Skip to content

🧠 A flexible machine & deep learning framework built from scratch using only NumPy

License

Notifications You must be signed in to change notification settings

marcpinet/neuralnetlib

Repository files navigation

Neuralnetlib

📝 Description

This is a handmade machine and deep learning framework library, made in python, using numpy as its only external dependency.

I made it to challenge myself and to learn more about deep neural networks, how they work in depth.

The big part of this project, meaning the Multilayer Perceptron (MLP) part, was made in a week.

I then decided to push it even further by adding Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Autoencoders, Variational Autoencoders (VAE), GANs and Transformers.

Regarding the Transformers, I just basically reimplement the Attention is All You Need paper. It theorically works but needs a huge amount of data that can't be trained on a CPU. You can however see what each layers produce and how the attention weights are calculated here.

This project will be maintained as long as I have ideas to improve it, and as long as I have time to work on it.

📦 Features

  • Many models architectures (sequential, functional, autoencoder, transformer, gan) 🏗
  • Many layers (dense, dropout, conv1d/2d, pooling1d/2d, flatten, embedding, batchnormalization, textvectorization, lstm, gru, attention and more) 🧠
  • Many activation functions (sigmoid, tanh, relu, leaky relu, softmax, linear, elu, selu) 📈
  • Many loss functions (mean squared error, mean absolute error, categorical crossentropy, binary crossentropy, huber loss) 📉
  • Many optimizers (sgd, momentum, rmsprop, adam) 📊
  • Supports binary classification, multiclass classification, regression and text generation 📚
  • Preprocessing tools (tokenizer, pca, ngram, standardscaler, pad_sequences, one_hot_encode and more) 🛠
  • Machine learning tools (isolation forest, kmeans, pca, t-sne, k-means) 🧮
  • Callbacks and regularizers (early stopping, l1/l2 regularization) 📉
  • Save and load models 📁
  • Simple to use 📚

⚙️ Installation

You can install the library using pip:

pip install neuralnetlib

💡 How to use

Basic usage

See this file for a simple example of how to use the library.
For a more advanced example, see this file for using CNN.
You can also check this file for text classification using RNN.

Advanced usage

See this file for an example of how to use VAE to generate new images.
Also see this file for an example of how to use GAN to generate new images.
And this file for an example of how to generate new dinosaur names.

More examples in this folder.

You are free to tweak the hyperparameters and the network architecture to see how it affects the results.

🚀 Quick training examples (more here)

Binary Classification

from neuralnetlib.models import Sequential
from neuralnetlib.layers import Input, Dense
from neuralnetlib.activations import Sigmoid
from neuralnetlib.losses import BinaryCrossentropy
from neuralnetlib.optimizers import SGD
from neuralnetlib.metrics import accuracy_score

# ... Preprocess x_train, y_train, x_test, y_test if necessary (you can use neuralnetlib.preprocess and neuralnetlib.utils)

# Create a model
model = Sequential()
model.add(Input(10))  # 10 features
model.add(Dense(8))
model.add(Dense(1))
model.add(Activation(Sigmoid()))  # many ways to tell the model which Activation Function you'd like, see the next example

# Compile the model
model.compile(loss_function='bce', optimizer='sgd')

# Train the model
model.fit(X_train, y_train, epochs=10, batch_size=32, metrics=['accuracy'])

Multiclass Classification

from neuralnetlib.activations import Softmax
from neuralnetlib.losses import CategoricalCrossentropy
from neuralnetlib.optimizers import Adam
from neuralnetlib.metrics import accuracy_score

# ... Preprocess x_train, y_train, x_test, y_test if necessary (you can use neuralnetlib.preprocess and neuralnetlib.utils)

# Create and compile a model
model = Sequential()
model.add(Input(28, 28, 1)) # For example, MNIST images
model.add(Conv2D(32, kernel_size=3, padding='same'), activation='relu')  # activation supports both str...
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=2))
model.add(Dense(64, activation='relu'))
model.add(Dense(10, activation=Softmax()))  # ... and ActivationFunction objects
model.compile(loss_function='categorical_crossentropy', optimizer=Adam())


model.compile(loss_function='categorical_crossentropy', optimizer=Adam())  # same for loss_function and optimizer

