forked from cmrg-lab/dATP_multiscale_modeling
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dXdT_energetics.m
1079 lines (1052 loc) · 77.2 KB
/
dXdT_energetics.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%%%% Differential equations for energetics model
% Adapted by Abby Teitgen based on code from:
% Tewari, S. G., Bugenhagen, S. M., Palmer, B. M, Beard,
% D. A. (2016). Dynamics of corss-bridge cycling, ATP hydrolysis, force
% generation, and deformation in cardiac muscle. J. Mol. Cell Cardiol. 96:
% 11-25.
% Tewari, S. G., Bugenhagen, S. M., Vinnakota, K. C., Rice, J. J., Janssen,
% M. L., Beard, D. A. (2016). Influence of metabolic dysfuntion on cardiac
% mechanics in decompensated hypertrophy and heart failure. J. Mol.
% Cell Cardiol. 94: 162-175.
% Lopez, R. Marzban, B., Gao, X. Lauinger, E., Van den Bergh, F.,
% Whitesall, S. E., Converso-Baran, K., Burant, C. F., Michele, D. E.,
% Beard, D. A. (2020). Impaired myocardial energetics causes mechanical dysfunction
% in decompensated failing hearts. Function, 1(2): zqaa018
% Marzban, B., Lopez, R., Beard, D. A. (2020). Computational modeling of coupled
% energetics and mechanics in the rat ventricular myocardium. Physiome.
%
%
% Output parameters:
% f time derivatives of the model
% J flux
%
%
% Mandatory input parameters:
% t time
% x state variables at time t
% var(1) temperature in degreesCelcius
% var(2) mitochondrial oxidative capacity (unitless, relative to control)
% BX buffer sizes
% K_BX proton buffer dissociation constants ( matrix cytoplasm im )
% par parameter vector for the free parameters
%
%
% State Variables:
% [NAD_matrix , NADH_matrix , ADP_matrix , ATP_matrix , Pi_matrix , coQ_matrix , coQH2_matrix , ATP_c , ADP_c , Pi_c , phosphocreatine_c , creatine_c , AMP_c , H2O2aq_matrix , SOaq_matrix , cytocox_im , cytocred_im , O2aq_matrix , Pi_im , ADP_im , ATP_im , AMP_im ]
%
%
% Parameters:
% [x_DH , x_SDH , x_ATPase , k1_F1F0 , ETC1Activity , ETC3_activity , ETC4_activity , x_HLE , x_PIH , x_ANT , k1_KH , x_AMPPERM , x_ADPPERM , x_ATPPERM , x_PIPERM , x_HPERM , x_KPERM , x_MPERM ]
function [f,J] = dXdT_energetics(~,x,var,BX,K_BX,par,flag)
% mito membrane area per cell volume micron^{-1};
gamma = 5.99;
%% LIST OF STATE VARIABLES
% 1 NAD_matrix
% 2 NADH_matrix
% 3 ADP_matrix
% 4 ATP_matrix
% 5 Pi_matrix
% 6 coQ_matrix
% 7 coQH2_matrix
% 8 ATP_c
% 9 ADP_c
% 10 Pi_c
% 11 phosphocreatine_c
% 12 creatine_c
% 13 AMP_c
% 14 cytocox_im
% 15 cytocred_im
% 16 Pi_im
% 17 ADP_im
% 18 ATP_im
% 19 AMP_im
% 20 h_matrix
% 21 m_matrix
% 22 k_matrix
% 23 h_c
% 24 m_c
% 25 k_c
% 26 h_im
% 29 m_im
% 28 k_im
% 29 DPsi_im_to_matrix
%% Tissue and cell composition constants
% All constants based on [https://doi.org/10.1152/ajpheart.00478.2003]
% with the mitochonrial content scaled by measured oxidative capacity
Ox_capacity = var(2);
VRegion_cytoplasm = 0.6801 + 0.2882*(1-Ox_capacity); % cytosolic volume fraction (mL cyto / mL cell)
VRegion_im = 0.2882*Ox_capacity; % mito volume fraction (mL mito / mL cell)
VWater_cytoplasm = 0.8425; % cytosol water fraction (mL water / mL cytosol)
VWater_matrix = 0.6514; % mL matrix water / mito volume
VWater_im = 0.0724; % mL IMS water / mito volume
%% THERMODYNAMIC DATA
T = var(1);
RT = 8.314*(T+273.15)/1e3; % kJ mol^{-1}
F = 0.096484; % kJ mol^{-1} mV^{-1}
%% STATE VARIABLES
% Concentrations of Reference Species
NAD_matrix = x(1);
NADH_matrix = x(2);
ADP_matrix = x(3);
ATP_matrix = x(4);
Pi_matrix = x(5);
coQ_matrix = x(6);
coQH2_matrix = x(7);
ATP_c = x(8);
ADP_c = x(9);
Pi_c = x(10);
phosphocreatine_c = x(11);
creatine_c = x(12);
AMP_c = x(13);
cytocox_im = x(14);
cytocred_im = x(15);
Pi_im = x(16);
ADP_im = x(17);
ATP_im = x(18);
AMP_im = x(19);
% Concentrations of H, Mg, and K
h_matrix = x(20);
m_matrix = x(21);
k_matrix = x(22);
h_c = x(23);
m_c = x(24);
k_c = x(25);
h_im = x(26);
m_im = x(27);
k_im = x(28);
% Membrane potential
DPsi_im_to_matrix = x(29);
%% DISSOCIATION CONSTANTS
% NAD_matrix
Kh(1) = Inf;
Km(1) = Inf;
Kk(1) = Inf;
% NADH_matrix
Kh(2) = Inf;
Km(2) = Inf;
Kk(2) = Inf;
% ADP_matrix
Kh(3) = 4.1057373286278706e-07;
Km(3) = 0.00071485288102034542;
Kk(3) = 0.1319048728526625;
% ATP_matrix
Kh(4) = 2.7566016511811682e-07;
Km(4) = 8.4303632255990519e-05;
Kk(4) = 0.09708512798373839;
% Pi_matrix
Kh(5) = 2.3075318323898138e-07;
Km(5) = 0.028149416570991275;
Kk(5) = 0.38034165601214515;
% coQ_matrix
Kh(6) = Inf;
Km(6) = Inf;
Kk(6) = Inf;
% coQH2_matrix
Kh(7) = Inf;
Km(7) = Inf;
Kk(7) = Inf;
% ATP_c
Kh(8) = 2.7566016511811682e-07;
Km(8) = 8.4303632255990519e-05;
Kk(8) = 0.09708512798373839;
% ADP_c
Kh(9) = 4.1057373286278706e-07;
Km(9) = 0.00071485288102034542;
Kk(9) = 0.1319048728526625;
% Pi_c
Kh(10) = 2.3075318323898138e-07;
Km(10) = 0.028149416570991275;
Kk(10) = 0.38034165601214515;
% phosphocreatine_c
Kh(11) = 4.0591821589741896e-05;
Km(11) = 0.043284385904395387;
Kk(11) = 0.58907947769630464;
% creatine_c
Kh(12) = 0.0023442288153199225;
Km(12) = Inf;
Kk(12) = Inf;
% AMP_c
Kh(13) = 6.2176978692908864e-07;
Km(13) = 0.019462203648493423;
Kk(13) = 0.23997936127262226;
% cytocox_im
Kh(14) = Inf;
Km(14) = Inf;
Kk(14) = Inf;
% cytocred_im
Kh(15) = Inf;
Km(15) = Inf;
Kk(15) = Inf;
% Pi_im
Kh(16) = 2.3075318323898138e-07;
Km(16) = 0.028149416570991275;
Kk(16) = 0.38034165601214515;
% ADP_im
Kh(17) = 4.1057373286278706e-07;
Km(17) = 0.00071485288102034542;
Kk(17) = 0.1319048728526625;
% ATP_im
Kh(18) = 2.7566016511811682e-07;
Km(18) = 8.4303632255990519e-05;
Kk(18) = 0.09708512798373839;
% AMP_im
Kh(19) = 6.2176978692908864e-07;
Km(19) = 0.019462203648493423;
Kk(19) = 0.23997936127262226;
%% BINDING POLYNOMIALS
% matrix species:
P( 1 ) = 1 + h_matrix/Kh(1) + m_matrix/Km(1) + k_matrix/Kk(1);
P( 2 ) = 1 + h_matrix/Kh(2) + m_matrix/Km(2) + k_matrix/Kk(2);
P( 3 ) = 1 + h_matrix/Kh(3) + m_matrix/Km(3) + k_matrix/Kk(3);
P( 4 ) = 1 + h_matrix/Kh(4) + m_matrix/Km(4) + k_matrix/Kk(4);
P( 5 ) = 1 + h_matrix/Kh(5) + m_matrix/Km(5) + k_matrix/Kk(5);
P( 6 ) = 1 + h_matrix/Kh(6) + m_matrix/Km(6) + k_matrix/Kk(6);
P( 7 ) = 1 + h_matrix/Kh(7) + m_matrix/Km(7) + k_matrix/Kk(7);
% cytosolic species:
P( 8 ) = 1 + h_c/Kh(8) + m_c/Km(8) + k_c/Kk(8);
P( 9 ) = 1 + h_c/Kh(9) + m_c/Km(9) + k_c/Kk(9);
P( 10 ) = 1 + h_c/Kh(10) + m_c/Km(10) + k_c/Kk(10);
P( 11 ) = 1 + h_c/Kh(11) + m_c/Km(11) + k_c/Kk(11);
P( 12 ) = 1 + h_c/Kh(12) + m_c/Km(12) + k_c/Kk(12);
P( 13 ) = 1 + h_c/Kh(13) + m_c/Km(13) + k_c/Kk(13);
% IMS species:
P( 14 ) = 1 + h_im/Kh(14) + m_im/Km(14) + k_im/Kk(14);
P( 15 ) = 1 + h_im/Kh(15) + m_im/Km(15) + k_im/Kk(15);
P( 16 ) = 1 + h_im/Kh(16) + m_im/Km(16) + k_im/Kk(16);
P( 17 ) = 1 + h_im/Kh(17) + m_im/Km(17) + k_im/Kk(17);
P( 18 ) = 1 + h_im/Kh(18) + m_im/Km(18) + k_im/Kk(18);
P( 19 ) = 1 + h_im/Kh(19) + m_im/Km(19) + k_im/Kk(19);
%% FLUX EQUATIONS
%DH_matrix
x_DH=par(1);
r_DH=35.4;
k_DH=2.87e-2;
n_DH=1.4452;
nd=NAD_matrix;
ratio=(ADP_matrix*Pi_matrix/ATP_matrix)^n_DH;
%J_DH_matrix=x_DH*(r_DH*min(nd,2.58e-3)-NADH_matrix)/(1+(ATP_matrix*k_DH/ADP_matrix/Pi_matrix)^n_DH);
J_DH_matrix=x_DH*ratio*(r_DH*min(nd,2.58e-3)-NADH_matrix)/(ratio+k_DH^n_DH);
%SDH_BBV_matrix
x_SDH=par(2);
J_SDH_BBV_matrix=x_SDH*J_DH_matrix;
%ATPASE_cytoplasm
x_ATPase=par(3);
% Ki_ADP=2.41e-4;
dG0=4.5985;
Keq_ATPASE_cytoplasm=exp(-dG0/RT)*(P(9)*P(10)/P(8))/h_c;
dGrapp = -RT*log(Keq_ATPASE_cytoplasm);
dGrATPase = dGrapp + RT*log(ADP_c*Pi_c/ATP_c);
% J_ATPASE_cytoplasm=x_ATPase/(1+ADP_c/Ki_ADP)*(1-ADP_c*Pi_c/ATP_c/Keq_ATPASE_cytoplasm);
J_ATPASE_cytoplasm = x_ATPase;
%CK_cytoplasm
x_CK=1e7;
K_CK=exp(50.78/RT);
ATP_c1=ATP_c*1/P(8);
%unboundspecies;
ADP_c1=ADP_c*1/P(9);
%unboundspecies;
J_CK_cytoplasm=x_CK*(K_CK*ADP_c1*phosphocreatine_c*h_c-ATP_c1*creatine_c);
%AK_cytoplasm
DGro_AK =-0.0036506;
Keq_AK_cytoplasm = exp(-DGro_AK/RT)*P(8)/P(9)^2*P(13);
x_AK=1e7;
J_AK_cytoplasm=x_AK*(Keq_AK_cytoplasm*ADP_c*ADP_c-AMP_c*ATP_c);
%Modified,06/11/08
%F1F0ATPASE:im_to_matrix
k1_F1F0 =par(5);
dG0 = -4.5985;
nH = 8/3;
% Keq_F1F0ATPASE = exp(-(dG0 - nH*F*DPsi_im_to_matrix)/RT)*(h_im^3/h_matrix^2)*7.6406/2.31/1.4402;
Keq_F1F0ATPASE = exp(-(dG0 - nH*F*DPsi_im_to_matrix)/RT)*(h_im^3/h_matrix^2)*P(4)/P(3)/P(5);
J_F1F0ATPASE_im_to_matrix = k1_F1F0*(Keq_F1F0ATPASE*ADP_matrix*Pi_matrix-ATP_matrix);
%ETC1:im_to_matrix
ETC1Activity =par(6);
% Xcp0_NADH = 3.5e-3;
% Kn_NADH = 0.3e-3;
% compute free NADH ratio;
% NADH_free = (NADH_matrix - Kn_NADH - Xcp0_NADH + sqrt((NADH_matrix - Kn_NADH - Xcp0_NADH)^2 + 4*Kn_NADH *NADH_matrix))/2;
% beta_n=1;
Hp = h_im;
Hn = h_matrix;
NADH1 = NADH_matrix;
% NADH_free;
NAD1 = NAD_matrix;
Q1 = coQ_matrix;
QH21 = coQH2_matrix;
O2 = 200e-6; % constant oxygen concentration (M)
H2O2 = 0;
SO = 0;
% Update midpoint potentials from thermodynamic data
dGf_UQH2 = -19.150559;
dGf_UQ = 69.2309743;
dGf_NADH = 40.342360;
dGf_NAD = 19.230826;
dGf_SO = 12.4107669;
dGf_H2O2 = -132.491533;
dGf_O2 = 16.4;
CI_Em0_Q_QH2 = (dGf_UQH2 - dGf_UQ)/(-2*F);
% this is 18.67 mV less than value used for CI parameterization
CI_Em0_NADH = (dGf_NADH - dGf_NAD)/(-2*F);
% this is 2.3 mV higher than value used for CI parameterization
CI_Em0_SO = (dGf_SO - dGf_O2)/(-1*F);
% this is 8.3 mV higher than value used for CI parameterization
CI_Em0_H2O2 = (dGf_H2O2 - dGf_O2)/(-2*F);
% this is 8.4 mV less than value used for CI parameterization
% Update midpoint potentials for 1e- quinone couples (pH 0)
CI_Kstability = 10;
CI_Em0_Q_SQ = CI_Em0_Q_QH2 + RT/F/2*log(CI_Kstability*1e-14);
% mV
CI_Em0_SQ_QH2 = 2*CI_Em0_Q_QH2 - CI_Em0_Q_SQ;
% mV
