-
Notifications
You must be signed in to change notification settings - Fork 252
/
artistic_video.lua
359 lines (324 loc) · 13.9 KB
/
artistic_video.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
require 'torch'
require 'nn'
require 'image'
require 'loadcaffe'
require 'artistic_video_core'
local flowFile = require 'flowFileLoader'
--------------------------------------------------------------------------------
local cmd = torch.CmdLine()
-- Basic options
cmd:option('-style_image', 'example/seated-nude.jpg',
'Style target image')
cmd:option('-style_blend_weights', 'nil')
cmd:option('-content_pattern', 'example/marple8_%02d.ppm',
'Content target pattern')
cmd:option('-num_images', 0, 'Number of content images. Set 0 for autodetect.')
cmd:option('-start_number', 1, 'Frame index to start with')
cmd:option('-continue_with', 1, 'Continue with the given frame index.')
cmd:option('-gpu', 0, 'Zero-indexed ID of the GPU to use; for CPU mode set -gpu = -1')
cmd:option('-number_format', '%d', 'Number format of the output images.')
--Flow options
cmd:option('-flow_pattern', 'example/deepflow/backward_[%d]_{%d}.flo',
'Optical flow files pattern')
cmd:option('-flowWeight_pattern', 'example/deepflow/reliable_[%d]_{%d}.pgm',
'Optical flow weight files pattern.')
cmd:option('-flow_relative_indices', '1', 'Use flow from the given indices.')
cmd:option('-use_flow_every', -1, 'Uses flow from the given index and every multiple of that; -1 to to disable.')
cmd:option('-invert_flowWeights', 0, 'Invert flow weights given by flowWeight_pattern.')
-- Optimization options
cmd:option('-content_weight', 5e0)
cmd:option('-style_weight', 1e2)
cmd:option('-temporal_weight', 1e3)
cmd:option('-tv_weight', 1e-3)
cmd:option('-temporal_loss_criterion', 'mse', 'mse|smoothl1')
cmd:option('-num_iterations', '2000,1000',
'Can be set separately for the first and for subsequent iterations, separated by comma, or one value for all.')
cmd:option('-tol_loss_relative', 0.0001, 'Stop if relative change of the loss function is below this value')
cmd:option('-tol_loss_relative_interval', 50, 'Interval between two loss comparisons')
cmd:option('-normalize_gradients', false)
cmd:option('-init', 'random,prevWarped', 'random|image,random|image|prev|prevWarped')
cmd:option('-optimizer', 'lbfgs', 'lbfgs|adam')
cmd:option('-learning_rate', 1e1)
-- Output options
cmd:option('-print_iter', 100)
cmd:option('-save_iter', 0)
cmd:option('-output_image', 'out.png')
cmd:option('-output_folder', '')
cmd:option('-save_init', false, 'Whether the initialization image should be saved (for debugging purposes).')
-- Other options
cmd:option('-style_scale', 1.0)
cmd:option('-pooling', 'max', 'max|avg')
cmd:option('-proto_file', 'models/VGG_ILSVRC_19_layers_deploy.prototxt')
cmd:option('-model_file', 'models/VGG_ILSVRC_19_layers.caffemodel')
cmd:option('-backend', 'nn', 'nn|cudnn|clnn')
cmd:option('-cudnn_autotune', false)
cmd:option('-seed', -1)
cmd:option('-content_layers', 'relu4_2', 'layers for content')
cmd:option('-style_layers', 'relu1_1,relu2_1,relu3_1,relu4_1,relu5_1', 'layers for style')
cmd:option('-args', '', 'Arguments in a file, one argument per line')
-- Advanced options (changing them is usually not required)
cmd:option('-combine_flowWeights_method', 'closestFirst',
'Which long-term weighting scheme to use: normalize or closestFirst. Deafult and recommended: closestFirst')
function nn.SpatialConvolutionMM:accGradParameters()
-- nop. not needed by our net
end
local function main(params)
if params.gpu >= 0 then
if params.backend ~= 'clnn' then
require 'cutorch'
require 'cunn'
cutorch.setDevice(params.gpu + 1)
else
require 'clnn'
require 'cltorch'
cltorch.setDevice(params.gpu + 1)
end
else
params.backend = 'nn'
end
if params.backend == 'cudnn' then
require 'cudnn'
if params.cudnn_autotune then
cudnn.benchmark = true
end
cudnn.SpatialConvolution.accGradParameters = nn.SpatialConvolutionMM.accGradParameters -- ie: nop
end
local loadcaffe_backend = params.backend
if params.backend == 'clnn' then loadcaffe_backend = 'nn' end
local cnn = loadcaffe.load(params.proto_file, params.model_file, loadcaffe_backend):float()
cnn = MaybePutOnGPU(cnn, params)
local style_images_caffe = getStyleImages(params)
-- Set up the network, inserting style losses. Content and temporal loss will be inserted in each iteration.
