-
Notifications
You must be signed in to change notification settings - Fork 0
/
transforms.py
329 lines (272 loc) · 13 KB
/
transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import math
import numbers
import random
import cv2
import numpy as np
from PIL import Image
from torchvision import transforms
from torchvision.transforms import Compose
def sample_asym(magnitude, size=None):
return np.random.beta(1, 4, size) * magnitude
def sample_sym(magnitude, size=None):
return (np.random.beta(4, 4, size=size) - 0.5) * 2 * magnitude
def sample_uniform(low, high, size=None):
return np.random.uniform(low, high, size=size)
def get_interpolation(type='random'):
if type == 'random':
choice = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA]
interpolation = choice[random.randint(0, len(choice)-1)]
elif type == 'nearest': interpolation = cv2.INTER_NEAREST
elif type == 'linear': interpolation = cv2.INTER_LINEAR
elif type == 'cubic': interpolation = cv2.INTER_CUBIC
elif type == 'area': interpolation = cv2.INTER_AREA
else: raise TypeError('Interpolation types only nearest, linear, cubic, area are supported!')
return interpolation
class CVRandomRotation(object):
def __init__(self, degrees=15):
assert isinstance(degrees, numbers.Number), "degree should be a single number."
assert degrees >= 0, "degree must be positive."
self.degrees = degrees
@staticmethod
def get_params(degrees):
return sample_sym(degrees)
def __call__(self, img):
angle = self.get_params(self.degrees)
src_h, src_w = img.shape[:2]
M = cv2.getRotationMatrix2D(center=(src_w/2, src_h/2), angle=angle, scale=1.0)
abs_cos, abs_sin = abs(M[0,0]), abs(M[0,1])
dst_w = int(src_h * abs_sin + src_w * abs_cos)
dst_h = int(src_h * abs_cos + src_w * abs_sin)
M[0, 2] += (dst_w - src_w)/2
M[1, 2] += (dst_h - src_h)/2
flags = get_interpolation()
return cv2.warpAffine(img, M, (dst_w, dst_h), flags=flags, borderMode=cv2.BORDER_REPLICATE)
class CVRandomAffine(object):
def __init__(self, degrees, translate=None, scale=None, shear=None):
assert isinstance(degrees, numbers.Number), "degree should be a single number."
assert degrees >= 0, "degree must be positive."
self.degrees = degrees
if translate is not None:
assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
"translate should be a list or tuple and it must be of length 2."
for t in translate:
if not (0.0 <= t <= 1.0):
raise ValueError("translation values should be between 0 and 1")
self.translate = translate
if scale is not None:
assert isinstance(scale, (tuple, list)) and len(scale) == 2, \
"scale should be a list or tuple and it must be of length 2."
for s in scale:
if s <= 0:
raise ValueError("scale values should be positive")
self.scale = scale
if shear is not None:
if isinstance(shear, numbers.Number):
if shear < 0:
raise ValueError("If shear is a single number, it must be positive.")
self.shear = [shear]
else:
assert isinstance(shear, (tuple, list)) and (len(shear) == 2), \
"shear should be a list or tuple and it must be of length 2."
self.shear = shear
else:
self.shear = shear
def _get_inverse_affine_matrix(self, center, angle, translate, scale, shear):
# https://github.com/pytorch/vision/blob/v0.4.0/torchvision/transforms/functional.py#L717
from numpy import sin, cos, tan
if isinstance(shear, numbers.Number):
shear = [shear, 0]
if not isinstance(shear, (tuple, list)) and len(shear) == 2:
raise ValueError(
"Shear should be a single value or a tuple/list containing " +
"two values. Got {}".format(shear))
rot = math.radians(angle)
sx, sy = [math.radians(s) for s in shear]
cx, cy = center
tx, ty = translate
# RSS without scaling
a = cos(rot - sy) / cos(sy)
b = -cos(rot - sy) * tan(sx) / cos(sy) - sin(rot)
c = sin(rot - sy) / cos(sy)
d = -sin(rot - sy) * tan(sx) / cos(sy) + cos(rot)
# Inverted rotation matrix with scale and shear
# det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
M = [d, -b, 0,
-c, a, 0]
M = [x / scale for x in M]
# Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
M[2] += M[0] * (-cx - tx) + M[1] * (-cy - ty)
M[5] += M[3] * (-cx - tx) + M[4] * (-cy - ty)
# Apply center translation: C * RSS^-1 * C^-1 * T^-1
M[2] += cx
M[5] += cy
return M
@staticmethod
def get_params(degrees, translate, scale_ranges, shears, height):
angle = sample_sym(degrees)
if translate is not None:
max_dx = translate[0] * height
max_dy = translate[1] * height
translations = (np.round(sample_sym(max_dx)), np.round(sample_sym(max_dy)))
else:
translations = (0, 0)
if scale_ranges is not None:
scale = sample_uniform(scale_ranges[0], scale_ranges[1])
else:
scale = 1.0
if shears is not None:
if len(shears) == 1:
shear = [sample_sym(shears[0]), 0.]
