forked from cmrg-lab/dATP_multiscale_modeling
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdXdT_myocyte_mechanics.m
216 lines (181 loc) · 7.03 KB
/
dXdT_myocyte_mechanics.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
%%%% Differential equations for myocyte model
% Adapted by Abby Teitgen based on code from:
% Tewari, S. G., Bugenhagen, S. M., Palmer, B. M, Beard,
% D. A. (2016). Dynamics of corss-bridge cycling, ATP hydrolysis, force
% generation, and deformation in cardiac muscle. J. Mol. Cell Cardiol. 96:
% 11-25.
% Tewari, S. G., Bugenhagen, S. M., Vinnakota, K. C., Rice, J. J., Janssen,
% M. L., Beard, D. A. (2016). Influence of metabolic dysfuntion on cardiac
% mechanics in decompensated hypertrophy and heart failure. J. Mol.
% Cell Cardiol. 94: 162-175.
% Lopez, R. Marzban, B., Gao, X. Lauinger, E., Van den Bergh, F.,
% Whitesall, S. E., Converso-Baran, K., Burant, C. F., Michele, D. E.,
% Beard, D. A. (2020). Impaired myocardial energetics causes mechanical dysfunction
% in decompensated failing hearts. Function, 1(2): zqaa018
% Marzban, B., Lopez, R., Beard, D. A. (2020). Computational modeling of coupled
% energetics and mechanics in the rat ventricular myocardium. Physiome.
function [dYdT, dSL, F_XB, F_passive] = dXdT_myocyte_mechanics(t, y, para, Ca_fraction, flag, Ca_flag)
%% Model parameters
% Metabolite concentrations based on mean sham rat (Lopez et al. 2020)
MgATP = para(1); % mM
MgADP = para(2); % mM
Pi = para(3); % mM
% Crossbridge parameters
kstiff1 = para(4); % Stiffness constant due to myosin-actin interaction (kPa/um)
kstiff2 = para(5); % Stiffness constant due to working stroke of XBs (kPa/um)
k_passive = para(6); % Passive stiffness constant (kPa/um)
Kse = para(7); % Series element stiffness (mmHg/um)
k_coop = para(8); % Strength of thin filament cooperativity
k_on = para(9); % Rate constant of Ca2+ binding to troponin C (uM^-1s^-1)
k_off = para(10); % Rate constant of Ca2+ unbinding from troponin C (s^-1)
km = para(11); % OFF to ON transition rate (s^-1)
krecruit = para(12); % Force dependence of transition to OFF state (N^-1 m^-1)
k_m = para(13); % ON to OFF transition rate (s^-1)
kf = para(14); % Myosin actin associaiton rate (P to A1) (s^-1)
k_f = para(15); % Myosin actin dissociation rate (A1 to P) (s^-1)
kw = para(16); % A1 to A2 transition rate (s^-1)
k_w = para(17); % A2 to A1 transition rate (s^-1)
kp = para(18); % A2 to A3 transition rate (s^-1)
k_p = para(19); % A3 to A2 transition rate (s^-1)
kg = para(20); % A3 to P transition rate (s^-1)
visc = para(21); % Viscosity (mmHg*s/um)
stim_period = para(22); % Hz
% Calcium transient
a_Ca = para(23);
b_Ca = para(24);
c_Ca = para(25);
L_rest_pas = 1.51; % Length at which passive force = 0 (um)
alpha1 = 10; % Stretch sensing parameter for kw and k_w (1/um)
alpha2 = 9.1; % Stretch sensing parameter for kp and k_p
alpha3 = 5.93; % Stretch sensing parameter for kg
s3 = 9.9e-3; % Strain at which kg is minimum (um)
K_Pi = 4.00; % Pi dissociation constant (mM)
K_T = 0.4897 ; % MgATP dissociation constant (mM)
K_D = 0.194; % MgADP dissociation constant (mM)
Lthin = 1.200; % Length of thin filament (nm)
Lthick = 1.670; % Length of thick filament (nm)
Lbare = 0.100; % Bare length of thin filament (nm)
dr = 0.01; % Power-stroke size (um)
% Defining the metabolite dependent coeficient, rapid equilibrium of the
% cross bridge sub-states
g1 = (MgADP/K_D)/(1 + MgADP/K_D + MgATP/K_T);