% Binding Polynomials for Protonated States
CI_KiH1 = 4.0722e-08;
CI_KiH3 = 3.8958e-07;
PH1 = (1/(1+Hn/CI_KiH1));
PH2 = 1;
PH3 = (Hn/CI_KiH3/(1+Hn/CI_KiH3));
% Binding Polynomials for enzyme, substrates, products and regulators
% NADH binding constants
KdNADHo=4.6065e-05;
KdNADo=7.0545e-04;
KdNADHr=4.9867e-04;
KdNADr=1.1844e-05;
KdNADHrad=1;
KdNADrad=1.5358e-04;
% Quinone binding constants
KdQH2o = 0.1;
KdQo = 0.0175;
KdQH2r = 0.1;
KdQr = 0.0175;
% Binding polynomials
PNo = 1 + NADH1/KdNADHo + NAD1/KdNADo;
% oxidized binding constants
PNr = 1 + NADH1/KdNADHr + NAD1/KdNADr;
% reduced binding constants
PNrad = 1 + NADH1/KdNADHrad + NAD1/KdNADrad;
% reduced binding constants
PQr = 1 + QH21/KdQH2r + Q1/KdQr;
% reduced binding constants
PQo = 1 + QH21/KdQH2o + Q1/KdQo;
% oxidized binding constants
muH = F*DPsi_im_to_matrix+RT*log(Hp/Hn);
% proton chemical potential (kJ/mol)
% Compute pH Corrected Midpoint potentials
% NADH potential
% CI_Em0_FMN = 55.1446;
Em_NADH = CI_Em0_NADH + log(10)*RT/F/2*log10(Hn);
% FMN potentials
CI_Em0_FMN = 55.1446;
% CI_FMNred.pK = 7.0998;
CI_Em0_FMN2 = 86.7495;
CI_Em0_FMN1 = 23.5369;
CI_FMNrad = 7.9074;
CI_FMNred_pK = 7.0998;
Em_FMNred = CI_Em0_FMN - RT/2/F*log(Hn/10^-CI_FMNred_pK/(1+Hn/10^-CI_FMNred_pK)/Hn.^2);
% FMNred/FMN, pK1 of fully reduced FMN very high (>10)0)
Em_FMNrad = CI_Em0_FMN2 - RT/F*log((Hn/10^-(CI_FMNred_pK)/(1+Hn/10^-CI_FMNred_pK))/((Hn/10^-CI_FMNrad)/(1+Hn/10^-CI_FMNrad))/Hn);
% FMNred/FMNrad
Em_FMNox = CI_Em0_FMN1 - RT/F*log((Hn/10^-CI_FMNrad)/(1+Hn/10^-CI_FMNrad)/Hn);
%FMN/FMNrad
% N2 potential
CI_Em0_N2 = -90;
CI_N2_pKox = 6;
CI_N2_pKred = 8.5;
Em_N2 = CI_Em0_N2 - RT/F*log((Hn+10^-CI_N2_pKox)/(Hn+10^-CI_N2_pKred));
% superoxide and H2O2 potentials
Em_SO = CI_Em0_SO;
% Em0 stays the same for pH > 6, pKa of SO is ~4.8
Em_H2O2 = CI_Em0_H2O2 + log(10)*RT/F*log10(Hn);
% 1st pKa is ~11
% Quinone potentials
% Em_Q_QH2 = CI_Em0_Q_QH2 + 2*log(10)*RT/F/2*log10(Hn);
% assuming linked to N-side
Em_Q_SQ = CI_Em0_Q_SQ;
% pH independent
Em_SQ_QH2 = CI_Em0_SQ_QH2 + 2*log(10)*RT/F*log10(Hn);
% assuming linked to N-side
% State Transition Thermodynamics
% NADH-QH2 reductase related
K_NADHFMNred = exp((2*F*(Em_FMNred - Em_NADH))/RT);
% [Fr][NAD]/[F][NADH][H]
K_FMNradN2 = exp((F*(Em_N2 - Em_FMNrad))/RT);
% [Frad][N2r]/[Fr]/[N2]
K_FMNoxN2 = exp((F*(Em_N2 - Em_FMNox))/RT);
% [F][N2r]/[Frad]/[N2]
K_N2SQ = exp((F*(Em_Q_SQ - Em_N2))/RT);
% [N2][SQ]/[N2r][Q]
K_N2QH2 = exp((F*(Em_SQ_QH2 - Em_N2))/RT);
% [N2][QH2]/[N2r][SQ]
% superoxide and hydrogen peroxide
K_FMNredH2O2 = exp((2*F*(Em_H2O2 - Em_FMNred))/RT);
% [F][H2O2]/[Fr][O2]
K_FMNradO2 = exp((F*(Em_SO - Em_FMNrad))/RT);
% [Frad][O2.-]/[Fr][O2]
K_FMNoxO2 = exp((F*(Em_SO - Em_FMNox))/RT);
% [F][O2.-]/[Frad][O2]
K_N2O2 = exp((F*(Em_SO - Em_N2))/RT);
% [N2][O2.-]/[N2r][O2]
K_SQO2 = exp((F*(Em_SO - Em_Q_SQ))/RT);
% [Q][O2.-]/[SQ][O2]
% Substates via Rapid Equilibrium
% substate equilibrium constants
K1 = K_FMNradN2;
%[Frad][N2r]/[Fr][N2]
K2 = K_FMNoxN2;
% [F][N2r]/[Frad][N2]
KSQ = K_N2SQ*KdQr;
% [N2-SQ]/[N2r-Q], KdQr = [N2r][Q]/[N2r-Q]
KQ = (Q1/KdQr/PQr)*KSQ;
% [N2-SQ]/[N2r]
% 0e-
PS0 = 1;
% total
s0_F_N2 = 1/PS0;
% 1e-
PS1 = (1 + K2*(1 + KQ));
% total sum(cell2mat(struct2cell(s1)))
s1_Frad_N2 = 1/PS1;
s1_F_N2r = K2*s1_Frad_N2;
s1_F_N2_SQ = KQ*s1_F_N2r;
% 2e-
PS2 = (1 + K1*(1 + KQ*(1 + K2)));
% total sum(cell2mat(struct2cell(s2)))
s2_Fr_N2 = 1/PS2;
s2_Frad_N2r = K1*s2_Fr_N2;
s2_Frad_N2_SQ = KQ*s2_Frad_N2r;
s2_F_N2r_SQ = K2*s2_Frad_N2_SQ;
% 3e-
PS3 = (1 + KQ*(1 + K1));
% total sum(cell2mat(struct2cell(s3)))
s3_Fr_N2r = 1/PS3;
s3_Fr_N2_SQ = KQ*s3_Fr_N2r;
s3_Frad_N2r_SQ = K1*s3_Fr_N2_SQ;
% 4e-
PS4 = 1;
% total
s4_Fr_N2r_SQ = 1/PS4;
% State Transition Rates
% reverse NADH-Q reductase rates
CI_kfNADH_02 = 1.9642e+03;
CI_kfNADH_24 = 186.3167;
CI_kfNADH_13 = 4.6093;
CI_kfQ_20 = 5.8175e+03;
CI_kfQ_42 = 7.7767e+10;
CI_kfQ_31 = 8.6596;
krN0_02 = CI_kfNADH_02/K_NADHFMNred*KdNADr/KdNADHo*PH1*PH2;
krN0_24 = CI_kfNADH_24/K_NADHFMNred*KdNADr/KdNADHo*PH1*PH2;
krN0_13 = CI_kfNADH_13/K_NADHFMNred*KdNADr/KdNADHo*PH1*PH2;
krQ0_20 = CI_kfQ_20/K_N2QH2*KdQH2o*(PNr*PQo/PNo/PQr)*PH3;
krQ0_42 = CI_kfQ_42/K_N2QH2*KdQH2o*(PNr*PQo/PNo/PQr)*PH3;
krQ0_31 = CI_kfQ_31/K_N2QH2*KdQH2o*(PNr*PQo/PNo/PQr)*PH3;
% reverse ROS rates
% O2 and SQ
CI_kfSQSO_10 = 1.6667e+09;
CI_kfSQSO_21 = 0.0021;
CI_kfSQSO_21b = 0.0021;
CI_kfSQSO_32 = 1.1450e-05;
CI_kfSQSO_32b = 2.3953e-09;
CI_kfSQSO_43 = 2.1602e-07;
krSQSO_10 = CI_kfSQSO_10/K_SQO2;
krSQSO_21 = CI_kfSQSO_21/K_SQO2;
krSQSO_21b = CI_kfSQSO_21b/K_SQO2;
krSQSO_32 = CI_kfSQSO_32/K_SQO2;
krSQSO_32b = CI_kfSQSO_32b/K_SQO2;
krSQSO_43 = CI_kfSQSO_43/K_SQO2;
% O2 and N2
CI_kfN2rSO_10 = 0;
CI_kfN2rSO_21 = 0;
CI_kfN2rSO_21b = 0;
CI_kfN2rSO_32 = 0;
CI_kfN2rSO_32b = 0;
CI_kfN2rSO_43 = 0;
krN2rSO_10 = CI_kfN2rSO_10/K_N2O2;
krN2rSO_21 = CI_kfN2rSO_21/K_N2O2;
krN2rSO_21b = CI_kfN2rSO_21b/K_N2O2;
krN2rSO_32 = CI_kfN2rSO_32/K_N2O2;
krN2rSO_32b = CI_kfN2rSO_32b/K_N2O2;
krN2rSO_43 = CI_kfN2rSO_43/K_N2O2;
% O2 and FMNred
CI_kfFrSO_21 = 451900;
CI_kfFradSO_21b = 1.1943e-07;
CI_kfFrSO_32 = 5.3833e-04;
CI_kfFrSO_32b = 2.8333e-05;
CI_kfFrSO_43 = 1.4005e+05;
krFrSO_21 = CI_kfFrSO_21/K_FMNradO2;
krFradSO_21b = CI_kfFradSO_21b/K_FMNradO2;
krFrSO_32 = CI_kfFrSO_32/K_FMNradO2;
krFrSO_32b = CI_kfFrSO_32b/K_FMNradO2;
krFrSO_43 = CI_kfFrSO_43/K_FMNradO2;
% O2 and FMNrad
CI_kfFradSO_10 = 68055000;
CI_kfFradSO_21 = 4.0417e-11;
CI_kfFradSO_32 = 0.014;
krFradSO_10 = CI_kfFradSO_10/K_FMNoxO2;
krFradSO_21 = CI_kfFradSO_21/K_FMNoxO2;
krFradSO_32 = CI_kfFradSO_32/K_FMNoxO2;
% H2O2 and FMNred
CI_kfH_20 = 7.8243e-07;
CI_kfH_31 = 2.1228e+06;
CI_kfH_31b = 1.7637e+06;
CI_kfH_42 = 62.0583;
krH_20 = CI_kfH_20/K_FMNredH2O2;
krH_31 = CI_kfH_31/K_FMNredH2O2;
krH_31b = CI_kfH_31b/K_FMNredH2O2;
krH_42 = CI_kfH_42/K_FMNredH2O2;
% Nucleotide and pH effects
CI_kfH_20 = CI_kfH_20/PNr;
CI_kfH_42 = CI_kfH_42/PNr;
CI_kfH_31 = CI_kfH_31/PNr;
CI_kfH_31b = CI_kfH_31b/PNr;
CI_kfFrSO_21 = CI_kfFrSO_21/PNr/(1+Hn/10^-CI_FMNred_pK);
CI_kfFrSO_32 = CI_kfFrSO_32/PNr/(1+Hn/10^-CI_FMNred_pK);
CI_kfFrSO_32b = CI_kfFrSO_32b/PNr/(1+Hn/10^-CI_FMNred_pK);
CI_kfFrSO_43 = CI_kfFrSO_43/PNr/(1+Hn/10^-CI_FMNred_pK);
CI_kfFradSO_10 = CI_kfFradSO_10/PNrad/(1+Hn/10^-CI_FMNrad);
CI_kfFradSO_21 = CI_kfFradSO_21/PNrad/(1+Hn/10^-CI_FMNrad);
CI_kfFradSO_21b = CI_kfFradSO_21b/PNrad/(1+Hn/10^-CI_FMNrad);
CI_kfFradSO_32 = CI_kfFradSO_32/PNrad/(1+Hn/10^-CI_FMNrad);
CI_kfN2rSO_10 = CI_kfN2rSO_10/(1+Hn/10^-CI_N2_pKred);
CI_kfN2rSO_21 = CI_kfN2rSO_21/(1+Hn/10^-CI_N2_pKred);
CI_kfN2rSO_21b = CI_kfN2rSO_21b/(1+Hn/10^-CI_N2_pKred);
CI_kfN2rSO_32 = CI_kfN2rSO_32/(1+Hn/10^-CI_N2_pKred);
CI_kfN2rSO_32b = CI_kfN2rSO_32b/(1+Hn/10^-CI_N2_pKred);
CI_kfN2rSO_43 = CI_kfN2rSO_43/(1+Hn/10^-CI_N2_pKred);
% net forward rates % membrane potential dependence
dPsiNf = 1;
dPsiNr = 1;
CI_beta1 = 0.5;
dPsiQf = exp(-4*CI_beta1*muH/RT);
dPsiQr = exp(4*(1-CI_beta1)*muH/RT);
% NADH transitions
kfNADH_02 = CI_kfNADH_02*dPsiNf*NADH1/KdNADHo/PNo*(s0_F_N2)*PH1*PH2;
krNADH_02 = krN0_02*dPsiNr*NAD1/KdNADr/PNr*(s2_Fr_N2);
kfNADH_24 = CI_kfNADH_24*dPsiNf*NADH1/KdNADHo/PNo*(s2_F_N2r_SQ)*PH1*PH2;
krNADH_24 = krN0_24*dPsiNr*NAD1/KdNADr/PNr*(s4_Fr_N2r_SQ);
kfNADH_13 = CI_kfNADH_13*dPsiNf*NADH1/KdNADHo/PNo*(s1_F_N2r + s1_F_N2_SQ)*PH1*PH2;
krNADH_13 = krN0_13*dPsiNr*NAD1/KdNADr/PNr*(s3_Fr_N2r + s3_Fr_N2_SQ);
% QH2 transitions
kfQ_20 = CI_kfQ_20*dPsiQf*(s2_F_N2r_SQ)*PH3;
krQ_20 = krQ0_20*dPsiQr*QH21/KdQH2o/PQo*(s0_F_N2);
kfQ_42 = CI_kfQ_42*dPsiQf*(s4_Fr_N2r_SQ)*PH3;
krQ_42 = krQ0_42*dPsiQr*QH21/KdQH2o/PQo*(s2_Fr_N2);
kfQ_31 = CI_kfQ_31*dPsiQf*(s3_Frad_N2r_SQ)*PH3;
krQ_31 = krQ0_31*dPsiQr*QH21/KdQH2o/PQo*(s1_Frad_N2);
% H2O2 transitions
kfH2O2_20 = CI_kfH_20*O2*s2_Fr_N2;
krH2O2_20 = krH_20*H2O2*s0_F_N2;
kfH2O2_31 = CI_kfH_31*O2*s3_Fr_N2r + CI_kfH_31b*O2*s3_Fr_N2_SQ;
krH2O2_31 = krH_31*H2O2*s1_F_N2r + krH_31b*H2O2*s1_F_N2_SQ;
kfH2O2_42 = CI_kfH_42*O2*s4_Fr_N2r_SQ;
krH2O2_42 = krH_42*H2O2*(s2_F_N2r_SQ);
% SO transitions
kfSO_10 = O2*(CI_kfSQSO_10*s1_F_N2_SQ + CI_kfFradSO_10*s1_Frad_N2 + CI_kfN2rSO_10*s1_F_N2r);
krSO_10 = SO*s0_F_N2*(krSQSO_10*(Q1/KdQo/PQo) + krFradSO_10 + krN2rSO_10);
kfSO_21 = O2*((CI_kfSQSO_21*s2_Frad_N2_SQ + CI_kfSQSO_21b*s2_F_N2r_SQ) + CI_kfFrSO_21*s2_Fr_N2 + (CI_kfFradSO_21*s2_Frad_N2r + CI_kfFradSO_21b*s2_Frad_N2_SQ) + (CI_kfN2rSO_21*s2_Frad_N2r + CI_kfN2rSO_21b*s2_F_N2r_SQ));
krSO_21 = SO*(krFrSO_21*s1_Frad_N2 + krN2rSO_21*s1_Frad_N2 + krN2rSO_21b*s1_F_N2_SQ + krFradSO_21*s1_F_N2r + krFradSO_21b*s1_F_N2_SQ + (krSQSO_21*s1_Frad_N2*(Q1/KdQo/PQo) + krSQSO_21b*s1_F_N2r*(Q1/KdQr/PQr)));
kfSO_32 = O2*((CI_kfSQSO_32*s3_Fr_N2_SQ + CI_kfSQSO_32b*s3_Frad_N2r_SQ) + (CI_kfFrSO_32*s3_Fr_N2r + CI_kfFrSO_32b*s3_Fr_N2_SQ) + CI_kfFradSO_32*s3_Frad_N2r_SQ + (CI_kfN2rSO_32*s3_Fr_N2r + CI_kfN2rSO_32b*s3_Frad_N2r_SQ));
krSO_32 = SO*(krSQSO_32*s2_Fr_N2*(Q1/KdQo/PQo) + krSQSO_32b*s2_Frad_N2r*(Q1/KdQr/PQr) + krFradSO_32*s2_F_N2r_SQ + krFrSO_32*s2_Frad_N2r + krFrSO_32b*s2_Frad_N2_SQ + krN2rSO_32*s2_Fr_N2 + krN2rSO_32b*s2_Frad_N2_SQ);
kfSO_43 = O2*((CI_kfSQSO_43 + CI_kfN2rSO_43)*(s4_Fr_N2r_SQ) + CI_kfFrSO_43*s4_Fr_N2r_SQ);
krSO_43 = SO*(krSQSO_43*s3_Fr_N2r*(Q1/KdQr/PQr) + krFrSO_43*s3_Frad_N2r_SQ + krN2rSO_43*s3_Fr_N2_SQ);
% S0 <-> S2
k0_2 = kfNADH_02 + krQ_20 + krH2O2_20;
k2_0 = kfQ_20 + krNADH_02 + kfH2O2_20;
% S2 <-> S4
k2_4 = kfNADH_24 + krQ_42 + krH2O2_42;
k4_2 = kfQ_42 + krNADH_24 + kfH2O2_42;
% S1 <-> S3
k1_3 = kfNADH_13 + krQ_31 + krH2O2_31;
k3_1 = kfQ_31 + krNADH_13 + kfH2O2_31;
% S0 <-> S1 (superoxide)
k1_0 = kfSO_10;