# Train the model
model.fit(X_train, y_train_ohe, epochs=5, metrics=['accuracy'])

Regression

from neuralnetlib.losses import MeanSquaredError
from neuralnetlib.metrics import accuracy_score

# ... Preprocess x_train, y_train, x_test, y_test if necessary (you can use neuralnetlib.preprocess and neuralnetlib.utils)

# Create and compile a model
model = Sequential()
model.add(Input(13))
model.add(Dense(64, activation='leakyrelu'))
model.add(Dense(1), activation="linear")

model.compile(loss_function="mse", optimizer='adam')  # you can either put acronyms or full name

# Train the model
model.fit(X_train, y_train, epochs=100, batch_size=128, metrics=['accuracy'])

Image Compression

X, y = fetch_openml('Fashion-MNIST', version=1, return_X_y=True, as_frame=False)
X = X.astype('float32') / 255.

X = X.reshape(-1, 28, 28, 1)

X_train, X_test = train_test_split(X, test_size=0.2, random_state=42)

autoencoder = Autoencoder(random_state=42, skip_connections=True)

autoencoder.add_encoder_layer(Input((28, 28, 1)))
autoencoder.add_encoder_layer(Conv2D(16, kernel_size=(3, 3), strides=(2, 2), activation='relu', padding='same'))
autoencoder.add_encoder_layer(Conv2D(32, kernel_size=(3, 3), strides=(2, 2), activation='relu', padding='same'))

autoencoder.add_encoder_layer(Flatten())
autoencoder.add_encoder_layer(Dense(64, activation='relu'))  # Bottleneck

autoencoder.add_decoder_layer(Dense(7 * 7 * 32, activation='relu'))
autoencoder.add_decoder_layer(Reshape((7, 7, 32)))

autoencoder.add_decoder_layer(UpSampling2D(size=(2, 2)))  # Output: 14x14x32
autoencoder.add_decoder_layer(Conv2D(16, kernel_size=(3, 3), activation='relu', padding='same'))

autoencoder.add_decoder_layer(UpSampling2D(size=(2, 2)))  # Output: 28x28x16
autoencoder.add_decoder_layer(Conv2D(1, kernel_size=(3, 3), activation='sigmoid', padding='same'))  # Output: 28x28x1

autoencoder.compile(encoder_loss='mse', decoder_loss='mse', encoder_optimizer='adam', decoder_optimizer='adam', verbose=True)

history = autoencoder.fit(X_train, epochs=5, batch_size=256, validation_data=(X_test,), verbose=True,)

Image Generation

# Load the MNIST dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()
n_classes = np.unique(y_train).shape[0]

# Concatenate train and test data
X = np.concatenate([x_train, x_test])
y = np.concatenate([y_train, y_test])

# Flatten images
X = X.reshape(X.shape[0], -1)

# Normalize pixel values
X = X.astype('float32') / 255

# Labels to categorical 
y = one_hot_encode(y, n_classes)

noise_dim = 32

generator = Sequential()
generator.add(Input(noise_dim))
generator.add(Dense(128, input_dim=noise_dim + n_classes, activation='leakyrelu'))
generator.add(Dense(784, activation='sigmoid'))

discriminator = Sequential()
discriminator.add(Input(784 + n_classes))
discriminator.add(Dense(128, input_dim=784 + n_classes, activation='leakyrelu'))
discriminator.add(Dense(1, activation='sigmoid'))

gan = GAN(latent_dim=noise_dim, n_classes=n_classes)

gan.compile(generator, discriminator, generator_optimizer='adam', discriminator_optimizer='adam', loss_function='bce', verbose=True)

history = gan.fit(X, y, epochs=40, batch_size=128, plot_generated=True)   

