-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_ELCFS.py
123 lines (97 loc) · 4.86 KB
/
test_ELCFS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import os
import argparse
import torch
from networks.unet2d import Unet2D
from utils.util import _eval_dice, _eval_haus, _connectivity_region_analysis, parse_fn_haus
import numpy as np
from glob import glob
import logging
# from test_util import test_all_case
parser = argparse.ArgumentParser()
parser.add_argument('--root_path', type=str, default='../data/2018LA_Seg_Training Set/', help='Name of Experiment')
parser.add_argument('--model', type=str, default='xxxx', help='model_name')
parser.add_argument('--method', type=str, default='xxxx', help='model_name')
parser.add_argument('--batch_size', type=int, default=4, help='model_name')
parser.add_argument('--client_num', type=int, default=4, help='model_name')
parser.add_argument('--gpu', type=str, default='0', help='GPU to use')
parser.add_argument('--unseen_site', type=int, default=3, help='GPU to use')
parser.add_argument('--model_idx', type=int, default=85, help='GPU to use')
FLAGS = parser.parse_args()
# os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu
model_path = "../output/"+FLAGS.model
snapshot_path = "../output/"+FLAGS.method+"/"
# test_save_path = "../model/prediction/"+FLAGS.model+"_post/"
# if not os.path.exists(test_save_path):
# os.makedirs(test_save_path)
args = parser.parse_args()
batch_size = args.batch_size
volume_size = [384, 384, 1]
num_classes = 2
client_num = args.client_num
client_name = ['client0', 'client1', 'client2', 'client3']
client_data_list = []
for client_idx in range(client_num):
client_data_list.append(glob('dataset/{}/data_npy/*'.format(client_name[client_idx])))
print(len(client_data_list[client_idx]))
unseen_site_idx = args.unseen_site
source_site_idx = [0, 1, 2, 3]
result_dir = snapshot_path + '/prediction/'
if not os.path.exists(result_dir):
os.makedirs(result_dir)
def _save_image(img, gth, pred, out_folder, out_name):
np.save(out_folder+'/'+out_name+'_img.npy',img)
np.save(out_folder+'/'+out_name+'_pred.npy',pred)
np.save(out_folder+'/'+out_name+'_gth.npy',gth)
return 0
def test(site_index, test_net_idx):
test_net = Unet2D()
# test_net = test_net.cuda()
save_mode_path = os.path.join(model_path + '/model', 'epoch_' + str(test_net_idx) + '.pth')
test_net.load_state_dict(torch.load(save_mode_path, map_location=torch.device("cpu")))
test_net.eval()
test_data_list = client_data_list[site_index]
dice_array = []
haus_array = []
for fid, filename in enumerate(test_data_list):
# if 'S-5-L' not in filename:
# continue
print(filename)
data = np.load(filename)
image = data[..., :3]#np.expand_dims(data[..., :3].transpose(2, 0, 1), axis=0)
mask = data[..., 3:]#np.expand_dims(data[..., 3:].transpose(2, 0, 1), axis=0)
mask = np.expand_dims(mask.transpose(2, 0, 1), axis=0)
pred_y_list = []
image_test = np.expand_dims(image.transpose(2, 0, 1), axis=0)
image_test = torch.from_numpy(image_test).float()
logit, pred, _ = test_net(image_test)
pred_y = pred.cpu().detach().numpy()
pred_y[pred_y>0.75] = 1
pred_y[pred_y<0.75] = 0
pred_y_0 = pred_y[:, 0:1, ...]
pred_y_1 = pred_y[:, 1:, ...]
processed_pred_y_0 = _connectivity_region_analysis(pred_y_0)
processed_pred_y_1 = _connectivity_region_analysis(pred_y_1)
processed_pred_y = np.concatenate([processed_pred_y_0, processed_pred_y_1], axis=1)
dice_subject = _eval_dice(mask, processed_pred_y)
haus_subject = _eval_haus(mask, processed_pred_y)
dice_array.append(dice_subject)
haus_array.append(haus_subject)
_save_image(image.transpose(2, 0, 1), mask[0], pred_y[0], result_dir, out_name=str(site_index)+'_'+os.path.basename(filename))
dice_array = np.array(dice_array)
haus_array = np.array(haus_array)
dice_avg = np.mean(dice_array, axis=0).tolist()
haus_avg = np.mean(haus_array, axis=0).tolist()
return dice_avg, dice_array, haus_avg, haus_array
if __name__ == '__main__':
test_net_idx = args.model_idx
with open(os.path.join(snapshot_path, 'testing_result.txt'), 'a') as f:
# for test_net_idx in range(10,11):
dice_list = []
haus_list = []
print("epoch {} testing ".format(test_net_idx))
dice, dice_array, haus, haus_array = test(unseen_site_idx, test_net_idx)
print((" OD dice is: {}, std is {}, array is {}".format(dice[0], np.std(dice_array[:, 0]), dice_array[:, 0])), file=f)
print((" {}".format(dice_array[:, 0])), file=f)
print((" OC dice is: {}, std is {}, array is {}".format(dice[1], np.std(dice_array[:, 1]), dice_array[:, 1])), file=f)
print((" {}".format(dice_array[:, 1])), file=f)
print ((dice[0]+dice[1])/2)