KqJND4aqRQ^CLu#iq=7K8H|+S#_i(T*Pew6k4S zXt1Dk^OG>Y0v;*^Ip$uTXuIi`n1=Txxt6WdLkq?<0a0xczPUgjI<#yla$OQ@JvVTqHNC9Xt9OI{u%&W&f$=K$TkC(^$a&{v3nfxIs_@ECPeE{Ve+-RPPe$xu@{~2T>W({8^pV%! zQ;iKTJ6!largF{^iKM1`^^-tJy4s zWYu6}$RTqbXawzS!>o-1#F8~e(lBAY0Go5t)n{VnW* z{#-4Yr~dZ1n*Ml5h(C6Ba*|T%!9)hdo0r*k+Wjnp6jweQa?=N>A2&T5zCtNGBD4K* z)2AvtzHKqw_Bld!5t@$;103ACPk?BH3lG?EcVTwo2;+023j2+0>OP4pCe?TwWf{T!0a zanxa{=$CyOmP}K!)$asmxU)g{=LW6C4&DTQd_%7WYEglibR#FFka`+gl}hC|ACA7C z4XHFICJZBKIH*1312GmpiTlWW4+Rw}Df-@w-WT zan_|8G_L#&t6;yyeeeZMcyxg&{qw!(PqxnceFbV@ptu`5vxSL}Q_vcb@`8o#H27~o~9 z%l-zx0=1mX^3-qS{rb0LF25LFiiopt?-zx|KONR=k<;m|f&AC+ppTKl@ZQx0C5#3i z%ymA^ZL05qFEUGcq~U@vDQ2XA zZi88+hRFTSqyGF`uxyJFG0^&aWD|-GwwhczCGJ7+_t-ztY6owh(HzP!WMX1U;^}F! z#fm?!$$9ph9&d2~<~6jfYiT8+k?#*i0~T;w%<{}_&9d=wvD0Zr^bkjvtccoZ#7$Gd zci+0#u;o;!D2?n<|DbT~!2!8${KI=sEYV1%f$CH${c5GM0)_NG+IT$wYaARo{M%~+ z^3Vgz!lrNY4uku5L_%4|Q&DNVbiFdXFK1cCAb7f_AYo$Z{ihJ=t=D6r zH^(m%!|38jg8FV}3YRCX{t>>R(R=5AE$Wg8o5l8jaM^(}|426>4UELRdJy?|FSThRXDDgJ;r&t(pyiY(=FDqXtQ{|`##IyUa`E`&X#~s_bV-#qN`ZKJ) z-|xp3vP`8APPbrbco!czXI}`C?9RoY0wPKjv6nHpX$3vt2JsnDUwF49OSMIENLu>BGQ9dx#9=v}P;W(c z(>7};4a~CK*g0FCtv$oRu)KS#`=n|K*rrD!kRJ7(P+6=9{7&2!CwPHu_H~{rr3HP% zQ0ulBvU;#!uqyc;EW4iIdV3YImslSNSfp{TrTFAI2+vMjfb5@aC&VwURMZe$NtLNP zMGv3^QmeZV&_E+yc!EWJ(LmqH!4CCvyp8PYkt%02w18UP&wQ%w8>O$u6A6n5Y;l;n z&mA?2fmI3n1G^xY7-y5u!%1c#*(}y^rcWP-#q7WJ7`x|3>xMjUeRh$3^Z25B%^Gq% zm1HMRUpSYf5-yQn+HX=14fp{M#DL8zC^bvySV}aFOng3hX|6!lc&qt)1dp;rzGFwf_Q<@_n!T~Veq(s! zRxU43K+f$+TlIejw9^ZT_h=dfZ60!wKNdCT$y@2Vzhm5sgok_qZBhhxC~80*mcv6G zaEA6eP=xL5c@eJv=zLsWOD}wap-wl@MVrv}ItYh4?=Z&SHXJQY-aMrwIeV+R*`#~I z59mkN4Ir{#v5AgRXq@q29rwaK?ffu0@8Q^e8(CJ4Pz={!yE!VQ1_M8LumHFwoP|eT z4F2`?o%E)4>`6w4IijO+Fr2VmJLh>UX8ijdPGZ=vd|!5cb$yrBc?;bi96CF2Qai~7 z=*fS;@6n79xJ*4n61y+S>n`<6*LwQie*NEn6l>hazb*4BA&kdkE4KxVfE00E97qdP zTR-ayta_n&2K>d~Hd=Y)YhjtI(q?h&Yq*kKKmJYY9Xv-uC7!?nfl`|&vwb?UU!n_i z@924E3Ynvi06rGjE2yM?cz{IB*0#)mQ;2HnavS3NQ)8TqC$3+MLKx;&qU$5us^-T4 zO;Ju*X!7pORVl8S5h;-q$L?e#FX33-R>u4?tWF0`|Fpseu)*S!Cj^&O&OF-w@sqD! zW&tsk78P4~e9~J(tGmXG;b!9kJT@|VLj1~(uss<$gU=`=z(p4H-1OGY=gMXRC9%^O zFXMj3FDt;YP*hqNjl5DwdwH*JQ)N0N-t{+X(k7*0H9TU)yVhz}8~JXCjmFAA$Wv*l2STIm6W*3snq8JDS6c=C@^CeOJisGTRm8Bn z(_(~EAbk}G2$YF`_hK4Ua;4NHoJmDjwzw-jLP+6~Ku(8Dmcks3X*(A(#)U+oLBA`T zMD)MKQR4v-_8u9swd^%GyOZ!P@QPe-Femm@|norF1i&?Of9XDm zpG_2Qsle!3#4A~!AGRMhVK?`%_miL&EH5SMn zzHyCBjnNAv3D0NmMhlK~OhD_P;FV7@Ul7Z40LrG&eCgw7_ZSygpwXjqGZc3=t9W%~ z%eaUzo%*fG4&dQG$9;th9=h-Cc(6YWSeq~LM2@=K`D1e{jX$*pPaDk87%cD`*s~Y# z^@Q;qv-b={OK;gQA5Uw^T|4_$Z7~}H?K9EXKh2|ICet-#LJ;qx6PG`nf3J)+=VoYS zhTGcJw|(P-={$H)uH{Jk$=F8Q<(OWtwhKM?h8RfPEOX5;pLyG?3hZqisXg@PSG4YBTTp8L^!XCFB<66kk-p zZG|h43JxMQ6W34mo~1aR)Kr|Z^uH)65&^d%-SFp%%q>q=YZqDwR=g7kcr)G#>C~c0rgF-lx&IiF9fTPE&gE6t}Y{qck zkMt3lAe)c1H>p2-UJxDN5Hgkzw*B){<0vAjq9IAO)^8?G!oEw{J1$Ov8SC37iqhf) z#f|&sD~3RMO=2B$BVqSsh`@tb<+RdC^8?KX5Zt;}!C8JVXfxP=40V0~((XQ=@n3b? zS;KM^_g6E<5r7+Ae~Djfq7a>JxQYR5>%$~DuY6)+m|@SKGzYi|UAexs7S=8z_5%9X zzvjRxpz`+fst-mdh}-2ldDc+}*Fnn}fK#R0ETDQnr3};IX%X}(#DG>(`nm5ov#M%>(&zwDxo4Ku@h>@z{?*nM~mr!pbA6S(KxCVfQ=F~zRd>hmfwc{ zrG0Y;9aqNh*8rB&ub`iYBgQLnT-j_UdCPwSMj;F>=qt>DnfgI}ZlX+rZ?7uQZ3y*x z`;=WAS-i_;+Aik3tnu^>{aUi&MPDR`YBR%fim>Lz8K~}NHSAY57T&S%|Nh5k=MSOT z)dnHGcTIoOyo5@5$vU|~EOSzgD>4Svhc+`*oU1PI4P5o8;X_PGhyI4nakL!is9L}% zYELhp=?Qg|UH|$Jj4^{fX?_RDPKUC2>ovoq|Cng&$Y?H?-$C8^5gkWr;Gfae-QoX+ zMe74Wd%b&P3Ary;8~HR=kCC7j@!2HMo2C*hnBUQHK-2-AjuhG02Blcxen^2bfno1Q ze}dxb!oHKz>5Z#tdd!