-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhelp_functions.py
117 lines (102 loc) · 4.05 KB
/
help_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
from typing import List
import json
import random
import numpy as np
# Custom files.
import constants
def print_dictionary(dict):
"""
Prints the keys and values of a dictionary in custom format.
Arguments:
dict - a dictionary
"""
for command in dict:
description = dict[command]
print(f"{constants.BOLD}", "(", command, ")", end=" ")
if type(description) == list:
description_str = ""
for elem in description:
description_str += str(elem) + " "
description = description_str
print(f"{constants.BOLD}", description)
print(f"{constants.STANDARD}",end="")
def calculate_cost_and_save_as_json(node_list, output_file):
"""
Calculates the cost randomly in range of 1-10 and maps the attack step id to the cost.
This information is then saved on file.
Arguments:
node_list - a list of attack steps.
output_file - file name.
"""
costs_dict = {}
for node in node_list:
node_id = node.id
node_asset = node.asset
if node_id is not None and node_asset != "Attacker":
cost = random.randint(1, 10)
costs_dict[node_id] = cost
with open(output_file, 'w') as file:
json.dump(costs_dict, file)
def load_costs_from_file():
"""
Load cost from file.
Return:
costs_dict - dictionary
"""
try:
with open(constants.COST_FILE, 'r') as file:
costs_dict = json.load(file)
return costs_dict
except (FileNotFoundError, json.JSONDecodeError):
# Handle file not found or invalid JSON
return {}
def cost_from_ttc(ttc, num_samples=100):
sum_of_samples = 0
distribution = ttc['name']
for _ in range(num_samples):
sample = 0
if distribution == "EasyAndCertain":
# Generate sample for EasyAndCertain distribution.
sample = process_sample({'Exponential': 1})
elif distribution == "EasyAndUncertain":
# Generate sample for EasyAndUncertain distribution.
sample = process_sample({'Exponential': 1, 'Bernoulli': 0.5})
elif distribution == "HardAndCertain":
# Generate sample for HardAndCertain distribution.
sample = process_sample({'Exponential': 0.1})
elif distribution == "HardAndUncertain":
# Generate sample for HardAndUncertain distribution.
sample = process_sample({'Exponential': 0.1, 'Bernoulli': 0.5})
elif distribution == "VeryHardAndCertain":
# Generate sample for VeryHardAndCertain distribution.
sample = process_sample({'Exponential': 0.01})
elif distribution == "VeryHardAndUncertain":
# Generate sample for VeryHardAndUncertain distribution.
sample = process_sample({'Exponential': 0.01, 'Bernoulli': 0.5})
elif distribution == "Exponential":
# Generate sample for custom Exponential distribution.
scale = float(ttc['arguments'][0])
sample = process_sample({'Exponential': scale})
sum_of_samples += sample
cost = sum_of_samples / num_samples
return cost
def process_sample(distribution):
MAX_COST = 500
# Generate a random sample for the given distribution
if 'Bernoulli' in distribution:
# Mixture of exponential and constant distribution
prob = distribution['Bernoulli']
scale = distribution['Exponential']
scale = 1/scale
sample = np.random.exponential(scale=scale) if np.random.choice([0, 1], p=[prob, 1 - prob]) else MAX_COST
else:
# Pure exponential distribution
scale = distribution['Exponential']
scale = 1/scale
sample = np.random.exponential(scale=scale)
return sample
def add_entry_points_to_attacker(model, entry_point_attack_steps, attacker_index=0):
for asset_id, attack_steps in entry_point_attack_steps:
asset = model.get_asset_by_id(asset_id)
model.attackers[attacker_index].entry_points.append((asset, attack_steps))
return model