-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
921 lines (789 loc) · 39 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
import os
import sys
import re
import six
import math
import lmdb
import torch
import copy
import random
import pickle
from augmentation.weather import Fog, Snow, Frost
from augmentation.warp import Curve, Distort, Stretch
from augmentation.geometry import Rotate, Perspective, Shrink, TranslateX, TranslateY
from augmentation.pattern import VGrid, HGrid, Grid, RectGrid, EllipseGrid
from augmentation.noise import GaussianNoise, ShotNoise, ImpulseNoise, SpeckleNoise
from augmentation.blur import GaussianBlur, DefocusBlur, MotionBlur, GlassBlur, ZoomBlur
from augmentation.camera import Contrast, Brightness, JpegCompression, Pixelate
from augmentation.weather import Fog, Snow, Frost, Rain, Shadow
from augmentation.process import Posterize, Solarize, Invert, Equalize, AutoContrast, Sharpness, Color
from natsort import natsorted
from PIL import Image
import PIL.ImageOps
import numpy as np
from torch.utils.data import Dataset, ConcatDataset, Subset
from torch._utils import _accumulate
import torchvision.transforms as transforms
import torchvision.transforms.functional as TF
import random
class Batch_Balanced_Dataset(object):
def __init__(self, opt):
"""
Modulate the data ratio in the batch.
For example, when select_data is "MJ-ST" and batch_ratio is "0.5-0.5",
the 50% of the batch is filled with MJ and the other 50% of the batch is filled with ST.
"""
if not os.path.exists(f'./saved_models/{opt.exp_name}/'):
os.makedirs(f'./saved_models/{opt.exp_name}/')
log = open(f'./saved_models/{opt.exp_name}/log_dataset.txt', 'a')
dashed_line = '-' * 80
print(dashed_line)
log.write(dashed_line + '\n')
print(f'dataset_root: {opt.train_data}\nopt.select_data: {opt.select_data}\nopt.batch_ratio: {opt.batch_ratio}')
log.write(f'dataset_root: {opt.train_data}\nopt.select_data: {opt.select_data}\nopt.batch_ratio: {opt.batch_ratio}\n')
assert len(opt.select_data) == len(opt.batch_ratio)
_AlignCollate = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD, opt=opt)
self.data_loader_list = []
self.dataloader_iter_list = []
batch_size_list = []
Total_batch_size = 0
notSelectiveVal = True
if opt.selective_sample_str != '':
notSelectiveVal = False
for selected_d, batch_ratio_d in zip(opt.select_data, opt.batch_ratio):
_batch_size = max(round(opt.batch_size * float(batch_ratio_d)), 1)
print(dashed_line)
log.write(dashed_line + '\n')
_dataset, _dataset_log = hierarchical_dataset(root=opt.train_data, opt=opt, notSelective=notSelectiveVal, select_data=[selected_d])
total_number_dataset = len(_dataset)
log.write(_dataset_log)
"""
The total number of data can be modified with opt.total_data_usage_ratio.
ex) opt.total_data_usage_ratio = 1 indicates 100% usage, and 0.2 indicates 20% usage.
See 4.2 section in our paper.
