-
Notifications
You must be signed in to change notification settings - Fork 2
/
dnn.py
918 lines (823 loc) · 36.7 KB
/
dnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Deep Neural Network estimators."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import six
from tensorflow.contrib import layers
from tensorflow.contrib.framework import deprecated
from tensorflow.contrib.framework import deprecated_arg_values
from tensorflow.contrib.framework.python.ops import variables as contrib_variables
from tensorflow.contrib.layers.python.layers import feature_column
from tensorflow.contrib.layers.python.layers import optimizers
from tensorflow.contrib.learn.python.learn import metric_spec
from tensorflow.contrib.learn.python.learn.estimators import dnn_linear_combined
from tensorflow.contrib.learn.python.learn.estimators import estimator
from tensorflow.contrib.learn.python.learn.estimators import head as head_lib
from tensorflow.contrib.learn.python.learn.estimators import model_fn
from tensorflow.contrib.learn.python.learn.estimators import prediction_key
from tensorflow.contrib.learn.python.learn.utils import export
from tensorflow.python.feature_column import feature_column as fc_core
from tensorflow.python.ops import nn
from tensorflow.python.ops import partitioned_variables
from tensorflow.python.ops import variable_scope
from tensorflow.python.summary import summary
# The default learning rate of 0.05 is a historical artifact of the initial
# implementation, but seems a reasonable choice.
_LEARNING_RATE = 0.05
def _get_feature_dict(features):
if isinstance(features, dict):
return features
return {"": features}
def _get_optimizer(optimizer):
if callable(optimizer):
return optimizer()
else:
return optimizer
_ACTIVATION_FUNCTIONS = {
"relu": nn.relu,
"tanh": nn.tanh,
"sigmoid": nn.sigmoid
}
def _get_activation_fn(activation_fn):
if not isinstance(activation_fn, six.string_types):
return activation_fn
if activation_fn not in _ACTIVATION_FUNCTIONS.keys():
raise ValueError("Activation name should be one of [%s], you provided %s." %
(", ".join(_ACTIVATION_FUNCTIONS.keys()), activation_fn))
return _ACTIVATION_FUNCTIONS[activation_fn]
def _add_hidden_layer_summary(value, tag):
summary.scalar("%s_fraction_of_zero_values" % tag, nn.zero_fraction(value))
summary.histogram("%s_activation" % tag, value)
def _dnn_model_fn(features, labels, mode, params, config=None):
"""Deep Neural Net model_fn.
Args:
features: `Tensor` or dict of `Tensor` (depends on data passed to `fit`).
labels: `Tensor` of shape [batch_size, 1] or [batch_size] labels of
dtype `int32` or `int64` in the range `[0, n_classes)`.
mode: Defines whether this is training, evaluation or prediction.
See `ModeKeys`.
params: A dict of hyperparameters.
The following hyperparameters are expected:
* head: A `_Head` instance.
* hidden_units: List of hidden units per layer.
* feature_columns: An iterable containing all the feature columns used by
the model.
* optimizer: string, `Optimizer` object, or callable that defines the
optimizer to use for training. If `None`, will use the Adagrad
optimizer with a default learning rate of 0.05.
* activation_fn: Activation function applied to each layer. If `None`,
will use `tf.nn.relu`. Note that a string containing the unqualified
name of the op may also be provided, e.g., "relu", "tanh", or
"sigmoid".
* dropout: When not `None`, the probability we will drop out a given
coordinate.
* gradient_clip_norm: A float > 0. If provided, gradients are
clipped to their global norm with this clipping ratio.
* embedding_lr_multipliers: Optional. A dictionary from
`EmbeddingColumn` to a `float` multiplier. Multiplier will be used to
multiply with learning rate for the embedding variables.
* input_layer_min_slice_size: Optional. The min slice size of input layer
partitions. If not provided, will use the default of 64M.
config: `RunConfig` object to configure the runtime settings.
Returns:
predictions: A dict of `Tensor` objects.
loss: A scalar containing the loss of the step.
train_op: The op for training.
