-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdataSet.py
79 lines (59 loc) · 2.1 KB
/
dataSet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import torch
import pandas as pd
import numpy as np
import os
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
import pickle
import numpy as np
from pretreatment.code_pre import code_pre
from transformers import RobertaTokenizer, RobertaConfig, RobertaModel, AdamW
class PhpDataset(Dataset):
def __init__(self):
self.black_file_list = os.listdir(r'./')
self.white_file_list = os.listdir(r'./')
self.black = [r'./' + i for i in self.black_file_list]
self.white = [r'./' + i for i in self.white_file_list]
self.tokenizer = RobertaTokenizer.from_pretrained("microsoft/codebert-base")
self.model = RobertaModel.from_pretrained("microsoft/codebert-base")
self.df = self.black + self.white
def __getitem__(self, item):
try:
rf = open(self.df[item], 'r', encoding='utf-8', errors='ignore')
data = rf.read()
finally:
# print(data)
# print(self.df[item])
rf.close()
data = code_pre(data)[:10000]
# data = data
# print(len(data))
# print(len(data))
inputs = self.tokenizer.encode_plus(
data,
None,
add_special_tokens=True,
max_length=512,
padding='max_length',
return_token_type_ids=True,
truncation=True,
)
ids = inputs['input_ids']
mask = inputs['attention_mask']
token_type_ids = inputs["token_type_ids"]
return {
'ids': torch.tensor(ids, dtype=torch.long),
'mask': torch.tensor(mask, dtype=torch.long),
'token_type_ids': torch.tensor(token_type_ids, dtype=torch.long),
'targets': torch.tensor(1 if self.df[item][40:43] == 'bla' else 0)
}
#
# outputs = self.model(torch.tensor([inputs['input_ids']]))
#
# label = 1 if self.df[item][40:43] == 'bla' else 0
# return outputs, label
def __len__(self):
return len(self.df)
if __name__ == '__main__':
dataset = PhpDataset()
print(dataset[0])