k0_1 = krSO_10;
% S2 <-> S1 (superoxide)
k2_1 = kfSO_21;
k1_2 = krSO_21;
% S3 <-> S2 (superoxide)
k3_2 = kfSO_32;
k2_3 = krSO_32;
% S4 <-> S3 (superoxide)
k4_3 = kfSO_43;
k3_4 = krSO_43;
% Steady-State Fractional Occupancies (solved analytically)
S0=(k1_0*k2_0*k3_1*k4_2 + k1_0*k2_0*k3_1*k4_3 + k1_0*k2_0*k3_2*k4_2 + k1_0*k2_1*k3_1*k4_2 + k1_0*k2_0*k3_2*k4_3 + k1_0*k2_1*k3_1*k4_3 + k1_0*k2_1*k3_2*k4_2 + k1_2*k2_0*k3_1*k4_2 + k1_0*k2_0*k3_4*k4_2 + k1_0*k2_1*k3_2*k4_3 + k1_0*k2_3*k3_1*k4_2 + k1_2*k2_0*k3_1*k4_3 + k1_2*k2_0*k3_2*k4_2 + k1_0*k2_1*k3_4*k4_2 + k1_0*k2_3*k3_1*k4_3 + k1_2*k2_0*k3_2*k4_3 + k1_3*k2_0*k3_2*k4_2 + k1_0*k2_4*k3_1*k4_3 + k1_2*k2_0*k3_4*k4_2 + k1_3*k2_0*k3_2*k4_3 + k1_3*k2_0*k3_4*k4_2)/(k0_2*k1_0*k2_4*k3_1 + k0_1*k1_2*k2_4*k3_1 + k0_1*k1_3*k2_0*k3_4 + k0_2*k1_0*k2_4*k3_2 + k0_1*k1_2*k2_4*k3_2 + k0_1*k1_3*k2_1*k3_4 + k0_2*k1_0*k2_3*k3_4 + k0_2*k1_2*k2_4*k3_1 + k0_1*k1_2*k2_3*k3_4 + k0_1*k1_3*k2_4*k3_2 + k0_2*k1_0*k2_4*k3_4 + k0_2*k1_2*k2_4*k3_2 + k0_2*k1_3*k2_1*k3_4 + k0_1*k1_2*k2_4*k3_4 + k0_1*k1_3*k2_3*k3_4 + k0_2*k1_2*k2_3*k3_4 + k0_2*k1_3*k2_4*k3_2 + k0_1*k1_3*k2_4*k3_4 + k0_2*k1_2*k2_4*k3_4 + k0_2*k1_3*k2_3*k3_4 + k0_2*k1_3*k2_4*k3_4 + k0_1*k1_3*k2_0*k4_2 + k0_1*k1_3*k2_0*k4_3 + k0_1*k1_3*k2_1*k4_2 + k0_2*k1_0*k2_3*k4_2 + k0_1*k1_2*k2_3*k4_2 + k0_1*k1_3*k2_1*k4_3 + k0_2*k1_0*k2_3*k4_3 + k0_2*k1_3*k2_1*k4_2 + k0_1*k1_2*k2_3*k4_3 + k0_1*k1_3*k2_3*k4_2 + k0_2*k1_0*k2_4*k4_3 + k0_2*k1_2*k2_3*k4_2 + k0_2*k1_3*k2_1*k4_3 + k0_1*k1_2*k2_4*k4_3 + k0_1*k1_3*k2_3*k4_3 + k0_2*k1_2*k2_3*k4_3 + k0_2*k1_3*k2_3*k4_2 + k0_1*k1_3*k2_4*k4_3 + k0_2*k1_2*k2_4*k4_3 + k0_2*k1_3*k2_3*k4_3 + k0_2*k1_3*k2_4*k4_3 + k0_2*k1_0*k3_1*k4_2 + k0_1*k1_2*k3_1*k4_2 + k0_2*k1_0*k3_1*k4_3 + k0_2*k1_0*k3_2*k4_2 + k0_1*k1_2*k3_1*k4_3 + k0_1*k1_2*k3_2*k4_2 + k0_2*k1_0*k3_2*k4_3 + k0_2*k1_2*k3_1*k4_2 + k0_1*k1_2*k3_2*k4_3 + k0_1*k1_3*k3_2*k4_2 + k0_2*k1_0*k3_4*k4_2 + k0_2*k1_2*k3_1*k4_3 + k0_2*k1_2*k3_2*k4_2 + k0_1*k1_2*k3_4*k4_2 + k0_1*k1_3*k3_2*k4_3 + k0_2*k1_2*k3_2*k4_3 + k0_2*k1_3*k3_2*k4_2 + k0_1*k1_3*k3_4*k4_2 + k0_2*k1_2*k3_4*k4_2 + k0_2*k1_3*k3_2*k4_3 + k0_2*k1_3*k3_4*k4_2 + k0_1*k2_0*k3_1*k4_2 + k0_1*k2_0*k3_1*k4_3 + k0_1*k2_0*k3_2*k4_2 + k0_1*k2_1*k3_1*k4_2 + k0_1*k2_0*k3_2*k4_3 + k0_1*k2_1*k3_1*k4_3 + k0_1*k2_1*k3_2*k4_2 + k0_2*k2_1*k3_1*k4_2 + k0_1*k2_0*k3_4*k4_2 + k0_1*k2_1*k3_2*k4_3 + k0_1*k2_3*k3_1*k4_2 + k0_2*k2_1*k3_1*k4_3 + k0_2*k2_1*k3_2*k4_2 + k0_1*k2_1*k3_4*k4_2 + k0_1*k2_3*k3_1*k4_3 + k0_2*k2_1*k3_2*k4_3 + k0_2*k2_3*k3_1*k4_2 + k0_1*k2_4*k3_1*k4_3 + k0_2*k2_1*k3_4*k4_2 + k0_2*k2_3*k3_1*k4_3 + k0_2*k2_4*k3_1*k4_3 + k1_0*k2_0*k3_1*k4_2 + k1_0*k2_0*k3_1*k4_3 + k1_0*k2_0*k3_2*k4_2 + k1_0*k2_1*k3_1*k4_2 + k1_0*k2_0*k3_2*k4_3 + k1_0*k2_1*k3_1*k4_3 + k1_0*k2_1*k3_2*k4_2 + k1_2*k2_0*k3_1*k4_2 + k1_0*k2_0*k3_4*k4_2 + k1_0*k2_1*k3_2*k4_3 + k1_0*k2_3*k3_1*k4_2 + k1_2*k2_0*k3_1*k4_3 + k1_2*k2_0*k3_2*k4_2 + k1_0*k2_1*k3_4*k4_2 + k1_0*k2_3*k3_1*k4_3 + k1_2*k2_0*k3_2*k4_3 + k1_3*k2_0*k3_2*k4_2 + k1_0*k2_4*k3_1*k4_3 + k1_2*k2_0*k3_4*k4_2 + k1_3*k2_0*k3_2*k4_3 + k1_3*k2_0*k3_4*k4_2);
S1=(k0_1*k2_0*k3_1*k4_2 + k0_1*k2_0*k3_1*k4_3 + k0_1*k2_0*k3_2*k4_2 + k0_1*k2_1*k3_1*k4_2 + k0_1*k2_0*k3_2*k4_3 + k0_1*k2_1*k3_1*k4_3 + k0_1*k2_1*k3_2*k4_2 + k0_2*k2_1*k3_1*k4_2 + k0_1*k2_0*k3_4*k4_2 + k0_1*k2_1*k3_2*k4_3 + k0_1*k2_3*k3_1*k4_2 + k0_2*k2_1*k3_1*k4_3 + k0_2*k2_1*k3_2*k4_2 + k0_1*k2_1*k3_4*k4_2 + k0_1*k2_3*k3_1*k4_3 + k0_2*k2_1*k3_2*k4_3 + k0_2*k2_3*k3_1*k4_2 + k0_1*k2_4*k3_1*k4_3 + k0_2*k2_1*k3_4*k4_2 + k0_2*k2_3*k3_1*k4_3 + k0_2*k2_4*k3_1*k4_3)/(k0_2*k1_0*k2_4*k3_1 + k0_1*k1_2*k2_4*k3_1 + k0_1*k1_3*k2_0*k3_4 + k0_2*k1_0*k2_4*k3_2 + k0_1*k1_2*k2_4*k3_2 + k0_1*k1_3*k2_1*k3_4 + k0_2*k1_0*k2_3*k3_4 + k0_2*k1_2*k2_4*k3_1 + k0_1*k1_2*k2_3*k3_4 + k0_1*k1_3*k2_4*k3_2 + k0_2*k1_0*k2_4*k3_4 + k0_2*k1_2*k2_4*k3_2 + k0_2*k1_3*k2_1*k3_4 + k0_1*k1_2*k2_4*k3_4 + k0_1*k1_3*k2_3*k3_4 + k0_2*k1_2*k2_3*k3_4 + k0_2*k1_3*k2_4*k3_2 + k0_1*k1_3*k2_4*k3_4 + k0_2*k1_2*k2_4*k3_4 + k0_2*k1_3*k2_3*k3_4 + k0_2*k1_3*k2_4*k3_4 + k0_1*k1_3*k2_0*k4_2 + k0_1*k1_3*k2_0*k4_3 + k0_1*k1_3*k2_1*k4_2 + k0_2*k1_0*k2_3*k4_2 + k0_1*k1_2*k2_3*k4_2 + k0_1*k1_3*k2_1*k4_3 + k0_2*k1_0*k2_3*k4_3 + k0_2*k1_3*k2_1*k4_2 + k0_1*k1_2*k2_3*k4_3 + k0_1*k1_3*k2_3*k4_2 + k0_2*k1_0*k2_4*k4_3 + k0_2*k1_2*k2_3*k4_2 + k0_2*k1_3*k2_1*k4_3 + k0_1*k1_2*k2_4*k4_3 + k0_1*k1_3*k2_3*k4_3 + k0_2*k1_2*k2_3*k4_3 + k0_2*k1_3*k2_3*k4_2 + k0_1*k1_3*k2_4*k4_3 + k0_2*k1_2*k2_4*k4_3 + k0_2*k1_3*k2_3*k4_3 + k0_2*k1_3*k2_4*k4_3 + k0_2*k1_0*k3_1*k4_2 + k0_1*k1_2*k3_1*k4_2 + k0_2*k1_0*k3_1*k4_3 + k0_2*k1_0*k3_2*k4_2 + k0_1*k1_2*k3_1*k4_3 + k0_1*k1_2*k3_2*k4_2 + k0_2*k1_0*k3_2*k4_3 + k0_2*k1_2*k3_1*k4_2 + k0_1*k1_2*k3_2*k4_3 + k0_1*k1_3*k3_2*k4_2 + k0_2*k1_0*k3_4*k4_2 + k0_2*k1_2*k3_1*k4_3 + k0_2*k1_2*k3_2*k4_2 + k0_1*k1_2*k3_4*k4_2 + k0_1*k1_3*k3_2*k4_3 + k0_2*k1_2*k3_2*k4_3 + k0_2*k1_3*k3_2*k4_2 + k0_1*k1_3*k3_4*k4_2 + k0_2*k1_2*k3_4*k4_2 + k0_2*k1_3*k3_2*k4_3 + k0_2*k1_3*k3_4*k4_2 + k0_1*k2_0*k3_1*k4_2 + k0_1*k2_0*k3_1*k4_3 + k0_1*k2_0*k3_2*k4_2 + k0_1*k2_1*k3_1*k4_2 + k0_1*k2_0*k3_2*k4_3 + k0_1*k2_1*k3_1*k4_3 + k0_1*k2_1*k3_2*k4_2 + k0_2*k2_1*k3_1*k4_2 + k0_1*k2_0*k3_4*k4_2 + k0_1*k2_1*k3_2*k4_3 + k0_1*k2_3*k3_1*k4_2 + k0_2*k2_1*k3_1*k4_3 + k0_2*k2_1*k3_2*k4_2 + k0_1*k2_1*k3_4*k4_2 + k0_1*k2_3*k3_1*k4_3 + k0_2*k2_1*k3_2*k4_3 + k0_2*k2_3*k3_1*k4_2 + k0_1*k2_4*k3_1*k4_3 + k0_2*k2_1*k3_4*k4_2 + k0_2*k2_3*k3_1*k4_3 + k0_2*k2_4*k3_1*k4_3 + k1_0*k2_0*k3_1*k4_2 + k1_0*k2_0*k3_1*k4_3 + k1_0*k2_0*k3_2*k4_2 + k1_0*k2_1*k3_1*k4_2 + k1_0*k2_0*k3_2*k4_3 + k1_0*k2_1*k3_1*k4_3 + k1_0*k2_1*k3_2*k4_2 + k1_2*k2_0*k3_1*k4_2 + k1_0*k2_0*k3_4*k4_2 + k1_0*k2_1*k3_2*k4_3 + k1_0*k2_3*k3_1*k4_2 + k1_2*k2_0*k3_1*k4_3 + k1_2*k2_0*k3_2*k4_2 + k1_0*k2_1*k3_4*k4_2 + k1_0*k2_3*k3_1*k4_3 + k1_2*k2_0*k3_2*k4_3 + k1_3*k2_0*k3_2*k4_2 + k1_0*k2_4*k3_1*k4_3 + k1_2*k2_0*k3_4*k4_2 + k1_3*k2_0*k3_2*k4_3 + k1_3*k2_0*k3_4*k4_2);
S2=(k0_2*k1_0*k3_1*k4_2 + k0_1*k1_2*k3_1*k4_2 + k0_2*k1_0*k3_1*k4_3 + k0_2*k1_0*k3_2*k4_2 + k0_1*k1_2*k3_1*k4_3 + k0_1*k1_2*k3_2*k4_2 + k0_2*k1_0*k3_2*k4_3 + k0_2*k1_2*k3_1*k4_2 + k0_1*k1_2*k3_2*k4_3 + k0_1*k1_3*k3_2*k4_2 + k0_2*k1_0*k3_4*k4_2 + k0_2*k1_2*k3_1*k4_3 + k0_2*k1_2*k3_2*k4_2 + k0_1*k1_2*k3_4*k4_2 + k0_1*k1_3*k3_2*k4_3 + k0_2*k1_2*k3_2*k4_3 + k0_2*k1_3*k3_2*k4_2 + k0_1*k1_3*k3_4*k4_2 + k0_2*k1_2*k3_4*k4_2 + k0_2*k1_3*k3_2*k4_3 + k0_2*k1_3*k3_4*k4_2)/(k0_2*k1_0*k2_4*k3_1 + k0_1*k1_2*k2_4*k3_1 + k0_1*k1_3*k2_0*k3_4 + k0_2*k1_0*k2_4*k3_2 + k0_1*k1_2*k2_4*k3_2 + k0_1*k1_3*k2_1*k3_4 + k0_2*k1_0*k2_3*k3_4 + k0_2*k1_2*k2_4*k3_1 + k0_1*k1_2*k2_3*k3_4 + k0_1*k1_3*k2_4*k3_2 + k0_2*k1_0*k2_4*k3_4 + k0_2*k1_2*k2_4*k3_2 + k0_2*k1_3*k2_1*k3_4 + k0_1*k1_2*k2_4*k3_4 + k0_1*k1_3*k2_3*k3_4 + k0_2*k1_2*k2_3*k3_4 + k0_2*k1_3*k2_4*k3_2 + k0_1*k1_3*k2_4*k3_4 + k0_2*k1_2*k2_4*k3_4 + k0_2*k1_3*k2_3*k3_4 + k0_2*k1_3*k2_4*k3_4 + k0_1*k1_3*k2_0*k4_2 + k0_1*k1_3*k2_0*k4_3 + k0_1*k1_3*k2_1*k4_2 + k0_2*k1_0*k2_3*k4_2 + k0_1*k1_2*k2_3*k4_2 + k0_1*k1_3*k2_1*k4_3 + k0_2*k1_0*k2_3*k4_3 + k0_2*k1_3*k2_1*k4_2 + k0_1*k1_2*k2_3*k4_3 + k0_1*k1_3*k2_3*k4_2 + k0_2*k1_0*k2_4*k4_3 + k0_2*k1_2*k2_3*k4_2 + k0_2*k1_3*k2_1*k4_3 + k0_1*k1_2*k2_4*k4_3 + k0_1*k1_3*k2_3*k4_3 + k0_2*k1_2*k2_3*k4_3 + k0_2*k1_3*k2_3*k4_2 + k0_1*k1_3*k2_4*k4_3 + k0_2*k1_2*k2_4*k4_3 + k0_2*k1_3*k2_3*k4_3 + k0_2*k1_3*k2_4*k4_3 + k0_2*k1_0*k3_1*k4_2 + k0_1*k1_2*k3_1*k4_2 + k0_2*k1_0*k3_1*k4_3 + k0_2*k1_0*k3_2*k4_2 + k0_1*k1_2*k3_1*k4_3 + k0_1*k1_2*k3_2*k4_2 + k0_2*k1_0*k3_2*k4_3 + k0_2*k1_2*k3_1*k4_2 + k0_1*k1_2*k3_2*k4_3 + k0_1*k1_3*k3_2*k4_2 + k0_2*k1_0*k3_4*k4_2 + k0_2*k1_2*k3_1*k4_3 + k0_2*k1_2*k3_2*k4_2 + k0_1*k1_2*k3_4*k4_2 + k0_1*k1_3*k3_2*k4_3 + k0_2*k1_2*k3_2*k4_3 + k0_2*k1_3*k3_2*k4_2 + k0_1*k1_3*k3_4*k4_2 + k0_2*k1_2*k3_4*k4_2 + k0_2*k1_3*k3_2*k4_3 + k0_2*k1_3*k3_4*k4_2 + k0_1*k2_0*k3_1*k4_2 + k0_1*k2_0*k3_1*k4_3 + k0_1*k2_0*k3_2*k4_2 + k0_1*k2_1*k3_1*k4_2 + k0_1*k2_0*k3_2*k4_3 + k0_1*k2_1*k3_1*k4_3 + k0_1*k2_1*k3_2*k4_2 + k0_2*k2_1*k3_1*k4_2 + k0_1*k2_0*k3_4*k4_2 + k0_1*k2_1*k3_2*k4_3 + k0_1*k2_3*k3_1*k4_2 + k0_2*k2_1*k3_1*k4_3 + k0_2*k2_1*k3_2*k4_2 + k0_1*k2_1*k3_4*k4_2 + k0_1*k2_3*k3_1*k4_3 + k0_2*k2_1*k3_2*k4_3 + k0_2*k2_3*k3_1*k4_2 + k0_1*k2_4*k3_1*k4_3 + k0_2*k2_1*k3_4*k4_2 + k0_2*k2_3*k3_1*k4_3 + k0_2*k2_4*k3_1*k4_3 + k1_0*k2_0*k3_1*k4_2 + k1_0*k2_0*k3_1*k4_3 + k1_0*k2_0*k3_2*k4_2 + k1_0*k2_1*k3_1*k4_2 + k1_0*k2_0*k3_2*k4_3 + k1_0*k2_1*k3_1*k4_3 + k1_0*k2_1*k3_2*k4_2 + k1_2*k2_0*k3_1*k4_2 + k1_0*k2_0*k3_4*k4_2 + k1_0*k2_1*k3_2*k4_3 + k1_0*k2_3*k3_1*k4_2 + k1_2*k2_0*k3_1*k4_3 + k1_2*k2_0*k3_2*k4_2 + k1_0*k2_1*k3_4*k4_2 + k1_0*k2_3*k3_1*k4_3 + k1_2*k2_0*k3_2*k4_3 + k1_3*k2_0*k3_2*k4_2 + k1_0*k2_4*k3_1*k4_3 + k1_2*k2_0*k3_4*k4_2 + k1_3*k2_0*k3_2*k4_3 + k1_3*k2_0*k3_4*k4_2);
