-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcoraNodeTUNA.py
693 lines (554 loc) · 23.8 KB
/
coraNodeTUNA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
import sys
import stellargraph as sg
import matplotlib.pyplot as plt
from math import isclose
import sklearn
from sklearn.decomposition import PCA
import os
import networkx as nx
import numpy as np
import pandas as pd
from stellargraph import StellarGraph, datasets
from stellargraph.data import EdgeSplitter
from collections import Counter
import multiprocessing
from IPython.display import display, HTML
from sklearn.model_selection import train_test_split
from src.main import *
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LogisticRegressionCV
from sklearn.metrics import roc_auc_score
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn import model_selection
from sklearn.multiclass import OneVsRestClassifier
from sklearn import preprocessing
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import accuracy_score
import dill
import optuna
# is_dill = True
# if is_dill:
# dill.load_session('./cora/beforeRB.pkl')
p = 1.0
q = 1.0
dimensions = 128
num_walks = 10
walk_length = 80
window_size = 10
num_iter = 1
import argparse
parser = argparse.ArgumentParser(description='Process some integers.')
parser.add_argument('--reg1', type=float,
help='sym reg')
parser.add_argument('--reg2', type=float,
help='sym reg')
args = parser.parse_args()
reg1 = args.reg1
reg2 = args.reg2
workers = multiprocessing.cpu_count()
from stellargraph.data import BiasedRandomWalk
from gensim.models import Word2Vec
dill.load_session(f'./cora/node_adj_{reg1}_{reg2}.pkl')
drop_weight = 0.45
emd_weight = 0.19
def RB(get_embedding, feat, name, kfold=5):
embeddings = []
s = []
for i in range(len(feat.values())):
embeddings.append(get_embedding(i))
s.append(str(feat[i]))
X = embeddings
y = s
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=1121218
)
from sklearn.svm import SVC
clf = OneVsRestClassifier(SVC(probability=True))
# clf = LogisticRegression(solver='lbfgs')
clf.fit(X_train, y_train)
y_pred_probs = clf.predict_proba(X_test)
# Calculate ROC_AUC
results_lap = roc_auc_score(
y_test, y_pred_probs, multi_class="ovr", average="weighted"
)
predict_lables = clf.predict(X_test)
print(f"RB on the {name} graph is: {results_lap.mean()}")
acc = accuracy_score(y_test, predict_lables)
return results_lap, acc
def ERB(get_embedding, feat, name, kfold=5):
embeddings = []
s = []
for i in range(len(feat.values())):
embeddings.append(get_embedding(i))
s.append(str(feat[i]))
X = embeddings
y = s
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=1121218
)
from sklearn.svm import SVC
clf = OneVsRestClassifier(SVC(probability=True))
# clf = LogisticRegression(solver='lbfgs')
clf.fit(X_train, y_train)
y_pred_probs = clf.predict_proba(X_test)
# Calculate ROC_AUC
results_lap = roc_auc_score(
y_test, y_pred_probs, multi_class="ovr", average="weighted"
)
y_predict = clf.predict(X_test)
acc = accuracy_score(y_test, y_predict)
print(f"RB on the {name} graph is: {results_lap.mean()}")
return results_lap, acc
def vis_pca(name, best_result, examples_test, embedding_test):
link_features = link_examples_to_features(
examples_test, embedding_test, best_result["binary_operator"]
)
# Learn a projection from 128 dimensions to 2
pca = PCA(n_components=2)
X_transformed = pca.fit_transform(link_features)
# plot the 2-dimensional points
plt.figure(figsize=(16, 12))
plt.scatter(
X_transformed[:, 0],
X_transformed[:, 1],
c=np.where(labels_test == 1, "b", "r"),
alpha=0.5,
)
plt.tight_layout()
plt.savefig(f'figs/dblp/{name}-pca.jpg')
def vis_nx(name, g):
