-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfeatures.py
103 lines (77 loc) · 2.87 KB
/
features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import os
import errno
import argparse
import numpy as np
import cv2
import tensorflow as tf
def _run_in_batches(f, data_dict, out, batch_size):
data_len = len(out)
num_batches = int(data_len / batch_size)
s, e = 0, 0
for i in range(num_batches):
s, e = i * batch_size, (i + 1) * batch_size
batch_data_dict = {k: v[s:e] for k, v in data_dict.items()}
out[s:e] = f(batch_data_dict)
if e < len(out):
batch_data_dict = {k: v[e:] for k, v in data_dict.items()}
out[e:] = f(batch_data_dict)
def extract_image_patch(image, bbox, patch_shape):
bbox = np.array(bbox)
if patch_shape is not None:
# correct aspect ratio to patch shape
target_aspect = float(patch_shape[1]) / patch_shape[0]
new_width = target_aspect * bbox[3]
bbox[0] -= (new_width - bbox[2]) / 2
bbox[2] = new_width
# convert to top left, bottom right
bbox[2:] += bbox[:2]
bbox = bbox.astype(np.int)
# clip at image boundaries
bbox[:2] = np.maximum(0, bbox[:2])
bbox[2:] = np.minimum(np.asarray(image.shape[:2][::-1]) - 1, bbox[2:])
if np.any(bbox[:2] >= bbox[2:]):
return None
sx, sy, ex, ey = bbox
image = image[sy:ey, sx:ex]
image = cv2.resize(image, tuple(patch_shape[::-1]))
return image
class ImageEncoder(object):
checkpoint_filename = './model/model2/mars-small128.pb'
def __init__(self, input_name="images", output_name="features"):
self.session = tf.Session()
with tf.gfile.GFile(self.checkpoint_filename, "rb") as file_handle:
graph_def = tf.GraphDef()
graph_def.ParseFromString(file_handle.read())
tf.import_graph_def(graph_def, name="net")
self.input_var = tf.get_default_graph().get_tensor_by_name(
"net/%s:0" % input_name)
self.output_var = tf.get_default_graph().get_tensor_by_name(
"net/%s:0" % output_name)
assert len(self.output_var.get_shape()) == 2
assert len(self.input_var.get_shape()) == 4
self.feature_dim = self.output_var.get_shape().as_list()[-1]
self.image_shape = self.input_var.get_shape().as_list()[1:]
def __call__(self, data_x, batch_size=32):
out = np.zeros((len(data_x), self.feature_dim), np.float32)
_run_in_batches(
lambda x: self.session.run(self.output_var, feed_dict=x),
{self.input_var: data_x}, out, batch_size)
return out
def close(self):
self.session.close()
def create_box_encoder(batch_size=32):
image_encoder = ImageEncoder()
image_shape = image_encoder.image_shape
def encoder(image, boxes):
image_patches = []
for box in boxes:
patch = extract_image_patch(image, box, image_shape[:2])
image_patches.append(patch)
image_patches = np.asarray(image_patches)
return image_encoder(image_patches, batch_size)
return encoder, image_encoder
def generate_detections(encoder, image, detection_in):
detections_out = []
features = encoder(image, detection_in[:, 2:6].copy())
detections_out += [np.r_[(row, feature)] for row, feature in zip(detection_in, features)]
return np.asarray(detections_out)