-
Notifications
You must be signed in to change notification settings - Fork 284
/
Copy pathrandom forest classifier.py
158 lines (121 loc) · 5.42 KB
/
random forest classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
RSEED = 50
# Load in data
df = pd.read_csv('https://s3.amazonaws.com/projects-rf/clean_data.csv')
# Full dataset: https://www.kaggle.com/cdc/behavioral-risk-factor-surveillance-system
# Extract the labels
labels = np.array(df.pop('label'))
# 30% examples in test data
train, test, train_labels, test_labels = train_test_split(df,
labels,
stratify = labels,
test_size = 0.3,
random_state = RSEED)
# Imputation of missing values
train = train.fillna(train.mean())
test = test.fillna(test.mean())
# Features for feature importances
features = list(train.columns)
# Create the model with 100 trees
model = RandomForestClassifier(n_estimators=100,
random_state=RSEED,
max_features = 'sqrt',
n_jobs=-1, verbose = 1)
# Fit on training data
model.fit(train, train_labels)
n_nodes = []
max_depths = []
# Stats about the trees in random forest
for ind_tree in model.estimators_:
n_nodes.append(ind_tree.tree_.node_count)
max_depths.append(ind_tree.tree_.max_depth)
print(f'Average number of nodes {int(np.mean(n_nodes))}')
print(f'Average maximum depth {int(np.mean(max_depths))}')
# Training predictions (to demonstrate overfitting)
train_rf_predictions = model.predict(train)
train_rf_probs = model.predict_proba(train)[:, 1]
# Testing predictions (to determine performance)
rf_predictions = model.predict(test)
rf_probs = model.predict_proba(test)[:, 1]
from sklearn.metrics import precision_score, recall_score, roc_auc_score, roc_curve
import matplotlib.pyplot as plt
# Plot formatting
plt.style.use('fivethirtyeight')
plt.rcParams['font.size'] = 18
def evaluate_model(predictions, probs, train_predictions, train_probs):
"""Compare machine learning model to baseline performance.
Computes statistics and shows ROC curve."""
baseline = {}
baseline['recall'] = recall_score(test_labels,
[1 for _ in range(len(test_labels))])
baseline['precision'] = precision_score(test_labels,
[1 for _ in range(len(test_labels))])
baseline['roc'] = 0.5
results = {}
results['recall'] = recall_score(test_labels, predictions)
results['precision'] = precision_score(test_labels, predictions)
results['roc'] = roc_auc_score(test_labels, probs)
train_results = {}
train_results['recall'] = recall_score(train_labels, train_predictions)
train_results['precision'] = precision_score(train_labels, train_predictions)
train_results['roc'] = roc_auc_score(train_labels, train_probs)
for metric in ['recall', 'precision', 'roc']:
print(f'{metric.capitalize()} Baseline: {round(baseline[metric], 2)} Test: {round(results[metric], 2)} Train: {round(train_results[metric], 2)}')
# Calculate false positive rates and true positive rates
base_fpr, base_tpr, _ = roc_curve(test_labels, [1 for _ in range(len(test_labels))])
model_fpr, model_tpr, _ = roc_curve(test_labels, probs)
plt.figure(figsize = (8, 6))
plt.rcParams['font.size'] = 16
# Plot both curves
plt.plot(base_fpr, base_tpr, 'b', label = 'baseline')
plt.plot(model_fpr, model_tpr, 'r', label = 'model')
plt.legend();
plt.xlabel('False Positive Rate');
plt.ylabel('True Positive Rate'); plt.title('ROC Curves');
plt.show();
evaluate_model(rf_predictions, rf_probs, train_rf_predictions, train_rf_probs)
plt.savefig('roc_auc_curve.png')
from sklearn.metrics import confusion_matrix
import itertools
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Oranges):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
Source: http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html
"""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
# Plot the confusion matrix
plt.figure(figsize = (10, 10))
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title, size = 24)
plt.colorbar(aspect=4)
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45, size = 14)
plt.yticks(tick_marks, classes, size = 14)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
# Labeling the plot
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt), fontsize = 20,
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.grid(None)
plt.tight_layout()
plt.ylabel('True label', size = 18)
plt.xlabel('Predicted label', size = 18)
# Confusion matrix
cm = confusion_matrix(test_labels, rf_predictions)
plot_confusion_matrix(cm, classes = ['Poor Health', 'Good Health'],
title = 'Health Confusion Matrix')
plt.savefig('cm.png')