forked from kennymckormick/pyskl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_config_pose3conv.py
35 lines (33 loc) · 1.16 KB
/
demo_config_pose3conv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
model = dict(
type='Recognizer3D',
backbone=dict(
type='ResNet3dSlowOnly',
in_channels=21,
base_channels=32,
num_stages=3,
out_indices=(2, ),
stage_blocks=(4, 6, 3),
conv1_stride=(1, 1),
pool1_stride=(1, 1),
inflate=(0, 1, 1),
spatial_strides=(2, 2, 2),
temporal_strides=(1, 1, 2)),
cls_head=dict(type='I3DHead', in_channels=512, num_classes=6, dropout=0.5),
test_cfg=dict(average_clips='prob'))
dataset_type = 'PoseDataset'
#ann_file = '/root/pyskl_thesis/hand_pose_dataset_aug_6.pkl'
#hand_kp = [
# 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
#]
test_pipeline = [
dict(type='UniformSampleFrames', clip_len=10, num_clips=1),
dict(type='PoseDecode'),
dict(type='PoseCompact', hw_ratio=1.0, allow_imgpad=True),
dict(type='Resize', scale=(64, 64), keep_ratio=False),
dict(
type='GeneratePoseTarget', with_kp=True, with_limb=False,
double=False),
dict(type='FormatShape', input_format='NCTHW_Heatmap'),
dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['imgs'])
]