-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset_matrn.py
299 lines (257 loc) · 12.7 KB
/
dataset_matrn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import logging
import re
import cv2
import lmdb
import six
from fastai.vision import *
from torchvision import transforms
from transforms import CVColorJitter, CVDeterioration, CVGeometry
from utils_matrn import CharsetMapper, onehot
class ImageDataset(Dataset):
"`ImageDataset` read data from LMDB database."
def __init__(self,
path:PathOrStr,
is_training:bool=True,
img_h:int=32,
img_w:int=100,
max_length:int=25,
check_length:bool=True,
case_sensitive:bool=False,
charset_path:str='data/charset_36.txt',
convert_mode:str='RGB',
data_aug:bool=True,
deteriorate_ratio:float=0.,
multiscales:bool=True,
one_hot_y:bool=True,
return_idx:bool=False,
return_raw:bool=False,
**kwargs):
self.path, self.name = Path(path), Path(path).name
assert self.path.is_dir() and self.path.exists(), f"{path} is not a valid directory."
self.convert_mode, self.check_length = convert_mode, check_length
self.img_h, self.img_w = img_h, img_w
self.max_length, self.one_hot_y = max_length, one_hot_y
self.return_idx, self.return_raw = return_idx, return_raw
self.case_sensitive, self.is_training = case_sensitive, is_training
self.data_aug, self.multiscales = data_aug, multiscales
self.charset = CharsetMapper(charset_path, max_length=max_length+1)
self.c = self.charset.num_classes
self.env = lmdb.open(str(path), readonly=True, lock=False, readahead=False, meminit=False)
assert self.env, f'Cannot open LMDB dataset from {path}.'
with self.env.begin(write=False) as txn:
self.length = int(txn.get('num-samples'.encode()))
if self.is_training and self.data_aug:
self.augment_tfs = transforms.Compose([
CVGeometry(degrees=45, translate=(0.0, 0.0), scale=(0.5, 2.), shear=(45, 15), distortion=0.5, p=0.5),
CVDeterioration(var=20, degrees=6, factor=4, p=0.25),
CVColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.1, p=0.25)
])
self.totensor = transforms.ToTensor()
def __len__(self): return self.length
def _next_image(self, index):
next_index = random.randint(0, len(self) - 1)
return self.get(next_index)
def _check_image(self, x, pixels=6):
if x.size[0] <= pixels or x.size[1] <= pixels: return False
else: return True
def resize_multiscales(self, img, borderType=cv2.BORDER_CONSTANT):
def _resize_ratio(img, ratio, fix_h=True):
if ratio * self.img_w < self.img_h:
if fix_h: trg_h = self.img_h
else: trg_h = int(ratio * self.img_w)
trg_w = self.img_w
else: trg_h, trg_w = self.img_h, int(self.img_h / ratio)
img = cv2.resize(img, (trg_w, trg_h))
pad_h, pad_w = (self.img_h - trg_h) / 2, (self.img_w - trg_w) / 2
top, bottom = math.ceil(pad_h), math.floor(pad_h)
left, right = math.ceil(pad_w), math.floor(pad_w)
img = cv2.copyMakeBorder(img, top, bottom, left, right, borderType)
return img
if self.is_training:
if random.random() < 0.5:
base, maxh, maxw = self.img_h, self.img_h, self.img_w
h, w = random.randint(base, maxh), random.randint(base, maxw)
return _resize_ratio(img, h/w)
else: return _resize_ratio(img, img.shape[0] / img.shape[1]) # keep aspect ratio
else: return _resize_ratio(img, img.shape[0] / img.shape[1]) # keep aspect ratio
def resize(self, img):
if self.multiscales: return self.resize_multiscales(img, cv2.BORDER_REPLICATE)
else: return cv2.resize(img, (self.img_w, self.img_h))
def get(self, idx):
with self.env.begin(write=False) as txn:
image_key, label_key = f'image-{idx+1:09d}', f'label-{idx+1:09d}'
try:
label = str(txn.get(label_key.encode()), 'utf-8') # label
label = re.sub('[^0-9a-zA-Z]+', '', label)
if self.check_length and self.max_length > 0:
if len(label) > self.max_length or len(label) <= 0:
#logging.info(f'Long or short text image is found: {self.name}, {idx}, {label}, {len(label)}')
return self._next_image(idx)
label = label[:self.max_length]
imgbuf = txn.get(image_key.encode()) # image
buf = six.BytesIO()
buf.write(imgbuf)
buf.seek(0)
