We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
大佬,我最近在学习您的这个时空网络,想要复现一下,但是关于您的模型设定一直搞不明白,尤其是关于enum_type.py中的每个模式具体的作用是如何设定和起作用的不是很懂,想向您请教一下。比如我如果单纯的想要通过resnet101提取特征,然后通过lstm进行时间维度的处理,那在参数这里要如何设定呢?大佬,您能指教一下吗?万分感谢!
如下: parser.add_argument('--spatial_edge_mode', type=SpatialEdgeMode, choices=list(SpatialEdgeMode), help='1:all_edge, 2:configure_edge, 3:no_edge')
parser.add_argument('--spatial_sequence_type', type=SpatialSequenceType, choices=list(SpatialSequenceType), help='1:all_edge, 2:configure_edge, 3:no_edge')
parser.add_argument('--temporal_edge_mode', type=TemporalEdgeMode, choices=list(TemporalEdgeMode), help='1:rnn, 2:attention_block, 3.point-wise feed forward(no temporal)')
parser.add_argument('--two_stream_mode', type=TwoStreamMode, choices=list(TwoStreamMode), help='spatial/ temporal/ spatial_temporal')
parser.add_argument('--conv_rnn_type', type=ConvRNNType, choices=list(ConvRNNType), help='conv_lstm or conv_sru')
The text was updated successfully, but these errors were encountered:
你用这个选项吧 --temporal_edge_mode,具体你看看代码,这个代码几年前写的,我记得不是很清了,但整体逻辑是把人脸的各个区域变成一个个node,然后整体一个graph连接起来。
Sorry, something went wrong.
好的,非常感谢帮助!
No branches or pull requests
大佬,我最近在学习您的这个时空网络,想要复现一下,但是关于您的模型设定一直搞不明白,尤其是关于enum_type.py中的每个模式具体的作用是如何设定和起作用的不是很懂,想向您请教一下。比如我如果单纯的想要通过resnet101提取特征,然后通过lstm进行时间维度的处理,那在参数这里要如何设定呢?大佬,您能指教一下吗?万分感谢!
如下:
parser.add_argument('--spatial_edge_mode', type=SpatialEdgeMode, choices=list(SpatialEdgeMode),
help='1:all_edge, 2:configure_edge, 3:no_edge')
parser.add_argument('--spatial_sequence_type', type=SpatialSequenceType, choices=list(SpatialSequenceType),
help='1:all_edge, 2:configure_edge, 3:no_edge')
parser.add_argument('--temporal_edge_mode', type=TemporalEdgeMode, choices=list(TemporalEdgeMode),
help='1:rnn, 2:attention_block, 3.point-wise feed forward(no temporal)')
parser.add_argument('--two_stream_mode', type=TwoStreamMode, choices=list(TwoStreamMode),
help='spatial/ temporal/ spatial_temporal')
parser.add_argument('--conv_rnn_type', type=ConvRNNType, choices=list(ConvRNNType),
help='conv_lstm or conv_sru')
The text was updated successfully, but these errors were encountered: