diff --git a/examples/models-usages/generation/gan-image-generation/conditional_gan_mnist.ipynb b/examples/models-usages/generation/gan-image-generation/conditional_gan_mnist.ipynb index a2f3b42..c4baa9e 100644 --- a/examples/models-usages/generation/gan-image-generation/conditional_gan_mnist.ipynb +++ b/examples/models-usages/generation/gan-image-generation/conditional_gan_mnist.ipynb @@ -15,7 +15,7 @@ "from keras.datasets import mnist\n", "from IPython.display import Image as IPImage\n", "\n", - "from neuralnetlib.preprocessing import one_hot_encode\n", + "from neuralnetlib.preprocessing import one_hot_encode, MinMaxScaler\n", "from neuralnetlib.models import Sequential, GAN\n", "from neuralnetlib.layers import Input, Dense, BatchNormalization, Dropout\n", "from neuralnetlib.optimizers import Adam" @@ -39,7 +39,8 @@ "X = X.reshape(X.shape[0], -1)\n", "\n", "# Normalize pixel values\n", - "X = X.astype('float32') / 255\n", + "scaler = MinMaxScaler(feature_range=(-1, 1))\n", + "X = scaler.fit_transform(X)\n", "\n", "# Labels to categorical \n", "y = one_hot_encode(y, n_classes)" @@ -84,7 +85,7 @@ "generator.add(BatchNormalization())\n", "generator.add(Dense(1024, activation='leakyrelu'))\n", "generator.add(BatchNormalization())\n", - "generator.add(Dense(784, activation='sigmoid'))" + "generator.add(Dense(784, activation='tanh'))" ] }, {