with warnings.catch_warnings():
warnings.simplefilter("ignore", UserWarning) # EXIF warning from TiffPlugin
image = PIL.Image.open(buf).convert(self.convert_mode)
if self.is_training and not self._check_image(image):
#logging.info(f'Invalid image is found: {self.name}, {idx}, {label}, {len(label)}')
return self._next_image(idx)
except:
import traceback
traceback.print_exc()
logging.info(f'Corrupted image is found: {self.name}, {idx}, {label}, {len(label)}')
return self._next_image(idx)
return image, label, idx
def _process_training(self, image):
if self.data_aug: image = self.augment_tfs(image)
image = self.resize(np.array(image))
return image
def _process_test(self, image):
return self.resize(np.array(image)) # TODO:move is_training to here
def __getitem__(self, idx):
image, text, idx_new = self.get(idx)
if not self.is_training: assert idx == idx_new, f'idx {idx} != idx_new {idx_new} during testing.'
if self.is_training: image = self._process_training(image)
else: image = self._process_test(image)
if self.return_raw: return image, text
image = self.totensor(image)
length = tensor(len(text) + 1).to(dtype=torch.long) # one for end token
label = self.charset.get_labels(text, case_sensitive=self.case_sensitive)
label = tensor(label).to(dtype=torch.long)
if self.one_hot_y: label = onehot(label, self.charset.num_classes)
if self.return_idx: y = [label, length, idx_new]
else: y = [label, length]
return image, y
class TextDataset(Dataset):
def __init__(self,
path:PathOrStr,
delimiter:str='\t',
max_length:int=25,
charset_path:str='data/charset_36.txt',
case_sensitive=False,
one_hot_x=True,
one_hot_y=True,
is_training=True,
smooth_label=False,
smooth_factor=0.2,
use_sm=False,
**kwargs):
self.path = Path(path)
self.case_sensitive, self.use_sm = case_sensitive, use_sm
self.smooth_factor, self.smooth_label = smooth_factor, smooth_label
self.charset = CharsetMapper(charset_path, max_length=max_length+1)
self.one_hot_x, self.one_hot_y, self.is_training = one_hot_x, one_hot_y, is_training
if self.is_training and self.use_sm: self.sm = SpellingMutation(charset=self.charset)
dtype = {'inp': str, 'gt': str}
self.df = pd.read_csv(self.path, dtype=dtype, delimiter=delimiter, na_filter=False)
self.inp_col, self.gt_col = 0, 1
def __len__(self): return len(self.df)
def __getitem__(self, idx):
text_x = self.df.iloc[idx, self.inp_col]
text_x = re.sub('[^0-9a-zA-Z]+', '', text_x)
if not self.case_sensitive: text_x = text_x.lower()
if self.is_training and self.use_sm: text_x = self.sm(text_x)
length_x = tensor(len(text_x) + 1).to(dtype=torch.long) # one for end token
label_x = self.charset.get_labels(text_x, case_sensitive=self.case_sensitive)
label_x = tensor(label_x)
if self.one_hot_x:
label_x = onehot(label_x, self.charset.num_classes)
if self.is_training and self.smooth_label:
label_x = torch.stack([self.prob_smooth_label(l) for l in label_x])
x = [label_x, length_x]
text_y = self.df.iloc[idx, self.gt_col]
text_y = re.sub('[^0-9a-zA-Z]+', '', text_y)
if not self.case_sensitive: text_y = text_y.lower()
length_y = tensor(len(text_y) + 1).to(dtype=torch.long) # one for end token
label_y = self.charset.get_labels(text_y, case_sensitive=self.case_sensitive)
label_y = tensor(label_y)
if self.one_hot_y: label_y = onehot(label_y, self.charset.num_classes)
y = [label_y, length_y]
return x, y
def prob_smooth_label(self, one_hot):
one_hot = one_hot.float()
delta = torch.rand([]) * self.smooth_factor
num_classes = len(one_hot)
noise = torch.rand(num_classes)
noise = noise / noise.sum() * delta
one_hot = one_hot * (1 - delta) + noise
return one_hot
class SpellingMutation(object):
def __init__(self, pn0=0.7, pn1=0.85, pn2=0.95, pt0=0.7, pt1=0.85, charset=None):
"""
Args:
pn0: the prob of not modifying characters is (pn0)
pn1: the prob of modifying one characters is (pn1 - pn0)
pn2: the prob of modifying two characters is (pn2 - pn1),
and three (1 - pn2)
pt0: the prob of replacing operation is pt0.