"""
head = params["head"]
hidden_units = params["hidden_units"]
feature_columns = params["feature_columns"]
optimizer = params.get("optimizer") or "Adagrad"
activation_fn = _get_activation_fn(params.get("activation_fn"))
dropout = params.get("dropout")
gradient_clip_norm = params.get("gradient_clip_norm")
input_layer_min_slice_size = (
params.get("input_layer_min_slice_size") or 64 << 20)
num_ps_replicas = config.num_ps_replicas if config else 0
embedding_lr_multipliers = params.get("embedding_lr_multipliers", {})
features = _get_feature_dict(features)
parent_scope = "dnn"
partitioner = partitioned_variables.min_max_variable_partitioner(
max_partitions=num_ps_replicas)
with variable_scope.variable_scope(
parent_scope,
values=tuple(six.itervalues(features)),
partitioner=partitioner):
input_layer_partitioner = (
partitioned_variables.min_max_variable_partitioner(
max_partitions=num_ps_replicas,
min_slice_size=input_layer_min_slice_size))
with variable_scope.variable_scope(
"input_from_feature_columns",
values=tuple(six.itervalues(features)),
partitioner=input_layer_partitioner) as input_layer_scope:
if all([
isinstance(fc, feature_column._FeatureColumn) # pylint: disable=protected-access
for fc in feature_columns
]):
net = layers.input_from_feature_columns(
columns_to_tensors=features,
feature_columns=feature_columns,
weight_collections=[parent_scope],
scope=input_layer_scope)
else:
net = fc_core.input_layer(
features=features,
feature_columns=feature_columns,
weight_collections=[parent_scope])
for layer_id, num_hidden_units in enumerate(hidden_units):
with variable_scope.variable_scope(
"hiddenlayer_%d" % layer_id,
values=(net,)) as hidden_layer_scope:
net = layers.fully_connected(
net,
num_hidden_units,
activation_fn=activation_fn,
variables_collections=[parent_scope],
scope=hidden_layer_scope)
if dropout is not None and mode == model_fn.ModeKeys.TRAIN:
net = layers.dropout(net, keep_prob=(1.0 - dropout))
_add_hidden_layer_summary(net, hidden_layer_scope.name)
with variable_scope.variable_scope(
"logits",
values=(net,)) as logits_scope:
logits = layers.fully_connected(
net,
head.logits_dimension,
activation_fn=None,
variables_collections=[parent_scope],
scope=logits_scope)
_add_hidden_layer_summary(logits, logits_scope.name)
def _train_op_fn(loss):
"""Returns the op to optimize the loss."""
return optimizers.optimize_loss(
loss=loss,
global_step=contrib_variables.get_global_step(),
learning_rate=_LEARNING_RATE,
optimizer=_get_optimizer(optimizer),
gradient_multipliers=(
dnn_linear_combined._extract_embedding_lr_multipliers( # pylint: disable=protected-access
embedding_lr_multipliers, parent_scope,
input_layer_scope.name)),
clip_gradients=gradient_clip_norm,
name=parent_scope,
# Empty summaries to prevent optimizers from logging training_loss.
summaries=[])
return head.create_model_fn_ops(
features=features,
mode=mode,
labels=labels,
train_op_fn=_train_op_fn,
logits=logits)
class DNNClassifier(estimator.Estimator):
"""A classifier for TensorFlow DNN models.
Example:
```python
sparse_feature_a = sparse_column_with_hash_bucket(...)
sparse_feature_b = sparse_column_with_hash_bucket(...)
sparse_feature_a_emb = embedding_column(sparse_id_column=sparse_feature_a,
...)
sparse_feature_b_emb = embedding_column(sparse_id_column=sparse_feature_b,
...)
estimator = DNNClassifier(
feature_columns=[sparse_feature_a_emb, sparse_feature_b_emb],
hidden_units=[1024, 512, 256])
# Or estimator using the ProximalAdagradOptimizer optimizer with
# regularization.
estimator = DNNClassifier(
feature_columns=[sparse_feature_a_emb, sparse_feature_b_emb],
hidden_units=[1024, 512, 256],
optimizer=tf.train.ProximalAdagradOptimizer(
learning_rate=0.1,
l1_regularization_strength=0.001
))
# Input builders
def input_fn_train: # returns x, y (where y represents label's class index).