# Visualisation of the generated graph
#Retrieve indexes of node in each group
s = nx.get_node_attributes(g, 's')
idx_ps = []
labels = list(set(s.values()))
for val in labels:
idx_ps.append(get_keys_from_value(s, val))
# Draw the graph
pos = nx.spring_layout(g)
i = 0
colors = ['steelblue', 'gold', 'green', 'red', 'orange']
for idx_p in idx_ps:
nx.draw_networkx_nodes(g, pos=pos, node_size=0.1, nodelist=idx_p, node_color=colors[i], label=f'S = {labels[i]}')
nx.draw_networkx_edges(g, pos=pos)
plt.legend(loc="upper left", scatterpoints=1, prop={'size': 15})
plt.tight_layout()
plt.savefig(f'figs/dblp/{name}-nx.jpg')
def node2vec_embedding(graph, name):
rw = BiasedRandomWalk(graph)
walks = rw.run(graph.nodes(), n=num_walks, length=walk_length, p=p, q=q)
print(f"Number of random walks for '{name}': {len(walks)}")
model = Word2Vec(
walks,
vector_size=dimensions,
window=window_size,
min_count=0,
sg=1,
workers=workers,
# iter=num_iter,
)
def get_embedding(u):
return model.wv[u]
return get_embedding
# 1. link embeddings
def link_examples_to_features(link_examples, transform_node, binary_operator):
return [
binary_operator(transform_node(src), transform_node(dst))
for src, dst in link_examples
]
# 2. training classifier
def train_link_prediction_model(
link_examples, link_labels, get_embedding, binary_operator
):
clf = link_prediction_classifier()
link_features = link_examples_to_features(
link_examples, get_embedding, binary_operator
)
clf.fit(link_features, link_labels)
return clf
def link_prediction_classifier(max_iter=3000):
lr_clf = LogisticRegressionCV(Cs=10, cv=10, scoring="roc_auc", max_iter=max_iter)
return Pipeline(steps=[("sc", StandardScaler()), ("clf", lr_clf)])
# 3. and 4. evaluate classifier
def evaluate_link_prediction_model(
clf, link_examples_test, link_labels_test, get_embedding, binary_operator
):
link_features_test = link_examples_to_features(
link_examples_test, get_embedding, binary_operator
)
score, acc = evaluate_roc_auc(clf, link_features_test, link_labels_test)
return score, acc
def evaluate_roc_auc(clf, link_features, link_labels):
predicted = clf.predict_proba(link_features)
# check which class corresponds to positive links
positive_column = list(clf.classes_).index(1)
predicted_labels = clf.predict(link_features)
return roc_auc_score(link_labels, predicted[:, positive_column]), accuracy_score(link_labels, predicted_labels)
def operator_hadamard(u, v):
return u * v
def operator_l1(u, v):
return np.abs(u - v)
def operator_l2(u, v):
return (u - v) ** 2
def operator_avg(u, v):
return (u + v) / 2.0
def run_link_prediction(embedding_train, binary_operator, examples_train, labels_train, examples_model_selection, labels_model_selection,):
clf = train_link_prediction_model(
examples_train, labels_train, embedding_train, binary_operator
)
score, acc = evaluate_link_prediction_model(
clf,
examples_model_selection,
labels_model_selection,
embedding_train,
binary_operator,
)
return {
"classifier": clf,
"binary_operator": binary_operator,
"score": score,
'acc': acc
}
def AUC_print(results):
print(pd.DataFrame(
[(result["binary_operator"].__name__, result["score"]) for result in results],
columns=("name", "ROC AUC score"),
).set_index("name"))
def DI(best_result, examples_test, g, embedding_test):
link_features_test = link_examples_to_features(
examples_test, embedding_test, best_result["binary_operator"]
)
xor0, xor1 = [], []
feat = nx.get_node_attributes(g, 's')
for i in range(len(examples_test)):
if feat[examples_test[i][0]] == feat[examples_test[i][1]]:
xor0.append(link_features_test[i])
else:
xor1.append(link_features_test[i])
y0 = best_result["classifier"].predict(xor0)
