-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_ELCFS.py
271 lines (228 loc) · 12.6 KB
/
train_ELCFS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import os
import sys
from tqdm import tqdm
import shutil
import argparse
import logging
import time
import random
import numpy as np
import collections
from collections import OrderedDict
from glob import glob
import torch
from torch.utils.tensorboard import SummaryWriter
import torch.nn as nn
from typing import List
from torch.autograd import Variable
import torch.optim as optim
from torchvision import transforms
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from torchvision.utils import make_grid
from pytorch_metric_learning import losses
from networks.unet2d import Unet2D
from utils.losses import dice_loss
from utils.util import _eval_dice, _eval_haus, _connectivity_region_analysis, parse_fn_haus
from dataloaders.fundus_dataloader import Dataset, ToTensor
parser = argparse.ArgumentParser()
parser.add_argument('--exp', type=str, default='fedavg', help='model_name')
parser.add_argument('--max_epoch', type=int, default=100, help='maximum epoch number to train')
parser.add_argument('--client_num', type=int, default=4, help='batch_size per gpu')
parser.add_argument('--batch_size', type=int, default=5, help='batch_size per gpu')
parser.add_argument('--clip_value', type=float, default=100, help='maximum epoch number to train')
parser.add_argument('--meta_step_size', type=float, default=1e-3, help='maximum epoch number to train')
parser.add_argument('--base_lr', type=float, default=0.001, help='maximum epoch number to train')
parser.add_argument('--deterministic', type=int, default=1, help='whether use deterministic training')
parser.add_argument('--seed', type=int, default=1337, help='random seed')
parser.add_argument('--gpu', type=str, default='0', help='GPU to use')
parser.add_argument('--display_freq', type=int, default=5, help='batch_size per gpu')
parser.add_argument('--unseen_site', type=int, default=3, help='unseen site')
args = parser.parse_args()
snapshot_path = "./output/" + args.exp + "/"
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
batch_size = args.batch_size * len(args.gpu.split(','))
meta_step_size = args.meta_step_size
clip_value = args.clip_value
base_lr = args.base_lrx
client_num = args.client_num
max_epoch = args.max_epoch
display_freq = args.display_freq
client_name = ['client0', 'client1', 'client2', 'client3']
client_data_list = []
for client_idx in range(client_num):
client_data_list.append(glob('dataset/{}/data_npy/*'.format(client_name[client_idx])))
print (len(client_data_list[client_idx]))
slice_num = np.array([101, 159, 400, 400]) # the size of data in all client
volume_size = [384, 384, 3]
unseen_site_idx = args.unseen_site # unseen client
source_site_idx = [0, 1, 2, 3] # client number
source_site_idx.remove(unseen_site_idx)
client_weight = slice_num[source_site_idx] / np.sum(slice_num[source_site_idx])
client_weight = np.round(client_weight, decimals=2)
client_weight[-1] = 1 - np.sum(client_weight[:-1])
client_weight = np.insert(client_weight, unseen_site_idx, 0)
print(f"aggregation weight: {client_weight}")
num_classes = 3
if args.deterministic: # set random seed
cudnn.benchmark = False
cudnn.deterministic = True
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
def update_global_model(net_clients: List[nn.Module], client_weight):
"""
FedAvg framework
"""
# Use the true average until the exponential average is more correct
for param in zip(net_clients[0].parameters(), net_clients[1].parameters(), net_clients[2].parameters(), \
net_clients[3].parameters()):
new_para = torch.zeros(param[0].shape, requires_grad=False).cuda()
for i in range(client_num):
new_para.data.add_(param[i].data, alpha=client_weight[i])
for i in range(client_num):
param[i].data.mul_(0).add_(new_para.data)
def extract_contour_embedding(contour_list, embeddings):
average_embeddings_list = []
for contour in contour_list:
contour_embeddings = contour * embeddings
average_embeddings = torch.sum(contour_embeddings, (-1,-2))/torch.sum(contour, (-1,-2))
average_embeddings_list.append(average_embeddings)
return average_embeddings_list
def test(site_index: int, test_net: nn.Module):
"""
evaluate in unseen client
"""
test_data_list = client_data_list[site_index]
dice_array = []
# haus_array = []
for fid, filename in enumerate(test_data_list):
data = np.load(filename)
image = np.expand_dims(data[..., :3].transpose(2, 0, 1), axis=0)
mask = np.expand_dims(data[..., 3:].transpose(2, 0, 1), axis=0)
image = torch.from_numpy(image).float()
logit, pred, _ = test_net(image)
pred_y = pred.cpu().detach().numpy()
pred_y[pred_y>0.75] = 1
pred_y[pred_y<0.75] = 0
pred_y_0 = pred_y[:, 0:1, ...]
