forked from buyizhiyou/NRVQA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpiqe.py
211 lines (166 loc) · 7.62 KB
/
piqe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import numpy as np
import cv2
from scipy.special import gamma
def calculate_mscn(dis_image):
dis_image = dis_image.astype(np.float32) # 类型转换十分重要
ux = cv2.GaussianBlur(dis_image, (7, 7), 7/6)
ux_sq = ux*ux
sigma = np.sqrt(np.abs(cv2.GaussianBlur(dis_image**2, (7, 7), 7/6)-ux_sq))
mscn = (dis_image-ux)/(1+sigma)
return mscn
# Function to segment block edges
def segmentEdge(blockEdge, nSegments, blockSize, windowSize):
# Segment is defined as a collection of 6 contiguous pixels in a block edge
segments = np.zeros((nSegments, windowSize))
for i in range(nSegments):
segments[i, :] = blockEdge[i:windowSize]
if(windowSize <= (blockSize+1)):
windowSize = windowSize+1
return segments
def noticeDistCriterion(Block, nSegments, blockSize, windowSize, blockImpairedThreshold, N):
# Top edge of block
topEdge = Block[0, :]
segTopEdge = segmentEdge(topEdge, nSegments, blockSize, windowSize)
# Right side edge of block
rightSideEdge = Block[:, N-1]
rightSideEdge = np.transpose(rightSideEdge)
segRightSideEdge = segmentEdge(
rightSideEdge, nSegments, blockSize, windowSize)
# Down side edge of block
downSideEdge = Block[N-1, :]
segDownSideEdge = segmentEdge(
downSideEdge, nSegments, blockSize, windowSize)
# Left side edge of block
leftSideEdge = Block[:, 0]
leftSideEdge = np.transpose(leftSideEdge)
segLeftSideEdge = segmentEdge(
leftSideEdge, nSegments, blockSize, windowSize)
# Compute standard deviation of segments in left, right, top and down side edges of a block
segTopEdge_stdDev = np.std(segTopEdge, axis=1)
segRightSideEdge_stdDev = np.std(segRightSideEdge, axis=1)
segDownSideEdge_stdDev = np.std(segDownSideEdge, axis=1)
segLeftSideEdge_stdDev = np.std(segLeftSideEdge, axis=1)
# Check for segment in block exhibits impairedness, if the standard deviation of the segment is less than blockImpairedThreshold.
blockImpaired = 0
for segIndex in range(segTopEdge.shape[0]):
if((segTopEdge_stdDev[segIndex] < blockImpairedThreshold) or
(segRightSideEdge_stdDev[segIndex] < blockImpairedThreshold) or
(segDownSideEdge_stdDev[segIndex] < blockImpairedThreshold) or
(segLeftSideEdge_stdDev[segIndex] < blockImpairedThreshold)):
blockImpaired = 1
break
return blockImpaired
def noiseCriterion(Block, blockSize, blockVar):
# Compute block standard deviation[h,w,c]=size(I)
blockSigma = np.sqrt(blockVar)
# Compute ratio of center and surround standard deviation
cenSurDev = centerSurDev(Block, blockSize)
# Relation between center-surround deviation and the block standard deviation
blockBeta = (abs(blockSigma-cenSurDev))/(max(blockSigma, cenSurDev))
return blockSigma, blockBeta
# Function to compute center surround Deviation of a block
def centerSurDev(Block, blockSize):
# block center
center1 = int((blockSize+1)/2)-1
center2 = center1+1
center = np.vstack((Block[:, center1], Block[:, center2]))
# block surround
Block = np.delete(Block, center1, axis=1)
Block = np.delete(Block, center1, axis=1)
# Compute standard deviation of block center and block surround
center_std = np.std(center)
surround_std = np.std(Block)
# Ratio of center and surround standard deviation
cenSurDev = (center_std/surround_std)
# Check for nan's
# if(isnan(cenSurDev)):
# cenSurDev = 0
return cenSurDev
def piqe(im):
blockSize = 16 # Considered 16x16 block size for overall analysis
activityThreshold = 0.1 # Threshold used to identify high spatially prominent blocks
blockImpairedThreshold = 0.1 # Threshold identify blocks having noticeable artifacts
windowSize = 6 # Considered segment size in a block edge.
nSegments = blockSize-windowSize+1 # Number of segments for each block edge
distBlockScores = 0 # Accumulation of distorted block scores
NHSA = 0 # Number of high spatial active blocks.