S3=(k0_1*k1_3*k2_0*k4_2 + k0_1*k1_3*k2_0*k4_3 + k0_1*k1_3*k2_1*k4_2 + k0_2*k1_0*k2_3*k4_2 + k0_1*k1_2*k2_3*k4_2 + k0_1*k1_3*k2_1*k4_3 + k0_2*k1_0*k2_3*k4_3 + k0_2*k1_3*k2_1*k4_2 + k0_1*k1_2*k2_3*k4_3 + k0_1*k1_3*k2_3*k4_2 + k0_2*k1_0*k2_4*k4_3 + k0_2*k1_2*k2_3*k4_2 + k0_2*k1_3*k2_1*k4_3 + k0_1*k1_2*k2_4*k4_3 + k0_1*k1_3*k2_3*k4_3 + k0_2*k1_2*k2_3*k4_3 + k0_2*k1_3*k2_3*k4_2 + k0_1*k1_3*k2_4*k4_3 + k0_2*k1_2*k2_4*k4_3 + k0_2*k1_3*k2_3*k4_3 + k0_2*k1_3*k2_4*k4_3)/(k0_2*k1_0*k2_4*k3_1 + k0_1*k1_2*k2_4*k3_1 + k0_1*k1_3*k2_0*k3_4 + k0_2*k1_0*k2_4*k3_2 + k0_1*k1_2*k2_4*k3_2 + k0_1*k1_3*k2_1*k3_4 + k0_2*k1_0*k2_3*k3_4 + k0_2*k1_2*k2_4*k3_1 + k0_1*k1_2*k2_3*k3_4 + k0_1*k1_3*k2_4*k3_2 + k0_2*k1_0*k2_4*k3_4 + k0_2*k1_2*k2_4*k3_2 + k0_2*k1_3*k2_1*k3_4 + k0_1*k1_2*k2_4*k3_4 + k0_1*k1_3*k2_3*k3_4 + k0_2*k1_2*k2_3*k3_4 + k0_2*k1_3*k2_4*k3_2 + k0_1*k1_3*k2_4*k3_4 + k0_2*k1_2*k2_4*k3_4 + k0_2*k1_3*k2_3*k3_4 + k0_2*k1_3*k2_4*k3_4 + k0_1*k1_3*k2_0*k4_2 + k0_1*k1_3*k2_0*k4_3 + k0_1*k1_3*k2_1*k4_2 + k0_2*k1_0*k2_3*k4_2 + k0_1*k1_2*k2_3*k4_2 + k0_1*k1_3*k2_1*k4_3 + k0_2*k1_0*k2_3*k4_3 + k0_2*k1_3*k2_1*k4_2 + k0_1*k1_2*k2_3*k4_3 + k0_1*k1_3*k2_3*k4_2 + k0_2*k1_0*k2_4*k4_3 + k0_2*k1_2*k2_3*k4_2 + k0_2*k1_3*k2_1*k4_3 + k0_1*k1_2*k2_4*k4_3 + k0_1*k1_3*k2_3*k4_3 + k0_2*k1_2*k2_3*k4_3 + k0_2*k1_3*k2_3*k4_2 + k0_1*k1_3*k2_4*k4_3 + k0_2*k1_2*k2_4*k4_3 + k0_2*k1_3*k2_3*k4_3 + k0_2*k1_3*k2_4*k4_3 + k0_2*k1_0*k3_1*k4_2 + k0_1*k1_2*k3_1*k4_2 + k0_2*k1_0*k3_1*k4_3 + k0_2*k1_0*k3_2*k4_2 + k0_1*k1_2*k3_1*k4_3 + k0_1*k1_2*k3_2*k4_2 + k0_2*k1_0*k3_2*k4_3 + k0_2*k1_2*k3_1*k4_2 + k0_1*k1_2*k3_2*k4_3 + k0_1*k1_3*k3_2*k4_2 + k0_2*k1_0*k3_4*k4_2 + k0_2*k1_2*k3_1*k4_3 + k0_2*k1_2*k3_2*k4_2 + k0_1*k1_2*k3_4*k4_2 + k0_1*k1_3*k3_2*k4_3 + k0_2*k1_2*k3_2*k4_3 + k0_2*k1_3*k3_2*k4_2 + k0_1*k1_3*k3_4*k4_2 + k0_2*k1_2*k3_4*k4_2 + k0_2*k1_3*k3_2*k4_3 + k0_2*k1_3*k3_4*k4_2 + k0_1*k2_0*k3_1*k4_2 + k0_1*k2_0*k3_1*k4_3 + k0_1*k2_0*k3_2*k4_2 + k0_1*k2_1*k3_1*k4_2 + k0_1*k2_0*k3_2*k4_3 + k0_1*k2_1*k3_1*k4_3 + k0_1*k2_1*k3_2*k4_2 + k0_2*k2_1*k3_1*k4_2 + k0_1*k2_0*k3_4*k4_2 + k0_1*k2_1*k3_2*k4_3 + k0_1*k2_3*k3_1*k4_2 + k0_2*k2_1*k3_1*k4_3 + k0_2*k2_1*k3_2*k4_2 + k0_1*k2_1*k3_4*k4_2 + k0_1*k2_3*k3_1*k4_3 + k0_2*k2_1*k3_2*k4_3 + k0_2*k2_3*k3_1*k4_2 + k0_1*k2_4*k3_1*k4_3 + k0_2*k2_1*k3_4*k4_2 + k0_2*k2_3*k3_1*k4_3 + k0_2*k2_4*k3_1*k4_3 + k1_0*k2_0*k3_1*k4_2 + k1_0*k2_0*k3_1*k4_3 + k1_0*k2_0*k3_2*k4_2 + k1_0*k2_1*k3_1*k4_2 + k1_0*k2_0*k3_2*k4_3 + k1_0*k2_1*k3_1*k4_3 + k1_0*k2_1*k3_2*k4_2 + k1_2*k2_0*k3_1*k4_2 + k1_0*k2_0*k3_4*k4_2 + k1_0*k2_1*k3_2*k4_3 + k1_0*k2_3*k3_1*k4_2 + k1_2*k2_0*k3_1*k4_3 + k1_2*k2_0*k3_2*k4_2 + k1_0*k2_1*k3_4*k4_2 + k1_0*k2_3*k3_1*k4_3 + k1_2*k2_0*k3_2*k4_3 + k1_3*k2_0*k3_2*k4_2 + k1_0*k2_4*k3_1*k4_3 + k1_2*k2_0*k3_4*k4_2 + k1_3*k2_0*k3_2*k4_3 + k1_3*k2_0*k3_4*k4_2);
S4 = 1 - S0 - S1 - S2 - S3;
% Turnover Rate
JNADH = ETC1Activity*(kfNADH_02*S0 - krNADH_02*S2 ...
+ kfNADH_24*S2 - krNADH_24*S4 ...
+ kfNADH_13*S1 - krNADH_13*S3);
% NADH oxidation releases 1 proton in matrix space
% JSO = ETC1Activity*(S1.*(kfSO_10 - krSO_21) + S2.*(kfSO_21 - krSO_32) + S3.*(kfSO_32 - krSO_43) + S4.*kfSO_43 - krSO_10.*S0);
% JH2O2 = ETC1Activity*(S2.*(kfH2O2_20 - krH2O2_42) + S3.*kfH2O2_31 + S4.*kfH2O2_42 - krH2O2_31.*S1 - krH2O2_20.*S0);
J_ETC1_im_to_matrix = JNADH;
%ETC3:im_to_matrix
ETC3_activity =par(7);
dPsi = DPsi_im_to_matrix;
Hp = h_im;
Hn = h_matrix;
Q1 = coQ_matrix;
QH21 = coQH2_matrix;
c2 = cytocred_im;
c3 = cytocox_im;
O2 = 200e-6; % constant oxygen concentration (M)
SO = 0;
% R = 8.314e-3;
% F = 0.0965;
% Set KDQH2 at Qi site
CIII_KQH2o = 8e-4;
CIII_KQi = 1e-3;
CIII_Kc3 = 1.1193e-06;
CIII_KQo = 5e-4;
CIII_Kc2 = 1.1666e-06;
CIII_KQH2i = CIII_KQH2o^2*CIII_KQi*CIII_Kc3^2/CIII_KQo^2/CIII_Kc2^2;
% MR constraint
% Update midpoint potentials from thermodynamic data
dGf_UQH2 = -19.1505595;
dGf_UQ = 69.2309743;
dGf_c2 = -27.586932;
dGf_c3 = -6.92309743;
dGf_SO = 12.41076695;
dGf_O2 = 16.4;
CIII_Em0_Q_QH2 = (dGf_UQH2 - dGf_UQ)/(-2*F);
CIII_Em0_c = (dGf_c2 - dGf_c3)/(-1*F);
CIII_Em0_SO = (dGf_SO - dGf_O2)/(-1*F);
% Update Q Thermodynamics
CIII_Kstabo = 1e-9;
CIII_Kstabi = 0.0078;
CIII_Em0_Q_SQo = CIII_Em0_Q_QH2 + RT/F/2*log(CIII_Kstabo*1e-14);
% mV
CIII_Em0_SQ_QH2o = 2*CIII_Em0_Q_QH2 - CIII_Em0_Q_SQo;
% mV (200 - 300)
CIII_Em0_Q_SQi = CIII_Em0_Q_QH2 + RT/F/2*log(CIII_Kstabi*1e-14);
% mV (assumes Kstabi at pH 7)
CIII_Em0_SQ_QH2i = 2*CIII_Em0_Q_QH2 - CIII_Em0_Q_SQi;
% mV (16-150)
% Binding Polynomials for Protonated States
CIII_pK_ISPox2 = 9.16;
CIII_pK_ISPox1 = 7.63;
CIII_pK_bLox = 5.9;
CIII_pK_bLred = 7.9;
CIII_pK_bHox = 5.7;
CIII_pK_bHred = 7.7;
CIII_pK_QH = 13.2;
CIII_pK_QH2 = 11.3;
CIII_pK_SO = 4.7;
P_ISP = (1 + Hp/10^-CIII_pK_ISPox2 + Hp^2/10^-CIII_pK_ISPox2/10^-CIII_pK_ISPox1);
% P_bLox = (1 + Hp/10^-CIII_pK_bLox);
% P_bLred = (1 + Hp/10^-CIII_pK_bLred);
% P_bHox = (1 + Hn/10^-CIII_pK_bHox);
% P_bHred = (1 + Hn/10^-CIII_pK_bHred);
P_QH2o = (1 + Hp/10^-CIII_pK_QH + Hp^2/10^-CIII_pK_QH/10^-CIII_pK_QH2);
P_QH2i = (1 + Hn/10^-CIII_pK_QH + Hn^2/10^-CIII_pK_QH/10^-CIII_pK_QH2);
P_SO = (1 + Hp/10^-CIII_pK_SO);
% Binding Polynomials for enzyme, substrates, products and regulators
% Qo-site
CIII_AA = 0;
CIII_KAA = 1e-10;
P_Qo = (1 + Q1/CIII_KQo + QH21/CIII_KQH2o);
% Cytc c-site
P_c = (1 + c2/CIII_Kc2 + c3/CIII_Kc3);
% Qi-site
P_Qi = (1 + Q1/CIII_KQi + QH21/CIII_KQH2i + CIII_AA/CIII_KAA);
% Midpoint potentials
% Qo-site
% CIII_Em0_ISP = 311;
CIII_Em0_bL = 39;
Em_c = CIII_Em0_c;
% pH independent
% Em_Q_QH2o = CIII_Em0_Q_QH2 - log(10)*RT/F/2*log10(Hp^2/10^-CIII_pK_QH2/10^-CIII_pK_QH/P_QH2o/Hp^2);
% assuming linked to P-side
Em_Q_SQo = CIII_Em0_Q_SQo;
% pH independent
Em_SQ_QH2o = CIII_Em0_SQ_QH2o - log(10)*RT/F*log10((Hp^2/10^-CIII_pK_QH2/10^-CIII_pK_QH)/P_QH2o/Hp^2);
% Em_ISP = CIII_Em0_ISP - log(10)*RT/F*log10(P_ISP/(Hp^2/10^-CIII_pK_ISPox2/10^-CIII_pK_ISPox1));
Em_bL = CIII_Em0_bL - log(10)*RT/F*log10((Hp+10^-CIII_pK_bLox)/(Hp+10^-CIII_pK_bLred));
% assuming linked to P-side (Izrailev et al. 1999, also Crofts)
% Qi-site
CIII_Em0_bH = 160;
Em_bH = CIII_Em0_bH - log(10)*RT/F*log10((Hn+10^-CIII_pK_bHox)/(Hn+10^-CIII_pK_bHred));
% assuming linked to N-side, log10((Hn/10^-CIII_pK_bHred/P_bHred)/(Hn/10^-CIII_pK_bHox/P_bHox))
% Em_Q_QH2i = CIII_Em0_Q_QH2 - log(10)*RT/F/2*log10(Hn^2/10^-CIII_pK_QH2/10^-CIII_pK_QH/P_QH2i/Hn^2);
% assuming linked to N-siden
Em_Q_SQi = CIII_Em0_Q_SQi;
% pH independent
Em_SQ_QH2i = CIII_Em0_SQ_QH2i - log(10)*RT/F*log10((Hn^2/10^-CIII_pK_QH2/10^-CIII_pK_QH)/P_QH2i/Hn^2);
% assuming linked to N-side
% Superoxide
Em_SO = CIII_Em0_SO - log(10)*RT/F*log10(1/P_SO/10^-CIII_pK_SO);
% State Transition Thermodynamics
% QH2o<->SQo
dGo = -F*(Em_c - Em_SQ_QH2o);
% dG1 = dGo + RT*log((E2*Q1*c2*Hp^2)/(QH21*c3*E1*1e-14)*(PE1*CIII_KQH2o*CIII_Kc3)/(PE2*CIII_KQo*CIII_Kc2));
% bHred<->bLred
dGi = -F*(Em_bH - Em_bL);
% dG2 = dGi + RT*log((E3)/(E2*Q1)*(PE2*CIII_KQi)/(PE3)) + F*dPsi;
% Substates via Rapid Equilibrium
% ISP protonation state
PISP = Hp/10^-CIII_pK_ISPox2*(1+Hp/10^-CIII_pK_ISPox1)/P_ISP;
% bL reduction by SQo
dGQo = -F*(Em_bL - Em_Q_SQo);
KQo = exp(-dGQo/RT);
% Q-bLred / SQ-bLox
% State 2 fractional species polynomial
% fQoa = 1;
% SQo
rQo = KQo*P_Qo*CIII_KQo/Q1;
% bL_red
PQo = 1 + rQo;
% SQo
% Q reduction by bHred
dGQi = -F*(Em_Q_SQi - Em_bH);
KQi = exp(-dGQi/RT);
% bLox-SQ / bLred-Q
% State 3 fractional species polynomial
% fQia = 1;
% bHred
rQi = KQi*Q1/CIII_KQi/P_Qi;
% bHox-SQi
PQi = 1 + rQi;
% bHred
% SQi reduction by bHred
CIII_beta2 = 0.5;
dGQi2 = -F*(Em_SQ_QH2i - Em_bH) + CIII_beta2*2*F*dPsi;
% protons included in Em_SQ_QH2i
KQi2 = exp(-dGQi2/RT);
% fQi2a = 1;
% bHred-SQi
rQi2 = KQi2*P_Qi*CIII_KQH2i/QH21;
% bHox
PQi2 = 1 + rQi2;
%bHred-SQi
% Superoxide production/consumption rates
% SO thermodynamics
CIII_kSO = 1600;
dG_SO = -F*(Em_SO - Em_Q_SQo);
kSOr = CIII_kSO*exp(dG_SO/RT);
% Reverse Rate Constants
CIII_k120 = 3.0728e+03;
CIII_k230 = 33100000;
CIII_k340 = 3.0728e+03;
CIII_k410 = 14370;
CIII_k450 = 3;
CIII_k520 = 14370;
CIII_k260 = 3.0728e+03;
CIII_k640 = 33100000;
k210 = CIII_k120*exp(dGo/RT);
k320 = CIII_k230*exp(dGi/RT);
k430 = CIII_k340*exp(dGo/RT);
k140 = CIII_k410*exp(dGi/RT);
k540 = CIII_k450*exp(dGo/RT);
k250 = CIII_k520*exp(dGi/RT);
k620 = CIII_k260*exp(dGo/RT);
k460 = CIII_k640*exp(dGi/RT);
% State Transition Rates
% Coupled QH2 oxidation /c3 reduction
kfQH2c3_12 = CIII_k120*QH21/CIII_KQH2o/P_Qo*c3/CIII_Kc3/P_c*PISP;
krQH2c3_12 = k210*c2/CIII_Kc2/P_c*PISP/PQo;
kfQH2c3_34 = CIII_k340*QH21/CIII_KQH2o/P_Qo*c3/CIII_Kc3/P_c*PISP;
krQH2c3_34 = k430*c2/CIII_Kc2/P_c*PISP/PQo;
kfQH2c3_45 = CIII_k450*QH21/CIII_KQH2o/P_Qo*c3/CIII_Kc3/P_c*PISP*rQo/PQo;
krQH2c3_45 = k540*c2/CIII_Kc2/P_c*PISP;
kfQH2c3_26 = CIII_k260*QH21/CIII_KQH2o/P_Qo*c3/CIII_Kc3/P_c*PISP*rQo/PQo;
krQH2c3_26 = k620*c2/CIII_Kc2/P_c*PISP;
% Q uptake at SQ site
CIII_beta1 = 0.5;
kfQ_23 = CIII_k230*rQo/PQo*rQi2/PQi2*exp(-CIII_beta1*F*dPsi/RT/2);
krQ_23 = k320/PQi*exp(CIII_beta1*F*dPsi/RT/2);
kfQ_64 = CIII_k640*rQi2/PQi2*exp(-CIII_beta1*F*dPsi/RT/2);
krQ_64 = k460/PQo/PQi*exp(CIII_beta1*F*dPsi/RT/2);
% QH2 regeneration
kfQH2_41 = CIII_k410*rQo/PQo*rQi/PQi*exp(-CIII_beta1*F*dPsi/RT/2);
krQH2_41 = k140/PQi2*exp(CIII_beta1*F*dPsi/RT/2);
kfQH2_52 = CIII_k520*rQi/PQi*exp(-CIII_beta1*F*dPsi/RT/2);
krQH2_52 = k250/PQo/PQi2*exp(CIII_beta1*F*dPsi/RT/2);
% SO production
kfSO_21 = CIII_kSO*O2/PQo;
krSO_21 = kSOr*SO*Q1/CIII_KQo/P_Qo;
kfSO_43 = CIII_kSO*O2/PQo;
krSO_43 = kSOr*SO*Q1/CIII_KQo/P_Qo;
kfSO_54 = CIII_kSO*O2;
krSO_54 = kSOr*SO*rQo/PQo*Q1/CIII_KQo/P_Qo;
kfSO_62 = CIII_kSO*O2;
krSO_62 = kSOr*SO*rQo/PQo*Q1/CIII_KQo/P_Qo;
% QH2o + c3 -> SQo + c2 + 2H+
k12 = kfQH2c3_12 + krSO_21;
k21 = krQH2c3_12 + kfSO_21;
% bL -> bH
k23 = kfQ_23;
k32 = krQ_23;
% QH2o + c3 -> SQo + c2 + 2H+
k34 = kfQH2c3_34 + krSO_43;
k43 = krQH2c3_34 + kfSO_43;
% bL -> bH
k41 = kfQH2_41;
k14 = krQH2_41;
% QH2o + c3 -> SQo + c2 + 2H+
k45 = kfQH2c3_45 + krSO_54;
k54 = krQH2c3_45 + kfSO_54;
% bL -> bH
k52 = kfQH2_52;
k25 = krQH2_52;
% QH2o + c3 -> SQo + c2 + 2H+
k26 = kfQH2c3_26 + krSO_62;
k62 = krQH2c3_26 + kfSO_62;
% bL -> bH
k64 = kfQ_64;
k46 = krQ_64;
% Steady-State Fractional Occupancies (solved analytically)
