forked from optuna/optuna-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgluon_simple.py
134 lines (101 loc) · 3.93 KB
/
gluon_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import urllib
import mxnet as mx
from mxnet import autograd
from mxnet import gluon
from mxnet.gluon import nn
import numpy as np
import optuna
# TODO(crcrpar): Remove the below three lines once everything is ok.
# Register a global custom opener to avoid HTTP Error 403: Forbidden when downloading MNIST.
opener = urllib.request.build_opener()
opener.addheaders = [("User-agent", "Mozilla/5.0")]
urllib.request.install_opener(opener)
CUDA = False
EPOCHS = 10
BATCHSIZE = 128
LOG_INTERVAL = 100
def define_model(trial):
net = nn.Sequential()
n_layers = trial.suggest_int("n_layers", 1, 3)
for i in range(n_layers):
nodes = trial.suggest_int("n_units_l{}".format(i), 4, 128)
net.add(nn.Dense(nodes, activation="relu"))
net.add(nn.Dense(10))
return net
def transform(data, label):
data = data.reshape((-1,)).astype(np.float32) / 255
return data, label
def validate(ctx, val_data, net):
metric = mx.metric.Accuracy()
for data, label in val_data:
data = data.as_in_context(ctx)
label = label.as_in_context(ctx)
output = net(data)
metric.update([label], [output])
return metric.get()
def objective(trial):
if CUDA:
ctx = mx.gpu(0)
else:
ctx = mx.cpu()
train_data = gluon.data.DataLoader(
gluon.data.vision.MNIST("./data", train=True).transform(transform),
shuffle=True,
batch_size=BATCHSIZE,
last_batch="discard",
)
val_data = gluon.data.DataLoader(
gluon.data.vision.MNIST("./data", train=False).transform(transform),
batch_size=BATCHSIZE,
shuffle=False,
)
net = define_model(trial)
# Collect all parameters from net and its children, then initialize them.
net.initialize(mx.init.Xavier(magnitude=2.24), ctx=ctx)
optimizer_name = trial.suggest_categorical("optimizer", ["Adam", "RMSprop", "SGD"])
# Trainer is for updating parameters with gradient.
lr = trial.suggest_float("lr", 1e-5, 1e-1, log=True)
trainer = gluon.Trainer(net.collect_params(), optimizer_name, {"learning_rate": lr})
metric = mx.metric.Accuracy()
loss = gluon.loss.SoftmaxCrossEntropyLoss()
val_acc = 0
for epoch in range(EPOCHS):
# Reset data iterator and metric at beginning of epoch.
metric.reset()
for i, (data, label) in enumerate(train_data):
# Copy data to ctx if necessary.
data = data.as_in_context(ctx)
label = label.as_in_context(ctx)
# Start recording computation graph with record() section.
# Recorded graphs can then be differentiated with backward.
with autograd.record():
output = net(data)
L = loss(output, label)
L.backward()
# Take a gradient step with batch_size equal to data.shape[0].
trainer.step(data.shape[0])
# Update metric at last.
metric.update([label], [output])
if i % LOG_INTERVAL == 0 and i > 0:
name, acc = metric.get()
print(f"[Epoch {epoch} Batch {i}] Training: {name}={acc}")
name, acc = metric.get()
print(f"[Epoch {epoch}] Training: {name}={acc}")
name, val_acc = validate(ctx, val_data, net)
print(f"[Epoch {epoch}] Validation: {name}={val_acc}")
trial.report(val_acc, epoch)
# Handle pruning based on the intermediate value.
if trial.should_prune():
raise optuna.exceptions.TrialPruned()
net.save_parameters("mnist.params")
return val_acc
if __name__ == "__main__":
study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=100, timeout=600)
print("Number of finished trials: ", len(study.trials))
print("Best trial:")
trial = study.best_trial
print(" Value: ", trial.value)
print(" Params: ")
for key, value in trial.params.items():
print(" {}: {}".format(key, value))