-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget.py
472 lines (359 loc) · 15.6 KB
/
get.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
# This Python 3 environment comes with many helpful analytics libraries installed
# It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python
# For example, here's several helpful packages to load in
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
@author: perry
"""
import os
os.environ['CUDA_VISIBLE_DEVICES'] = "1"
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import torch
from torch import nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.optim import Adam
from torch.utils.data import TensorDataset, DataLoader
from tqdm import tqdm_notebook
import seaborn as sns
from torch.utils import model_zoo
# import tools
import os
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils,datasets, models
import random
import PIL
from PIL import Image, ImageOps
import math
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
import torch.optim as optim
from torch.optim import lr_scheduler
import torchvision
import time
import copy
from utils import Visualizer
vis = Visualizer(env='lxg')
path = '/home/lxg/codedata/ice/'
def iso(arr):
p = np.reshape(np.array(arr), [75,75]) > (np.mean(np.array(arr))+2*np.std(np.array(arr)))
return p * np.reshape(np.array(arr), [75,75])
def size(arr):
return float(np.sum(arr<-5))/(75*75)
data = pd.read_json(path+'train.json')
test = pd.read_json(path+'test.json')
data['iso1'] = data.iloc[:, 0].apply(iso)
data['iso2'] = data.iloc[:, 1].apply(iso)
test['iso1'] = test.iloc[:, 0].apply(iso)
test['iso2'] = test.iloc[:, 1].apply(iso)
# Feature engineering s1 s2 and size.
data['s1'] = data.iloc[:,5].apply(size)
data['s2'] = data.iloc[:,6].apply(size)
test['s1'] = test['iso1'].apply(size)
test['s2'] = test['iso2'].apply(size)
data['band_1'] = data['band_1'].apply(lambda x: np.array(x).reshape(75, 75))
data['band_2'] = data['band_2'].apply(lambda x: np.array(x).reshape(75, 75))
test['band_1'] = test['band_1'].apply(lambda x: np.array(x).reshape(75, 75))
test['band_2'] = test['band_2'].apply(lambda x: np.array(x).reshape(75, 75))
data['inc_angle'] = pd.to_numeric(data['inc_angle'], errors='coerce')
test['inc_angle'] = pd.to_numeric(test['inc_angle'], errors='coerce')
#####process test set!
band_1_test = np.concatenate([im for im in test['band_1']]).reshape(-1, 75, 75)
band_2_test = np.concatenate([im for im in test['band_2']]).reshape(-1, 75, 75)
full_img_test = np.stack([band_1_test, band_2_test,(band_1_test+band_2_test)/2], axis=1)
angle_test=test['inc_angle']
size_test=test['s1']
test['is_iceberg']=0
def test_totensor(img):
img= img.astype(float)/255
tensor=torch.from_numpy(img.copy())
return tensor
def do_clip(arr, mx):
return np.clip(arr, (1-mx), mx)
#########augmentation
class read_data(Dataset):
"""total dataset."""
def __init__(self, data, labels, angle,size,transform=None):
self.data= data
self.labels = labels
self.transform = transform
self.angle = angle
self.size = size
def __len__(self):
return len(self.labels)
def __getitem__(self, idx):
sample = {'image': self.data[idx,:,:,:], 'labels': np.asarray([self.labels.values[idx]]),
'angle': np.asarray([self.angle.values[idx]]),'size': np.asarray([self.size.values[idx]])}
if self.transform:
sample = self.transform(sample)
return sample
class ToTensor(object):
"""Convert ndarrays in sample to Tensors."""
def __call__(self, sample):
image, labels, angle,size = sample['image'], sample['labels'], sample['angle'],sample['size']
# swap color axis because
# numpy image: H x W x C
# torch image: C X H X W
#image = image.transpose((2, 0, 1))
image = image.astype(float)/255
return {'image': torch.from_numpy(image.copy()).float(),
'labels': torch.from_numpy(labels).long(),
'angle': torch.from_numpy(angle).float(),
'size': torch.from_numpy(size).float()}
class RandomHorizontalFlip(object):
"""Horizontally flip the given PIL.Image randomly with a probability of 0.5."""
def __call__(self, sample):
"""
Args:
img (PIL.Image): Image to be flipped.
Returns:
PIL.Image: Randomly flipped image.
