-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathtaesd.py
executable file
·103 lines (88 loc) · 3.98 KB
/
taesd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#!/usr/bin/env python3
"""
Tiny AutoEncoder for Stable Diffusion
(DNN for encoding / decoding SD's latent space)
"""
import torch
import torch.nn as nn
def conv(n_in, n_out, **kwargs):
return nn.Conv2d(n_in, n_out, 3, padding=1, **kwargs)
class Clamp(nn.Module):
def forward(self, x):
return torch.tanh(x / 3) * 3
class Block(nn.Module):
def __init__(self, n_in, n_out):
super().__init__()
self.conv = nn.Sequential(conv(n_in, n_out), nn.ReLU(), conv(n_out, n_out), nn.ReLU(), conv(n_out, n_out))
self.skip = nn.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity()
self.fuse = nn.ReLU()
def forward(self, x):
return self.fuse(self.conv(x) + self.skip(x))
def Encoder(latent_channels=4):
return nn.Sequential(
conv(3, 64), Block(64, 64),
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
conv(64, latent_channels),
)
def Decoder(latent_channels=4):
return nn.Sequential(
Clamp(), conv(latent_channels, 64), nn.ReLU(),
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
Block(64, 64), conv(64, 3),
)
class TAESD(nn.Module):
latent_magnitude = 3
latent_shift = 0.5
def __init__(self, encoder_path="taesd_encoder.pth", decoder_path="taesd_decoder.pth", latent_channels=None):
"""Initialize pretrained TAESD on the given device from the given checkpoints."""
super().__init__()
if latent_channels is None:
latent_channels = self.guess_latent_channels(str(encoder_path))
self.encoder = Encoder(latent_channels)
self.decoder = Decoder(latent_channels)
if encoder_path is not None:
self.encoder.load_state_dict(torch.load(encoder_path, map_location="cpu", weights_only=True))
if decoder_path is not None:
self.decoder.load_state_dict(torch.load(decoder_path, map_location="cpu", weights_only=True))
def guess_latent_channels(self, encoder_path):
"""guess latent channel count based on encoder filename"""
if "taef1" in encoder_path:
return 16
if "taesd3" in encoder_path:
return 16
return 4
@staticmethod
def scale_latents(x):
"""raw latents -> [0, 1]"""
return x.div(2 * TAESD.latent_magnitude).add(TAESD.latent_shift).clamp(0, 1)
@staticmethod
def unscale_latents(x):
"""[0, 1] -> raw latents"""
return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude)
@torch.no_grad()
def main():
from PIL import Image
import sys
import torchvision.transforms.functional as TF
dev = torch.device("cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu")
print("Using device", dev)
taesd = TAESD().to(dev)
for im_path in sys.argv[1:]:
im = TF.to_tensor(Image.open(im_path).convert("RGB")).unsqueeze(0).to(dev)
# encode image, quantize, and save to file
im_enc = taesd.scale_latents(taesd.encoder(im)).mul_(255).round_().byte()
enc_path = im_path + ".encoded.png"
TF.to_pil_image(im_enc[0]).save(enc_path)
print(f"Encoded {im_path} to {enc_path}")
# load the saved file, dequantize, and decode
im_enc = taesd.unscale_latents(TF.to_tensor(Image.open(enc_path)).unsqueeze(0).to(dev))
im_dec = taesd.decoder(im_enc).clamp(0, 1)
dec_path = im_path + ".decoded.png"
print(f"Decoded {enc_path} to {dec_path}")
TF.to_pil_image(im_dec[0]).save(dec_path)
if __name__ == "__main__":
main()