From 4027032bad15702074fd64e67a1ff483767edc0b Mon Sep 17 00:00:00 2001 From: Martin Vonk Date: Sat, 16 Dec 2023 12:30:43 +0100 Subject: [PATCH 01/16] add start with documentation notebooks --- doc/examples/00_pedon_structure.ipynb | 131 +++++++++++ doc/examples/01_soil_models.ipynb | 153 +++++++++++++ doc/examples/02_datasets.ipynb | 215 +++++++++++++++++++ doc/examples/03_pedotransfer_functions.ipynb | 129 +++++++++++ doc/examples/04_curve_fitting.ipynb | 0 5 files changed, 628 insertions(+) create mode 100644 doc/examples/00_pedon_structure.ipynb create mode 100644 doc/examples/01_soil_models.ipynb create mode 100644 doc/examples/02_datasets.ipynb create mode 100644 doc/examples/03_pedotransfer_functions.ipynb create mode 100644 doc/examples/04_curve_fitting.ipynb diff --git a/doc/examples/00_pedon_structure.ipynb b/doc/examples/00_pedon_structure.ipynb new file mode 100644 index 0000000..1fde50b --- /dev/null +++ b/doc/examples/00_pedon_structure.ipynb @@ -0,0 +1,131 @@ +{ + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Package Structure**" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "import inspect\n", + "import pedon as pe" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'name': str,\n", + " 'type': str | None,\n", + " 'model': pedon.soilmodel.SoilModel | None,\n", + " 'sample': pedon.soil.SoilSample | None,\n", + " 'source': str | None,\n", + " 'description': str | None}" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# main class\n", + "# containing both SoilModel and SoilSample\n", + "pe.Soil.__annotations__" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'sand_p': float | None,\n", + " 'silt_p': float | None,\n", + " 'clay_p': float | None,\n", + " 'rho': float | None,\n", + " 'th33': float | None,\n", + " 'th1500': float | None,\n", + " 'om_p': float | None,\n", + " 'm50': float | None,\n", + " 'h': float | numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]] | None,\n", + " 'k': float | numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]] | None,\n", + " 'theta': float | numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]] | None}" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# class for sample measurements\n", + "pe.SoilSample.__annotations__" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['Brooks',\n", + " 'Fredlund',\n", + " 'Gardner',\n", + " 'Genuchten',\n", + " 'Panday',\n", + " 'Protocol',\n", + " 'SoilModel']" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# classes for soil models\n", + "soilmodels = [cls_name for cls_name, cls_obj in inspect.getmembers(sys.modules['pedon.soilmodel']) if inspect.isclass(cls_obj)]\n", + "soilmodels" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "pydon", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/doc/examples/01_soil_models.ipynb b/doc/examples/01_soil_models.ipynb new file mode 100644 index 0000000..9b899e5 --- /dev/null +++ b/doc/examples/01_soil_models.ipynb @@ -0,0 +1,153 @@ +{ + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Soil Models**\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pedon as pe\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Pedon does not assume units for most soil types but it is good convention to use cm as the length unit. Let's create two soil models, one using the Mualem-van Genuchten equation, and one using the Brooks-Corey Equation" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# shared properties\n", + "k_s = 100 # saturated conductivity [cm/d]\n", + "theta_r = 0.03 # residual water content[cm^3/cm^3]\n", + "theta_s = 0.42 # saturated water content[cm^3/cm^3]" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Mualem-van Genuchten\n", + "alpha = 0.04 # shape parameter [1/cm]\n", + "n = 1.4 # shape parameter [-]\n", + "\n", + "gen = pe.Genuchten(k_s=k_s, theta_r=theta_r, theta_s=theta_s, alpha=alpha, n=n)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Brooks-Corey\n", + "h_b = 10 # bubbling pressure [cm]\n", + "l = 1.1 # connectivity parameter [-]\n", + "\n", + "bro = pe.Brooks(k_s=k_s, theta_r=theta_r, theta_s=theta_s, h_b=h_b, l=l)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAScAAAIBCAYAAAALR3n3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXWUlEQVR4nO3de1xUdf7H8deZAQZH7iA3hfB+SQVFJbMSzUtYllmbu7pFVrZbUG1stbL7W612N7u4Lm3RWpZr15WtTWu1NY00zCyvmOUVw7ugiIAMAsPM/P44MIqA3ObG8Hk+HvMY5syZc77fEd6e7/d8z/coFovFghBCuBiNswsghBCNkXASQrgkCSchhEuScBJCuCQJJyGES5JwEkK4JAknIYRLknASQrgkCSchhEuScBJCuCQJJyGES3LJcMrPz2fcuHEMGjSIIUOGYDAYnF0kIYSDKa544e/YsWP585//zPXXX09xcTF+fn54eHg4u1hCCAdyub/4H3/8EU9PT66//noAgoKCnFwiIYQz2LxZl5OTw9SpU4mMjERRFFauXNlgnczMTGJiYvD29iYhIYEtW7ZY3zt48CA+Pj5MnTqV4cOH89xzz9m6iEKIDsDmR04Gg4HY2Fjuu+8+pk+f3uD9rKws0tLSWLx4MQkJCWRkZDB58mT2799PaGgoNTU1bNy4kdzcXEJDQ7npppsYOXIkEydObHR/VVVVVFVVWV+bzWaKi4sJDg5GURRbV08I0U4Wi4Xz588TGRmJRnOF4yOLHQGWFStW1Fs2atQoS0pKivW1yWSyREZGWhYsWGCxWCyWb775xjJp0iTr+y+++KLlxRdfbHIf8+fPtwDykIc8Otjj2LFjV8wPh/Y5VVdXs337dtLT063LNBoNEyZMYPPmzQCMHDmS06dPc+7cOfz9/cnJyeFXv/pVk9tMT08nLS3N+rq0tJTo6Gjy8/Px9fVt8nOa7W+hXf9nzANuZV2fP/Dbj34gtoc/y+6Nt0FN28doNLJ+/XrGjRuHp6ens4tjM1KvjsVe9Tp//jw9e/a84t8nOLhDvKioCJPJRFhYWL3lYWFh7Nu3Ty2QhwfPPfccN9xwAxaLhUmTJnHLLbc0uU2dTodOp2uwPCgoCD8/v6YL4+sDOgV8vOke3g2NTk+loiM4OLhtlbMho9GIXq8nODjY7X7ZpV4dh73qVbet5rpdXO5sHUBSUhJJSUmt+kxmZiaZmZmYTKZW78/PW/2yyiqNrf6sEMI+HDoIMyQkBK1WS2FhYb3lhYWFhIeHt2vbKSkp7Nmzh61bt7b6s3XhdL6ypl1lEELYjkPDycvLi/j4eLKzs63LzGYz2dnZjB49ul3bzszMZNCgQYwcObLVn/Xroh5AVlSbMJrM7SqHEMI2bN6sKy8vJy8vz/o6Pz+f3NxcgoKCiI6OJi0tjeTkZEaMGMGoUaPIyMjAYDAwe/bsdu03JSWFlJQUysrK8Pf3b9VnfXQXv4bzlTUEdfVqV1lEQ2azmaqqKjw8PKisrGxT89tVGY1GqdclPD090Wq17d6/zcNp27ZtjBs3zvq67kxacnIyy5YtY8aMGZw5c4Z58+ZRUFBAXFwca9asadBJ7kgeWg1dvbQYqk2crzRKONlYdXU1+fn5mEwmwsPDOXbsmFuNQbNYLFKvywQEBBAeHt6u78Pm4ZSYmIilmcv1UlNTSU1Ntel+29MhDuDXxRNDtYmyC9LvZEsWi4VTp06h1Wrp3r07FRUV+Pj4XHnwXQdjNpspLy+XeqH+e1dUVHD69GkAIiIi2rx/lzxb1xbtadYB+Hp7cKpUztjZWk1NDRUVFURGRqLX66mpqcHb29vt/oirq6ulXrW6dOkCwOnTpwkNDW1zE899vsl2sg4nuCDhZEt1R7JeXtJU7kz0ej2g9lu1lYRTLb8uMpzAntypL0Y0zxb/3m4TTm0eSlDbP+brrbZwpVknhGtwm3Bq9SDMy5K9rllXKs060QEtW7aMgIAAZxfDptwmnNorUK+GU0mFhJO4qKCggMcee4w+ffrg7e1NWFgYY8aM4R//+AcVFRXOLl6r3HvvvUybNs3ZxWgxtzlb116BtWObiiuqnVwS4Sp++uknxowZQ0BAAM899xxDhgxBp9Oxe/du3njjDbp3786tt97q7GK6Lbc5cmrP5SuAdeDlOYOEk1A9/PDDeHh4sG3bNu666y4GDhxIr169uO2221i9ejVTp04FoKSkhEcffZSwsDD8/PwYP348u3btsm7n6aefJi4ujnfffZeYmBj8/f35+c9/zvnz563rxMTEkJGRUW//cXFxPP3009bXJSUl/OpXvyIsLAxvb28GDx7MqlWr6n3m888/Z+DAgfj4+HDTTTdx6tQpaxnefvttPvnkExRFQVEUNmzYAMCxY8e46667CAgIICgoiNtuu43Dhw9btzl79mymTZvGwoULiYiIIDg4mJSUlHadiWsJtzlyau84p0B97ZGThJNdWSwWKqprnDIeqIuntsVnkc6ePcvatWt57rnn6Nq1a6Pr1G3rrrvuwtPTk9WrVxMYGMjrr7/OjTfeyIEDB6xz4B86dIiVK1eyatUqzp07x1133cXzzz/PX/7ylxaVx2w2k5SUxPnz53nvvffo3bs3e/bsqTeGqKKigoULF/Luu++i0Wj45S9/yRNPPMH777/PE088wd69eykrK+Of//wnoE4rZDQamTx5MqNHj2bjxo14eHjw5z//mZtuuonc3FzrttevX09ERATr168nLy+PGTNmEBcXx5w5c1pU/rZwm3BqL+uRkzTr7KrSaGbYC+ucsu89z05G79WyX/m8vDwsFgv9+/evtzwkJITKykpA/Q9x6tSpbN26lQMHDtCtWzc0Gg0LFy5k5cqVfPTRRzz44IOAGi7Lli2zTrB29913k52d3eJw+uKLL9iyZQt79+6lX79+APTq1aveOkajkcWLF9O7d29AvRLj2WefBcDHx4cuXbpQVVVVbwaQ9957D7PZzJtvvmkN23/+858EBASwYcMGrrnmGgACAwN59dVX0Wq1DBgwgJtvvpns7GwJJ0cItDbrjFgsFhmXIxq1ZcsWzGYzs2bNoqqqil27dlFeXm4NhDoXLlzg0KFD1tcxMTH1Zn6MiIiwXuLRErm5ufTo0cMaTI3R6/X1ytGSfezatYu8vLwGs1JWVlZy6NAhazhdffXV9Y7SIiIi2L17d4vL3xYSTrWCapt11SYzhmpTvZkKhO14e2r44emJTmvWtVSfPn1QFIX9+/fXW153tFJ3iUZ5eTkRERF8+umnDa5Bu/TU/uUzSSqKgtl8cXoejUbT4JrUS/t06vZ3JY3to7nrXMvLy4mPj+f9999v8N6ls8I2V357cJu/wPZe+NvFS4u3p4ZKo5lzhmoJJztRFAW9l4fLX4MWHBzMxIkTefXVV3nkkUea7HcaPnw4BQUFeHh40KdPnzbXq1u3btbOa4CysjLy8/Otr4cOHcrx48c5cODAFY+ersTLy6vB38fw4cPJysoiNDS0wbTWZrOZsrKyNu3LFlz7N6QV2jMTZp0g6RQXl3jttdeoqalhxIgRZGVlsXfvXvbv3897773Hvn370Gq1TJgwgdGjRzNr1izWrl3L4cOH+eabb/jDH/7Atm3bWryv8ePH8+6777Jx40Z2795NcnJyvWbU2LFjueGGG7jjjjtYt24d+fn5/O9//2PNmjUt3kdMTAzff/89+/fvp6ioCKPRyKxZswgJCeG2225j48aN5Ofns2HDBh599FGOHz/equ/L1twmnGwhQC9jncRFvXv3ZufOnUyYMIH09HRiY2MZMWIEr7zyCk888QR/+tOfUBSFVatWce2113L//ffTr18/fv7zn3PkyJFWzVGWnp7O2LFjueWWW7j55puZNm1ag36s//znP4wcOZJf/OIXDBo0iKeeeqpVLYU5c+bQv39/RowYQbdu3di0aRN6vZ6cnByio6OZPn06AwcO5P7776eysvLKNwhxAMXSXKO0g6kbSlBaWnrlL/fbf8CauTD4TrjzLQB++eZ3fJ1XxKK7Ypk+vIeDStyQ0Wjks88+Y8qUKR3+bh6VlZXk5+fTs2dPvLy8KCsrw8/Pz+Wbda1R1/yRel106b+7t7d3vfda+jfqPt9km13MZusocWnWCeF0nTicGg4VCK4Np6JyCSchnM1twqm9l68AhPqpN+c8fb7SVsUSQrSR24STLc7WdfNRw+nM+SpbFUsI0UZuE062EOqndtxJOAnhfBJOlwj1rWvWSTgJ4WwSTpeoC6diQ7Xc+VcIJ5NwukSg3gsPjXoWr6hcjp6EcCYJp0toNAoh0ikuhEuQcLqMdThBmYSTcJ6ONt+3PUg4XaZuOIF0iot7773XOqWtoigEBwdz00038f333zu7aJ2C24STLQZhwsUjJ2nWCcA6D/epU6fIzs7Gw8ODW265pcn17T2vdmfiNuHU5kGYl133HOqrjnUqlFHiAtDpdISHhxMeHk5cXBxz587l2LFjnDlzhsOHD6MoCllZWdx8883o9Xref/99zGYzzz77LD169ECn0xEXF9dgapPdu3czfvx4unTpQnBwMA8++CDl5eVNlmPr1q1069aNF154AVBnsBw3bhy+vr74+fkRHx/fqilaOoLOO6NaE9PwRgao4XSq5IIjS9N5WCxQbQBnXL3vqW/y370lysvLee+99+jTpw/BwcEYDAYAfv/73/Pss89y7bXXotfrefnll/nrX//K66+/zrBhw1i6dCm33norP/74I3379sVgMFhvKrB161ZOnz7NAw88QGpqKsuWLWuw3y+//JLp06fz4osvWucknzVrFsOGDeMf//gHWq2W3NzcDj+DxeU6bzg1IcJfnQ71ZIkcOdlFzQU0zw90zr5/fxK8Gp/RsimrVq3Cx8cHAIPBQEREBKtWrao3hchjjz3G1KlTrVOLLFy4kN/97nf8/Oc/B+CFF15g/fr1ZGRkkJmZyQcffEBlZSXvvPOOdYbNV199lalTp/LCCy/UmwdqxYoV3HPPPbz55pvMmDHDuvzo0aM8+eSTDBgwAIC+ffu27TtxYW7TrLOVyIC6cJIjJwHjxo0jNzeX3NxctmzZwuTJk0lKSuLIkSPWdeLj460/l5WVcfLkScaMGVNvO2PGjGHv3r0A7N27l9jY2HpT/44ZMwaz2VxvzvLvvvuOn/3sZ7z77rv1ggkgLS2NBx54gAkTJvD888/Xu5mCu5Ajp8vUNevOV9VQVmnEz9u9DpWdzqML5rnHnTMpm6e+1R/p2rUrffr0sb5+88038ff3Z8mSJTzwwAPWdeyhd+/eBAcHs3TpUm6++eZ6zbann36amTNnsnr1av73v/8xf/58li9fzu23326XsjiDHDldRu/lQaBe/SWQoyc7UBS1aeWMhw1u96UoChqNhgsXGv/d8PPzIzIykk2bNtVbvmnTJgYNGgTAwIED2bVrl7XPqu59jUZT7z55ISEhfPnll+Tl5XHXXXc1OBPYr18/Hn/8cdauXcv06dOtN8t0FxJOjZCmnahTVVVFQUEBBQUF7N27l0ceeYTy8nLrrcgb8+STT/LCCy+QlZXF/v37mTt3Lrm5uTz22GOA2pnt7e1NcnIyP/zwA+vXr+eRRx7h7rvvbjDveGhoKF9++SX79u3jF7/4BTU1NVy4cIHU1FQ2bNjAkSNH2LRpE1u3bmXgQCf15dmJNOsaERnQhR9PlkmnuGDNmjVEREQA4Ovry4ABA/jwww9JTEzk8OHDjX7m0UcfpbS0lN/+9recPn2aQYMG8emnn1o7rfV6PZ9//jmPPfYYI0eORK/Xc8cdd7Bo0aJGtxceHs6XX35JYmIis2bN4p133uHs2bPcc889FBYWEhISwvTp03nmmWfs8h04i4RTIyL91X4nOXLq3JYtW9boqf06MTExWCyWBvd302g0zJ8/n/nz5zf52SFDhvDll19ecd+XioiIqNdZ/q9//av5CnRwLhlOMTEx1tOygYGBrF+/3qH7l2adEM7nkuEE8M0331jHlzha90A1nI6fk3ASwlmkQ7wR0UHqKecjxRVOLokQnZfNwyknJ4epU6cSGRmJoiisXLmywTqZmZnExMTg7e1NQkICW7Zsqfe+oiiMHTuWkSNH8v7779u6iM26Kkgdt3LmfBWGqhqH718IYYdwMhgMxMbGkpmZ2ej7WVlZpKWlMX/+fHbs2EFsbCyTJ0/m9OnT1nW+/vprtm/fzqeffspzzz1n5ykqGt7w2F/vSUDtWKejcvQkhFPYvM8pKSmJpKSkJt9ftGgRc+bMYfbs2QAsXryY1atXs3TpUubOnQtA9+7dAfUMxZQpU9ixYwdDhw5tdHtVVVVUVV2c3qTurInRaLzi9BUakxkt6i2XTY2sFx3UhZIKIz+dLqNPSJcrV9rG6srtDtNv1NTUYLFYMJlMWGpngKg7w+UupF4N1f2719TUNPg9bunvtUM7xKurq9m+fTvp6enWZRqNhgkTJrB582ZAPfIym834+vpSXl7Ol19+yV133dXkNhcsWNDo+I61a9ei1zd9uULPMz8yFDh16hTbPvuswfseFzSAhs837aDmcMOjK0dYt26dU/ZrS4qiEBYWxsmTJ/Hz80NRFM6ePevsYtmF1EtVU1NDcXEx5eXlZGdnN3i/oqJlrRGHhlNRUREmk6nBKNiwsDD27dsHQGFhofX6IJPJxJw5c644gVx6ejppaWnW12VlZURFRTFp0iT8/Pya/Jxm60k4fvHo7HL7vfLY8dVP6MOuYsqUQa2qZ3sZjUbWrVvHxIkT3WIaDIPBwKlTpygqKqKyshJvb28UG1xK4iosFovU6zJdu3alV69ejf7+Xjom7EpcbihBr1692LVrV4vX1+l06HQ6MjMzyczMxGQyAeDp6XnlP2ytFlCP3DSNrNcr1BeA4+cqnRYQzdahgwgICMDX15cLFy7w1VdfccMNN7hFveoYjUZycnKkXrW0Wi0eHh5NBlpLt+XQcAoJCUGr1VJYWFhveWFhIeHh4e3adkpKCikpKZSVleHv79+ubQFcFaw2CQ+fNTSzpmgJrVaLTqejpqYGb29vt/oj1mq1Ui87cOg4Jy8vL+Lj4+u1Q81mM9nZ2YwePdqRRWlWXTidLLlApdHk5NII0fnY/MipvLycvLw86+v8/Hxyc3MJCgoiOjqatLQ0kpOTGTFiBKNGjSIjIwODwWA9e9dWlzfr2qubjw4/bw/KKms4fNbAgPCm+6+EELZn83Datm0b48aNs76u66xOTk5m2bJlzJgxgzNnzjBv3jwKCgqsk79f3kneWrZu1imKQt8wX7YfOcfBwnIJJyEczObhlJiYaB0f0ZTU1FRSU1NtvWub69PNRw2n003fFUMIYR9uc22dre5bd6m+YeqFx4cknIRwOLcJpzbft+4Keoeq4XTw9HmbbVMI0TJuE05tdoUmaN/acMovMmA0uc9lCUJ0BG4TTq1u1rVgxGukfxe6eGoxmiwcOSsXAAvhSG4TTvZo1mk0Cn1qj57ypN9JCIdym3Cyl7qm3f4C6XcSwpEknJoxMEId37T3VMsuVhRC2IbbhJM9hhIAXB2phtOPp0ptul0hxJW5TTjZo88JYFBtOB0rvkDphY4/+ZsQHYXbhJO9BOi96F57qyhp2gnhOBJOLVB39PTjSQknIRxFwqkFBtV2iu+RcBLCYdwmnOzVIQ6XdIqflE5xIRzFbcLJXh3iAFd3V6dgyTtdLhPPCeEgbhNO9hTp702Ijxc1ZoscPQnhIBJOjdxU83KKohAXFQjAzqMldi6PEAIknK44K8GlhkUHALDzWIn9yiKEsOq84WSdlaB14ZQrR05COITbhFPrz9bVhlMLj5yG9ghAUeBEyQUKyyrbVkghRIu5TTi1+mxdK+9g6qPzoH+YeqNN6XcSwv7cJpxar/W3jbb2Ox09Z+OyCCEu14nDqVYLm3UAw6PVM3ZbDxfbqzRCiFqdN5xa2SEOcE2vYAC+P16KoarGDoUSQtTpvOHUyg5xgB6BXege0IUas4XtR6RpJ4Q9dd5wasORk6IoJPQKAuC7/LN2KJQQok7nDac2HDnBxabdtz9Jv5MQ9tR5w6mVQwnqjK4Np13HSqioln4nIezFbcKp7VOmtO7IqUdgFyL9vaXfSQg7c5twav2UKW1r1imKYm3abcqTfich7MVtwqnV2tAhXueGft0A+OrAGRsWSAhxqc4bTm08cgK4vm8IiqLe8ECusxPCPjpvOLXjyCnYR8eQ2tkxc+ToSQi76Lzh1I4jJ4BEadoJYVedN5zaOJSgztj+ajhtPFhEjclsixIJIS7RecPJqm1HTrE9AvDz9qD0gpFdx0tsWyQhRGcOp/Y16zy0GutZu3V7TtuqUEKIWp03nNrRIV5n8tXhAHz+YwGWNoacEKJxLhtOFRUVXHXVVTzxxBP23VE7QmXcgFC8tBryiwwcPF1uw0IJIVw2nP7yl79wzTXX2G8H7ewQB3Xq3uv6hgCw5oeCdm9PCHGRS4bTwYMH2bdvH0lJSXbcS/v6nOpMvjoMUJt2QgjbsXk45eTkMHXqVCIjI1EUhZUrVzZYJzMzk5iYGLy9vUlISGDLli313n/iiSdYsGCBrYtWnw2OnAAmDAxDo8CPJ8s4Vlxhk20KIewQTgaDgdjYWDIzMxt9Pysri7S0NObPn8+OHTuIjY1l8uTJnD6tnvH65JNP6NevH/369bN10ZrQviOnYB8dI2PUCej+98MpWxRICAF42HqDSUlJV2yOLVq0iDlz5jB79mwAFi9ezOrVq1m6dClz587l22+/Zfny5Xz44YeUl5djNBrx8/Nj3rx5jW6vqqqKqqoq6+uysjIAjEYjRqOxyXIoJjMegNlswnSF9VoiaXAY3+UXs3LnCWaPjm7XtgBrua9U/o5I6tWx2KteLd2eYrHjOXBFUVixYgXTpk0DoLq6Gr1ez0cffWRdBpCcnExJSQmffPJJvc8vW7aMH374gYULFza5j6effppnnnmmwfIPPvgAvV7f5OciSrYyKv8Vznbtx9f9/q91FbtMuRH+uF2L2aKQHltDeNO7FaLTq6ioYObMmZSWluLn59fkejY/crqSoqIiTCYTYWFh9ZaHhYWxb9++Nm0zPT2dtLQ06+uysjKioqKYNGnSFSuu7DNDPgQGBjJlypQ27ftSX5zfwfr9RZQE9OW+CX3btS2j0ci6deuYOHEinp6e7S6bq5B6dSz2qldd66Y5Dg2n1rr33nubXUen06HT6cjMzCQzMxOTyQSAp6fnlb9QD7XqGgU0Nvjipw3rwfr9RazaXcBTNw1EsUGHe7N16KCkXh2LrevV0m05dChBSEgIWq2WwsLCessLCwsJDw9v17bbPBOmjUwcFIbeS8ux4gvskDsCC9FuDg0nLy8v4uPjyc7Oti4zm81kZ2czevRoRxblIht1uem9PLip9nKWj7afsMk2hejMbB5O5eXl5ObmkpubC0B+fj65ubkcPXoUgLS0NJYsWcLbb7/N3r17eeihhzAYDNazd23V6hscKLVVt9huupOfjYgC4NPcE3JHYCHayeZ9Ttu2bWPcuHHW13Wd1cnJySxbtowZM2Zw5swZ5s2bR0FBAXFxcaxZs6ZBJ3lrpaSkkJKSQllZGf7+/s1/QKNVny2mdu33Utf0CiImWM/hsxWs+v4kM0a2f1iBEJ2VzcMpMTGx2Sv0U1NTSU1NtfWuW0epDSez7cJJURRmjIzmhTX7WL71mISTEO3gktfWtUWrm3WaumadbYd53RHfHQ+Nws6jJewvOG/TbQvRmbhNOLX6