pass
estimator.fit(input_fn=input_fn_train)
def input_fn_eval: # returns x, y (where y represents label's class index).
pass
estimator.evaluate(input_fn=input_fn_eval)
def input_fn_predict: # returns x, None
pass
# predict_classes returns class indices.
estimator.predict_classes(input_fn=input_fn_predict)
```
If the user specifies `label_keys` in constructor, labels must be strings from
the `label_keys` vocabulary. Example:
```python
label_keys = ['label0', 'label1', 'label2']
estimator = DNNClassifier(
feature_columns=[sparse_feature_a_emb, sparse_feature_b_emb],
hidden_units=[1024, 512, 256],
label_keys=label_keys)
def input_fn_train: # returns x, y (where y is one of label_keys).
pass
estimator.fit(input_fn=input_fn_train)
def input_fn_eval: # returns x, y (where y is one of label_keys).
pass
estimator.evaluate(input_fn=input_fn_eval)
def input_fn_predict: # returns x, None
# predict_classes returns one of label_keys.
estimator.predict_classes(input_fn=input_fn_predict)
```
Input of `fit` and `evaluate` should have following features,
otherwise there will be a `KeyError`:
* if `weight_column_name` is not `None`, a feature with
`key=weight_column_name` whose value is a `Tensor`.
* for each `column` in `feature_columns`:
- if `column` is a `SparseColumn`, a feature with `key=column.name`
whose `value` is a `SparseTensor`.
- if `column` is a `WeightedSparseColumn`, two features: the first with
`key` the id column name, the second with `key` the weight column name.
Both features' `value` must be a `SparseTensor`.
- if `column` is a `RealValuedColumn`, a feature with `key=column.name`
whose `value` is a `Tensor`.
"""
def __init__(self,
hidden_units,
feature_columns,
model_dir=None,
n_classes=2,
weight_column_name=None,
optimizer=None,
activation_fn=nn.relu,
dropout=None,
gradient_clip_norm=None,
enable_centered_bias=False,
config=None,
feature_engineering_fn=None,
embedding_lr_multipliers=None,
input_layer_min_slice_size=None,
label_keys=None):
"""Initializes a DNNClassifier instance.
Args:
hidden_units: List of hidden units per layer. All layers are fully
connected. Ex. `[64, 32]` means first layer has 64 nodes and second one
has 32.
feature_columns: An iterable containing all the feature columns used by
the model. All items in the set should be instances of classes derived
from `FeatureColumn`.
model_dir: Directory to save model parameters, graph and etc. This can
also be used to load checkpoints from the directory into a estimator to
continue training a previously saved model.
n_classes: number of label classes. Default is binary classification.
It must be greater than 1. Note: Class labels are integers representing
the class index (i.e. values from 0 to n_classes-1). For arbitrary
label values (e.g. string labels), convert to class indices first.
weight_column_name: A string defining feature column name representing
weights. It is used to down weight or boost examples during training. It
will be multiplied by the loss of the example.
optimizer: An instance of `tf.Optimizer` used to train the model. If
`None`, will use an Adagrad optimizer.
activation_fn: Activation function applied to each layer. If `None`, will
use tf.nn.relu. Note that a string containing the unqualified
name of the op may also be provided, e.g., "relu", "tanh", or "sigmoid".
dropout: When not `None`, the probability we will drop out a given
coordinate.
gradient_clip_norm: A float > 0. If provided, gradients are
clipped to their global norm with this clipping ratio. See
`tf.clip_by_global_norm` for more details.
enable_centered_bias: A bool. If True, estimator will learn a centered
bias variable for each class. Rest of the model structure learns the
residual after centered bias.
config: `RunConfig` object to configure the runtime settings.
feature_engineering_fn: Feature engineering function. Takes features and
labels which are the output of `input_fn` and returns features and
labels which will be fed into the model.
embedding_lr_multipliers: Optional. A dictionary from `EmbeddingColumn` to
a `float` multiplier. Multiplier will be used to multiply with learning
rate for the embedding variables.
input_layer_min_slice_size: Optional. The min slice size of input layer
partitions. If not provided, will use the default of 64M.
label_keys: Optional list of strings with size `[n_classes]` defining the
label vocabulary. Only supported for `n_classes` > 2.
