-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodel.py
116 lines (96 loc) · 4.54 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.modules.transformer import TransformerDecoder,TransformerDecoderLayer
from hparams import hparams as hp
from encoder import Cnn10,init_layer
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=100):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return self.dropout(x)
class TransformerModel(nn.Module):
def __init__(self, ntoken, ninp, nhead, nhid, nlayers, batch_size, dropout=0.5,pretrain_cnn=None,
pretrain_emb=None,freeze_cnn=True):
super(TransformerModel, self).__init__()
self.model_type = 'cnn+transformer'
decoder_layers = TransformerDecoderLayer(d_model=nhid, nhead=nhead, dropout=dropout)
self.transformer_decoder = TransformerDecoder(decoder_layers, nlayers)
self.word_emb = nn.Embedding(ntoken, nhid)
self.ninp = ninp
self.nhid = nhid
self.fc = nn.Linear(512, 512, bias=True)
self.fc1 = nn.Linear(512, nhid, bias=True)
self.dec_fc = nn.Linear(nhid, ntoken)
self.batch_size = batch_size
self.ntoken = ntoken
self.encoder = Cnn10()
self.dropout = nn.Dropout(dropout)
self.pos_encoder = PositionalEncoding(nhid, dropout)
self.generator = nn.Softmax(dim=-1)
self.init_weights()
if pretrain_cnn is not None:
dict_trained = pretrain_cnn
dict_new = self.encoder.state_dict().copy()
new_list = list(self.encoder.state_dict().keys())
trained_list = list(dict_trained.keys())
for i in range(len(new_list)):
dict_new[new_list[i]] = dict_trained[trained_list[i]]
self.encoder.load_state_dict(dict_new)
if freeze_cnn:
self.freeze_cnn()
if pretrain_emb is not None:
self.word_emb.weight.data = pretrain_emb
def freeze_cnn(self):
for p in self.encoder.parameters():
p.requires_grad = False
def generate_square_subsequent_mask(self, sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
def init_weights(self):
initrange = 0.1
init_layer(self.fc1)
init_layer(self.fc)
self.word_emb.weight.data.uniform_(-initrange, initrange)
self.dec_fc.bias.data.zero_()
self.dec_fc.weight.data.uniform_(-initrange, initrange)
def encode(self, src, input_mask=None):
x = self.encoder(src) # (batch_size, 512, T/16, mel_bins/16)
x = torch.mean(x, dim=3) # (batch_size, 512, T/16)
x = x.permute(2, 0, 1) # (T/16,batch_size,512)
x = F.relu_(self.fc(x))
x = F.dropout(x, p=0.2, training=self.training)
x = torch.relu(self.fc1(x))
return x
def decode(self, mem, tgt, input_mask=None, target_mask=None, target_padding_mask=None):
# tgt:(batch_size,T_out)
# mem:(T_mem,batch_size,nhid)
tgt = tgt.transpose(0, 1) # (T_out,batch_size)
if target_mask is None or target_mask.size(0) != len(tgt):
device = tgt.device
target_mask = self.generate_square_subsequent_mask(len(tgt)).to(device)
tgt = self.dropout(self.word_emb(tgt)) * math.sqrt(self.nhid)
tgt = self.pos_encoder(tgt)
# mem = self.pos_encoder(mem)
output = self.transformer_decoder(tgt, mem, memory_mask=input_mask, tgt_mask=target_mask,
tgt_key_padding_mask=target_padding_mask)
output = self.dec_fc(output)
return output
def forward(self, src, tgt, input_mask=None, target_mask=None, target_padding_mask=None):
# src:(batch_size,T_in,feature_dim)
# tgt:(batch_size,T_out)
mem = self.encode(src)
output = self.decode(mem, tgt, input_mask=input_mask, target_mask=target_mask,
target_padding_mask=target_padding_mask)
return output