pred_y_1 = pred_y[:, 1:, ...]
processed_pred_y_0 = _connectivity_region_analysis(pred_y_0)
processed_pred_y_1 = _connectivity_region_analysis(pred_y_1)
processed_pred_y = np.concatenate([processed_pred_y_0, processed_pred_y_1], axis=1)
dice_subject = _eval_dice(mask, processed_pred_y) # Dice Coefficient: (Optic Disc, Optic Cup)
# haus_subject = _eval_haus(mask, processed_pred_y) # Hausdorff Distance: (Optic Disc, Optic Cup)
dice_array.append(dice_subject)
# haus_array.append(haus_subject)
pass
dice_array = np.array(dice_array)
# haus_array = np.array(haus_array)
dice_avg = np.mean(dice_array, axis=0).tolist()
# haus_avg = np.mean(haus_array, axis=0).tolist()
logging.info("OD dice_avg %.4f OC dice_avg %.4f" % (dice_avg[0], dice_avg[1]))
return dice_avg, dice_array, 0, [0,0]
if __name__ == "__main__":
## make logger file
if not os.path.exists(snapshot_path):
os.makedirs(snapshot_path)
if not os.path.exists(snapshot_path + '/model'):
os.makedirs(snapshot_path + '/model')
logging.basicConfig(filename=snapshot_path+"/log.txt", level=logging.INFO,
format='[%(asctime)s.%(msecs)03d] %(message)s', datefmt='%H:%M:%S')
logging.getLogger().addHandler(logging.StreamHandler(sys.stdout))
logging.info(str(args))
# define dataset, model, optimizer for each client
def worker_init_fn(worker_id):
random.seed(args.seed+worker_id)
dataloader_clients = []
net_clients = []
optimizer_clients = []
for client_idx in range(client_num):
freq_site_idx = source_site_idx.copy()
if client_idx != unseen_site_idx:
freq_site_idx.remove(client_idx)
dataset = Dataset(client_idx=client_idx, freq_site_idx=freq_site_idx,
split='train', transform = transforms.Compose([
ToTensor(),
]))
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=1, pin_memory=True, worker_init_fn=worker_init_fn)
net = Unet2D()
net = net.cuda()
optimizer = torch.optim.Adam(net.parameters(), lr=args.base_lr, betas=(0.9, 0.999))
dataloader_clients.append(dataloader)
net_clients.append(net)
optimizer_clients.append(optimizer)
for name, param in net_clients[0].named_parameters():
print (name)
temperature = 0.05
cont_loss_func = losses.NTXentLoss(temperature)
# start federated learning
for epoch_num in tqdm(range(max_epoch), ncols=70):
for client_idx in source_site_idx:
dataloader_current = dataloader_clients[client_idx]
net_current = net_clients[client_idx]
net_current.train()
optimizer_current = optimizer_clients[client_idx]
time1 = time.time()
iter_num = 0
for i_batch, sampled_batch in enumerate(dataloader_current):
time2 = time.time()
# obtain training data
volume_batch, label_batch, disc_contour, disc_bg, cup_contour, cup_bg = sampled_batch['image'], sampled_batch['label'], \
sampled_batch['disc_contour'], sampled_batch['disc_bg'], sampled_batch['cup_contour'], sampled_batch['cup_bg']
volume_batch_raw_np = volume_batch[:, :3, ...]
volume_batch_trs_1_np = volume_batch[:, 3:6, ...]
