-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_to_csv3.py
94 lines (75 loc) · 2.86 KB
/
data_to_csv3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import urllib3
import csv
import sys
import pandas as pd
import json
import inflect
import pprint
import numpy as np
import os.path
import csv
class dataToCSV:
def init(self,*args):
f=inflect.engine()
http = urllib3.PoolManager()
#r1 = http.request('GET', 'http://magento.arogyarahasya.com/productviewcount/index/index')
r1 = http.request('GET', 'https://magento.arogyarahasya.com/recommendation/index/api?type=category_product')
r2 = http.request('GET', 'https://magento.arogyarahasya.com/recommendation/index/api?type=product')
r3 = http.request('GET','https://magento.arogyarahasya.com/recommendation/index/api?type=category')
# reload(sys)
# sys.setdefaultencoding('utf8')
rows = json.loads(r1.data)
df = pd.DataFrame(rows)
rows_product = json.loads(r2.data)
df_product = pd.DataFrame(rows_product)
rows_categorry = json.loads(r3.data)
df_category = pd.DataFrame(rows_categorry)
df1 = pd.DataFrame()
df1['category_id']=df['category_id']
df1['product_id']=df['product_id']
df1.to_csv("AR_Data_Category_Product.csv", index=False)
df_product['product_id'] = df_product['id']
df_product['pro_name'] = df_product['name']
#df_product['final_price'] = df_product['final_price']
df_product = df_product.drop(['final_price','id','created_at','is_salable','price','qty','sku','website_ids','status','visibility','name'], axis=1)
df_product.to_csv("AR_Data_Product.csv", index=False)
# print(df_items)
df3 = pd.DataFrame()
df3['category_id'] = df_category['id']
df3['category_name'] = df_category['name']
df3['parent_id'] = df_category['parent_id']
df3.to_csv("AR_Category.csv",index=False)
df=pd.read_csv("AR_Data_Category_Product.csv")
ids_list = df['product_id'].tolist()
cat_list = df["category_id"].tolist()
df4 = pd.DataFrame()
df4 = df_product.merge(df1, how='inner')
df4 = df4.merge(df3, how = 'inner')
#df4 = df4.drop(['final_price','id','created_at','is_salable','price','qty','sku','website_ids','status','visibility'], axis=1)
df4.to_csv("AR_All.csv", index=False)
data1 = pd.read_csv("AR_All.csv")
cat_name = list(data1['category_name'])
list1 = []
for i in cat_name:
if i not in list1:
list1.append(i)
print("list1",list1)
lll={}
df_cats = pd.read_csv("AR_Category.csv")
category_list = df_cats["category_name"].tolist()
#lllll=["Beauty Care"]
for cat in category_list:
df11=df_cats.loc[df_cats['category_name']==str(cat)]
id_list=df11["category_id"].tolist()[0]
#print(id_list)
parent_df=df_cats.loc[df_cats["parent_id"]==int(id_list)]
parent_names=parent_df["category_name"].tolist()
lll[str(cat)]=parent_names
#print(lll)
csv_columns = ['category_name','parents_name']
with open('AR_Parents.csv', 'w') as f:
writer = csv.writer(f)
writer.writerow(['category_name','parents_name'])
for row in lll.items():
writer.writerow(row)
dataToCSV().init()