-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathhparams.py
45 lines (36 loc) · 1.15 KB
/
hparams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from pathlib import Path
class hparams:
batch_size = 16
nhead = 4
nhid = 192
nlayers = 2
ninp = 64
ntoken = 4367 + 1
clip_grad = 2.5
lr = 3e-4 # learning rate
beam_width = 3
training_epochs = 50
log_interval = 100
checkpoint_save_interval = 5
seed = 1111
device = 'cuda:0' #'cuda:0' 'cuda:1' 'cpu'
mode = 'train'
name = 'base'
nkeyword = 4979
label_smoothing = True
load_pretrain_cnn = True
load_pretrain_emb = False
load_pretrain_model = False
spec_augmentation = True
scheduler_decay = 0.98
# data(default)
data_dir = Path(r'./create_dataset/data/data_splits')
eval_data_dir = r'./create_dataset/data/data_splits/evaluation'
train_data_dir = r'./create_dataset/data/data_splits/development'
test_data_dir = r'./create_dataset/data/test_data'
word_dict_pickle_path = r'./create_dataset/data/pickles/words_list.p'
word_freq_pickle_path = r'./create_dataset/data/pickles/words_frequencies.p'
# pretrain_model
pretrain_emb_path = r'models/w2v_192.mod'
pretrain_cnn_path = r'models/TagModel_60.pt'
pretrain_model_path = r'models/20.pt'