From b2ccf62fc579a1b01108e8c1d056a0f74189e1d6 Mon Sep 17 00:00:00 2001 From: mrhardman <29800382+mrhardman@users.noreply.github.com> Date: Mon, 22 Jul 2024 11:15:24 +0100 Subject: [PATCH] Update chebyshev.md --- docs/src/chebyshev.md | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/docs/src/chebyshev.md b/docs/src/chebyshev.md index d7da3da0a..908daaf09 100644 --- a/docs/src/chebyshev.md +++ b/docs/src/chebyshev.md @@ -35,8 +35,7 @@ Assuming that $M = 2N$, with $N$ an integer, and $b_{k} = b_{M-k}$ for $k>0$, we \begin{equation} f_j = b_{0} + b_{N}(-1)^j + \sum_{n=1}^{N-1} b_{n}\left(\exp\left[i \frac{\pi n j}{N}\right]+\exp\left[-i \frac{\pi n j}{N}\right]\right).\end{equation} ``` -Comparing this to the expression for $f(x_j)$ in the Chebyshev representation, -using the form of $T_n(x_j)$, +Comparing this to the expression for $f(x_j)$ in the Chebyshev representation, ```math \begin{equation} f_j = a_{0} + a_{N}(-1)^j + \frac{1}{2}\sum_{n=1}^{N-1} a_{n}\left(\exp\left[i \frac{\pi n j}{N}\right]+\exp\left[-i \frac{\pi n j}{N}\right]\right),\end{equation}