-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtune.py
240 lines (212 loc) · 10.8 KB
/
tune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import argparse
import numpy as np
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import random_split
import torchvision
import torchvision.transforms as transforms
from ray import tune
from ray.tune import CLIReporter
from sklearn.model_selection import train_test_split
from copy import deepcopy
import random
from data import get_data
from models.utils import get_model
from funcs import train, test
# arg parse
parser = argparse.ArgumentParser(description='re-sln training')
parser.add_argument('--dataset_name', type=str, choices=["cifar10", "cifar100", "clothing1m"], help='name of the dataset', required=True)
parser.add_argument('--batch_size', type=int, default=128, help='batch size for sgd', required=True)
parser.add_argument('--n_epochs', type=int, default=300, help='number of epochs to train for', required=True)
parser.add_argument('--lr', type=float, default=0.001, help='learning rate of optimizer', required=True)
parser.add_argument('--noise_mode', type=str, choices=['sym', 'asym', 'openset', 'dependent'], help='noise mode', required=True)
parser.add_argument('--p', type=float, default=0.4, help='noise rate', required=True)
parser.add_argument('--custom_noise', dest='custom_noise', action='store_true', default=False, help='whether to use custom noise',)
parser.add_argument('--make_new_custom_noise', dest='make_new_custom_noise', action='store_true', default=False, help='whether to generate new custom noise')
parser.add_argument('--mo', dest='mo', action='store_true', default=False, help='whether to use momentum model')
parser.add_argument('--lc_n_epoch', type=int, default=250, help='label correction starts at this epoch (if -1, no lc)', required=True)
parser.add_argument('--val_size', type=float, default=0.1, help='validation split size as float (0.1 is 5k for cifar10 and cifar100)', required=True)
parser.add_argument('--seed', type=int, default=0, help='random seed (default: 0, experiments done with 123)', required=True)
datapath = os.path.join(os.path.dirname(os.path.realpath(__file__)), "data")
def hp(config, checkpoint_dir, datapath, dataset_name, noise_mode, p, custom_noise, make_new_custom_noise, seed, batch_size, n_epochs, lr,
mo, lc_n_epoch, val_size):
train_dataset, _, indices_noisy, noise_rules, test_dataset = get_data(
dataset_name=dataset_name,
datapath=datapath,
noise_mode=noise_mode,
p=p,
custom_noise=custom_noise,
make_new_custom_noise=make_new_custom_noise,
seed=seed
)
# get stratified split (5k noisy samples, so val_size=0.1)
val_dataset = deepcopy(train_dataset)
X_train, X_val, y_train, y_val = train_test_split(train_dataset.data, train_dataset.targets, test_size=val_size, stratify=train_dataset.targets,
random_state=seed)
train_dataset.data, train_dataset.targets = X_train, y_train
val_dataset.data, val_dataset.targets = X_val, y_val
# get number of classes
n_classes = len(list(train_dataset.class_to_idx.keys()))
# make targets one-hot (easier to handle in lc and sln), targets_one_hot used in lc
targets = train_dataset.targets
targets_one_hot, train_dataset.targets = np.eye(n_classes)[targets], np.eye(n_classes)[targets]
targets_val = val_dataset.targets
val_dataset.targets = np.eye(n_classes)[targets_val]
# train_dataloader is modified if lc is used
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=2)
# train_eval_dataloader is never modified, and is used to compute the loss weights for lc
train_eval_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=False, num_workers=2)
# val_dataloader
val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=2)
# get models for naive and ema (depends on dataset)
model_name = "wrn-28-2" if dataset_name in ["cifar10", "cifar100"] else "MODEL_NAME_FOR_CLOTHING1M"
model = get_model(model_name=model_name, n_classes=n_classes, device=device)
# if multi gpu
if device == "cuda":
if 1 < torch.cuda.device_count():
model = torch.nn.DataParallel(model)
model.to(device)
# optimizer for model
optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=5e-4)
# ema model (MO)
model_ema = get_model(model_name=model_name, n_classes=n_classes, device=device) if mo else None
if model_ema:
# no grads for model_ema
for param in model_ema.parameters():
param.detach_()
# if multi gpu
if device == "cuda":
if 1 < torch.cuda.device_count():
model_ema = torch.nn.DataParallel(model_ema)
model_ema.to(device)
# ema model optimizer
optimizer_ema = WeightEMA(model, model_ema, alpha=0.999)
else:
optimizer_ema = None
sigma = deepcopy(config["sigma"])
# start experiment
for n_epoch in range(1, n_epochs+1):
# label-correction
# if SLN-MO-LC model
if model_ema and 0 < lc_n_epoch and lc_n_epoch <= n_epoch:
# set sigma to 0, no more stochastic label noise as lc starts
sigma = 0
# keep targets one hot through lc
losses, softmaxes = \
get_lc_params(model_ema=model_ema, train_eval_dataloader=train_eval_dataloader, device=device,
n_epoch=n_epoch, n_epochs=n_epochs, verbose=False)
# normalize to [0.0, 1.0]
weights = torch.reshape((losses - torch.min(losses)) / (torch.max(losses) - torch.min(losses)), (len(train_dataloader.dataset), 1))
weights = weights.numpy()
preds = np.argmax(softmaxes.numpy(), axis=1).tolist()
preds_one_hot = np.eye(n_classes)[preds]
# do lc and reload training data (targets_one_hot fixed variable from above)
targets_one_hot_lc = weights*targets_one_hot + (1-weights)*preds_one_hot
train_dataset.targets = targets_one_hot_lc
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=2)
# train
loss_epoch, accuracy_epoch, loss_noisy_epoch, loss_clean_epoch = train(
model=model,
device=device,
train_dataloader=train_dataloader,
optimizer=optimizer,
optimizer_ema=optimizer_ema,
sigma=sigma,
n_classes=n_classes,
n_epoch=n_epoch,
n_epochs=n_epochs,
indices_noisy=indices_noisy,
verbose=False
)
# if SLN-MO or SLN-MO-LC model, test with EMA model
if optimizer_ema:
loss_val, accuracy_val = test(
model=model_ema,
device=device,
test_dataloader=val_dataloader,
n_epoch=n_epoch,
n_epochs=n_epochs,
verbose=False)
# if CE or SLN model, test with model
else:
loss_val, accuracy_val = test(
model=model,
device=device,
test_dataloader=val_dataloader,
n_epoch=n_epoch,
n_epochs=n_epochs,
verbose=False)
tune.report(
loss_train=loss_epoch,
loss_train_noisy=loss_noisy_epoch,
loss_train_clean=loss_clean_epoch,
accuracy_train=accuracy_epoch,
loss_val=loss_val,
accuracy_val=accuracy_val)
def hptune(sigmas, use_n_cpus_per_trial, use_n_gpus_per_trial, datapath, dataset_name, noise_mode, p, custom_noise,
make_new_custom_noise, seed, batch_size, n_epochs, lr, mo, lc_n_epoch, val_size):
# hp
config = {"sigma": tune.grid_search(sigmas)}
reporter = CLIReporter(
# parameter_columns=["sigma"],
#metric_columns=["loss", "accuracy", "training_iteration"])
metric_columns=["loss_train", "loss_train_noisy", "loss_train_clean",
"accuracy_train", "loss_val", "accuracy_val",
"training_iteration"])
result = tune.run(
tune.with_parameters(hp,
checkpoint_dir=None, datapath=datapath, dataset_name=dataset_name,
noise_mode=noise_mode, p=p, custom_noise=custom_noise,
make_new_custom_noise=make_new_custom_noise,
seed=seed, batch_size=batch_size, n_epochs=n_epochs,
lr=lr, mo=mo, lc_n_epoch=lc_n_epoch, val_size=val_size),
resources_per_trial={"cpu": use_n_cpus_per_trial, "gpu": use_n_gpus_per_trial},
config=config,
num_samples=1, #so grid_search is repeated once only
local_dir=os.path.join(os.path.dirname(os.path.realpath(__file__)), "hp"),
progress_reporter=reporter
)
best_trial = result.get_best_trial("accuracy_val", "max", "last")
print(f"best trial config: {best_trial.config}")
print(f"best trial final validation accuracy: {best_trial.last_result['accuracy_val']}")
print(f"best trial final validation loss: {best_trial.last_result['loss_val']}")
print(f"best trial final train accuracy: {best_trial.last_result['accuracy_train']}")
print(f"best trial final train loss: {best_trial.last_result['loss_train']}")
print(f"best trial final train loss clean: {best_trial.last_result['loss_train_clean']}")
print(f"best trial final train loss noisy: {best_trial.last_result['loss_train_noisy']}")
if __name__ == "__main__":
# args parse
args = parser.parse_args()
assert os.cpu_count() == 4 and torch.cuda.device_count() == 2, f"this script needs to be changed if not used with 4 cpus and 2 gpus"
# device
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f'using {device} device')
if device == "cuda":
print(f"using {torch.cuda.device_count()} GPU(s)")
# reproducibility
random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
use_n_cpus_per_trial = 2
use_n_gpus_per_trial = 1
sigmas = [0.1, 0.2, 0.5, 1.0]
hptune(
sigmas=sigmas,
use_n_cpus_per_trial=use_n_cpus_per_trial,
use_n_gpus_per_trial=use_n_gpus_per_trial,
datapath=datapath,
dataset_name=args.dataset_name,
noise_mode=args.noise_mode,
p=args.p,
custom_noise=args.custom_noise,
make_new_custom_noise=args.make_new_custom_noise,
seed=args.seed,
batch_size=args.batch_size,
n_epochs=args.n_epochs,
lr=args.lr,
mo=args.mo,
lc_n_epoch=args.lc_n_epoch,
val_size=args.val_size)