$9?Bn_dWfXBCg9=3fB3sb}P~NuIv;XUufB1dPA7WjaLJBwg zix(;A5Wi6&DS~YhNxS7$#hgm?U4{2)!sY7~Ks^D(`oIVAO1Hl3pWWyscFXuCHs#54 z+SJ?)Ta%M8U2B=29|UFaxfYqM?9X_4?9%=&;WGDStYB!H?B5F6WW$nNb$6@UMD}BxToVic zw9CYd6=y>UEPcf_q^BGCEp;P-N)ADBV$RrVy^hH%QI^C5s5f?gsdmBsQaKNLVRo?j zB(XW%;t<#dJ?JR2{&Zzm?qpIT9A3}O~06d*MX?|ey;8M?R zi?%SPvj+MAZI-)u3VM1yo-j!@QFI+e?H)6I0?txup|=t4gS!%=Uocja4o2t>p7ZW7 zRP<}-i|243^F#^N`2v;48+lGl&#Wc26~-(yQHc(X!J7_dLdtCTrU%zzVDbSV>EoM> zml+Au$iu!Urmq74)ubrJ#apS^mI@DbR^p4b&TOl%oi0`uTV#f%h#E|`=G?HFw-#Gb zKl@JR9bG_A#sqTA?REamDs?5}u3hLHu=V@JE3oeL;qZX`ih;KtEzVw-t9`xB1w~mO zjoNeAL}4U@wy~al9i4<3^@5$KOFIuz-v~)omZVl1;LY=giW_KwSqSmP3t5VvusVco z^)|~$VO<#;$%g~7KksjQ|269`36)mX0l~G$Ie&G%!W;{^G;g}(c|TO`T=gFLw$bp4 z5ciAV#;%Y%g00t~t&Y&`+fANC1{YQnEV1tL1D?XX-~zH@g%RQL+xEJ6j`1{8)G-1< z%8B@)Po|7A?fUz5T6fnADiH15-T9hp0{eUYjKeqJ7oB$Xj_Ty>a;nM7yR(u}QOc(S z39ObDy#>L43DcIR3R7VHq^(!S%{~#?qErBSKJcVo;jTYGQj&j=#9gp)Tkty%hH2M`Ks?3TtdO#4uNjMOYF3) zz5i;Uz?j>(Mw5*}vxTG}K?ES#`V>T)TF4@pb3LL)@Ke<=iq`(7GypPr(24rsI7Qk2 zYI{0)3G_>ZM6&-8JpDo`e%t^uvp009KAMyOC}yYincQM8M#w;S8wh0mdc5r}u&G&d zPVuiMqoPCI6Obr+hO4o z)^mDfX4E2RW4E?-^2xL1MZ{9f=NF96rPq&tIy;+*UStYYrov=Qg{AQs3>9jphhnT% zl4KaceF;L>c7L+@G3;K076-ubN3b_0a4ZMcr zW-?~iXk%I(P7W!5z>1a0KwRRAr4Yz%y8rDU)#u9}n9rO5l16}Y42&|tgkErqiYNV3 z&~XBj@88pfh#||Qe<(X3zET@3ac%|_{Iriu!E zqp5@^hE^Bd>*|N;r0oNy%Z#;ep8d)(CA#kRLA`bgFVsyf{H_G5Dz=a@^kZ|QLdM*- znf;GCItO`6Pj(z`fwi$NVO9}4f6(_}AfE`?6rXgkNo6itnk`js^RVc@Q<$vvg1Asr zXJC?A?rjG8(Xm*MbO{M{zmS}p`1<$SkP#~AypA3C2sPBkKqjdR!T~SY>ZZ+IRH&}a z)vN96zbxiyn`v*Gn8$cX9eK#Br7I0&)mwMXY51>f&UwSYKYB4g=03jmI-9*%_xHgw zHo6A(PeTnvpz7zt6ie6N4?S$Ys+~t>_;IwvgPAa{9615ZoHd6L4#n*5f)HRIa##(v z0ir80QrP{-FDaJoKokHxX}OJP#sOxis#44xAvckgUp>C++Rs?XElA>H{s^GJyEM2> z^&K;P->bNAZu;7ToW%G5SlLS994mV06F{auyZ3Yq{5JmCXe?UULL;sQ6FP@8LteED z$n)~`ByU3KnH0Q*YEzbS(?Ts}*J z0|Jx?$1`!k4l{97U%nJNO9qmdb=E*Tz_}&3;2m{q9*B1Lit5T>O7sJHN`N@-Hj3*K(zX`D~=*g@l`(9u9#4 zb9+8651jp@^MM$qq%tOm-#}gmqc5%lSP#+{xLEu4FA%t^+rn6QyDg+TpDJ(wv(gi# z*dk3r{3wA|YyC8r+iE7cb}Rzw?n^+YLm+U0E|tN|z13PcWIHO4s|m*DMp&GtPuD$t?y>lqR*_EJNZ_>}#Hs6S)P! zb{V(q{_IK-1aXT~sMquL+TUc1_=yL6%o0ZTodS&+MvA!};)#n@DGTT|XRqd-#(Fq_ z2+l&2hvwpr36S#!JpEywO(kBrxH`(23I(@8W4H0W?J6WxSCbWg$84qhK?ur{_f7_(H~mNtRyhlPPbZ?%o~y)d`pym z!jlofTyu0qTon2}7LuRZ5!^2UWIz;O7I`cGscAW7vP!eFg&1 z5XJD{-;5Jzp6h}*g4q-Yu;t<5`%E=N_9?8=Aak#nQk1x|65z+l)=Ge1<=NcelkTm7 zKY6;UhzFMc6xD0g`d8o>26iW_VTe;13q^^;OYoVOrIRoamG7^H?=Yg13Q_9-Ze;Vt zkDGd3__PiL_78MKK2f!4vI}v9GCG8^Y5gH|C|(peEk*$68>JVlRBZzsFhJd9NV=oa za@V2p>k=ryE`H?GK9!mfOKx4k#f41RJy1TbXTcc6^p5)tHu$AI93m66&Ef#@CV*LE z#A_TTk(+fEXcKBG`U!v+WwN&n$=u9v+bXc{ZLQfrQsfj*@V-PmFA>Id0I5mR>D3V& z5L?BGc+9yNsdy;~;n2Obv?Y629!%K4uR zyimWTX83?GSSs|MwalcWCHFzFvmPMsU?Yl4;?XUnt^n0FGCe_yb5ZvD68>(MIIU_C zr7{`Nqn|=JcO8WqudNt4ZFG&5W>E5uaIct&G<{Xl( zv(O9#Dzui5w*A@EI6|hJ`(`-6jEq8t596*RT`et{c0vUEfQ-@a7?&gTG?gQ`SBx`_ zwb4pB?lML(j?%`@2sn^;^yC=}JKJMZ67G52kwszf>#)MaeR=zJUo)+eI4=jEpni|6 zuvN!P#e=t3|L6b_z-|83kH=F>LC#c4()V8!C39g^LnfS5(#@Wo+;=YRty`+XI#O1C z8Z*j_CIF#<>x(~WnmRqmN?pJ!Y>p=?tnV)YDde9uFocH~QZ2U=M$K>ZaY}Ni>r)!} zG&Y?15H53Qxf?F$(d+68HB%-lCnl;sH}`Nr%^)}%Zx1N;1R{pZCviJSH)Jv{qHI(? zjJaYI?@cqqDhG+6zxv)!@(V;*+I3%8Z{DKC{RdAK#MB9|`2_(Q0S-Y`{Wm>nlhxBL z9W=R~H7@KqHVhV1Se^(Lma?pLe$ce2Y>6sHoQTKrFZNB6v2&9V>Se658zCiPlj6Uo z2N~>#uVr#Gd9*{_R8UkJ=#{G9zajc=Sm3GyHf3dWh4N3}t2HY2zxFQ%@!iyK)dFTj zBveFJ7RQ*m#bDjPm1jT6ozyI_3k==_8<&5Y?5wIu_Um(~n4`~p3uo-gl4F3EYUk81 zWkcJqKInlHG)jA%TY9f%r-GmUlCnXYqS(mk<;ap|sTwmy+1EA)2k!;==-dOSj|dQ(|;UPYBS>~rhOQvry>*O2I6a+6b6!Js3zF0MH0X?