bJ21z8l2R04Aob7e3DgwFIB/bTlq020L0Zm4TTi1mh2adXV+MUptzv1n+3HKpWNciDZxm3BqfbPO9h3idW7o241e3bpyvqqGj7Yds/n2hegM3CacWt+ss9+Rk0ajMHtMTwD++c1hzGaZwleI1nKbcGo1Ox45AdwxvDt+3h4cOVvBl/vkBghCtFbnDae6DnGzfe45p/fysPY9/fObfLvsQwh35jbh5AojxC93z7UxaDUKm/LOsudky67EFkKo3CacWt3nZOdmHUD3gC4kDVavt3ttQ57d9iOEO3KbcGo1O3aIXyplXB8AVu8+xaEzcvsoIVqq84aTA46cAAZG+DFxUBgWC7y2/pBd9yWEO+m84WQ9crJfn1Od1Nqjp5W5J+QOLUK0kNuEU9uvrbPvkRNAbFQA1/cNwWS2sPgrOXoSoiXcJpxcaRBmYx4Zr84r/uG24xw/J0dPQjTHbcKp1RwwlOBSo3oGMaZPMNUmM39bd9Ah+xSiI+u84eSgDvFLPTV5AAAf7zwu06kI0YxOHE61d4Aw19h8TqemxEYFkDQ4HIsFFq7d75B9CtFRdd5w0l5yexqz46Y1+e2k/mgUWLenkO1H5C4tQjSlE4eT18Wfa6qaXs/G+oT68LN49UYIf1m9p9kpjYXorNwmnFo9lODScDJV26dQTXh8Yj/0Xlp2HC3hk9yTDt23EB2F24RTq4cSaD0unrEzGe1XsEaE+3tbL2tZ8L+9chspIRrhNuHUJnVHTw4+cgK4/7qeRAfpKSyrkouChWiEhBM4JZy8PbX84eaBACzZmM/RszIwU4hLdfJwqj1j54RwApg0KIzr+oRQXWNm3qc/SOe4EJfo5OGkU5+dFE6KovD0rVfjpdWwYf8Z/vv9KaeUQwhX1MnDqe7IybEd4pfqE+pj7Rx/9r8/UlLhnKAUwtV08nCq7XNy4Dinxvw6sRd9Qn0oKq9mwWf7nFoWIVyFhBM4rVlXR+ehZcH0IQBkbTvGtz8VO7U8QrgCtwmnVg/CBJdo1tUZGRPErAT1bi3pK3+k0nHXIwvhktwmnFo9CBPAw1t9rqm0T6FaaW7SALoHdOH4uQusOOw2/zRCtEnn/gvw7KI+G11jjJGvtyd/vSsWRYFvT2vI3is34xSdV+cOJ6+u6nO1wbnluMQ1vYK579qrAPjDJ3soKnduZ70QztK5w8lTrz67yJFTncdv7ENEFwtnDdWkf7xbBmeKTqlzh5NXbThVu1Y46Ty13N3XhKdWYd2eQt7+5rCziySEw3XucPKsbda52JETQPeu8NTkfgD85bO97DpW4twCCeFgnTycXKtD/HLJ10Rz09XhGE0WUj7YQWmF84c8COEonTucXLRZV0dRFF782VCig/QcP3eBJz7aJf1PotPo3OFkbda5ztm6y/l5e/LarOF4aTWs21PImxvznV0kIRzC5cKppKSEESNGEBcXx+DBg1myZIn9dubiR051Bnf3549TBwHqzJk5B844uURC2J/LhZOvry85OTnk5uby3Xff8dxzz3H27Fn77MzLR32ucv17yP0yIZo743tgtkDqBzvIL3Ldoz0hbMHlwkmr1aLXq0c0VVVVWCwW+/WzdAlQnytL7bN9G1IUhb/cPphh0QGUVdYw551tlFVKB7lwXzYPp5ycHKZOnUpkZCSKorBy5coG62RmZhITE4O3tzcJCQls2bKl3vslJSXExsbSo0cPnnzySUJCQmxdTJV3gPpcWWKf7duYzkPL67+MJ9zPm7zT5fxmeS4ms3SQC/fkYesNGgwGYmNjue+++5g+fXqD97OyskhLS2Px4sUkJCSQkZHB5MmT2b9/P6GhoQAEBASwa9cuCgsLmT59OnfeeSdhYWGN7q+qqoqqqouXeJSVlQFgNBoxGps5svDoiidguVBCTXPrOlBduRsrf2AXLa/NjOUXb27ly32nefqT3fzx5gEoiuLoYrbalerVkUm92rbd5igWO56bVhSFFStWMG3aNOuyhIQERo4cyauvvgqA2WwmKiqKRx55hLlz5zbYxsMPP8z48eO58847G93H008/zTPPPNNg+QcffGBtHjbFs+Y8U3anAPBp3FIsis2z2m5yzyosO6DBgsJtV5kYHylHUKJjqKioYObMmZSWluLn59fkeg79a6yurmb79u2kp6dbl2k0GiZMmMDmzZsBKCwsRK/X4+vrS2lpKTk5OTz00ENNbjM9PZ20tDTr67KyMqKiopg0adIVKw6A2QS14ZSUOBq6dmtH7WzHaDSybt06Jk6ciKenZ6PrTAHCNx1mwZoDfHJEy7iEodw8JNyxBW2lltSrI5J6tU5d66Y5Dg2noqIiTCZTgyZaWFgY+/ap09MeOXKEBx980NoR/sgjjzBkyJAmt6nT6dDpdA2We3p6tuAL9QSdH1SV4VlTAS72i9VcHR4c24dTZdUs++YwT/3nByIC9CT0CnZgCdumZf82HY/Uq+XbawmXa8eMGjWK3NzcVn8uMzOTzMxMTKZWTiHpHQBVZR2mU/xSiqLwx1sGcar0Ap//WMgDb2/jXw9ew+Du/s4umhDt5tChBCEhIWi1WgoLC+stLywsJDy8fU2SNs2ECaAPVJ8r7DSWys60GoWXfz6MUT2DOF9Vwz1Lt5B32vXHbQnRHIeGk5eXF/Hx8WRnZ1uXmc1msrOzGT16dLu23aY5xAG6qmcIKe+4s056e2p5K3kEQ3v4U2yoZtab33Gs2LVHvQvRHJuHU3l5Obm5udamWX5+Prm5uRw9ehSAtLQ0lixZwttvv83evXt56KGHMBgMzJ49u137bfORk29t/1d54ZXXc3G+3p68PXsU/cJ8KCyrYtab31FY5hpzowvRFjYPp23btjFs2DCGDRsGqGE0bNgw5s2bB8CMGTNYuHAh8+bNIy4ujtzcXNasWdPkOCa783GPcAII7OrFe/cncFWwnqPFFfzijW8pKJWAEh2TzcMpMTHReqbt0seyZcus66SmpnLkyBGqqqr47rvvSEhIaPd+29ysc6NwAgj18+a9+xPoHtCFn4oM/PyNzZwqveDsYgnRai53bV1btblZ59Px+5wuFxWkZ/mD19AjsAuHz1Yw4/VvOVEiASU6FrcJpzbzqT1LeL7AueWwsaggPVm/Gk10kNrEm/H6ZukkFx2KhJNfpPpcdgLMZueWxca6B3Rh+YPXEBOszqR51+ubZZiB6DDcJpza3Ofk1x0ULZiqody9jp4AIgO6sPzB0fTu1pVTpZX8bPFmcuVmCaIDcJtwanOfk9YD/LurP587YvuCuYBwf28+/PW1xPbw51yFkZlLvuXrg0XOLpYQV+Q24dQuAeoddilxz3ACCOrqxftzruG6PiFUVJuYvWwLn+0+5exiCdEkCSeAwNpwctMjpzo+Og/euncEU4ZcvN3U0q/z5Y4uwiW5TTi1uc8JIDBGfT7n/nc20XloeeUXw5mVEI3FAs+u2sPTn/5Ijcm9TgaIjs9twqnNfU4AwX3V5zP7bVsoF6XVKPx52mB+P2UAAG9vPsKcd7ZRXlXj5JIJcZHbhFO7hA5Un8/sd7vhBE1RFIUHb+jNP2YNR+ehYf3+M/xssYwmF65DwgkgqBdoPNWba5Ydd3ZpHCppSATLH7yGEB8v9p4qY1rmJnYePefsYgkh4QSA1hNCapt2p/c5tyxOMCw6kBUPj7HOaDDj9W/599Zjzi6W6OTcJpza1SEO0E3tf+H0j7YrVAcSFaTn44fHMGlQGNUmM0/953vmffIDRukoF07iNuHUrg5xgMg49fnEdpuVqaPx0Xmw+JfxpE3sB8A7m48wa8l3FJVXNfNJIWzPbcKp3brHq88ndji3HE6m0Sg8emNf3rxnBL46D7YcLmbqK1+z/Uixs4smOhkJpzoRcaBo1AuAy2Tk9IRBYaxMHUOv2mvyZrz+LW/kHJIBm8JhJJzq6HygW+2Qgk7ctLtU724+fJp6HVNjI6kxW3jus33MeWcbJRXVzi6a6AQknC7Vo7Zpd+xb55bDhfjoPPj7z+P4y+2D8fLQ8MXe09z896/ZIcMNhJ25TTi1+2wdQMwN6vNPX9mmUG5CURRmJVzFioevJSZYz4mSC9y1eDOLvzqE2SzNPGEfbhNO7T5bB9BrrPpc8D0YOuZ97Ozp6kh//vvIddw8NIIas4Xn/7ePmW9+y0mZAljYgduEk034hELo1erP+RucWhRX5evtyau/GMYLdwxB76Xl25+KuSkjh//uOunsogk3I+F0uV6J6nNe9hVX68wURWHGyGhWP3o9sVEBlFXW8Mi/dpKWlUtZpdHZxRNuQsLpcv1vUp/3fwYm+UO7kp4hXfno16N5dHwfNAp8vPMESRkb2XxImsSi/SScLhd9LeiD4cI5OPy1s0vj8jy1GtIm9effvxpNVFAXTpRc4BdLvmX+Jz9gkClYRDtIOF1O6wEDblF/3vOJc8vSgYyICeKzR6/nF6OiAXWOqJtezpGjKNFmEk6NGXSr+rz3v9K0awVfb08WTB/Cu/ePontAF44Vq0dR8+QoSrSBhFNjeo6FrqFQUQQH1ji7NB3O9X27seY3F4+i3qk9ivpGjqJEK7hNONlkEGYdrSfEzVR/3v52+7fXCdUdRb13f4L1KCp52XbeO6jhrEEufxHNc5twsskgzEsNv0d9zvsCSo7aZpud0HV9Q/j88RtIHn0VigJbizTc9PIm/r31mFxELK7IbcLJ5oJ7q807LPDd684uTYfmo/PgmdsG8+GDCXTXWyi5YOSp/3zPjDe+ldujiyZJOF3JtY+qz9uXwYUSZ5bELcT28Oe3Q03MvakfXTy1bMkvJunljSxau59Ko8nZxRMuRsLpSvrcqF7OUl0O295ydmncglaB+8fEsC7tBsYPCMVosvD3L/NIenkjOQfOOLt4woVIOF2JosCY2qOnb16Roycb6hGo563kEfxj1nBCfXXkFxm4Z+kW5ryzjaNnK5xdPOECJJyaM/hOCOmvjhjflOHs0rgVRVFIGhLBF78dy/3X9USrUVi3p5AJf/uKRWv3c6FamnqdmYRTc7QeMOFp9edv/wFlcvW9rfl5e/LHWwax5rHrGdMnmOoaM3//Mo8b/7qB1d+fkrN6nZSEU0v0T4Lo0VBTCWv/6OzSuK2+Yb68d38C/5g1nO4BXThZWknKBzuYueQ79hfIWb3ORsKpJRQFblqg3gDhh4/g4Dpnl8htWZt6aWN57Ma+6Dw0bP7pLFP+vpH5n/xAsQzg7DRcLpyOHTtGYmIigwYNYujQoXz44YfOLpIqchhc87D686rHoarcueVxc128tDw+sR9fpI3lpqvDMZktvL35CGNfWs8bOYeoqpH+KHfncuHk4eFBRkYGe/bsYe3atfzmN7/BYDA4u1iqcb+HgGgoPQZfzHd2aTqFqCA9i++O5/0HEhgY4cf5yhqe+2wfExZ9Jf1Rbs7lwikiIoK4uDgAwsPDCQkJobjYRW7o6NUVpr6s/rz1Tdi7yrnl6UTG9Alh1SPX8eIdQwn11XGs+AIpH+zgzsWb5U4wbsrm4ZSTk8PUqVOJjIxEURRWrlzZYJ3MzExiYmLw9vYmISGBLVu2NLqt7du3YzKZiIqKsnUx2673eLj2EfXnT1LkujsH0moU7hoZxfonEnnsxr508dSy/cg5pr/2Dakf7OBYsYyPcic2DyeDwUBsbCyZmZmNvp+VlUVaWhrz589nx44dxMbGMnnyZE6fPl1vveLiYu655x7eeOMNWxex/cbPg8jhUFkCy2dCtYs0OzuJrjoPHp/Yj/VPJPKz+B4oCqz6/hQ3/vUr/rJ6D+ek09wteNh6g0lJSSQlJTX5/qJFi5gzZw6zZ88GYPHixaxevZqlS5cyd+5cAKqqqpg2bRpz587l2muvveL+qqqqqKqqsr4uKysDwGg0YjTaa6I4Baa/hcc/J6EU7Mb88a8wTX9LPZtnA3Xltl/5ncPW9QrWa3lu2iB+mdCD59ccYPNPxSzZmM8HW45y/5gYZl97FT46m/+KNyD/Xm3bbnMUix17FBVFYcWKFUybNg2A6upq9Ho9H330kXUZQHJyMiUlJXzyySdYLBZmzpxJ//79efrpp5vdx9NPP80zzzzTYPkHH3yAXq+3UU0aF1h+kDF5C9BaasgLTeLHyJ+rww6Ew1kssLdEYdVRDScq1H8DHw8LE3uYuS7MgofL9a52XhUVFcycOZPS0lL8/PyaXM/+/61coqioCJPJRFhYWL3lYWFh7Nu3D4BNmzaRlZXF0KFDrf1V7777LkOGDGl0m+np6aSlpVlfl5WVERUVxaRJk65YcVux7I6ATx+mz+n/0XPgMMzXpTX/oWYYjUbWrVvHxIkT8fT0tEEpXYO963UzkGa28NkPBWRkH+JIcQUrDmv57pw3j4zvzbTYCDy0tk8p+fdqnbrWTXMcGk4tcd1112E2m1u8vk6nQ6fTkZmZSWZmJiaTOv7F09PTMb8ow2dBVSl8no72q+fQdvGDax6yyaYdVgcHs3e9bo+P5pa4Hny47TgvZx/gZGkl6St+5M2vD/PEpP7cNDgcxQ5HuPLv1fLttYRDD3ZDQkLQarUUFhbWW15YWEh4eHi7tm3zmTBbY/TDMPZ36s9r5sLGRY4vg6jHU6thZkI0Xz05jt9PGUCA3pNDZww89P4ObsvcxNcHi5xdRNEMh4aTl5cX8fHxZGdfvJuu2WwmOzub0aNHO7IotpeYDjc8qf6c/Qx88YzaESKcyttTy4M39CbnqXE8Or4Pei8t3x8v5ZdvfcfMJd+yU8ZIuSybh1N5eTm5ubnk5uYCkJ+fT25uLkePquOB0tLSWLJkCW+//TZ79+7loYcewmAwWM/etZVNb3DQFooC4/8PJj6rvv56Eax8GGqqrvw54RB+3p6kTepPzlPjuPfaGLy0Gr45dJbbX/uGB9/ZxoFCubDY5VhsbP369RagwSM5Odm6ziuvvGKJjo62eHl5WUaNGmX59ttvbbb/0tJSC2ApLS212TZbbetSi+XpQItlvp/F8tZki6X8TKs+Xl1dbVm5cqWlurraTgV0Dleq17Fig+W3/8619Jy7ynLV71ZZYuausjyetdNy9Kyh1dtypXrZkr3q1dK/UZsfOSUmJmKxWBo8li1bZl0nNTWVI0eOUFVVxXfffUdCQoKti+FcI2bDrA9B5w9HN8OScXAy19mlEpfoEahn4c9i+fw3N3DT1eFYLPDxjhOM/+sGnv70R86clyNeZ3Ob0R9Ob9Zdrs+N8MAXENhTvcTlrYnqXVykH8ql9A3zZfHd8XySMobr+oRgNFlY9s1hxr60noWf76es0r0GVnYkbhNOTj1b15Ru/eDB9TDgFjBVw/+egqxfQoWLXMgsrGKjAnjvgQTefyCB2KgAKqpNvLo+j+tfWM/irw7JlMFO4Dbh5LK6BMKM9yDpRdB6wb5V8No1sG+1s0smGjGmTwgrH76Wxb+Mp2+oD6UXjDz/v30kLlzP+98dwWhq+Rg80T5uE04u16y7lKJAwq/g/rUQ3BfKC9ULhj+6Dwwy3sbVKIrCTYPDWfObG1j4s1i6B3ShsKyKP6z4gYmLvuKT3BOYzdI8tze3CSeXbNZdLnIY/PpruO5xULTww38gcxTseAdaMSpeOIZWo3BnfA++fGIsT08dRIiPF4fPVvDY8lxufuVrvtxXKJPd2ZHbhFOH4emt3s3lgS/UG3ZWnIVPH1HP6B39ztmlE43QeWi5d0xPvnpyHE9M6oevzoO9p8q4b9k27np9M1sPy0BOe5Bwcpbuw+HBDTDpL6Dzg1O5sHQS/GcOlJ1wdulEI7rqPEgd35ecp8bxqxt6ofPQsPXwOWa+tZXX92rkDjE25jbh5NJ9Tk3x8IJrU+GR7TDsbkCB3f/G47WRDD7+nto3JVxOYFcv0qcM5KsnxzEzIRqtRmFPiYapr20mLStXZuS0EbvO5+QMZWVl+Pv7NztXjEs6sUO9L96RrwGweHRBGTUHxvwGugY7t2w2YDQa+eyzz5gyZYpbXb1/4FQJv3tvIzvPqv/Xe2oVZiVcxSPj+xDso3Ny6drOXv9eLf0bdZsjJ7fQfTjcu4qamf+hWN8bpeYCfPN3eHkofP4HKD3u7BKKRvQM6cq9/cx8/OuEegM5b3hxPRlfHKC8qsbZReyQJJxcjaJg6TmWjf3mUXPXBxA+FKrLYfOr8HIsfPwgFOx2dilFI4Z09+e9BxJ47/4EhnT3x1BtIuOLg4x9cT3LNuXLvfZaScLJVSkKlr6T4Fc5MPNDiLkezDXwfRYsvg7emabeeViGILic6/qG8EnKGDJnDqdnSFfOGqp5+r97uPGvX7Fyp4yRaim3CacO2SHeEooC/SbBvatgznq4erp6I4Wf1sP7d8LfYyFnIZyXznNXotEo3Dw0grWP38Bfbh9MqK+O4+cu8JusXKa9tonvfjrr7CK6PLcJpw4xCLO9ug+Hn/0THt0JCQ+Bt796UfGXf4K/DYJ/3wM/bZCjKRfiqdUwK+EqvnpyHE9O7o+PzoPvj5cy441v+dW72zhcJLcVa4rbhFOnEhgDSc9D2j6Y9g/oMUpt8u35BN65Df4eB1/+Gc4ccHZJRa0uXlpSxvVhw5OJzEqIRqPA5z8WMvFvX/Hsf/dQUiH32ruchFNH5qWHuJnwwDr49SYY+YA6oLPkCOS8BJkj4fWxsPk1afa5iBAfHX+5fQhrfnMDif27YTRZWLopn7EvbeCtr/PlwuJLSDi5i/DBcPNf4bf74Y63oO9k0HioI88/T4dFA+Dd22Hne2CQ/g5n6xfmy7LZo3j7vlH0D/Ol9IKRP63aQ9LLG/kmTy4GBxe8NZRoJy89DLlTfRiK4McV8P2/4fgWOPSl+lA0EH0tDLxFnWsqIMrZpe60xvbrxpjewfx723EWrt1P3ulyZr75HTcPjeAPUwYSGdDF2UV0Grc5cnLbs3Xt0TUERs1Rm32P7oRx/6eOm7KY1VHoa+ZCxmB4/Qb46iU4vVdm6nQCj9rbWK3/bSLJo69Co8Dq709x41+/4rUNeZ12fJTbhFOnOFvXHkG9YOyT8OuN8NgumLwArhqjHkWd2gXr/6xOgvfyUFj1OOxdBZUtuzOrsA1/vSfP3DaY/z5yHSOuCuSC0cSLa/ZzU8ZGvjpwxtnFczhp1nVGgTHqjUBHPwzlZ+DA/9Qw+mm9OjRh21L1ofGAqGugz3joMwHChoDGbf4/c1lXR/rz4a9Hs2LnCZ77bB/5RQaSl27h1thI5k0dREgHvl6vNSScOjufbjD8HvVRbYDDX0PeF+qj+Ce1+Xfka8h+FrqGQu/x0PMGiBkDAVepg0SFzSmKwvThPZgwKIyMdQdZ9k0+n+46Sc7BM/zx5kFMH97dLrdUdyUSTuIir67Qb7L6ADWc8rLVR34OGE7D98vVB4B/lNo0jLlODavAnhJWNubn7cm8qYOYNiySpz76nn0F5/nth7tYmXuC524fQlSQ3tlFtBsJJ9G0oF4wqpfaqV5TBce+U8/2Hd4EJ3dA6bH6YeXX/ZKwuk79vISVTQztEcB/H7mON3J+4uXsg2w8WMSkv+Xw+5sH8suEaLc8ipJwEi3joVObcz1vUF9XG9SwOrxJbQqe2K7O4Ln73+oDQB8MPUZCjxHqKPbQIc4rvxvw1GpIGdeHpMHhzP14N1vyi/njyh/I3lvIi3cMJdTP29lFtCkJJ9E2Xl3V/qfe49XX1RXqWKrDm+DIJji+VZ0f/cAa9QF4oJDo3QOtZR1EJ0DUKPVuNNLJ3iq9uvmwfM41/PObw7ywZh8b9p9hckYOz90+hKQhEc4uns1IOAnb8NJDr0T1AWozsGC3GlK1D6XkKP6VxyD3XfUB6i3be8Srd6aJiFXHYQXGSHOwGRqNwv3X9eT6viE8npXLjyfLeOj9HdwxvAfP3nY1XXUd/0+749egVmZmJpmZmZhMnXPAmsvx0NU250YADwFgLD7Gjv8uYUS4Be3JHWq/VVXpxZHrdbz91ZCKiL34CO4DGq1z6uLC+oX5suLhMbycfYB/bDjEf3YcZ9fxEhb/cjh9Qn2dXbx2cZtwSklJISUlxTo/sXBBvuEUBMRjHj8FracnmGrg9I9wfJs6EPTULji9BypL4fBG9VHHUw/hQy4JraEQ0l+91VYn5+Wh4cnJAxjbL5TUD3aQd7qcW1/dxILpQ7gtrruzi9dmbhNOogPSelw8MqpTUw1n9kHB9xcDq2A3GCvUDvhjl9zbT9FAUG8IHQihgyBskPoc2FPddiczqmcQqx+9nseW7+SbQ2d5bHkuWw8X88dbBqHz6HhHnZ3vX1C4Ng8v9agoYigM+6W6zGyCs3lw6nt1loW6wKosgbMH1cfeTy9uQ6uDbv3UoKoLrtCB6rgsN+/L6uar4937E8j44gCvfJnHe98e5UBBOYvvjieoq5ezi9cqEk7C9Wm00K2/+hj6M3WZxQLnC9Rm4Om9tY896lGXsUINr8tvBOHlC6ED1OZgSB+1Hyu4rzoey6Nj/eFeiVaj8NtJ/RkeHcij/9rJlsPF3P7aJpbeO5Le3XycXbwWk3ASHZOigF+E+uhz48XlZrM62V5dWNUFV9EBqD5/8exhvW1p1EtxQvqqYRVSG1ohfcEnrMMebY0bEMp/Hr6W+5Zt5cjZCm7P3MTiu+O5tneIs4vWIhJOwr1oNBDUU30MmHJxuckIZw+pgXU2Tw2rooPqz9XlcC5ffRxcW397Oj8I7n0xrIL7qK8De4K369+0tV+YLytTxvDgO9vYcbSEe97awl/viu0QHeUSTqJz0HqqTbrQAfWX1zUPzx68GFZFtf1YJUehqgxO7lQfl+sSBEE90fpHM+CsCSX3HHTrowaXb4TLDC4N8dHxwZxrePKj7/nvrpP8JiuXimoTvxgV7eyiXZGEk+jcLm0e1l2aU6emSr34uS6sivLU5+J8qCiCC8VwohjNie30B1h9Wad84FXqgNLAnupzUO1zYAx4OnaGS29PLS/PiMO/iwfvfXuU9I93Y6iq4YHrezm0HK0h4SREUzx0tWf7BjZ8r+o8nDsM5w5jKsrj6K4crvKzoDl3WL0g2lRV23Rs4g44PuFqSAVEgX8P9Uyif1Tt6yjQ2b7jWqNR+NNtg/HRebL4q0P8efVetBqF2WN62nxftuCS4XT77bezYcMGbrzxRj766CNnF0eIhnS+tYNCh2A2Gvm+uBc9pkxBUze4tOy4Gl7F+bUhVvtcfFgdFV9eoD6Ofdv49r0DLgaVNbR6gH+0+uwT2qaOekVRmJs0AC+twt+/zOOZ/+5B56FlZoLrNfFcMpwee+wx7rvvPt5++21nF0WI1tN6XGy+1V1rWMdigQvn1NAqOQKlx9UjrdLjUHIMSo+qI+QrS6CgpOFwCOs+dODfvf7Rln8U+EWqD9+IK3bYPz6xH5U1Zt7I+Yk/rNyNfxdPbh7qWhcNu2Q4JSYmsmHDBmcXQwjbUxTQB6mPHvGNr1NZVhtax9WwKjlWP8TOn1KbjcU/qY+mePmoIeUXAb6R9Z4V30jSx4RTWRXJO9+d5PF/5xLmp2NETJB96t0GNg+nnJwcXnrpJbZv386pU6dYsWIF06ZNq7dOZmYmL730EgUFBcTGxvLKK68watQoWxdFiI7J2w+8ay/HaYzJqM6dZT3auiTEzp+CslNq07G6/OII+kYowDOKhse7BnLE6E/xsmDKhlyNX2g0+Eai6EPxqTyp9q95Oj60bB5OBoOB2NhY7rvvPqZPn97g/aysLNLS0li8eDEJCQlkZGQwefJk9u/fT2hoqK2LI4T70XpebDY2pdqghtT5k008n4LzBSgWE4GmswRqzgI/we6LA1Q9gBsB9s5VR9f7RdQeiUVe9lx7ROYTZtPhEzYPp6SkJJKSkpp8f9GiRcyZM4fZs2cDsHjxYlavXs3SpUuZO3duq/dXVVVFVVWV9XVZmXo7I6PRiNFobPX2XEFduTtq+Zsi9XIgxQv8r1IfTTGbwHAG5fwpSk4f5c3/bcan+gwjgyoZGVQJ509iOnccT/MFdXR90fmmzz4C5qvGYJq1stmO+pZ+Tw7tc6qurmb79u2kp6dbl2k0GiZMmMDmzZvbtM0FCxbwzDPPNFi+du1a9PqOPfn7unXrnF0Eu5B6uSJPPGNuYNEeLebTCj/3MTE62gLRoDVV0sV4Du/aR5fq4os/X/KsObKJ/372WbPhVFFR0aISOTScioqKMJlMhIWF1VseFhbGvn37rK8nTJjArl27MBgM9OjRgw8//JDRo0c3us309HTS0tKsr8vKyoiKimLSpEn4+bn+5QWNMRqNrFu3jokTJ+Lp6ens4tiM1Mv1eW/M56W1B/nvcS/uu3kke7d9zfibpl65XhVn4W/9AZgyZUqz4VTXummOS56t++KLL1q8rk6nQ6fTNZgJ09PTs8P/orhDHRoj9XJdv07sy1cHzrLlcDH/99/9/CK8BfXyuPiep6dns+HU0u/IoRf/hISEoNVqKSwsrLe8sLCQ8PDwdm1bbkcuRPtpNQoLfxaL3kvLlsPnyClw3owMDg0nLy8v4uPjyc7Oti4zm81kZ2c32WwTQjhWdLCe309RL9n53zENReVVzXzCPmweTuXl5eTm5pKbmwtAfn4+ubm5HD16FIC0tDSWLFnC22+/zd69e3nooYcwGAzWs3dtlZmZyaBBgxg5cmR7qyBEpzdzVDRDuvtRaVL467o8p5TB5uG0bds2hg0bxrBhwwA1jIYNG8a8efMAmDFjBgsXLmTevHnExcWRm5vLmjVrGnSSt5Y064SwHY1G4Y9T1Oll/rPzBN8fL3F4GWzeIZ6YmIjFYrniOqmpqaSmptp610IIGxoWHcCIEDPbijS89Pl+3r0/waH7d43ZsGxAmnVC2N6UKDMeGoWNB4vYcfScQ/ftNuEkzTohbC/YG6bFRQLwSnbj1+jZi9uEkxDCPn49tidajcL6/WfYc7JlAyhtwW3CSZp1QtjHVUF6bhqsjkN899sjDtuv24STNOuEsJ+7r1EvIF658wRllY65wNltwkkIYT8JPYPoG+rDBaOJFTtOOGSfEk5CiGYpimK9ldSKnRJOrSJ9TkLY1y2xEWgUyD1WwrHilk170h5uE07S5ySEfYX6ejO6dzAAn+46aff9uU04CSHs75ah6pindXsKm1mz/SSchBAtNq6/Os//ruMlFBuq7bovCSchRIuF+3szINwXiwU2Hjxj1325TThJh7gQjjG2fzcAvjog4dQi0iEuhGOM7auG0zd5Z+26H7cJJyGEY8RFB6DVKBSUVXKy5ILd9iPhJIRoFb2XBwMjfAHsOo2KhJMQotWGRwcCsONIid32IeEkhGi1YdEBgDqkwF4knIQQrTYwQr1h7YGC81i48rTcbeU24SRDCYRwnF4hPnhoFM5X1VBYVmmXfbhNOMlQAiEcx8tDQ8+QrgDknSm3yz7cJpyEEI7VL1w9Y3fotISTEMKF9A31ASC/yGCX7Us4CSHaJDpID8CpEulzEkK4kB6BajidLJVwEkK4kB6BXQAoKLXPJSwSTkKINgnz88ZDo1BjlnFOQggXotUoRAZ0sdv23SacZBCmEI4X4e9tt227TTjJIEwhHC/ER2e3bbtNOAkhHC/Yx8tu25ZwEkK0WXBXOXISQrggOXISQrikEAknIYQrCpYOcSGEK/Lv4mm3bUs4CSHazEfnYbdtSzgJIdrMx7uThdOqVavo378/ffv25c0333R2cYQQTejqZb9wst+W26impoa0tDTWr1+Pv78/8fHx3H777QQHBzu7aEKIy2g1CnovrV227XJHTlu2bOHqq6+me/fu+Pj4kJSUxNq1a51dLCFEE7raqd/J5uGUk5PD1KlTiYyMRFEUVq5c2WCdzMxMYmJi8Pb2JiEhgS1btljfO3nyJN27