local net, style_losses, losses_indices, losses_type = buildNet(cnn, params, style_images_caffe)
-- We don't need the base CNN anymore, so clean it up to save memory.
cnn = nil
for i=1,#net.modules do
local module = net.modules[i]
if torch.type(module) == 'nn.SpatialConvolutionMM' then
-- remote these, not used, but uses gpu memory
module.gradWeight = nil
module.gradBias = nil
end
end
collectgarbage()
-- There can be different setting for the first frame and for subsequent frames.
local num_iterations_split = params.num_iterations:split(",")
local numIters_first, numIters_subseq = num_iterations_split[1], num_iterations_split[2] or num_iterations_split[1]
local init_split = params.init:split(",")
local init_first, init_subseq = init_split[1], init_split[2] or init_split[1]
local firstImg = nil
local flow_relative_indices_split = params.flow_relative_indices:split(",")
local num_images = params.num_images
if num_images == 0 then
num_images = calcNumberOfContentImages(params)
print("Detected " .. num_images .. " content images.")
end
-- Iterate over all frames in the video sequence
for frameIdx=params.start_number + params.continue_with - 1, params.start_number + num_images - 1 do
-- Set seed
if params.seed >= 0 then
torch.manualSeed(params.seed)
end
local content_image = getContentImage(frameIdx, params)
if content_image == nil then
print("No more frames.")
do return end
end
local content_losses, temporal_losses = {}, {}
local additional_layers = 0
local num_iterations = frameIdx == params.start_number and tonumber(numIters_first) or tonumber(numIters_subseq)
local init = frameIdx == params.start_number and init_first or init_subseq
-- stores previous image indices used for the temporal constraint
local J = {}
-- stores previous image(s) warped
local imgsWarped = {}
-- Calculate from which indices we need a warped image
if frameIdx > params.start_number and params.temporal_weight ~= 0 then
for i=1, #flow_relative_indices_split do
local prevIndex = frameIdx - tonumber(flow_relative_indices_split[i])
if prevIndex >= params.start_number then
table.insert(J, frameIdx - tonumber(flow_relative_indices_split[i]))
end
end
if params.use_flow_every > 0 then
for prevIndex=frameIdx - params.use_flow_every, params.start_number, -1 * params.use_flow_every do
if not tabl_contains(J, prevIndex) then
table.insert(J, prevIndex)
end
end
end
-- Sort table descending, usefull to compute the long-term weights
table.sort(J, function(a,b) return a>b end)
-- Read the optical flow(s) and warp the previous image(s)
for j=1, #J do
local prevIndex = J[j]
local flowFileName = getFormatedFlowFileName(params.flow_pattern, math.abs(prevIndex), math.abs(frameIdx))
print(string.format('Reading flow file "%s".', flowFileName))
local flow = flowFile.load(flowFileName)
local fileName = build_OutFilename(params, math.abs(prevIndex - params.start_number + 1), -1)
local imgWarped = warpImage(image.load(fileName, 3), flow)
imgWarped = preprocess(imgWarped):float()
imgWarped = MaybePutOnGPU(imgWarped, params)
table.insert(imgsWarped, imgWarped)
end
end
-- Add content and temporal loss for this iteration. Style loss is already included in the net.