E1=(k21*k32*k41*k52*k62 + k21*k32*k41*k52*k64 + k21*k32*k41*k54*k62 + k21*k32*k43*k52*k62 + k21*k34*k41*k52*k62 + k21*k32*k41*k54*k64 + k21*k32*k43*k52*k64 + k21*k32*k43*k54*k62 + k21*k32*k45*k52*k62 + k21*k34*k41*k52*k64 + k21*k34*k41*k54*k62 + k23*k34*k41*k52*k62 + k21*k32*k46*k52*k62 + k21*k32*k43*k54*k64 + k21*k32*k45*k52*k64 + k21*k34*k41*k54*k64 + k21*k34*k45*k52*k62 + k23*k34*k41*k52*k64 + k23*k34*k41*k54*k62 + k25*k32*k41*k54*k62 + k21*k32*k46*k54*k62 + k21*k34*k46*k52*k62 + k26*k32*k41*k52*k64 + k21*k34*k45*k52*k64 + k23*k34*k41*k54*k64 + k25*k32*k41*k54*k64 + k25*k34*k41*k54*k62 + k21*k34*k46*k54*k62 + k26*k32*k41*k54*k64 + k26*k34*k41*k52*k64 + k25*k34*k41*k54*k64 + k26*k34*k41*k54*k64)/(k12*k26*k32*k41*k52 + k12*k26*k32*k41*k54 + k12*k26*k32*k43*k52 + k12*k26*k34*k41*k52 + k14*k21*k32*k46*k52 + k12*k23*k34*k46*k52 + k12*k26*k32*k43*k54 + k12*k26*k32*k45*k52 + k12*k26*k34*k41*k54 + k14*k21*k32*k46*k54 + k14*k21*k34*k46*k52 + k14*k26*k32*k43*k52 + k12*k26*k32*k46*k52 + k12*k23*k34*k46*k54 + k12*k25*k32*k46*k54 + k12*k26*k34*k45*k52 + k14*k21*k34*k46*k54 + k14*k23*k34*k46*k52 + k14*k26*k32*k43*k54 + k14*k26*k32*k45*k52 + k12*k26*k32*k46*k54 + k12*k26*k34*k46*k52 + k14*k26*k32*k46*k52 + k12*k25*k34*k46*k54 + k14*k23*k34*k46*k54 + k14*k25*k32*k46*k54 + k14*k26*k34*k45*k52 + k12*k25*k32*k41*k62 + k12*k26*k34*k46*k54 + k14*k26*k32*k46*k54 + k14*k26*k34*k46*k52 + k14*k25*k34*k46*k54 + k12*k25*k32*k41*k64 + k12*k25*k32*k43*k62 + k12*k25*k34*k41*k62 + k14*k21*k32*k45*k62 + k14*k26*k34*k46*k54 + k12*k23*k34*k45*k62 + k12*k25*k32*k43*k64 + k12*k25*k32*k45*k62 + k12*k25*k34*k41*k64 + k14*k21*k32*k45*k64 + k14*k21*k34*k45*k62 + k14*k25*k32*k43*k62 + k12*k25*k32*k46*k62 + k12*k23*k34*k45*k64 + k12*k25*k32*k45*k64 + k12*k25*k34*k45*k62 + k14*k21*k34*k45*k64 + k14*k23*k34*k45*k62 + k14*k25*k32*k43*k64 + k14*k25*k32*k45*k62 + k12*k25*k34*k46*k62 + k12*k26*k32*k45*k64 + k14*k25*k32*k46*k62 + k12*k25*k34*k45*k64 + k14*k23*k34*k45*k64 + k14*k25*k32*k45*k64 + k14*k25*k34*k45*k62 + k12*k26*k34*k45*k64 + k14*k21*k32*k52*k62 + k14*k25*k34*k46*k62 + k14*k26*k32*k45*k64 + k14*k25*k34*k45*k64 + k12*k23*k34*k52*k62 + k14*k21*k32*k52*k64 + k14*k21*k32*k54*k62 + k14*k21*k34*k52*k62 + k14*k26*k34*k45*k64 + k12*k23*k34*k52*k64 + k12*k23*k34*k54*k62 + k12*k25*k32*k54*k62 + k14*k21*k32*k54*k64 + k14*k21*k34*k52*k64 + k14*k21*k34*k54*k62 + k14*k23*k34*k52*k62 + k12*k26*k32*k52*k64 + k12*k23*k34*k54*k64 + k12*k25*k32*k54*k64 + k12*k25*k34*k54*k62 + k14*k21*k34*k54*k64 + k14*k23*k34*k52*k64 + k14*k23*k34*k54*k62 + k14*k25*k32*k54*k62 + k12*k26*k32*k54*k64 + k12*k26*k34*k52*k64 + k14*k26*k32*k52*k64 + k12*k25*k34*k54*k64 + k14*k23*k34*k54*k64 + k14*k25*k32*k54*k64 + k14*k25*k34*k54*k62 + k12*k23*k41*k52*k62 + k12*k26*k34*k54*k64 + k14*k26*k32*k54*k64 + k14*k26*k34*k52*k64 + k14*k25*k34*k54*k64 + k12*k23*k41*k52*k64 + k12*k23*k41*k54*k62 + k12*k23*k43*k52*k62 + k14*k21*k43*k52*k62 + k14*k26*k34*k54*k64 + k12*k23*k41*k54*k64 + k12*k23*k43*k52*k64 + k12*k23*k43*k54*k62 + k12*k23*k45*k52*k62 + k14*k21*k43*k52*k64 + k14*k21*k43*k54*k62 + k14*k23*k43*k52*k62 + k12*k23*k46*k52*k62 + k12*k23*k43*k54*k64 + k12*k23*k45*k52*k64 + k12*k25*k43*k54*k62 + k14*k21*k43*k54*k64 + k14*k23*k43*k52*k64 + k14*k23*k43*k54*k62 + k14*k23*k45*k52*k62 + k12*k23*k46*k54*k62 + k12*k26*k43*k52*k64 + k14*k23*k46*k52*k62 + k12*k25*k43*k54*k64 + k14*k23*k43*k54*k64 + k14*k23*k45*k52*k64 + k14*k25*k43*k54*k62 + k12*k26*k43*k54*k64 + k12*k32*k41*k52*k62 + k14*k23*k46*k54*k62 + k14*k26*k43*k52*k64 + k14*k25*k43*k54*k64 + k12*k32*k41*k52*k64 + k12*k32*k41*k54*k62 + k12*k32*k43*k52*k62 + k12*k34*k41*k52*k62 + k14*k26*k43*k54*k64 + k12*k32*k41*k54*k64 + k12*k32*k43*k52*k64 + k12*k32*k43*k54*k62 + k12*k32*k45*k52*k62 + k12*k34*k41*k52*k64 + k12*k34*k41*k54*k62 + k14*k32*k43*k52*k62 + k12*k32*k46*k52*k62 + k12*k32*k43*k54*k64 + k12*k32*k45*k52*k64 + k12*k34*k41*k54*k64 + k12*k34*k45*k52*k62 + k14*k32*k43*k52*k64 + k14*k32*k43*k54*k62 + k14*k32*k45*k52*k62 + k12*k32*k46*k54*k62 + k12*k34*k46*k52*k62 + k14*k32*k46*k52*k62 + k12*k34*k45*k52*k64 + k14*k32*k43*k54*k64 + k14*k32*k45*k52*k64 + k14*k34*k45*k52*k62 + k12*k34*k46*k54*k62 + k14*k32*k46*k54*k62 + k14*k34*k46*k52*k62 + k21*k32*k41*k52*k62 + k14*k34*k45*k52*k64 + k14*k34*k46*k54*k62 + k21*k32*k41*k52*k64 + k21*k32*k41*k54*k62 + k21*k32*k43*k52*k62 + k21*k34*k41*k52*k62 + k21*k32*k41*k54*k64 + k21*k32*k43*k52*k64 + k21*k32*k43*k54*k62 + k21*k32*k45*k52*k62 + k21*k34*k41*k52*k64 + k21*k34*k41*k54*k62 + k23*k34*k41*k52*k62 + k21*k32*k46*k52*k62 + k21*k32*k43*k54*k64 + k21*k32*k45*k52*k64 + k21*k34*k41*k54*k64 + k21*k34*k45*k52*k62 + k23*k34*k41*k52*k64 + k23*k34*k41*k54*k62 + k25*k32*k41*k54*k62 + k21*k32*k46*k54*k62 + k21*k34*k46*k52*k62 + k26*k32*k41*k52*k64 + k21*k34*k45*k52*k64 + k23*k34*k41*k54*k64 + k25*k32*k41*k54*k64 + k25*k34*k41*k54*k62 + k21*k34*k46*k54*k62 + k26*k32*k41*k54*k64 + k26*k34*k41*k52*k64 + k25*k34*k41*k54*k64 + k26*k34*k41*k54*k64);
E2=(k12*k32*k41*k52*k62 + k12*k32*k41*k52*k64 + k12*k32*k41*k54*k62 + k12*k32*k43*k52*k62 + k12*k34*k41*k52*k62 + k12*k32*k41*k54*k64 + k12*k32*k43*k52*k64 + k12*k32*k43*k54*k62 + k12*k32*k45*k52*k62 + k12*k34*k41*k52*k64 + k12*k34*k41*k54*k62 + k14*k32*k43*k52*k62 + k12*k32*k46*k52*k62 + k12*k32*k43*k54*k64 + k12*k32*k45*k52*k64 + k12*k34*k41*k54*k64 + k12*k34*k45*k52*k62 + k14*k32*k43*k52*k64 + k14*k32*k43*k54*k62 + k14*k32*k45*k52*k62 + k12*k32*k46*k54*k62 + k12*k34*k46*k52*k62 + k14*k32*k46*k52*k62 + k12*k34*k45*k52*k64 + k14*k32*k43*k54*k64 + k14*k32*k45*k52*k64 + k14*k34*k45*k52*k62 + k12*k34*k46*k54*k62 + k14*k32*k46*k54*k62 + k14*k34*k46*k52*k62 + k14*k34*k45*k52*k64 + k14*k34*k46*k54*k62)/(k12*k26*k32*k41*k52 + k12*k26*k32*k41*k54 + k12*k26*k32*k43*k52 + k12*k26*k34*k41*k52 + k14*k21*k32*k46*k52 + k12*k23*k34*k46*k52 + k12*k26*k32*k43*k54 + k12*k26*k32*k45*k52 + k12*k26*k34*k41*k54 + k14*k21*k32*k46*k54 + k14*k21*k34*k46*k52 + k14*k26*k32*k43*k52 + k12*k26*k32*k46*k52 + k12*k23*k34*k46*k54 + k12*k25*k32*k46*k54 + k12*k26*k34*k45*k52 + k14*k21*k34*k46*k54 + k14*k23*k34*k46*k52 + k14*k26*k32*k43*k54 + k14*k26*k32*k45*k52 + k12*k26*k32*k46*k54 + k12*k26*k34*k46*k52 + k14*k26*k32*k46*k52 + k12*k25*k34*k46*k54 + k14*k23*k34*k46*k54 + k14*k25*k32*k46*k54 + k14*k26*k34*k45*k52 + k12*k25*k32*k41*k62 + k12*k26*k34*k46*k54 + k14*k26*k32*k46*k54 + k14*k26*k34*k46*k52 + k14*k25*k34*k46*k54 + k12*k25*k32*k41*k64 + k12*k25*k32*k43*k62 + k12*k25*k34*k41*k62 + k14*k21*k32*k45*k62 + k14*k26*k34*k46*k54 + k12*k23*k34*k45*k62 + k12*k25*k32*k43*k64 + k12*k25*k32*k45*k62 + k12*k25*k34*k41*k64 + k14*k21*k32*k45*k64 + k14*k21*k34*k45*k62 + k14*k25*k32*k43*k62 + k12*k25*k32*k46*k62 + k12*k23*k34*k45*k64 + k12*k25*k32*k45*k64 + k12*k25*k34*k45*k62 + k14*k21*k34*k45*k64 + k14*k23*k34*k45*k62 + k14*k25*k32*k43*k64 + k14*k25*k32*k45*k62 + k12*k25*k34*k46*k62 + k12*k26*k32*k45*k64 + k14*k25*k32*k46*k62 + k12*k25*k34*k45*k64 + k14*k23*k34*k45*k64 + k14*k25*k32*k45*k64 + k14*k25*k34*k45*k62 + k12*k26*k34*k45*k64 + k14*k21*k32*k52*k62 + k14*k25*k34*k46*k62 + k14*k26*k32*k45*k64 + k14*k25*k34*k45*k64 + k12*k23*k34*k52*k62 + k14*k21*k32*k52*k64 + k14*k21*k32*k54*k62 + k14*k21*k34*k52*k62 + k14*k26*k34*k45*k64 + k12*k23*k34*k52*k64 + k12*k23*k34*k54*k62 + k12*k25*k32*k54*k62 + k14*k21*k32*k54*k64 + k14*k21*k34*k52*k64 + k14*k21*k34*k54*k62 + k14*k23*k34*k52*k62 + k12*k26*k32*k52*k64 + k12*k23*k34*k54*k64 + k12*k25*k32*k54*k64 + k12*k25*k34*k54*k62 + k14*k21*k34*k54*k64 + k14*k23*k34*k52*k64 + k14*k23*k34*k54*k62 + k14*k25*k32*k54*k62 + k12*k26*k32*k54*k64 + k12*k26*k34*k52*k64 + k14*k26*k32*k52*k64 + k12*k25*k34*k54*k64 + k14*k23*k34*k54*k64 + k14*k25*k32*k54*k64 + k14*k25*k34*k54*k62 + k12*k23*k41*k52*k62 + k12*k26*k34*k54*k64 + k14*k26*k32*k54*k64 + k14*k26*k34*k52*k64 + k14*k25*k34*k54*k64 + k12*k23*k41*k52*k64 + k12*k23*k41*k54*k62 + k12*k23*k43*k52*k62 + k14*k21*k43*k52*k62 + k14*k26*k34*k54*k64 + k12*k23*k41*k54*k64 + k12*k23*k43*k52*k64 + k12*k23*k43*k54*k62 + k12*k23*k45*k52*k62 + k14*k21*k43*k52*k64 + k14*k21*k43*k54*k62 + k14*k23*k43*k52*k62 + k12*k23*k46*k52*k62 + k12*k23*k43*k54*k64 + k12*k23*k45*k52*k64 + k12*k25*k43*k54*k62 + k14*k21*k43*k54*k64 + k14*k23*k43*k52*k64 + k14*k23*k43*k54*k62 + k14*k23*k45*k52*k62 + k12*k23*k46*k54*k62 + k12*k26*k43*k52*k64 + k14*k23*k46*k52*k62 + k12*k25*k43*k54*k64 + k14*k23*k43*k54*k64 + k14*k23*k45*k52*k64 + k14*k25*k43*k54*k62 + k12*k26*k43*k54*k64 + k12*k32*k41*k52*k62 + k14*k23*k46*k54*k62 + k14*k26*k43*k52*k64 + k14*k25*k43*k54*k64 + k12*k32*k41*k52*k64 + k12*k32*k41*k54*k62 + k12*k32*k43*k52*k62 + k12*k34*k41*k52*k62 + k14*k26*k43*k54*k64 + k12*k32*k41*k54*k64 + k12*k32*k43*k52*k64 + k12*k32*k43*k54*k62 + k12*k32*k45*k52*k62 + k12*k34*k41*k52*k64 + k12*k34*k41*k54*k62 + k14*k32*k43*k52*k62 + k12*k32*k46*k52*k62 + k12*k32*k43*k54*k64 + k12*k32*k45*k52*k64 + k12*k34*k41*k54*k64 + k12*k34*k45*k52*k62 + k14*k32*k43*k52*k64 + k14*k32*k43*k54*k62 + k14*k32*k45*k52*k62 + k12*k32*k46*k54*k62 + k12*k34*k46*k52*k62 + k14*k32*k46*k52*k62 + k12*k34*k45*k52*k64 + k14*k32*k43*k54*k64 + k14*k32*k45*k52*k64 + k14*k34*k45*k52*k62 + k12*k34*k46*k54*k62 + k14*k32*k46*k54*k62 + k14*k34*k46*k52*k62 + k21*k32*k41*k52*k62 + k14*k34*k45*k52*k64 + k14*k34*k46*k54*k62 + k21*k32*k41*k52*k64 + k21*k32*k41*k54*k62 + k21*k32*k43*k52*k62 + k21*k34*k41*k52*k62 + k21*k32*k41*k54*k64 + k21*k32*k43*k52*k64 + k21*k32*k43*k54*k62 + k21*k32*k45*k52*k62 + k21*k34*k41*k52*k64 + k21*k34*k41*k54*k62 + k23*k34*k41*k52*k62 + k21*k32*k46*k52*k62 + k21*k32*k43*k54*k64 + k21*k32*k45*k52*k64 + k21*k34*k41*k54*k64 + k21*k34*k45*k52*k62 + k23*k34*k41*k52*k64 + k23*k34*k41*k54*k62 + k25*k32*k41*k54*k62 + k21*k32*k46*k54*k62 + k21*k34*k46*k52*k62 + k26*k32*k41*k52*k64 + k21*k34*k45*k52*k64 + k23*k34*k41*k54*k64 + k25*k32*k41*k54*k64 + k25*k34*k41*k54*k62 + k21*k34*k46*k54*k62 + k26*k32*k41*k54*k64 + k26*k34*k41*k52*k64 + k25*k34*k41*k54*k64 + k26*k34*k41*k54*k64);