d7e+7t69OydOnLB1MYUQNmKvpp3Nt2owGIiNjeW+++5j+vTpDd7PysoiLS2NxYsXk5CQQEZGBpMnT2b//v2Ehoa2en9VVVVUVVVZX5eVlQFgNBoxGo1tr4gT1ZW7o5a/KVKvjqWl9dLrNGC45DOK0qLtNsfm4ZSUlERSUlKT7y9atIg5c+Ywe/ZsABYvXszq1atZunQpc+fOJTIyst6R0okTJxg1alST21uwYAHPPPNMg+Vr165Fr9e3oybOt27dOmcXwS6kXh1Lc/WqPH/xBgefffZZs+FUUVHRov0qFovFPtPYAYqisGLFCqZNmwZAdXU1er2ejz76yLoMIDk5mZKSEj755BNqamoYOHAgGzZssHaIf/PNN012iDd25BQVFUVRURF+fn72qppdGY1G1q1bx8SJE/H0tN8gN0eTenUsLa3Xb/65nsyTP1M/8/szzYZTWVkZISEhlJaWXvFv1KFn64qKijCZTISFhdVbHhYWxr59+9QCeXjw17/+lXHjxmE2m3nqqaeueKZOp9Oh0zUcQu/p6dnhf1HcoQ6NkXp1LM3VS3fJ2TpPT89mw6ml35HLDSUAuPXWW7n11ltb9ZnMzEwyMzMxmUx2KpUQojFeWvuc9HfoUIKQkBC0Wi2FhYX1lhcWFhIeHt6ubctMmEI4h5eHG4STl5cX8fHxZGdnW5eZzWays7MZPXp0u7Ytc4gL4Rw6O4WTzZt15eXl5OXlWV/n5+eTm5tLUFAQ0dHRpKWlkZyczIgRIxg1ahQZGRkYDAbr2bu2SklJISUlhbKyMvz9/dtbDSFEC3l52GeEuM3Dadu2bYwbN876Oi0tDVDPyC1btowZM2Zw5swZ5s2bR0FBAXFxcaxZs6ZBJ7kQomOwV5+TzcMpMTGR5kYnpKamkpqaatP9Soe4EM7hFn1O9iQd4kI4h87jykMH2sptwkkI4Rz26nOScBJCtIs065ohQwmEcA5tMyPC28ptwkn6nIRwDo2dUsRtwkkI4RxaRZp1QggXZKdhTu4TTtLnJIRzaKTP6cqkz0kI59BoJJyEEC5IztYJIVySnK0TQrgkOXJqhnSIC+EcWq2E0xVJh7gQzqFBwkkI4YK0crZOCOGKZJyTEMIlyZGTEMIlyVCCZsjZOiGcQ2undHKbcJKzdUI4h4xzEkK4JGnWCSFckiLjnIQQnYmEkxDCJUk4CSFckoSTEMIlSTgJIVyS24STDMIUwjnsc67OjcJJBmEK4V7cJpyEEO5FwkkI4ZIknIQQLknCSQjhkiSchBDtYqdJCSSchBCuScJJCOGSJJyEEC7JJcPp9ttvJzAwkDvvvNPZRRFCOIlLhtNjjz3GO++84+xiCCGcyCXDKTExEV9fX2cXQwjRAi4zE2ZOTg5Tp04lMjISRVFYuXJlg3UyMzOJiYnB29ubhIQEtmzZYouyCiE6kVaHk8FgIDY2lszMzEbfz8rKIi0tjfnz57Njxw5iY2OZPHkyp0+ftq4TFxfH4MGDGzxOnjzZ9poIIdyKR2s/kJSURFJSUpPvL1q0iDlz5jB79mwAFi9ezOrVq1m6dClz584FIDc3t22lbURVVRVVVVXW12VlZQAYjUaMRqPN9uNIdeXuqOVvitSrY2lpvWpMF983Go3Njsps6ffU6nC6kurqarZv3056erp1mUajYcKECWzevNmWu7JasGABzzzzTIPla9euRa/X22WfjrJu3TpnF8EupF4dS3P1Ki47z4Danz/77LNmw6mioqJF+7VpOBUVFWEymQgLC6u3PCwsjH379rV4OxMmTGDXrl0YDAZ69OjBhx9+yOjRoxtdNz09nbS0NOvrsrIyoqKimDRpEn5+fm2riJMZjUbWrVvHxIkT8fT0dHZxbEbq1bG0tF6HjhyBQ+rPU6ZMaTac6lo3zbFpONnKF1980eJ1dTodOp2OzMxMMjMzMZlMAHh6enb4XxR3qENjpF4dS3P18vDwrLduc+HU0u/IpkMJQkJC0Gq1FBYW1lteWFhIeHi4LXfVgMyEKYR7sWk4eXl5ER8fT3Z2tnWZ2WwmOzu7yWaZEEI0ptXNuvLycvLy8qyv8/Pzyc3NJSgoiOjoaNLS0khOTmbEiBGMGjWKjIwMDAaD9eydvVzerBNCdGytDqdt27Yxbtw46+u6zujk5GSWLVvGjBkzOHPmDPPmzaOgoIC4uDjWrFnToJPc1lJSUkhJSaGsrAx/f3+77ksIYX+tDqfExEQsFssV10lNTSU1NbXNhRJCCJe8tq4t5L51QjiH3LeuGXK2Tgj34jbhJIRwL24TTtKsE8K9uE04SbNOCPfiNuEkhHAvEk5CiHaR+9Y1Q/qchHAvbhNO0uckhHtxm3ASQrgXCSchhEuScBJCuCS3CSfpEBfCWVzkvnWuSjrEhXAvbhNOQgj3IuEkhHBJEk5CCJck4SSEaBe5fKUZcrZOCPfiNuEkZ+uEcC9uE05CCPci4SSEcEkSTkIIlyThJIRoF7k1lBCiU5FwEkK4JAknIYRLcptwkkGYQrgXtwknGYQphHtxm3ASQjiHXFsnhOhUJJyEEC5JwkkI4ZIknIQQLknCSQjhkiSchBDtItfWCSE6FZcLp2PHjpGYmMigQYMYOnQoH374obOLJIRwAg9nF+ByHh4eZGRkEBcXR0FBAfHx8UyZMoWuXbs6u2hCCAdyuXCKiIggIiICgPDwcEJCQiguLpZwEqKTaXWzLicnh6lTpxIZGYmiKKxcubLBOpmZmcTExODt7U1CQgJbtmxpU+G2b9+OyWQiKiqqTZ8XQnRcrQ4ng8FAbGwsmZmZjb6flZVFWloa8+fPZ8eOHcTGxjJ58mROnz5tXScuLo7Bgwc3eJw8edK6TnFxMffccw9vvPFGG6olhHAUe11b1+pmXVJSEklJSU2+v2jRIubMmcPs2bMBWLx4MatXr2bp0qXMnTsXgNzc3Cvuo6qqimnTpjF37lyuvfbaZtetqqqyvi4rKwPAaDRiNBpbUiWXU1fujlr+pki9OpaW1stYY6r/mWbSqqXfk037nKqrq9m+fTvp6enWZRqNhgkTJrB58+YWbcNisXDvvfcyfvx47r777mbXX7BgAc8880yD5WvXrkWv17e88C5o3bp1zi6CXUi9Opbm6nW+/Dy9an/+7LPPmg2nioqKFu3XpuFUVFSEyWQiLCys3vKwsDD27dvXom1s2rSJrKwshg4dau3PevfddxkyZEij66enp5OWlmZ9XVZWRlRUFJMmTcLPz69tFXEyo9HIunXrmDhxIp6ens4ujs1IvTqWltbr2InjcFD9ecqUKc2GU13rpjkud7buuuuuw2w2t3h9nU6HTqcjMzOTzMxMTCb1ENPT07PD/6K4Qx0aI/XqWJqrl6eHtt66zYVTS78jmw7CDAkJQavVUlhYWG95YWEh4eHhttxVAzITphDuxabh5OXlRXx8PNnZ2dZlZrOZ7OxsRo8ebctdCSFchGKnq+ta3awrLy8nLy/P+jo/P5/c3FyCgoKIjo4mLS2N5ORkRowYwahRo8jIyMBgMFjP3tnL5c06IUTH1upw2rZtG+PGjbO+ruuMTk5OZtmyZcyYMYMzZ84wb948CgoKiIuLY82aNQ06yW0tJSWFlJQUysrK8Pf3t+u+hBD21+pwSkxMxGKxXHGd1NRUUlNT21woIYRwuVkJ2kruWyeEe3GbcJKzdUK4F7cJJyGEc8h965ohzToh3IvbhJM064RwL24TTkII9yLhJIRwSW4TTtLnJIR7cZtwkj4nIdyL24STEMK9SDgJIVyShJMQwiW5TThJh7gQ7sVtwkk6xIVwL24TTkII55Br64QQnYqEkxDCJUk4CSFckoSTEMIluU04yVACIdyL24STDCUQwjkUO52uc5twEkK4FwknIYRLknASQrgkCSchhEuScBJCuCQJJyFEu9jp0joJJyGEa3KbcJJBmEK4F7cJJxmEKYR7cZtwEkK4FwknIYRLknASQrSPzIQphOhMJJyEEC5JwkkI4ZIknIQQLknCSQjhklwunEpKShgxYgRxcXEMHjyYJUuWOLtIQogrUOx0us7DLlttB19fX3JyctDr9RgMBgYPHsz06dMJDg52dtGEEA7kckdOWq0WvV4PQFVVFRaLBYvF4uRSCSEcrdXhlJOTw9SpU4mMjERRFFauXNlgnczMTGJiYvD29iYhIYEtW7a0ah8lJSXExsbSo0cPnnzySUJCQlpbTCFEB9fqZp3BYCA2Npb77ruP6dOnN3g/KyuLtLQ0Fi9eTEJCAhkZGUyePJn9+/cTGhoKQFxcHDU1NQ0+u3btWiIjIwkICGDXrl0UFhYyffp07rzzTsLCwhotT1VVFVVVVdbXpaWlABQXF2M0GltbPZdgNBqpqKjg7NmzeHp6Ors4NiP16lhaWq9z587RpUpt3RjPnoVm7sZy/vx5gOZbRJZ2ACwrVqyot2zUqFGWlJQU62uTyWSJjIy0LFiwoE37eOihhywffvhhk+/Pnz/fAshDHvLoYI9jx45d8W/fph3i1dXVbN++nfT0dOsyjUbDhAkT2Lx5c4u2UVhYiF6vx9fXl9LSUnJycnjooYeaXD89PZ20tDTra7PZTHFxMcHBwXa7n5a9lZWVERUVxbFjx/Dz83N2cWxG6tWx2KteFouF8+fPExkZecX1bBpORUVFmEymBk2wsLAw9u3b16JtHDlyhAcffNDaEf7II48wZMiQJtfX6XTodLp6ywICAlpddlfk5+fnVr/sdaReHYs96uXv79/sOi43lGDUqFHk5uY6uxhCCCez6VCCkJAQtFothYWF9ZYXFhYSHh5uy10JIdycTcPJy8uL+Ph4srOzrcvMZjPZ2dmMHj3alrtyazqdjvnz5zdornZ0Uq+Oxdn1UmrPurVYeXk5eXl5AAwbNoxFixYxbtw4goKCiI6OJisri+TkZF5//XVGjRpFRkYG//73v9m3b1+TwwGEEOJyrQ6nDRs2MG7cuAbLk5OTWbZsGQCvvvoqL730EgUFBcTFxfH3v/+dhIQEmxRYCNE5tDqchBDCEVzu2johhAAJJyGEi5JwEkK4JAknJ2jNrA0//vgjd9xxBzExMSiKQkZGhuMK2gatqduSJUu4/vrrCQwMJDAwkAkTJrR6BgtHaU29Pv74Y0aMGEFAQABdu3YlLi6Od99914Glbbm2ziCyfPlyFEVh2rRp9itcm67GFW22fPlyi5eXl2Xp0qWWH3/80TJnzhxLQECApbCwsNH1t2zZYnniiScs//rXvyzh4eGWv/3tb44tcCu0tm4zZ860ZGZmWnbu3GnZu3ev5d5777X4+/tbjh8/7uCSX1lr67V+/XrLxx9/bNmzZ48lLy/PkpGRYdFqtZY1a9Y4uORX1tp61cnPz7d0797dcv3111tuu+02u5VPwsnB2jNrw1VXXeXS4dTeGSlqamosvr6+lrffftteRWwTW8y0MWzYMMv//d//2aN4bdaWetXU1FiuvfZay5tvvmlJTk62azhJs86B6mZtmDBhgnVZa2dtcFW2qFtFRQVGo5GgoCB7FbPV2lsvi8VCdnY2+/fv54YbbrBnUVulrfV69tlnCQ0N5f7777d7GV3uwl93ZotZG1yVLer2u9/9jsjIyHp/MM7W1nqVlpbSvXt3qqqq0Gq1vPbaa0ycONHexW2xttTr66+/5q233nLYhfkSTsIlPP/88yxfvpwNGzbg7e3t7OK0m6+vL7m5uZSXl5OdnU1aWhq9evUiMTHR2UVrk/Pnz3P33XezZMkSh02bLeHkQO48a0N76rZw4UKef/55vvjiC4YOHWrPYrZaW+ul0Wjo06cPoE5LvXfvXhYsWOAy4dTaeh06dIjDhw8zdepU6zKz2QyAh4cH+/fvp3fv3jYto/Q5OZA7z9rQ1rq9+OKL/OlPf2LNmjWMGDHCEUVtFVv9m5nN5npz3Ttba+s1YMAAdu/eTW5urvVx6623Mm7cOHJzc4mKirJ9Ie3W1S4atXz5cotOp7MsW7bMsmfPHsuDDz5oCQgIsBQUFFgsFovl7rvvtsydO9e6flVVlWXnzp2WnTt3WiIiIixPPPGEZefOnZaDBw86qwpNam3dnn/+eYuXl5flo48+spw6dcr6OH/+vLOq0KjW1uu5556zrF271nLo0CHLnj17LAsXLrR4eHhYlixZ4qwqNKq19bqcvc/WSTg5wSuvvGKJjo62eHl5WUaNGmX59ttvre+NHTvWkpycbH2dn5/f6OTwY8eOdXzBW6A1dbvqqqsardv8+fMdX/BmtKZef/jDHyx9+vSxeHt7WwIDAy2jR4+2LF++3Amlbl5r6nU5e4eTzEoghHBJ0uckhHBJEk5CCJck4SSEcEkSTkIIlyThJIRwSRJOQgiXJOEkhHBJEk5CCJck4SSEcEkSTkIIlyThJIRwSf8PUH0QQSBSBn8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Quick plot method\n", + "ax = gen.plot();\n", + "bro.plot(ax=ax)\n", + "ax.legend();" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxUAAAJOCAYAAADBIyqKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADCs0lEQVR4nOzdd1xV9RvA8c+5l70FFAUVFCcOXLh3qblNTUszt+VMLUsbjvb6WWmkZrmzHLlK00wtxb1wb3ErQwUElHl+f5wgCVAQLnfwvF+v+7pw7rnnPOfcy/nynO9SVFVVEUIIIYQQQognpDN2AEIIIYQQQgjzJkmFEEIIIYQQIl8kqRBCCCGEEELkiyQVQgghhBBCiHyRpEIIIYQQQgiRL5JUCCGEEEIIIfJFkgohhBBCCCFEvkhSIYQQQgghhMgXSSqEEEIIIYQQ+SJJhciTli1b0rJly4zfL126hKIoLFiwwGgxCcPx8/NjwIABxg5DCGEEpnB9VxSFqVOnZvy+YMECFEXh0qVLRovJ0Ix5jAMGDMDPzy/P7zOF74ope9Lzam4kqbBwx44do2fPnvj6+mJnZ4ePjw9t2rRh5syZhRbDvn37UBSFL7/8MstrXbt2RVEU5s+fn+W15s2b4+Pjk6d9LV26lK+++upJQ30iLVu2RFGUjIe9vT01a9bkq6++Ii0t7Ym2WZjHsWvXLqZOnUp0dHSh7C8vLly4wMsvv0z58uWxs7PDxcWFJk2a8PXXX3P//n1jhydEoUr/Z/PAgQPZvt6yZUuqV69eyFGZv6J2nblx4wZTp04lNDTUoPvZsGFDpoSwoPj5+WUqcx9+PHjwoMD3l1uFdV5NmZWxAxCGs2vXLlq1akXZsmUZOnQoJUuW5OrVq+zZs4evv/6a0aNH53mbf/zxR57fU6dOHRwcHAgJCWHcuHFZYrSysmLnzp0MHDgwY3lSUhL79++nc+fOedrX0qVLOX78OGPHjs1znPlRunRpPv74YwCioqJYunQp48aNIzIykg8//DDP2yvM49i1axfTpk1jwIABuLm5ZXrtzJkz6HTGufewfv16nnvuOWxtbXnppZeoXr06SUlJhISEMGHCBE6cOMF3331nlNiEEMbRr18/nn/+eWxtbQtke0XxOnPjxg2mTZuGn58ftWrVyvTa3Llzn+hmmK+vL/fv38fa2jpj2YYNGwgODjZIYlGrVi1ee+21LMttbGwKfF+5ZYjzam4kqbBgH374Ia6uruzfvz/LP4sRERFPtM0n+YO1srKiQYMG7Ny5M9PyM2fOEBUVRZ8+fQgJCcn02sGDB3nw4AFNmzZ9ojgLUlpaGklJSdjZ2eW4jqurKy+++GLG76+88gpVqlRh5syZvPfee+j1+sIItcAVVMGdV2FhYTz//PP4+vqydetWSpUqlfHayJEjOX/+POvXry+QfcXHx+Po6Fgg2xKiKCrMvyG9Xl9g19PCvM6Yi4eTgrxQFOWRZWRB8/HxyVTmmronPa/mRpo/WbALFy5QrVq1LAkFQIkSJTL9npKSwvvvv4+/vz+2trb4+fnx1ltvkZiYmGm9//apyK2mTZsSHh7O+fPnM5bt3LkTFxcXhg0blpFgPPxa+vsA1q5dS8eOHfH29sbW1hZ/f3/ef/99UlNTM8W2fv16Ll++nFEV+nAbxsTERKZMmUKFChWwtbWlTJkyvPHGG1mOUVEURo0axY8//ki1atWwtbVl48aNeTpeOzs7goKCuHfvXpYEbsmSJdStWxd7e3vc3d15/vnnuXr1qsGOY82aNVSvXh1bW1uqVauW6VimTp3KhAkTAChXrlzG/tLb8mbXp+LixYs899xzuLu74+DgQMOGDbMUvH/99ReKorB8+XI+/PBDSpcujZ2dHU899VSm70BOPvvsM+Li4vjhhx8yFfTpKlSowKuvvgo8ui3vf9tjT506FUVROHnyJH369KFYsWI0bdqUL774AkVRuHz5cpZtTJo0CRsbG+7evZuxbO/evTzzzDO4urri4OBAixYtsiTNQhhbixYtCAwMzPa1ypUr065du4zfo6OjGTBgAK6urri5udG/f/9sm0QOGDAAJycnLly4QIcOHXB2dqZv374A7Nixg+eee46yZctmXJvGjRuXpQlRTuVIbtqd59Tf4Pfff6dFixY4Ozvj4uJCUFAQS5cufeS28nKdgdyXk35+fnTq1ImQkBDq16+PnZ0d5cuXZ9GiRVn2ceLECVq3bo29vT2lS5fmgw8+yPaO9n+vZQ/v67/X6OjoaMaNG4efnx+2traULl2al156iaioKP766y+CgoIAGDhwYMY1P/36+fBnkJycjLu7e6ZWBOliY2Oxs7Pj9ddfB7JehwcMGEBwcHBG7OkPVVXx8/Oja9euWbb54MEDXF1defnll7O8lhfp1/n/yu67k5fPqqDOa7r4+Hhee+01ypQpg62tLZUrV+aLL75AVdVM6+WmLDcVUlNhwXx9fdm9ezfHjx9/bDvbIUOGsHDhQnr27Mlrr73G3r17+fjjjzl16hSrV6/OdyzpyUFISAgVKlQAtMShYcOGNGjQAGtra3bt2kWXLl0yXnN2ds4oEBcsWICTkxPjx4/HycmJrVu3MnnyZGJjY/n8888BePvtt4mJieHatWsZ/TecnJwArbahS5cuhISEMGzYMKpWrcqxY8f48ssvOXv2LGvWrMkU79atW1m+fDmjRo3C09MzXx3XHk7qPvzwQ95991169erFkCFDiIyMZObMmTRv3pzDhw/j5uZWoMcREhLCqlWrGDFiBM7OzsyYMYMePXpw5coVPDw86N69O2fPnuWnn37iyy+/xNPTE4DixYtne0zh4eE0btyYhIQExowZg4eHBwsXLqRLly6sXLmSZ599NtP6n3zyCTqdjtdff52YmBg+++wz+vbty969ex957n799VfKly9P48aN83LKc+25556jYsWKfPTRR6iqSqdOnXjjjTdYvnx5RpKVbvny5bRt25ZixYoB2nejffv21K1blylTpqDT6Zg/fz6tW7dmx44d1K9f3yAxC5EuJiYm002YdMnJyZl+79evH0OHDs1SBuzfv5+zZ8/yzjvvAKCqKl27diUkJIRXXnmFqlWrsnr1avr375/t/lNSUmjXrl1GQu7g4ADAihUrSEhIYPjw4Xh4eLBv3z5mzpzJtWvXWLFiRUEdfhYLFixg0KBBVKtWjUmTJuHm5sbhw4fZuHEjffr0yfF9eb3O5KWcPH/+PD179mTw4MH079+fefPmMWDAAOrWrUu1atUAuHXrFq1atSIlJYWJEyfi6OjId999h729/ROfi7i4OJo1a8apU6cYNGgQderUISoqinXr1nHt2jWqVq3Ke++9x+TJkxk2bBjNmjUDyPYcWFtb8+yzz7Jq1SrmzJmTqaXCmjVrSExM5Pnnn882jpdffpkbN26wefNmFi9enLFcURRefPFFPvvsM+7cuYO7u3vGa7/++iuxsbG5qoFITk7O8jfg4OCQ8V3Mi9x8VgV5XkH7m+vSpQvbtm1j8ODB1KpVi02bNjFhwgSuX7+epQ/q48pyk6EKi/XHH3+oer1e1ev1aqNGjdQ33nhD3bRpk5qUlJRpvdDQUBVQhwwZkmn566+/rgLq1q1bM5a1aNFCbdGiRcbvYWFhKqDOnz//kbHExsaqer1eHTx4cMayypUrq9OmTVNVVVXr16+vTpgwIeO14sWLq23atMn4PSEhIcs2X375ZdXBwUF98OBBxrKOHTuqvr6+WdZdvHixqtPp1B07dmRaPnv2bBVQd+7cmbEMUHU6nXrixIlHHlO6Fi1aqFWqVFEjIyPVyMhI9fTp0+qECRNUQO3YsWPGepcuXVL1er364YcfZnr/sWPHVCsrq0zLC+o4bGxs1PPnz2csO3LkiAqoM2fOzFj2+eefq4AaFhaWZX++vr5q//79M34fO3asCmTa/71799Ry5cqpfn5+ampqqqqqqrpt2zYVUKtWraomJiZmrPv111+rgHrs2LEs+0oXExOjAmrXrl1zXOdhj/oOAuqUKVMyfp8yZYoKqC+88EKWdRs1aqTWrVs307J9+/apgLpo0SJVVVU1LS1NrVixotquXTs1LS0tY72EhAS1XLlymb6zQhS0+fPnq8AjH9WqVctYPzo6WrWzs1PffPPNTNsZM2aM6ujoqMbFxamqqqpr1qxRAfWzzz7LWCclJUVt1qxZlr+t/v37q4A6ceLELPFld53++OOPVUVR1MuXL2cs+2858vC2/3vd++/fcPo5SL9eRUdHq87OzmqDBg3U+/fvZ3rvw3+j/5XX60xeyklfX18VULdv356xLCIiQrW1tVVfe+21jGXp19O9e/dmWs/V1TXLNfm/5+HhfT18jZ48ebIKqKtWrcqybvr52L9/f47XzP9+Bps2bVIB9ddff820XocOHdTy5ctn/J7ddXjkyJFqdv9mnjlzRgXUWbNmZVrepUsX1c/P75Gfm6r+e37/+0g/P+nX+f/673fn4W097rMq6POa/jf3wQcfZFqvZ8+eqqIomcrt3JblpkCaP1mwNm3asHv3brp06cKRI0f47LPPaNeuHT4+Pqxbty5jvQ0bNgAwfvz4TO9P7wRVEG1KnZ2dqVmzZkbfiaioKM6cOZORxTdp0iSj+cjZs2eJjIzM1J/i4Ts39+7dIyoqimbNmpGQkMDp06cfu/8VK1ZQtWpVqlSpQlRUVMajdevWAGzbti3T+i1atCAgICDXx3f69GmKFy9O8eLFqVKlCp9//jldunTJ1CRn1apVpKWl0atXr0wxlCxZkooVK2aJoSCO4+mnn8bf3z/j95o1a+Li4sLFixdzfWwP27BhA/Xr18/02Tg5OTFs2DAuXbrEyZMnM60/cODATHe30u/ePGr/sbGxgPadMZRXXnkly7LevXtz8OBBLly4kLFs2bJl2NraZlTVh4aGcu7cOfr06cPt27czzn98fDxPPfUU27dvLxKd8YRxBQcHs3nz5iyPmjVrZlrP1dWVrl278tNPP2U0qUhNTWXZsmV069Ytox/Ehg0bsLKyYvjw4Rnv1ev1jxzM4+F10z18nY6PjycqKorGjRujqiqHDx/O1zHnZPPmzdy7d4+JEydmadOfXROYdHm9zuS1nAwICMi43oFW+1u5cuVM174NGzbQsGHDTLWbxYsXz2hO9iR++eUXAgMDs9Qaw6PPR05at26Np6cny5Yty1h29+5dNm/eTO/evZ8oxkqVKtGgQQN+/PHHjGV37tzh999/p2/fvrmKs0GDBlm+/y+99NITxZObz6qgz+uGDRvQ6/WMGTMm0/LXXnsNVVX5/fffMy0v6LLcUKT5k4ULCgpi1apVJCUlceTIEVavXs2XX35Jz549CQ0NJSAggMuXL6PT6TKaJaUrWbIkbm5u2bYzfxJNmzZl5syZREVFsWvXLvR6PQ0bNgS0KsJvv/2WxMTELP0pQGt3+s4777B169aMwiBdTEzMY/d97tw5Tp06lWOznv/2eyhXrlyejs3Pzy9jdIcLFy7w4YcfEhkZmamQO3fuHKqqUrFixWy3kZuOXHk9jrJly2ZZp1ixYpn6B+TF5cuXadCgQZblVatWzXj94WYW/91/ehOiR+3fxcUF0JJHQ8nu833uuecYP348y5Yt46233kJVVVasWEH79u0zYjp37hxAjs1CQPs+ph+nEIZQv3596tWrl2V5sWLFsjQJeemll1i2bBk7duygefPm/Pnnn4SHh9OvX7+MdS5fvkypUqUymlmmq1y5crb7t7KyonTp0lmWX7lyhcmTJ7Nu3bosf+O5uU4/ifSbAHkdSjev15m8lpO5ufbmdD3N6bznxoULF+jRo8cTv/+/rKys6NGjB0uXLiUxMRFbW1tWrVpFcnLyEycVoH0vR40axeXLl/H19WXFihUkJydn+l4+iqenJ08//fQT7/9hufmsCvq8Xr58GW9v7yxJ7cNlaV5jNAWSVBQRNjY2BAUFERQURKVKlRg4cCArVqxgypQpGes8SbadF+lJxc6dO9m1axc1atTIKMQaN25MYmIi+/fvJyQkBCsrq4yEIzo6mhYtWuDi4sJ7772Hv78/dnZ2HDp0iDfffDNXd4bT0tKoUaMG06dPz/b1MmXKZPo9r21aHR0dM13gmjRpQp06dXjrrbeYMWNGRgyKovD7779nO3rJfwv07OT1OHIaJUX9T0cwQ3mS/bu4uODt7c3x48dztY+cvrcPd+L/r+w+X29vb5o1a8by5ct566232LNnD1euXOHTTz/NWCf9u/b5559nGTIwXW4+RyEKS7t27fDy8mLJkiU0b96cJUuWULJkyXz9Q2Zra5tlqOnU1FTatGnDnTt3ePPNN6lSpQqOjo5cv36dAQMGZLpOp3fY/a9H/c0WtLxeZ9LltpwsrGtvYZyz559/njlz5vD777/TrVs3li9fTpUqVXIcBCC32xw3bhw//vgjb731FkuWLKFevXr5SqjS5bVMMHY5mRvmECNIUlEkpd/hunnzJqB16E5LS+PcuXMZWTJonXKjo6Px9fUtkP0+3Fl79+7dNGnSJOM1b29vfH192blzJzt37qR27doZHa7++usvbt++zapVq2jevHnGe8LCwrLsI6eLib+/P0eOHOGpp54yePIEWtXkiy++yJw5c3j99dcpW7Ys/v7+qKpKuXLlqFSp0iPfX5jHkZft+Pr6cubMmSzL05ugFdR3pVOnTnz33Xfs3r2bRo0aPXLd9FqB/45U8yQ1bL1792bEiBGcOXOGZcuW4eDgkGmulPTqZxcXlwK7SyaEIen1evr06cOCBQv49NNPWbNmDUOHDs30T4qvry9btmwhLi4uU1Kc3d96To4dO8bZs2dZuHBhpmYomzdvzrJusWLFsm228SR/s+l/k8ePH89Si/A4ebnOGKKc9PX1zaj9fFh2571YsWJZrnFJSUkZ5Xg6f3//xyZKeS07mjdvTqlSpVi2bBlNmzZl69atvP32249936P24+7uTseOHfnxxx/p27cvO3fuLLAJXx8uEx4eKCU/rS4K+rz6+vry559/cu/evUy1FQVdlhY26VNhwbZt25ZtFpveNjT9jkCHDh0AsvxBp98N79ixY4HE4+3tTbly5diyZQsHDhzIMipC48aNWbNmDWfOnMnU9Cm98Hv4WJKSkvj222+z7MPR0THbavZevXpx/fp15s6dm+W1+/fvEx8f/8THlZM33niD5OTkjPPYvXt39Ho906ZNy/K5qKrK7du3M34vzONIb1edmxm1O3TowL59+9i9e3fGsvj4eL777jv8/Pzy1A/lUd544w0cHR0ZMmQI4eHhWV6/cOECX3/9NaD9g+