Returns:
A `DNNClassifier` estimator.
Raises:
ValueError: If `n_classes` < 2.
"""
self._feature_columns = tuple(feature_columns or [])
super(DNNClassifier, self).__init__(
model_fn=_dnn_model_fn,
model_dir=model_dir,
config=config,
params={
"head":
head_lib.multi_class_head(
n_classes,
weight_column_name=weight_column_name,
enable_centered_bias=enable_centered_bias,
label_keys=label_keys),
"hidden_units": hidden_units,
"feature_columns": self._feature_columns,
"optimizer": optimizer,
"activation_fn": activation_fn,
"dropout": dropout,
"gradient_clip_norm": gradient_clip_norm,
"embedding_lr_multipliers": embedding_lr_multipliers,
"input_layer_min_slice_size": input_layer_min_slice_size,
},
feature_engineering_fn=feature_engineering_fn)
@deprecated_arg_values(
estimator.AS_ITERABLE_DATE,
estimator.AS_ITERABLE_INSTRUCTIONS,
as_iterable=False)
@deprecated_arg_values(
"2017-03-01",
"Please switch to predict_classes, or set `outputs` argument.",
outputs=None)
def predict(self, x=None, input_fn=None, batch_size=None, outputs=None,
as_iterable=True):
"""Returns predictions for given features.
By default, returns predicted classes. But this default will be dropped
soon. Users should either pass `outputs`, or call `predict_classes` method.
Args:
x: features.
input_fn: Input function. If set, x must be None.
batch_size: Override default batch size.
outputs: list of `str`, name of the output to predict.
If `None`, returns classes.
as_iterable: If True, return an iterable which keeps yielding predictions
for each example until inputs are exhausted. Note: The inputs must
terminate if you want the iterable to terminate (e.g. be sure to pass
num_epochs=1 if you are using something like read_batch_features).
Returns:
Numpy array of predicted classes with shape [batch_size] (or an iterable
of predicted classes if as_iterable is True). Each predicted class is
represented by its class index (i.e. integer from 0 to n_classes-1).
If `outputs` is set, returns a dict of predictions.
"""
if not outputs:
return self.predict_classes(
x=x,
input_fn=input_fn,
batch_size=batch_size,
as_iterable=as_iterable)
return super(DNNClassifier, self).predict(
x=x,
input_fn=input_fn,
batch_size=batch_size,
outputs=outputs,
as_iterable=as_iterable)
@deprecated_arg_values(
estimator.AS_ITERABLE_DATE,
estimator.AS_ITERABLE_INSTRUCTIONS,
as_iterable=False)
def predict_classes(self, x=None, input_fn=None, batch_size=None,
as_iterable=True):
"""Returns predicted classes for given features.
Args:
x: features.
input_fn: Input function. If set, x must be None.
batch_size: Override default batch size.
as_iterable: If True, return an iterable which keeps yielding predictions
for each example until inputs are exhausted. Note: The inputs must
terminate if you want the iterable to terminate (e.g. be sure to pass
num_epochs=1 if you are using something like read_batch_features).
Returns:
Numpy array of predicted classes with shape [batch_size] (or an iterable
of predicted classes if as_iterable is True). Each predicted class is
represented by its class index (i.e. integer from 0 to n_classes-1).
"""
key = prediction_key.PredictionKey.CLASSES
preds = super(DNNClassifier, self).predict(
x=x,
input_fn=input_fn,
batch_size=batch_size,
outputs=[key],
as_iterable=as_iterable)
if as_iterable:
return (pred[key] for pred in preds)
return preds[key].reshape(-1)
@deprecated_arg_values(
estimator.AS_ITERABLE_DATE,
estimator.AS_ITERABLE_INSTRUCTIONS,
as_iterable=False)
def predict_proba(self,
x=None,
input_fn=None,
batch_size=None,
as_iterable=True):
"""Returns predicted probabilities for given features.