}#>Pbw9Oj|83g>?y@v6&J zEi)+F66ry@9 zF@0)=-@QpZ7UwpVW3a#^)gMuUgC!Kyvj}IWlNB2q8H7~&FL05*eW}gGf@zRd2F-eQ zGx4r8Qpz~P&9K#)h?Jg4>xwmUpw8NV8T#=nZJ`&seE6X_!hDglVD#|lbDqhDpth?n z*VT>Ihj6^FU<}2?Ui6PDy3Ahbdo|LlRg`^Ex1bqL`LXV2Apzy7!w~nu#}b$<%blsd zJ8v!DUqPF*NT*Xx%I4@Qa5*Y`6_@kqLk2y`H4)Lq`9iX=XJQ;{1XV_w6#97=q%o51 zdq<&kP|aM1HGh>1Jlm)FH2Zu#L(tQ0_g>Tn3ck61X`KfPAe60qVgLi)oM=vNc7zoE zW0*V2sq|$6sKspo!q`Onex;n*3a=U2-<-D;DKM3a zJO+vxP(E+P@AT%N3prw~ttfq5k9>8)Gndi0-_9CdIEhJkn$vcxU|yk1Sj}JRyD}BQ z08iTUSargPLB-5(oA+*=DJpU@r>kG>`Y?cQhBsLFW1OnR{jlbyKM(KF(4T_RuV@mF ztC(X)zZlKfB>3#zBRVG7jwv^9h*a%4uIi^6iDo%6JO74xl#N%6Bi~Q`s-s3vU48h^ zJ;(dia(HO$*s`ft90pyw@97qbJtM#-UCnu8=BIlx)R~CXm?WD`Wv@s=b8!9T&h?w` z8#l*}&!}#y;8f9a-@E06+t2zvnfWE*iJOJQg&Br^>~R6@;9VmH5*&`ZfvRkDDOJ8} zD}>n;HBG;}JB&&VW4OYMXDteX-sG&H#Inl&TzoXoJFYuep1Mv&9H~Tjl4VMmly3bo zAy02CR-Lr`t8#;a)VXVRmf)#9@nI$JxTINaq~wRLO;_cK>5Jv8C$qA@d`@Yza#a3g zm45YGJMHCAwHKwHJyfCR^THOln7j3iX#fwcms3b)8k669K~2?rDp{9L%OrJ#T6^_0 z*k^0-kX|gwb?)XcWwfxN< zp5J69V{Wtbg`~x!`cj7bb@7}w4AZ}aKTIlN;1h3l9&c8tGZ^#Q2Nwj(K7KdmCaN9F zl&pT8b1ye+cy2TJapXE14Fv_o?r{C;J$iA@y611jXJs=dEV$bnEu2+Xa_CdhO;CD4 z&Xqr3?&odp9b{R3l8`DPS|-ot8ETFB-b8Je-uru%oX9xv$M?vQR+f?0GA@R5jyAaf zjR@i`nH(FJViUYzvwM!75d*t&@;xfT-}3{MUl4j&*(pWEY|P(N>@ZU&<&c|mc^BE} zN)T4m`Tdav6Maq_Q-#pEBG$V*xi8gvpS*fGuC6{d_{T*_?3Zqi*XkQ%vPx~N74n?c zJ`ZfsU4}SjC(4*=i$eWM)&o`Hn^l!kfWJN}R!6OgozNA>0I^Jk&8!KXF&zeCsk z&jXf;B9!y!@;`5u@iudW4)D=e6?GA}KD8gEl-Dh&a-HD{uUO0bXfZUH^XaziUHqhU zsh>-wGCUS{se+f(Micdo09hqd<2?dN=9LnB+v$B-;@h{U$JD9%uA0F%EvHv~*L=G`>2wmO-;YIOZU||Bgx@!*eavU)iN0 z>Tv^_Mw5(I@-Xwea@ezKQClRCzgRbw%GDaNEu#6@XL0PP#Sy(*jYC5JHC-~)%ZVk#3;@0=hG@uu8Mz(uo2GsMe^*@_JGs)VaUe?afYml zl%{I?zskRf3iE04F^B_gON8o07hgMg(3G6-w6cxU6;#ki?uq+}ZpEvH9UAGDO5_!e zDfitaTu_{7n?C;2iWNEj1*$?ho=#8WYv^t>M`wz{INfZHd@uRyt`GZrpDhV&6ed~> ztCvGGu{)&ki`K*ZaZ)Fh(u9S`U#ET-{t|N$Du83T;NC%r8;)?A|9;`4%J7Yt;n+G|hVjk%lzHJ!o;aCcH3vnG@+GY? zVHSUKr@Mf2EF~{l4nIyGM;96z{Ljnkh5>vXkWhirLPXGtE zop5VD4TD&0a_uw=;WoFdUcEs{aNrT6&vXAYc#pzF8-J;5EIUD-z?$yRI*r{d`aBs! z>)OAd_w~}83p;@_cu!qrm@dq&8dANV4syDw6IqYz`OEaaM_o<37XcBNUAf z)ZBl+D*Rj3n5=CXQjmrD87Lpw!FD|pzsc~SSUdaB4;yK5>H6SW8y6H_;&uGL-e_N{ z9vleZ`u%=qQXya$;Wx{^v4QJ1edDE@>7&rcY`4S6dB1qlFJY9-|GLj2zunEqKJN1}6UjK>7nck4s@TKNH z``bT_0%*6>eC~1W2ffT9_kYGL5zU(57t!#gq{QP9e785($x~wQ{NK&5=?g-?=>3w> z+IObYJl3$!`~G|3e_v>579ZSUg5~GIKKEi(H)ToUvE zXB8jqYP`NIHCm*-e>3=u#4dy}6lX)TPK`o3mu;nLT=cE5 zk|hJWzz(7(oT_Pdx#U7L)VudDzr#Fs6`GDwcdq`_%zkQ1c$_0kkDjfOIl&~3Zh|+EpXE#k zo$|k53Z_WGNc-JktThuYmv&?sr{WnLO39(izy9KuxaVL<)D@pnBLh0@7pq^2vIl;C z-ZV4)r-H4>85pGWk@_m3kYhqSej7sQ{_8b?`JZ=O*S!^QzD}DZ^7p=+-A6xQfC~2S zv(D;i0#MBqVqEG8*5NVXE%(I*dxtZ`|ME*e@+2Jo#syuZ(r2BvK>1ut{OzZv`jbIf zqyOvO6^Yc6?E+KrbcF)16k}c0z^_rn$|d()U#;M*rhYJs_Hi$}vQTIlx8!fm3s=6! zw2!~bJTu&ov!A;%uYo?3p)89ZA8_U24|2;7&v1U|d}x3Ae=V6f1-+uxwZA#3`W}H- zuo&N@?O0nAol92+} zEG4?)0CaP_&cDjBOYa6-spJVxPI?W(UaHOJ+SOk_8t^qzFw-WLSs{Aff0+GPpV5Tp zxboAUc+T?#>%TIgN=<8qc5z|!f5o<(vzz&6E7!@R{^xk`r$gEdsaTFpBkU&%PsLv( zIrH;#+`YX38;^%z1nb4~^7h>(CT_k*0lD{b%}tMF4#ym@tAerrCFSYX;f%TyUoy!E z8)Fn-^xD#)4{Op&`Jg*r>)>wXUa{Gy?NMmK%EY_<$b8aXtLZNKijqo5qIyHOgi*i` zaW+L1ed3E!JO|?Xc zP?B0w4Co;i)-jp9wg284@CSSBCr}Xjc9P^Y*trIeEb&w+2e3>?GnevoZ;i#ELNp%% zmNzHP>|AF_xS??sljooL?NAw^CR*941%qs1zuB{Uhen2J-x zkcgALz!;Mi^*8+AmHX%sb0|KF_5bsVd=*Uf<$r?