for i=1, #losses_indices do
if losses_type[i] == 'content' then
local loss_module = getContentLossModuleForLayer(net,
losses_indices[i] + additional_layers, content_image, params)
net:insert(loss_module, losses_indices[i] + additional_layers)
table.insert(content_losses, loss_module)
additional_layers = additional_layers + 1
elseif losses_type[i] == 'prevPlusFlow' and frameIdx > params.start_number then
for j=1, #J do
local loss_module = getWeightedContentLossModuleForLayer(net,
losses_indices[i] + additional_layers, imgsWarped[j],
params, nil)
net:insert(loss_module, losses_indices[i] + additional_layers)
table.insert(temporal_losses, loss_module)
additional_layers = additional_layers + 1
end
elseif losses_type[i] == 'prevPlusFlowWeighted' and frameIdx > params.start_number then
local flowWeightsTabl = {}
-- Read all flow weights
for j=1, #J do
local weightsFileName = getFormatedFlowFileName(params.flowWeight_pattern, J[j], math.abs(frameIdx))
print(string.format('Reading flowWeights file "%s".', weightsFileName))
table.insert(flowWeightsTabl, image.load(weightsFileName):float())
end
-- Preprocess flow weights, calculate long-term weights
processFlowWeights(flowWeightsTabl, params.combine_flowWeights_method, params.invert_flowWeights)
-- Create loss modules, one for each previous frame warped
for j=1, #J do
local flowWeights = flowWeightsTabl[j]
flowWeights = flowWeights:expand(3, flowWeights:size(2), flowWeights:size(3))
flowWeights = MaybePutOnGPU(flowWeights, params)
local loss_module = getWeightedContentLossModuleForLayer(net,
losses_indices[i] + additional_layers, imgsWarped[j],
params, flowWeights)
net:insert(loss_module, losses_indices[i] + additional_layers)
table.insert(temporal_losses, loss_module)
additional_layers = additional_layers + 1
end
end
end
-- Initialization
local img = nil
if init == 'random' then
img = torch.randn(content_image:size()):float():mul(0.001)
elseif init == 'image' then
img = content_image:clone():float()
elseif init == 'prevWarped' and frameIdx > params.start_number then
local flowFileName = getFormatedFlowFileName(params.flow_pattern, math.abs(frameIdx - 1), math.abs(frameIdx))
print(string.format('Reading flow file "%s".', flowFileName))
local flow = flowFile.load(flowFileName)
local fileName = build_OutFilename(params, math.abs(frameIdx - params.start_number), -1)
img = warpImage(image.load(fileName, 3), flow)
img = preprocess(img):float()
elseif init == 'prev' and frameIdx > params.start_number then
local fileName = build_OutFilename(params, math.abs(frameIdx - params.start_number), -1)
img = image.load(fileName, 3)
img = preprocess(img):float()
elseif init == 'first' then
img = firstImg:clone():float()
else
print('ERROR: Invalid initialization method.')
os.exit()
end
img = MaybePutOnGPU(img, params)
if params.save_init then
save_image(img,
string.format('%sinit-' .. params.number_format .. '.png',
params.output_folder, math.abs(frameIdx - params.start_number + 1)))
end
-- Run the optimization to stylize the image, save the result to disk
runOptimization(params, net, content_losses, style_losses, temporal_losses, img, frameIdx, -1, num_iterations)
if frameIdx == params.start_number then
firstImg = img:clone():float()
end
-- Remove this iteration's content and temporal layers
for i=#losses_indices, 1, -1 do
if frameIdx > params.start_number or losses_type[i] == 'content' then
if losses_type[i] == 'prevPlusFlowWeighted' or losses_type[i] == 'prevPlusFlow' then
for j=1, #J do
additional_layers = additional_layers - 1
net:remove(losses_indices[i] + additional_layers)
end
else
additional_layers = additional_layers - 1
net:remove(losses_indices[i] + additional_layers)
end
end
end
-- Ensure that all layer have been removed correctly
assert(additional_layers == 0)
end
end
-- warp a given image according to the given optical flow.
-- Disocclusions at the borders will be filled with the VGG mean pixel.
function warpImage(img, flow)
local mean_pixel = torch.DoubleTensor({123.68/256.0, 116.779/256.0, 103.939/256.0})
result = image.warp(img, flow, 'bilinear', true, 'pad', -1)
for x=1, result:size(2) do
for y=1, result:size(3) do
if result[1][x][y] == -1 and result[2][x][y] == -1 and result[3][x][y] == -1 then
result[1][x][y] = mean_pixel[1]
result[2][x][y] = mean_pixel[2]
result[3][x][y] = mean_pixel[3]
end
end
end
return result
end
-- Creates long-term flow weights
function processFlowWeights(flowWeightsTabl, method, invert)
if invert == 1 then
for j=1, #flowWeightsTabl do
flowWeightsTabl[j]:apply(function(x) return 1 - x end)
end
end
if method == 'normalize' then
-- Normalize so that the weights sum up to max 1
local sum = tabl_sum(flowWeightsTabl)
sum:cmax(1)
for j=1, #flowWeightsTabl do
flowWeightsTabl[j]:cdiv(sum)
end
elseif method == 'closestFirst' then
-- Take the closest previous frame(s).
for j=2, #flowWeightsTabl do
for k=1, j-1 do
flowWeightsTabl[j]:add(-1, flowWeightsTabl[j-k])
end
flowWeightsTabl[j]:cmax(0)
end
end
end
local tmpParams = cmd:parse(arg)
local params = nil
local file = io.open(tmpParams.args, 'r')
if tmpParams.args == '' or file == nil then
params = cmd:parse(arg)
else
local args = {}
io.input(file)
local argPos = 1
while true do
local line = io.read()
if line == nil then break end
if line:sub(0, 1) == '-' then
local splits = str_split(line, " ", 2)
args[argPos] = splits[1]
args[argPos + 1] = splits[2]
argPos = argPos + 2
end
end
for i=1, #arg do
args[argPos] = arg[i]
argPos = argPos + 1
end
params = cmd:parse(args)
io.close(file)
end
main(params)