-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGoogleAnalytics_AlsoBought.R
155 lines (123 loc) · 5.82 KB
/
GoogleAnalytics_AlsoBought.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Created by Linus Larsson
# 2019-01-22
# https://lynuhs.com
# MAKE SURE TO INSTALL NECESSARY PACKAGES BEFORE YOU RUN THE SCRIPT!
#install.packages("googleAnalyticsR")
#install.packages("googleAuthR")
#install.packages("dplyr")
library(googleAnalyticsR)
library(googleAuthR)
library(dplyr)
ga_auth()
# If you have lots and lots of products then it might be better to collect the data from BigQuery instead (if you have GA360)
# You might need to set up credentials for using API via R in that case on https://console.cloud.google.com/apis/credentials/
#
# library(bigQueryR)
#
# options(googleAuthR.scopes.selected = c("https://www.googleapis.com/auth/bigquery",
# "https://www.googleapis.com/auth/devstorage.full_control",
# "https://www.googleapis.com/auth/cloud-platform",
# "https://www.googleapis.com/auth/analytics",
# "https://www.googleapis.com/auth/analytics.readonly",
# "https://www.googleapis.com/auth/analytics.manage.users.readonly",
# "https://www.googleapis.com/auth/analytics.edit",
# "https://www.googleapis.com/auth/analytics.manage.users",
# "https://www.googleapis.com/auth/analytics.provision"
# ))
#
# bqr_global_project(YOUR_BQ_PROJECT_ID)
# bqr_global_dataset(YOUR_BQ_DATASET_ID)
#
# gar_auth()
# This function will create a data frame containing all unique product SKUs combined with a paired product SKU
# that was bought in the same purchase together with a column for transactionID. This makes it possible to calculate
# valuable metrics from the table.
alsoBoughtTable <- function(id, start, end){
ga <- google_analytics_3(id = id,
start = start,
end = end,
dimensions = c("date","transactionId","productSku"),
metrics = c("itemQuantity"),
samplingLevel = "WALK",
max_results = 999999999)
ga <- ga[1:3]
ga <- subset(ga, !(duplicated(ga[2:3])))
# If you decide to use BigQuery instead then you use the following instead of Google Analytics above.
# In that case id in the function parameters should be set to dataset ID instead of GA ID, although they might be the same!
# ga <- bqr_query(useLegacySql = FALSE, query = paste0("
# SELECT
# DISTINCT *
# FROM (
# SELECT
# date,
# hit.transaction.transactionId AS transactionId,
# pro.productSku AS productSku
# FROM
# `PROJECT_ID.", id, ".ga_sessions_20*` ga, # Replace with your own IDs
# UNNEST(ga.hits) hit,
# UNNEST(hit.product) pro
# WHERE
# parse_DATE('%y%m%d',
# _TABLE_SUFFIX) BETWEEN DATE('",as.character(start),"')
# AND DATE('",as.character(end),"')
# AND pro.productSku IS NOT NULL
# AND hit.transaction.transactionId IS NOT NULL
# )"))
cross <- matrix(nrow=0, ncol=4)
colnames(cross) <- c("date","productSku","alsoBought","transactionId")
dates <- unique(ga$date)
for(d in 1:(length(dates))){
products <- unique(ga[which(ga$date == dates[d]),'productSku'])
cr <- matrix(nrow=0, ncol=3)
colnames(cr) <- c("productSku","alsoBought","transactionId")
for (i in 1:(length(products))){
receipts <- ga[which(ga$productSku == products[i] & ga$date == dates[d]),'transactionId']
bp <- subset(ga, transactionId %in% receipts)
bp <- data.frame(productSku = products[i],
alsoBought = bp$productSku,
transactionId = bp$transactionId)
cr <- rbind(cr, bp)
if(i == 1 | i%%10 == 0 | i == length(products)){
cat("\014")
print(
paste0(
d, " of ", length(dates)," dates running: ",round(i*100/(length(products)),1), "% computed"
)
)
}
}
cross <- rbind(cross, cbind(data.frame(date = dates[d]),cr))
}
cross$productSku <- as.character(cross$productSku)
cross$alsoBought <- as.character(cross$alsoBought)
return (cross)
}
# This function calculates the unique purchases and the share of all receipts containing a specific product
# that ALSO contained the paired product in the table.
calculateReceiptShare <- function(productDf){
share <- group_by(productDf, productSku, alsoBought) %>%
summarise(uniquePurchases = n_distinct(transactionId)) %>%
as.data.frame()
receipts <- group_by(productDf, productSku) %>%
summarise(allReceipts = n_distinct(transactionId))
share <- merge(share,receipts, by = "productSku", all.x = TRUE)
share$shareOfAllReceipts <- round(share$uniquePurchases / share$allReceipts, 2)
return (share)
}
# This function will gather the table data for all product SKUs and then calculate the metrics
alsoBought <- function(id, start, end){
ga <- alsoBoughtTable(id, start, end)
ga <- calculateReceiptShare(ga)
ga <- ga[order(-ga$uniquePurchases),]
return (ga)
}
#######################################################################################
# CONSOLE FUNCTIONS
#######################################################################################
#Type in your GA View ID
ga_id <- XXXXXXX
# Collect data from last 30 days in a format that can be used as a table
# that you can use at a data source in BI tools
df <- alsoBoughtTable(ga_id, Sys.Date()-30, Sys.Date()-1)
# If you only want to collect the statistics you can run the following command:
df <- alsoBought(ga_id, Sys.Date()-30, Sys.Date()-1)