+f+LjKv5as3a~$W_VILn)d^~$? zDEpN!g_b;k92M!D_)re7V0<%ka4O1~Gg{KX$mk8r!+-nx$ae*=uTNrHa1fcAnnpxK z%*@Zfta01#H7mgaWo6$!#ze=!xJyc^y=uR(yc`}L{$bSO zcTZ19rQ^DCwvIBvhlcv*zy}4Y3`fVua{1ad8rfvS=p3=P(&Seis|rRfXz{S}$L515 znVCc4;)vlm7Z(?BoC%9iD_W;260xvqtHdx$y|Quszt&~r6)xN4&CSgw?1VxuU*5#T z%rp(HSyCn(&huj!9UWa*T&x(gGFV{z7BEAwuy*`fSNHM$+F(`Ny~)Z6H66zPKz!#f zA8h}S5Ydc&y%P0zmr{4k2D637OD$a&LPawbGNiNgaY^}FGZMYT4GbvZzngouyemB4 zym_NqVMhh4A(<#JX*oVf%w_X7MDXIB1eFE7qrm!gf^C#S8-?%%)P$Xs_O zWM+msK0ZcANAE4S)j!!=ZOoKQ#k_fw&T*o`ep$8J~cO(Up(BzJE$BHAvkz zo}L_Ru9tf2={+IyI(hm^#1W3Qc`KZ+awRU?In&|22!MOGD`QbFT=LtJ? zxPN{9^OV%oM_e|KDMUWkw`9yw9_%i4QE+g4g|}cc8=xKD5=jk()wW+7p!3Cf^ebFO zKy8V8sXJc6!-MZWwIuCe4`18)tRGoeLPGFk%#lr}VGbXm7pkfcNq8J)lKn{S=pL0> zO}0nrc!@#nMRQmZ^2B$~S9qUpauP7Azk;QOnp@ag?YFX&%T-R5&-yuPp~^s@a$2Oy z0Oh=Wak@1RumS}I#h;|t=v#d_?SIaN$wsv(P?~M20!R~5C;ypsb zwXssSeKX};bsy;r`%?}8>yQxKAR^9m>*?CG-%Eufb>4#ZOPw#0Wpzu`wxRRzOagkBioBFp` ztB>Xa4cp5s$2q*t_f-xyMqe5kQ7h*}&dliktz2hL=e>kaofLLYIUL6Z<;j6>>iQ@$o6%~|}l)dn=k`^4XqCl8Tb@OJd>{N89#S zq>f#8jnH4%@YCq%=!BdGq_o~3^Qec*3lvIDQp!;-HXFnWZ2py{ka4suc-gi#m~#wp zwc3~Jw_ZNq60-Y8g4uSV_3qkmzDyL8)*bYB)zy3)79;;b5q>xJ%cB;-e}{)Ri0_vJ z2!$skNZZ;L#1g}0Qa^d}?(N$vzZx3>a?_|Qsi>&fEk=6xw~C9|=jP`-G@HIgM6l@p z#!=4G^lvjrQ7bZH!WcW=T~_<4do`BR+6e9i-@p26q&)>t;IJlgs7Q9e@`3M@ChVXu zXU+Vue9($UH)6i~`uHRdn%x!dE2--y&S~rDpy1|?{{Ed3&LvvFvr^P&8SrhiK>x-KT+;6nQA}x9R(aC?D+_Rv9}Zoy z)M8W!mYmPZ8Q2ae85@54GWO+(&CY zc{NHcX5sV?Op^J$&bYR>xB1TgH7-u&hfhpsPPxqA;;^2Qgmq`sD1DVbtROG{E0jWX zq|}nA?(%{cT5^W#?$Tlc{j+D0M@L8UmTg8w1D2!0>^1Zw4Vwk=A)tlf!hi^(cZIML;~=D>}KitrnxF7@-| z-ERthx@^A*3k!QF;KAj7_?L>GpQJ`RMssx5!u~qXA)t(za%%oprDSkZ}dKe@En{)YupMv58EOt`=s`#e+T+>abjgbcE zZmS~&6d`;&pIX+n0d+=3Mpz?dpie_fdT(8K{uO#7bam6|T7E2__wV1M!73q`0zJeC z@YQNJ{63BJ9WpW*xc(*EPYs5!K`-`O7((&8b+0mj<=(Ud#L?FP6VK?ek;4f7|?K zc4x8Uhgy*@1~$RJxj<%Cs|hYnpAOi0u8WZ>TuvJgZxOO5L93*V6yMp|87a4=AmX$# zIQlo6_SwtZ@q!f#Kae)m^rwO@{?l=)Vyt&pg5LAEEq2j8WuUP43pXteH!KdfF8F}n zpiVXG)-oOcSvf~IOOX{=>y*c?)GN7HchGUJUxT&KUu=(r_R9i0FNWPzX#RJQRtqXp z{Os)P-}W}0A%33;JNotOkcKX z$F-U1%L`6$BOLi}h=oo3ICrZdg%S*5I)Ix{efqZw44^{ z3#dN}VUPzf^)%{0p7`LTq{ndQU|VOv5lCqwP?1>P-j}TWcjNf>dSC8sjP`GOg^=>M zf4q6W*M!~Ucrl9IYGP#5E8j~{$Lp9%$8#UQp`oGr;$$6%lyBr2HOSDPMqPx!c#%?u zUxBMFh`@oqv5;Ffg){>kB971g_i6rQE79X&VZb&d;dNp$A7TKk{@i7x|97Gy?Ic?{ zr@5!6XT3Mc2m3)GG--&RG*xZYLcM8e5{#ybhOk1>0Bu>cm2+q0iN7rzFi}3aln^A=OZR>>x=vU*V{giVIcNW@^>)H3h!o~(-htmc(1u?~}Ur@a6LvKZLQI^O4zpav+!?lD*YL(~8L*)~YZ)zy`fnwk~f0S@!7 z&%~fRjyrAYgLXa*C1ulK2B?sk0`KfWv$ON_j=kITfj|imIyqhI32p!l6_pP(+cKLn z=z#Z$h}I7nWa79Qn*8r;**&uu`Ppf^XqMo%MhA^tR9qaZt*tE$?|JtY?1ndUP5w;Q zAH%}#O}VWzzR}k=ovP-xu05tkNIBhd2np|Rpi`gx{bwhgr>P!4ehUnDcynSZnEw6a zne}yzcDAd;yO=&g4W5USEwHUM*EC3>FLF+MG{$k;W8&f(!`@remPnHax?u{W4FmyT zU1q0s&~6RybV-JFkaCV=mwoNUi8)ZwMcdDg361?lcZ5TseHB=YvI2|h`7Rdj@~`2B zRsb#d6u~6CM|=G;AWiH~^LPxuQ2K+MK~$i-qPR9M!L>YFshNIHS9 z4Y`DnkmZ`gsd*?D3QEe4!hr-8OP^+3oI#7v!g(8jysti4%gI~kO-!}lu<5qs;}^{+ zG;8{Fw|b|Yp2;Vm&xDeVEgYCC2(Bjh4N2fGAp$3~GqQzVJ8d*^JdOb^r0$=Gb-X7n z1q$t#rH#7d+MvgEC=FfUSIpz1{@+3Q^WbP~DyN-Jr&l-e&|s?m>LlAlMWW;FiNFL& zy0CI?YpY^B&WHFT9E$A+LEzbk85Zl+?N};d%Jzr~7d?M=_;LN=M6chS&G;Cdiy!Lq2`oHKg3Egl#&_@E zM~ZHe;O^<+mN7Uo#n#ga&`hJ~t>xtIl6jv!h0XW|x{n6{w^blnn!FeQ#S!qfK>4g6 zvfT5G-OKDw8>*GgTis(N=5V463dx0_=s@p*HNarFX*KlY5t+xotDvQ4@~ZyYoqL@f z*}|q427rrZH4M<`#`E^}2H7VHa4nZJ$dpfH4MZ3H#tjt{!yli3pchz8@{m(dL_afE zrlYq9P6k|o3Eu8856{>AIdWreG2=HQxq;8@Ns7APYZ{Ofj% z;2wBvH$MR2-vKKE5tU`ebIZ#uFLC)_rHTYSHVaYvriNdcDO$Z zdYG!NiVk(}-n}!N+G_Z4;~2Sm?R-R*@ohKVw;Bf~)&ZLntTA1n>q_&ovk={ z8ry{&6abUOVuVHD^31*rBUd|r8R|L7cK$ct<=HOuz@Ij=zwBQALXmTFMgcK$;33Jc zJ;~PK3Im1(R|BHi&wjbvb+JU5lpxT@_ZCsg@cJ>xF4w(2Q7uxwL7;I_DMS8jHzc92 zYl$}kX!