Text Generation (example here is for translation)

df = pd.read_csv("dataset.tsv", sep="\t")
df.iloc[:, 1] = df.iloc[:, 1].apply(lambda x: re.sub(r'\\x[a-fA-F0-9]{2}|\\u[a-fA-F0-9]{4}|\xa0|\u202f', ' ', x))  # remove unicode characters

LIMIT = 1000
fr_sentences = df.iloc[:, 1].values.tolist()[0:LIMIT]
en_sentences = df.iloc[:, 3].values.tolist()[0:LIMIT]

fr_tokenizer = Tokenizer(filters="", mode="word")  # else the tokenizer would remove the special characters including ponctuation
en_tokenizer = Tokenizer(filters="", mode="word")  # else the tokenizer would remove the special characters including ponctuation

fr_tokenizer.fit_on_texts(fr_sentences, preprocess_ponctuation=True)
en_tokenizer.fit_on_texts(en_sentences, preprocess_ponctuation=True)

X = fr_tokenizer.texts_to_sequences(fr_sentences, preprocess_ponctuation=True, add_special_tokens=True)
y = en_tokenizer.texts_to_sequences(en_sentences, preprocess_ponctuation=True, add_special_tokens=True)

max_len_x = max(len(seq) for seq in X)
max_len_y = max(len(seq) for seq in y)
max_seq_len = max(max_len_x, max_len_y)

vocab_size_fr = len(fr_tokenizer.word_index)
vocab_size_en = len(en_tokenizer.word_index)
max_vocab_size = max(vocab_size_fr, vocab_size_en)

X = pad_sequences(X, max_length=max_seq_len, padding='post', pad_value=fr_tokenizer.PAD_IDX)
y = pad_sequences(y, max_length=max_seq_len, padding='post', pad_value=en_tokenizer.PAD_IDX)

x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=False)

model = Transformer(src_vocab_size=vocab_size_fr, tgt_vocab_size=vocab_size_en, d_model=512, n_heads=8, n_encoder_layers=8, n_decoder_layers=10, d_ff=2048, dropout_rate=0.1, max_sequence_length=max_seq_len, random_state=42)

model.compile(loss_function="cels", optimizer=Adam(learning_rate=5e-5, beta_1=0.9, beta_2=0.98, epsilon=1e-9, clip_norm=1.0, ), verbose=True)

history = model.fit(x_train, y_train, epochs=50, batch_size=32, verbose=True, callbacks=[EarlyStopping(monitor='loss', patience=20), LearningRateScheduler(schedule="warmup_cosine", initial_learning_rate=5e-5, verbose=True)],validation_data=(x_test, y_test), metrics=['bleu_score'])

Note

You can also save and load models using the save and load methods.

# Save a model
model.save('my_model.json')

# Load a model
model = Model.load('my_model.json')

📜 Some outputs and easy usages

Here is the decision boundary on a Binary Classification (breast cancer dataset):

decision_boundary

Note

PCA (Principal Component Analysis) was used to reduce the number of features to 2, so we could plot the decision boundary. Representing n-dimensional data in 2D is not easy, so the decision boundary may not be always accurate. I also tried with t-SNE, but the results were not good.

Here is an example of a model training on the mnist using the library

cli

Here is an example of a loaded model used with Tkinter:

gui

Here, I replaced Keras/Tensorflow with this library for my Handigits project...

plot

Here is the generated dinosaur names using a simple RNN and a list of existing dinosaur names.

dino

Here are some MNIST generated images using a cGAN.

mnist_generated

You can of course use the library for any dataset you want.

✏️ Edit the library

You can pull the repository and run:

pip install -e .

And test your changes on the examples.

🎯 TODO

  • Add support for stream dataset loading to allow loading large datasets (larger than your RAM)
  • Visual updates (tabulation of model.summary() parameters calculation, colorized progress bar, etc.)
  • Better save format (like h5py)
  • Add cuDNN support to allow the use of GPUs

🐞 Know issues

Nothing yet! Feel free to open an issue if you find one.

✍️ Authors