forked from avhz/RustQuant
-
Notifications
You must be signed in to change notification settings - Fork 0
/
calibration.rs
279 lines (263 loc) · 11.9 KB
/
calibration.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
// This is a rough example of how to use the autodiff crate
// to calibrate a model to market data.
// The model is the Black-Scholes model, and the market data is
// the strikes and prices of call options on AAPL.
// We are simply calibrating the volatility parameter of the model.
//
// Run: cargo run --release --example calibration
use std::time::Instant;
use RustQuant::autodiff::*;
use RustQuant::math::optimization::gradient_descent::GradientDescent;
fn main() {
calibrate();
}
#[inline]
pub(crate) fn calibrate() {
let graph = Graph::new();
let gd = GradientDescent::new(0.001, 1000, None);
let start = Instant::now();
let result = gd.optimize(mse, &[0.1], true);
let duration = start.elapsed();
println!("MSE = \t {}", mse(&graph.vars(&[0.1])));
println!("Vol = \t {:?}", result.minimizer.first().unwrap());
println!("Time = \t {:?}", duration);
}
fn mse<'v>(v: &[Variable<'v>]) -> Variable<'v> {
// HARD CODED PARAMETERS: as at July 21, 2023
let s = 192.64;
let r = 0.0525;
let d = 0.005;
// HARD CODED DATA FROM YAHOO FINANCE (See bottom of file).
// These are June 23, 2023 call options for AAPL
let i = 0; // 0 = July 21, 2023 <-- CHANGE THIS TO CHANGE THE DATE
let t = DATA[i].0 as f64 / 247.;
let strikes = DATA[i].1;
let prices = DATA[i].2;
// Compute the squared errors:
// MSE(Model - Market)
let se = strikes
.iter()
.copied()
.zip(prices.iter().copied())
.map(|(strike, price)| {
(black_scholes(s, strike, t, r, v[0], d, TypeFlag::CALL) - price).powf(2.)
})
.sum::<Variable>();
// Return the MSE/Variable<'v>,
se / (strikes.len() as f64)
}
#[allow(non_snake_case)]
#[inline]
fn N(x: Variable<'_>) -> Variable<'_> {
0.5 * (-x / core::f64::consts::SQRT_2).erfc()
}
#[allow(non_snake_case)]
#[inline]
fn black_scholes(
S: f64,
K: f64,
T: f64,
r: f64,
v: Variable<'_>,
d: f64,
type_flag: TypeFlag,
) -> Variable<'_> {
let d1 = ((S / K).ln() + (r - d + v * v / 2.0) * T) / (v * T.sqrt());
let d2 = d1 - v * T.sqrt();
match type_flag {
TypeFlag::CALL => S * (-d * T).exp() * N(d1) - K * (-r * T).exp() * N(d2),
TypeFlag::PUT => -S * (-d * T).exp() * N(-d1) + K * (-r * T).exp() * N(-d2),
}
}
#[allow(dead_code)]
#[allow(clippy::upper_case_acronyms)]
enum TypeFlag {
CALL,
PUT,
}
// OPTION DATA FROM YAHOO FINANCE
// ARRAY OF TUPLES: (DAYS_TO_EXPIRY, STRIKES, PRICES)
// Company: AAPL
const DATA: &[(usize, &[f64], &[f64]); 11] = &[
// Jul 21 2023 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(
1,
&[
50., 55., 60., 65., 70., 75., 80., 85., 90., 95., 100., 105., 110., 115., 120., 125.,
130., 135., 140., 145., 150., 155., 157.5, 160., 162.5, 165., 167.5, 170., 172.5, 175.,
177.5, 180., 182.5, 185., 187.5, 190., 192.5, 195., 197.5, 200., 202.5, 205., 207.5,
210., 212.5, 215., 217.5, 220., 225., 230., 235., 240., 245., 250., 255., 260., 270.,
280.,
],
&[
144.85, 139.85, 134.3, 123.1, 124.15, 118.25, 113.25, 108.25, 103.25, 98.45, 94.4,
88.02, 83.59, 78.56, 74.3, 69.22, 63.5, 58.65, 53.2, 48.4, 43.25, 38.78, 36.3, 33.25,
30.83, 28., 25.58, 23., 20.94, 18.29, 15.96, 12.85, 11.11, 7.95, 5.45, 2.95, 0.65,
0.04, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
],
),
// Jul 28 2023 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(
6,
&[