score0 = sklearn.metrics.accuracy_score(y0, np.ones_like(y0))
y1 = best_result["classifier"].predict(xor1)
score1 = sklearn.metrics.accuracy_score(y1, np.ones_like(y1))
return score1/score0
binary_operators = [operator_hadamard, operator_l1, operator_l2, operator_avg]
def parse_cora(plot=False):
path = "./data/cora/"
id2index = {}
label2index = {
'Case_Based': 0,
'Genetic_Algorithms': 1,
'Neural_Networks': 2,
'Probabilistic_Methods': 3,
'Reinforcement_Learning': 4,
'Rule_Learning': 5,
'Theory': 6
}
features = []
labels = []
with open(path + 'cora.content', 'r') as f:
i = 0
for line in f.readlines():
items = line.strip().split('\t')
id = items[0]
# 1-hot encode labels
label = np.zeros(len(label2index))
label[label2index[items[-1]]] = 1
labels.append(items[-1])
# parse features
features.append([int(x) for x in items[1:-1]])
id2index[id] = i
i += 1
features = np.asarray(features, dtype='float32')
labels = np.array(labels)
# labels = np.asarray(labels, dtype='int32')
n_papers = len(id2index)
adj = np.zeros((n_papers, n_papers), dtype='float32')
with open(path + 'cora.cites', 'r') as f:
for line in f.readlines():
items = line.strip().split('\t')
adj[ id2index[items[0]], id2index[items[1]] ] = 1.0
# undirected
adj[ id2index[items[1]], id2index[items[0]] ] = 1.0
G = nx.from_numpy_matrix(adj, nx.Graph())
feat_dict, label_dict = {}, {}
for i in range(features.shape[0]):
feat_dict[i] = features[i]
label_dict[i] = labels[i]
nx.set_node_attributes(G, feat_dict, name='feat')
nx.set_node_attributes(G, label_dict, name='s')
return G
def load_data():
G = parse_cora()
# G = nx.relabel.convert_node_labels_to_integers(G, first_label=0, ordering='default')
return G
def emd_repair(graph_train, num_iter=1e6, edge_weight=0.2):
emd_adj, s_emd, gamma, M = multi_total_repair(graph_train, num_iter=num_iter, metric='euclidean', log=False)
print('emd edges', np.sum(np.array(emd_adj) >= edge_weight))
emd_g = nx.from_numpy_matrix(emd_adj)
# Filter out the smallest weights to keep a reasonable density
list_edge = [(u, v) for (u, v, d) in emd_g.edges(data=True) if d['weight'] < edge_weight]
emd_g.remove_edges_from(list_edge)
nx.set_node_attributes(emd_g, nx.get_node_attributes(graph_train, 's'), name='s')
print('Assortativity coeffcient on the emd graph: %0.3f'
% nx.attribute_assortativity_coefficient(emd_g, 's'))
return emd_g
def drop_repair(graph_train, edge_weight=0.2):
sens = nx.get_node_attributes(graph_train, 's')
sens_ls = []
for i in range(len(sens)):
sens_ls.append(sens[i])
sens_ls = np.array(sens_ls)
mij = np.random.rand(len(sens_ls)*len(sens_ls)).reshape(len(sens_ls), len(sens_ls))
for i in range(0, len(sens_ls)):
# import pdb; pdb.set_trace()
mij[i][sens_ls == sens_ls[i]] = 0
mij[i][sens_ls != sens_ls[i]] = 1
myrand = np.random.rand(len(sens_ls))
mij[i][myrand < 0.5 - edge_weight] = 1- mij[i][myrand < 0.5 - edge_weight]
drop_adj = nx.adjacency_matrix(graph_train) * mij
drop_g = nx.from_numpy_matrix(drop_adj)
# Filter out the smallest weights to keep a reasonable density
nx.set_node_attributes(drop_g, nx.get_node_attributes(graph_train, 's'), name='s')
print('Assortativity coeffcient on the drop graph: %0.3f'
% nx.attribute_assortativity_coefficient(drop_g, 's'))
return drop_g
def sym_repair_adj(graph_train, num_iter=1e6, reg=1e-9):
emd_adj, emd_nodes, s_emd, gamma, M = multi_node_sym_total_repair(graph_train, num_iter=num_iter, metric='euclidean', log=False, reg=reg, reg1=reg1, reg2=reg2)
return emd_adj, emd_nodes
def node_repair_adj(graph_train, num_iter=1e6, reg=1e-9):
emd_adj, emd_nodes, s_emd, gamma, M = multi_node_total_repair(graph_train, num_iter=num_iter, metric='euclidean', log=False, reg=reg, reg1=reg1, reg2=reg2)