{Iny9Xt|^ecSRj8$qm{`>D_l|;}Jq&dMm+@%mH|2<+}b5g9%2!3CXh{9@b zbGsdQju*R$m%6Oca5LiQ*?YxoY*>&@0TgVu`GJl>qwlRB>Lu9&XcI<7cL@kYK3u;A z8_^j4+R%+e(FbfFa8_MTH_O`E+vmU)c>+KNH>~P_E+>)uK|$mr6<}U2bN)2n_*_|m z0??+(iiwHo!Tp1>o3gYx1!Dt>n+Amn06!=SE8lFikSfvZgbpa%Vn-Aktl3zprMuQn zHmH2{T&7(OtD@1PjiR2T{b3!~v+b6e_H!ysG-RdRtla`>1Hk_TXX+4XR<);pd9__; zeZ=D%ACYS1Yx9FIwYYQ(3;fx}54Zxaf#8BiOL`h+e_JJVr~Q6yZLQU^LojwXOX|RY zB5XpSE#F#}7uoNvI#i;xF4x@44~XH15NQoStj`(^jujIy3q+lOCJ%;w3fHcsx2!@> zeSUtvI$p*M;;q4|YDG)kZXENLQ<*rq5^?1zPP;m%HrKc93xPw(@Uztf8% z@kYIP3=tV$_G=1i4Ss=oGTa|@JMX6-jBkI#;<~h># zz*KF8lg**j5E4SW{^1>16ulMp#volsD;;xUv2$qJD{1N%gF@ruH?jI$pzIJi0)S%( z;9+%|uU--W*i7nuwv9!jN5o-)a66Ey5zu+7Bqi)rRll{IQ7TaZ6@=CVPOMOdbi8Iy z7C_ZNZ3?Ztrsik)ECx2FM>Y!SZyOy)EjaFjxow0t2C(3c^CAn=Sm5m%DEc0dYaz4& zXPegE^qi%&42D=-JH%Y`t??ChAd2X#F9wx=W~(;=B#hL!bIQrdA(pNo>RSw_b$7Y# zJT&hg+BIW?!TG-}IDor9Oi4*m1+D#nS^Gzrq~Yx5`Nh$Eh-RgOzkugSgnYVY*SDwo zE1>kic!fp9wHlg-5)TUx&(f)@rC02^j~oFkp_P5Np*$@Kb#-<8znw1tH$nf#ORE^U z_pR>_DyP4Fd39-Pt7oJ@A3Re89iEvfG17mO&FJsTQDJ^1w=j^UaOLC2k1TJRFtM<( z!17KTzd+RE)2E>TlofPndCjJ6OxDDCbY9>P$}1=!Hy;qfEcz7ejUcei31hoNBqb%Y z3i=+AJ_R@i!{r;NHK~t}&ok-_Hpv25DTmcR7=YgJe|%b$j5QGw?mX%E03dH;x^CKX z92htq6O+?v9zGu4zYgZQBw1RQzZJ{vok~FJU3a@U{ey#-fC^bmlo!a`DP5PTkdB*h zp7w+j2lT?&+1;%XFqYb5G|tO>@!>kSHrR+%1~;Qdpf)M#El4nes>yEq9)1<^XuD^# zv$KmRjO?+VcESf{!+BDObkrF`vpiRG~)LC1ZK_hw+*_F85lYj z-?=dY936L1eLwK!l};wV3MFn}F=yyirThH(W7*Vt6{;jgK1GBnzACSLmlo@GSf>3~BOMW0s2rN7@2MC8|?J0o~`EK_lxLgt$!HI&__ zPoI*2ufuev58Q3=7&-xhQI2^za#@O)?`M|Ai16^5!1kx5rJeC3^Rn4=2MZa@q~`#E zT6yV)PsHvO6u{hu;5yDjo5t*^Z(T-!JXv54AZvy6a%j&$jP0N!%b)Vn=e!PUf?-H? ztu)XVa8Cs<&%zfL7GkP>2=!oR67xEJURhZYrwMehTk3pt@OM%IU=FOfRFFqtB!|Yu zZ4g{I)V!9IY_i}${P)OM_6NG)bh4ZN`N(G6jnLvUOF&<+S`beh{H_d{#HIE8y4r*k zcS>H~Sa2PZhS#B*RDDiyNqF$c$jDUQh|qwk2o5c*_F+VHV7*wK*SQHW(FaVLx-G#Z zN?#{Un>nH-&j9X~1VT7L>H^@r0%8H5|IGqt_y)w~@P3RmXi-gW>^MYB08P6?MAQLh zvQ}M7QxiR0+w={J3xYHUzcq;4z8ScYy#vwm4B`J^o&WXteBt;XZFl7JcJO|YnV zV`sl~bK?OmpAK7w3HR;qAfj-%dbvmH3b0yFK^_+t6{(e&MXnzL+#}2x-1Bkgu4wxV zxl|E+x8;w1e*I?2KeXFC<;6XmEcr~x`ljm>M-_eS7o~6EZc3!sgBkVRbF#B9HYLqbT7Cjl&g>H&x z68U~u&z>jkWpo99f77=khI?$N;HWw+o5}&VH_ZX~7GTMe^1CV0UDW|>f=K~0sDU>? zzs_Lp5y>L}&KPLZ4+zxkFamSIPwiU~m)F2|`a2;8zW{ECl@dmrHVS+=TQx(NvC+U3 z351uVk5wulV;sNxkfBet-1qc!yOrK2JPs=}r~((TyY<-#5k6Q__ZSoAFL!d4J9-2! zJAwUcj&66P!ZJ9l4fuCqfqoiIpcGXqW>dJSIA;F??mt=K&{B^)w=IM^12c8lV- zVP?qxia8t{72At5S8{T4lfi5ypVKnae&6f22yM3Kgke;5gA30Wq_J=+e8EXyZS+h8lhqN|$r)Mwj3 z0lboP*!_lm^QPXvnFbgO7XtUVa&fjRgKTpk*d6=QSy)&;DHGpArPF#!42+GzGY$?3 z2~n|3g%SdX_|AuhnF7mCDW715vN2Ks-dmqVazl0-%!|EhlOAmGwIZVSks?~kcBOm`u+Py7?HR>^M!!`DJ%sDR{F&! z@(RR!E?-~<4E(xA`Ja|nP;Mop*l*k-dZhpk-Z?! z%LcqV*qVmZ4$%-gifsl35196tg{3$0XNBc>X|d(_SFkGov$QaoY0xci3!5UHki&|U z!Cfp`ak=}B(9f|Nm5Gn`&J3eNnqa%3cHNpgJhVbftgDPgZ`|;Ygax{3Hb(>|m))bq z7-8+{=*DEt9x82XPIkguFa&_HiI?v2&LV?G>1P15r+UB85rqart!Q3ntF+wE_m9gN ztijWJmC?UFsG<{@y(3Qw%?>P+3OakYy_FZhZO6;3Gcq$<=WW9%T_veaibg*L2I^m& z9fKkD_Ug3>Ar#P6umfmehK(pI070bs^Q#r=L$?LMg#^Pww$95lf2*jHl8UM#LPh#- z&7t=D4T;l9B==oP}M1*d}ja ztr@hd%hj=^j8hr_e39COQJ$7JEV*{oB<}-kl_uCWPoNH4oGn-#^-CL34u$uU!ozJXPc;Zi!fCwJsHiG&3 z9}oel07~0@fLAz8-u8IMP~dcf4I$;*)=QnycmxDr35V^$O=V&d$scwfG=^ytoN$9# ziQ5L7Q&l`TCO}Ug@j6+g)!c4>0~dC5a#9)8SL1#tf+rjzz7_M`YO)eR0{BV5bC{?a zbj3U?hJF9!rEmFWEI785Vphkr?TAMR)34CTNTn?6s$3e$` zf{Dfv8wC3-@??nX!DeK`sP!