50., 60., 65., 70., 75., 80., 85., 90., 100., 105., 110., 115., 120., 125., 130., 135.,
140., 145., 150., 155., 160., 162.5, 165., 167.5, 170., 172.5, 175., 177.5, 180.,
182.5, 185., 187.5, 190., 192.5, 195., 197.5, 200., 202.5, 205., 207.5, 210., 212.5,
215., 217.5, 220., 225., 230., 235., 240., 245., 250., 255., 260.,
],
&[
143.0, 130.2, 122.95, 120.0, 114.7, 108.1, 104.9, 100.35, 94.25, 88.03, 80.35, 72.75,
67.45, 69.34, 60.8, 58.62, 53.27, 50.2, 43.3, 38.35, 33.17, 30.85, 28.53, 27.3, 23.61,
21.15, 18.68, 16.19, 13.62, 11.42, 8.76, 6.45, 4.45, 2.52, 1.33, 0.64, 0.28, 0.14,
0.08, 0.06, 0.04, 0.03, 0.02, 0.02, 0.02, 0.01, 0.01, 0.01, 0.02, 0.01, 0.01, 0.01,
0.01,
],
),
// Aug 04 2023 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(
11,
&[
50., 60., 65., 70., 75., 80., 85., 90., 95., 100., 105., 110., 115., 120., 125., 130.,
135., 140., 145., 150., 155., 160., 162.5, 165., 167.5, 170., 172.5, 175., 177.5, 180.,
182.5, 185., 187.5, 190., 192.5, 195., 197.5, 200., 202.5, 205., 207.5, 210., 212.5,
215., 217.5, 220., 225., 230., 235., 240., 245., 250., 255., 260.,
],
&[
143.25, 133.3, 123.95, 119.2, 114., 110.05, 105.35, 100.4, 95.4, 95.17, 85.15, 80.66,
78.79, 70.05, 65.7, 65.2, 59.38, 53.45, 48.99, 43.32, 39.22, 34.2, 31.3, 29.14, 26.1,
24.38, 21.47, 18.99, 17.17, 14.4, 12.5, 9.95, 8.17, 6.46, 4.72, 3.45, 2.56, 1.75, 1.19,
0.85, 0.6, 0.4, 0.28, 0.19, 0.17, 0.12, 0.07, 0.06, 0.05, 0.03, 0.02, 0.03, 0.02, 0.01,
],
),
// Aug 11 2023 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(
16,
&[
50., 80., 95., 110., 130., 135., 140., 145., 150., 155., 160., 165., 170., 175., 180.,
185., 190., 195., 200., 205., 210., 215., 220., 225., 230., 235., 240., 245., 250.,
255., 260.,
],
&[
138.21, 114.55, 99.95, 83.09, 63.34, 58.42, 55.59, 51.02, 45.42, 38.95, 34.16, 29.29,
24.25, 19.29, 14.72, 10.48, 7.2, 3.9, 2.2, 1., 0.5, 0.24, 0.16, 0.1, 0.09, 0.05, 0.04,
0.03, 0.03, 0.02, 0.02,
],
),
// Aug 18 2023 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(
20,
&[
50., 55., 60., 65., 70., 75., 80., 85., 90., 95., 100., 105., 110., 115., 120., 125.,
130., 135., 140., 145., 150., 155., 160., 165., 170., 175., 180., 185., 190., 195.,
200., 205., 210., 215., 220., 225., 230., 235., 240., 245., 250., 255., 260., 265.,
270., 275., 280., 285.,
],
&[
124.8, 132.9, 135.75, 120.53, 118.3, 100.11, 111.15, 106.47, 101.95, 96.45, 93.85,
86.1, 83.86, 76.56, 73.4, 70.2, 65.71, 58.18, 54.07, 48.45, 44.1, 39.23, 34., 29.13,
24.15, 19.51, 15.2, 11.07, 6.95, 4.25, 2.32, 1.19, 0.59, 0.29, 0.18, 0.13, 0.08, 0.07,
0.05, 0.04, 0.04, 0.02, 0.03, 0.03, 0.02, 0.02, 0.02, 0.01,
],
),
// Aug 25 2023 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(
25,
&[
80., 110., 115., 120., 125., 130., 135., 140., 145., 150., 155., 160., 165., 170.,
175., 180., 185., 190., 195., 200., 205., 210., 215., 220., 225., 230., 235., 240.,
245., 250., 255., 260.,
],
&[
115., 87., 76.35, 73.78, 63.05, 60.75, 58.45, 53.51, 49.08, 43.98, 39.09, 34.1, 29.11,
24.5, 19.66, 15.45, 11.3, 7.8, 4.75, 2.8, 1.43, 0.75, 0.39, 0.24, 0.15, 0.11, 0.08,
0.07, 0.06, 0.05, 0.03, 0.03,
],
),
// Sep 01 2023 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(
30,
&[
100., 115., 125., 140., 145., 150., 155., 160., 165., 170., 175., 180., 185., 190.,
195., 200., 205., 210., 215., 220., 225., 230., 235., 240., 245., 250., 260.,
],
&[
96.05, 76., 69.01, 54.59, 49.18, 44.1, 39.6, 34.5, 29.46, 25.69, 21.04, 15.6, 11.4,