return emd_adj, emd_nodes
def node_repair(graph_train, emd_adj, emd_nodes, edge_weight=0.2):
print('emd edges', np.sum(np.array(emd_adj) >= edge_weight))
emd_g = nx.from_numpy_matrix(emd_adj)
# Filter out the smallest weights to keep a reasonable density
list_edge = [(u, v) for (u, v, d) in emd_g.edges(data=True) if d['weight'] < edge_weight]
emd_g.remove_edges_from(list_edge)
emd_nodes_dict = {}
for i in range(emd_nodes.shape[0]):
emd_nodes_dict[i] = emd_nodes[i]
nx.set_node_attributes(emd_g, emd_nodes_dict, name='feat')
# import pdb; pdb.set_trace()
nx.set_node_attributes(emd_g, nx.get_node_attributes(graph_train, 's'),name='s')
print('Assortativity coeffcient on the node repair graph: %0.3f'
% nx.attribute_assortativity_coefficient(emd_g, 's'))
return emd_g
def sym_repair(graph_train, emd_adj, emd_nodes, edge_weight=0.2):
print('emd edges', np.sum(np.array(emd_adj) >= edge_weight))
emd_g = nx.from_numpy_matrix(emd_adj)
# Filter out the smallest weights to keep a reasonable density
list_edge = [(u, v) for (u, v, d) in emd_g.edges(data=True) if d['weight'] < edge_weight]
emd_g.remove_edges_from(list_edge)
emd_nodes_dict = {}
for i in range(emd_nodes.shape[0]):
emd_nodes_dict[i] = emd_nodes[i]
nx.set_node_attributes(emd_g, emd_nodes_dict, name='feat')
# import pdb; pdb.set_trace()
nx.set_node_attributes(emd_g, nx.get_node_attributes(graph_train, 's'),name='s')
print('Assortativity coeffcient on the emd graph: %0.3f'
% nx.attribute_assortativity_coefficient(emd_g, 's'))
return emd_g
def AUC_test(best_result, examples_test,labels_test, embedding_test):
test_score = evaluate_link_prediction_model(
best_result["classifier"],
examples_test,
labels_test,
embedding_test,
best_result["binary_operator"],
)
print(
f"ROC AUC score on test set using '{best_result['binary_operator'].__name__}': {test_score}"
)
def edge_pred(examples_train, examples_model_selection, labels_train, labels_model_selection, embedding_train):
results = [run_link_prediction(embedding_train, op, examples_train, labels_train, examples_model_selection,
labels_model_selection,) for op in binary_operators]
best_result = max(results, key=lambda result: result["score"])
AUC_print(results)
return best_result
def get_xor_label(examples_train, graph_train):
feat = nx.get_node_attributes(graph_train, 's')
xor_labels = []
for example in examples_train:
if feat[example[0]] == feat[example[1]]:
xor_labels.append(0)
else:
xor_labels.append(1)
return xor_labels
is_dill = True
if not is_dill:
G = load_data()
# nx.set_node_attributes(G, node_feat, 's')
print('Assortativity coeffcient on the origin graph: %0.3f'
% nx.attribute_assortativity_coefficient(G, 's'))
print("Correcting the graph with EMD")
edge_splitter_test = EdgeSplitter(G)
# Randomly sample a fraction p=0.1 of all positive links, and same number of negative links, from graph, and obtain the
# reduced graph graph_test with the sampled links removed:
graph_test, examples_test, labels_test = edge_splitter_test.train_test_split(
p=0.1, method="global"
)
# Do the same process to compute a training subset from within the test graph
edge_splitter_train = EdgeSplitter(graph_test, G)
graph_train, examples, labels = edge_splitter_train.train_test_split(
p=0.1, method="global"
)
# REPAIRG
drop_g = drop_repair(graph_train, edge_weight=drop_weight)
emd_g = emd_repair(graph_train, num_iter=1e6, edge_weight=0.12)
# EMBEDDING with node2vec
embedding_train = node2vec_embedding(StellarGraph.from_networkx(graph_train, node_features='feat'), "Train Graph")
emd_embedding_train = node2vec_embedding(StellarGraph.from_networkx(emd_g, node_features='feat'), "EMD Train Graph")