|#TZk)}nfVFaKv$)-9`0HtPRiz%7C+EyPmQ~Y%LH~o zps@j1fFx>%PYt>YIhhYY+-zs+uOj1D{=*3c#^dT_K5*l0pMp)5QC|KHR9Y1t3LHB+ zh4fw+Qi5yL$h%eD*e@g46-FhImoq#ZUr!Pq;iMn)&L_*~D2GJvIui1GD>4&1FATwF z7L+;@wj*08Wh?6_U12~b#yj2I_w^{I8AG${AEe%_P4PjZ<~=)Bc2UHaD}s^rRN?V$ z?sjT@G{iM)2hzB?{i`Eo)`=bBMrGr4D3lPMFyS+^SBHNmb2P2GSB1ciaz=3GD}&lE zu(2NrdU^P?#7I&DN6{*%mIn9{0qho&mR^E=n3j#rwM7Tb1vELD4XwPLy?t9}rvWfM zF!B-mN+gI-X>9}u(hkhti@eU=kSq-R#M#ldHr2DD|BSrZ38jKGKDYm};D8C=D;PaZ zgo$#P4}HE(!t)c%PGB@0@XK3HapGxnFnLG^phOVi+Kt=DB*yD_@j<22W_xQW1^-t` z%fW2?zz57mV4Wb$18m;#u&`gyWgfDd+<}_TcE}8u&X|X&%4fo7STF8O5S)PnfXu_S zsZQ;s-{e$|@H+n`24>EvL|6so0Fjw5VPQg6R#rY#zB%GzVmHA(h6#^*Jj+vdcDxsN z+T-eZ!|8FM1|fb?E-t1Vp;?jsbA0nZGwKi((%0P!0V%YVLO(W~s_2!ciPCVmsuiKm z!K(O_qM9uqR0aYTaVnsx)&oHolaexolE|Y>lo32<2a=TYry^e@Syon2aX~#In20kN z$Y(|NcO|?fMbh_=ZGiKsR7FzygU<|RQVXK;z`|OcuJg`XGlGzgKKNmXxd0mf6VOI1 z`wT^l5_KtQ>D!kVhjkr_ODH@n5DemsdAqy2P!Htn>;vYwWxc(!ujCl|V>UM=z)hM3 zkBo|%+7}kmZSm^7KSCS5FTIdq%VcHA`XQnvf9kyi*(9NKnq?~T`C&rQu zIR@a>UIR#`A1`iK|e#;w%n4`r@w*ccihOxI+`xk&Fm2VI#nQfylN z9|V;R!~lVSENdwMKLAob7>z4O8j!FWVCJag8zF{;Mp<4&;hH+k5&+dm?X$GXZQjAu zvrLvcXHXp6E%8N*KkNH2N6wG<1!)~fTa*K=ihG8~Z@BNtwnu9|oQGsj5cUkTrIKX0&`{#ybo!Fj`@#e1 z|KQdF1vMHiG~C;oPJF8W+r={Oh~8F|RuPMVoDCQMu~<@e^1W8b8RmRs4#DfK%1hu8 za5j1trV$OvcrSjHUt|>oe{h`ax}4at-r2;5tvr7=`O5*vY(~Lw3o|;qXv5&HM$u<< z^N2zDbgs}V-X-sWDiS2pE~F`!i4eOg!NeSgko{9%s%X^@Mv#Yy*o840wM+sM(L!u) zzyJy412P(t&*VZPDlq-DS2{*Ux`?#^Yz7eoP{>i)46+&0BCHjNMX^oh3Q-!sCXNaZgs`XqZzupJPO3T#tb1@a+? zKLGL;0cnC+qFidEU>5~DqG;2sIQ~@$9rjnwSwt)_FqR>91yaRLGb)>ScrKzN z3oq++!IOZL9E@)EkL$>25va&Wnkyu?zhwOjE& zLGT>`mzZJta$OD&Y*g`}WogijfJp!PM9Ctv@L-`~XJLZNZ1bw+>S^E#z@(LE&LEQX zf)G*rzuCqbFXry2Pgq$C2cCksAC&(}A1SWwxvvBo=$oLo00e_jd1Pi%XErVD{hA)zi~MOjSOx zyJ0Y0E#8w-2nO&!2q{&$E{KJFY%>tbRkpu8KimcJ<6a&0@1M<-_oZio$BvlS<+-y; z*qZm{=`_+G^5h3tFXw}0GtWFqKT;fjCDc(}k3{n(7+3YG{Kh#pF@;?{?td?~RrJP= zntka3bo>dpru#oCB;$wAtmpUzy;AJ!BaoyNYU z$Zrq3FN|ZlBJq7|la~)1FJ!c>oHEb`lwGybfewNT#_bVw9-yQ0h)E);z!F84A82o( z&8*PHagX;L%xjiD(hCTXR!vGn@41A((mqKAN6zy4nx&@Yl1#<1k-2WA!m-bm)raM!pX8m-8W| zhA#RL=QJXp)5t_ydOIAD%)t~leE8CqGyB9MaLNgmtj085k%kZl`NkHVTJO){$gZ6zYzBP=g%KxP}y?o ze9#k+y}}J+!;J6W(c`6;Ih-UQuZ#)S(eS1Fuj4BDti5s>sE@-5dtBz4y?gH;>#{tA zD!UFgi80LeKNEBRq34c=z!``@wMqxmNPg>%R2ahYfg8%8Ui=9fLU5F}+szX7OT@i15hZKX~4=J!|YDWe|LUv?o&|E{*h;~Dg!jXrc_Z=H7@*NA1p**|2jwxG>|txW-pCnLcP8VhDfI1Dn8)(*TKiGW2! zER<^HD$m1g33ehkWbU#a>VQED4GA(Tsq1B+gSH_vTi~!Ne{#5`V|A|_PzZ>26SU>k z-sBI%hYtt|#UY4-=v)YGv6~NduIuN#Z!>rU27(ED3~OR|U7aA3;Q*iA&@D?-3V6)Q zpEPX9`EVoCdW467++3`6&WNl6V*{Cm5({{IgK64R!*;yJEDTy$$US zNWXE}Enq^=8O%|sQsTSXlA@hIY!BtJzLc;f85S24(+*5bVzIcKKrD>Q`+^TlLC}=$ zjzJH!UEUoXxgeV0(_MI=i7^`m`wtn5fbatHr0y;rz-MxFa0pub# zbZP*RoPU*IDniHAjM5ZAMFxQRj^r^BP6BHVwl>a(8@PE+Zx(a5cX#z+!i~g4Iw55V z`c4jvHgWemP`pS8qA#|G2ppcDstk~5oL>Ku(>}vcrLL)|xkO&}^Jg#qf#Wmi4}d6; z_HTe_RXgJ~+}l1{kOMO-8Oza>fP+J0Mxu?i$4f-u!OGI5ZNWWl0|q0TGx$TNE&;hc zmcwQxAU5s(&Ab48o^S3y3{?Q(7BLwaW;Psh6bdU%z73WhlJ@vh>u{Xbjt($wNv)FU zyT63NphPA3t_(mEWWWGtNKb=zHM~k1mLV#)81Fo#2Vl7ekv;Ljy*y*?t(*6$e?m3_ zGFXU=L9Ae&_&mkBpwFLQCCj=Cvi$?AT^P23IvcV#+E_v&t+vK*ma45s#<9Gp_!j49lk@{Rb)p# z9Z>3_V;d@O?ZMz@|sWvFg0nj=P=4LWfJCmx#QWOz$V5$A8W za}{Ha^t*Cl)p<(_YKrflTb#rzY-cb)(Couw%tdO>U0*O9sHNjxgSiMB8x|gBa0+I2 