8.39, 5.35, 3.15, 1.71, 0.92, 0.5, 0.28, 0.19, 0.14, 0.12, 0.08, 0.06, 0.08, 0.03,
],
),
// Sep 15 2023 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(
47,
&[
65., 70., 75., 80., 85., 90., 95., 100., 105., 110., 115., 120., 125., 130., 135.,
140., 145., 150., 155., 160., 165., 170., 175., 180., 185., 190., 195., 200., 205.,
210., 220., 230., 240., 250., 260., 270., 280., 290., 300.,
],
&[
131.05, 125.71, 120.65, 114.8, 110.25, 106.25, 98.65, 95.85, 90.2, 86., 79.66, 74.19,
70.92, 64.3, 59.15, 53.65, 49.08, 44.85, 39.35, 35., 30.09, 25.57, 21.1, 16.31, 12.77,
8.75, 5.85, 3.65, 2.15, 1.21, 0.35, 0.16, 0.1, 0.06, 0.04, 0.04, 0.03, 0.02, 0.02,
],
),
// Oct 20 2023 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(
64,
&[
55., 60., 65., 70., 75., 80., 85., 90., 95., 100., 105., 110., 115., 120., 125., 130.,
135., 140., 145., 150., 155., 160., 165., 170., 175., 180., 185., 190., 195., 200.,
205., 210., 215., 220., 225., 230., 235., 240., 245., 250., 255., 260., 265., 270.,
275., 280., 285., 290., 295.,
],
&[
137.03, 133.23, 87., 104.91, 115.55, 113.75, 105.37, 101.71, 99.3, 95.85, 88.41, 84.39,
79.89, 75.11, 71.55, 67.07, 62.28, 55.65, 52.78, 45.9, 40.4, 36.22, 31.44, 26.82,
22.17, 18.51, 14.25, 11.07, 7.85, 5.35, 3.6, 2.29, 1.41, 0.8, 0.5, 0.28, 0.2, 0.15,
0.12, 0.09, 0.09, 0.08, 0.05, 0.05, 0.05, 0.04, 0.05, 0.03, 0.03,
],
),
// Nov 17 2023 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(
82,
&[
50., 55., 60., 65., 70., 75., 80., 85., 90., 95., 100., 105., 110., 115., 120., 125.,
130., 135., 140., 145., 150., 155., 160., 165., 170., 175., 180., 185., 190., 195.,
200., 205., 210., 215., 220., 225., 230., 235., 240., 245., 250., 255., 260., 265.,
270., 275., 280., 285., 290., 300.,
],
&[
145., 132.76, 126., 120.9, 116., 115.73, 102.43, 110.15, 100.07, 97.9, 92.8, 89.62,
79.9, 74.07, 73.61, 71.2, 67.52, 56.95, 57.43, 50.9, 49.02, 42.03, 36.83, 33., 28.11,
24.17, 20.2, 16.15, 13.1, 9.85, 7.45, 5.27, 3.45, 2.46, 1.53, 1.03, 0.63, 0.41, 0.29,
0.25, 0.14, 0.13, 0.13, 0.12, 0.1, 0.08, 0.04, 0.07, 0.05, 0.05,
],
),
// Dec 15 2023 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(
101,
&[
65., 70., 75., 80., 85., 90., 95., 100., 105., 110., 115., 120., 125., 130., 135.,
140., 145., 150., 155., 160., 165., 170., 175., 180., 185., 190., 195., 200., 205.,
210., 215., 220., 225., 230., 235., 240., 245., 250., 255., 260., 265., 270., 275.,
280., 285., 290., 295.,
],
&[
129.01, 124.7, 107.85, 112.9, 109.27, 104.46, 94.7, 93.4, 86.42, 79.12, 80.92, 75.8,
65.2, 65.64, 63.27, 58.65, 52., 47., 43.45, 37.8, 33.95, 29.4, 25.1, 21.16, 17.9,
14.51, 11.49, 8.5, 6.45, 4.75, 3.15, 2.16, 1.46, 0.95, 0.66, 0.45, 0.33, 0.23, 0.19,
0.14, 0.14, 0.11, 0.09, 0.07, 0.09, 0.08, 0.07,
],
),
];
// let strikes: &[f64] = &[
// 70.0, 100.0, 110.0, 115.0, 120.0, 125.0, 130.0, 135.0, 140.0, 145.0, 148.0, 149.0, 150.0,
// 152.5, 155.0, 157.5, 160.0, 162.5, 165.0, 167.5, 170.0, 172.5, 175.0, 177.5, 180.0, 182.5,
// 185.0, 187.5, 190.0, 192.5, 195.0, 197.5, 200.0, 202.5, 205.0, 207.5, 210.0, 215.0, 220.0,
// 225.0, 230.0, 235.0, 240.0, 245.0, 250.0, 255.0,
// ];
// let prices: &[f64] = &[
// 108.57, 79.80, 75.93, 70.92, 65.89, 60.20, 54.00, 50.73, 45.80, 40.65, 34.75, 33.80, 35.05,
// 33.24, 30.01, 27.73, 24.90, 23.21, 19.90, 17.57, 14.87, 12.40, 10.25, 7.81, 5.27, 3.26,
// 1.69, 0.67, 0.24, 0.08, 0.03, 0.03, 0.02, 0.02, 0.02, 0.01, 0.02, 0.01, 0.02, 0.02, 0.01,
// 0.01, 0.01, 0.01, 0.01, 0.01,
// ];