drop_embedding_train = node2vec_embedding(StellarGraph.from_networkx(drop_g), "Drop Train Graph")
# TRAIN and VAL
(
examples_train,
examples_model_selection,
labels_train,
labels_model_selection,
) = train_test_split(examples, labels, train_size=0.75, test_size=0.25)
print('origin')
ori_best_result = edge_pred(examples_train, examples_model_selection, labels_train, labels_model_selection, embedding_train)
print('drop')
drop_best_result = edge_pred(examples_train, examples_model_selection, labels_train, labels_model_selection, drop_embedding_train)
print('emd')
emd_best_result = edge_pred(examples_train, examples_model_selection, labels_train, labels_model_selection, emd_embedding_train)
embedding_test = node2vec_embedding(StellarGraph.from_networkx(graph_test), "Test Graph")
print('origin graph')
AUC_test(ori_best_result, examples_test,labels_test, embedding_test)
print('drop graph')
drop_graph_test = drop_repair(graph_test, edge_weight=drop_weight)
drop_embedding_test = node2vec_embedding(StellarGraph.from_networkx(drop_graph_test), "Drop Test Graph")
AUC_test(drop_best_result, examples_test,labels_test, drop_embedding_test)
print('emd graph')
emd_graph_test = emd_repair(graph_test, num_iter=1e6, edge_weight=emd_weight)
emd_embedding_test = node2vec_embedding(StellarGraph.from_networkx(emd_graph_test), "EMD Test Graph")
AUC_test(emd_best_result, examples_test,labels_test, emd_embedding_test)
# RB
ori_feat = nx.get_node_attributes(graph_train, 's')
RB(embedding_train, ori_feat, 'origin', kfold=5)
drop_feat = nx.get_node_attributes(drop_g, 's')
RB(drop_embedding_train, drop_feat, 'emd', kfold=5)
emd_feat = nx.get_node_attributes(emd_g, 's')
RB(emd_embedding_train, emd_feat, 'emd', kfold=5)
# DI
ori_di = DI(ori_best_result, examples_test, graph_test, embedding_test)
drop_di = DI(drop_best_result, examples_test, graph_test, drop_embedding_test)
emd_di = DI(emd_best_result, examples_test, graph_test, emd_embedding_test)
print(f'ori_DI: {ori_di}, drop_DI: {drop_di}, emd_DI: {emd_di}')
dill.dump_session('./cora/beforeERB.pkl')
# ERB
print('Edge RB')
xor_train_label, xor_val_label = get_xor_label(examples_train, graph_train), get_xor_label(examples_model_selection, graph_train)
print('ori')
edge_pred(examples_train, examples_model_selection, xor_train_label, xor_val_label, embedding_train)
print('drop')
edge_pred(examples_train, examples_model_selection, xor_train_label, xor_val_label, drop_embedding_train)
print('emd')
edge_pred(examples_train, examples_model_selection, xor_train_label, xor_val_label, emd_embedding_train)
# VISUALIZATION
# Calculate edge features for test data
vis_pca('origin', ori_best_result, examples_test, embedding_test)
vis_pca('drop', drop_best_result, examples_test, drop_embedding_test)
vis_pca('emd', emd_best_result, examples_test, emd_embedding_test)
vis_nx('origin', graph_train)
vis_nx('drop', drop_g)
vis_nx('emd', emd_g)
dill.dump_session('./cora/beforeSym.pkl')
exit()
# else:
# dill.load_session(f'./cora/sym_adj_{reg}.pkl')
# reg = 1e-3
# sym_g = sym_repair_adj(graph_train, num_iter=1e4, reg=reg)
# sym_testg = sym_repair_adj(graph_test, num_iter=1e4, reg=reg)
# results = [run_link_prediction(embedding_train, op, examples_train, labels_train, examples_model_selection,
# labels_model_selection,) for op in binary_operators]
# best_result = max(results, key=lambda result: result["score"])
# AUC_print(results)
# emd_results = [run_link_prediction(emd_embedding_train, op, examples_train, labels_train, examples_model_selection,
# labels_model_selection,) for op in binary_operators]
# emd_best_result = max(emd_results, key=lambda result: result["score"])
# print('emd repair')