"""
image, labels, angle,size = sample['image'], sample['labels'], sample['angle'],sample['size']
if random.random() < 0.5:
image=np.flip(image,1)
return {'image': image, 'labels': labels,'angle':angle,'size':size}
class RandomVerticallFlip(object):
"""Horizontally flip the given PIL.Image randomly with a probability of 0.5."""
def __call__(self, sample):
"""
Args:
img (PIL.Image): Image to be flipped.
Returns:
PIL.Image: Randomly flipped image.
"""
image, labels, angle,size = sample['image'], sample['labels'], sample['angle'],sample['size']
if random.random() < 0.5:
image=np.flip(image,0)
return {'image': image, 'labels': labels, 'angle':angle,'size':size}
#####for all the training and network function
use_gpu = torch.cuda.is_available()
from tqdm import tqdm
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
best_model_wts = model.state_dict()
best_loss = 10000.0
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
scheduler.step()
model.train(True) # Set model to training mode
dataloader=train_loader
dataset_sizes=len(train_dataset)
else:
model.train(False) # Set model to evaluate mode
dataloader=val_loader
dataset_sizes=len(val_dataset)
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for data in tqdm(dataloader):
# get the inputs
inputs, labels, angle,size = data['image'], data['labels'], data['angle'],data['size']
# wrap them in Variable
if use_gpu:
inputs = Variable(inputs.cuda())
labels = Variable(labels.cuda())
angle = Variable(angle.cuda())
size = Variable(size.cuda())
else:
inputs, labels, angle = Variable(inputs), Variable(labels), Variable(angle)
# zero the parameter gradients
optimizer.zero_grad()
# forward
outputs = model(inputs.float(),size.float())
#print(outputs.float())
loss = criterion(outputs.float(), labels.resize((len(labels))).long())
_, preds = torch.max(outputs.data, 1) #for classification
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.data[0]*len(labels)
running_corrects += torch.sum(preds == labels.resize((len(labels))).long().data)
epoch_loss = running_loss / dataset_sizes
epoch_acc = float(running_corrects) / dataset_sizes
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'val' and epoch_loss < best_loss:
best_loss = epoch_loss
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict()) # this may save time
vis_loss = min(epoch_loss, 0.5)
if phase == 'train':
vis.plot_train_val(loss_train = vis_loss)
else:
vis.plot_train_val(loss_val = vis_loss)
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val loss: {:4f} Best val acc: {:4f}'.format(best_loss,best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return model,best_loss,best_acc
class Vgg11bnNet(nn.Module):
def __init__(self, num_classes=2):
super(Vgg11bnNet, self).__init__()
self.features = nn.Sequential(*list(model_vgg.features.children()))# 28 is total
self.classifier = nn.Sequential(
nn.BatchNorm2d(512),
nn.Conv2d(512, 512, 3,1,padding=1),
nn.ReLU(inplace=True),
#nn.Dropout(0.6),
nn.BatchNorm2d(512),
#nn.MaxPool2d(kernel_size=2,stride=1),#7*7->6*6
nn.Conv2d(512, 128, 3,1,padding=1),
nn.ReLU(inplace=True),
)
self.fc = nn.Linear(129,2) #need to be considered
self.dropout=nn.Dropout()
self._initialize_weights()
def forward(self, x,size):
# import pdb; pdb.set_trace()
x = self.features(x)
x = self.classifier(x)
r = x.size(3)
x = F.avg_pool2d(x, r)
x = x.view(x.size(0), -1)
x = torch.cat((x,size),1)
x = self.fc(F.relu(x))
return x
def _initialize_weights(self):
for m in self.classifier.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
n = m.weight.size(1)
m.weight.data.normal_(0, 0.01)
m.bias.data.zero_()
def predict(input_model,loader,dataset,phase):
dataloader=loader
dataset_sizes=len(dataset)
running_loss=0.0
running_corrects=0
test_score=[]
#gt=[]
for data in dataloader:
# get the inputs
inputs, labels, angle,size = data['image'], data['labels'], data['angle'],data['size']
#gt.extend(labels.numpy())
# wrap them in Variable
if use_gpu:
inputs = Variable(inputs.cuda())