"""
number_dataset = int(total_number_dataset * float(opt.total_data_usage_ratio))
dataset_split = [number_dataset, total_number_dataset - number_dataset]
indices = range(total_number_dataset)
_dataset, _ = [Subset(_dataset, indices[offset - length:offset])
for offset, length in zip(_accumulate(dataset_split), dataset_split)]
selected_d_log = f'num total samples of {selected_d}: {total_number_dataset} x {opt.total_data_usage_ratio} (total_data_usage_ratio) = {len(_dataset)}\n'
selected_d_log += f'num samples of {selected_d} per batch: {opt.batch_size} x {float(batch_ratio_d)} (batch_ratio) = {_batch_size}'
print(selected_d_log)
log.write(selected_d_log + '\n')
batch_size_list.append(str(_batch_size))
Total_batch_size += _batch_size
_data_loader = torch.utils.data.DataLoader(
_dataset, batch_size=_batch_size,
shuffle=True,
num_workers=int(opt.workers),
collate_fn=_AlignCollate, pin_memory=True)
self.data_loader_list.append(_data_loader)
self.dataloader_iter_list.append(iter(_data_loader))
Total_batch_size_log = f'{dashed_line}\n'
batch_size_sum = '+'.join(batch_size_list)
Total_batch_size_log += f'Total_batch_size: {batch_size_sum} = {Total_batch_size}\n'
Total_batch_size_log += f'{dashed_line}'
opt.batch_size = Total_batch_size
print(Total_batch_size_log)
log.write(Total_batch_size_log + '\n')
log.close()
def get_batch(self):
balanced_batch_images = []
balanced_batch_texts = []
for i, data_loader_iter in enumerate(self.dataloader_iter_list):
try:
image, text = data_loader_iter.next()
balanced_batch_images.append(image)
balanced_batch_texts += text
except StopIteration:
self.dataloader_iter_list[i] = iter(self.data_loader_list[i])
image, text = self.dataloader_iter_list[i].next()
balanced_batch_images.append(image)
balanced_batch_texts += text
except ValueError:
pass
balanced_batch_images = torch.cat(balanced_batch_images, 0)
return balanced_batch_images, balanced_batch_texts
### notSelective - when False, LMDB dataset loader goes to the routine of randomly
### sampling indices to match --selective_sample_str, else it will no execute the code in the while loop
### and just do the normal VITSTR code
def hierarchical_dataset(root, opt, notSelective=True, select_data='/', segmRootDir=None, maxImages=None):
""" select_data='/' contains all sub-directory of root directory """
dataset_list = []
dataset_log = f'dataset_root: {root}\t dataset: {select_data[0]}'
print(dataset_log)
dataset_log += '\n'
for dirpath, dirnames, filenames in os.walk(root+'/'):
if not dirnames:
select_flag = False
for selected_d in select_data:
if selected_d in dirpath:
select_flag = True
break
if select_flag:
if segmRootDir is None:
dataset = LmdbDataset(dirpath, opt, notSelective, maxImages=maxImages)
else:
dataset = LMDBSegmentationDataset(dirpath, opt, notSelective, segmRootDir=segmRootDir, maxImages=maxImages)
sub_dataset_log = f'sub-directory:\t/{os.path.relpath(dirpath, root)}\t num samples: {len(dataset)}'
print(sub_dataset_log)
dataset_log += f'{sub_dataset_log}\n'
dataset_list.append(dataset)
concatenated_dataset = ConcatDataset(dataset_list)
return concatenated_dataset, dataset_log
class ValidDataset(Dataset):
### validPklData - pickle containing mapping of validIdx to original train/test idx
### knnDataRoot - root dir to open pickle file for knn, with forward slash
### knnCount - max number of knn from 0-knnCount, not necessarily the same number as
### inside the pickle knns
### typeSet - if 'train' or 'test'
### offsetStartIdx - start index of dataset to sample (0 to N-1), where N is size of valid test set
### offsetEndIdx - end index of dataset to sample (0 to N-1), where N is size of valid test set
### actual size of this dataset will be offsetStartIdx - offsetEndIdx
def __init__(self, validPklData, lmdbDataset, typeSet, knnDataRoot, knnCount=None, offsetStartIdx=None, offsetEndIdx=None):
self.validPklData = validPklData
self.lmdbDataset = lmdbDataset
self.typeSet = typeSet
self.knnCount = knnCount
self.totalValidImgs = len(validPklData)
self.knnDataRoot = knnDataRoot
### this function is only for the test dataloader, remember to set batch size to one
self.currentIdx = None
self.knnPklData = None
self.offsetStartIdx = None
if offsetStartIdx is not None:
self.totalValidImgs = offsetEndIdx - offsetStartIdx
self.offsetStartIdx = offsetStartIdx
### this function is purposely created for the trainset dataloader
### call this function to load new pickle file for knn for training set
### be sure to call this function before looping over the dataloader again
### This function also applies offsetting for the test index num i
def setCurrentTestNumKNN(self, testValidIdx):
knnPklFile = self.knnDataRoot + "test" + str(testValidIdx + self.offsetStartIdx) + "knn.pkl"
with open(knnPklFile, 'rb') as f:
### this data is a list of indices with index 0 nearest to the textValidIdx
### according to FAISS KNN
self.knnPklData = pickle.load(f)
self.totalValidImgs = self.knnCount
### index should be the same number thrown by __getitem__ function
### this function will only work properly if the batch size of testdataloader is equal to one
def getValidPklIdx(self):
return self.currentIdx
def __len__(self):
return self.totalValidImgs
def __getitem__(self, index):
if self.typeSet == 'train':
data, label = self.lmdbDataset[self.validPklData[self.knnPklData[index]]]
elif self.typeSet == 'test':
if self.offsetStartIdx is not None:
index = index + self.offsetStartIdx
self.currentIdx = index
data, label = self.lmdbDataset[self.validPklData[index]]
else:
assert(False)
return data, label
class NShotDataset(Dataset):
### infPKLFile - the influence file containing the validTrainIdx list
def __init__(self, infPKLData, validTrainPklData, lmdbDataset):
self.infPKLData = infPKLData
self.totalDataImg = len(infPKLData)
self.validTrainPklData = validTrainPklData
self.lmdbDataset = lmdbDataset
def __len__(self):
return self.totalDataImg
def __getitem__(self, index):
data, label = self.lmdbDataset[self.validTrainPklData[self.infPKLData[index]]]
return data, label
class LmdbDataset(Dataset):
def __init__(self, root, opt, notSelective, maxImages=None):
self.root = root
self.opt = opt
if self.opt.eval == False:
self.currentInfluenceLS = copy.deepcopy(self.opt.influence_idx)
random.shuffle(self.currentInfluenceLS)
self.notSelective = notSelective
self.selective_sample_ls = set([])
self.env = lmdb.open(root, max_readers=32, readonly=True, lock=False, readahead=False, meminit=False)
if not self.env:
print('cannot create lmdb from %s' % (root))
sys.exit(0)
with self.env.begin(write=False) as txn:
nSamples = int(txn.get('num-samples'.encode()))
if maxImages is not None:
nSamples = min(nSamples, maxImages)
self.nSamples = nSamples
if self.opt.data_filtering_off:
# for fast check or benchmark evaluation with no filtering
self.filtered_index_list = [index + 1 for index in range(self.nSamples)]
else:
""" Filtering part
If you want to evaluate IC15-2077 & CUTE datasets which have special character labels,
use --data_filtering_off and only evaluate on alphabets and digits.
see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L190-L192
And if you want to evaluate them with the model trained with --sensitive option,
use --sensitive and --data_filtering_off,
see https://github.com/clovaai/deep-text-recognition-benchmark/blob/dff844874dbe9e0ec8c5a52a7bd08c7f20afe704/test.py#L137-L144
"""
self.filtered_index_list = []
for index in range(self.nSamples):
index += 1 # lmdb starts with 1
label_key = 'label-%09d'.encode() % index
label = txn.get(label_key).decode('utf-8')
if len(label) > self.opt.batch_max_length:
# print(f'The length of the label is longer than max_length: length
# {len(label)}, {label} in dataset {self.root}')
continue
# By default, images containing characters which are not in opt.character are filtered.
# You can add [UNK] token to `opt.character` in utils.py instead of this filtering.
out_of_char = f'[^{self.opt.character}]'
if re.search(out_of_char, label.lower()):
continue
self.filtered_index_list.append(index)
self.nSamples = len(self.filtered_index_list)
def __len__(self):
return self.nSamples
def __getitem__(self, index):
assert index <= len(self), 'index range error'
### Used for influence function training
if self.opt.eval == False:
index = self.currentInfluenceLS.pop(len(self.currentInfluenceLS)-1)
if len(self.currentInfluenceLS) <= 0:
self.currentInfluenceLS = copy.deepcopy(self.opt.influence_idx)
random.shuffle(self.currentInfluenceLS)
while True:
index = self.filtered_index_list[index]
if self.opt.max_selective_list != -1:
if len(self.selective_sample_ls) >= self.opt.max_selective_list:
self.selective_sample_ls.clear()
with self.env.begin(write=False) as txn:
label_key = 'label-%09d'.encode() % index
label = txn.get(label_key).decode('utf-8') ### label - raw utf8 string output
if self.opt.selective_sample_str != '' and not self.notSelective:
if self.opt.ignore_case_sensitivity:
if label.lower() != self.opt.selective_sample_str.lower():
### Reloop
self.selective_sample_ls.add(index)
while True:
index = random.randint(0, len(self)-1)
if index not in self.selective_sample_ls: break
continue
else:
if label != self.opt.selective_sample_str:
### Reloop
self.selective_sample_ls.add(index)
while True:
index = random.randint(0, len(self)-1)
if index not in self.selective_sample_ls: break
continue
img_key = 'image-%09d'.encode() % index
imgbuf = txn.get(img_key)
buf = six.BytesIO()
buf.write(imgbuf)
buf.seek(0)
try:
if self.opt.rgb:
img = Image.open(buf).convert('RGB') # for color image
else:
img = Image.open(buf).convert('L')
except IOError:
print(f'Corrupted image for {index}')