# AUC_print(emd_results)
# # TEST AUC
# embedding_test = node2vec_embedding(StellarGraph.from_networkx(graph_test, node_features='feat'), "Test Graph")
# print('origin graph')
# AUC_test(best_result, examples_test,labels_test, embedding_test)
# print('emd graph')
# emd_graph_test = emd_repair(graph_test)
# emd_embedding_test = node2vec_embedding(StellarGraph.from_networkx(emd_graph_test, node_features='feat'), "EMD Test Graph")
# AUC_test(emd_best_result, examples_test,labels_test, emd_embedding_test)
# ori_feat = nx.get_node_attributes(graph_test, 's')
# RB(embedding_test, ori_feat, 'origin', kfold=5)
# emd_feat = nx.get_node_attributes(emd_graph_test, 's')
# RB(emd_embedding_test, emd_feat, 'emd', kfold=5)
# # DI
# ori_di = DI(best_result, examples_test, graph_test, embedding_test)
# emd_di = DI(emd_best_result, examples_test, graph_test, emd_embedding_test)
# print(f'ori_DI: {ori_di}, emd_DI: {emd_di}')
# # VISUALIZATION
# # Calculate edge features for test data
# vis_pca('origin', best_result, examples_test, embedding_test)
# vis_pca('emd', emd_best_result, examples_test, embedding_test)
# vis_nx('origin', graph_train)
# vis_nx('emd', emd_g)
# dill.dump_session('./cora/beforeRB.pkl')
# reg = 1e-3
# sym_g = sym_repair_adj(graph_train, num_iter=1e4, reg=reg)
# sym_testg = sym_repair_adj(graph_test, num_iter=1e4, reg=reg)
# multi_adj, multi_nodes = node_repair_adj(graph_train, num_iter=1e4, reg=0)
# sym_test_adj, sym_test_nodes = node_repair_adj(graph_test, num_iter=1e4, reg=0)
# dill.dump_session(f'./cora/node_adj_{reg1}_{reg2}.pkl')
def objective(trial):
edge_weight = trial.suggest_float("lr", 0.12, 0.2, log=True)
AUCs = []
ACCs = []
RBs = []
RB_ACCs = []
DIs = []
ERBs = []
ERB_ACCs = []
sym_g = node_repair(graph_train, multi_adj, multi_nodes, edge_weight=edge_weight)
# for i in range(5):
sym_embedding_train = node2vec_embedding(StellarGraph.from_networkx(sym_g, node_features='feat'), "Train Sym Graph")
sym_best_result = edge_pred(examples_train, examples_model_selection, labels_train, labels_model_selection, sym_embedding_train)
test_auc = sym_best_result['score']
test_acc = sym_best_result['acc']
AUCs.append(test_auc)
ACCs.append(test_acc)
sym_feat = nx.get_node_attributes(sym_g, 's')
rb_auc, rb_acc = RB(sym_embedding_train, sym_feat, 'sym', kfold=5)
RBs.append(rb_auc)
RB_ACCs.append(rb_acc)
sym_di = DI(sym_best_result, examples_train, sym_g, sym_embedding_train)
DIs.append(sym_di)
print(f'sym_DI: {sym_di}')
print('Edge RB')
xor_train_label, xor_val_label = get_xor_label(examples_train, graph_train), get_xor_label(examples_model_selection, graph_train)
print('sym')
best_ERB_result = edge_pred(examples_train, examples_model_selection, xor_train_label, xor_val_label, sym_embedding_train)
erb_auc, erb_acc = best_ERB_result['score'], best_ERB_result['acc']
ERBs.append(erb_auc)
ERB_ACCs.append(erb_acc)
return ACCs[0], abs(ERB_ACCs[0]-0.5)
if __name__ == '__main__':
study_name = 'fairnode'
storage_name = f"sqlite:///{study_name}.db"
study = optuna.create_study(study_name=study_name, storage=storage_name, directions=["maximize", "minimize"], load_if_exists=True)
study.optimize(lambda trial: objective(trial), n_trials=50)
print("Best trial:")
trial = study.best_trials
print(" Value: ", trial.value)
print(" Params: ")
for key, value in trial.params.items():
print(" {}: {}".format(key, value))
# mydict = {'AUCs': np.array(AUCs),
# 'ACCs': np.array(ACCs),
# 'RBs': np.array(RBs),
# 'RB_ACCs': np.array(RB_ACCs),
# 'DIs': np.array(DIs),
# 'ERBs': np.array(ERBs),
# 'ERB_ACCs': np.array(ERB_ACCs)
# }
# for name in mydict.keys():
# print(f'{name}: {mydict[name].mean()}, {np.sqrt(mydict[name].var())} \n')