Args:
x: features.
input_fn: Input function. If set, x and y must be None.
batch_size: Override default batch size.
as_iterable: If True, return an iterable which keeps yielding predictions
for each example until inputs are exhausted. Note: The inputs must
terminate if you want the iterable to terminate (e.g. be sure to pass
num_epochs=1 if you are using something like read_batch_features).
Returns:
Numpy array of predicted probabilities with shape [batch_size, n_classes]
(or an iterable of predicted probabilities if as_iterable is True).
"""
key = prediction_key.PredictionKey.PROBABILITIES
preds = super(DNNClassifier, self).predict(
x=x,
input_fn=input_fn,
batch_size=batch_size,
outputs=[key],
as_iterable=as_iterable)
if as_iterable:
return (pred[key] for pred in preds)
return preds[key]
@deprecated("2017-03-25", "Please use Estimator.export_savedmodel() instead.")
def export(self,
export_dir,
input_fn=None,
input_feature_key=None,
use_deprecated_input_fn=True,
signature_fn=None,
default_batch_size=1,
exports_to_keep=None):
"""See BaseEstimator.export."""
def default_input_fn(unused_estimator, examples):
return layers.parse_feature_columns_from_examples(examples,
self._feature_columns)
return super(DNNClassifier, self).export(
export_dir=export_dir,
input_fn=input_fn or default_input_fn,
input_feature_key=input_feature_key,
use_deprecated_input_fn=use_deprecated_input_fn,
signature_fn=(signature_fn or
export.classification_signature_fn_with_prob),
prediction_key=prediction_key.PredictionKey.PROBABILITIES,
default_batch_size=default_batch_size,
exports_to_keep=exports_to_keep)
class DNNRegressor(estimator.Estimator):
"""A regressor for TensorFlow DNN models.
Example:
```python
sparse_feature_a = sparse_column_with_hash_bucket(...)
sparse_feature_b = sparse_column_with_hash_bucket(...)
sparse_feature_a_emb = embedding_column(sparse_id_column=sparse_feature_a,
...)
sparse_feature_b_emb = embedding_column(sparse_id_column=sparse_feature_b,
...)
estimator = DNNRegressor(
feature_columns=[sparse_feature_a, sparse_feature_b],
hidden_units=[1024, 512, 256])
# Or estimator using the ProximalAdagradOptimizer optimizer with
# regularization.
estimator = DNNRegressor(
feature_columns=[sparse_feature_a, sparse_feature_b],
hidden_units=[1024, 512, 256],
optimizer=tf.train.ProximalAdagradOptimizer(
learning_rate=0.1,
l1_regularization_strength=0.001
))
# Input builders
def input_fn_train: # returns x, y
pass
estimator.fit(input_fn=input_fn_train)
def input_fn_eval: # returns x, y
pass
estimator.evaluate(input_fn=input_fn_eval)
def input_fn_predict: # returns x, None
pass
estimator.predict_scores(input_fn=input_fn_predict)
```
Input of `fit` and `evaluate` should have following features,
otherwise there will be a `KeyError`:
* if `weight_column_name` is not `None`, a feature with
`key=weight_column_name` whose value is a `Tensor`.
* for each `column` in `feature_columns`:
- if `column` is a `SparseColumn`, a feature with `key=column.name`
whose `value` is a `SparseTensor`.
- if `column` is a `WeightedSparseColumn`, two features: the first with
`key` the id column name, the second with `key` the weight column name.
Both features' `value` must be a `SparseTensor`.
- if `column` is a `RealValuedColumn`, a feature with `key=column.name`
whose `value` is a `Tensor`.