# make dummy image and dummy label for corrupted image.
if self.opt.rgb:
img = Image.new('RGB', (self.opt.imgW, self.opt.imgH))
else:
img = Image.new('L', (self.opt.imgW, self.opt.imgH))
label = '[dummy_label]'
if not self.opt.sensitive:
label = label.lower()
# We only train and evaluate on alphanumerics (or pre-defined character set in train.py)
out_of_char = f'[^{self.opt.character}]'
label = re.sub(out_of_char, '', label)
break
return (img, label)
class RawDataset(Dataset):
def __init__(self, root, opt):
self.opt = opt
self.image_path_list = []
for dirpath, dirnames, filenames in os.walk(root):
for name in filenames:
_, ext = os.path.splitext(name)
ext = ext.lower()
if ext == '.jpg' or ext == '.jpeg' or ext == '.png':
self.image_path_list.append(os.path.join(dirpath, name))
self.image_path_list = natsorted(self.image_path_list)
self.nSamples = len(self.image_path_list)
def __len__(self):
return self.nSamples
def __getitem__(self, index):
try:
if self.opt.rgb:
img = Image.open(self.image_path_list[index]).convert('RGB') # for color image
else:
img = Image.open(self.image_path_list[index]).convert('L')
except IOError:
print(f'Corrupted image for {index}')
# make dummy image and dummy label for corrupted image.
if self.opt.rgb:
img = Image.new('RGB', (self.opt.imgW, self.opt.imgH))
else:
img = Image.new('L', (self.opt.imgW, self.opt.imgH))
return (img, self.image_path_list[index])
def isless(prob=0.5):
return np.random.uniform(0,1) < prob
class DataAugment(object):
'''
Supports with and without data augmentation
'''
def __init__(self, opt):
self.opt = opt
if not opt.eval:
self.process = [Posterize(), Solarize(), Invert(), Equalize(), AutoContrast(), Sharpness(), Color()]
self.camera = [Contrast(), Brightness(), JpegCompression(), Pixelate()]
self.pattern = [VGrid(), HGrid(), Grid(), RectGrid(), EllipseGrid()]
self.noise = [GaussianNoise(), ShotNoise(), ImpulseNoise(), SpeckleNoise()]
self.blur = [GaussianBlur(), DefocusBlur(), MotionBlur(), GlassBlur(), ZoomBlur()]
self.weather = [Fog(), Snow(), Frost(), Rain(), Shadow()]
self.noises = [self.blur, self.noise, self.weather]
self.processes = [self.camera, self.process]
self.warp = [Curve(), Distort(), Stretch()]
self.geometry = [Rotate(), Perspective(), Shrink()]
self.isbaseline_aug = False
# rand augment
if self.opt.isrand_aug:
self.augs = [self.process, self.camera, self.noise, self.blur, self.weather, self.pattern, self.warp, self.geometry]
# semantic augment
elif self.opt.issemantic_aug:
self.geometry = [Rotate(), Perspective(), Shrink()]
self.noise = [GaussianNoise()]
self.blur = [MotionBlur()]
self.augs = [self.noise, self.blur, self.geometry]
self.isbaseline_aug = True
# pp-ocr augment
elif self.opt.islearning_aug:
self.geometry = [Rotate(), Perspective()]
self.noise = [GaussianNoise()]
self.blur = [MotionBlur()]
self.warp = [Distort()]
self.augs = [self.warp, self.noise, self.blur, self.geometry]
self.isbaseline_aug = True
# scatter augment
elif self.opt.isscatter_aug:
self.geometry = [Shrink()]
self.warp = [Distort()]
self.augs = [self.warp, self.geometry]
self.baseline_aug = True
# rotation augment
elif self.opt.isrotation_aug:
self.geometry = [Rotate()]
self.augs = [self.geometry]
self.isbaseline_aug = True
self.scale = False if opt.Transformer else True
def __call__(self, img):
