-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
140 lines (107 loc) · 4.58 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import numpy as np
from datetime import datetime
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.optim as optim
from config import args
from data import get_data
from model import get_model
from utils.metrics import Evaluator
from utils.logger import Logger
from utils.utils import set_seeds, set_devices
from utils.loss import get_contrastive_loss
from utils.lr_scheduler import LR_Scheduler
from sklearn.metrics import roc_auc_score
seed = set_seeds(args)
device = set_devices(args)
logger = Logger(args)
# Load Data, Create Model
train_loader, val_loader, test_loader = get_data(args)
model = get_model(args, device=device)
nlabels = 4
classifier = nn.Linear(args.embed_size, nlabels).to(device)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
scheduler = LR_Scheduler(optimizer, args.scheduler, args.lr, args.epochs, from_iter=args.lr_sch_start, warmup_iters=args.warmup_iters, functional=True)
### TRAINING
pbar = tqdm(total=args.epochs, initial=0, bar_format="{desc:<5}{percentage:3.0f}%|{bar:10}{r_bar}")
for epoch in range(1, args.epochs + 1):
loss = 0
for (idx, train_batch) in enumerate(train_loader):
if args.viewtype in ['clocstime', 'clocslead']:
train_x1, train_x2, train_y, train_group, train_fnames = train_batch
train_x = torch.cat((train_x1, train_x2),dim=0)
train_y = torch.cat((train_y, train_y),dim=0)
train_group = torch.cat((train_group, train_group),dim=0)
else:
train_x, train_y, train_group, train_fnames = train_batch
train_x, train_group = train_x.to(device), train_group.to(device)
encoded = model(train_x)
loss = get_contrastive_loss(args, encoded, train_group, device)
# print(loss)
logger.loss += loss.item()
optimizer.zero_grad()
loss.backward()
# torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
optimizer.step()
if idx % args.log_iter == 0:
logger.log_tqdm(pbar)
logger.log_scalars(epoch*len(train_loader)+idx)
logger.loss_reset()
if epoch % args.save_iter == 0:
logger.save(model, optimizer, epoch)
pbar.update(1)
if args.epochs > 0:
ckpt = logger.save(model, optimizer, epoch, last=True)
logger.writer.close()
# Downstream Training
model.eval()
dw_criterion = nn.CrossEntropyLoss()
dw_optimizer = torch.optim.SGD(classifier.parameters(), lr=args.dw_lr)
pbar = tqdm(total=args.dw_epochs, initial=0, bar_format="{desc:<5}{percentage:3.0f}%|{bar:10}{r_bar}")
for epoch in range(1, args.dw_epochs + 1):
loss = 0
classifier.train()
for (idx, train_batch) in enumerate(train_loader):
if args.viewtype in ['clocstime', 'clocslead']:
train_x1, train_x2, train_y, train_group, train_fnames = train_batch
train_x = torch.cat((train_x1, train_x2),dim=0)
train_y = torch.cat((train_y, train_y),dim=0)
train_group = torch.cat((train_group, train_group),dim=0)
else:
train_x, train_y, train_group, train_fnames = train_batch
train_x = train_x.to(device)
dw_pred = classifier(model(train_x))
dw_loss = dw_criterion(dw_pred, train_y.to(torch.long).to(device))
loss += dw_loss
# print(f"downstream_loss:{dw_loss}")
dw_optimizer.zero_grad()
dw_loss.backward()
dw_optimizer.step()
if idx % args.log_iter == 0:
tqdm_log = 'downstream_loss: {:.5f}'.format(loss/args.log_iter)
loss = 0
pbar.set_description(tqdm_log)
pbar.update(1)
print("\n Finished training..........Starting Test")
with torch.no_grad():
model.eval()
classifier.eval()
y_pred = []
y_target = []
for (i,test_batch) in enumerate(test_loader):
if args.viewtype in ['clocstime', 'clocslead']:
test_x1, test_x2, test_y, test_group, test_fnames = test_batch
test_x = torch.cat((test_x1, test_x2),dim=0)
test_y = torch.cat((test_y, test_y),dim=0)
test_group = torch.cat((test_group, test_group),dim=0)
else:
test_x, test_y, test_group, test_fnames = test_batch
test_x = test_x.to(device)
test_pred = classifier(model(test_x))
y_pred.append(test_pred.cpu())
y_target.append(test_y)
y_pred = torch.cat(y_pred, dim=0).numpy()
y_target = nn.functional.one_hot(torch.cat(y_target,dim=0).to(torch.int64), num_classes=nlabels).numpy()
test_auc = roc_auc_score(y_true=y_target, y_score=y_pred)
print(f"Test AUC:{test_auc}")