E3=(k12*k23*k41*k52*k62 + k12*k23*k41*k52*k64 + k12*k23*k41*k54*k62 + k12*k23*k43*k52*k62 + k14*k21*k43*k52*k62 + k12*k23*k41*k54*k64 + k12*k23*k43*k52*k64 + k12*k23*k43*k54*k62 + k12*k23*k45*k52*k62 + k14*k21*k43*k52*k64 + k14*k21*k43*k54*k62 + k14*k23*k43*k52*k62 + k12*k23*k46*k52*k62 + k12*k23*k43*k54*k64 + k12*k23*k45*k52*k64 + k12*k25*k43*k54*k62 + k14*k21*k43*k54*k64 + k14*k23*k43*k52*k64 + k14*k23*k43*k54*k62 + k14*k23*k45*k52*k62 + k12*k23*k46*k54*k62 + k12*k26*k43*k52*k64 + k14*k23*k46*k52*k62 + k12*k25*k43*k54*k64 + k14*k23*k43*k54*k64 + k14*k23*k45*k52*k64 + k14*k25*k43*k54*k62 + k12*k26*k43*k54*k64 + k14*k23*k46*k54*k62 + k14*k26*k43*k52*k64 + k14*k25*k43*k54*k64 + k14*k26*k43*k54*k64)/(k12*k26*k32*k41*k52 + k12*k26*k32*k41*k54 + k12*k26*k32*k43*k52 + k12*k26*k34*k41*k52 + k14*k21*k32*k46*k52 + k12*k23*k34*k46*k52 + k12*k26*k32*k43*k54 + k12*k26*k32*k45*k52 + k12*k26*k34*k41*k54 + k14*k21*k32*k46*k54 + k14*k21*k34*k46*k52 + k14*k26*k32*k43*k52 + k12*k26*k32*k46*k52 + k12*k23*k34*k46*k54 + k12*k25*k32*k46*k54 + k12*k26*k34*k45*k52 + k14*k21*k34*k46*k54 + k14*k23*k34*k46*k52 + k14*k26*k32*k43*k54 + k14*k26*k32*k45*k52 + k12*k26*k32*k46*k54 + k12*k26*k34*k46*k52 + k14*k26*k32*k46*k52 + k12*k25*k34*k46*k54 + k14*k23*k34*k46*k54 + k14*k25*k32*k46*k54 + k14*k26*k34*k45*k52 + k12*k25*k32*k41*k62 + k12*k26*k34*k46*k54 + k14*k26*k32*k46*k54 + k14*k26*k34*k46*k52 + k14*k25*k34*k46*k54 + k12*k25*k32*k41*k64 + k12*k25*k32*k43*k62 + k12*k25*k34*k41*k62 + k14*k21*k32*k45*k62 + k14*k26*k34*k46*k54 + k12*k23*k34*k45*k62 + k12*k25*k32*k43*k64 + k12*k25*k32*k45*k62 + k12*k25*k34*k41*k64 + k14*k21*k32*k45*k64 + k14*k21*k34*k45*k62 + k14*k25*k32*k43*k62 + k12*k25*k32*k46*k62 + k12*k23*k34*k45*k64 + k12*k25*k32*k45*k64 + k12*k25*k34*k45*k62 + k14*k21*k34*k45*k64 + k14*k23*k34*k45*k62 + k14*k25*k32*k43*k64 + k14*k25*k32*k45*k62 + k12*k25*k34*k46*k62 + k12*k26*k32*k45*k64 + k14*k25*k32*k46*k62 + k12*k25*k34*k45*k64 + k14*k23*k34*k45*k64 + k14*k25*k32*k45*k64 + k14*k25*k34*k45*k62 + k12*k26*k34*k45*k64 + k14*k21*k32*k52*k62 + k14*k25*k34*k46*k62 + k14*k26*k32*k45*k64 + k14*k25*k34*k45*k64 + k12*k23*k34*k52*k62 + k14*k21*k32*k52*k64 + k14*k21*k32*k54*k62 + k14*k21*k34*k52*k62 + k14*k26*k34*k45*k64 + k12*k23*k34*k52*k64 + k12*k23*k34*k54*k62 + k12*k25*k32*k54*k62 + k14*k21*k32*k54*k64 + k14*k21*k34*k52*k64 + k14*k21*k34*k54*k62 + k14*k23*k34*k52*k62 + k12*k26*k32*k52*k64 + k12*k23*k34*k54*k64 + k12*k25*k32*k54*k64 + k12*k25*k34*k54*k62 + k14*k21*k34*k54*k64 + k14*k23*k34*k52*k64 + k14*k23*k34*k54*k62 + k14*k25*k32*k54*k62 + k12*k26*k32*k54*k64 + k12*k26*k34*k52*k64 + k14*k26*k32*k52*k64 + k12*k25*k34*k54*k64 + k14*k23*k34*k54*k64 + k14*k25*k32*k54*k64 + k14*k25*k34*k54*k62 + k12*k23*k41*k52*k62 + k12*k26*k34*k54*k64 + k14*k26*k32*k54*k64 + k14*k26*k34*k52*k64 + k14*k25*k34*k54*k64 + k12*k23*k41*k52*k64 + k12*k23*k41*k54*k62 + k12*k23*k43*k52*k62 + k14*k21*k43*k52*k62 + k14*k26*k34*k54*k64 + k12*k23*k41*k54*k64 + k12*k23*k43*k52*k64 + k12*k23*k43*k54*k62 + k12*k23*k45*k52*k62 + k14*k21*k43*k52*k64 + k14*k21*k43*k54*k62 + k14*k23*k43*k52*k62 + k12*k23*k46*k52*k62 + k12*k23*k43*k54*k64 + k12*k23*k45*k52*k64 + k12*k25*k43*k54*k62 + k14*k21*k43*k54*k64 + k14*k23*k43*k52*k64 + k14*k23*k43*k54*k62 + k14*k23*k45*k52*k62 + k12*k23*k46*k54*k62 + k12*k26*k43*k52*k64 + k14*k23*k46*k52*k62 + k12*k25*k43*k54*k64 + k14*k23*k43*k54*k64 + k14*k23*k45*k52*k64 + k14*k25*k43*k54*k62 + k12*k26*k43*k54*k64 + k12*k32*k41*k52*k62 + k14*k23*k46*k54*k62 + k14*k26*k43*k52*k64 + k14*k25*k43*k54*k64 + k12*k32*k41*k52*k64 + k12*k32*k41*k54*k62 + k12*k32*k43*k52*k62 + k12*k34*k41*k52*k62 + k14*k26*k43*k54*k64 + k12*k32*k41*k54*k64 + k12*k32*k43*k52*k64 + k12*k32*k43*k54*k62 + k12*k32*k45*k52*k62 + k12*k34*k41*k52*k64 + k12*k34*k41*k54*k62 + k14*k32*k43*k52*k62 + k12*k32*k46*k52*k62 + k12*k32*k43*k54*k64 + k12*k32*k45*k52*k64 + k12*k34*k41*k54*k64 + k12*k34*k45*k52*k62 + k14*k32*k43*k52*k64 + k14*k32*k43*k54*k62 + k14*k32*k45*k52*k62 + k12*k32*k46*k54*k62 + k12*k34*k46*k52*k62 + k14*k32*k46*k52*k62 + k12*k34*k45*k52*k64 + k14*k32*k43*k54*k64 + k14*k32*k45*k52*k64 + k14*k34*k45*k52*k62 + k12*k34*k46*k54*k62 + k14*k32*k46*k54*k62 + k14*k34*k46*k52*k62 + k21*k32*k41*k52*k62 + k14*k34*k45*k52*k64 + k14*k34*k46*k54*k62 + k21*k32*k41*k52*k64 + k21*k32*k41*k54*k62 + k21*k32*k43*k52*k62 + k21*k34*k41*k52*k62 + k21*k32*k41*k54*k64 + k21*k32*k43*k52*k64 + k21*k32*k43*k54*k62 + k21*k32*k45*k52*k62 + k21*k34*k41*k52*k64 + k21*k34*k41*k54*k62 + k23*k34*k41*k52*k62 + k21*k32*k46*k52*k62 + k21*k32*k43*k54*k64 + k21*k32*k45*k52*k64 + k21*k34*k41*k54*k64 + k21*k34*k45*k52*k62 + k23*k34*k41*k52*k64 + k23*k34*k41*k54*k62 + k25*k32*k41*k54*k62 + k21*k32*k46*k54*k62 + k21*k34*k46*k52*k62 + k26*k32*k41*k52*k64 + k21*k34*k45*k52*k64 + k23*k34*k41*k54*k64 + k25*k32*k41*k54*k64 + k25*k34*k41*k54*k62 + k21*k34*k46*k54*k62 + k26*k32*k41*k54*k64 + k26*k34*k41*k52*k64 + k25*k34*k41*k54*k64 + k26*k34*k41*k54*k64);
E4=(k14*k21*k32*k52*k62 + k12*k23*k34*k52*k62 + k14*k21*k32*k52*k64 + k14*k21*k32*k54*k62 + k14*k21*k34*k52*k62 + k12*k23*k34*k52*k64 + k12*k23*k34*k54*k62 + k12*k25*k32*k54*k62 + k14*k21*k32*k54*k64 + k14*k21*k34*k52*k64 + k14*k21*k34*k54*k62 + k14*k23*k34*k52*k62 + k12*k26*k32*k52*k64 + k12*k23*k34*k54*k64 + k12*k25*k32*k54*k64 + k12*k25*k34*k54*k62 + k14*k21*k34*k54*k64 + k14*k23*k34*k52*k64 + k14*k23*k34*k54*k62 + k14*k25*k32*k54*k62 + k12*k26*k32*k54*k64 + k12*k26*k34*k52*k64 + k14*k26*k32*k52*k64 + k12*k25*k34*k54*k64 + k14*k23*k34*k54*k64 + k14*k25*k32*k54*k64 + k14*k25*k34*k54*k62 + k12*k26*k34*k54*k64 + k14*k26*k32*k54*k64 + k14*k26*k34*k52*k64 + k14*k25*k34*k54*k64 + k14*k26*k34*k54*k64)/(k12*k26*k32*k41*k52 + k12*k26*k32*k41*k54 + k12*k26*k32*k43*k52 + k12*k26*k34*k41*k52 + k14*k21*k32*k46*k52 + k12*k23*k34*k46*k52 + k12*k26*k32*k43*k54 + k12*k26*k32*k45*k52 + k12*k26*k34*k41*k54 + k14*k21*k32*k46*k54 + k14*k21*k34*k46*k52 + k14*k26*k32*k43*k52 + k12*k26*k32*k46*k52 + k12*k23*k34*k46*k54 + k12*k25*k32*k46*k54 + k12*k26*k34*k45*k52 + k14*k21*k34*k46*k54 + k14*k23*k34*k46*k52 + k14*k26*k32*k43*k54 + k14*k26*k32*k45*k52 + k12*k26*k32*k46*k54 + k12*k26*k34*k46*k52 + k14*k26*k32*k46*k52 + k12*k25*k34*k46*k54 + k14*k23*k34*k46*k54 + k14*k25*k32*k46*k54 + k14*k26*k34*k45*k52 + k12*k25*k32*k41*k62 + k12*k26*k34*k46*k54 + k14*k26*k32*k46*k54 + k14*k26*k34*k46*k52 + k14*k25*k34*k46*k54 + k12*k25*k32*k41*k64 + k12*k25*k32*k43*k62 + k12*k25*k34*k41*k62 + k14*k21*k32*k45*k62 + k14*k26*k34*k46*k54 + k12*k23*k34*k45*k62 + k12*k25*k32*k43*k64 + k12*k25*k32*k45*k62 + k12*k25*k34*k41*k64 + k14*k21*k32*k45*k64 + k14*k21*k34*k45*k62 + k14*k25*k32*k43*k62 + k12*k25*k32*k46*k62 + k12*k23*k34*k45*k64 + k12*k25*k32*k45*k64 + k12*k25*k34*k45*k62 + k14*k21*k34*k45*k64 + k14*k23*k34*k45*k62 + k14*k25*k32*k43*k64 + k14*k25*k32*k45*k62 + k12*k25*k34*k46*k62 + k12*k26*k32*k45*k64 + k14*k25*k32*k46*k62 + k12*k25*k34*k45*k64 + k14*k23*k34*k45*k64 + k14*k25*k32*k45*k64 + k14*k25*k34*k45*k62 + k12*k26*k34*k45*k64 + k14*k21*k32*k52*k62 + k14*k25*k34*k46*k62 + k14*k26*k32*k45*k64 + k14*k25*k34*k45*k64 + k12*k23*k34*k52*k62 + k14*k21*k32*k52*k64 + k14*k21*k32*k54*k62 + k14*k21*k34*k52*k62 + k14*k26*k34*k45*k64 + k12*k23*k34*k52*k64 + k12*k23*k34*k54*k62 + k12*k25*k32*k54*k62 + k14*k21*k32*k54*k64 + k14*k21*k34*k52*k64 + k14*k21*k34*k54*k62 + k14*k23*k34*k52*k62 + k12*k26*k32*k52*k64 + k12*k23*k34*k54*k64 + k12*k25*k32*k54*k64 + k12*k25*k34*k54*k62 + k14*k21*k34*k54*k64 + k14*k23*k34*k52*k64 + k14*k23*k34*k54*k62 + k14*k25*k32*k54*k62 + k12*k26*k32*k54*k64 + k12*k26*k34*k52*k64 + k14*k26*k32*k52*k64 + k12*k25*k34*k54*k64 + k14*k23*k34*k54*k64 + k14*k25*k32*k54*k64 + k14*k25*k34*k54*k62 + k12*k23*k41*k52*k62 + k12*k26*k34*k54*k64 + k14*k26*k32*k54*k64 + k14*k26*k34*k52*k64 + k14*k25*k34*k54*k64 + k12*k23*k41*k52*k64 + k12*k23*k41*k54*k62 + k12*k23*k43*k52*k62 + k14*k21*k43*k52*k62 + k14*k26*k34*k54*k64 + k12*k23*k41*k54*k64 + k12*k23*k43*k52*k64 + k12*k23*k43*k54*k62 + k12*k23*k45*k52*k62 + k14*k21*k43*k52*k64 + k14*k21*k43*k54*k62 + k14*k23*k43*k52*k62 + k12*k23*k46*k52*k62 + k12*k23*k43*k54*k64 + k12*k23*k45*k52*k64 + k12*k25*k43*k54*k62 + k14*k21*k43*k54*k64 + k14*k23*k43*k52*k64 + k14*k23*k43*k54*k62 + k14*k23*k45*k52*k62 + k12*k23*k46*k54*k62 + k12*k26*k43*k52*k64 + k14*k23*k46*k52*k62 + k12*k25*k43*k54*k64 + k14*k23*k43*k54*k64 + k14*k23*k45*k52*k64 + k14*k25*k43*k54*k62 + k12*k26*k43*k54*k64 + k12*k32*k41*k52*k62 + k14*k23*k46*k54*k62 + k14*k26*k43*k52*k64 + k14*k25*k43*k54*k64 + k12*k32*k41*k52*k64 + k12*k32*k41*k54*k62 + k12*k32*k43*k52*k62 + k12*k34*k41*k52*k62 + k14*k26*k43*k54*k64 + k12*k32*k41*k54*k64 + k12*k32*k43*k52*k64 + k12*k32*k43*k54*k62 + k12*k32*k45*k52*k62 + k12*k34*k41*k52*k64 + k12*k34*k41*k54*k62 + k14*k32*k43*k52*k62 + k12*k32*k46*k52*k62 + k12*k32*k43*k54*k64 + k12*k32*k45*k52*k64 + k12*k34*k41*k54*k64 + k12*k34*k45*k52*k62 + k14*k32*k43*k52*k64 + k14*k32*k43*k54*k62 + k14*k32*k45*k52*k62 + k12*k32*k46*k54*k62 + k12*k34*k46*k52*k62 + k14*k32*k46*k52*k62 + k12*k34*k45*k52*k64 + k14*k32*k43*k54*k64 + k14*k32*k45*k52*k64 + k14*k34*k45*k52*k62 + k12*k34*k46*k54*k62 + k14*k32*k46*k54*k62 + k14*k34*k46*k52*k62 + k21*k32*k41*k52*k62 + k14*k34*k45*k52*k64 + k14*k34*k46*k54*k62 + k21*k32*k41*k52*k64 + k21*k32*k41*k54*k62 + k21*k32*k43*k52*k62 + k21*k34*k41*k52*k62 + k21*k32*k41*k54*k64 + k21*k32*k43*k52*k64 + k21*k32*k43*k54*k62 + k21*k32*k45*k52*k62 + k21*k34*k41*k52*k64 + k21*k34*k41*k54*k62 + k23*k34*k41*k52*k62 + k21*k32*k46*k52*k62 + k21*k32*k43*k54*k64 + k21*k32*k45*k52*k64 + k21*k34*k41*k54*k64 + k21*k34*k45*k52*k62 + k23*k34*k41*k52*k64 + k23*k34*k41*k54*k62 + k25*k32*k41*k54*k62 + k21*k32*k46*k54*k62 + k21*k34*k46*k52*k62 + k26*k32*k41*k52*k64 + k21*k34*k45*k52*k64 + k23*k34*k41*k54*k64 + k25*k32*k41*k54*k64 + k25*k34*k41*k54*k62 + k21*k34*k46*k54*k62 + k26*k32*k41*k54*k64 + k26*k34*k41*k52*k64 + k25*k34*k41*k54*k64 + k26*k34*k41*k54*k64);