'''
Must call img.copy() if pattern, Rain or Shadow is used
'''
img = img.resize((self.opt.imgW, self.opt.imgH), Image.BICUBIC)
if self.opt.eval or isless(self.opt.intact_prob):
pass
elif self.opt.isshap_aug:
img = self.shap_aug(img)
elif self.opt.isrand_aug or self.isbaseline_aug:
img = self.rand_aug(img)
# individual augment can also be selected
elif self.opt.issel_aug:
img = self.sel_aug(img)
img = transforms.ToTensor()(img)
if self.scale:
img.sub_(0.5).div_(0.5)
return img
def rand_aug(self, img):
augs = np.random.choice(self.augs, self.opt.augs_num, replace=False)
for aug in augs:
index = np.random.randint(0, len(aug))
op = aug[index]
mag = np.random.randint(0, 3) if self.opt.augs_mag is None else self.opt.augs_mag
if type(op).__name__ == "Rain" or type(op).__name__ == "Grid":
img = op(img.copy(), mag=mag)
else:
img = op(img, mag=mag)
return img
def shap_aug(self, img):
weatherProb = 0.094624746
warpProb = 0.204524008
geometryProb = 0.332274202
noiseProb = 0.477033377
cameraProb = 0.57329097
patternProb = 0.743824929
processProb = 0.845809948
blurProb = 0.946237465
noCorruptProb = 1
prob = 1.
iscurve = False
corrProb = random.uniform(0, 1)
if corrProb >= 0 and corrProb < weatherProb:
mag = np.random.randint(self.opt.min_rand, self.opt.max_rand)
index = np.random.randint(0, len(self.weather))
op = self.weather[index]
if type(op).__name__ == "Rain": #or "Grid" in type(op).__name__ :
img = op(img.copy(), mag=mag, prob=prob)
else:
img = op(img, mag=mag, prob=prob)
elif corrProb >= weatherProb and corrProb < warpProb:
mag = np.random.randint(self.opt.min_rand, self.opt.max_rand)
index = np.random.randint(0, len(self.warp))
op = self.warp[index]
if type(op).__name__ == "Curve":
iscurve = True
img = op(img, mag=mag, prob=prob)
elif corrProb >= warpProb and corrProb < geometryProb:
mag = np.random.randint(self.opt.min_rand, self.opt.max_rand)
index = np.random.randint(0, len(self.geometry))
op = self.geometry[index]
if type(op).__name__ == "Rotate":
img = op(img, iscurve=iscurve, mag=mag, prob=prob)
else:
img = op(img, mag=mag, prob=prob)
elif corrProb >= geometryProb and corrProb < noiseProb:
mag = np.random.randint(self.opt.min_rand, self.opt.max_rand)
index = np.random.randint(0, len(self.noise))
op = self.noise[index]
img = op(img, mag=mag, prob=prob)
elif corrProb >= noiseProb and corrProb < cameraProb:
mag = np.random.randint(self.opt.min_rand, self.opt.max_rand)
index = np.random.randint(0, len(self.camera))
op = self.camera[index]
img = op(img, mag=mag, prob=prob)
elif corrProb >= cameraProb and corrProb < patternProb:
mag = np.random.randint(self.opt.min_rand, self.opt.max_rand)
index = np.random.randint(0, len(self.pattern))
op = self.pattern[index]
img = op(img.copy(), mag=mag, prob=prob)
elif corrProb >= patternProb and corrProb < processProb:
mag = np.random.randint(self.opt.min_rand, self.opt.max_rand)
index = np.random.randint(0, len(self.process))
op = self.process[index]
img = op(img, mag=mag, prob=prob)
elif corrProb >= processProb and corrProb < blurProb:
mag = np.random.randint(self.opt.min_rand, self.opt.max_rand)
index = np.random.randint(0, len(self.blur))
op = self.blur[index]
img = op(img, mag=mag, prob=prob)
elif corrProb >= blurProb and corrProb <= noCorruptProb:
pass
return img
def sel_aug(self, img):
prob = 1.