z_KrAP)vmkH{j$cVA#(5%Tw^emY$7|W2{X+94I&|KP@wkUD?oliHu*<)TUA-|gYHvv z_*_dc=U{T0ACiLt<7y7%=POassN*=;Uox=dY4^zlc01XCXnlbIVm>||5~@+Nk%{L~ z8XeC%pezIMMphK|jJS?B+%N+}Lu7FH59W$dZeNk)3`qAgQ1p4 zEehH!dqGKYkcF!r|GgvsgJh-V;o&Ga0bQ0eZ;GXGVqiaHu zX=D*=MFB(8nNJ+>1r*%ruLayz$W8e@Vks{t^<3#9*g5%;G`I(aqZWEu6)c`74pPyq z!Uz>Dfx`1OU7;EOsrRA1z1?Bf=fN5%<{=mw%A9^x z(2|YlHau6LASwA7Ces;^{%0YdPMrdMq@=B#2dR%|6^RfNWAtmZ9rH3X6?Z--TtBHK zm7f$gk&yYdme}ND9xY4@f|(sw3m+eU71D54`@?YcHLwna3=$BhH+2xycIXr40j|Bc z??!ZM`xlbR7nhbE0?DY3(*T*~ENJ>d;Ko0}7pZ}GJiEt{O|EKzko&>LP1i?aw3zK_@&yN7bNlL%QWB@l5HMIyh9Oabpat-U&g+=|GmM|>{2nrg6A}Rr5X(Z?jkw@f6 zFqzTd&yfhTDxbZ+|94V@UL{Wvf(SX<*ZSG_L1DEU6`B72{3s|v1+-;0D9xPG(o&@- zX5Vj-31|Y6D?`K^a$S8J%T}X>!jSq42Kp#XZ^sW>Z-1o^%9P{}Ol8Lw9>RkawXkaJ z5O7!S`I@tp2}7qJ%L(q%@T`x?;ILonS z@Z_ltm+676eponDxFQ~pqo1T+N3+%o?nBu7#D;3hfj(d2r86Y^E$qZbN3)?Yn-h}I zzLFmlYi46B-Bt? zOy&NNhLWP9!&u#5&xEP8lvEHz%u~L7`(||5k4zh)qqAV;6~U;FQXEF@x6|jtIq?rJ z2tbsn24*`+Ko(2@5O+?`A!8X0oH7HvKlYPnUUfRqL!%7Ua`O`JNkbqLz5&%7kBBG- zx%t4$&GvTRHzawTuj_D5u)qXd2M#d|rhkm5S$tGf20XM-14%1Ov-^{AF#lUE>|jz* zQ;SCIeb0;I*h7J_-hdkho`^{1#uV0^`4&nAZ7y%cm+ zI%KccRq9TZQj2PlqwdB|o4~~rf~{v-au;mRXW;R{ZCFWg|Jw&)w275Nx6P7a1cK;z zc+|nC2^zXp$dJ=Ug-PSSo?GSs(u#v9X|ODrgxy58sj?WRNbA`-d4FJw?}LKyb5xU4 zfxJXMlnjEb&J(tx;cPw^@Th_rc;Mhv_Bq#`PJY4ay#0{nIlTQ?fxaIcyF%IL3#gxH z2n?mejb$HyLJRl}oOT$=2`+2}S_kMoJn43>r6?QEeW2qZ*Tc6fnVRSfL}(HcgD57Z zp$Iw!=~Wh*LHvoXwl+Ca(<~$uB4SJibC*@02imeg=UOqgz)pMy7zd$HNkAtXKWv=) z_wE&guqENPd-b0;eV5a*D6glN3_@TZp0iVu;oE){K7Z^{OC8nBF>H4vIpH!N1e!TY z8+7LFyF1UQAL6Vv+#nl(jy=5~8T0&cQrVQ7gs&bg8(WbU>5hY9e64T5qgfW=Y>9Z3 zht{d7tGoNQZb|Ua^~eRD-4ATtdMmjUq?@__%w>OZ_G|B3%yTkgke~4mv3wtUo3s+}D>Kt^yl9o-;044WZ0)~b@ug0l@;`XJacd$0#kJUk~6G(HFh zIBiYkLZmZ@n7gp;DS!n#?C{Nzf|pRE)*Omlqi4svB~F{_xoSlsNc1aRCUI&haoK<= zN<#2_Rc3!NN@oqMts(d^B~{f-;DoJhSx+i5Gh`o0C;4(DgC~Xn=HP=j9E7 z7f-lZeg_jB!EorcufcazHZn^0#U-0sIDl*_(qI9EdZ9cOWo46KDOO;sTOL(`>0|=F z@U3ysDI)wwGaq)`YGR9L7#@^3^BwZu;H>` zuuBK`e9)4iaTA`M8H7PyCghk8Pr#qZ1NXpm=!crPj7*ei%ovOs07jFS6TP+JpV~Z# zv{+76tAQ{bh6mV&EiB_tY|LPzxPc2oAs;uyf^+`QPjCQvM;K$vU=uLNLWuyC%!FJo zK<5fLbOYd%Bj*XrvHDs4F+|}O-9Sl}!1EiUn+Kn?Ez;A{R%rx}{jDk%zxvXg4Qtv< zHQLs}BOyq0f@dIo@7=q%H&1q{3hjr>GA`D-Rt@gm5ZouEKqqY)Z^dxgrf4!niAzZA zAJ$#g=$-xg^@|$&6A$riPtdDl@RU@l1Q|oeA80crK;4l`0#msE^CLFsm=8=rRM~M6 zBYg|pOL4{%Tq*wjY*;fDjCd_LRV$^3MX+?pR)Qgg<=(lb^~g`X_SV*3 z2-_Be`26{R^Y$P-#DbI(vNDzP!Mw$A1G<1ZWo2anmY%?tON0EYB=92zE2}&&h|qJM zBrq^A48VQZ3-LaCdE4(LL=1D`36m^cmQ0u+yoTo~zX+VHP)Nn|?0@do1JXQfOx)!?U~XJb#SIRu~;jR*~E0+Heb_H zQ)I6A5o#NKKVM%PEfRAZBe&J>oAP8KnK614zHnH}yd29z3)*be9`-KZjMkUFIDJYg zT50BRl@a;3(9yDg{7`gs+&ASs*UndojEwA(Ziy50u7$c!1xGxdHTMGcvsF2!Wj4K3 z4NNuo4@UG66xplU^2|>*^8!8`E};%so{^JRDGpA|ptbj@Mi2>aX&+5TNl6L3zl9@x zcla$*K2-=NB!M=}hHbevq+zXOW|j@)RS|d|+z5Jpel4(ldgva6y?g!~S|Wsehu>ph z6OvSAXN$v{Wx@2~)4ZLV2VC&HH;Bl(t zu`%_ahfjqd$}~)eLB`l2@90>Pot-W1{!95%z|7RNxy?f$5%z_WhP&H2c_WL%xMdj~ z2S;hLNCPB^GT_h{XzzSC<2Wp1tm@94jy(iwzzNuK;X_zx?0KzKnFi3!6L^X*3xSj< zO}jQaPUU@{XX}>}U|SqKrbtG%Y$aRSjU{6cF4DDcxvpJ^q)2un zOIZgq!i}+S6h3%-kA^6K+^p3iyCbIxm%APTrrvj3$sm9+};bU1Kd5FEW#o;o`r|&!qx&5=w7CDMXM**k$lxw|QE`Ej3n?ezCcgpIv zULeE_lC1Af`pN0_^u0ZpcWGm)EFzSWfuB8Y)P9C!{j7)5mcjqwI!kA#o6zvU z_FN;+;Inx`xL^;p zvOKx#z+38gT@3(4Qy-xE3e99T7KRPLWk9Sbly6~08(_9C3kjhSYqj}RgJ@R$*}V!f zc#3ck0xDD!