# pad if size is not divisible by blockSize
if len(im.shape) == 3:
im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
originalSize = im.shape
rows, columns = originalSize
rowsPad = rows % blockSize
columnsPad = columns % blockSize
isPadded = False
if(rowsPad > 0 or columnsPad > 0):
if rowsPad > 0:
rowsPad = blockSize-rowsPad
if columnsPad > 0:
columnsPad = blockSize-columnsPad
isPadded = True
padSize = [rowsPad, columnsPad]
im = np.pad(im, ((0, rowsPad), (0, columnsPad)), 'edge')
# Normalize image to zero mean and ~unit std
# used circularly-symmetric Gaussian weighting function sampled out
# to 3 standard deviations.
imnorm = calculate_mscn(im)
# Preallocation for masks
NoticeableArtifactsMask = np.zeros(imnorm.shape)
NoiseMask = np.zeros(imnorm.shape)
ActivityMask = np.zeros(imnorm.shape)
# Start of block by block processing
total_var = []
total_bscore = []
total_ndc = []
total_nc = []
BlockScores = []
for i in np.arange(0, imnorm.shape[0]-1, blockSize):
for j in np.arange(0, imnorm.shape[1]-1, blockSize):
# Weights Initialization
WNDC = 0
WNC = 0
# Compute block variance
Block = imnorm[i:i+blockSize, j:j+blockSize]
blockVar = np.var(Block)
if(blockVar > activityThreshold):
ActivityMask[i:i+blockSize, j:j+blockSize] = 1
NHSA = NHSA+1
# Analyze Block for noticeable artifacts
blockImpaired = noticeDistCriterion(
Block, nSegments, blockSize-1, windowSize, blockImpairedThreshold, blockSize)
if(blockImpaired):
WNDC = 1
NoticeableArtifactsMask[i:i +
blockSize, j:j+blockSize] = blockVar
# Analyze Block for guassian noise distortions
[blockSigma, blockBeta] = noiseCriterion(
Block, blockSize-1, blockVar)
if((blockSigma > 2*blockBeta)):
WNC = 1
NoiseMask[i:i+blockSize, j:j+blockSize] = blockVar
# Pooling/ distortion assigment
# distBlockScores = distBlockScores + \
# WNDC*pow(1-blockVar, 2) + WNC*pow(blockVar, 2)
if WNDC*pow(1-blockVar, 2) + WNC*pow(blockVar, 2) > 0:
BlockScores.append(
WNDC*pow(1-blockVar, 2) + WNC*pow(blockVar, 2))
total_var = [total_var, blockVar]
total_bscore = [total_bscore, WNDC *
(1-blockVar) + WNC*(blockVar)]
total_ndc = [total_ndc, WNDC]
total_nc = [total_nc, WNC]
BlockScores = sorted(BlockScores)
lowSum = sum(BlockScores[:int(0.1*len(BlockScores))])
Sum = sum(BlockScores)
Scores = [(s*10*lowSum)/Sum for s in BlockScores]
C = 1
Score = ((sum(Scores) + C)/(C + NHSA))*100
# if input image is padded then remove those portions from ActivityMask,
# NoticeableArtifactsMask and NoiseMask and ensure that size of these masks
# are always M-by-N.
if(isPadded):
NoticeableArtifactsMask = NoticeableArtifactsMask[0:originalSize[0],
0:originalSize[1]]
NoiseMask = NoiseMask[0:originalSize[0], 0:originalSize[1]]
ActivityMask = ActivityMask[0:originalSize[0], 1:originalSize[1]]
return Score, NoticeableArtifactsMask, NoiseMask, ActivityMask