pt1: the prob of inserting operation is (pt1 - pt0),
and deleting operation is (1 - pt1)
"""
super().__init__()
self.pn0, self.pn1, self.pn2 = pn0, pn1, pn2
self.pt0, self.pt1 = pt0, pt1
self.charset = charset
logging.info(f'the probs: pn0={self.pn0}, pn1={self.pn1} ' +
f'pn2={self.pn2}, pt0={self.pt0}, pt1={self.pt1}')
def is_digit(self, text, ratio=0.5):
length = max(len(text), 1)
digit_num = sum([t in self.charset.digits for t in text])
if digit_num / length < ratio: return False
return True
def is_unk_char(self, char):
# return char == self.charset.unk_char
return (char not in self.charset.digits) and (char not in self.charset.alphabets)
def get_num_to_modify(self, length):
prob = random.random()
if prob < self.pn0: num_to_modify = 0
elif prob < self.pn1: num_to_modify = 1
elif prob < self.pn2: num_to_modify = 2
else: num_to_modify = 3
if length <= 1: num_to_modify = 0
elif length >= 2 and length <= 4: num_to_modify = min(num_to_modify, 1)
else: num_to_modify = min(num_to_modify, length // 2) # smaller than length // 2
return num_to_modify
def __call__(self, text, debug=False):
if self.is_digit(text): return text
length = len(text)
num_to_modify = self.get_num_to_modify(length)
if num_to_modify <= 0: return text
chars = []
index = np.arange(0, length)
random.shuffle(index)
index = index[: num_to_modify]
if debug: self.index = index
for i, t in enumerate(text):
if i not in index: chars.append(t)
elif self.is_unk_char(t): chars.append(t)
else:
prob = random.random()
if prob < self.pt0: # replace
chars.append(random.choice(self.charset.alphabets))
elif prob < self.pt1: # insert
chars.append(random.choice(self.charset.alphabets))
chars.append(t)
else: # delete
continue
new_text = ''.join(chars[: self.charset.max_length-1])
return new_text if len(new_text) >= 1 else text
class CustomImageDataset(ImageDataset):
def __getitem__(self, idx):
image, text, idx_new = self.get(idx)
if not self.is_training: assert idx == idx_new, f'idx {idx} != idx_new {idx_new} during testing.'
if self.is_training: image = self._process_training(image)
else: image = self._process_test(image)
if self.return_raw: return image, text
image = self.totensor(image)
length = tensor(len(text) + 1).to(dtype=torch.long) # one for end token
label = self.charset.get_labels(text, case_sensitive=self.case_sensitive)
label = tensor(label).to(dtype=torch.long)
if self.one_hot_y: label = onehot(label, self.charset.num_classes)
if self.return_idx: y = [label, length, idx_new]
else: y = [label, length]
### Major difference here is that 3 args are returned, with text in the middle
### y - tensorized (text)
return image, text, y