elif len(shears) == 2:
shear = [sample_sym(shears[0]), sample_sym(shears[1])]
else:
shear = 0.0
return angle, translations, scale, shear
def __call__(self, img):
src_h, src_w = img.shape[:2]
angle, translate, scale, shear = self.get_params(
self.degrees, self.translate, self.scale, self.shear, src_h)
M = self._get_inverse_affine_matrix((src_w/2, src_h/2), angle, (0, 0), scale, shear)
M = np.array(M).reshape(2,3)
startpoints = [(0, 0), (src_w - 1, 0), (src_w - 1, src_h - 1), (0, src_h - 1)]
project = lambda x, y, a, b, c: int(a*x + b*y + c)
endpoints = [(project(x, y, *M[0]), project(x, y, *M[1])) for x, y in startpoints]
rect = cv2.minAreaRect(np.array(endpoints))
bbox = cv2.boxPoints(rect).astype(dtype=np.int)
max_x, max_y = bbox[:, 0].max(), bbox[:, 1].max()
min_x, min_y = bbox[:, 0].min(), bbox[:, 1].min()
dst_w = int(max_x - min_x)
dst_h = int(max_y - min_y)
M[0, 2] += (dst_w - src_w) / 2
M[1, 2] += (dst_h - src_h) / 2
# add translate
dst_w += int(abs(translate[0]))
dst_h += int(abs(translate[1]))
if translate[0] < 0: M[0, 2] += abs(translate[0])
if translate[1] < 0: M[1, 2] += abs(translate[1])
flags = get_interpolation()
return cv2.warpAffine(img, M, (dst_w , dst_h), flags=flags, borderMode=cv2.BORDER_REPLICATE)
class CVRandomPerspective(object):
def __init__(self, distortion=0.5):
self.distortion = distortion
def get_params(self, width, height, distortion):
offset_h = sample_asym(distortion * height / 2, size=4).astype(dtype=np.int)
offset_w = sample_asym(distortion * width / 2, size=4).astype(dtype=np.int)
topleft = ( offset_w[0], offset_h[0])
topright = (width - 1 - offset_w[1], offset_h[1])
botright = (width - 1 - offset_w[2], height - 1 - offset_h[2])
botleft = ( offset_w[3], height - 1 - offset_h[3])
startpoints = [(0, 0), (width - 1, 0), (width - 1, height - 1), (0, height - 1)]
endpoints = [topleft, topright, botright, botleft]
return np.array(startpoints, dtype=np.float32), np.array(endpoints, dtype=np.float32)
def __call__(self, img):
height, width = img.shape[:2]
startpoints, endpoints = self.get_params(width, height, self.distortion)
M = cv2.getPerspectiveTransform(startpoints, endpoints)
# TODO: more robust way to crop image
rect = cv2.minAreaRect(endpoints)
bbox = cv2.boxPoints(rect).astype(dtype=np.int)
max_x, max_y = bbox[:, 0].max(), bbox[:, 1].max()
min_x, min_y = bbox[:, 0].min(), bbox[:, 1].min()
min_x, min_y = max(min_x, 0), max(min_y, 0)
flags = get_interpolation()
img = cv2.warpPerspective(img, M, (max_x, max_y), flags=flags, borderMode=cv2.BORDER_REPLICATE)
img = img[min_y:, min_x:]
return img
class CVRescale(object):
def __init__(self, factor=4, base_size=(128, 512)):
""" Define image scales using gaussian pyramid and rescale image to target scale.