"""
def __init__(self,
hidden_units,
feature_columns,
model_dir=None,
weight_column_name=None,
optimizer=None,
activation_fn=nn.relu,
dropout=None,
gradient_clip_norm=None,
enable_centered_bias=False,
config=None,
feature_engineering_fn=None,
label_dimension=1,
embedding_lr_multipliers=None,
input_layer_min_slice_size=None):
"""Initializes a `DNNRegressor` instance.
Args:
hidden_units: List of hidden units per layer. All layers are fully
connected. Ex. `[64, 32]` means first layer has 64 nodes and second one
has 32.
feature_columns: An iterable containing all the feature columns used by
the model. All items in the set should be instances of classes derived
from `FeatureColumn`.
model_dir: Directory to save model parameters, graph and etc. This can
also be used to load checkpoints from the directory into a estimator to
continue training a previously saved model.
weight_column_name: A string defining feature column name representing
weights. It is used to down weight or boost examples during training. It
will be multiplied by the loss of the example.
optimizer: An instance of `tf.Optimizer` used to train the model. If
`None`, will use an Adagrad optimizer.
activation_fn: Activation function applied to each layer. If `None`, will
use `tf.nn.relu`. Note that a string containing the unqualified name of
the op may also be provided, e.g., "relu", "tanh", or "sigmoid".
dropout: When not `None`, the probability we will drop out a given
coordinate.
gradient_clip_norm: A `float` > 0. If provided, gradients are clipped
to their global norm with this clipping ratio. See
`tf.clip_by_global_norm` for more details.
enable_centered_bias: A bool. If True, estimator will learn a centered
bias variable for each class. Rest of the model structure learns the
residual after centered bias.
config: `RunConfig` object to configure the runtime settings.
feature_engineering_fn: Feature engineering function. Takes features and
labels which are the output of `input_fn` and
returns features and labels which will be fed
into the model.
label_dimension: Number of regression targets per example. This is the
size of the last dimension of the labels and logits `Tensor` objects
(typically, these have shape `[batch_size, label_dimension]`).
embedding_lr_multipliers: Optional. A dictionary from `EbeddingColumn` to
a `float` multiplier. Multiplier will be used to multiply with
learning rate for the embedding variables.
input_layer_min_slice_size: Optional. The min slice size of input layer
partitions. If not provided, will use the default of 64M.
Returns:
A `DNNRegressor` estimator.
"""
self._feature_columns = tuple(feature_columns or [])
super(DNNRegressor, self).__init__(
model_fn=_dnn_model_fn,
model_dir=model_dir,
config=config,
params={
"head":
head_lib.regression_head(
label_dimension=label_dimension,
weight_column_name=weight_column_name,
enable_centered_bias=enable_centered_bias),
"hidden_units": hidden_units,
"feature_columns": self._feature_columns,
"optimizer": optimizer,
"activation_fn": activation_fn,
"dropout": dropout,
"gradient_clip_norm": gradient_clip_norm,
"embedding_lr_multipliers": embedding_lr_multipliers,
"input_layer_min_slice_size": input_layer_min_slice_size,
},
feature_engineering_fn=feature_engineering_fn)
def evaluate(self,
x=None,
y=None,
input_fn=None,
feed_fn=None,
batch_size=None,
steps=None,
metrics=None,
name=None,
checkpoint_path=None,
hooks=None):
"""See evaluable.Evaluable."""
# TODO(zakaria): remove once deprecation is finished (b/31229024)
custom_metrics = {}
if metrics:
for key, metric in six.iteritems(metrics):
if (not isinstance(metric, metric_spec.MetricSpec) and
not isinstance(key, tuple)):
custom_metrics[(key, prediction_key.PredictionKey.SCORES)] = metric
else:
custom_metrics[key] = metric
return super(DNNRegressor, self).evaluate(
x=x,
y=y,
input_fn=input_fn,
feed_fn=feed_fn,
batch_size=batch_size,
steps=steps,
metrics=custom_metrics,
name=name,
checkpoint_path=checkpoint_path,
hooks=hooks)
@deprecated_arg_values(
estimator.AS_ITERABLE_DATE,
estimator.AS_ITERABLE_INSTRUCTIONS,
as_iterable=False)
@deprecated_arg_values(
"2017-03-01",
"Please switch to predict_scores, or set `outputs` argument.",
outputs=None)
def predict(self, x=None, input_fn=None, batch_size=None, outputs=None,
as_iterable=True):
"""Returns predictions for given features.
