-
Notifications
You must be signed in to change notification settings - Fork 0
/
mynet_softmax.py
39 lines (27 loc) · 1.42 KB
/
mynet_softmax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import tflearn
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.estimator import regression
from tflearn.layers.normalization import local_response_normalization
def alexnet(width, height, lr):
network = input_data(shape=[None, width, height, 1], name='input')
network = conv_2d(network, 32, 3, activation='relu', bias=True)
network = max_pool_2d(network,2)
network = local_response_normalization(network)
network = conv_2d(network, 64, 3, activation='relu', bias=True)
network = max_pool_2d(network, 2)
network = local_response_normalization(network)
network = conv_2d(network, 64, 3, activation='relu', bias=True)
#network = max_pool_2d(network, [1,2,2,1], strides=[1,2,2,1])
#network = local_response_normalization(network)
network = fully_connected(network, 1024, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 512, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 2, activation='softmax')
network = regression(network, optimizer='adam',
loss='mean_square',
learning_rate=lr, name='targets')
model = tflearn.DNN(network, checkpoint_path='model_alexnet',
max_checkpoints=1, tensorboard_verbose=2, tensorboard_dir='log')
return model