Args:
factor: the decayed factor from base size, factor=4 keeps target scale by default.
base_size: base size the build the bottom layer of pyramid
"""
if isinstance(factor, numbers.Number):
self.factor = round(sample_uniform(0, factor))
elif isinstance(factor, (tuple, list)) and len(factor) == 2:
self.factor = round(sample_uniform(factor[0], factor[1]))
else:
raise Exception('factor must be number or list with length 2')
# assert factor is valid
self.base_h, self.base_w = base_size[:2]
def __call__(self, img):
if self.factor == 0: return img
src_h, src_w = img.shape[:2]
cur_w, cur_h = self.base_w, self.base_h
scale_img = cv2.resize(img, (cur_w, cur_h), interpolation=get_interpolation())
for _ in range(self.factor):
scale_img = cv2.pyrDown(scale_img)
scale_img = cv2.resize(scale_img, (src_w, src_h), interpolation=get_interpolation())
return scale_img
class CVGaussianNoise(object):
def __init__(self, mean=0, var=20):
self.mean = mean
if isinstance(var, numbers.Number):
self.var = max(int(sample_asym(var)), 1)
elif isinstance(var, (tuple, list)) and len(var) == 2:
self.var = int(sample_uniform(var[0], var[1]))
else:
raise Exception('degree must be number or list with length 2')
def __call__(self, img):
noise = np.random.normal(self.mean, self.var**0.5, img.shape)
img = np.clip(img + noise, 0, 255).astype(np.uint8)
return img
class CVMotionBlur(object):
def __init__(self, degrees=12, angle=90):
if isinstance(degrees, numbers.Number):
self.degree = max(int(sample_asym(degrees)), 1)
elif isinstance(degrees, (tuple, list)) and len(degrees) == 2:
self.degree = int(sample_uniform(degrees[0], degrees[1]))
else:
raise Exception('degree must be number or list with length 2')
self.angle = sample_uniform(-angle, angle)
def __call__(self, img):
M = cv2.getRotationMatrix2D((self.degree // 2, self.degree // 2), self.angle, 1)
motion_blur_kernel = np.zeros((self.degree, self.degree))
motion_blur_kernel[self.degree // 2, :] = 1
motion_blur_kernel = cv2.warpAffine(motion_blur_kernel, M, (self.degree, self.degree))
motion_blur_kernel = motion_blur_kernel / self.degree
img = cv2.filter2D(img, -1, motion_blur_kernel)
img = np.clip(img, 0, 255).astype(np.uint8)
return img
class CVGeometry(object):
def __init__(self, degrees=15, translate=(0.3, 0.3), scale=(0.5, 2.),
shear=(45, 15), distortion=0.5, p=0.5):
self.p = p
type_p = random.random()
if type_p < 0.33:
self.transforms = CVRandomRotation(degrees=degrees)
elif type_p < 0.66:
self.transforms = CVRandomAffine(degrees=degrees, translate=translate, scale=scale, shear=shear)
else:
self.transforms = CVRandomPerspective(distortion=distortion)
def __call__(self, img):
if random.random() < self.p:
img = np.array(img)
return Image.fromarray(self.transforms(img))
else: return img
class CVDeterioration(object):
def __init__(self, var, degrees, factor, p=0.5):
self.p = p
transforms = []
if var is not None:
transforms.append(CVGaussianNoise(var=var))
if degrees is not None:
transforms.append(CVMotionBlur(degrees=degrees))
if factor is not None:
transforms.append(CVRescale(factor=factor))
random.shuffle(transforms)
transforms = Compose(transforms)
self.transforms = transforms
def __call__(self, img):
if random.random() < self.p:
img = np.array(img)
return Image.fromarray(self.transforms(img))
else: return img
class CVColorJitter(object):
def __init__(self, brightness=0.5, contrast=0.5, saturation=0.5, hue=0.1, p=0.5):
self.p = p
self.transforms = transforms.ColorJitter(brightness=brightness, contrast=contrast,
saturation=saturation, hue=hue)
def __call__(self, img):
if random.random() < self.p: return self.transforms(img)
else: return img