&Mxpc$N;fVUHFOIzW`1*oIV8aj?6dO3lE!6kmLNf5109eFeZ!6ldg7q2Uz4G6{?8b*7SLR!wl*a{VoUIV4 zS-2`}QldiJN~aA^ImgC#`*!mD30N&G1{2pD{d@5-kxC_)7rZ1E7j3w$BOjPKkN9jN zm7hb57Da(JNCd)4;BSs+O)L*Wq-c2ic8_&lYDY&$*j{2%(x7!7&ToS!klG?2zjkM@ z926KODq1{j^2m~w0x7`h*;yeWxOlKzLdO6!8EoYsltfa@1F1iDpv6iId4B!+7AZ&% zjV4119tlLj3c%(;k_K*uQU+Na07Q=dAdq#XP6)q-UF>nt`vhv2RX zi_%Qhz2z+g9uDq^oQ>iq?-Sr3u9*(_7Fg_UXzck{)i0SrLJQy{y>9X+smo=h!B(Cm zRd-&~Uz+&9mB8??*`}7Ql32Wj0qtdce(DoXr>%Il5@o{!=9}9M(-OjEo|s#S6a5?v zquYz25;d(i*NF7E`nt`D?fm}V-<%+yBK0edXC~!sMrt_Odhp#ih zYPDmM6cJA5kF#s4q;IRk0FhOL4iOjBk_iNi5VSlMiJm|DK*6$+;WX*h;C!M(%0k6y zk8OU%Y=f*RFRrV?Wm~qj;xop2?dp8xe>k()HCq+&#hOyx)_(05c@enlruS8T7leG zagT>9{v((5JqjJ&@pGCgH?iC(%qVN>NptDPll;sn7(eDSwy_>o#hk;DtpglKO))q9 zS^}>gr-PrD3b(_{xl?*&bQL77R(QY4z_)KVqj-trWg@H4xC1%HRe!a7MT&H#%|=F2 zE}UI9u50;hcD?J9TDHUD@;A|ES9HxkB?*WibIF#A#Gd>^{B7a8u{7e5zZH%3dN9S; zo)n$q+)i*Iz3Pm~T_>i-_TVBEEXbG!pC|6*7dq^kZ6c{f-C8j+_KyQ_S}t$!uNQjjS za`ujEs0#7x{WbYPZ6WTYnwGpBn&FIQRM(jc5B``LtgVQicT2QflE%_Y^BFQ}dq$T# zeb}1gO3}dkAyo2MCLP7r=HkR%Ljrm?c+pN6JwWT!Hk?6JlU7e%aNj>=wueN~*Y)2gSi^Krv zWrMaBIV04o{;c9|<$5nIkw_b>4!EzSb&mIWt)5o$?sFI0N@t->YO}ZQH#bkEBX&L2 zwZAszXT838pTd|FF#?GhV> zOv1h)xURXSzT$38eWMC5Rs%1Z#`eOmYU{3Z?*|$Au8;M-Xu-cSR?j(SCHl# z=0jdf3@2nzaeqwz($T7s?BG7*JD!1WQ6Th7>=clS`$U!F8f{y*2E+vdqy$?^rXX1+ z?C@|T(}}5Np7L(xrD*LzScKcB`I2C*x(eE2ual}2#b{w*#niy?fWZMWynVUL${?aW zcOl`j&itu@HNU1%e1=QSwe|elpKlxN9o1_iL=PHS9~Hig4w->SG-VZd2~Le0DMpeTOj4YMe|6Tj^A8nVr6z zaZ#+U?~G96-x8MHB80Dh5_|$U4=rZZKPVSDcx3Qbg(gurDQZ_rn}HsA-_ zdBXs%S9paD=7CO(;GQwO5E3GV*((43yQ;J%-t4{HWn}RAw8L208e%j)LveSKE6!2j z7_HJgd^r^Be|c9uHnVy#ali)|*JH(&@8R|CV{4?7#!;-Q?LyJ}buC*L>t( zS$XV@Dw@^%Cxb8=gN?9`KC<=}8TinR_x9YvS9L8`V{2OipSAkk9+9R2^9XL!!D)fC zD+6^!Oiu)mfgae=H=bVN0r;H1@pm~}B>Ahda;8GWSSgHWbp`oFcY`B%2|Ed5$B!a| z4-3#Ic6I%Ot}9|*W=_n==|6@K)wlYM^o(kL=ZwN*C)y$YDu2y68e8sx{pG|eW%O}8 zm`4eECa_0w<>IKe8taG*+&I=0olq}jcGP&*(V*|`2%jD1#eeP=eXy4CXE$_Xkic+c zxv1g_n(ECj!FMZmLrAdRZiGQNJ!ky^f%e|bnFAr{e8^#Jbwt83y#9{?MwA^F@h6|> z??Nn=xveBtYSz6S&Fmy})HjJ@o5`epmzadT*=ouaQh49b0Z(CnwiFUN=Z&70m$7|&(3Js3leRzcqe(eK!E6*IqmLL+h}Mrt{^1_?(Cs@4m)l%5_KK3i z_SD=j1(D5;Av0Z5K8P|;Y`~&Sd3gf0iQC$%hJ(V4SFzp_%Q5U^Wv!Q&Hg*&-?iM?) z_l-}!j%B5(ZhsXdJQ$hV85e9D$SxAzc$kV$SfhCR@AI4Y;_W%=>xbB_SZo!VsBnJR z8H4o}tgh%6&Rc3e7i;iFnYgX8`m07{%AHSRi5GLLoPDgcu7VXI#VzbG7WtQs?v{$a z>HaSdPq5|h|3Vk~R0%N)z;Km=sDJ;9_rmS{Z_*uR3*HwFI;E%oJwwL6BGH|=K)=6F zbpJC`wf2s4(@D;T3gp*u1o9NH5Qm&T+Q=kOOA0DRiXwgTvKH0+?_WUZ{d`3wBZO7J zUXykWlE2R!Np(X7*=0AAaqR!_!SQ@ab(ooDX{JAPskgc|C@qXncErDQe|dInjZjUh zlcCT5@hPcnd$NUt@}NVg!9lRus@1B$^VSwsvE)iy+!Tu`*fx9%MXDeuZN`p2-|ltY zp7c57({7*6-@f@|rRI2h*+QfHmN44&Ng=P2L-+&wbfUV<*IvguipBVApCCkf`vZtC|twRkrm)yG_jc&J?#CBT*jWk&zes)1^f!F)q$@ ziaL^3@{L!zzSpy`XtFB%EyQaXGIsnE#exia2n_dHr+(pL)JA_vO7Z1oGnk;}d}gQTAtA9Ca8kl1B5um5uTZIoh}I?=#!|XYvQObOb|AVXZZY z>n6nS`Y%o+^PaFk9_ps@Dr0g4qKDw`cSH&&?{9Yud{7sYz34u~-mCHft|XOYpXK{k z&_mAzAEl@+-+7YdT>iA{_K_6acGGp=c*H)@y^r$OAw4^=!fJC#cA7=4s9v)t4mRqd zv;y+<^8&(tHX9ji%sJuvp{wj5K2nsT5D#PP`u(qdeys)rBtUfhK2WA58XLan$=;pI zvJn5M;T9I)jLboYY|M7c4Ug%!K89P3H*`L5lM=XG$RU|Wta#2K10MRpqKsvj!;LNc zB2n+zi7#+d$4pHnFX%sd@p4}spPr!SAQkxJ>3B!$8Tm!lbxIgsL8DffJg3iB9F>@C zB>gK^X;HAdA_b`i$J0`Y7H?P$e|AVX;umCu4S(tc+-NLJpXPfUz`alSwPY(3qn|<{ z^mcc_SwoKt_cjOlPnB@H53>wM&NN)Qt0@&|AkM0MER4^-x3%eX1JgdGKR5fFi^5EA*U5CPx?D#FoU^p@U#!XjUw=!9nZdZ4lGFs$%YMx4ue;K>!`~P{m{x4D0OFPu#Q=%}s9^HTl Oho-8oO3|&mA^!n#STl=0.22.1", + "matplotlib", + "plotly" + ], + + + project_urls={ + "Source": "https://github.com/lucazav/binclass-tools/", + }, +) \ No newline at end of file