E5=(k12*k25*k32*k41*k62 + k12*k25*k32*k41*k64 + k12*k25*k32*k43*k62 + k12*k25*k34*k41*k62 + k14*k21*k32*k45*k62 + k12*k23*k34*k45*k62 + k12*k25*k32*k43*k64 + k12*k25*k32*k45*k62 + k12*k25*k34*k41*k64 + k14*k21*k32*k45*k64 + k14*k21*k34*k45*k62 + k14*k25*k32*k43*k62 + k12*k25*k32*k46*k62 + k12*k23*k34*k45*k64 + k12*k25*k32*k45*k64 + k12*k25*k34*k45*k62 + k14*k21*k34*k45*k64 + k14*k23*k34*k45*k62 + k14*k25*k32*k43*k64 + k14*k25*k32*k45*k62 + k12*k25*k34*k46*k62 + k12*k26*k32*k45*k64 + k14*k25*k32*k46*k62 + k12*k25*k34*k45*k64 + k14*k23*k34*k45*k64 + k14*k25*k32*k45*k64 + k14*k25*k34*k45*k62 + k12*k26*k34*k45*k64 + k14*k25*k34*k46*k62 + k14*k26*k32*k45*k64 + k14*k25*k34*k45*k64 + k14*k26*k34*k45*k64)/(k12*k26*k32*k41*k52 + k12*k26*k32*k41*k54 + k12*k26*k32*k43*k52 + k12*k26*k34*k41*k52 + k14*k21*k32*k46*k52 + k12*k23*k34*k46*k52 + k12*k26*k32*k43*k54 + k12*k26*k32*k45*k52 + k12*k26*k34*k41*k54 + k14*k21*k32*k46*k54 + k14*k21*k34*k46*k52 + k14*k26*k32*k43*k52 + k12*k26*k32*k46*k52 + k12*k23*k34*k46*k54 + k12*k25*k32*k46*k54 + k12*k26*k34*k45*k52 + k14*k21*k34*k46*k54 + k14*k23*k34*k46*k52 + k14*k26*k32*k43*k54 + k14*k26*k32*k45*k52 + k12*k26*k32*k46*k54 + k12*k26*k34*k46*k52 + k14*k26*k32*k46*k52 + k12*k25*k34*k46*k54 + k14*k23*k34*k46*k54 + k14*k25*k32*k46*k54 + k14*k26*k34*k45*k52 + k12*k25*k32*k41*k62 + k12*k26*k34*k46*k54 + k14*k26*k32*k46*k54 + k14*k26*k34*k46*k52 + k14*k25*k34*k46*k54 + k12*k25*k32*k41*k64 + k12*k25*k32*k43*k62 + k12*k25*k34*k41*k62 + k14*k21*k32*k45*k62 + k14*k26*k34*k46*k54 + k12*k23*k34*k45*k62 + k12*k25*k32*k43*k64 + k12*k25*k32*k45*k62 + k12*k25*k34*k41*k64 + k14*k21*k32*k45*k64 + k14*k21*k34*k45*k62 + k14*k25*k32*k43*k62 + k12*k25*k32*k46*k62 + k12*k23*k34*k45*k64 + k12*k25*k32*k45*k64 + k12*k25*k34*k45*k62 + k14*k21*k34*k45*k64 + k14*k23*k34*k45*k62 + k14*k25*k32*k43*k64 + k14*k25*k32*k45*k62 + k12*k25*k34*k46*k62 + k12*k26*k32*k45*k64 + k14*k25*k32*k46*k62 + k12*k25*k34*k45*k64 + k14*k23*k34*k45*k64 + k14*k25*k32*k45*k64 + k14*k25*k34*k45*k62 + k12*k26*k34*k45*k64 + k14*k21*k32*k52*k62 + k14*k25*k34*k46*k62 + k14*k26*k32*k45*k64 + k14*k25*k34*k45*k64 + k12*k23*k34*k52*k62 + k14*k21*k32*k52*k64 + k14*k21*k32*k54*k62 + k14*k21*k34*k52*k62 + k14*k26*k34*k45*k64 + k12*k23*k34*k52*k64 + k12*k23*k34*k54*k62 + k12*k25*k32*k54*k62 + k14*k21*k32*k54*k64 + k14*k21*k34*k52*k64 + k14*k21*k34*k54*k62 + k14*k23*k34*k52*k62 + k12*k26*k32*k52*k64 + k12*k23*k34*k54*k64 + k12*k25*k32*k54*k64 + k12*k25*k34*k54*k62 + k14*k21*k34*k54*k64 + k14*k23*k34*k52*k64 + k14*k23*k34*k54*k62 + k14*k25*k32*k54*k62 + k12*k26*k32*k54*k64 + k12*k26*k34*k52*k64 + k14*k26*k32*k52*k64 + k12*k25*k34*k54*k64 + k14*k23*k34*k54*k64 + k14*k25*k32*k54*k64 + k14*k25*k34*k54*k62 + k12*k23*k41*k52*k62 + k12*k26*k34*k54*k64 + k14*k26*k32*k54*k64 + k14*k26*k34*k52*k64 + k14*k25*k34*k54*k64 + k12*k23*k41*k52*k64 + k12*k23*k41*k54*k62 + k12*k23*k43*k52*k62 + k14*k21*k43*k52*k62 + k14*k26*k34*k54*k64 + k12*k23*k41*k54*k64 + k12*k23*k43*k52*k64 + k12*k23*k43*k54*k62 + k12*k23*k45*k52*k62 + k14*k21*k43*k52*k64 + k14*k21*k43*k54*k62 + k14*k23*k43*k52*k62 + k12*k23*k46*k52*k62 + k12*k23*k43*k54*k64 + k12*k23*k45*k52*k64 + k12*k25*k43*k54*k62 + k14*k21*k43*k54*k64 + k14*k23*k43*k52*k64 + k14*k23*k43*k54*k62 + k14*k23*k45*k52*k62 + k12*k23*k46*k54*k62 + k12*k26*k43*k52*k64 + k14*k23*k46*k52*k62 + k12*k25*k43*k54*k64 + k14*k23*k43*k54*k64 + k14*k23*k45*k52*k64 + k14*k25*k43*k54*k62 + k12*k26*k43*k54*k64 + k12*k32*k41*k52*k62 + k14*k23*k46*k54*k62 + k14*k26*k43*k52*k64 + k14*k25*k43*k54*k64 + k12*k32*k41*k52*k64 + k12*k32*k41*k54*k62 + k12*k32*k43*k52*k62 + k12*k34*k41*k52*k62 + k14*k26*k43*k54*k64 + k12*k32*k41*k54*k64 + k12*k32*k43*k52*k64 + k12*k32*k43*k54*k62 + k12*k32*k45*k52*k62 + k12*k34*k41*k52*k64 + k12*k34*k41*k54*k62 + k14*k32*k43*k52*k62 + k12*k32*k46*k52*k62 + k12*k32*k43*k54*k64 + k12*k32*k45*k52*k64 + k12*k34*k41*k54*k64 + k12*k34*k45*k52*k62 + k14*k32*k43*k52*k64 + k14*k32*k43*k54*k62 + k14*k32*k45*k52*k62 + k12*k32*k46*k54*k62 + k12*k34*k46*k52*k62 + k14*k32*k46*k52*k62 + k12*k34*k45*k52*k64 + k14*k32*k43*k54*k64 + k14*k32*k45*k52*k64 + k14*k34*k45*k52*k62 + k12*k34*k46*k54*k62 + k14*k32*k46*k54*k62 + k14*k34*k46*k52*k62 + k21*k32*k41*k52*k62 + k14*k34*k45*k52*k64 + k14*k34*k46*k54*k62 + k21*k32*k41*k52*k64 + k21*k32*k41*k54*k62 + k21*k32*k43*k52*k62 + k21*k34*k41*k52*k62 + k21*k32*k41*k54*k64 + k21*k32*k43*k52*k64 + k21*k32*k43*k54*k62 + k21*k32*k45*k52*k62 + k21*k34*k41*k52*k64 + k21*k34*k41*k54*k62 + k23*k34*k41*k52*k62 + k21*k32*k46*k52*k62 + k21*k32*k43*k54*k64 + k21*k32*k45*k52*k64 + k21*k34*k41*k54*k64 + k21*k34*k45*k52*k62 + k23*k34*k41*k52*k64 + k23*k34*k41*k54*k62 + k25*k32*k41*k54*k62 + k21*k32*k46*k54*k62 + k21*k34*k46*k52*k62 + k26*k32*k41*k52*k64 + k21*k34*k45*k52*k64 + k23*k34*k41*k54*k64 + k25*k32*k41*k54*k64 + k25*k34*k41*k54*k62 + k21*k34*k46*k54*k62 + k26*k32*k41*k54*k64 + k26*k34*k41*k52*k64 + k25*k34*k41*k54*k64 + k26*k34*k41*k54*k64);
% E6=(k12*k26*k32*k41*k52 + k12*k26*k32*k41*k54 + k12*k26*k32*k43*k52 + k12*k26*k34*k41*k52 + k14*k21*k32*k46*k52 + k12*k23*k34*k46*k52 + k12*k26*k32*k43*k54 + k12*k26*k32*k45*k52 + k12*k26*k34*k41*k54 + k14*k21*k32*k46*k54 + k14*k21*k34*k46*k52 + k14*k26*k32*k43*k52 + k12*k26*k32*k46*k52 + k12*k23*k34*k46*k54 + k12*k25*k32*k46*k54 + k12*k26*k34*k45*k52 + k14*k21*k34*k46*k54 + k14*k23*k34*k46*k52 + k14*k26*k32*k43*k54 + k14*k26*k32*k45*k52 + k12*k26*k32*k46*k54 + k12*k26*k34*k46*k52 + k14*k26*k32*k46*k52 + k12*k25*k34*k46*k54 + k14*k23*k34*k46*k54 + k14*k25*k32*k46*k54 + k14*k26*k34*k45*k52 + k12*k26*k34*k46*k54 + k14*k26*k32*k46*k54 + k14*k26*k34*k46*k52 + k14*k25*k34*k46*k54 + k14*k26*k34*k46*k54)/(k12*k26*k32*k41*k52 + k12*k26*k32*k41*k54 + k12*k26*k32*k43*k52 + k12*k26*k34*k41*k52 + k14*k21*k32*k46*k52 + k12*k23*k34*k46*k52 + k12*k26*k32*k43*k54 + k12*k26*k32*k45*k52 + k12*k26*k34*k41*k54 + k14*k21*k32*k46*k54 + k14*k21*k34*k46*k52 + k14*k26*k32*k43*k52 + k12*k26*k32*k46*k52 + k12*k23*k34*k46*k54 + k12*k25*k32*k46*k54 + k12*k26*k34*k45*k52 + k14*k21*k34*k46*k54 + k14*k23*k34*k46*k52 + k14*k26*k32*k43*k54 + k14*k26*k32*k45*k52 + k12*k26*k32*k46*k54 + k12*k26*k34*k46*k52 + k14*k26*k32*k46*k52 + k12*k25*k34*k46*k54 + k14*k23*k34*k46*k54 + k14*k25*k32*k46*k54 + k14*k26*k34*k45*k52 + k12*k25*k32*k41*k62 + k12*k26*k34*k46*k54 + k14*k26*k32*k46*k54 + k14*k26*k34*k46*k52 + k14*k25*k34*k46*k54 + k12*k25*k32*k41*k64 + k12*k25*k32*k43*k62 + k12*k25*k34*k41*k62 + k14*k21*k32*k45*k62 + k14*k26*k34*k46*k54 + k12*k23*k34*k45*k62 + k12*k25*k32*k43*k64 + k12*k25*k32*k45*k62 + k12*k25*k34*k41*k64 + k14*k21*k32*k45*k64 + k14*k21*k34*k45*k62 + k14*k25*k32*k43*k62 + k12*k25*k32*k46*k62 + k12*k23*k34*k45*k64 + k12*k25*k32*k45*k64 + k12*k25*k34*k45*k62 + k14*k21*k34*k45*k64 + k14*k23*k34*k45*k62 + k14*k25*k32*k43*k64 + k14*k25*k32*k45*k62 + k12*k25*k34*k46*k62 + k12*k26*k32*k45*k64 + k14*k25*k32*k46*k62 + k12*k25*k34*k45*k64 + k14*k23*k34*k45*k64 + k14*k25*k32*k45*k64 + k14*k25*k34*k45*k62 + k12*k26*k34*k45*k64 + k14*k21*k32*k52*k62 + k14*k25*k34*k46*k62 + k14*k26*k32*k45*k64 + k14*k25*k34*k45*k64 + k12*k23*k34*k52*k62 + k14*k21*k32*k52*k64 + k14*k21*k32*k54*k62 + k14*k21*k34*k52*k62 + k14*k26*k34*k45*k64 + k12*k23*k34*k52*k64 + k12*k23*k34*k54*k62 + k12*k25*k32*k54*k62 + k14*k21*k32*k54*k64 + k14*k21*k34*k52*k64 + k14*k21*k34*k54*k62 + k14*k23*k34*k52*k62 + k12*k26*k32*k52*k64 + k12*k23*k34*k54*k64 + k12*k25*k32*k54*k64 + k12*k25*k34*k54*k62 + k14*k21*k34*k54*k64 + k14*k23*k34*k52*k64 + k14*k23*k34*k54*k62 + k14*k25*k32*k54*k62 + k12*k26*k32*k54*k64 + k12*k26*k34*k52*k64 + k14*k26*k32*k52*k64 + k12*k25*k34*k54*k64 + k14*k23*k34*k54*k64 + k14*k25*k32*k54*k64 + k14*k25*k34*k54*k62 + k12*k23*k41*k52*k62 + k12*k26*k34*k54*k64 + k14*k26*k32*k54*k64 + k14*k26*k34*k52*k64 + k14*k25*k34*k54*k64 + k12*k23*k41*k52*k64 + k12*k23*k41*k54*k62 + k12*k23*k43*k52*k62 + k14*k21*k43*k52*k62 + k14*k26*k34*k54*k64 + k12*k23*k41*k54*k64 + k12*k23*k43*k52*k64 + k12*k23*k43*k54*k62 + k12*k23*k45*k52*k62 + k14*k21*k43*k52*k64 + k14*k21*k43*k54*k62 + k14*k23*k43*k52*k62 + k12*k23*k46*k52*k62 + k12*k23*k43*k54*k64 + k12*k23*k45*k52*k64 + k12*k25*k43*k54*k62 + k14*k21*k43*k54*k64 + k14*k23*k43*k52*k64 + k14*k23*k43*k54*k62 + k14*k23*k45*k52*k62 + k12*k23*k46*k54*k62 + k12*k26*k43*k52*k64 + k14*k23*k46*k52*k62 + k12*k25*k43*k54*k64 + k14*k23*k43*k54*k64 + k14*k23*k45*k52*k64 + k14*k25*k43*k54*k62 + k12*k26*k43*k54*k64 + k12*k32*k41*k52*k62 + k14*k23*k46*k54*k62 + k14*k26*k43*k52*k64 + k14*k25*k43*k54*k64 + k12*k32*k41*k52*k64 + k12*k32*k41*k54*k62 + k12*k32*k43*k52*k62 + k12*k34*k41*k52*k62 + k14*k26*k43*k54*k64 + k12*k32*k41*k54*k64 + k12*k32*k43*k52*k64 + k12*k32*k43*k54*k62 + k12*k32*k45*k52*k62 + k12*k34*k41*k52*k64 + k12*k34*k41*k54*k62 + k14*k32*k43*k52*k62 + k12*k32*k46*k52*k62 + k12*k32*k43*k54*k64 + k12*k32*k45*k52*k64 + k12*k34*k41*k54*k64 + k12*k34*k45*k52*k62 + k14*k32*k43*k52*k64 + k14*k32*k43*k54*k62 + k14*k32*k45*k52*k62 + k12*k32*k46*k54*k62 + k12*k34*k46*k52*k62 + k14*k32*k46*k52*k62 + k12*k34*k45*k52*k64 + k14*k32*k43*k54*k64 + k14*k32*k45*k52*k64 + k14*k34*k45*k52*k62 + k12*k34*k46*k54*k62 + k14*k32*k46*k54*k62 + k14*k34*k46*k52*k62 + k21*k32*k41*k52*k62 + k14*k34*k45*k52*k64 + k14*k34*k46*k54*k62 + k21*k32*k41*k52*k64 + k21*k32*k41*k54*k62 + k21*k32*k43*k52*k62 + k21*k34*k41*k52*k62 + k21*k32*k41*k54*k64 + k21*k32*k43*k52*k64 + k21*k32*k43*k54*k62 + k21*k32*k45*k52*k62 + k21*k34*k41*k52*k64 + k21*k34*k41*k54*k62 + k23*k34*k41*k52*k62 + k21*k32*k46*k52*k62 + k21*k32*k43*k54*k64 + k21*k32*k45*k52*k64 + k21*k34*k41*k54*k64 + k21*k34*k45*k52*k62 + k23*k34*k41*k52*k64 + k23*k34*k41*k54*k62 + k25*k32*k41*k54*k62 + k21*k32*k46*k54*k62 + k21*k34*k46*k52*k62 + k26*k32*k41*k52*k64 + k21*k34*k45*k52*k64 + k23*k34*k41*k54*k64 + k25*k32*k41*k54*k64 + k25*k34*k41*k54*k62 + k21*k34*k46*k54*k62 + k26*k32*k41*k54*k64 + k26*k34*k41*k52*k64 + k25*k34*k41*k54*k64 + k26*k34*k41*k54*k64);