if self.opt.process:
mag = np.random.randint(self.opt.min_rand, self.opt.max_rand)
index = np.random.randint(0, len(self.process))
op = self.process[index]
img = op(img, mag=mag, prob=prob)
if self.opt.noise:
mag = np.random.randint(self.opt.min_rand, self.opt.max_rand)
index = np.random.randint(0, len(self.noise))
op = self.noise[index]
img = op(img, mag=mag, prob=prob)
if self.opt.blur:
mag = np.random.randint(self.opt.min_rand, self.opt.max_rand)
index = np.random.randint(0, len(self.blur))
op = self.blur[index]
img = op(img, mag=mag, prob=prob)
if self.opt.weather:
mag = np.random.randint(self.opt.min_rand, self.opt.max_rand)
index = np.random.randint(0, len(self.weather))
op = self.weather[index]
if type(op).__name__ == "Rain": #or "Grid" in type(op).__name__ :
img = op(img.copy(), mag=mag, prob=prob)
else:
img = op(img, mag=mag, prob=prob)
if self.opt.camera:
mag = np.random.randint(self.opt.min_rand, self.opt.max_rand)
index = np.random.randint(0, len(self.camera))
op = self.camera[index]
img = op(img, mag=mag, prob=prob)
if self.opt.pattern:
mag = np.random.randint(self.opt.min_rand, self.opt.max_rand)
index = np.random.randint(0, len(self.pattern))
op = self.pattern[index]
img = op(img.copy(), mag=mag, prob=prob)
iscurve = False
if self.opt.warp:
mag = np.random.randint(self.opt.min_rand, self.opt.max_rand)
index = np.random.randint(0, len(self.warp))
op = self.warp[index]
if type(op).__name__ == "Curve":
iscurve = True
img = op(img, mag=mag, prob=prob)
if self.opt.geometry:
mag = np.random.randint(self.opt.min_rand, self.opt.max_rand)
index = np.random.randint(0, len(self.geometry))
op = self.geometry[index]
if type(op).__name__ == "Rotate":
img = op(img, iscurve=iscurve, mag=mag, prob=prob)
else:
img = op(img, mag=mag, prob=prob)
return img
class ResizeNormalize(object):
def __init__(self, size, interpolation=Image.BICUBIC):
self.size = size
self.interpolation = interpolation
self.toTensor = transforms.ToTensor()
def __call__(self, img):
img = img.resize(self.size, self.interpolation)
img = self.toTensor(img)
img.sub_(0.5).div_(0.5)
return img
class NormalizePAD(object):
def __init__(self, max_size, PAD_type='right'):
self.toTensor = transforms.ToTensor()
self.max_size = max_size
self.max_width_half = math.floor(max_size[2] / 2)
self.PAD_type = PAD_type
def __call__(self, img):
img = self.toTensor(img)
img.sub_(0.5).div_(0.5)
c, h, w = img.size()
Pad_img = torch.FloatTensor(*self.max_size).fill_(0)
Pad_img[:, :, :w] = img # right pad
if self.max_size[2] != w: # add border Pad
Pad_img[:, :, w:] = img[:, :, w - 1].unsqueeze(2).expand(c, h, self.max_size[2] - w)
return Pad_img
class AlignCollate(object):
def __init__(self, imgH=32, imgW=100, keep_ratio_with_pad=False, opt=None):
self.imgH = imgH
self.imgW = imgW
self.keep_ratio_with_pad = keep_ratio_with_pad
self.opt = opt
def __call__(self, batch):
# print("type batch: ", type(batch))
# print("type batch[0]: ", type(batch[0]))
batch = filter(lambda x: x is not None, batch)
images, labels = zip(*batch)
if self.keep_ratio_with_pad: # same concept with 'Rosetta' paper
resized_max_w = self.imgW
input_channel = 3 if images[0].mode == 'RGB' else 1
transform = NormalizePAD((input_channel, self.imgH, resized_max_w))
resized_images = []
for image in images:
w, h = image.size
ratio = w / float(h)
if math.ceil(self.imgH * ratio) > self.imgW:
resized_w = self.imgW
else:
resized_w = math.ceil(self.imgH * ratio)
resized_image = image.resize((resized_w, self.imgH), Image.BICUBIC)
resized_images.append(transform(resized_image))