By default, returns predicted scores. But this default will be dropped
soon. Users should either pass `outputs`, or call `predict_scores` method.
Args:
x: features.
input_fn: Input function. If set, x must be None.
batch_size: Override default batch size.
outputs: list of `str`, name of the output to predict.
If `None`, returns scores.
as_iterable: If True, return an iterable which keeps yielding predictions
for each example until inputs are exhausted. Note: The inputs must
terminate if you want the iterable to terminate (e.g. be sure to pass
num_epochs=1 if you are using something like read_batch_features).
Returns:
Numpy array of predicted scores (or an iterable of predicted scores if
as_iterable is True). If `label_dimension == 1`, the shape of the output
is `[batch_size]`, otherwise the shape is `[batch_size, label_dimension]`.
If `outputs` is set, returns a dict of predictions.
"""
if not outputs:
return self.predict_scores(
x=x,
input_fn=input_fn,
batch_size=batch_size,
as_iterable=as_iterable)
return super(DNNRegressor, self).predict(
x=x,
input_fn=input_fn,
batch_size=batch_size,
outputs=outputs,
as_iterable=as_iterable)
@deprecated_arg_values(
estimator.AS_ITERABLE_DATE,
estimator.AS_ITERABLE_INSTRUCTIONS,
as_iterable=False)
def predict_scores(self, x=None, input_fn=None, batch_size=None,
as_iterable=True):
"""Returns predicted scores for given features.
Args:
x: features.
input_fn: Input function. If set, x must be None.
batch_size: Override default batch size.
as_iterable: If True, return an iterable which keeps yielding predictions
for each example until inputs are exhausted. Note: The inputs must
terminate if you want the iterable to terminate (e.g. be sure to pass
num_epochs=1 if you are using something like read_batch_features).
Returns:
Numpy array of predicted scores (or an iterable of predicted scores if
as_iterable is True). If `label_dimension == 1`, the shape of the output
is `[batch_size]`, otherwise the shape is `[batch_size, label_dimension]`.
"""
key = prediction_key.PredictionKey.SCORES
preds = super(DNNRegressor, self).predict(
x=x,
input_fn=input_fn,
batch_size=batch_size,
outputs=[key],
as_iterable=as_iterable)
if as_iterable:
return (pred[key] for pred in preds)
return preds[key]
@deprecated("2017-03-25", "Please use Estimator.export_savedmodel() instead.")
def export(self,
export_dir,
input_fn=None,
input_feature_key=None,
use_deprecated_input_fn=True,
signature_fn=None,
default_batch_size=1,
exports_to_keep=None):
"""See BaseEstimator.export."""
def default_input_fn(unused_estimator, examples):
return layers.parse_feature_columns_from_examples(examples,
self._feature_columns)
return super(DNNRegressor, self).export(
export_dir=export_dir,
input_fn=input_fn or default_input_fn,
input_feature_key=input_feature_key,
use_deprecated_input_fn=use_deprecated_input_fn,
signature_fn=signature_fn or export.regression_signature_fn,
prediction_key=prediction_key.PredictionKey.SCORES,
default_batch_size=default_batch_size,
exports_to_keep=exports_to_keep)
class DNNEstimator(estimator.Estimator):
"""A Estimator for TensorFlow DNN models with user specified _Head.
Example:
```python
sparse_feature_a = sparse_column_with_hash_bucket(...)
sparse_feature_b = sparse_column_with_hash_bucket(...)
sparse_feature_a_emb = embedding_column(sparse_id_column=sparse_feature_a,
...)
sparse_feature_b_emb = embedding_column(sparse_id_column=sparse_feature_b,
...)