volume_batch_raw, volume_batch_trs_1, label_batch = \
volume_batch_raw_np.cuda(), volume_batch_trs_1_np.cuda(), label_batch.cuda()
disc_contour, disc_bg, cup_contour, cup_bg = disc_contour.cuda(), disc_bg.cuda(), cup_contour.cuda(), cup_bg.cuda()
# obtain updated parameter at inner loop
outputs_soft_inner, outputs_mask_inner, embedding_inner = net_current(volume_batch_raw)
loss_inner = dice_loss(outputs_soft_inner, label_batch)
grads = torch.autograd.grad(loss_inner, net_current.parameters(), retain_graph=True)
fast_weights = OrderedDict((name, param - torch.mul(meta_step_size, torch.clamp(grad, 0-clip_value, clip_value))) for
((name, param), grad) in
zip(net_current.named_parameters(), grads))
# outer loop evaluation
outputs_soft_outer_1, outputs_mask_outer_1, embedding_outer = net_current(volume_batch_trs_1, fast_weights) #alpha
loss_outer_1_dice = dice_loss(outputs_soft_outer_1, label_batch)
inner_disc_ct_em, inner_disc_bg_em, inner_cup_ct_em, inner_cup_bg_em = \
extract_contour_embedding([disc_contour, disc_bg, cup_contour, cup_bg], embedding_inner)
outer_disc_ct_em, outer_disc_bg_em, outer_cup_ct_em, outer_cup_bg_em = \
extract_contour_embedding([disc_contour, disc_bg, cup_contour, cup_bg], embedding_outer)
disc_ct_em = torch.cat((inner_disc_ct_em, outer_disc_ct_em), 0)
disc_bg_em = torch.cat((inner_disc_bg_em, outer_disc_bg_em), 0)
cup_ct_em = torch.cat((inner_cup_ct_em, outer_cup_ct_em), 0)
cup_bg_em = torch.cat((inner_cup_bg_em, outer_cup_bg_em), 0)
disc_em = torch.cat((disc_ct_em, disc_bg_em), 0)
cup_em = torch.cat((cup_ct_em, cup_bg_em), 0)
label = np.concatenate([np.ones(disc_ct_em.shape[0]), np.zeros(disc_bg_em.shape[0])])
label = torch.from_numpy(label)
disc_cont_loss = cont_loss_func(disc_em, label)
cup_cont_loss = cont_loss_func(cup_em, label)
cont_loss = disc_cont_loss + cup_cont_loss
loss_outer = loss_outer_1_dice + cont_loss * 0.1
total_loss = loss_inner + loss_outer
# total_loss = loss_inner
optimizer_current.zero_grad()
total_loss.backward()
optimizer_current.step()
iter_num = iter_num + 1
if iter_num % display_freq == 0:
logging.info('Epoch: [%d] client [%d] iteration [%d / %d] : inner loss : %f outer dice loss : %f outer cont loss : %f outer loss : %f total loss : %f' % \
(epoch_num, client_idx, iter_num, len(dataloader_current), loss_inner.item(), loss_outer_1_dice.item(), cont_loss.item(), loss_outer.item(), total_loss.item()))
# logging.info('Epoch: [%d] client [%d] iteration [%d / %d] : inner loss : %f total loss : %f' % \
# (epoch_num, client_idx, iter_num, len(dataloader_current), loss_inner.item(), total_loss.item()))
## model aggregation
update_global_model(net_clients, client_weight)
## evaluation
with open(os.path.join(snapshot_path, 'evaluation_result.txt'), 'a') as f:
print("epoch {} testing , site {}".format(epoch_num, unseen_site_idx), file=f)
dice, dice_array, _, _ = test(unseen_site_idx, net_clients[unseen_site_idx])
print((" OD dice is: {}, std is {}".format(dice[0], np.std(dice_array[:, 0]))), file=f)
print((" OC dice is: {}, std is {}".format(dice[1], np.std(dice_array[:, 1]))), file=f)
## save model
save_mode_path = os.path.join(snapshot_path + '/model', 'epoch_' + str(epoch_num) + '.pth')
torch.save(net_clients[0].state_dict(), save_mode_path)
logging.info("save model to {}".format(save_mode_path))