# resized_image.save('./image_test/%d_test.jpg' % w)
image_tensors = torch.cat([t.unsqueeze(0) for t in resized_images], 0)
else:
transform = DataAugment(self.opt)
#i = 0
#for image in images:
# transform(image)
# if i == 1:
# exit(0)
# else:
# i = i + 1
image_tensors = [transform(image) for image in images]
image_tensors = torch.cat([t.unsqueeze(0) for t in image_tensors], 0)
#else:
# transform = ResizeNormalize((self.imgW, self.imgH))
# image_tensors = [transform(image) for image in images]
# image_tensors = torch.cat([t.unsqueeze(0) for t in image_tensors], 0)
return image_tensors, labels
class STRCharSegmDataset(Dataset):
### imgRoot - above the ./images folder
### minCharNum - set to 0 to deactivate. If greater than 0, this dataset will only output
### images >= minCharNum
def __init__(self, annotFile, imgRoot, transforms, minCharNum=0,\
charNum=-1, charToQuery=None):
self.transforms = transforms
self.minCharNum = minCharNum
with open(annotFile) as file:
self.lines = file.readlines()
self.filteredLines = []
for lineStr in self.lines:
splitStr = lineStr.split()
gtLabel = splitStr[-1]
if self.minCharNum > 0 and len(gtLabel) >= self.minCharNum:
if charNum != -1 and gtLabel[charNum] == charToQuery:
self.filteredLines.append(lineStr)
self.totalItems = len(self.filteredLines)
self.imgRoot = imgRoot
def __len__(self):
return self.totalItems
def __getitem__(self, index):
lineStr = self.filteredLines[index]
splitStr = lineStr.split()
imgFilename = splitStr[0]
gtLabel = splitStr[-1]
imgPIL = Image.open(os.path.join(self.imgRoot, imgFilename)).convert('L')
imgPIL = self.transforms(imgPIL)
return imgPIL, gtLabel
### Class simplifying the LMDB reader
class MyLMDBReader(Dataset):
### indexMap - pass here the file created that maps indices from
### limitedCharIdx ---> fullLMDBIdx
### Should be of format = "char1_N" assumed to be getting only labels
### where the first char is capital N. char1 is the first char.
### maxImages - set this to a number to reduce dataset size
def __init__(self, root, opt, indexMap=None, charIdx=None, maxImages=None):
self.root = root
self.opt = opt
self.env = lmdb.open(root, max_readers=32, readonly=True, lock=False, readahead=False, meminit=False)
self.indexMapList = None
if indexMap is not None:
with open(indexMap, 'rb') as f:
self.indexMapList = pickle.load(f)[charIdx] ### type list
lesserSize = min(len(self.indexMapList), maxImages)
self.indexMapList = self.indexMapList[:lesserSize]
if not self.env:
print('cannot create lmdb from %s' % (root))
sys.exit(0)
with self.env.begin(write=False) as txn:
self.nSamples = int(txn.get('num-samples'.encode()))
if self.opt.data_filtering_off:
# for fast check or benchmark evaluation with no filtering
self.filtered_index_list = [index + 1 for index in range(self.nSamples)]
else:
""" Filtering part
If you want to evaluate IC15-2077 & CUTE datasets which have special character labels,
use --data_filtering_off and only evaluate on alphabets and digits.
see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L190-L192
And if you want to evaluate them with the model trained with --sensitive option,
use --sensitive and --data_filtering_off,
see https://github.com/clovaai/deep-text-recognition-benchmark/blob/dff844874dbe9e0ec8c5a52a7bd08c7f20afe704/test.py#L137-L144
"""
self.filtered_index_list = []
for index in range(self.nSamples):
index += 1 # lmdb starts with 1
label_key = 'label-%09d'.encode() % index
label = txn.get(label_key).decode('utf-8')
if len(label) > self.opt.batch_max_length:
# print(f'The length of the label is longer than max_length: length
# {len(label)}, {label} in dataset {self.root}')
continue
# By default, images containing characters which are not in opt.character are filtered.
# You can add [UNK] token to `opt.character` in utils.py instead of this filtering.
out_of_char = f'[^{self.opt.character}]'
if re.search(out_of_char, label.lower()):
continue
self.filtered_index_list.append(index)
self.nSamples = len(self.filtered_index_list)
if self.indexMapList is not None:
self.nSamples = len(self.indexMapList)
def __len__(self):
return self.nSamples
def __getitem__(self, index):
### Acquire mapped index of filtered char only dataset
if self.indexMapList is not None:
index = self.indexMapList[index]
# assert index <= len(self), 'index range error'
while True:
index = self.filtered_index_list[index]
with self.env.begin(write=False) as txn:
label_key = 'label-%09d'.encode() % index
label = txn.get(label_key).decode('utf-8') ### label - raw utf8 string output
img_key = 'image-%09d'.encode() % index
imgbuf = txn.get(img_key)
buf = six.BytesIO()
buf.write(imgbuf)
buf.seek(0)
try:
if self.opt.rgb:
img = Image.open(buf).convert('RGB') # for color image
else:
img = Image.open(buf).convert('L')
except IOError:
print(f'Corrupted image for {index}')
# make dummy image and dummy label for corrupted image.
if self.opt.rgb:
img = Image.new('RGB', (self.opt.imgW, self.opt.imgH))
else:
img = Image.new('L', (self.opt.imgW, self.opt.imgH))
label = '[dummy_label]'
if not self.opt.sensitive:
label = label.lower()
# We only train and evaluate on alphanumerics (or pre-defined character set in train.py)
out_of_char = f'[^{self.opt.character}]'
label = re.sub(out_of_char, '', label)
break
return (img, label)
class LMDBSegmentationDataset(LmdbDataset):
### segmRootDir - if not None,
def __init__(self, root, opt, notSelective, segmRootDir, maxImages=None):
super().__init__(root, opt, notSelective, maxImages=maxImages)
self.segmRootDir = segmRootDir
def __getitem__(self, index):
originalIdx = index
assert index <= len(self), 'index range error'
### Used for influence function training
if self.opt.eval == False:
index = self.currentInfluenceLS.pop(len(self.currentInfluenceLS)-1)
if len(self.currentInfluenceLS) <= 0:
self.currentInfluenceLS = copy.deepcopy(self.opt.influence_idx)
random.shuffle(self.currentInfluenceLS)
while True:
index = self.filtered_index_list[index]
if self.opt.max_selective_list != -1:
if len(self.selective_sample_ls) >= self.opt.max_selective_list:
self.selective_sample_ls.clear()
with self.env.begin(write=False) as txn:
label_key = 'label-%09d'.encode() % index
label = txn.get(label_key).decode('utf-8') ### label - raw utf8 string output
if self.opt.selective_sample_str != '' and not self.notSelective:
if self.opt.ignore_case_sensitivity:
if label.lower() != self.opt.selective_sample_str.lower():
### Reloop
self.selective_sample_ls.add(index)
while True:
index = random.randint(0, len(self)-1)
if index not in self.selective_sample_ls: break
continue
else:
if label != self.opt.selective_sample_str:
### Reloop
self.selective_sample_ls.add(index)
while True:
index = random.randint(0, len(self)-1)
if index not in self.selective_sample_ls: break
continue
img_key = 'image-%09d'.encode() % index
imgbuf = txn.get(img_key)
buf = six.BytesIO()
buf.write(imgbuf)
buf.seek(0)
try:
if self.opt.rgb:
img = Image.open(buf).convert('RGB') # for color image
else:
img = Image.open(buf).convert('L')
except IOError:
print(f'Corrupted image for {index}')
# make dummy image and dummy label for corrupted image.
if self.opt.rgb:
img = Image.new('RGB', (self.opt.imgW, self.opt.imgH))
else:
img = Image.new('L', (self.opt.imgW, self.opt.imgH))
label = '[dummy_label]'
if not self.opt.sensitive:
label = label.lower()
# We only train and evaluate on alphanumerics (or pre-defined character set in train.py)
out_of_char = f'[^{self.opt.character}]'
label = re.sub(out_of_char, '', label)
break
### Acquire segmentations
with open(self.segmRootDir + "{}.pkl".format(originalIdx), 'rb') as f:
segmData = pickle.load(f)
label = (segmData, label)
return (img, label)
def tensor2im(image_tensor, imtype=np.uint8):
image_numpy = image_tensor.cpu().float().numpy()
if image_numpy.shape[0] == 1:
image_numpy = np.tile(image_numpy, (3, 1, 1))
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0
return image_numpy.astype(imtype)
def save_image(image_numpy, image_path):
image_pil = Image.fromarray(image_numpy)
image_pil.save(image_path)