labels = Variable(labels.cuda())
angle = Variable(angle.cuda())
size = Variable(size.cuda())
# forward
outputs = input_model(inputs.float(),size.float())
if phase=='val':
#print(outputs.float())
loss = criterion(outputs.float(), labels.resize((len(labels))).long())
_, preds = torch.max(outputs.data, 1) #for classification
# statistics
running_loss += loss.data[0]*len(labels)
running_corrects += torch.sum(preds == labels.resize((len(labels))).long().data)
m=nn.Softmax()
probs=m(outputs)
probs_value=probs.cpu().data.numpy()
test_score.extend(probs_value[:,1])
score=np.array(test_score)
#softmax+log+nll-loss=crossentropy loss (nll-loss is log loss in neural network)
if phase=='val':
epoch_loss = running_loss / dataset_sizes
epoch_acc = float(running_corrects) / dataset_sizes
print('Loss: {:.4f} Acc: {:.4f}'.format(
epoch_loss, epoch_acc))
return score,epoch_loss
else:
return score
n_fold=10
from sklearn.model_selection import KFold
kf = KFold(n_splits=n_fold, shuffle=True)
i = 0
train_error=[]
val_error=[]
#######cross validation start here
for train_ind, val_ind in kf.split(data):
train=data.loc[train_ind]
val=data.loc[val_ind]
train=train.reset_index()
del train['index']
val=val.reset_index()
del val['index']
#train = data.sample(frac=0.8,random_state=2017)#keep the nan angle
#val = data[~data.isin(train)]
band_1_tr = np.concatenate([im for im in train['band_1']]).reshape(-1, 75, 75)
band_2_tr = np.concatenate([im for im in train['band_2']]).reshape(-1, 75, 75)
full_img_tr = np.stack([band_1_tr, band_2_tr,(band_1_tr+band_2_tr)/2], axis=1)
angle_tr=train['inc_angle']
size_tr=train['s1']
band_1_val = np.concatenate([im for im in val['band_1']]).reshape(-1, 75, 75)
band_2_val = np.concatenate([im for im in val['band_2']]).reshape(-1, 75, 75)
full_img_val = np.stack([band_1_val, band_2_val,(band_1_val+band_2_val)/2], axis=1)
angle_val=val['inc_angle']
size_val=val['s1']
train_dataset = read_data(data=full_img_tr, labels=train['is_iceberg'],angle=angle_tr,size=size_tr,
transform=transforms.Compose([
RandomHorizontalFlip(),
RandomVerticallFlip(),
ToTensor(),
]))
train_loader = DataLoader(dataset=train_dataset, batch_size=128,shuffle=True, num_workers=4)
val_dataset = read_data(data=full_img_val, labels=val['is_iceberg'],angle=angle_val,size=size_val,
transform=transforms.Compose([
ToTensor(),
]))
val_loader = DataLoader(dataset=val_dataset, batch_size=8,shuffle=False, num_workers=4)
# import pdb; pdb.set_trace()
model_vgg = models.vgg19_bn()
model_vgg.load_state_dict(model_zoo.load_url('https://download.pytorch.org/models/vgg19_bn-c79401a0.pth'))
model_ft=Vgg11bnNet()
from itertools import ifilter
op_parameters = ifilter(lambda p: p.requires_grad, model_ft.parameters()) # all is true?
if use_gpu:
model_ft = model_ft.cuda()
criterion = nn.CrossEntropyLoss()
optimizer_conv = optim.Adam(op_parameters, lr=0.001, betas=(0.9, 0.99))
exp_lr_scheduler1 = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)
new_model,best_loss,best_acc = train_model(model_ft, criterion,optimizer_conv,
exp_lr_scheduler1, num_epochs=50)
snapshot_path=path
if not os.path.exists(snapshot_path):
os.makedirs(snapshot_path)
torch.save(model_ft, snapshot_path+'vggbnw_fcn_50_%d_%.4f_%.4f.pkl' % (i,best_loss,best_acc))
###train
val_result=predict(new_model,val_loader,val_dataset,'val')
assert(val_result[1]==best_loss)
####test
test_dataset = read_data(data=full_img_test, labels=test['is_iceberg'],angle=angle_test,size=size_test,
transform=transforms.Compose([
ToTensor(),
]))
test_loader = DataLoader(dataset=test_dataset, batch_size=8,shuffle=False, num_workers=4)
test_result=predict(new_model,test_loader,test_dataset,'test')
test_id=test['id']
truth=pd.DataFrame(test_result, columns=['is_iceberg'])
frame=[test_id,truth]
result=pd.concat(frame,axis=1)
snapshot_csv=path
if not os.path.exists(snapshot_csv):
os.makedirs(snapshot_csv)
output=snapshot_csv+'vggbnw_fcn_%d.csv' %i
result.to_csv(output,index=False)
i=i+1