To create a DNNEstimator for binary classification, where
estimator = DNNEstimator(
feature_columns=[sparse_feature_a_emb, sparse_feature_b_emb],
head=tf.contrib.learn.multi_class_head(n_classes=2),
hidden_units=[1024, 512, 256])
If your label is keyed with "y" in your labels dict, and weights are keyed
with "w" in features dict, and you want to enable centered bias,
head = tf.contrib.learn.multi_class_head(
n_classes=2,
label_name="x",
weight_column_name="w",
enable_centered_bias=True)
estimator = DNNEstimator(
feature_columns=[sparse_feature_a_emb, sparse_feature_b_emb],
head=head,
hidden_units=[1024, 512, 256])
# Input builders
def input_fn_train: # returns x, y (where y represents label's class index).
pass
estimator.fit(input_fn=input_fn_train)
def input_fn_eval: # returns x, y (where y represents label's class index).
pass
estimator.evaluate(input_fn=input_fn_eval)
estimator.predict(x=x) # returns predicted labels (i.e. label's class index).
```
Input of `fit` and `evaluate` should have following features,
otherwise there will be a `KeyError`:
* if `weight_column_name` is not `None`, a feature with
`key=weight_column_name` whose value is a `Tensor`.
* for each `column` in `feature_columns`:
- if `column` is a `SparseColumn`, a feature with `key=column.name`
whose `value` is a `SparseTensor`.
- if `column` is a `WeightedSparseColumn`, two features: the first with
`key` the id column name, the second with `key` the weight column name.
Both features' `value` must be a `SparseTensor`.
- if `column` is a `RealValuedColumn`, a feature with `key=column.name`
whose `value` is a `Tensor`.
"""
def __init__(self,
head,
hidden_units,
feature_columns,
model_dir=None,
optimizer=None,
activation_fn=nn.relu,
dropout=None,
gradient_clip_norm=None,
config=None,
feature_engineering_fn=None,
embedding_lr_multipliers=None,
input_layer_min_slice_size=None):
"""Initializes a `DNNEstimator` instance.
Args:
head: `Head` instance.
hidden_units: List of hidden units per layer. All layers are fully
connected. Ex. `[64, 32]` means first layer has 64 nodes and second one
has 32.
feature_columns: An iterable containing all the feature columns used by
the model. All items in the set should be instances of classes derived
from `FeatureColumn`.
model_dir: Directory to save model parameters, graph and etc. This can
also be used to load checkpoints from the directory into a estimator to
continue training a previously saved model.
optimizer: An instance of `tf.Optimizer` used to train the model. If
`None`, will use an Adagrad optimizer.
activation_fn: Activation function applied to each layer. If `None`, will
use `tf.nn.relu`. Note that a string containing the unqualified name of
the op may also be provided, e.g., "relu", "tanh", or "sigmoid".
dropout: When not `None`, the probability we will drop out a given
coordinate.
gradient_clip_norm: A float > 0. If provided, gradients are
clipped to their global norm with this clipping ratio. See
`tf.clip_by_global_norm` for more details.
config: `RunConfig` object to configure the runtime settings.
feature_engineering_fn: Feature engineering function. Takes features and
labels which are the output of `input_fn` and
returns features and labels which will be fed
into the model.
embedding_lr_multipliers: Optional. A dictionary from `EmbeddingColumn` to
a `float` multiplier. Multiplier will be used to multiply with
learning rate for the embedding variables.
input_layer_min_slice_size: Optional. The min slice size of input layer
partitions. If not provided, will use the default of 64M.
Returns:
A `DNNEstimator` estimator.
"""
super(DNNEstimator, self).__init__(
model_fn=_dnn_model_fn,
model_dir=model_dir,
config=config,
params={
"head": head,
"hidden_units": hidden_units,
"feature_columns": feature_columns,
"optimizer": optimizer,
"activation_fn": activation_fn,
"dropout": dropout,
"gradient_clip_norm": gradient_clip_norm,
"embedding_lr_multipliers": embedding_lr_multipliers,
"input_layer_min_slice_size": input_layer_min_slice_size,
},
feature_engineering_fn=feature_engineering_fn)