g2 = (MgATP/K_T)/(1 + MgATP/K_T + MgADP/K_D);
f1 = (Pi/K_Pi)/(1 + Pi/K_Pi);
f2 = 1/(1 + Pi/K_Pi);
% Adjust for metabolite concentrations
k_f = k_f*f1;
kw = kw*f2;
k_p = k_p*g1;
kg = kg*g2;
if flag == 0 % force pCa
SLset = 2.25;
Ca_i = Ca_fraction;
else if flag == 1 % Twitch
SLset = 1.84;
if Ca_flag == 0 % ATP
% Korte
%a = 0.106;
%b = 0.5635;
%c = 1.8017;
%Ca0 = 0;
% Average
%a = 0.1208;
%b = 0.6651;
%c = 1.7374;
a = a_Ca;
b = b_Ca;
c = c_Ca;
Ca0 = 0;
else % dATP
% Korte
%a = 0.0534;
%b = 0.5484;
%c = 2.4732;
%Ca0 = 0;
% KM
%a = 0.1114;
%b = 0.8391;
%c = 1.8965;
%Ca0 = 0;
% Average
%a = 0.0864;
%b = 0.5971;
%c = 2.0301;
a = a_Ca;
b = b_Ca;
c = c_Ca;
Ca0 = 0;
end
phi = mod(t+0.001, stim_period)/stim_period;
Ca_i = ((a/phi)*exp(-b*(log(phi)+c)^2) + Ca0);
end
end
%% State variables
% Moments of state variables
p1_0 = y(1);
p1_1 = y(2);
p1_2 = y(3);
p2_0 = y(4);
p2_1 = y(5);
p2_2 = y(6);
p3_0 = y(7);
p3_1 = y(8);
p3_2 = y(9);
N = y(10); % Non-permissible state
P = 1.0 - N - p1_0 - p2_0 - p3_0; % Permssible state
SL = y(11); % Sarcomere length (um)
U_NR = y(12); % ON state
U_SR = 1.0 - U_NR; % OFF state
%% Stretch-sensitive rates
f_alpha1o = (p1_0 - alpha1*p1_1 + 0.5*(alpha1*alpha1)*p1_2);
f_alpha1i = (p1_1 - alpha1*p1_2);
f_alpha0o = (p2_0 + alpha1*p2_1 + 0.5*alpha1*alpha1*p2_2);
f_alpha0i = (p2_1 + alpha1*p2_2);
f_alpha2o = (p2_0 - alpha2*p2_1 + 0.5*(alpha2*alpha2)*p2_2);
f_alpha2i = (p2_1 - alpha2*p2_2);
f_alpha3o = (p3_0 + alpha3*(s3*s3*p3_0 + 2.0*s3*p3_1 + p3_2));
f_alpha3i = (p3_1 + alpha3*(s3*s3*p3_1 + 2.0*s3*p3_2));
%% Compute active and passive force
% Overlap function
OV_Zaxis = min(Lthick/2, SL/2); % Overlap region closest to Z-axis (nm)
OV_Mline = max(SL/2 - (SL - Lthin), Lbare/2); % Overal region closest to M-line (nm)
LOV = OV_Zaxis - OV_Mline; % Length of overlap (nm)
N_overlap_thick = LOV*2/(Lthick - Lbare); % Fraction of thick filament overlap
% Active Force
B_process = kstiff2*dr*p3_0; % Force due to XB ratcheting
C_process = kstiff1*(p2_1 + p3_1 );% Force due to stretching of XBs
F_XB = N_overlap_thick*(B_process + C_process); % Active force
% Passive force
gamma = 8;
F_passive = k_passive*(SL - L_rest_pas)^gamma;
% Total force
Ftotal = F_XB + F_passive;
%% Simulate various experimental protocols
if flag == 0 % Force pCa
%dSL = 0; % Fully isometric
intf = (- Ftotal + Kse*(SLset - SL));
dSL = intf/visc; % Muscle isometric but not sarcomere isometric
else if flag == 1 % Twitch
intf = (-Ftotal + Kse*(SLset - SL));
%intf = -Ftotal; % Fully unloaded shortening
dSL = intf/visc;
%dSL = 0; % Fully isometric
end
end
dp1_0 = kf*P*N_overlap_thick*U_NR - k_f*p1_0 - kw*f_alpha1o + k_w*f_alpha0o;
dp1_1 = 1*dSL*p1_0 - k_f*p1_1 - kw*f_alpha1i + k_w*f_alpha0i;
dp1_2 = 2*dSL*p1_1 - k_f*p1_2 - kw*p1_2 + k_w*p2_2;
dp2_0 = - k_w*f_alpha0o - kp*f_alpha2o + k_p*p3_0 + kw*f_alpha1o;
dp2_1 = 1*dSL*p2_0 - k_w*f_alpha0i - kp*f_alpha2i + k_p*p3_1 + kw*f_alpha1i;
dp2_2 = 2*dSL*p2_1 - k_w*p2_2 - kp*p2_2 + k_p*p3_2 + kw*p1_2;
dp3_0 = + kp*f_alpha2o - k_p*p3_0 - kg*f_alpha3o;
dp3_1 = 1*dSL*p3_0 + kp*f_alpha2i - k_p*p3_1 - kg*f_alpha3i;
dp3_2 = 2*dSL*p3_1 + kp*p2_2 - k_p*p3_2 - kg*p3_2;
%% Campbell Ca activation model (Campbell et al. 2018)
Jon = k_on*Ca_i*N*(1 + k_coop*(1 - N));
Joff = k_off*P*(1 + k_coop*N);
dNp = -Jon + Joff;
%% Transitions between OFF and ON states
dU_NR = km * (1 + krecruit * F_XB) * U_SR - k_m * U_NR; % ON state
dYdT = [dp1_0; dp1_1; dp1_2; dp2_0; dp2_1; dp2_2; dp3_0; dp3_1; dp3_2; dNp; dSL; dU_NR];
end