-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathtf_cnn_model.py
69 lines (50 loc) · 2.36 KB
/
tf_cnn_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from six.moves import cPickle
import tensorflow as tf
import numpy as np
import six
class TF_CNNModel:
""" Represents a TF model (in this case, with weights trained with the Lasagne library.)
"""
def __init__(self, model_factory, model_weight_path):
""" Loads the CNN model
Parameters:
model_factory (module): An object containing a
"build_architecture"function.
model_weights_path (str): A file containing the trained weights
"""
with open(model_weight_path, 'rb') as f:
if six.PY2:
model_params = cPickle.load(f)
else:
model_params = cPickle.load(f, encoding='latin1')
self.input_size = model_params['input_size']
self.img_size = model_params['img_size']
net_input_size = (None, self.input_size[0], self.input_size[1], 1)
self.x_input = tf.placeholder(tf.float32, net_input_size)
self.model = model_factory.build_architecture(self.x_input,
model_params['params'])
def get_feature_vector(self, sess, image, layer='fc2'):
""" Runs forward propagation until a desired layer, for one input image
Parameters:
sess (tf session)
image (numpy.ndarray): The input image
layer (str): The desired output layer
"""
assert len(image.shape) == 2, "Input should have two dimensions: H x W"
input = image[np.newaxis, :, :, np.newaxis]
out = sess.run(self.model[layer], feed_dict={self.x_input: input})
return out
def get_feature_vector_multiple(self, sess, images, layer='fc2'):
""" Runs forward propagation until a desired layer, for one input image
Parameters:
images (numpy.ndarray): The input images. Should have three dimensions:
N x H x W, where N: number of images, H: height, W: width
layer (str): The desired output layer
"""
images = np.asarray(images)
assert len(images.shape) == 3, "Input should have three dimensions: N x H x W"
# Add the "channel" dimension:
input = np.expand_dims(images, axis=3)
# Perform forward propagation until the desired layer
out = sess.run(self.model[layer], feed_dict={self.x_input: input})
return out