E6 = 1 - E1 - E2 - E3 - E4 - E5;
% Net Turnover Rates
JQH2 = ETC3_activity*((kfQH2c3_12*E1 - krQH2c3_12*E2) + (kfQH2c3_34*E3 - krQH2c3_34*E4) + (kfQH2c3_45*E4 - krQH2c3_45*E5) + (kfQH2c3_26*E2 - krQH2c3_26*E6) - (kfQH2_41*E4 - krQH2_41*E1) - (kfQH2_52*E5 - krQH2_52*E2));
% QH2 consumption
JSO = ETC3_activity*((kfSO_21*E2 - krSO_21*E1) + (kfSO_43*E4 - krSO_43*E3) + (kfSO_54*E5 - krSO_54*E4) + (kfSO_62*E6 - krSO_62*E2));
% superoxide production
% for numerical stability, enforce strict stoichiometric coupling
J_ETC3_im_to_matrix = (2*JQH2 - JSO);
%ETC4:im_to_matrix
ETC4_activity = par(8);
c3 = cytocox_im; % M
c2 = cytocred_im; % M
O2 = 200e-6; % constant oxygen concentration (M)
% Hx = h_im; % M
% Hi = h_matrix; % M
dPsi = DPsi_im_to_matrix; % mV
KM = 1.6115e-04; % M
beta = 6.6054e-06; % unitless
DGro_ETC4 =-202.524;
Keq_ETC4 = exp(-DGro_ETC4/RT)* exp( -(4*F*DPsi_im_to_matrix)/RT)*P(14)^2/P(15)^2*h_matrix^4/h_im^2;
J_ETC4_im_to_matrix = 1e-0*ETC4_activity*(O2./(O2+1E-6)).*(c2.^2./(c2.^2 + KM^2*(1+beta*exp(dPsi*2*F/RT)))).*(1 - (c3.^2./c2.^2./O2.^.5)./Keq_ETC4);
% if O2 < 1e-12 | c2 < 1e-9
% J_ETC4_im_to_matrix = 0;
% end
%HLEAK:im_to_matrix
x_HLE =par(9);
FRT = DPsi_im_to_matrix*F/RT/2;
J_HLEAK_im_to_matrix = x_HLE*(h_im*exp(FRT) - h_matrix*exp(-FRT));
%PIH:im_to_matrix
a = Pi_im*(h_im/Kh(16))/P(16);
p = Pi_matrix*(h_matrix/Kh(5))/P(5);
x_PIH =par(10);
k_PIH = 1.61e-3;
J_PIH_im_to_matrix = (x_PIH/k_PIH)*(h_im*a - h_matrix*p)/(1+a/k_PIH)/(1+k_PIH);
%ANT:im_to_matrix
x_ANT =par(11);
ADP_i1 = ADP_im/P(17);
% ADP^3-;
ATP_i1 = ATP_im/P(18);
% ATP^4-;
ADP_x1 = ADP_matrix/P(3);
% ADP^3-;
ATP_x1 = ATP_matrix/P(4);
% ATP^4-;
del_D = 0.0167;
del_T = 0.0699;
k2_ANT = 9.54/60;
% = 1.59e-1
k3_ANT = 30.05/60;
% = 5.01e-1
K_D_o_ANT = 38.89e-6;
K_T_o_ANT = 56.05e-6;
A = +0.2829;
B = -0.2086;
C = +0.2372;
fi = F*DPsi_im_to_matrix/RT;
k2_ANT_fi = k2_ANT*exp((A*(-3)+B*(-4)+C)*fi);
k3_ANT_fi = k3_ANT*exp((A*(-4)+B*(-3)+C)*fi);
K_D_o_ANT_fi = K_D_o_ANT*exp(3*del_D*fi);
K_T_o_ANT_fi = K_T_o_ANT*exp(4*del_T*fi);
q = k3_ANT_fi*K_D_o_ANT_fi*exp(fi)/(k2_ANT_fi*K_T_o_ANT_fi);
term2 = k2_ANT_fi*ATP_x1.*ADP_i1*q/K_D_o_ANT_fi ;
term3 = k3_ANT_fi.*ADP_x1.*ATP_i1/K_T_o_ANT_fi;
num = term2 - term3;
den = (1 + ATP_i1/K_T_o_ANT_fi + ADP_i1/K_D_o_ANT_fi)*(ADP_x1 + ATP_x1*q);
J_ANT_im_to_matrix = x_ANT*num/den;
% x_ANT'(in the paper) = x_ANT/7.2679e-003*(0.70e-1);
%KH:im_to_matrix
k1_KH =par(12);
J_KH_im_to_matrix = k1_KH*(k_im*h_matrix - k_matrix*h_im);
%AMPPERM:cytoplasm_to_im
x_AMPPERM =par(13);
J_AMPPERM_cytoplasm_to_im = gamma * x_AMPPERM * (AMP_c - AMP_im);
%ADPPERM:cytoplasm_to_im
x_ADPPERM =par(14);
J_ADPPERM_cytoplasm_to_im = gamma * x_ADPPERM * (ADP_c - ADP_im);
%ATPPERM:cytoplasm_to_im
x_ATPPERM =par(15);
J_ATPPERM_cytoplasm_to_im = gamma * x_ATPPERM * (ATP_c - ATP_im);
%PIPERM:cytoplasm_to_im
x_PIPERM =par(16);
J_PIPERM_cytoplasm_to_im = gamma * x_PIPERM * (Pi_c - Pi_im);
%HPERM:cytoplasm_to_im
x_HPERM =par(17);
J_HPERM_cytoplasm_to_im = x_HPERM * (h_c - h_im);
%KPERM:cytoplasm_to_im
x_KPERM =par(18);
J_KPERM_cytoplasm_to_im = x_KPERM * (k_c - k_im);
%MPERM:cytoplasm_to_im
x_MPERM =par(19);
J_MPERM_cytoplasm_to_im = x_MPERM * (m_c - m_im);
%% REACTANT TIME DERIVATIVES
f(1,:) = ( 0 - 1*J_DH_matrix + 1*J_ETC1_im_to_matrix ) / VWater_matrix; % NAD_matrix
f(2,:) = ( 0 + 1*J_DH_matrix - 1*J_ETC1_im_to_matrix ) / VWater_matrix; % NADH_matrix
f(3,:) = ( 0 - 1*J_F1F0ATPASE_im_to_matrix + 1*J_ANT_im_to_matrix ) / VWater_matrix; % ADP_matrix
f(4,:) = ( 0 + 1*J_F1F0ATPASE_im_to_matrix - 1*J_ANT_im_to_matrix ) / VWater_matrix; % ATP_matrix
f(5,:) = ( 0 - 1*J_F1F0ATPASE_im_to_matrix + 1*J_PIH_im_to_matrix ) / VWater_matrix; % Pi_matrix
f(6,:) = ( 0 - 1*J_SDH_BBV_matrix - 1*J_ETC1_im_to_matrix + 1*J_ETC3_im_to_matrix ) / VWater_matrix; % coQ_matrix
f(7,:) = ( 0 + 1*J_SDH_BBV_matrix + 1*J_ETC1_im_to_matrix - 1*J_ETC3_im_to_matrix ) / VWater_matrix; % coQH2_matrix
f(8,:) = ( 0 - 1*J_ATPASE_cytoplasm + 1*J_CK_cytoplasm + 1*J_AK_cytoplasm - 1*J_ATPPERM_cytoplasm_to_im/VRegion_cytoplasm*VRegion_im ) / VWater_cytoplasm; % ATP_c
f(9,:) = ( 0 + 1*J_ATPASE_cytoplasm - 1*J_CK_cytoplasm - 2*J_AK_cytoplasm - 1*J_ADPPERM_cytoplasm_to_im/VRegion_cytoplasm*VRegion_im ) / VWater_cytoplasm; % ADP_c
f(10,:) = ( 0 + 1*J_ATPASE_cytoplasm - 1*J_PIPERM_cytoplasm_to_im/VRegion_cytoplasm*VRegion_im ) / VWater_cytoplasm; % Pi_c
f(11,:) = ( 0 - 1*J_CK_cytoplasm ) / VWater_cytoplasm; % phosphocreatine_c
f(12,:) = ( 0 + 1*J_CK_cytoplasm ) / VWater_cytoplasm; % creatine_c
f(13,:) = ( 0 + 1*J_AK_cytoplasm - 1*J_AMPPERM_cytoplasm_to_im/VRegion_cytoplasm*VRegion_im ) / VWater_cytoplasm; % AMP_c
f(14,:) = ( 0 - 2*J_ETC3_im_to_matrix + 2*J_ETC4_im_to_matrix ) / VWater_im; % cytocox_im
f(15,:) = ( 0 + 2*J_ETC3_im_to_matrix - 2*J_ETC4_im_to_matrix ) / VWater_im; % cytocred_im
f(16,:) = ( 0 - 1*J_PIH_im_to_matrix + 1*J_PIPERM_cytoplasm_to_im ) / VWater_im; % Pi_im
f(17,:) = ( 0 - 1*J_ANT_im_to_matrix + 1*J_ADPPERM_cytoplasm_to_im ) / VWater_im; % ADP_im
f(18,:) = ( 0 + 1*J_ANT_im_to_matrix + 1*J_ATPPERM_cytoplasm_to_im ) / VWater_im; % ATP_im
f(19,:) = ( 0 + 1*J_AMPPERM_cytoplasm_to_im ) / VWater_im; % AMP_im
%% ION EQUATIONS
% COMPARTMENT matrix:
ii = [1 2 3 4 5 6 7]; % Indices of SVs in compartment matrix
% PARTIAL DERIVATIVES
pHBpK = -sum( (h_matrix*x(ii)'./Kh(ii))./(Kk(ii).*P(ii).^2) );
pHBpM = -sum( (h_matrix*x(ii)'./Kh(ii))./(Km(ii).*P(ii).^2) );
pHBpH = +sum( (1+m_matrix./Km(ii)+k_matrix./Kk(ii)).*x(ii)'./(Kh(ii).*P(ii).^2) );
pMBpH = -sum( (m_matrix*x(ii)'./Km(ii))./(Kh(ii).*P(ii).^2) );
pMBpK = -sum( (m_matrix*x(ii)'./Km(ii))./(Kk(ii).*P(ii).^2) );
pMBpM = +sum( (1+h_matrix./Kh(ii)+k_matrix./Kk(ii)).*x(ii)'./(Km(ii).*P(ii).^2) );
pKBpH = -sum( (k_matrix*x(ii)'./Kk(ii))./(Kh(ii).*P(ii).^2) );
pKBpM = -sum( (k_matrix*x(ii)'./Kk(ii))./(Km(ii).*P(ii).^2) );
pKBpK = +sum( (1+h_matrix./Kh(ii)+m_matrix./Km(ii)).*x(ii)'./(Kk(ii).*P(ii).^2) );
% PHIs
J_H = (0 + 1*J_DH_matrix + 0*J_SDH_BBV_matrix + 1.66667*J_F1F0ATPASE_im_to_matrix + 0*J_F1F0ATPASE_im_to_matrix - 5*J_ETC1_im_to_matrix - 2*J_ETC3_im_to_matrix - 4*J_ETC4_im_to_matrix + 1*J_HLEAK_im_to_matrix + 2*J_PIH_im_to_matrix - 1*J_KH_im_to_matrix) / VWater_matrix;
J_M = (0) / VWater_matrix;
J_K = (0 + 1*J_KH_im_to_matrix) / VWater_matrix;
Phi_H = J_H - sum( h_matrix*f(ii)'./(Kh(ii).*P(ii)) );
Phi_M = J_M - sum( m_matrix*f(ii)'./(Km(ii).*P(ii)) );
Phi_K = J_K - sum( k_matrix*f(ii)'./(Kk(ii).*P(ii)) );
% ALPHAs
% aH = 1 + pHBpH;
aM = 1 + pMBpM;
aK = 1 + pKBpK;
% ADDITIONAL BUFFER for [H+]
aH = 1 + pHBpH + BX(1)/K_BX(1)/(1+h_matrix/K_BX(1))^2; % M
% DENOMINATOR
D = aH*pKBpM*pMBpK + aK*pHBpM*pMBpH + aM*pHBpK*pKBpH - ...
aM*aK*aH - pHBpK*pKBpM*pMBpH - pHBpM*pMBpK*pKBpH;
% DERIVATIVES for H,Mg,K
f(20,:) = ( (pKBpM*pMBpK - aM*aK)*Phi_H + ...
(aK*pHBpM - pHBpK*pKBpM)*Phi_M + ...
(aM*pHBpK - pHBpM*pMBpK)*Phi_K ) / D;
f(21,:) = ( (aK*pMBpH - pKBpH*pMBpK)*Phi_H + ...
(pKBpH*pHBpK - aH*aK)*Phi_M + ...
(aH*pMBpK - pHBpK*pMBpH)*Phi_K ) / D;
f(22,:) = ( (aM*pKBpH - pKBpM*pMBpH)*Phi_H + ...
(aH*pKBpM - pKBpH*pHBpM)*Phi_M + ...
(pMBpH*pHBpM - aH*aM)*Phi_K ) / D;
% COMPARTMENT cytoplasm:
ii = [8 9 10 11 12 13]; % Indices of SVs in compartment cytoplasm
% PARTIAL DERIVATIVES
pHBpK = -sum( (h_c*x(ii)'./Kh(ii))./(Kk(ii).*P(ii).^2) );
pHBpM = -sum( (h_c*x(ii)'./Kh(ii))./(Km(ii).*P(ii).^2) );
pHBpH = +sum( (1+m_c./Km(ii)+k_c./Kk(ii)).*x(ii)'./(Kh(ii).*P(ii).^2) );
pMBpH = -sum( (m_c*x(ii)'./Km(ii))./(Kh(ii).*P(ii).^2) );
pMBpK = -sum( (m_c*x(ii)'./Km(ii))./(Kk(ii).*P(ii).^2) );
pMBpM = +sum( (1+h_c./Kh(ii)+k_c./Kk(ii)).*x(ii)'./(Km(ii).*P(ii).^2) );
pKBpH = -sum( (k_c*x(ii)'./Kk(ii))./(Kh(ii).*P(ii).^2) );
pKBpM = -sum( (k_c*x(ii)'./Kk(ii))./(Km(ii).*P(ii).^2) );
pKBpK = +sum( (1+h_c./Kh(ii)+m_c./Km(ii)).*x(ii)'./(Kk(ii).*P(ii).^2) );
% PHIs
J_H = (0 + 1*J_ATPASE_cytoplasm - 1*J_CK_cytoplasm + 0*J_AK_cytoplasm - 1*J_HPERM_cytoplasm_to_im/VRegion_cytoplasm*VRegion_im) / VWater_cytoplasm;
J_M = (0 - 1*J_MPERM_cytoplasm_to_im/VRegion_cytoplasm*VRegion_im) / VWater_cytoplasm;
J_K = (0 - 1*J_KPERM_cytoplasm_to_im/VRegion_cytoplasm*VRegion_im) / VWater_cytoplasm;
Phi_H = J_H - sum( h_c*f(ii)'./(Kh(ii).*P(ii)) );
Phi_M = J_M - sum( m_c*f(ii)'./(Km(ii).*P(ii)) );
Phi_K = J_K - sum( k_c*f(ii)'./(Kk(ii).*P(ii)) );
% ALPHAs
% aH = 1 + pHBpH;
aM = 1 + pMBpM;
aK = 1 + pKBpK;
% ADDITIONAL BUFFER for [H+]
aH = 1 + pHBpH + BX(2)/K_BX(2)/(1+h_c/K_BX(2))^2; % M
% DENOMINATOR