-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCIBERSORT.R
217 lines (176 loc) · 5.83 KB
/
CIBERSORT.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
#' CIBERSORT R script v1.03 (last updated 07-10-2015)
#' Note: Signature matrix construction is not currently available; use java version for full functionality.
#' Author: Aaron M. Newman, Stanford University ([email protected])
#' Requirements:
#' R v3.0 or later. (dependencies below might not work properly with earlier versions)
#' install.packages('e1071')
#' install.pacakges('parallel')
#' install.packages('preprocessCore')
#' if preprocessCore is not available in the repositories you have selected, run the following:
#' source("http://bioconductor.org/biocLite.R")
#' biocLite("preprocessCore")
#' Windows users using the R GUI may need to Run as Administrator to install or update packages.
#' This script uses 3 parallel processes. Since Windows does not support forking, this script will run
#' single-threaded in Windows.
#'
#' Usage:
#' Navigate to directory containing R script
#'
#' In R:
#' source('CIBERSORT.R')
#' results <- CIBERSORT('sig_matrix_file.txt','mixture_file.txt', perm, QN)
#'
#' Options:
#' i) perm = No. permutations; set to >=100 to calculate p-values (default = 0)
#' ii) QN = Quantile normalization of input mixture (default = TRUE)
#'
#' Input: signature matrix and mixture file, formatted as specified at http://cibersort.stanford.edu/tutorial.php
#' Output: matrix object containing all results and tabular data written to disk 'CIBERSORT-Results.txt'
#' License: http://cibersort.stanford.edu/CIBERSORT_License.txt
#' Core algorithm
#' @param X cell-specific gene expression
#' @param y mixed expression per sample
#' @export
CoreAlg <- function(X, y){
#try different values of nu
svn_itor <- 3
res <- function(i){
if(i==1){nus <- 0.25}
if(i==2){nus <- 0.5}
if(i==3){nus <- 0.75}
model<-e1071::svm(X,y,type="nu-regression",kernel="linear",nu=nus,scale=F)
model
}
if(Sys.info()['sysname'] == 'Windows') out <- parallel::mclapply(1:svn_itor, res, mc.cores=1) else
out <- parallel::mclapply(1:svn_itor, res, mc.cores=svn_itor)
nusvm <- rep(0,svn_itor)
corrv <- rep(0,svn_itor)
#do cibersort
t <- 1
while(t <= svn_itor) {
weights = t(out[[t]]$coefs) %*% out[[t]]$SV
weights[which(weights<0)]<-0
w<-weights/sum(weights)
u <- sweep(X,MARGIN=2,w,'*')
k <- apply(u, 1, sum)
nusvm[t] <- sqrt((mean((k - y)^2)))
corrv[t] <- cor(k, y)
t <- t + 1
}
#pick best model
rmses <- nusvm
mn <- which.min(rmses)
model <- out[[mn]]
#get and normalize coefficients
q <- t(model$coefs) %*% model$SV
q[which(q<0)]<-0
w <- (q/sum(q))
mix_rmse <- rmses[mn]
mix_r <- corrv[mn]
newList <- list("w" = w, "mix_rmse" = mix_rmse, "mix_r" = mix_r)
}
#' do permutations
#' @param perm Number of permutations
#' @param X cell-specific gene expression
#' @param y mixed expression per sample
#' @export
doPerm <- function(perm, X, Y){
itor <- 1
Ylist <- as.list(data.matrix(Y))
dist <- matrix()
while(itor <= perm){
#print(itor)
#random mixture
yr <- as.numeric(Ylist[sample(length(Ylist),dim(X)[1])])
#standardize mixture
yr <- (yr - mean(yr)) / sd(yr)
#run CIBERSORT core algorithm
result <- CoreAlg(X, yr)
mix_r <- result$mix_r
#store correlation
if(itor == 1) {dist <- mix_r}
else {dist <- rbind(dist, mix_r)}
itor <- itor + 1
}
newList <- list("dist" = dist)
}
#' Main functions
#' @param sig_matrix file path to gene expression from isolated cells
#' @param mixture_file heterogenous mixed expression
#' @param perm Number of permutations
#' @param QN Perform quantile normalization or not (TRUE/FALSE)
#' @export
CIBERSORT <- function(sig_matrix, mixture_file, perm=0, QN=TRUE){
#read in data
X <- read.table(sig_matrix,header=T,sep="\t",row.names=1,check.names=F)
Y <- read.table(mixture_file, header=T, sep="\t", check.names=F)
Y <- Y[!duplicated(Y[,1]),]
rownames(Y)<-Y[,1]
Y<-Y[,-1]
X <- data.matrix(X)
Y <- data.matrix(Y)
#order
X <- X[order(rownames(X)),]
Y <- Y[order(rownames(Y)),]
P <- perm #number of permutations
#anti-log if max < 50 in mixture file
if(max(Y) < 50) {Y <- 2^Y}
#quantile normalization of mixture file
if(QN == TRUE){
tmpc <- colnames(Y)
tmpr <- rownames(Y)
Y <- preprocessCore::normalize.quantiles(Y)
colnames(Y) <- tmpc
rownames(Y) <- tmpr
}
#intersect genes
Xgns <- row.names(X)
Ygns <- row.names(Y)
YintX <- Ygns %in% Xgns
Y <- Y[YintX,]
XintY <- Xgns %in% row.names(Y)
X <- X[XintY,]
#standardize sig matrix
X <- (X - mean(X)) / sd(as.vector(X))
# 矩阵X是LM22矩阵
# 矩阵Y是待预测的矩阵
# 然后对
#empirical null distribution of correlation coefficients
if(P > 0) {nulldist <- sort(doPerm(P, X, Y)$dist)}
#print(nulldist)
header <- c('Mixture',colnames(X),"P-value","Correlation","RMSE")
#print(header)
output <- matrix()
itor <- 1
mixtures <- dim(Y)[2]
pval <- 9999
#iterate through mixtures
while(itor <= mixtures){
y <- Y[,itor]
#standardize mixture
y <- (y - mean(y)) / sd(y)
#run SVR core algorithm
result <- CoreAlg(X, y)
#get results
w <- result$w
mix_r <- result$mix_r
mix_rmse <- result$mix_rmse
#calculate p-value
if(P > 0) {pval <- 1 - (which.min(abs(nulldist - mix_r)) / length(nulldist))}
#print output
out <- c(colnames(Y)[itor],w,pval,mix_r,mix_rmse)
if(itor == 1) {output <- out}
else {output <- rbind(output, out)}
itor <- itor + 1
}
#save results
write.table(rbind(header,output), file="CIBERSORT-Results.txt", sep="\t", row.names=F, col.names=F, quote=F)
#return matrix object containing all results
obj <- rbind(header,output)
obj <- obj[,-1]
obj <- obj[-1,]
obj <- matrix(as.numeric(unlist(obj)),nrow=nrow(obj))
rownames(obj) <- colnames(Y)
colnames(obj) <- c(colnames(X),"P-value","Correlation","RMSE")
obj
}