-
Notifications
You must be signed in to change notification settings - Fork 6
/
hybrid_mae.py
132 lines (100 loc) · 3.83 KB
/
hybrid_mae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#!/usr/bin/env python
# Implementation of collaborative filtering recommendation engine
from item_item_filtering import wrapper
from dataset_movielens import dataset
from dataset_movielens_movienames import dataset_movie_name
from math import sqrt
lis2=wrapper()
n=0
def similarity_score(person1,person2):
# Returns ratio Euclidean distance score of person1 and person2
both_viewed = {} # To get both rated items by person1 and person2
for item in dataset[person1]:
if item in dataset[person2]:
both_viewed[item] = 1
# Conditions to check they both have an common rating items
if len(both_viewed) == 0:
return 0
# Finding Euclidean distance
sum_of_eclidean_distance = []
for item in dataset[person1]:
if item in dataset[person2]:
sum_of_eclidean_distance.append(pow(dataset[person1][item] - dataset[person2][item],2))
sum_of_eclidean_distance = sum(sum_of_eclidean_distance)
return 1/(1+sqrt(sum_of_eclidean_distance))
def pearson_correlation(person1,person2):
# To get both rated items
both_rated = {}
#print ("NEW USER")
for item in dataset[person1]:
if item in dataset[person2] and item in lis2:
both_rated[item] = 1
#print str(item)
number_of_ratings = len(both_rated)
#print number_of_ratings
# Checking for number of ratings in common
if number_of_ratings == 0:
return 0
# Add up all the preferences of each user
person1_preferences_sum = sum([dataset[person1][item] for item in both_rated])
person2_preferences_sum = sum([dataset[person2][item] for item in both_rated])
# Sum up the squares of preferences of each user
person1_square_preferences_sum = sum([pow(dataset[person1][item],2) for item in both_rated])
person2_square_preferences_sum = sum([pow(dataset[person2][item],2) for item in both_rated])
# Sum up the product value of both preferences for each item
product_sum_of_both_users = sum([dataset[person1][item] * dataset[person2][item] for item in both_rated])
# Calculate the pearson score
numerator_value = product_sum_of_both_users - (person1_preferences_sum*person2_preferences_sum/number_of_ratings)
denominator_value = sqrt((person1_square_preferences_sum - pow(person1_preferences_sum,2)/number_of_ratings) * (person2_square_preferences_sum -pow(person2_preferences_sum,2)/number_of_ratings))
if denominator_value == 0:
return 0
else:
r = numerator_value/denominator_value
return r
def most_similar_users(person,number_of_users):
# returns the number_of_users (similar persons) for a given specific person.
scores = [(pearson_correlation(person,other_person),other_person) for other_person in dataset if other_person != person ]
# Sort the similar persons so that highest scores person will appear at the first
scores.sort()
scores.reverse()
return scores[0:number_of_users]
def user_reommendations(person):
# Gets recommendations for a person by using a weighted average of every other user's rankings
global n
totals = {}
simSums = {}
rankings_list =[]
for other in dataset:
# don't compare me to myself
if other == person:
continue
sim = pearson_correlation(person,other)
#print ">>>>>>>",sim
# ignore scores of zero or lower
if sim <=0:
continue
for item in dataset[other]:
# only score movies i haven't seen yet
if item in dataset[person] :
# Similrity * score
totals.setdefault(item,0)
totals[item] += dataset[other][item]* sim
# sum of similarities
simSums.setdefault(item,0)
simSums[item]+= sim
n=n+1
# Create the normalized list
rankings = [( total/simSums[item] - int(dataset[person][item]) ) for item,total in totals.items()]
return sum(rankings)
user = dataset.keys()
i=0
mae = 0
for usr in user :
#print usr
if i<5 :
usr_mae= user_reommendations(usr)
i=i+1
mae = mae + usr_mae
mae = mae/n
print("Mean Average Error\n")
print mae