-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathleaf_segmenter.py
149 lines (128 loc) · 6.38 KB
/
leaf_segmenter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os
os.environ['NUMEXPR_MAX_THREADS'] = '12'
import cv2
import imutils
import convcrf
import argparse
import numpy as np
import torch.nn.init
from tqdm import tqdm
from skimage import measure
import torch.optim as optim
from torch.autograd import Variable
from models import BackBone, LightConv3x3
from color_correction import load_cc_model, test_one_image
from utils import mean_image, cal_greenness, save_result_img, save_result_video
# For reproductivity
SEED = 0
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
torch.use_deterministic_algorithms(True)
def parse_args():
parser = argparse.ArgumentParser(description='Self-Supervised Leaf Segmentation')
parser.add_argument('--num_channels', default=64, type=int,
help='number of channels')
parser.add_argument('--max_iter', default=300, type=int,
help='number of maximum iterations')
parser.add_argument('--min_labels', default=2, type=int,
help='minimum number of labels')
parser.add_argument('--lr', default=0.1, type=float,
help='learning rate')
parser.add_argument('--sz_filter', default=5, type=int,
help='CRF filter size')
parser.add_argument('--at', default=0.2, type=float,
help='Absolute greenness threshold')
parser.add_argument('--rt', default=0.5, type=float,
help='Relative greenness threshold')
parser.add_argument('--ccm', type=str, default='', help='path of color correction model')
parser.add_argument('--save_video', action='store_true', default=False,
help='save intermediate results as video')
parser.add_argument('--save_frame_interval', default=2, type=int,
help='save frame every save_frame_interval iterations')
parser.add_argument('--save_path', type=str, default="./output/")
parser.add_argument('--input', type=str, help='input image path', required=True)
args, _ = parser.parse_known_args()
return args
if __name__ == "__main__":
args = parse_args()
if not os.path.exists(args.save_path):
os.makedirs(args.save_path)
if os.path.exists(args.ccm):
print('Applying color correction with model {}...'.format(args.ccm))
cc_model = load_cc_model(args.ccm)
img = test_one_image(cc_model, args.input)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
cv2.imwrite(os.path.join(args.save_path, "color_corrected.jpg"), img)
print('Color-corrected image has been saved to {}'.format(os.path.join(args.save_path, "color_corrected.jpg")))
else:
img = cv2.imread(args.input)
img = imutils.resize(img, width=512)
rgb_image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_size = img.shape[:2]
img = img.transpose(2, 0, 1)
data = torch.from_numpy(np.array([img.astype('float32') / 255.]))
img_var = torch.Tensor(img.reshape([1, 3, *img_size])) # 1, 3, h, w
config = convcrf.default_conf
config['filter_size'] = args.sz_filter
gausscrf = convcrf.GaussCRF(conf=config, shape=img_size, nclasses=args.num_channels, use_gpu=True)
model = BackBone([LightConv3x3], [2], [args.num_channels//2, args.num_channels])
if torch.cuda.is_available():
data = data.cuda()
img_var = img_var.cuda()
gausscrf = gausscrf.cuda()
model = model.cuda()
data = Variable(data)
img_var = Variable(img_var)
model.train()
loss_fn = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=0.9)
label_colours = np.random.randint(255, size=(100, 3))
all_image_labels = []
all_mean_images = []
all_absolute_greenness = []
all_relative_greenness = []
all_thresholded = []
pbar = tqdm(range(args.max_iter))
for batch_idx in pbar:
optimizer.zero_grad()
output = model(data)[0]
unary = output.unsqueeze(0)
prediction = gausscrf.forward(unary=unary, img=img_var)
target = torch.argmax(prediction.squeeze(0), axis=0).reshape(img_size[0] * img_size[1], )
output = output.permute(1, 2, 0).contiguous().view(-1, args.num_channels)
im_target = target.data.cpu().numpy()
image_labels = im_target.reshape(img_size[0], img_size[1]).astype("uint8")
num_labels = len(np.unique(im_target))
if args.save_video and not(batch_idx % args.save_frame_interval):
im_target_rgb = np.array([label_colours[c % 100] for c in im_target])
im_target_rgb = im_target_rgb.reshape(img_size[0], img_size[1], 3).astype("uint8")
mean_img = mean_image(rgb_image, measure.label(image_labels))
absolute_greenness, relative_greenness = cal_greenness(mean_img)
greenness = np.multiply(relative_greenness, (absolute_greenness > args.at).astype(np.float64))
thresholded = 255 * ((greenness > args.rt).astype("uint8"))
all_mean_images.append(mean_img)
all_absolute_greenness.append(absolute_greenness)
all_relative_greenness.append(relative_greenness)
all_thresholded.append(thresholded)
all_image_labels.append(im_target_rgb)
loss = loss_fn(output, target)
loss.backward()
optimizer.step()
pbar.set_description("Iterations {0}/{1}: {2}, {3:.2f}".format(batch_idx, args.max_iter, num_labels, loss.item()))
if num_labels <= args.min_labels:
print("nLabels", num_labels, "reached minLabels", args.min_labels, ".")
break
if args.save_video:
save_result_path = os.path.join(args.save_path, "result.mp4")
save_result_video(save_result_path, rgb_image, all_image_labels, all_mean_images,
all_absolute_greenness, all_relative_greenness, all_thresholded)
else:
labels = measure.label(image_labels)
mean_img = mean_image(rgb_image, labels)
absolute_greenness, relative_greenness = cal_greenness(mean_img)
greenness = np.multiply(relative_greenness, (absolute_greenness > args.at).astype(np.float64))
thresholded = 255 * ((greenness > args.rt).astype("uint8"))
save_result_path = os.path.join(args.save_path, "result.jpg")
save_result_img(save_result_path, rgb_image, labels, mean_img,
absolute_greenness, relative_greenness, thresholded)
print('Result has been saved in {}'.format(save_result_path))