/p6cn27dszrZPd9+NxevTogV6v56effmLFihV06tQp0/j7devWxd/fny+++IK4uLgs74+MjMzzPoUwtH79+nH37l1efvll4uLisoyu06FDB1JSUpg1a1bGstTUVGbOnJnrfWR3nVZVNePv9GH+/v6cPn0609/LkSNHnmhY5rZt2+Ls7MzHH3+cZTblx93Fzct1xhDlZIcOHdizZw/79u3LWBYZGZmpr0E6f3//LNe47777Lsvd9x49emQ0df6v9PORl2s+gE6no2fPnvz6668sXryYlJSUXDV9etx++vXrx8mTJ5kwYQJ6vT7HkaTyKj3RfPh8xcfHs3DhwifeZkGf1w4dOpCamso333yTafmXX36Joii0b9/+iWM1JqmpsGCjR48mISGBZ599lipVqpCUlMSuXbtYtmwZfn5+GWNPBwYG0r9/f7777ruMpkb79u1j4cKFdOvWjVatWhVYTE2bNs0YXu7hmgrQkoqffvopY72HlxcrVoz+/fszZswYFEVh8eLF2RYYdevWZdmyZYwfP56goCCcnJzo3Lkz/fr1Y/ny5bzyyits27aNJk2akJqayunTp1m+fDmbNm3Kto1yfgQEBNChQwe+//573n33Xfz9/fnggw+YNGkSly5dolu3bjg7OxMWFsbq1asZNmxYxpjfhXkcdevWBbQheZ9//nmsra3p3LlztpNZTZw4kZ9++on27dszZswY3N3dWbhwIWFhYfzyyy8FNvu2v78/S5cupXfv3lStWjXTTLe7du1ixYoVmcZmHzJkCJ988glDhgyhXr16bN++nbNnz+Z5vyVKlKBVq1ZMnz6de/fuZSk4dTod33//Pe3bt6datWoMHDgQHx8frl+/zrZt23BxceHXX3/N7+ELUaBq165N9erVMwZ6qFOnTqbXO3fuTJMmTZg4cSKXLl0iICCAVatW5akfRJUqVfD39+f111/n+vXruLi48Msvv2Tb5nvQoEFMnz6ddu3aMXjwYCIiIpg9ezbVqlXL0mfucVxcXPjyyy8ZMmQIQUFBGfPPHDlyhISEhEf+I5mX64whysk33niDxYsX88wzz/Dqq69mDCnr6+vL0aNHM607ZMgQXnnlFXr06EGbNm04cuQImzZtyhgGPN2ECRNYuXIlzz33HIMGDaJu3brcuXOHdevWMXv2bAIDA/H398fNzY3Zs2fj7OyMo6MjDRo0eGRfwt69ezNz5kymTJlCjRo1MtXW5CS9bBkzZgzt2rXLkjh07NgRDw+PjL5r/50/60m1bduWsmXLMnjw4IyEZd68eRQvXpwrV6480TYL+rx27tyZVq1a8fbbb3Pp0iUCAwP5448/WLt2LWPHjs3UKdusFOZQU6Jw/f777+qgQYPUKlWqqE5OTqqNjY1aoUIFdfTo0Wp4eHimdZOTk9Vp06ap5cqVU62trdUyZcqokyZNyjRcq6o++ZCy6ebMmaMCqo+PT5bXDh06lDE03H/j27lzp9qwYUPV3t5e9fb2zhgeF1C3bduWsV5cXJzap08f1c3NTQUyDeGWlJSkfvrpp2q1atVUW1tbtVixYmrdunXVadOmqTExMRnrAerIkSNzdTyqqp2Th4dxfNhff/2VZSjAX375RW3atKnq6OioOjo6qlWqVFFHjhypnjlzplCO479DEKqqqr7//vuqj4+PqtPpMg25l926Fy5cUHv27Km6ubmpdnZ2av369dXffvst0zrpQ8quWLEi0/K8fl/Onj2rDh06VPXz81NtbGxUZ2dntUmTJurMmTMzfTcTEhLUwYMHq66urqqzs7Paq1cvNSIiIschZSMjI3Pc59y5c1VAdXZ2zjJEZbrDhw+r3bt3Vz08PFRbW1vV19dX7dWrl7ply5ZcHZcQTyJ9SMz9+/dn+/qjrkWfffaZCqgfffRRtq/fvn1b7devn+ri4qK6urqq/fr1Uw8fPpztkLKOjo7ZbuPkyZPq008/rTo5Oamenp7q0KFDM4a+/O/f/JIlS9Ty5curNjY2aq1atdRNmzY90ZCy6datW6c2btxYtbe3V11cXNT69eurP/30U7Zx/ldurzO5LSd9fX0zDSeeLruhdI8ePaq2aNFCtbOzU318fNT3339f/eGHH7IcY2pqqvrmm2+qnp6eqoODg9quXTv1/Pnz2V6jb9++rY4aNUr18fFRbWxs1NKlS6v9+/dXo6KiMtZZu3atGhAQoFpZWWX6fLL7DFRVGza1TJky2Q6DqqrZX9tTUlLU0aNHq8WLF1cVRcl2mNcRI0aogLp06dIsr+Ukp/P7sIMHD6oNGjRQbWxs1LJly6rTp0/PcUjZ3H5WBX1e7927p44bN0719vZWra2t1YoVK6qff/55liF181KWG5uiqibWy0MIIYQQBerrr79m3LhxXLp0KduRZIQwhnHjxvHDDz9w69atJ5q4TpgWSSqEEEIIC6aqKoGBgXh4eORqPhwhCsODBw8oU6YMnTp1Yv78+cYORxSAItGnIiwsjEGDBhEeHo5er2fPnj3ZthcXQghRtFhy+RAfH8+6devYtm0bx44dY+3atcYOSQgiIiL4888/WblyJbdv3+bVV181dkiigBSJpGLAgAF88MEHNGvWjDt37mBra2vskIQQQpgASy4fIiMj6dOnD25ubrz11lt06dLF2CEJwcmTJ+nbty8lSpRgxowZOc75I8yPxScVJ06cwNraOmMKdnd3dyNHJIQQwhRYevng5+dncpNjCdGyZUv5Xlook5+nYvv27XTu3Blvb28URWHNmjVZ1gkODsbPzw87OzsaNGiQacznc+fOZQzHWadOHT766KNCjF4IIYShSPkghBCmw+STivj4eAIDAwkODs729fSx/KdMmcKhQ4cIDAykXbt2REREAJCSksKOHTv49ttv2b17N5s3b852hk8hhBDmRcoHIYQwHWY1+pOiKKxevZpu3bplLGvQoAFBQUEZsxKmpaVRpkwZRo8ezcSJE9m9ezdTp05l06ZNAHz++eeANpFJdhITE0lMTMz4PS0tjTt37uDh4ZHnqe2FEMIcqKrKvXv3cHZ2xsXFxSyvdVI+CCGEYaSXEd7e3o+c5Nas+1QkJSVx8OBBJk2alLFMp9Px9NNPs3v3bgCCgoKIiIjg7t27uLq6sn37dl5++eUct/nxxx8zbdo0g8cuhBCmKCYmBhcXF2OHkW9SPgghRMG6evUqpUuXzvF1s04qoqKiSE1NxcvLK9NyLy8vTp8+DYCVlRUfffQRzZs3R1VV2rZtS6dOnXLc5qRJkxg/fnzG7zExMZQtW5awsDCcnZ1zF1j0Zay/b4lq7UjKq8cBeGr6Du4kJPPzkCAql8zldkxEcnIy27Zto1WrVlhbWxs7HJMl5+nx5BzlTmGfp3v37lGuXDmuXr2a++uciSvM8uHs2bNm28nb3P8mJX7jM/djMPf4wfDHkF5GPK58MOukIrfat29P+/btc7Wura1ttkMKuru75/7unRIDtgrY6MHDAwAPdzeiU+NR7Jzx+GeZuUhOTsbBwQEPDw+z/YMrDHKeHk/OUe4U9nlK34e5Nn3Kj4IqH8ztup7O3P8mJX7jM/djMPf4wfDHkL7Nx5UPJt9R+1E8PT3R6/WEh4dnWh4eHk7JkiXzte3g4GACAgIICgrK13bSudprH0jM/eQC2Z4QQoicmVP5IIQQlsCskwobGxvq1q3Lli1bMpalpaWxZcsWGjVqlK9tjxw5kpMnT7J///78hgk8nFQkFcj2hBBC5MycygchhLAEJt/8KS4ujvPnz2f8HhYWRmhoKO7u7pQtW5bx48fTv39/6tWrR/369fnqq6+Ij49n4MCBRow6KzcHG0BqKoQQoqBYSvkghBCWwOSTigMHDtCqVauM39M7yfXv358FCxbQu3dvIiMjmTx5Mrdu3aJWrVps3LgxS+e8vAoODiY4OJjU1NR8bSddek1FdIIkFUIIURAspXwQQghLYPJJRW6mcx81ahSjRo0q0P2OHDmSkSNHEhsbi6ura763V+yfmoq7CdL8SQghCoKllA9CCGEJzLpPhTnxcNKSiqg4SSqEEEIIIYRlkaQiBwU9uofnP0nFnXhJKoQQwpzJ6E9CCJGVJBU5KOjRPdwdtbHNb8clFsj2hBBCGIeM/iSEEFlJUlFI0ps/3ZbmT0IIIYQQwsJIUlFIPP+pqbiXmEJiiowYIoQQQgghLIckFTko6DazLvZWWOm06c2lX4UQQpgv6VMhhBBZSVKRg4JuM6soCu6O0gRKCCHMnfSpEEKIrCSpKEQeTloTqCjprC2EEEIIISyIJBWFSIaVFUIIIYQQlkiSihwYos2shzR/EkIIsyd9KoQQIitJKnJgiDaz6XNVRMVL8ychhDBX0qdCCCGykqSiEHk6azUVkfckqRBCCCGEEJZDkopC5OVsB0BErCQVQgghhBDCckhSUYhKumpJRXjsAyNHIoQQQgghRMGRpCIHhuiI5+Wi9am4JUmFEEKYLemoLYQQWUlSkQNDdMQr4aLVVNx7kEJCUkqBbVcIIUThkY7aQgiRlSQVhcjZ1goHGz0g/SqEEEIIIYTlkKSiECmKgtc/tRXSBEoIIYQQQlgKSSoKWXq/CumsLYQQQgghLIUkFYUsvaZCkgohhBBCCGEpJKkoZCUzkgrpUyGEEEIIISyDJBU5MNSQgSWkT4UQQpg1GVJWCCGykqQiB4YaMjCjT0WMJBVCCGGOZEhZIYTISpKKQubtZg/Ajej7Ro5ECCGEEEKIgiFJRSErXUxLKm7FPiA5Nc3I0QghhBBCCJF/klQUsuJOttha6UhT4ZY0gRJCCCGEEBZAkopCpigKPv80gbp6N8HI0QghhBBCCJF/klQYgc8/TaCu3ZV+FUIIIYQQwvxJUmEEpYs5AJJUCCGEEEIIyyBJhRGUzqipkOZPQgghhBDC/ElSYQSlpfmTEEIIIYSwIJJU5KBgZkxVs12anlRcl6RCCCHMjsyoLYQQWUlSkQNDzpia3qfiVuwDUmSuCiGEMCsyo7YQQmQlSYURFHeyxcZKR2qayo1omatCCCGEEEKYN0kqjECnU/B112orwm7HGzkaIYQQQggh8keSCoNQtCc1+z4VAH6ejgBcipKkQgghhBBCmDdJKoyk/D9JRZgkFUIIIYQQwsxJUmEk5f5JKi5KUiGEEEIIIcycJBUGJc2fhBBCCCGE5ZOkwhAU5bGrpDd/unY3gaQUGVZWCCGEEEKYL0kqjKS4sy2ONnrSVLhyJ8HY4QghhBBCCPHEJKkwEkVRMppASWdtIYQQQghhzqyMHUBh8PPzw8XFBZ1OR7Fixdi2bZuB9/j4IWVB66x94kYsYVFxgJeBYxJCCPFfhV8+CCGEZSoSSQXArl27cHJyMnYYmZQvrsVzPiLOyJEIIUTRZYrlgxBCmBtp/mRElby0QuxsuCQVQgghhBDCfJl8UrF9+3Y6d+6Mt7c3iqKwZs2aLOsEBwfj5+eHnZ0dDRo0YN++fZleVxSFFi1aEBQUxI8//mj4oDNGf3p086fKXs4AnAu/R1rao9cVQgiRmamUD5tPhj/R+4QQwpKYfFIRHx9PYGAgwcHB2b6+bNkyxo8fz5QpUzh06BCBgYG0a9eOiIiIjHVCQkI4ePAg69at46OPPuLo0aOFFf4j+Xk6Yq1XiE9K5Xr0fWOHI4QQZsVUyoc3Vp1g2q8nZHhwIUSRZvJ9Ktq3b0/79u1zfH369OkMHTqUgQMHAjB79mzWr1/PvHnzmDhxIgA+Pj4AlCpVig4dOnDo0CFq1qyZ7fYSExNJTEzM+D02NhaA5ORkkpOTcxd0SgrWaPUUKY95T3lPR86Ex3HyRjQlna1zt/1Cln7cuT7+IkrO0+PJOcqdwj5P5vp5mEr5ADB/5yUOX7nLjN6BlHK1y/exFRZz/5uU+I3P3I/B3OMHwx9Dbrdr8knFoyQlJXHw4EEmTZqUsUyn0/H000+ze/duQLuTlZaWhrOzM3FxcWzdupVevXrluM2PP/6YadOmZVn+xx9/4ODgkKu47JOiaAukpaayYcOGR67rlKoDdPy6/QAPLph2E6jNmzcbOwSzIOfp8eQc5U5hnaeEBMubK6cwy4eXKqbyy3WV0KsxtP/qb/pVTKOqm2lfz//L3P8mJX7jM/djMPf4wXDHkNsywqyTiqioKFJTU/Hyyjwcq5eXF6dPnwYgPDycZ599FoDU1FSGDh1KUFBQjtucNGkS48ePz/g9NjaWMmXK0LZtW1xcXHIXWMw1OKEVYB06dHjkqlf+vsjBP8+jcytNhw41crf9QpacnMzmzZtp06YN1tamWZtiCuQ8PZ6co9wp7PP08B13S1GY5cOo7i0ZqNgz+ucjnLx5jzmn9YxsUZ5RrfzR65Qct2cKzP1vUuI3PnM/BnOPHwx/DLktI8w6qciN8uXLc+TIkVyvb2tri62tLcHBwQQHB5OamgqAtbV17j8oK+20Kv+871GqersBcD4y3uS/zHk6B0WYnKfHk3OUO4V1norqZ1GQ5YO/hyurRjRh2q8n+WnfFb756yKh12L56vlaeDrZGuoQCoy5/01K/MZn7sdg7vGD4Y4ht9s0+Y7aj+Lp6Yleryc8PPPIG+Hh4ZQsWTJf2x45ciQnT55k//79+drO41QuqY0AdT4yjpRU6eQnhBAFwRjlg521no+712B6r0DsrfWEnI+i44wdHLh0J1/7E0IIc2DWSYWNjQ1169Zly5YtGcvS0tLYsmULjRo1Ml5guRxSFsDHzR5HGz1JKWlcjIo3bFxCCFFEGLN86F6nNGtHNaF8cUfCYxPp/d0e5m6/iKqaVz8LIYTIC5NPKuLi4ggNDSU0NBSAsLAwQkNDuXLlCgDjx49n7ty5LFy4kFOnTjF8+HDi4+MzRvt4UsHBwQQEBDyyfW1B0OkUqnm7AnDsWoxB9yWEEJbElMuHSl7OrBvVlM6B3qSmqXy44RSvLDlIzH3zHWFGCCEexeT7VBw4cIBWrVpl/J7eSa5///4sWLCA3r17ExkZyeTJk7l16xa1atVi48aNWTrn5dXIkSMZOXIksbGxuLq65mtbj1Pdx5V9l+5w7HoMPeqWNui+hBDCUph6+eBka8WM52sR5FeM9387yaYT4Zy+FcK3fetk3EwSQghLYfJJRcuWLR9bZTxq1ChGjRpVSBHlRt5G+6juo40qdeKG1FQIIURumUP5oCgKLzXyo2ZpN0b+eIjLtxN49ttdvNelGr2DyqAopj06lBBC5JbJN38ylgJp/pTL9rM1fLQ7ViduxJKaJm1uhRDClD1J+VCrjBvrxzSldZUSJKWkMXHVMV5fcZT7SakGjFQIIQqPJBU5KKzRnwDKF3fC3lpPQlIqYVFxBt+fEEKIJ/ek5YObgw3fv1SPN56pjE6BXw5do1vwTi5EynVfCGH+JKkwAXqdQoC31gTq+HXLm4RKCCGERqdTGNGyAj8OaYinky1nwu/RZWYIvx29YezQhBAiXySpMIQ8DCmbrvo/ScWx69KvQgghLF0jfw82jGlKg3LuxCelMmrpYaauO0FSisxXJIQwT5JU5KCwhpRNV6O0GwBHrkYXyv6EEEI8mYIqH0q42PHjkAYMb+kPwIJdl+g1ZzfXo+8XRJhCCFGoJKnIQWH2qQCo61sMgKPXY0hMkY57QghhqgqyfLDS63jzmSr80L8eLnZWhF6NpuOMHWw7E1EAkQohROGRpMIg8j5EoJ+HA+6ONiSlpHHihvSrEEKIouSpql6sH9OMGj6uRCckM3D+fv73xxkZEVAIYTYkqTCkXA4pC9pY5nXKugFw6PJdAwUkhBDCVJVxd2Dl8Eb0a+gLwMyt5+n3w14i7yUaOTIhhHg8SSpMSJ1/mkAduiJJhRBCFEW2Vnre71adr5+vhYONnl0XbtNxxg72hd0xdmhCCPFIklTkIF8d8Z5whtS6ZbWk4uDlu4+dJVYIIYRxFMZAHl1r+bBuVBMqlHAi4l4iL8zdw5y/L0jZIIQwWZJU5KBgOuLl7eJfs7QbVjqF8NhEbsQ8yMd+hRBCGEphDeRRoYQza0c2oVstb1LTVD7+/TTDFh8k5n6yQfcrhBBPQpIKE2Jvo8+YBO/AJanqFkKIos7R1oove9fig27VsdHr2HwynE4zd3Bc5jQSQpgYSSoM4smaP8G/Q8vul6RCCCEE2kAeLzb05ZfhjSldzJ6rd+7TfdYulu69Is2hhBAmQ5IKE9OovAcAuy7cNnIkQgghTEmN0q6sH92Mp6uWICkljbdWH+O15UdISEoxdmhCCCFJRU4KpCPeE9xBalDeA50CFyPjCY+VfhVCCGFqCqOjdk5cHaz5rl89Jravgl6nsOrwdboF7+R8RFyhxyKEEA+TpCIHhT2jdjpXe2uqebsCsFtqK4QQwuQYq3xIp9MpvNLCn6VDGlDc2Zaz4XF0/SaEdUduGCUeIYQASSoM4wmHlE3XyF9rAiVJhRBCiJw0KO/B+jFNaVTeg/ikVMb8dJgpa4+TmJJq7NCEEEWQJBUG9WQd6NKTil0XowoyGCGEEBamhLMdiwfXZ2QrfwAW7r5Mr9m7uXY3wciRCSGKGkkqTFCQnzt6ncLVO/e5ekcKBiGEEDmz0uuY0K4K8wbUw9XemiPXYug4I4RtpyOMHZoQogiRpMIg8tf8ycnWisDSWr+KkPNSWyGEEOLxWlfxYv2YpgSWdiXmfjIDF+zn802nSUlNM3ZoQogiQJIKE9WycgkA/jojd5qEEELkTuliDix/pRH9G/kCELztAv1+2EfEPRlNUAhhWJJU5MCYQwYCtPonqQg5F0VSitxlEkIIU2Hs8uFxbK30TOtanZkv1MbRRs/ui7fpOCOEvRdl8A8hhOFIUpGDfA0ZmM/RnwCqebvg6WRLfFIqB2R2bSGEMBnGHlI2tzoHerN2VFMqeTkReS+RPt/vZfbfF0hLk1m4hRAFT5IKE6XTKbSoVByAv85GGjkaIYQQ5qhCCSfWjGxC99o+pKapfPL7aYYtPkBMQrKxQxNCWBhJKgztCWbVTteqipZUyAgeQgghnpSDjRX/6xXIx91rYGOl489TEXScuYNj12KMHZoQwoJIUmHCmlUojl6ncC4iTsYcF0II8cQUReGF+mVZNbwxZd0duHb3Pj1m7WLpvqv5ufclhBAZJKkwiPz3qQBwdbCmbtliAPx5MrxAtimEEKLoqu7jyq+jm9I2wIuk1DSm/HqKxed1xCemGDs0IYSZk6TCxLWt5gXAphOSVAghhMg/V3tr5vSry9sdqqLXKRyM0tFjzl7OR9wzdmhCCDMmSYWh5bNeuV21kgDsDbvNnfikgohICCFEEacoCkObl2fJoHq4WqtciIynyzc7WRt63dihCSHMlCQVhlAAQ8qmK+PuQDVvF9JUaQIlhBCiYNXzLcaEwFQal3cnISmVV38O5Z01x0hMSTV2aEIIMyNJhRloX12rrfj9+E0jRyKEEMLSOFvDvP51GdO6AooCS/Zc4bnZu7l6RwYIEULkniQVOSi4GVPzP6zGM/8kFTvP3yb2gYwtLoQQxmTqM2o/Cb1OYXzbyswfEEQxB2uOXouh44wdUkMuhMg1SSpyUGAzphbAWH0VSjjjX9yRpNQ0tpySC7wQQhiTucyo/SRaVi7B+jHNqF3WjdgHKQxZdIBPN54mJTXN2KEJIUycJBWGoDx8WgtmAPBONb0BWBt6o0C2J4QQQmTH282eZcMaMaCxHwCz/rpA3+/3EhH7wLiBCSFMmiQVhvBwUqEWzN2dbrV9ANhxLoqouMQC2aYQQgiRHRsrHVO7VCO4Tx2cbK3YG3aHDjNC2H3htrFDE0KYKEkqDOHh0Z8KKKko5+lIYGlXUtNUfjsitRVCCCEMr2PNUqwb1YQqJZ2Jikuk7/d7+Pav86SlyTTcQojMJKkwhEw1FQV34e1aS6utWCNNoIQQQhSS8sWdWD2iCT3qlCZNhc82nmHoogNEJ8jcSUKIf0lSYRAFX1MB0DnQG71OIfRqNJei4gtsu0IIIcSj2Nvo+eK5mnzaowY2Vjq2nI6g44wQjl6LNnZoQggTIUmFIRigozZAcWdbmlTwBGD1YZn1VAghROFRFIXeQWVZPaIxvh4OXI++T89Zu1m85zJqAdbKCyHMkyQVhmCAPhXpetTRmkCtOHCVVGnTKoQQopBV83bl19FNaVfNi6TUNN5dc5xXfw4lPjHF2KEJIYxIkgpDMFCfCoB21Uri5mDNjZgHbD8XWaDbFkIIIXLDxc6a2S/W5Z2OVdHrFNYduUHX4J2cC79n7NCEEEZSZJKKhIQEfH19ef311wthb4arqbCz1vPsP8PL/rzvSoFuWwghiqLCLR8sh6IoDGlWnp+HNcTLxZbzEXF0+WYna0Olea4QRVGRSSo+/PBDGjZsWDg7Uwx7Wl+oXxaALaciiLgnkxEJIUR+FGr5YIGC/NxZP6YZTSt4cj85lVd/DuWdNcdITEk1dmhCiEJUJJKKc+fOcfr0adq3b184OzRgnwqASl7O1CnrRkqaysqD1wp8+0IIUVQUevlgoTydbFk4qD5jnqqIosCSPVfoOWs3V+8kGDs0IUQhMfmkYvv27XTu3Blvb28URWHNmjVZ1gkODsbPzw87OzsaNGjAvn37Mr3++uuv8/HHHxdSxBg8qYB/ayt+3ndVJiESQhRJZlk+WDC9TmF8m0rMHxBEMQdrjl2PoeOMHfx5MtzYoQkhCoHJJxXx8fEEBgYSHByc7evLli1j/PjxTJkyhUOHDhEYGEi7du2IiIgAYO3atVSqVIlKlSoVZtj/NoEy0DB7nWp642JnxZU7Cfx1NsIg+xBCCFNmtuWDhWtZuQTrxzSjdlk3Yh+kMGTRAT7deJqUVMPcZBNCmAYrYwfwOO3bt39ktfT06dMZOnQoAwcOBGD27NmsX7+eefPmMXHiRPbs2cPPP//MihUriIuLIzk5GRcXFyZPnpzt9hITE0lMTMz4PTY2FoDk5GSSk5NzHbcVCgqQnJwIeXhfrrevQK96pfk+5BLf77hIM3/3At9HuvTjzsvxF0Vynh5PzlHuFPZ5MtfPw1zLB1NiqO9acUcrlgysx2d/nGXh7ivM+usCBy/d4cteNSnhbFtg+zH3a4q5xw/mfwzmHj8Y/hhyu11FNaMZaxRFYfXq1XTr1g2ApKQkHBwcWLlyZcYygP79+xMdHc3atWszvX/BggUcP36cL774Isd9TJ06lWnTpmVZvnTpUhwcHHIda+fQgejUVDZV+4oHNob5h/9OIrx/SE8aCm8GpuCd+/CEECJDQkICffr0ISYmBhcXF2OH80TMqXwoag7fVvjpvI7ENAVna5X+FdOo6Go2/3oIUeTltoww+ZqKR4mKiiI1NRUvL69My728vDh9+vQTbXPSpEmMHz8+4/fY2FjKlClD27Zt81TYKkf1kJpK69atwMXniWLJjX2JR/j9RDgXrXwZ0qGaQfaRnJzM5s2badOmDdbW1gbZhyWQ8/R4co5yp7DPU/odd0tSmOVDq1at8PDwyFe8xlIY37UOwAuR8Yz++QhnI+L49pSe8U9XZGhTP3Q65bHvfxRzv6aYe/xg/sdg7vGD4Y8ht2WEWScVeTVgwIDHrmNra4utbdaqWWtr67x9UP/0qbDW68GAX9Ihzcvz+4lw1h65ycT2VfFwKrhq5f/K8zkoouQ8PZ6co9wprPMkn0Uhlw8myNDHUNnbjbWjmvLOmuP8cugaX2w+x+GrMfyvVyBuDjb53r65fwbmHj+Y/zGYe/xguGPI7TZNvqP2o3h6eqLX6wkPzzyyRHh4OCVLlszXtoODgwkICCAoKOgJt/DP3RcDjf6Urk7ZYgSWdiUpJY0f98pkeEIIAaZePhRN9jZ6vniuJp/2qIGNlY4tpyPoOCOEo9eijR2aEKIAmHVSYWNjQ926ddmyZUvGsrS0NLZs2UKjRo3yte2RI0dy8uRJ9u/f/2QbyJgAz7DtRhVFYVDTcgAs3HWJ+0ky2ZAQQph0+VCEKYpC76CyrB7RGF8PB65H36fnrN0s3nMZM+riKYTIhsknFXFxcYSGhhIaGgpAWFgYoaGhXLmi3ZUfP348c+fOZeHChZw6dYrhw4cTHx+fMdqH0SiFU1MB0LFGKcq6O3A7Pomf9klthRCiaDDb8kFQzduVdaOa0jbAi6TUNN5dc5yxy0KJT0wxdmhCiCdk8n0qDhw4QKtWrTJ+T+8k179/fxYsWEDv3r2JjIxk8uTJ3Lp1i1q1arFx48YsnfPyKjg4mODgYFJTn/DOv4HnqXiYlV7HKy38eWv1Mb7bfpG+Dctia6U3+H6FEMKYzLZ8EAC42lszp19dfggJ4+PfT7M29AYnbsQyq28dKno5Gzs8IUQemXxNRcuWLVFVNctjwYIFGeuMGjWKy5cvk5iYyN69e2nQoEG+95v/5k/pNRWFU53bo64PJV3suBX7gFWHrhfKPoUQwpjMtnwQGRRFYUiz8vw8rCFeLracj4ijyzc7WRsq5ZgQ5sbkkwrzVXjNnwBsrfQMa14egFl/XZCZS4UQQpiNID931o9pRpMKHtxPTuXVn0N5Z80xElOkNkgIcyFJRQ7yPbpHIXXUftgL9cvi4WjDlTsJrDosd3mEEMIQZPQnw/B0smXRoAaMaV0BRYEle67Qc9Zurt5JMHZoQohckKQiBwXX/KnwagzsbfS83EKrrfj6z3Nyh0cIIQxAmj8Zjl6nML5tZeYPCKKYgzXHrsfQccYO/jwZ/vg3CyGMSpIKQ9H90wc+rXBHsnipkR9eLrZcj77PUpm3QgghhBlqWbkE68c0o3ZZN2IfpDBk0QE+3XhamvYKYcIkqTAUIyUVdtZ6xjxVEYBvtp6X4fmEEEKYJW83e5YNa8TAJn6A1l+w7/d7iYh9YNzAhBDZkqQiB/luM6v7Z0jXtMJvgtSrXhn8PLR5K+bvDCv0/QshhCWTPhWFx8ZKx5TO1QjuUwdHGz17w+7QYUYIuy/cNnZoQoj/kKQiB/luM2ukmgoAa72OcW0qATDn74vciU8q9BiEEMJSSZ+KwtexZinWjW5KZS9nouIS6fv9Hr796zxpaTILtxCmQpIKQzFiUgHQuaY3AaVcuJeYwvTNZ4wSgxBCCFFQ/Is7sWZkE3rUKU2aCp9tPMMrSw8Tn2zsyIQQIEmF4eistWcjJRU6ncLkzgEALN17hdO3Yo0ShxBCCFFQ7G30fPFcTT7tUQMbKx3bzkTxxTE9x67HGDs0IYo8SSpyUHB9KozXUbpheQ/aVy9Jmgrv/3YStZBm9xZCCEsmfSqMS1EUegeVZdXwxpR1t+dOokLvuftYvOeylHNCGJEkFTkouD4Vxp0r4q0OVbGx0rHz/G02yzjfQgiRb9KnwjRU93Fl9SsNqVEsjeRUlXfXHGfsslAZ9VAII5GkwlCM3KciXRl3B4Y2KwfAhxtOyYR4QgghLIaLvTWDK6cx6ZlK6HUKa0Nv0DV4J+fC7xk7NCGKHEkqDMVEkgqAES0rUMLZlsu3E/h22wVjhyOEEEIUGEWBQU38+HlYQ7xcbDkfEUeXb3ayNvS6sUMTokiRpMJQTKBPRTpHW6uMTtuz/rrA+Yg4I0ckhBBCFKwgP3fWj2lGkwoe3E9O5dWfQ3lnzTGpoReikEhSkYP8d9Q2jT4V6TrWKEWrysVJSk3jrdXHZGxvIYR4QtJR23R5OtmyaFADxrSugKLAkj1X6DlrN1fvJBg7NCEsniQVOTDnye+yoygK73Wtjr21nn1hd1hx8KqxQxJCCLMkHbVNm16nML5tZeYPCKKYgzXHrsfQaWYIW07JYCVCGJIkFYZiYkkFaJ22x7WpCMBHG04TFZdo5IiEEEIIw2hZuQS/jWlGrTJuxNxPZvDCA3y68TQpqWnGDk0IiyRJhaGYUJ+Khw1qUo6AUi7E3E9m8trjMqa3EEIIi+XjZs/ylxsxoLEfoPUr7Pv9XiJiHxg3MCEskCQVhmJifSrSWel1fNazJlY6hQ3HbrHuyA1jhySEEEIYjI2VjqldqhHcpw6ONnr2ht2hw4wQdl+4bezQhLAoklQYSnpSkZps3DiyUd3HldGttWZQ7645zq0YuWMjhBDCsnWsWYp1o5tS2cuZqLhE+n6/h2//Oi8DlwhRQCSpMBQrO+051TT7LYxo5U9gaVdiH6QwYeURaQYlhBDC4vkXd2LNyCZ0r+NDmgqfbTzD0EUHiE5IMnZoQpg9SSpykO8hA61stOcU00wqrPU6/terFrZWOnaci2LJ3ivGDkkIIcyCDClr3uxt9PzvuUA+6V4DGysdW05H0HFGCEevRRs7NCHMmiQVOcj3kIHpNRUpptu0qEIJJ958pgoAH60/xYVImRRPCCEeR4aUNX+KovB8/bKsGt4YXw8Hrkffp+es3Szec1lq7oV4QpJUGIqVrfacYtpVqgMa+9HYX5t9dOSPh3iQbFody4UQQghDqe7jyrpRTWkb4EVSahrvrjnO2GWhxCea1siNQpgDSSoMRZ+eVJhuTQWATqfwVe9aeDjacPrWPd7/7aSxQxJCCCEKjau9NXP61eXtDlXR6xTWht6ga/BOzoXfM3ZoQpgVSSoMJaOmwjT7VDyshIsdX/auBcCPe6/w21EZZlYIIUTRoSgKQ5uX5+dhDfFyseV8RBxdvtnJ2tDrxg5NCLMhSYWhmEGfioc1r1ScES39AZj0yzEu3443ckRCCCFE4Qryc2f9mGY0qaA1C37151DeWXOMxBRpGizE40hSYSjpoz+Z6JCy2RnfphL1fItxLzGFlxcfJCFJ2pQKIYQoWjydbFk0qAFjWldAUWDJniv0nLWbq3cSjB2aECZNkgpDyaipMJ+kwkqv45s+dfB0suX0rXtMWHlURsEQQghR5Oh1CuPbVmb+gCDcHKw5dj2GTjND2HIq3NihCWGyJKkwFDNr/pSupKsds16sg5VOYf3Rm8zZftHYIQkhhBBG0bJyCdaPaUatMm7E3E9m8MIDfLrxNCmpacYOTQiTI0mFoZjJkLLZCfJzZ0qXagB8tvE0O85HGTkiIYQQwjh83OxZ/nIjBjT2A2DWXxfo+/1eImLN66ahEIYmSUUO8j1jasaQsvcLLqhC9GKDsvSqV5o0FcYtP0q4eR6GEEIUOJlRu+ixsdIxtUs1gvvUwdFGz96wO3SYEcLuC7eNHZoQJkOSihzke8ZUGwftOck8O3YpisJ7XatTu6wbMfdTmHNKz+1486t1EUKIgvbf8kG5HALS/6xI6FizFOtGN6WylzNRcYn0/X4P3/51nrQ0+fyFkKTCUGyctOck8x2a1c5az9yX6lHazY7biQojlobKjNtCCPEfViv6wbeN4MB8s72RJHLPv7gTa0Y2oXsdH9JU+GzjGYYuOkB0gtx4E0WbJBWGkpFUxBk3jnzydLJlbr862OtVDl2J5vUVR+SOjBBCPES1coDIU/DbWJheFTZPhuirxg5LGJC9jZ7/PRfIJ91rYGOlY8vpCDrOCOHotWhjhyaE0UhSYSi2DyUVZl4tXqGEE4Mrp2GlU/jt6E0+/+OMsUMSQgiTkfLKHmj3Ebj5woNo2Pk1fB0Iy1+Cy7vMvgwQ2VMUhefrl2XV8Mb4ejhwPfo+PWftZvGeyzIcuyiSJKkwlPSaCjUNks2/Oryiq8qH3QIAbeSLH0LCjByREEKYCDtnaDQSxhyG53+Ccs1BTYWTa2F+e5jTHEKXmtW8RSL3qvu4sm5UU9oGeJGUmsa7a44zdlko8YkygawoWiSpMBQbR0DRfk407yZQ6brX9mFCu8oAvP/bSX45eM3IEQkhhAnR6aFKB+j/KwzfBXVe0uYsunUU1gyHL6vB1g/h3i1jRyoKmKu9NXP61eXtDlXR6xTWht6ga/BOzoXfM3ZoQhQaSSoMRVEspl/Fw0a09Gdw03IAvPHLUTaflNlFhRAiC69q0GUmjD8FT00BFx+Ij4Ttn8GX1eGXoXD9oLGjFAVIURSGNi/Pz8Ma4uViy/mIOLp8s5O1odeNHZoQhUKSCkOytbykQlEU3u5QlR51SpOapjJy6SH2XJRxuoUQIlsO7tBsPLx6BJ5bAGUaQloyHFsOc1vD923g2EpITTZ2pKKABPm5s35MM5pU8OB+ciqv/hzKO2uOkZgioycKyyZJhSHZOGrPFtL8KZ1Op/Bpjxq0CfAiKSWNwQv2c/DyHWOHJYQQpktvDdWehcGbYNhfUPN50FnDtX3wy2D4qiZs/wLio4wdqSgAnk62LBrUgDGtKwCwZM8Ves7azdU75t/HUoicSFJhSLbO2nOi5bWptNLrmPlCbRr7exCflEr/efs5ePmuscMSQgjT510bus+BcSeg5SRwLAH3bsDW92F6AKwdCbeOGztKkU96ncL4tpWZPzAINwdrjl2PodPMELackmbDwjJZfFIRHR1NvXr1qFWrFtWrV2fu3LmFt3M7N+35QXTh7bMQ2Vnr+aF/EI3KexCXmEL/efs4dEUSCyGEeTBq+QDg7AUtJ8K44/Dsd1qykZoIh5fA7CYwvyOc+hXSpNmMOWtVuQTrxzSjVhk3Yu4nM3jhAT7deJqU1DRjhyZEgbL4pMLZ2Znt27cTGhrK3r17+eijj7h9u5D6ADi4a88JltvnwN5Gzw8D6tGwvLuWWPywj8OSWAghzIBRy4eHWdlCYG8Yug0G/aE1k1L0cDkElr0IM2rBrplwX66t5srHzZ7lLzdiQGM/QBua/cUf9hJ5T4YZFpbD4pMKvV6Pg4MDAImJiaiqWniT0tinJxWW3d/AwcaKeQOCaFDOnXuJKbz0wz5pCiWEMHlGLR+yoyhQtoHWoXvsUWg6XitHoq/AH+9oTaN+Gw+RZ40Xo3hiNlY6pnapxjd9auNoo2fPxTt0m7WHC7HGjkyIgmHyScX27dvp3Lkz3t7eKIrCmjVrsqwTHByMn58fdnZ2NGjQgH379mV6PTo6msDAQEqXLs2ECRPw9PQsnODTayruW3ZSAVpiMX9gEPX/SSxe/H4vO85FGjssIYQFM+vy4XFcS8PTU2D8Seg8A0oEaBOpHvgBgoNg8bNw9g9IkyY05qZTTW/WjmpKJS8nIu4l8s0JPd+HXJJZuIXZM/mkIj4+nsDAQIKDg7N9fdmyZYwfP54pU6Zw6NAhAgMDadeuHRERERnruLm5ceTIEcLCwli6dCnh4YXUSaqI1FSkc7CxYsHAIJpV9OR+ciqDFxxg4/Gbxg5LCGGhzLp8yC1re6jbX5tMr/+vULkjoMCFrbD0OS3B2PudRQ4IYskqlHBizcgmdKlZijQUPt10lleWHCT2gQwtLMyXlbEDeJz27dvTvn37HF+fPn06Q4cOZeDAgQDMnj2b9evXM2/ePCZOnJhpXS8vLwIDA9mxYwc9e/bMdnuJiYkkJv7bxjE2VquXTE5OJjk5b3/siq0LVkBawm1S8/heU5J+3Lk5fmsFZvWpxesrj7HxRDgjfjzER92q0aOOj6HDNLq8nKeiSs5R7hT2eTLXz8Ocy4cnUroR9GwEdy+hO/gDutAfUW6fh98noG59j7TAPqTVGwrF/HK9SXP/mzTn+K0V+LhrZWzvXWPNFSs2nQjn9M0QZj4fSNVSzsYOL9fM+TMA848fDH8Mud2uoppRfZuiKKxevZpu3boBkJSUhIODAytXrsxYBtC/f3+io6NZu3Yt4eHhODg44OzsTExMDE2aNOGnn36iRo0a2e5j6tSpTJs2LcvypUuXZrS9za0SsUdpdOELYuzL8leVD/L0XnOXpsLPF3TsjdQqw571S6VlKbP5qglRpCQkJNCnTx9iYmJwcXExdjhPxNzKh4KgT31A2TshlI/8A6fEWwCoKNxyrcXF4m2JcgrQ+mkIk3c5Duaf0XM3ScFaUXmufBoNSkiZKUxDbssIk6+peJSoqChSU1Px8vLKtNzLy4vTp08DcPnyZYYNG5bRAW/06NE5FhgAkyZNYvz48Rm/x8bGUqZMGdq2bZvnwla5UQoufIGLVTIdOnTI03tNSXJyMps3b6ZNmzZYW1vn+n0dVZVPNp5l3q7LrL6kx93HlzfaVkKns8xC7knPU1Ei5yh3Cvs8pd9xtySFWT60atUKDw8PwxzIY3UHNY2Ui9vQ7fsO3cUtlIo5TKmYw6jFq5IaNBS1ek+wzj7pMfe/SUuJf8izbXg+WWXCyuP8fS6KpRf0pLj58G7HKthZ640d5iNZymdgrvGD4Y8ht2WEWScVuVG/fn1CQ0Nzvb6trS22trYEBwcTHBxMaqo2Pri1tXXePyg3rcmPEh+JtV4POpPvwvJIT3IO3u1cDQ9nOz7fdIYfdl7mZmwi03vVMvmLZH480XeliJFzlDuFdZ6K6mdh1PKhoFV5RntEnYO9cyB0KUrkKaw2jIdt70Od/lB/qNYBPBsmcQz5YAnxl3CwZv7A+gRvO8/0P8+y/OB1Tty8x6y+dSnrUfg1YXllCZ+BOccPhjuG3G7TrP/L9fT0RK/XZ+lYFx4eTsmSJfO17ZEjR3Ly5En279//5Btx8gJFB2kpEF80R0JSFIWRrSrwZe9ArPUKG47dou/3e7kTn2Ts0IQQFszkywdD8awIHb/QRo1q+yG4ldXmt9j5FXxVE5b3h8u7wXxaPhcpOp3C6KcqsnhQA9wdbThxI5aOM3ew+aSJDSAgRDbMOqmwsbGhbt26bNmyJWNZWloaW7ZsoVGjRkaM7B96K3Asof1874ZxYzGyZ2uXZtGgBrjYWXHw8l26f7uTS1Hxxg5LCGGhTL58MDR7N2g8CsaEwvNLwa8ZqKlwcg3Mfwa+awGhP0GKTL5mippW9GT9mKbUKevGvQcpDF0ks3AL02fySUVcXByhoaEZVdRhYWGEhoZy5coVAMaPH8/cuXNZuHAhp06dYvjw4cTHx2eM9vGkgoODCQgIICgoKH8H4FJKe46VoVUb+Xvwy/DG+LjZc+l2As9+u5M9Fy13tnEhhGGZfflQGHR6qNIRBvwGr+yE2v3Ayg5uHoE1r2D1TS0q31wFcXIn3NSUcrXn52GNGNjED/h3Fu6Iew+MG5gQOTD5pOLAgQPUrl2b2rVrA1ohUbt2bSZPngxA7969+eKLL5g8eTK1atUiNDSUjRs3Zumcl1cFVr3t7K09F/GainQVvZxZPbIxNUu7cjchmRe/38vi3TLpjxAi78y+fChsJatD129g3El4ajI4e6PER1Ll1hqsZtaCVcPg+iFjRykeYmOlY0rnagT3qZMxC3enGSHsCysa818J82LyHbVbtmz52H84R40axahRowopojySmoosSjjbsWxYI9785Sjrjtzg3bUnOHEjlmldq2FrZbkduIUQBcvsywdjcfSAZq9B4zGkHF9DzB+f4hF/Do4u0x6l60PDV6BqF9Cbd8dVS9GxZimqlHJm+JKDnA2P44W5e3jzmcoMbVYeRYYNFibC5GsqzJ5zelIhNRUPs7fR8/XztZjYvgqKAj/vv0qfuVKtK4QQhUZvjRrQjZBK75IycDPUfB501nBtH6wcpHXs3vE/iJdmqqbAv7g2C3e3Wt6kpql8tOG0zMItTIokFTkosDaz6TOb3r2U35AsjqIovNLCn3kDgnD+pwN3l5k7OXI12tihCSFEjsyqT0Uuqd61ofscGHcCWkwEx+Jas90t78GXAbB2FNw6buwwizwHGyu+7F2LD7pVx0avY9OJcLrMDOHkDcuba0aYH0kqclBgbWbdy2vPdy7kPygL1apyCdaObIJ/cUduxT7gudm7WbhL+lkIIUyT2fapyA1nL2g1SUsunp0DpWpBygM4vBhmN4EFneDUb5CWauxIiyxFUXixoS8rXmmUaeCTFQeuGjs0UcRJUmFo6UlFXDgkxhk3FhNW/p9q3XbVvEhKTWPKuhOMWnpYqnWFEMIYrGwh8HkY9hcM2gQB3UDRw6UdsKwvzKgFu2bC/WjjxlmEBZZx47fRTWlZuTiJKWlMWHmUib8c5UGyJHzCOCSpyEGBVW/bu4GDh/bznYv5jsuSOdtZM/vFurzbKQArncL6YzfpMjOEEzdijB2aEEJksMTmTzlSFCjbEHothLFHoek4sC8G0Vfgj3dgegCsfw0izxo70iKpmKMN8/oH8VqbShn9E3vM2sWV2wnGDk0UQZJU5KBAq7czmkBJUvE4iqIwuGk5lmeq1t3F0r1XpDmUEMIkWHTzp0dxLQ1PT9WGpO38NZQIgOR42P89BAfB4u5wbjOkyQRthenhWbg9ZBZuYUSSVBQGd3/tWfpV5FqdssVYP6YpT1UpQVJKGm+tPsaonw4TkyDNoYQQwqhsHKDuABi+C15aB5U7AApc2AI/9oTg+rBvrjT5LWRNK3ry25im1PUtJrNwC6OQpKIweFbUniNOGTcOM+PmYMPcl+oxsX0V9DqF9Udv8szX29l1IcrYoQkhhFAUKN8CXvgJxhyGhiPB1gVun4MNr8P0qrDxLbgTZuxIiwxtFu6GDGpSDpBZuEXhkqSiMJSsqT3LcHx5ptNpw87+Mrwx5TwduRnzgL7f7+XjDadITJHOaEIIYRLcy8EzH8H4k9D+c/CoAImxsCcYZtSGn/rAxb9BmrEanLVex+TOATILtyh0klTkoEA74pWsrj1HnYVkuVvwJGr9M8rFC/XLoKowZ/tFng3exbnwe8YOTQhRxBSpjtp5ZesMDYbByP3QdyX4PwWocGY9LOoCs5rAwYWQfN/YkVq8jjVLsW50Uyp5ORFxL5EX5u7hu+0XpH+iMBhJKnJQoB3xnEuBvTuoqRApTaCelKOtFR93r8l3/eri7mjDyZuxdJoZwvydYaSlyUVSCFE4imxH7bzQ6aBiG+i3SkswgoaAtQNEnIBfx2hNo/6cCjHXjB2pRUufhfvZ2j4yC7cwOEkqCoOiQMka2s+3jhk3FgvQtlpJNo5tRotK2tjc0349Se/vdhMWFW/s0IQQQvxX8UrQ8X8w/hS0/QDcysL9uxDyJXxVE1YMgCt7pGmUgTjYWDG9V2CWWbhP3ZRZuEXBkqSisJT6p1/FjcPGjcNClHC2Y8HAIN7vVh1HGz37L93lma+2M3f7RVKl1kIIIUyPvRs0Hg1jQqH3j+DXTKvBP7Ea5rWD71rCkZ8hJdHIgVqe9Fm4Vw7PPAv3qkNSUyQKjiQVhaV0fe35yl7jxmFBFEWhX0NfNo5tTrOKniSmpPHhhlP0mCV9LYQQwmTp9FC1Ewz4DV4Jgdr9QG8LN0Nh9cvwZXXY9jHck3kWClrN0m6sH9OUFpWK8yA5jfHLj/DumuMkpciwsyL/JKnIQYF3xCvbUHuOOAn3owtmmwKAMu4OLBpUn0+618DZ1orQq9F0nBFC8LbzMj63EKLASUftAlSyBnT9Rmsa1fpdcPaG+Aj4+xP4shqsellq+AuYm4MN8wcE8epTFVEUWLznMr3m7OZmjHSeF/kjSUUOCrwjnlMJKFYOUOGadO4raIqi8Hz9svwxvjmtKhcnKTWNzzedofM3Ozl85a6xwxNCWBDpqG0Ajh7Q/HUYexR6ztNq99OS4ejPWrOoH9rC8VWQKh2MC4JOpzCuTSXm9Q/C1d6a0KvRdJoRwq7zMg+UeHKSVBSm9NqKy7uMG4cFK+Vqz7wBQUzvFYirvTWnbsbSfdYu3l59TGbjFkIIU6e3huo9YMhmGLoVavYGnTVc3QsrB8LXgbDjf5Agcy4UhFZVSvDb6KZU83bhdnwSL/6wl1l/ybCz4slIUlGYyjXXni9sNW4cFk5RFLrXKc3W11rQs25pVBV+3HuFp6b/xZrD1+ViKYQQ5sCnLnT/DsYdhxZvgmNxiL0OW97ThqRdN1prUizypYy7A78Mb8xzdUuTpsKnG2XYWfFkJKkoTP5Pac83QyEuwqihFAUeTrZ88VwgPw9rSIUSTkTFJTF2WSh9v9/Lhcg4Y4cnhBAiN5xLQqu3YNwJ6DYbSgVCygM4tAjruc1pfO5jlDMbIC3V2JGaLTtrPZ/1rMnH3WtkDDvb9ZudnLklg56I3JOkojA5e0HJf4aWldqKQtOwvAcbxjRjQrvK2Frp2HXhNu2/2sEXm86QkJRi7PCEEELkhpUt1HoBhv0NAzdCQFdURU/xuFNYrXwJZtSGXd/IYChPSFEUXqhflhWvaMPOhkXF0y14J2tDrxs7NGEmJKkobBXbaM/nNhs3jiLGxkrHyFYV2DyuBS3/6cj9zbbztP7ib9aGSpMoIYQwG4oCvo2g1yJSRh7kXImOqHZuEH0Z/ngbpgfA+tch6pyxIzVLgWXc+HV0U5pV9OR+ciqv/hzK1HUnZNhZ8ViSVOTAYEMGVmyrPZ/bLBP8GEFZDwfmDwhi9ot1KF3MnluxD3j151B6zt7N0WvRxg5PCGEGZEhZE+JampM+vUkZcxQ6fw3Fq0JyPOyfC9/UgyU94NyfkCb/EOeFu6MNCwbWZ1SrCgAs2HWJF+buITz2gZEjE6ZMkoocGGzIwNL1tXG4E2Pg/JaC3bbIFUVReKZ6Kf4c34IJ7SrjYKPn4OW7dPlmJxNWHCHinlw0hRA5kyFlTZC1A9QdACN2w0troVJ7QIHzf8KPPSC4PuybC4nSny639DqF19tV5vuX6uFsZ8XBy3fpOCOEPRdvGzs0YaIkqShsOh1U66b9fGKVUUMp6uys9YxsVYGtr7Wke20fAFYcvEbrL/5m9t8XSEyRTn9CCGFWFAXKt4Q+P8OYQ9BwBNi6wO1zsOF1rWnUprfh7iVjR2o2ng7w4tdRTalS0pmouET6fr+X77bLsLMiK0kqjKFad+359Aa5a2ICSrraMb13LVaNaExgGTfiElP45PfTPPW/v1lz+DppaXLhFEIIs+NeHp75GMafhPafg7u/1kpg9zfwdS34qQ+EbQf55/ix/DwdWT2iCd1r+5CapvLRhtOM+PEQcYky2In4lyQVxlC6nnZxS46H478YOxrxjzpli7F6eGP+91wgXi62XLt7n7HLQun8TQgh52SWUSGEMEu2ztBgGIw6AH1WgH9rQIUz62FhZ5jdFA4tguT7xo7UpNnb6Plfr0De71Yda73C78dv0eWbEM5FyM1RoZGkwhgUBer2134+ON+4sYhMdDqFHnVL89frrZjQrjLOtlacuBHLiz/spd8PezlxI8bYIQohhHgSOh1Uagv9VsPIfVBvsNYXI/y4NpHe9AD4cxrEyBCqOVEUhX4NfVn2ciNKudpxMTKennP2cjhKMXZowgRIUmEstfqC3gZuHIYbocaORvyHvY3W3+LvN1oxsIkf1nqFHeei6DQzhHHLQrl2N8HYIQohhHhSxStDp+la06g274NrWbh/B0Kmw1c1YMUAuLJXmkbloE7ZYvw6uimN/T1ISEplwTk9n246S0qqjLJVlElSYSyOnlC1i/bznlnGjUXkyN3Rhimdq7FlfEu6BHqjqrD68HVaf/E37/92kqg4GRZYCCHMln0xaDIGXg2F3kvAtymoqXBiNcxrC3NbwZGfZQj4bHg62bJoUH2GNvUD4PuQS/Sfv4878UnGDUwYjSQVxtRopPZ8bAVEXzFuLOKRyno4MOOF2vw6Srszk5Saxg8hYTT7dBufbjzNXbmICiGE+dLpoWpnGLgeXt4BtV8Eva3WmmD1y/BldfjrE4iLMHakJsVKr+ONdpUYUDEVBxs9O8/fpvPMEI5fl6bCRZEkFcbkU0cb+k5NhV0zjR2NyIUapV35cUgDFg2qT2AZN+4npzLrrws0+2wbM7ae574MhCGEEOatVE3oGqw1jWr9DjiXgvgI+Otj+LIarH5FSzZEhtqeKiuG1cfXw4Hr0ffpMWsXqw9fM3ZYopBJUpGDQpsxtel47fnQIrh3y7D7EgVCURSaVyrOmhGN+f6lelQt5UJcYgozt13kvUN6Zv99kXgZZk8IiyUzahcRjp7QfAKMPQY9foDSQZCaBEd+gu9awg/ttGZSqXK9B6jk5cy6kU1pWbk4iSlpjFt2hGm/niBZ+lkUGZJU5KDQZkwt11ybZTvlAWz7yLD7EgVKURSeDvBi/eimfNu3DhWKO5KQqvC/P8/T/LNtzN1+kftJMoGeEJZGZtQuYvTWUKMnDPkThmyFGr1AZw1X92gdur+uCTumQ8IdY0dqdK4O1vzQP4jRrSsAMH/nJV78fq/0PywiJKkwNkWBth9oPx9eDOEnjRuPyDOdTqFDjVL8Nqox/Sqk4uvuwO34JD7ccIqmn25l1l8XZIIgIYSwBKXrQo+5MO44NH8DHDwh9jpsmaYNSbtuTJEvx/U6hdfaVmZOv7o42VqxN+wOnWeGcORqtLFDEwYmSYUpKNtAGwlKTYPN7xo7GvGE9DqFesVVNo5pzGc9alLG3Z7b8Ul8uvE0TT/dyowt54i5n2zsMIUQQuSXc0lo/TaMOwHdZkHJmpByHw4thFmNtEn1Tm+AtKJbW92uWknWjGxM+eKO3Ix5wHNzdrN8/1VjhyUMSJIKU/H0VK069fyfcOpXY0cj8sFKr6NXUBm2vtaS/z0XSHlPR6ITkpm++SxNP9nKF5vOyJB7QghhCaztoFYfeHk7DPxdu0Go6CBsO/z8AsysA7uD4UHRHA2pQgln1o5sQpsAL5JS0njjl6O8s+YYSSnSz8ISSVJhKjz8tbGyAda/XmQvQJbEWq+jR93SbB7fgpkv1KaylzP3ElP4Ztt5mnyylQ/XnyTi3gNjhymEECK/FAV8G0PvxfDqUWjyKti5wd1LsOktrWnUhgkQdd7YkRY6Zztr5rxYl/FtKqEosGTPFV6Yu4eIWCn/LI0kFaak+Rvg7g9xt+APaQZlKfQ6hc6B3vz+ajPm9KtLdR8X7ienMneHNs/FO2uOcfl2vLHDFEIIURDcykCb97QhaTt9BcWrQFIc7PsOvqkLS3pqrRKK0GzdOp3CmKcq8kP/ejjbWXHw8l06zQzh0JW7xg5NFCBJKkyJtR10maH9fGghnPrNuPGIAqXTKbSrVpJfRzVl/sAg6pR1IzEljSV7rtDqi78YufQQx65JDZUQQlgEG0eoNxBG7IF+a6BSe0CB85thSQ8Iro/u4Dz0qUXnjn3rKl6sG9WUSl5ORNxL5Pnv9vDLQZnPwlJIUmFq/JpC49Haz+tGQcx148YjCpyiKLSqXIJfhjfmp6ENaVm5OGkqrD96k87fhNBn7h62n41ELUJ3sYQQwmIpCvi3gj4/w+iD0GA42DhD1Fn0G9+g3Ymx6P6cDHcvGzvSQlHO05FVI5rQ9p9+Fq+tOMIHv50kReazMHuSVJii1pOhVCDcvwsrB0GKdOq1RIqi0MjfgwUD6/P7q83oXtsHK53Crgu3eWnePjrMCGFt6HW50AohhKXw8If2n2hNo9p/hlqsHNapCej3fgszasHPfSFsh8U3jXKytWL2i3UZ8898Ft+HhDFo4QFiEmSERHNm8UnF1atXadmyJQEBAdSsWZMVK1YYO6THs7KBHvPA1kWbXOf3CRZ/gSnqqpZyYXrvWvz9RisGNSmHg42eUzdjefXnUFp8/hcLdoaRkCRzXQhRkMyyfBCWwc4FGrxMyvC97Ck/nrRyLbVh5U//Bgs7weymcGgRJN83dqQGo9MpjG9bmeA+dbC31rP9bCTPfruTC5Fxxg5NPCGLTyqsrKz46quvOHnyJH/88Qdjx44lPt4MOsV6VoAePwAKHFwA+783dkSiEPi42TO5cwC7Jrbm9baV8HC04Xr0fab+epLGn2xl+h9niLwnM5MKURDMtnwQlkPREe5ai9Q+K2HEXqg3CKwdIPw4rButjRq15T2IvWHsSA2mY81SrBzeCB83ey5GxdPtm51sOxNh7LDEE7D4pKJUqVLUqlULgJIlS+Lp6cmdO3eMG1RuVWoLT0/Rfv79DZm/oghxc7BhVOuK7JzYmg+6VcfXw4HohGRmbNWGo31t+RFO3og1dphCmDWzLh+E5SlRBTp9qTWNavMeuJaB+3dgx//gqxqwYiBc3WeRLReqebuydlQT6vu5cy8xhUEL9jPn7wvSt9DMmHxSsX37djp37oy3tzeKorBmzZos6wQHB+Pn54ednR0NGjRg37592W7r4MGDpKamUqZMGQNHXYCajIXa/bRq0ZWDtbaWosiws9bzYkNftr7WkuA+dahd1o2k1DR+OXSNDjN28MJ3e9h8Mpy0NLnwiqKnyJcPwjLZF9PmuRgTCr0Wg28TSEuBE6vghzYwtzUcXW5x/S09nWxZMqQBL9Qvg6rCx7+fZvzyIzxILrqzkpsbk08q4uPjCQwMJDg4ONvXly1bxvjx45kyZQqHDh0iMDCQdu3aERGRuerszp07vPTSS3z33XeFEXbBURRtnOsqnSA1EX56Aa4dMHZUopDpdQoda5Zi9YgmrBrRmE41S6HXKey+eJuhiw7Q+n9/sXDXJeITpd+FKDqKfPkgLJveCgK6wMAN8PIOqPUi6G3hxiFYNRS+qg5/fQpxltNUyMZKx0fP1uC9rtXQ6xRWH75O7+/2EC4T5ZkFK2MH8Djt27enffv2Ob4+ffp0hg4dysCBAwGYPXs269evZ968eUycOBGAxMREunXrxsSJE2ncuPEj95eYmEhi4r9t1mNjtSYmycnJJCcbcVSCrrPR3++N7vJO1EVdSO39E2rZRx9LQUk/bqMevxkorPNUo5QTXz5XgwltKrBk71WWHbjGpdsJTFl3gi/+OEOvuj681LAs3m72Bo3jSch3KXcK+zyZ6+ch5UP+mfvfZJGJ37MqdPwKWr6D7vBCdAfnocSFw18foe74ArVad1LrDdVGjixkhvgMXqjng5+7HWN+PsqRq9F0nhnCnL61qe7jUmD7SGfu3yEw/DHkdruKakYN1hRFYfXq1XTr1g2ApKQkHBwcWLlyZcYygP79+xMdHc3atWtRVZU+ffpQuXJlpk6d+th9TJ06lWnTpmVZvnTpUhwcHAroSJ6MPjWRBhe/pHjcSVIUG/aVH0ukS3WjxiSMLzEV9kUq/H1TR+QDBQAdKoEeKi1KpeHnpFV4CZGThIQE+vTpQ0xMDC4uBV9oF4aiXj6IokVJS8E7ej/lI//APeFCxvLbjpW4ULwtt9zqoip6I0ZYMKIewPen9dy8r2CtU+lXIY1AD7P5t9Vi5LaMMOuk4saNG/j4+LBr1y4aNWqUsd4bb7zB33//zd69ewkJCaF58+bUrFkz4/XFixdTo0aNbPeR3Z2oMmXKEBUVZRqFbfJ99L8MRHfhT1S9Dakdv0Kt0cuwu0xOZvPmzbRp0wZra2uD7sucGfs8paWp/HUuigW7LrP74r+dTat7u/BigzJ0qlESW2vjFjLGPkfmorDPU2xsLJ6enhaVVBRm+XDz5k08PDwMc2AGZu5/kxI/KNcPotv/HcqptShpWhNY1cWHtLqDSavdT+ujYUCG/gzuPUhh3PKj/H0uCoDX21RkWDM/lAK6W2bu3yEw/DHktoww+eZP+dW0aVPS0nI/eZitrS22trZZlltbW5vGl83aGl5YCquGopxci9W6ERBzBVpONPjtaJM5BybOmOepXXVv2lX35tTNWOaFhLH2yA2O34hl4uoTfLrpLM/XL0vfBmUpXcy4d1Xlu5Q7hXWeiupnYXHlQz6Y+zEU6fj9GmqP2Jtw4Ac4MB8l9jr6be+h3/E5BPaG+i+DV0DBBv0fhvoM3K2t+WFAEO//dpKFuy/zxeZzXLl7nw+61cDGquC6Bpv7dwgMdwy53abJd9R+FE9PT/R6PeHh4ZmWh4eHU7JkyXxtOzg4mICAAIKCgvK1HYOwsoWeC7TRIQD+/kTrtJWUYNSwhOmoWsqFz58LZM+kp3jjmcr4uNlzNyGZWX9doPln2xi26AA7z0fJcH3CYhXZ8kEUXS6loPU7MO4EdP0WStaAlPvaXFezGsHCLnDmd0gzv9GUrPQ6pnWtzrQu1dApsPzANV6at5foBMsaAcvcmXVSYWNjQ926ddmyZUvGsrS0NLZs2ZKpuvtJjBw5kpMnT7J///78hmkYOp02jnXnr0FnBcdWwPdPQ9Q5Y0cmTIi7ow0jWlbg7wktmdOvLk0qeJCmwh8nw+n7/V7afLmdRbsvESejRgkLU6TLB1G0WdtB7b7aiFEDNkDVLqDoIOxv+Ol5mFkHdn8LD2KMHWme9W/sxw/9g3CytWLPxTt0/3YXYVEyYaWpMPmkIi4ujtDQUEJDQwEICwsjNDSUK1euADB+/Hjmzp3LwoULOXXqFMOHDyc+Pj5jtA+LV3cA9FsNjiUg4gTMaQFHVxg7KmFirPQ62lUryY9DGrJ5XHNeauSLo42e8xFxTF57goYfbWHquhNciIwzdqhC5JqUD0I8gqKAXxPovRhePQKNx4CdK9y9BJsmabN1b3gDbl947KZMSasqJTLNwP3stzvZc/G2scMSmEGfigMHDtCqVauM38ePHw9oI3gsWLCA3r17ExkZyeTJk7l16xa1atVi48aNeHl55Wu/wcHBBAcHk5pqBtWE5ZrDKyHwy2C4tANWDYGwv6DdR9oFRIiHVPRy5r2u1ZnQrjKrDl1n4e5LXIyMZ8GuSyzYdYlmFT15qZEfrauUQK+TYaPE4x09ejTP7wkICMDKKn9FkJQPQuSSW1lo+77W//LoMtg7ByJPw7452qNiW2jwCvi3NovhAquUdGH1yMYMXXSQI1ej6ffDXj7tUZPudUobO7QiLVdX9BkzZuR5wwMHDsTZ2TnP7/uvli1bPrbd96hRoxg1alS+9/WwkSNHMnLkSGJjY3F1NYN/zJ294KW18NcnsP1zOLwELmyDLjOhwlPGjk6YIGc7a/o39uOlRr7sPH+bBbsuseV0ODvORbHjXBQ+bvb0a+RL73plKOZoY+xwhQmrVasWiqLkuo+OTqfj7NmzlC9fPl/7lfJBiDyycYR6g6DuQLi4TUsuzm6Cc39oD8/K0GAYBL6grWvCSjjbsWxYQ15bcYT1R28yfvkRbsY8YERL/wIbGUrkTa6SirFjx1K6dGn0+twNR3n16lU6depUIEmFyAOdHlq/DeVbwtoRWhXnku5Qpz+0/QDszHOoSGFYiqLQtKInTSt6cvVOAkv2XmbZ/qtcj77PJ7+f5svNZ+kS6E3/xn5U95F/oET29u7dS/HixR+7nqqqVK8u8+sIYVSKotVK+LfWmj/t+w4O/whRZ2D9a7DlPajzEgQNhWK+xo42R3bWemY+XxsfN3u+236Rzzed4WbMfaZ1qS417UaQ67rnAwcOUKJEiVytawnJhFlXb/s1geG74M9pWrXmoYXanYi270ON58yialMYRxl3Bya1r8q4pyux7sgNFu66xIkbsaw4eI0VB69R17cYLzXypX31UgU6lJ8wby1atKBChQq4ubnlav3mzZtjb296M77nllmXD0L8l4c/tP8UWr0NoUth72y4Gwa7ZsLuYKjcARoOB98mJvn/g06n8FaHqpR0seP99SdZsucKEbGJzHihNnZGnpupqMnVfwVTpkzByckp1xt96623cHd3f+KgTIHZj+5h4wgdPoP+v0GxchB3Sxt2dn57uJn39s+iaLGz1tOrXhl+G92UX4Y3pmstb6z1Cgcv3+XVn0Np/MlW/veHdkdIiG3btuU6oQDYsGEDpUqVMlxABmb25YMQ2bFzgYavwOhD8MIyrdWDmganf4MFHWF2Mzi0GJIfGDvSbA1qWo7gPnWwsdLxx8lw+szdw514GXK2MOU6qXBwyP1kWZMmTcpTASMMqFwzGLEHWr8L1g5wZTd810Kr3oyLNHZ0wsQpikJd32J8/Xxtdk5szbinK+HlYktUXCIzt56n6afbeGXxQXbJnBdCCGEZdDqo/IzWT3PEXq3/hZU9hB+DdaPgywDY8j7E3jB2pFl0qFGKJYMb4GJnxaEr0fSctYurd2QOr8Ji8qM/iQJgbQfNX4fA5+GPd+DEatj/PYT+pFVpNh4N9m7GjlKYuBLOdrz6dEVGtPJn88lwFu66xN6wO2w8cYuNJ25RoYQT/Rr60r2OD8525j0rqXhyqqqycuVKtm3bRkRERJYZq1etWmWkyIQQeVaiCnT+Cp6aDIcXw765EHMVdnwBO7+CgK4o9YYaO8pM6pdz55fhjRkwf/8/Q87uYsHAIOkTWAjy3Cj69u3bjBw5koCAADw9PXF3d8/0sBQWOWOqa2l4bgH0/xW860ByvHZh+DoQQr6UGblFrljrdXSoUYplLzdi09jmvNiwLA7/zHkxZZ0258W7a45zLvyesUMVRjB27Fj69etHWFgYTk5OuLq6ZnpYAossH4R4FAd3aPIqjAmFXougbGNIS4Hjv2C14Bman5mKcnwFpJhGc6OKXs6sGtGYKiWdiYpL5IXv9rBX5rIwuDzXVPTr14/z588zePBgvLy8LHbYLoseMrBccxi6FU6vh60fQOQp+HOqNsNmoxHacHMyv4XIhcolnfmgWw3efKYKqw5dZ9HuS1yIjGfxnsss3nOZhuXdeamRH20CvLDWS8fuomDx4sWsWrWKDh06GDsUg7Ho8kGIR9FbQUBX7XHzCOydg3psBcUSLsLa4bBlGgQN1ppMOT1+NDhD8nKxY/krjRiy8AD7wu7w0rx9zHqxDq2r5G+eGpGzPCcVO3bsICQkhMDAQEPEIwqLokDVTlC5PRxbAds+gujLWnKxYzrUGwgNR4BzSWNHKszAw3Ne7L5wm4W7L7H5ZDh7Lt5hz8U7eLnY0qe+L8/VMd/OuSJ3XF1d8z3/hBDCDJQKhG7fktLyHc4ve4cq90JQ4m7Btg+1+bKq99Q6fpcy3v+LLnbWLBpUn5E/HmLL6QiGLTrI/3oF0rWWj9FismR5vnVYpUoV7t+XEV8shk6v9bUYdQC6zYLiVSAxFnZ+DV/VgHWj4fY5Y0cpzISiKDSu4MmcfvUIebM1o1pVwNPJhvDYRL788ywt/redhWd1HLh8Vzp2W6ipU6cybdo0KSeEKCoci3O2ZFdSRh2G7t+DT11ITYIjS2FOc5jXHk6uhdQUo4RnZ61ndr+6dKvlTUqaythloSzec9kosVi6PNdUfPvtt0ycOJHJkydTvXp1rK0zd8h0cbGMCdaK3DjkVjZQqw/UfB7ObYKQr+DqHji0COtDi2jkXA3ldBoEdNaqP4V4DG83e15vV5nRT1Vg4/FbLNx1iUNXojl0W8cL3++nSklnXmrkR7fa3jjYyHfKUvTq1YuffvqJEiVK4Ofnl6WMOHTokJEiKzhFrnwQIjf0NlDzOe1x7QDsmQUn18CVXdrDtQwEDdEm1XMo3D641nod03vVwsXemkW7L/PumuPE3k9mREv/Qo3D0uW5JHdzcyM2NpbWrVtnWq6qKoqiWMxFtsi2mdXptCZRldvDlT2w82vUM79T4t4J+GUA/FFKm6G7bn9w8TZ2tMIM2Frp6VrLh661fAi9fJtPftlF6F0rTt+6x1urj/Hx76foWbc0LzXyo5yno7HDFfnUv39/Dh48yIsvvmix/e6KbPkgRG6Vrgc9f4DY92H/D3BwvjZq1J9T4K9PILA3NHgFSlQttJB0OoVpXarham/NzK3n+XzTGR4kpzK6ZblCi8HS5Tmp6Nu3L9bW1ixdutRiCwzxj7INoWxDUiIvELZyChXv7Ua5dxP+/kRrL1m5vXbHwb816GUIUfF41bxdeME/jW9atWDNkVss3nOZy7cTmL/zEgt2XaJ15RIMbFKOJhU85NpiptavX8+mTZto2rSpsUMRQhibizc89S40nwDHV8Ke2dp8FwcXaI/yLbXkomI77aamgSmKwmttK+NsZ8VHG04zc+t5klNSqSKtcQtEnpOK48ePc/jwYSpXrmyIeIQpcivLKe/nKNd2NtbnN2p3Ha7s0mbZPP0bOHhCjZ5Qszd419Y6gQvxCK721gxpVp5BTcrx97lIFu26xLYzkWw5HcGW0xFU8nJiQONyPFvbB3sbvbHDFXlQpkwZi2kGK4QoINZ2UPtFqNUXLu+EvbO1ESgv/qU9ipWDBi9rr9sZ/voxrLk/ep2O9387yeztYTzlraOD9PPLtzynhfXq1ePq1auGiEWYOitbLXkY9DsM363dXXDwhIQo7QIxtxUEN4Ad/4No+Y6Ix9PpFFpVLsH8gfXZ+loL+jfyxcFGz9nwON5afYxGn2zh042nuREtnX7Nxf/+9z/eeOMNLl26ZOxQhBCmRlHAryn0XqLNedF4tDaE/d0w2DgRpgfA72/C7QsGD2Vw03JM7RwAwJYbOj7ddFYGEMmnPNdUjB49mldffZUJEyZQo0aNLJ3watasWWDBCRPmFQDtP4W2H8CFrXDkZzizAaLOwJb3YMv7ULYRBHSBqp21ifeEeITyxZ2Y1rU649tWZsWBqyzYdYlrd+8z668LfLf9Is9UL8mgJn7UKVtMmkaZsBdffJGEhAT8/f1xcHDIUkbcuXPHSJEJIUxKMV/tf4iWk7T/IfbO0f6H2Dtb+7liW21I2vKtDNYCYkCTcqCmMfW30/yw8zIqOt7tVFXKmCeU56Sid+/eAAwaNChjmaIoFtdRW0b3yCW9NVRqpz0exGjDxh1ZBpdD/h3xYeNEbQbvqp21CXM8ZLQFkbP0plEDm5Tjz1PhzN8Zxp6Ld1h/9Cbrj96kZmlXBjbxo2MNb2ysZEI9U/PVV18ZOwSDk/JBiAJk46hNmFdvEFzcpvW7OLfp34dnZa1pVODz2roFrG+Dspw4cYIVYXrm7QxDUeCdjpJYPIk8JxVhYWGGiMPkyOgeT8DOVeu4XeclrfnTqV+1x5XdcOOQ9tgyDUoEQNUu2uR7XtWlD4bIll6n0K5aSdpVK8nJG7Es2BXGmtAbHL0Ww7hlR/jk99MMbFKOPg3K4mInAwWYiv79+xs7BIOT8kEIA1AUbeAX/9Za86e9cyD0R632Yv147f+HOv2h/lBwK1ugu25aUqVmjQDeXXeSH0LCcLS1YnybSgW6j6Igz0mFr6+vIeIQlsatDDQaoT3iIrQO3ad+hbDtEHFSe/z9CTh7Q4WnoGIbbRQIOymgRVYB3i581jOQN5+pwk/7rrBo92XCYxP55PfTfLP1PC/UL8OgpuUo5Wpv7FCLvA0bNqDX62nXrl2m5X/88Qepqam0b9/eSJEJIcyGhz90+Axavw2hS7UE424Y7JoBu7+BKh2hwXDwbVxgNyafDypNqgpTfz3JjC3ncLLVM6y5tKzIizy3Hfj444+ZN29eluXz5s3j008/LZCghIVxKqFVa/ZbDa+fg26zoXIHsLKHezfg8GJY/hJ8Vh7md4Ad0+HWMZAOU+I/PJxsGdW6IiFvtubznjWp5OVEXGIKc3eE0ezTbYxfHsrpW7HGDrNImzhxYrbNgtLS0pg4caIRIhJCmC07V2g4HEYfhBd+hnItQE3TblIu6ABzmsHhJZD8oEB2N6BJOSa000Y3/WjDaZl5O4/ynFTMmTOHKlWqZFlerVo1Zs+eXSBBCQvm4A61XoAXfoI3L8GLq6DhCPCoCGkp2lBzW6bB7KYwvSqsHQnHVsK9W8aOXJgQGysdz9Urw6axzZk/IIiG5d1JSVNZdeg6z3y1g/7z9rHrQpSM5GEE586dIyAgIMvyKlWqcP78eSNEJIQwezq9NjdW/3UwYg/UHaDdmLx1TPs/4ctqsPUDiL2Z712NbFUhY6btd9ccZ9Wha/neZlGR5+ZPt27dolSpUlmWFy9enJs38/9hiiLE2k5r+lThKXjmY7gTBuf/hHObtWZS925qdyAOL9HW96gI5Zppw9H5NdNqQESRpigKraqUoFWVEhy5Gs132y/y+/Gb/H02kr/PRlLDx5XhLf15plpJdDrpu1MYXF1duXjxIn5+fpmWnz9/HkdHmTFdCJFPJapC56/hqSlwaBHsmwux17RJeUO+hIBuWu1G6XpPvIsJ7SqTkJTKgl2XeGPlUTycbGlRqXjBHYOFynNNRZkyZdi5c2eW5Tt37sTb27tAgjIFwcHBBAQEEBQUZOxQig73cloHrL7L/63FaDQKSgUCCtw+BwfmwcpB8EVFbU6M9a/BiTUQH2Xk4IWxBZZxI7hvHba93pKXGvliZ63j2PUYRvx4iHZfbWdt6HVS06TmwtC6du3K2LFjuXDh33Hmz58/z2uvvUaXLl2MGFnBkfJBCBPg4A5Nx8KrR+C5hVC2sdbi4fhK+P4pmPuU1tIhJSnPm1YUhcmdAuhWy5uUNJXhSw5y/HpMwR+DhclzTcXQoUMZO3YsycnJtG7dGoAtW7bwxhtv8NprrxV4gMYio3sY2cO1GAD378LlXXApBMJ2QPgxiDytPfZ/r61TvCqUCYLS9aFMA/CoADoZcrSo8fVw5L2u1Rn7dCUW7Axj/q5LnIuI49WfQ/nqz3OMaOlPt9o+WOvlu2EIn332Gc888wxVqlShdGltfppr167RrFkzvvjiCyNHVzCkfBDChOitoFo37XEjVOvUfXwlXD8AvwwGp5IQNATqDQRHz1xvVqdT+KxnIJFxiew8f5sB8/ezekRjyrg7GOpIzF6ek4oJEyZw+/ZtRowYQVKSlv3Z2dnx5ptvMmnSpAIPUAgA7Itpoz1U6aj9nnBH638RtgMu7dBGk4o8pT0OLdLWsXOD0kFaglEmCHzqgq2z0Q5BFC53RxvGt63MkOblWbTrEt+HhBEWFc+ElUf5ess5hrf0p2fd0tha6Y0dqkVxdXVl165dbN68mSNHjmBvb0/NmjVp3ry5sUMTQlg671rw7CxoMw0OLtBuOsbdgm0faM2javSEBq9AqdxN1GxjpWP2i3XpNWcPp27G0n/+Pn55pTHFHG0MehjmKs9JhaIofPrpp7z77rucOnUKe3t7KlasiK2trSHiEyJ7Du7aZHpVO2u/x0fB1b1wdZ/2uHEYHkTD+c3aA0DRaXNklKmv1WaUrgfu/lKbYeFc7KwZ1boiA5uUY8mey8zdcZFrd+/z9urjfLvtAmOeqkCPOqWxkpqLAqMoCm3btqVt27bGDkUIURQ5lYAWb0CTsXByDeyZpc2VFfqj9vBtok2oV7njYzflbGfNgoFBdP92Fxcj4xm2+ABLhjSQG1LZyHNSkc7JyUnakwrT4eiZuSYjNVkbFeLa/n8TjZgrEH5cexz4Z1hkG2ftjkWpWlrfDe9a/zSbkouFpXG0teLlFv681MiPn/dfYfbfF7gefZ83fznGnL8vMq5NJTrWKCUdup/AjBkzGDZsGHZ2drlaf/bs2fTt2xdnZ6k5FEIYkJUN1OwFNZ7T/h/YOxtOrtVaOlzeCa5l0NUdhHVKyUduxsvFTkssZu1i/6W7TF5zgk961JBZt/8jV7fmunfvTmxs7sd+79u3LxEREU8clBD5prcGnzranYieP8C4Y/DaGei1GBqPhjINteHoku5pF5Y9wbB6GATXh4/LwA/t4Pc3tUl3wk9Caoqxj0gUEHsbPQOblOPvCa14p2NVijlYczEqntE/HabjzBC2nAqXoWjzaNy4cdy7dy/X67/xxhtERkYaMCIhhHiIomitFHrOg7HHoNlrYO8OMVfRb51G2xOvotvwGkScznETFb2c+aZPHXQKLDtwlQW7LhVe/GYiVzUVa9euzXUBoKoqv/76K++//z4lSsiQn8KEOJeEgC7aA7REIeos3AyFm0e0Dl63jkJyPFzdoz3SWdlDyepajYZXNe1RvArYuRjhQERBsLPWM6RZeXoHlWFeyCW+33GRUzdjGbzwAHXKujGxfVXql3M3dphmQVVVnnrqKaysclf5ff/+fQNHJIQQOXDxhqcmQ/MJcGwl6p5ZWEWcgMMLtUf5Vlq/i4ptszSPblGpOG91qMoH60/x/m8nqVDCiWYVZajZdLkqAVRVpVKlSoaORYjCpbcCrwDtUauPtiwtFaLOaUnGzdB/E42kOK3q9Nr+zNtwLau9v0QAimdlnO/f1ppeWVsX9tGIJ+RsZ82rT1fkpUa+zN5+gYW7LnHoSjS95uymQ42STGpfVUb7eIwpU6bkaf2uXbvi7i4JmxDCiKztoU4/Uqr3Zu/yL2msP4Lu7O9wcZv2cC8P9V/W/j946Abi4KblOH3rHisPXmPkj4dYO6op5TxlDh7IZVKxbdu2PG/Yx8cnz+8Rwuh0eihRRXsE9taWpaXBnQtagnEzVBtpKuKUNjlfzBXtcXYjVkBrQP1sCnhW0ibo8QqAEtW0Z9cyWhWsMEnFHG2Y1L4qg5uU48s/z7Fs/xU2HLvFnycjGNS0HCNb+eNsJ8lidvKaVAghhMlQFG47VyG1w3h0cTdg33dwaDHcuQgb39Rm6q79ojaPloc/iqLw4bPVuRgZx6Er0Yz48RCrRzTGzlr6YuYqqWjRooWh4xDCdOl04FlRe9R87t/lCXe0BCP8JEScIO3WCVJvHsM67QFEnNAexx/ajq2Llmx4Vvp3e56VoFg5rTOZMAklXOz4uHsN+jf25f3fTrLz/G1m/32BlQev8lrbyvSqVwa9dOYWQgjLU8wX2n0ILSfB0Z+1OS+izsLeWVon70rtoMEr2JZvyawX69Lh6x2cuhnLtF9P8nH3GsaO3uieePQnSxccHExwcDCpqanGDkWYKgd38GuqPYDU5GQ2rF9PhyY1sL5zFsJPaDUaESe1i1JirDYZz/UDmbej6LXZxD0eSjTSEw8HaSJiLFVKurBkcAO2nIrgow2nuBgVz6RVx1i8+zIfPlud2mWLGTtEYSRSPghh4WydtAnz6g7SmkLtnQ3n/oCzG7VH8Sp4NXiZmT3b0HfRUX7ad4UG5dzpVrtot9KRpCIHMmOqeCKKAm5lobg/VG7/7/KUJLh9Tksuos7/83xW67+RHA+3z2uPs79n3p6Dx0M1G5W0xMOjgrYPqd0wOEVReDrAi+aVirN4z2W+/vMsJ2/G0n3WLvo2KMuEdlVwtZcmUUWNlA9CFBE6HVR4SntEnYd9c7RRISNPw2/jaGznxvLyXRh7oS5vrT5GdR9XKpRwMnbURiNJhRCFwcrm31GjHqaqWt+M9AQj4/kcxF6DhNtwZbf2eJiiA5fS4O6nNZ9yL6/VdhQrpz3LzOEFysZKx+Cm5ehay5uPNpxi1aHrLNlzhY3Hb/FupwC6BHrLeOVCCGHJPCtAh8+h9Ttw+Ectwbh7iaDri9hht4SNqfWYtSiMj14diq110fz3umgetRCmQlG04e1cvKF8y8yvJcZptRdR5x6q5TindR5LTvi3k3jY9qzbdfDUkgv38v8mGunPjsWlw/gT8nSyZXqvWjxXtwxvrznGxch4Xv05lHWhN/ioew28XHI3+ZslunLlCqDV7ri4uMgdfCGEZbJzhUYjtHmwzm6CvbPRhf1NB/0+OsTt49aX8ynZ5lWo3gOsi1aZkOekYtGiRZl+1+l0FC9enGbNmuHgIMMuClFgbJ20Gb69a2VerqoQFw53wuBuWNbnhNuQEKU9/jsELoCN0z8Jhp/27FZWG5nKrYz2LHNvPFYjfw9+f7UZc/6+yMyt59hyOoK2X25napcAutXyKZK1Fn5+fpmO28fHh0GDBvHWW29hYyNN9YQQFkanhyodtEf4Sa5u/JLiF1dTMuEMrB0BmydDvYFQbzC4lDJ2tIUiz0nFq6++mun31NRU4uLiKF68OFu3bqVatWo5vFMIUSAURZvIz7kk+DbK+vqDmOwTjjthEHtdm3Mj/Jj2yI6d2z8JRtl/Ew23Mv8kH2W1zuNF8J/m/7K10jPmqYq0q1aS11cc4dj1GMYtO8KGY7f4pHsNPJxsjR1ioUofelxVVW7cuMGBAwf44osv2Lx5M3/++Sf29vZGjlAIIQzEK4Ay/efy7tJ+OJ74kYE2f+KVEAXbP4eQL6Has9BgOJSua+xIDSrPScXdu3ezLAsPD2fEiBGMHTuWzZs3F0hgQognZOeafQ0HQPIDiL7yUMJxCWKuastirsL9u/AgGm5Fw60ckg5rh/8kGmUy13Y4lcwyC6klq1zSmVUjGjPn7wt8veUcm0+Gc+RqNF89X4vG/p7GDq/Q/Hfo8T59+vDqq6/SrFkz3nvvPT7++GMjRSaEEIVjQvdGPHM5mbkxHfmgchgvqL9rfSKPrdAepYO02boDuoLe8gb5yHNScfTo0WyXDxo0iGeffZZ9+/ZhZ6e1IatZs2b+ohNCFCxrOyheSXtkJ/EeRF/NnGhEX/l3WVy41p8j6oz2yI7OGlx9wMUHnEv902fEB1xKoTh4YZd0B9JSAMu5oFrrdYxqXZHWVbwY8/NhzkfE0ff7vYxsWYGxT1fESm/5SVZsbGyWZcWKFeO1115j5syZvPXWW6iqiouLNK8TQlgmFztrvngukD7f72XSmQpUeGUpQTaXtfkujv+iNUm+th/+eAeCBkPdgeBoOTef8pxU1KpVC0VRUFU1y2uKotCwYcOMn2UMbyHMjK2zNvu3V0D2ryc/0JpQRV95KOm4+u9z7HVIS9ZqQO5eyvJ2K6AdoJ4cr9VouPyTdDh7Z0o+MpaZWSe3AG8X1o1qwnu/nuTn/Vf5Ztt59obdJrhvHUo4m9ex5JWbm9sj+5K4urpKuSCEsHiNK3jSu14Zlh24yturj/Hb6GbYPDsb2rwHB+bDgR+0UR+3fgB/fw41noOGr0BJ8588L89JRVhYWLbLL126RJs2bTh69Ki0nRXCUlnbgYe/9shOagrcuwEx1yD2hnbhjL2R8VBjr6PG3kKnpmrr3bsB1w/mvD9796yJRvpoWc6lwMnL5Pp4ONhY8UmPmjSp4Mlbq46x/9Jduszcyex+dalVxs3Y4RlMep+K/9q4cSMLFy7kp59+KuSIhBDCOCa2r8LmU+GcDY/jh5Awhrf0B6cS0PJNaDoOTqzWZum+cRhCl2gP36baiFJVOmqdwM1QnpOKYsUyzyKblpbGpUuX+OCDD2jXrh1VqlQpsOCEEGZGb6X1r3Arm+3LKcnJbFj/Gx2a18P6fuS/Cce9G5mSD2JvQMp9uH9He+TUqRy05lZOJbQEw8lL+9m55D/LSv67zMmrUGs+Ogd6U83bhWGLD3I+Io5es3fzwbPV6VWvTKHFUJj+26cCID4+nrFjx9KxY8dsXxdCCEtUzNGGtztU5bUVR/h6y1k61SxFGfd/Rki1soHA3lCzl9YUas8sOLkWLodoD9eyUH8o1OkH9sUevSMTk+ekIrsqblVVCfp/e/ceHlV57/3/MzkTkkBIIJiQEBWkRiBBIBSPRAOYdoOAuHnsUw3Uh7YK1u54gq2CtFUsHkq1UXaxbKxuleoW8IdCiSmIIhUEQlVAREFOIRxDSAI5TNbvjyEjMQmZSWZmrZW8X9c1F1lr1qz1ve8wuec792ENHaq//OUvPgvMl8aPH6+1a9fqxhtv1FtvvWV2OEDH5ghyfejvliwlXdn0MYbhmjBedkgqK3YNqzp97t+y4u96Qc6ccA23KjvoerQkosu5RONcktEg+ThvX6dYn/R+XNI9Skvvvkr3/W2bVm8v0YNv/Ut7j1XogdH92t2ys/X3qTAMQ8XFxdqyZYvmzZunkJAQPfHEEyZH1zzaBwD+MOHKJL21+YA2fHNcv1mxXQvvGNLwAIdDSs50PU4ddA2L+vS/XfefKnhUWjtXSv8/rond3fuZUwgveZ1UfL+LOzg4WCkpKUpJafqbSSu499579bOf/Uwvv/yy2aEA8ITD4fpg3ym28V3Iz1dbLVUclcoPS+VHpNPn/m1q21ntWm737KnmJ5nXCwpt2MMRnSB17uGaUNc53nVzwc7dXY/Ibhfsqo6OCNWCnw7WHwu/0h8Lv9ILa7/W4bKzenLCQIWFtJ8J3Offp8IwDIWGhmrixIn6wx/+oO7du5scXfNoHwD4g8Ph0G/HXaHR8z9UwfYSbfj6uIZfGtf0wV2SpBtnSdc94Fol6p8LpCNfSJ8ucj0uvcGVXPQZaenVFb1OKuzYhT1ixAitXbvW7DAA+FpImOuPcZekCx9X3/PRKPEokU6XuP6tf5w5ea7344Dr0SKHK7FwJxpx55KNcwlI5+4K6hyv/8joros7J+v+Ffv09paDOnq6Sgt+Olidw73+M2xJ9V84ORwORUdHq1+/fra4ISrtAwB/6dMjWj/JTNEr//xWj7+3Xe9Mu0ZBQRfopQ7tJF15hzTodmnvR9InC6Sd70pf/8P16HapK7nI+InrBrkWY/nWbN26dXrqqae0efNmFRcXa+nSpRo3blyDY/Lz8/XUU0/p8OHDSk9P1/PPP6/MzExzAgZgPef3fLTUjVxbdS7p+F7iUXHU9ag8fu7nY67hVzLO3cX8eIs9IOMkjQ0P1om6KB37NkZ7nummfpdeotDohr0gjohYRZ0tls6USiHxlpqI3hwzvnCifQBgdb/O7qtlWw/q84NlWrr1oG4Z3KvlFzkc0sXXuh4n90obF0pbXpFOfC2tfEBa8zvpylzXxO4uHpwvQCyfVFRUVCg9PV0/+9nPNGHChEbPL1myRHl5eVqwYIGGDRum+fPna/To0fryyy/Vo0cPEyIGYGsh4edu7OfBhGpnrSuxqE84Ko65HpXHmt4+e0pBhlPxjlOKd5ySqvdLO7Y1DkHSjZK04yEpKOQCvSDnD8M691x4tC2SEF+gfQBgdXFR4bo7q49+v2qnnvr7l/rxwIsUEerF6k6xqdLox6URM6Vtr7smdp/4Wvr4OWlDvpR2sxxDf+m3+L1h+aQiJydHOTk5zT7/7LPPaurUqZoyZYokacGCBXr33Xe1aNEizZgxw+vrVVVVqaqqyr1df0Onmpoa1dTUeH2+9qC+3B21/J6inlrWLusoPNb16NbMDQXP56w+19NxTHv27dOigk8VWVOqtJgqje0bqpAzx909Ic6yEoXWnXHdKLD8sOvhAaNrqmr/3xpXcuEhu/4+aB/azu7vSeI3n93LEIj4b89M0isb9urQqbP668d7NOWq3t6fJChcGjRZyrhDjt0FCvrkRQV9+5H0xdsK+eJtXdEjRzU1I30eu+R53Vg+qbiQ6upqbd68WTNnznTvCwoKUnZ2tjZs2NCqc86dO1dz5sxptH/16tW2GB/sTwUFBWaHYAvUU8uoI0lyqFffoXphe7AqTzq0aFed/l+/OgWfN0w2qK5aYbWnFV57WuG1Za6fa8rO/VzWcH9tmULqquQo3asNyxfpZFRfjyOprKz0Q/nMFcj2Yc2aNbZvH+z+niR+89m9DP6O/9o4h5acCtaf3t+p2ONfKKytt6Lo9nPFRIzWDw4v00WnNqt72ed+K4OnbYStk4pjx47J6XQqISGhwf6EhATt3LnTvZ2dna1t27apoqJCvXr10ptvvqnhw4c3ec6ZM2cqLy/PvV1WVqbk5GSNGjVKMTEx/imIxdXU1KigoEAjR45UaGio2eFYFvXUMuqosaH7SpW7+FNtL5U+rO6l34+/QrW1tSooKNCNo3/scT0ZkowXhspxco+uumq4jF6ezxuo/8a9PQlk+5CVlaW4uGZWdbE4u78nid98di9DoOLPrq3TR3/8SAdLz+pk3BWt661ogmNPmvTaLZLktzJ42kbYOqnw1Pvvv+/xseHh4QoPD2+0PzQ01JZvFl+iDjxDPbWMOvrOsEu760+3XalfvLpZS7ce0sXxUbrrulRJrainc3MpQoJDJC9e15F/F7QPLnYvA/Gbz+5l8Hf8oaHS9Bv6aubbn2nhR3t1x1UXeze3ojnB353DX2Xw9JzWXezWA/Hx8QoODlZJSUmD/SUlJerZs2ebzp2fn6+0tDQNHTq0TecBgJZkpyXod+P6S5KeLdilwh1HTI7I/mgfAFjNLVf2UlLXTjp6ukpLNu03Oxyfs3VSERYWpsGDB6uwsNC9r66uToWFhc12X3tq2rRp2r59uzZt2tTWMAGgRbdlpuiO4a7u8Pv+9zOVnDE5IJujfQBgNWEhQfrF9ZdIkhat3yNnnWFyRL5l+aSivLxcRUVFKioqkiTt2bNHRUVF2rdvnyQpLy9PCxcu1Msvv6wdO3borrvuUkVFhXu1j9bimygAgfbov6Up8+Juqqhy6uVdwaqqrTM7JEujfQBgNxMH91KXTqH69nilCraXtPwCG7F8UvHpp59q0KBBGjRokCRXIzFo0CDNmjVLkjRp0iQ9/fTTmjVrljIyMlRUVKRVq1Y1mpznLb6JAhBoocFB+tNPBik2MlQHKx16puArs0OyNNoHAHYTGRai/zssRZL0l4++MTka37L8RO0RI0bIMC7cPTR9+nRNnz49QBEBgP/0iI7QkxP66xevbtV/f/ytbry8p67pG292WJZE+wDAjnKvStXCD7/Rpr0nVbS/VBnJXc0OyScs31MBAB3NDf266+oE19Cn/1z6mc5UO02OCADgKwkxERozMFGS9Non35ocje+QVDSDMbMAzDQ2pU4JMeHad6JSz/2DYVBWQvsAoK3+7w9dQ6D+v23FKjtrz7uRfx9JRTMYMwvATBEh0mP/drkkaeG6b/T10XKTI0I92gcAbXVlSqwuS4jSmRqnlm89aHY4PkFSAQAWlX15D93wgx6qrTP05MqdLb8AAGALDodDt2W6eiv+55N9Lc4PswOSimbQvQ3ACv7zRz9QcJBDBdtL9M9vjpsdDkT7AMA3JgzqpfCQIO08fFpfHCozO5w2I6loBt3bAKygT49o/Z+hyZKkPxTsMjkaSLQPAHyjS2Sosi93LXH9zrZDJkfTdiQVAGBx02/oo9Bghz7Zc0Kbvz1hdjgAAB+5OcO1CtQ7RYdUZ/M7bJNUAIDFXdSlkyYM6iVJemHN1yZHAwDwlev7dVdMRIgOl53Vxr32/tKIpAIAbOAX118ih0Mq3HlEu0pOmx0OAMAHwkOC9aMBF0mSlhfZewgUSUUzmIgHwEou6R6l0Wk9JUmvfbLP5Gg6NtoHAL409twQqPc+K1aNs87kaFqPpKIZTMQDYDU/GeZafvDtLQd0toa7bJuF9gGALw27OE7xUWE6daZGm/bYdwgUSQUA2MQ1feLVK7aTys7W6r3Pis0OBwDgA8FBDt3wgx6SpNXbS0yOpvVIKgDAJoKCHJo0xLW87P9uOWByNAAAX6lfWvb9HSW2vREeSQUA2Mi4QUmSpA1fH9fx8iqTowEA+MK1fbsrPCRIB06e0c7D9lyMg6SiGUzEA2BFyd0iNSCpi+oMe3eT2xntAwBf6xQWrGv7xkuSCmz6t52kohlMxANgVTkDXKtAMa/CHLQPAPzhxnNDoNbtOmpyJK1DUgEANjP6CldS8ck3J1RZXWtyNAAAX7imj6unYuv+Up0+W2NyNN4jqQAAm7kkvrOSunZStbNOn9h4+UEAwHeSu0Wqd1yknHWGNtrwbztJBQDYjMPhcI+9/eirYyZHAwDwlavP9VZ8tNt+f9tJKgDAhq45l1Sst2HDAwBoWv0QKDv+bSepAAAbykztJkn6suS0yquYVwEA7cHwS+LkcEi7Ssp15PRZs8PxCklFM1gyEICV9YiJUFLXTjIM6V/7S80Op0OhfQDgL7Gdw5R2UYwk6Z/f2GteBUlFM1gyEIDVDUrpKknasu+kuYF0MLQPAPxp6Lme6C3f2utvO0kFANjUoJRYSdLWfaXmBgIA8JnBvV1/2zeTVAAAAiG9VxdJ0vbiMpMjAQD4Sn1Ssb24zFb3IiKpAACb6psQLUkqPnVWZTa8URIAoLHErp10UZcIOesMbdt/yuxwPEZSAQA21aVTqBJiwiVJX5WUmxwNAMBXrjzXW2GnOXMkFQBgY5ed6634quS0yZEAAHzlynNz5uw0WZukAgBsrG8PV1Kxi54KAGg36ufMfX6I4U8AgADomxAlSfr6KEkFALQXl18UI4dDKimr0rHyKrPD8QhJBQDYWHJspCTpYOkZkyMBAPhK5/AQXRzXWZL0xSF7rPBHUtEM7pgKwA6SYjtJkg6ePCPD5Fg6CtoHAIFwRZJrCNQXNhkCRVLRDO6YCsAOLuoSIUk6U+NUXR1pRSDQPgAIhCsSYyRJXxykpwIA4GcRocHqHu1aVraWpAIA2g13UkFPBQAgEJK6uoZAkVQAQPtxRaJr+NPe45Uqr7L+nbVJKgDA5urnVdQ660yOBADgK906h7l7oncfsf4KfyQVAGBz3aNcjY7ToKcCANqTPt1dy4aTVAAA/C4+KkySVEdHBQC0K316kFQAAAKkW+dzPRXMqQCAdqX+Bqe7j5w2OZKWkVQAgM116+zqqWD4EwC0Lwx/AgAEzHfDn0gqAKA9qR/+tO9Epc7WOE2O5sI6RFKxYsUK9evXT3379tVLL71kdjgA4FPungqSCq/RPgCwsu7R4YqOCFGdIe05VmF2OBfU7pOK2tpa5eXl6R//+Ie2bt2qp556SsePHzc7LADwmbhzcyrqGP7kFdoHAFbncDjU1yaTtdt9UrFx40ZdccUVSkpKUlRUlHJycrR69WqzwwIAn4mOCDE7BFuifQBgB6nxnSW5hkBZmeWTinXr1mnMmDFKTEyUw+HQsmXLGh2Tn5+v1NRURUREaNiwYdq4caP7uUOHDikpKcm9nZSUpIMHDwYidAAIiKAghzqHBZsdRsDRPgDoCFK6RUqS9pNUtE1FRYXS09OVn5/f5PNLlixRXl6eZs+erS1btig9PV2jR4/WkSNHAhwpAJgnqgP2VtA+AOgI6pOKb4+TVLRJTk6Ofve732n8+PFNPv/ss89q6tSpmjJlitLS0rRgwQJFRkZq0aJFkqTExMQG3zwdPHhQiYmJAYkdAAIlKrzjJRW0DwA6gvqkwurDn2zdClVXV2vz5s2aOXOme19QUJCys7O1YcMGSVJmZqY+//xzHTx4UF26dNHKlSv16KOPNnvOqqoqVVVVubfLysokSTU1NaqpqfFTSaytvtwdtfyeop5aRh15pjX1dP7wp1pnrQwvXtsefx+0D56x+3uS+M1n9zLYIf7EGNcKf8WnzqjiTJXCQr7rE3A4ne4P8/4qg6fntXVScezYMTmdTiUkJDTYn5CQoJ07d0qSQkJC9MwzzygrK0t1dXV68MEHFRcX1+w5586dqzlz5jTav3r1akVGRvq2ADZTUFBgdgi2QD21jDryjDf1dLb8u0bm44836GTUMY9fW1lp7W+/WiOQ7cOaNWts3z7Y/T1J/OazexmsHL9hSKFBwaqpc+j15avUvdN3z3Uv+1xXnfvZX2XwtI2wdVLhqbFjx2rs2LEeHTtz5kzl5eW5t8vKypScnKxRo0YpJibGXyFaWk1NjQoKCjRy5EiFhoaaHY5lUU8to44805p6WlFaJH3t+vmqq4bL6JXp8fXqv3HviHzRPmRlZV0wGbEyu78nid98di+DXeLP/2a9vjpSoUvSM3Vtn3j3fseezu6//f4qg6dthK2Tivj4eAUHB6ukpKTB/pKSEvXs2bNV5wwPD1d4eLjy8/OVn58vp9N198LQ0FBL/2cLBOrAM9RTy6gjz3hTT9GdvjsuJDhE8qJ+2+PvgvbBO3YvA/Gbz+5lsHr8veM666sjFTp0qrphnMHfDX31Vxk8PaflJ2pfSFhYmAYPHqzCwkL3vrq6OhUWFmr48OFtOve0adO0fft2bdq0qa1hAoDfdcSJ2hdC+wCgPUm2wbKylm+FysvLtXv3bvf2nj17VFRUpG7duiklJUV5eXnKzc3VkCFDlJmZqfnz56uiokJTpkwxMWoACKyI0I53nwraBwAdRVJX10SK4lNnTY6keZZPKj799FNlZWW5t+vHs+bm5mrx4sWaNGmSjh49qlmzZunw4cPKyMjQqlWrGk3O89b3u7cBwMrCQ2zd8dwqtA8AOoqeXSIkSYdJKlpvxIgRMgzjgsdMnz5d06dP9+l1p02bpmnTpqmsrExdunTx6bkBwNfCgjteUkH7AKCj6BnjSiqKy86YHEnzOl4rBADtUHgof84BoL2q76koOVXV4pcpZqEVakZ+fr7S0tI0dOhQs0MBgBZ1xJ4Ks9A+AAi0HtERcjikamedTlRUmx1Ok2iFmsHqHgDsJLwDTtQ2C+0DgEALCwlSfFS4JOtO1iapAIB2gJ4KAGjf6udVWHWyNq0QALQDzKkAgPatfl5FcRlJha0wZhaAndBTETi0DwDMcJF7WVlrrgBFK9QMxswCsBPmVAQO7QMAMyS4hz9VmRxJ00gqAKAdoKcCANq37ucmah+vIKkAAPgJcyoAoH2LiwqTJB0vZ0lZW2HMLAA7CQ3iz3mg0D4AMEP9krLHy+mpsBXGzAKwE3KKwKF9AGCG+p6KY+XVlryrNs0QALQDwUEOs0MAAPhRXGdXT0W1s06nq2pNjqYxkgoAaAeCHSQVANCedQoLVucw10p/VpxXQVIBAO1AED0VANDuxUe7eiuOWXBeBUkFALQDISQVANDuxXWuXwGKpMI2WN0DgJ0EMfwpYGgfAJglLqq+p4LhT7bB6h4A7ISJ2oFD+wDALPEWvlcFSQUAtAMkFQDQ/sVHMacCAOBHDH8CgPYvNtLVU3Gykp4KAIAfnN9TUWfBmyIBANquS6dQSdKpMzUmR9IYSQUAtAPn36eCpAIA2ieSCgCAXwWd99fcSVIBAO1S10iSCtthyUAAdnL+8CdyCv+ifQBgFnoqbIglAwHYyfkTtZ11ZBX+RPsAwCznJxV1FvtbT1IBAO0APRUA0P7FnEsqDEM6XVVrcjQNkVQAQDvARG0AaP8iQoMVEer6+F5msSFQJBUA0A4EBTH8CQA6AqvOqyCpAIB2wnGut4KUAgDar66dXDfAK60kqQAA+BE9FQDQftFTAQAAAKBNYkgqAAAAALRF/Q3wSs9UmxxJQyQVzeDmRgCAptA+ADBT/fCnsjMsKWsL3NwIANAU2gcAZuocHiJJquA+FQAAAABaIyo8WBJJBQAAAIBWqu+pKCepAAD4k8EdtQGg3YoiqQAAAADQFp3DmFMBAAAAoA0Y/gQAAACgTaLcqz85TY6kIZIKAAAAwCY6s/oTAAAAgLaIijg3/Km6VlZaloOkAgAAALCJ+uFPhiGdrbHOEKgOkVSMHz9esbGxmjhxotmhAIDfWembK6ujfQBgN51CgxXkcP1MUhFg9957r/7617+aHQYA+JXD7ABsiPYBgN04HA73srIkFQE2YsQIRUdHmx0GAMBiaB8A2FH9srJnaupMjuQ7picV69at05gxY5SYmCiHw6Fly5Y1OiY/P1+pqamKiIjQsGHDtHHjxsAHCgAIKNoHAGha/QpQ9FScp6KiQunp6crPz2/y+SVLligvL0+zZ8/Wli1blJ6ertGjR+vIkSPuYzIyMtS/f/9Gj0OHDgWqGAAAH6N9AICm1U/WtlJSEWJ2ADk5OcrJyWn2+WeffVZTp07VlClTJEkLFizQu+++q0WLFmnGjBmSpKKiIp/FU1VVpaqqKvd2WVmZJKmmpkY1NTU+u46d1Je7o5bfU9RTy6gjz7S1npy1Tq9ea9XfB+2D/9n9PUn85rN7Gewaf3iIq1/gbPV396rwVxk8Pa/pScWFVFdXa/PmzZo5c6Z7X1BQkLKzs7Vhwwa/XHPu3LmaM2dOo/2rV69WZGSkX65pFwUFBWaHYAvUU8uoI894W0/p59Z92rJli5x7T3v8usrKSq+uYwVWah/WrFlj+/bB7u9J4jef3ctgt/hPlwZJCtKOXbt11bl9/iqDp22EpZOKY8eOyel0KiEhocH+hIQE7dy50+PzZGdna9u2baqoqFCvXr305ptvavjw4U0eO3PmTOXl5bm3y8rKlJycrFGjRikmJqZ1BbG5mpoaFRQUaOTIkQoNDTU7HMuinlpGHXmmtfV0aMuDkqRBVw5Sj7TrPH5d/TfudmKl9iErK0txcXGtK4jJ7P6eJH7z2b0Mdo3/3VNF2lF6RL1SUqXjrn3+KoOnbYSlkwpfef/99z0+Njw8XOHh4Y32h4aG2uo/mz9QB56hnlpGHXmmtfUUEhLi1es68u+C9sHF7mUgfvPZvQx2i79zuCvW2vNuTOSvMnh6TtMnal9IfHy8goODVVJS0mB/SUmJevbs6ddr5+fnKy0tTUOHDvXrdQAA3qN9ANCRRYS6Vn+qrmVJWY+EhYVp8ODBKiwsdO+rq6tTYWFhs93TvjJt2jRt375dmzZt8ut1AADeo30A0JFFhLo+wlc7rZNUmD78qby8XLt373Zv79mzR0VFRerWrZtSUlKUl5en3NxcDRkyRJmZmZo/f74qKircq334S35+vvLz8+V0WmepLgDoSGgfAKBpnc71VFRZqKfC9KTi008/VVZWlnu7fhJcbm6uFi9erEmTJuno0aOaNWuWDh8+rIyMDK1atarR5DxfmzZtmqZNm6aysjJ16dLFr9cCADRG+wAATetkweFPpicVI0aMkGEYFzxm+vTpmj59eoAiAgBYAe0DADStfk5FjYWGP1l6TgUAwHstfA4HANhcRNi54U81JBWWx+oeAICm0D4AMFvEuTtqV9FTYX2s7gEAaArtAwCzdTrXU1FTa50FI0gqAAAAABux4kRtkopm0L0NAGgK7QMAs7lvfue0ziQ6kopm0L0NAGgK7QMAs0VY8D4VJBUA0O5Y55srAIDvfTf8iTkVAAAAAFohItT1Eb6a1Z8AAAAAtEb96k9M1LYBJuIBAJpC+wDAbOEhrqSits46w11JKprBRDwAQFNoHwCYLSzEeh/hrRcRAAAAgGaFBVvvI7z1IgIAAADQrNBgh9khNEJSAQDtjGGdIbYAAD9wOByW662wVjQWwkQ8AEBTaB8AWIHV5lVYKxoLYSIeAKAptA8ArMBqQ6BIKgAAAACboacCAAAAQJuEMqcCAAAAQFvQUwEAAACgTVj9CQDgV6woCwDtHz0VNsGSgQBsx1oLgbRbtA8ArICeCptgyUAAQFNoHwBYARO1AQAAALQJw58AAAAAtAlJBQAAAIA2YU4FAAAAgDahpwIA4FeGwaKyANDe0VMBAAAAoE1CQ6y1jjhJBQAAAGAzYcHBZofQAEkFAAAAYDP0VNgEd0wFADSF9gGAFYQzp8IeuGMqAKAptA8ArCA4yFof460VDQAAAIAWhQQz/AkA4EcsKAsA7V9IEEkFAAAAgDYIJqkAAAAA0Bb0VAAAAABokxBWfwIAAADQFvRUAAAAAGgT5lQAAAAAaBOWlA2w/fv3a8SIEUpLS9PAgQP15ptvmh0SAPgXa8p6hPYBgJ2FWOzmdyFmB+BvISEhmj9/vjIyMnT48GENHjxYP/rRj9S5c2ezQwMAn7LWd1bWR/sAwM6sNqei3ScVF110kS666CJJUs+ePRUfH68TJ07QaABAB0f7AMDOmFPxPevWrdOYMWOUmJgoh8OhZcuWNTomPz9fqampioiI0LBhw7Rx48ZWXWvz5s1yOp1KTk5uY9QAAH+jfQCA5oWypGxDFRUVSk9PV35+fpPPL1myRHl5eZo9e7a2bNmi9PR0jR49WkeOHHEfk5GRof79+zd6HDp0yH3MiRMndMcdd+jPf/6z38sEAGg72gcAaJ7VeipMH/6Uk5OjnJycZp9/9tlnNXXqVE2ZMkWStGDBAr377rtatGiRZsyYIUkqKiq64DWqqqo0btw4zZgxQ1dddZXPYgcA+A/tAwA0jzkVXqiurtbmzZs1c+ZM976goCBlZ2drw4YNHp3DMAxNnjxZN9xwg26//fYWj6+qqlJVVZV7u6ysTJJUU1OjmpoaL0vQPtSXu6OW31PUU8uoI8+0tZ6cTqdXr7Xj74P2wTfs/p4kfvPZvQx2jt8wnA22/VUGT89r6aTi2LFjcjqdSkhIaLA/ISFBO3fu9Ogc69ev15IlSzRw4ED3eNxXXnlFAwYMaPL4uXPnas6cOY32r169WpGRkd4VoJ0pKCgwOwRboJ5aRh15xtt6yjAMySFtLSpS0f4Kj19XWVnpbWims1L7sGbNGtu3D3Z/TxK/+exeBjvGv+d0w21/lcHTNsLSSYUvXHPNNaqrq/P4+JkzZyovL8+9XVZWpuTkZI0aNUoxMTH+CNHyampqVFBQoJEjRyo0NNTscCyLemoZdeSZ1tZT8dYHJbnmESQNuN7j19V/497R+Kp9yMrKUlxcnD9C9Du7vyeJ33x2L4Od4//XgVPatH2He9tfZfC0jbB0UhEfH6/g4GCVlJQ02F9SUqKePXv65Zrh4eEKDw9Xfn6+8vPz5XS6upZCQ0Nt95/N16gDz1BPLaOOPNPaegoJDvbqdXb8XdA++Jbdy0D85rN7GewYf3hYw3j9VQZPz2n66k8XEhYWpsGDB6uwsNC9r66uToWFhRo+fLhfrz1t2jRt375dmzZt8ut1AADeo30A0NFZbUlZ03sqysvLtXv3bvf2nj17VFRUpG7duiklJUV5eXnKzc3VkCFDlJmZqfnz56uiosK92gcAoH2ifQCA5rGk7Pd8+umnysrKcm/Xj1fNzc3V4sWLNWnSJB09elSzZs3S4cOHlZGRoVWrVjWanOdr3+/eBgAEFu0DADSPJWW/Z8SIETIM44LHTJ8+XdOnTw9QRC7Tpk3TtGnTVFZWpi5dugT02gDQFhf+i2oftA8A0Dyr9VRYazAWAAAAgBZZbU6FtaKxkPz8fKWlpWno0KFmhwIAsBDaBwBWQE+FTbC6BwCgKbQPAKzAanMqSCoAAAAAmwkJ/i6psMJcOpIKAAAAwGZCgqz1Md5a0VgIY2YBAE2hfQBgBRbLKUgqmsOYWQB2ZYVu8PaM9gGAFQQ5GP4EAAAAoA2CHUzUBgAAANAGFsspSCqaw5hZAEBTaB8AWIHD4VB9XmFYYPwTSUUzGDMLAGgK7QMAqwiyUHcFSQUAAABgQyQVAAAAANrEQjkFSQUAtDdWGFsLAPC/oHNJhRX+7JNUAAAAADbksFBXBUlFM1jdAwDQFNoHAFZhoZyCpKI5rO4BAGgK7QMAq2CiNgAAAIA2qU8qmFMBAAAAoFXc/RQWyCpIKgAAAAAbstDoJ5IKAGh/LPCVFQDA74KDrJNVkFQAAAAANuQQcyosjyUDAQBNoX0AYBUOC32St1Ao1sKSgQCAptA+ALAKlpQFAAAA0CbWSSlIKgAAAABbqp+nzZwKAAAAAK3iYPgTAMBfDCt8ZQUA8LtgkgoAAAAAbUJSAQAAAKAt3Pe+s0APNUkFAAAAYENM1LYBbm4EAGgK7QMAq2Citg1wcyMAQFNoHwBYRZB1cgqSCgAAAMCOHOduf8fwJwCAz7GkLAB0DPRUAAAAAGgTh4U+yVsoFAAAAACeCpJ1uipIKgAAAAAbCrLQ+CeSCgAAAMCG6peUtcJUOpIKAAAAwIbc/RQWyCpIKgAAAAAbstDoJ5IKAGhvDCt8ZQUA8DuGPwVQaWmphgwZooyMDPXv318LFy40OyQA8AsLfWFlC7QPAOzOSj0VIWYH4G/R0dFat26dIiMjVVFRof79+2vChAmKi4szOzQAgIloHwDYXZDDOllFu++pCA4OVmRkpCSpqqpKhmHI4HazANDh0T4AsDsHScV31q1bpzFjxigxMVEOh0PLli1rdEx+fr5SU1MVERGhYcOGaePGjV5do7S0VOnp6erVq5ceeOABxcfH+yh6AIC/0D4AwIVZJ6WwQFJRUVGh9PR05efnN/n8kiVLlJeXp9mzZ2vLli1KT0/X6NGjdeTIEfcx9eNhv/84dOiQJKlr167atm2b9uzZo9dee00lJSUBKRsAoPVoHwDgwuo7KqzQx2r6nIqcnBzl5OQ0+/yzzz6rqVOnasqUKZKkBQsW6N1339WiRYs0Y8YMSVJRUZFH10pISFB6ero+/PBDTZw4scljqqqqVFVV5d4+deqUJOnEiROqqanx6DrtTU1NjSorK3X8+HGFhoaaHY5lUU8to44809p6Ol3lVJkMlZaW6fjx456/7vRpSVJZWZmio6Mt051up/bBruz+niR+89m9DHaPv7KyUmVVhk7XOhXspzLUtxEtDg81LESSsXTpUvd2VVWVERwc3GCfYRjGHXfcYYwdO9ajcx4+fNgoKyszDMMwSktLjSuuuML417/+1ezxs2fPNuRK+Hjw4MGjwz1OnTrl9d/uQJBoH3jw4MHDzMf+/fsv+DfV9J6KCzl27JicTqcSEhIa7E9ISNDOnTs9Ose3336rn//85+4JePfcc48GDBjQ7PEzZ85UXl6ee7uurk4nTpxQXFycZb69C7SysjIlJydr//79iomJMTscy6KeWkYdeSbQ9WQYhk6fPq3o6GhFR0f7/Xq+YIX2obS0VL1799a+ffvUpUuX1hXEZHZ/TxK/+exeBrvHL/m/DPVtRGJi4gWPs3RS4QuZmZked39LUnh4uMLDwxvs69q1q2+DsqmYmBjbvuECiXpqGXXkmUDWk10/FLeFL9oHyVV3dv//bPf3JPGbz+5lsHv8kn/L4EkbYfpE7QuJj49XcHBwo4lzJSUl6tmzp0lRAQDMRvsAANZi6aQiLCxMgwcPVmFhoXtfXV2dCgsLNXz4cBMjAwCYifYBAKzF9OFP5eXl2r17t3t7z549KioqUrdu3ZSSkqK8vDzl5uZqyJAhyszM1Pz581VRUeFe7QP+Fx4ertmzZzfZ7Y/vUE8to448Qz25WL19aA+/J7uXgfjNZ/cy2D1+yTplcJxbVcM0a9euVVZWVqP9ubm5Wrx4sSTpT3/6k5566ikdPnxYGRkZeu655zRs2LAARwoACCTaBwCwD9OTCgAAAAD2Zuk5FQAAAACsj6QCAAAAQJuQVAAAAABoE5IKSJLy8/OVmpqqiIgIDRs2TBs3bmz22C+++EK33HKLUlNT5XA4NH/+/MAFajJv6mnhwoW69tprFRsbq9jYWGVnZ1/w+PbCmzp6++23NWTIEHXt2lWdO3dWRkaGXnnllQBGaw5v6uh8b7zxhhwOh8aNG+ffAOET48ePV2xsrCZOnNjouRUrVqhfv37q27evXnrpJROi894f/vAHXXHFFUpLS9OvfvUr2W1K5p49e5SVlaW0tDQNGDBAFRUVZofUKpWVlerdu7fuv/9+s0Pxyv79+zVixAilpaVp4MCBevPNN80OySN2fK/WC3idG+jw3njjDSMsLMxYtGiR8cUXXxhTp041unbtapSUlDR5/MaNG43777/feP31142ePXsaf/jDHwIbsEm8raef/OQnRn5+vrF161Zjx44dxuTJk40uXboYBw4cCHDkgeNtHa1Zs8Z4++23je3btxu7d+825s+fbwQHBxurVq0KcOSB420d1duzZ4+RlJRkXHvttcbNN98cmGDRJmvWrDHeeecd45Zbbmmwv6amxujbt69x4MAB4/Tp08Zll11mHDt2zKQoPXPkyBHjkksuMc6cOWPU1tYaV111lfHxxx+bHZZXrrvuOmPdunWGYRjG8ePHjZqaGpMjap3//M//NP793//duO+++8wOxSuHDh0ytm7dahiGYRQXFxuJiYlGeXm5uUG1wI7v1fMFus5JKmBkZmYa06ZNc287nU4jMTHRmDt3bouv7d27d4dJKtpST4ZhGLW1tUZ0dLTx8ssv+ytE07W1jgzDMAYNGmQ88sgj/gjPElpTR/Uf4l566SUjNzeXpMJG1qxZ0yipWL9+vTFu3Dj39r333mu89tprgQ7NK0eOHDFSUlKMkydPGmfOnDGGDh1q7N692+ywPPb5558bN954o9lhtNmuXbuMCRMmGP/93/9tu6Ti+wYOHGjs27fP7DAuyI7v1Qvxd50z/KmDq66u1ubNm5Wdne3eFxQUpOzsbG3YsMHEyKzFF/VUWVmpmpoadevWzV9hmqqtdWQYhgoLC/Xll1/quuuu82eopmltHf3mN79Rjx49dOeddwYizA5h3bp1GjNmjBITE+VwOLRs2bJGx7R2mFpLDh06pKSkJPd2UlKSDh482KZz+rs83bt31/3336+UlBQlJiYqOztbl156aZtiDmT8X331laKiojRmzBhdeeWVeuKJJ3wWe71A/J+6//77NXfuXB9F3FAg3xObN2+W0+lUcnJyG6O+sLaWyR/vVW/48ncSiDonqejgjh07JqfTqYSEhAb7ExISdPjwYZOish5f1NNDDz3kbozbo9bW0alTpxQVFaWwsDD9+Mc/1vPPP6+RI0f6O1xTtKaOPvroI/3lL3/RwoULAxFih1FRUaH09HTl5+c3+fySJUuUl5en2bNna8uWLUpPT9fo0aN15MgR9zEZGRnq379/o8ehQ4cCVQw3f5fn5MmTWrFihfbu3auDBw/q448/1rp162wTf21trT788EO98MIL2rBhgwoKClRQUOCz+ANRhuXLl+uyyy7TZZdd5tO4AxV/vRMnTuiOO+7Qn//8Z7+Uw9dlMpOv4g9YnfutDwS2cPDgQUNSo7GxDzzwgJGZmdni6zvK8Ke21tPcuXON2NhYY9u2bf4K0XStrSOn02l89dVXxtatW42nn37a6NKli7FmzRo/R2sOb+uorKzMSE1NNd577z33PoY/+Z4kY+nSpQ32+WIon2F4Pvzpf/7nf7wPvBn+KM/f/vY34+6773Zvz5s3z/j973/vk3i/zx/xf/zxx8aoUaPc2/PmzTPmzZvnk3ib4o8yzJgxw+jVq5fRu3dvIy4uzoiJiTHmzJnjy7Dd/PWeOHv2rHHttdcaf/3rX30VqsdaUyZ/v1e90drfSSDrnJ6KDi4+Pl7BwcEqKSlpsL+kpEQ9e/Y0KSrraUs9Pf3003ryySe1evVqDRw40J9hmqq1dRQUFKQ+ffooIyND9913nyZOnOi37n2zeVtHX3/9tfbu3asxY8YoJCREISEh+utf/6p33nlHISEh+vrrrwMVeofi72GhmZmZ+vzzz3Xw4EGVl5dr5cqVGj16dJvP2xxflCc5OVkff/yxzp49K6fTqbVr16pfv37+CrkBX8Q/dOhQHTlyRCdPnlRdXZ3WrVunyy+/3F8hN+KLMsydO1f79+/X3r179fTTT2vq1KmaNWuWv0JuwBfxG4ahyZMn64YbbtDtt9/ur1A95kmZAv1e9YYn8Qe6zkkqOriwsDANHjxYhYWF7n11dXUqLCzU8OHDTYzMWlpbT/PmzdNvf/tbrVq1SkOGDAlEqKbx1f+luro6VVVV+SNE03lbRz/4wQ/02WefqaioyP0YO3assrKyVFRU5PfxyB2Vr4aFZmdn69Zbb9V7772nXr16uRv6kJAQPfPMM8rKynIn03FxcT4tw/l8UZ4f/vCH+tGPfqRBgwZp4MCBuvTSSzV27Fh/hNuIL+IPCQnRE088oeuuu04DBw5U37599W//9m/+CLdJdh9q7Iv4169fryVLlmjZsmXKyMhQRkaGPvvsM3+E6xFPyhTo96o3PIk/0HUe4rczwzby8vKUm5urIUOGKDMzU/Pnz1dFRYWmTJkiSbrjjjuUlJTk/va4urpa27dvd/988OBBFRUVKSoqSn369DGtHP7mbT39/ve/16xZs/Taa68pNTXV/SaPiopSVFSUaeXwJ2/raO7cuRoyZIguvfRSVVVV6b333tMrr7yiF1980cxi+JU3dRQREaH+/fs3eH3Xrl0lqdF+WM/777/f7HNjx44N2IdyX3n88cf1+OOPmx1Gq+Xk5CgnJ8fsMHxi8uTJZofgtWuuuUZ1dXVmh+E1O75X6wW6zkkqoEmTJuno0aOaNWuWDh8+rIyMDK1atcqd/e7bt09BQd91ah06dEiDBg1ybz/99NN6+umndf3112vt2rWBDj9gvK2nF198UdXV1Y1ufDV79mw99thjgQw9YLyto4qKCt199906cOCAOnXqpB/84Ad69dVXNWnSJLOK4Hfe1hECr70NC7V7eewev2T/Mtg9/qbYvUyWjN/vszYAALAwNTMBcvr06e5tp9NpJCUleT1R2wx2L4/d4zcM+5fB7vE3xe5lskP89FQAADqc8vJy7d692729Z88eFRUVqVu3bkpJSWlxmJrV2L08do9fsn8Z7B5/U+xeJtvFb0oqAwCAidasWWNIavTIzc11H/P8888bKSkpRlhYmJGZmWn885//NC/gFti9PHaP3zDsXwa7x98Uu5fJbvE7DMMw/Jy3AAAAAGjHmA0IAAAAoE1IKgAAAAC0CUkFAAAAgDYhqQAAAADQJiQVAAAAANqEpAId1osvvqiUlBR17txZEyZM0NGjRy94fGpqqhwOhxwOh0pLSwMTpEXs3bvXXfaMjAyzwwEAABZDUoEO6e2339YDDzyg559/Xp9++qlOnz6tiRMntvi63/zmNyouLlaXLl38Ftvrr7+ucePGafTo0Zo0aZIqKysbPD9nzhz99Kc/9cu19+/fr9tuu0033XSTRo4cqQ8//FCSlJycrOLiYt13331+uS4AALA3kgp0SI8//rimT5+um2++WZdffrlefvllffTRR/roo48u+Lro6Gj17NlTDofDb7HddtttGjp0qIqLi7V06VIdOHCgwfPLly/X2LFj/XLt5ORk/cd//IfOnDmjDRs2aPXq1ZKk4OBg9ezZU1FRUX65LgAAsDeSCnQ4J0+e1JYtW/TjH//YvS8xMVH9+/fX+++/7/X51q9frxEjRigyMlKxsbEaPXq0Tp48KUkaMWKE7rnnHv36179WbGysEhIStHDhQlVUVGjKlCmKjo5Wnz59tHLlygbnfPjhh7Vp0yY99NBDSk5Odu/fv3+/vvjiC910002SpNLSUv3iF79QQkKCIiIi1L9/f61YsUKStHjxYnXt2lUrVqxQv379FBkZqYkTJ6qyslIvv/yyUlNTFRsbq1/96ldyOp3ua2RmZuqDDz7QCy+84LfkBQAAtC8kFehwvvnmG0lSnz59Guzv27ev+zlPFRUV6cYbb1RaWpo2bNigjz76SGPGjGnwIf3ll19WfHy8Nm7cqHvuuUd33XWXbr31Vl111VXasmWLRo0apdtvv909zOnMmTOSpLCwMP3jH//Q3//+d/e53nnnHY0YMUIxMTGqq6tTTk6O1q9fr1dffVXbt2/Xk08+qeDgYPfxlZWVeu655/TGG29o1apVWrt2rcaPH6/33ntP7733nl555RX913/9l9566y1J0tmzZ92vPXv2rB5//HGv6gMA4J21a9e656yNGzfO7HAkSQ6HQ8uWLWuw7XA41LVrV9NigvWFmB0AEGj1H9779u3bYH9VVZVuvvlmr841b948DRkyRC+88IJ73xVXXNHgmPT0dD3yyCOSpJkzZ+rJJ59UfHy8pk6dKkmaNWuWXnzxRf3rX//SD3/4Q91zzz3atWuXTp06pT59+ujGG290n2v58uXuGN9//31t3LhRO3bs0GWXXSZJuuSSSxpcu6amRi+++KIuvfRSSdLEiRP1yiuvqKSkRFFRUUpLS1NWVpbWrFmjSZMmadWqVZo3b56CgoJUXl6u+fPne1UfANDeTZ48WaWlpQ0+dL/11lv66U9/qscff7zVc8++/PJL9ejRw0dRXticOXP01Vdf6dVXX/Xo+OLiYi1ZskSzZ8/2c2SwM5IKdDiRkZGSXN8Onf+ty7333ut+zlNFRUW69dZbL3jMwIED3T8HBwcrLi5OAwYMcO9LSEiQJB05ckSS9NJLLzV5nrKyMn3wwQf6y1/+4r52r1693AlFUyIjI90JRf21UlNTG8yNSEhIcF973LhxlvmmDADs4KWXXtK0adO0YMECTZkypdXn6dGjR8B6ApYvX64ZM2Z4fHzPnj39ukAJ2geGP6HDqf82PyYmRn369HE/zp492+ib/pZ06tSpxWNCQ0MbbDscjgb76id919XVXfA8K1euVFpamnuOhS+uXb+vpWsDABqbN2+e7rnnHr3xxhsNEoq33npLAwYMUKdOnRQXF6fs7GxVVFR4de66ujrNmzdPffr0UXh4uFJSUtxDUuuX+f7b3/6ma6+9Vp06ddLQoUO1a9cubdq0SUOGDFFUVJRycnIaLZf+/bl5X331la677jpFREQoLS1NBQUFbawVdFQkFehwYmNjNXjwYPdyqZJUXl6uDRs2aOTIkV6da+DAgSosLPR1iE06f+hT/bUPHDigXbt2BeT6AIDvPPTQQ/rtb3+rFStWaPz48e79xcXFuu222/Szn/1MO3bs0Nq1azVhwgQZhuHV+euHyz766KPavn27XnvtNXfPdr3Zs2frkUce0ZYtWxQSEqKf/OQnevDBB/XHP/5RH374oXbv3q1Zs2Y1eM335+ZNmDBBYWFh+uSTT7RgwQI99NBDra8UdGgMf0KH9PDDD+uuu+5ScnKyLr74Yj3yyCMaNmyYrr76aq/OM3PmTA0YMEB33323fvnLXyosLExr1qzRrbfeqvj4eJ/FW1tbq5UrV+r+++9377v++ut13XXX6ZZbbtGzzz6rPn36aOfOnXI4HO5voAAAvrdy5UotX75chYWFuuGGGxo8V1xcrNraWk2YMEG9e/eWpAZDXj1x+vRp/fGPf9Sf/vQn5ebmSpIuvfRSXXPNNQ2Ou//++zV69GhJriG8t912mwoLC91t2Z133qnFixc3eM335+bt3LlTf//735WYmChJeuKJJ5STk+NVvIBETwU6qPHjx+uxxx7TnXfeqfT0dNXU1Ohvf/ub1+e57LLLtHr1am3btk2ZmZkaPny4li9frpAQ3+brH3zwgaKionTllVc22P+///u/Gjp0qG677TalpaXpwQcfbLDyFADA9wYOHKjU1FTNnj1b5eXlDZ5LT0/XjTfeqAEDBujWW2/VwoUL3cuMe2rHjh2qqqpqsFBHc3HUq+/F+P6cvfo5c9J3c/PqlwvfsWOHkpOT3QmFJA0fPtyrWIF69FSgw/rlL3+pX/7yl20+z/XXX6/169c3+dzatWsb7du7d2+jfS11iy9fvlxjxoxptL9bt25atGhRk6+ZPHmyJk+e3GDfY489pscee6zBvu9/iwUAuLCkpCS99dZbysrK0k033aSVK1cqOjpakmtBjoKCAn388cdavXq1nn/+eT388MP65JNPdPHFF3t0fk/mzElqcn7e9/edP2fu+3PzAF+ipwLwwkMPPaSoqCidOnUqoNft37+/7rrrroBe83z79u1TVFSUnnjiCdNiAAAr6d27tz744AMdPnxYN910k06fPu1+zuFw6Oqrr9acOXO0detWhYWFaenSpR6fu2/fvurUqZPP5+x9f27e5Zdfrv3796u4uNi975///KdPr4mOg54KwEMffPCBampqJMn9jVSg/PznPw/o9b4vMTFRRUVFkqTw8HBTYwEAq0hOTtbatWuVlZWl0aNHa9WqVdqxY4cKCws1atQo9ejRQ5988omOHj2qyy+/3OPzRkRE6KGHHtKDDz6osLAwXX311Tp69Ki++OIL3Xnnna2Ktam5ednZ2brsssuUm5urp556SmVlZXr44YdbdX6ApALwUP2Eu44oJCSk0R3IAQBSr169GiQWCxYs0Lp16zR//nyVlZWpd+/eeuaZZ7ye/Pzoo48qJCREs2bN0qFDh3TRRRe1achuU3PzgoKCtHTpUt15553KzMxUamqqnnvuORb7QKs4DG/XOAMAAIBP1CckJ0+e9OvN7371q1+ptrZWL7zwQqtev3jxYv36179WaWmpbwNDu0FPBQAAgMl69eqlMWPG6PXXX/fL+fv379/qlZ2ioqJUW1uriIgIH0eF9oSeCgAAAJOcOXNGBw8elOT68N6zZ0+TI2ps9+7dklwrW3m6ghU6HpIKAAAAAG3CkrIAAAAA2oSkAgAAAECbkFQAAAAAaBOSCgAAAABtQlIBAAAAoE1IKgAAAAC0CUkFAAAAgDYhqQAAAADQJiQVAAAAANrk/wcPXi65/OVoTAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# More extensive plot method\n", + "f, axs = plt.subplots(1, 2, figsize=(8,6))\n", + "\n", + "pe.plot_swrc(gen, ax=axs[0])\n", + "pe.plot_swrc(bro, ax=axs[0])\n", + "axs[0].set_yscale(\"log\")\n", + "axs[0].set_ylabel(\"\\N{GREEK SMALL LETTER PSI} [cm]\")\n", + "axs[0].set_title(\"Soil Water Retention Curve\")\n", + "axs[0].set_xlabel(\"\\N{GREEK SMALL LETTER THETA} [cm\\N{SUPERSCRIPT THREE}/cm\\N{SUPERSCRIPT THREE}]\")\n", + "\n", + "pe.plot_hcf(gen, ax=axs[1])\n", + "pe.plot_hcf(bro, ax=axs[1])\n", + "axs[1].set_yscale(\"log\")\n", + "axs[1].set_ylabel(\"\\N{GREEK CAPITAL LETTER PSI} [cm]\")\n", + "axs[1].set_title(\"Hydraulic Conductivity Function\")\n", + "axs[1].set_xlabel(\"Ks [cm/d]\")\n", + "axs[1].set_xscale(\"log\")\n", + "axs[1].set_xlim(1e-10, 1e3)\n", + "\n", + "f.tight_layout()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "pydon", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/doc/examples/02_datasets.ipynb b/doc/examples/02_datasets.ipynb new file mode 100644 index 0000000..9b0dbc3 --- /dev/null +++ b/doc/examples/02_datasets.ipynb @@ -0,0 +1,215 @@ +{ + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Soil Parameter Datasets**\n", + "\n", + "Generally either the Brooks-Corey or Mualem-van Genuchten soil models are used. Pedon has some built-in datasets with parameter sets that can be used for both soil models." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pedon as pe" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['HYDRUS_Sand',\n", + " 'HYDRUS_Loamy Sand',\n", + " 'HYDRUS_Sandy Loam',\n", + " 'HYDRUS_Loam',\n", + " 'HYDRUS_Silt',\n", + " 'HYDRUS_Silt Loam',\n", + " 'HYDRUS_Sandy Clay Loam',\n", + " 'HYDRUS_Clay Loam',\n", + " 'HYDRUS_Silty Clay Loam',\n", + " 'HYDRUS_Sandy Clay',\n", + " 'HYDRUS_Silty Clay',\n", + " 'HYDRUS_Clay',\n", + " 'B01',\n", + " 'B02',\n", + " 'B03',\n", + " 'B04',\n", + " 'B05',\n", + " 'B06',\n", + " 'B07',\n", + " 'B08',\n", + " 'B09',\n", + " 'B10',\n", + " 'B11',\n", + " 'B12',\n", + " 'B13',\n", + " 'B14',\n", + " 'B15',\n", + " 'B16',\n", + " 'B17',\n", + " 'B18',\n", + " 'O01',\n", + " 'O02',\n", + " 'O03',\n", + " 'O04',\n", + " 'O05',\n", + " 'O06',\n", + " 'O07',\n", + " 'O08',\n", + " 'O09',\n", + " 'O10',\n", + " 'O11',\n", + " 'O12',\n", + " 'O13',\n", + " 'O14',\n", + " 'O15',\n", + " 'O16',\n", + " 'O17',\n", + " 'O18',\n", + " 'VS2D_Medium Sand',\n", + " 'VS2D_Sandy Loam',\n", + " 'VS2D_Silt Loam',\n", + " 'VS2D_Del Monte Sand',\n", + " 'VS2D_Fresno Medium Sand',\n", + " 'VS2D_Unconsolidated Sand',\n", + " 'VS2D_Sand',\n", + " 'VS2D_Fine Sand',\n", + " 'VS2D_Columbia Sandy Loam',\n", + " 'VS2D_Touchet Silt Loam',\n", + " 'VS2D_Hygiene Sandstone',\n", + " 'VS2D_Adelanto Loam',\n", + " 'VS2D_Limon Silt',\n", + " 'VS2D_Yolo Light Clay']" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# list all soil types for van genuchten\n", + "pe.Soil.list_names(pe.Genuchten)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Soil(name='HYDRUS_Sand', type='Sand', model=Genuchten(k_s=712.8, theta_r=0.045, theta_s=0.43, alpha=0.145, n=2.68, l=0.5), sample=None, source='HYDRUS', description=nan)" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# get the HYDRUS sand\n", + "soil = pe.Soil(name=\"HYDRUS_Sand\").from_name(sm=pe.Genuchten)\n", + "soil" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that we now have a different class; the soil class. This class has some other attributes such as the name. If the name is in the dataset (`pe.Soil.list_names(pe.Genuchten)`), the `from_name()` can retrieve the soil model. Note that we have to parse the soil model `sm` as an attribute since some soil models are available both as a Genuchten and Brooks dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Soil(name='O18', type='Peat', model=Genuchten(k_s=34.45, theta_r=0.01, theta_s=0.57, alpha=0.0138, n=1.323, l=-1.204), sample=SoilSample(sand_p=None, silt_p=0.0, clay_p=0.0, rho=1.1, th33=None, th1500=None, om_p=22.5, m50=nan), source='Staring', description='moerige tussenlaag')" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# get from the Staring series\n", + "pe.Soil(\"O18\").from_staring(year=\"2001\")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'VS2D_Limon Silt')" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAScAAAIQCAYAAADDzajJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABpKklEQVR4nO3deVxU9f7H8dfMMOyroiCK4p4rEKapuZVLWJhaaek1tbLyqi3c6urt/lxue5nXe4uyLMMs0+qmVppLpGlqmsuYJpoL7goiKgI6DMz5/TEyiYAMMDNnZvg8Hw8ewJkz53xAfXu+3/M9369GURQFIYRwMVq1CxBCiPJIOAkhXJKEkxDCJUk4CSFckoSTEMIlSTgJIVyShJMQwiVJOAkhXJKEkxDCJUk4CZeTmpqKRqPhyJEjapfiMEeOHEGj0ZCammrdNn36dDQajXpFuRgJJxc0aNAg/P39uXTpUoX7jBw5Em9vb86dOwdAXl4e06ZNo3379gQEBFC3bl3i4uJ46qmnOHXqlPV9aWlpPPzww7Rq1Qp/f3+aNWvGo48+yunTp8ucIyYmBo1Gg0ajQavVEhoaSocOHXjsscfYsmVLtX62MWPGEBgYWK33uotvv/2WXr16Ub9+fevveNiwYaxcubLKx3rllVdYunSp/Yt0B4pwOYsWLVIAZf78+eW+np+frwQEBChJSUmKoihKYWGhEh8fr/j5+SlPPPGEMmfOHGXmzJnK2LFjlfDwcGXt2rXW9yYkJChNmzZVnn/+eWXu3LnKlClTlKCgICUiIkI5ffp0qfM0adJEiYuLUxYsWKAsWLBAeffdd5VJkyYpkZGRCqA888wzVf7ZRo8erQQEBNxwn6KiIuXy5cuK2Wyu8vHV9uabbyqA0qtXL2XWrFnKnDlzlGeffVaJi4tTRo8ebd3PbDYrly9fVoqKiqzbpk2bplz/TzIgIKDU+2oTCScXVFBQoAQFBSkDBgwo9/WFCxcqgLJo0SJFURTliy++UADls88+K7Pv5cuXlYsXL1q//+mnn5Ti4uJS+/z0008KoLzwwgultjdp0kS56667yq1v8ODBCqC8++67VfrZbAknd2UymZTg4GClX79+5b6emZl5w/dLOJUmzToX5Ofnx9ChQ0lLSyMrK6vM6wsXLiQoKIhBgwYBcOjQIQC6d+9eZl9fX1+Cg4Ot3/fs2ROttvQfe8+ePalTpw7p6ek217dgwQLq1KnDyy+/jGLniS3K63OKiYnh7rvvZt26dXTq1Ak/Pz86dOjAunXrAPj666/p0KEDvr6+JCQksHPnzjLH/fHHH+nRowcBAQGEhoZyzz33lPmZS/p9Dh48yJgxYwgNDSUkJISxY8dSUFBww7qzs7PJzc0t988BoH79+tavy+tzup5GoyE/P5/58+dbm9djxoy5YQ2eRMLJRY0cOZKioiK++OKLUttzcnJYtWoVQ4YMwc/PD4AmTZoA8Mknn1QrKPLy8sjLyyM8PNzm9wQGBjJkyBBOnjzJ3r17q3zO6jh48CAjRowgKSmJV199lfPnz5OUlMRnn33GM888w1/+8hdmzJjBoUOHGDZsGGaz2freH374gQEDBpCVlcX06dNJTk5m06ZNdO/evdyO92HDhnHp0iVeffVVhg0bRmpqKjNmzLhhffXr18fPz49vv/2WnJycGv+8CxYswMfHhx49erBgwQIWLFjA448/XuPjug21L91E+YqKipQGDRooXbt2LbV9zpw5CqCsWrXKuq2goEBp3bq1AihNmjRRxowZo3z00UeVNiNKvPjiiwqgpKWlldpeUbOuxL///W8FUJYtW2bzz2VLs+7jjz9WACUjI6NULYCyadMm67ZVq1YpgOLn56ccPXrUuv39999XgFJ9bXFxcUr9+vWVc+fOWbft2rVL0Wq1ykMPPWTdVtK0evjhh0vVNGTIEKVu3bqV/nxTp05VACUgIEBJTExUXn75ZWX79u1l9svIyFAA5eOPPy5z7mtJs064HJ1OxwMPPMDmzZtL/c++cOFCIiIiuOOOO6zb/Pz82LJlC8899xxgaRY98sgjNGjQgEmTJmE0Gis8z/r165kxYwbDhg3j9ttvr1KNJXfdbnRX0Z7atm1L165drd936dIFgNtvv53GjRuX2X748GEATp8+jcFgYMyYMdSpU8e6X8eOHenXrx8rVqwoc64nnnii1Pc9evTg3Llz5Obm3rDGGTNmsHDhQuLj41m1ahUvvPACCQkJ3HzzzTY3m4WFhJMLGzlyJGAJJIATJ06wYcMGHnjgAXQ6Xal9Q0JCeOONNzhy5AhHjhzho48+onXr1rzzzju8+OKL5R5/3759DBkyhPbt2/Phhx9Wub68vDwAgoKCqvze6rg2gMDyMwNER0eXu/38+fMAHD16FIDWrVuXOWabNm3Izs4mPz//hucKCwsrdcwbefDBB9mwYQPnz59n9erVjBgxgp07d5KUlMSVK1cqfb+wkHByYQkJCdx00018/vnnAHz++ecoimINrYo0adKEhx9+mI0bNxIaGspnn31WZp/jx4/Tv39/QkJCWLFiRbUCZs+ePQC0aNGiyu+tjusDubLtSg066u1xzODgYPr168dnn33G6NGjOXToULXHh9VGEk4ubuTIkezZs4fffvuNhQsX0rJlS2655Rab3hsWFkbz5s3LDLA8d+4c/fv3x2g0smrVKho0aFDluvLy8liyZAnR0dG0adOmyu93ppIbBvv37y/z2r59+wgPDycgIMChNXTq1Amg3MGuN1KbR4xLOLm4kqukqVOnYjAYyr1q2rVrF9nZ2WW2Hz16lL1795ZqzuTn5zNw4EBOnjzJihUraNmyZZVrunz5MqNGjSInJ4cXXnjB5f8BNWjQgLi4OObPn8+FCxes2/fs2cPq1asZOHCgXc5TUFDA5s2by33t+++/B8pvWt5IQEBAqZprEy+1CxA31rRpU7p168ayZcsAyg2nNWvWMG3aNAYNGsStt95KYGAghw8fZt68eRiNRqZPn27dd+TIkWzdupWHH36Y9PT0Up20gYGBDB48uNSxT548yaeffgpYrpb27t3Ll19+yZkzZ/jb3/5WrVvbJpOJl156qcz2OnXq8Ne//rXKx7PFm2++SWJiIl27duWRRx7h8uXLvP3224SEhJT6/dREQUEB3bp149Zbb+XOO+8kOjqaCxcusHTpUjZs2MDgwYOJj4+v0jETEhL44YcfmDVrFlFRUTRt2tTa4e/xVL5bKGyQkpKiAErnzp3Lff3w4cPK1KlTlVtvvVWpX7++4uXlpdSrV0+56667lB9//LHUviW35Mv7aNKkSYX7ajQaJTg4WGnXrp0ybtw4ZcuWLdX6WUaPHl3h+Zs3b64oSsVDCcob1gAoEyZMKLWt5Db9m2++WWr7Dz/8oHTv3l3x8/NTgoODlaSkJGXv3r2l9im5nX/27NlS28ur6Xomk0mZO3euMnjwYKVJkyaKj4+P4u/vr8THxytvvvmmYjQay9RY2VCCffv2KT179lT8/PwUoFYNK9AoiqxbJ4RwPdLnJIRwSS7Z55SRkcHDDz9MZmYmOp2OX375xeF3U0TN5OTkUFhYWOHrOp2OevXqObEi4e5cslnXq1cvXnrpJXr06EFOTg7BwcF4eblkjoqrevfuzU8//VTh602aNPHoyeOE/bncv/jff/8dvV5Pjx49AEo9biBc11tvvXXD0dMlDykLYSu7h9P69et588032b59O6dPn2bJkiVlbk+npKTw5ptvcubMGWJjY3n77bfp3LkzAAcOHCAwMJCkpCROnjzJfffdxz/+8Q97lynsLCEhQe0ShIexe4d4fn4+sbGxpKSklPv64sWLSU5OZtq0aezYsYPY2FjrVBYARUVFbNiwgXfffZfNmzezZs0a1qxZY+8yhRAuzqF9ThqNpsyVU5cuXbjlllt45513ADCbzURHRzNp0iQmT57M5s2bmT59OqtWrQIsg+cA6xP31zMajaWeujebzeTk5FC3bl2XH7ksRG2kKAqXLl0iKiqqzMSH1+/oMICyZMkS6/dGo1HR6XSltimKojz00EPKoEGDFEWxDGSLi4tTcnJylOLiYuXuu+9Wvv322wrPUTJwTT7kQz7c6+P48eM3zA+ndohnZ2dTXFxMREREqe0RERHs27cPAC8vL1555RV69uyJoij079+fu+++u8JjTpkyheTkZOv3Fy9epHHjxmRkZNzwSXuTycTatWvp06cPfh/1QJOXiekv30Bkh0p/DrNZodes9eRdKWbRo7fQOtI5U4aUuLZ2vV7v1HPbgzvXL7XX3KVLl2jatGmlM2G43N06gMTERBITE23a18fHBx8fnzLb69SpU2ru7OuZTCb8/f2pW7cu+kB/MGkgyA/q1rXpvLFNo9h8+BwnCnR0s/E99lKqdjf7BwLuXb/UXnMl566s28WpI8TDw8PR6XRkZmaW2p6ZmUlkZGSNjp2SkkLbtm1tnk6kFK+rt7mLbJ8IrGOjEAB2nbhQ9fMJISrl1HDy9vYmISGBtLQ06zaz2UxaWlqp6VerY8KECezdu5dff/216m/2unrlVVTxdLbXi4sOBWDnsQtVP58QolJ2b9bl5eVx8OBB6/cZGRkYDAbq1KlD48aNSU5OZvTo0XTq1InOnTsze/Zs8vPzGTt2bI3Om5KSQkpKCsXFxVV/s77kyumyzW+5uYll2tZ9Z3LJMxYR6OOSLWQh3Jbd/0Vt27aNPn36WL8v6awePXo0qampDB8+nLNnzzJ16lTOnDlDXFwcK1euLNNJXlUTJkxgwoQJ5ObmWueQtlk1rpwign1pFObHifOX2XX8At1b2L6sUm1kNputz96ZTCa8vLy4cuVK9f4zUZHUXjm9Xl/hNMdVYfdw6t27d6XzLE+cOJGJEyfa+9TVV9LnZLL9ygkgoUkYJ85fZvvR8xJON1BYWEhGRoZ1HTlFUYiMjOT48eNuNxZNardNaGgokZGRNTqPx7RFatSsq8aVE8DNjcNYZjjF9qPnq37OWkJRFE6fPo1OpyM6OhqtVovZbCYvL4/AwMAbD8JzQVL7jSmKQkFBgfWJj+rMT1/CY8KpZs06X8vnKtytA8uVE8COY+cxmxW0Wvf6n9QZioqKKCgoICoqCn9/f+DPJp6vr69b/gOX2m+s5CHvrKws6tevX+0mnnv9dh1FX71wuikyCD+9jktXijh4Ns8Bhbm/kitZb29vlSsRzlTyH5HJZKr2MSScoNpXTl46rXVIwbYj0rS7EXfrnxE1Y48/b48Jp5oNwrwaTqaqr8Z6S4ylabc141zVzyuEqJDHhFPNBmFW78oJ4NZmlkdXNh8+V6MVZoWoidTUVEJDQ9Uuw648JpxqpJp9TmAZjOmt05KZayQjO9/OhQm1nTlzhqeeeooWLVrg6+tLgwYNGDBgAO+99x4FBQVql1clY8eOrXQpe1fiMXfraqQGV06+eh3xjUPZkpHDL4dzaFYv0M7FCbUcPnyY7t27ExoayiuvvEKHDh3Q6/Vs3bqVTz/9lOjoaAYNGqR2mR7LY66c1OpzgtJNO+E5/vrXv+Ll5cW2bdsYNmwYbdq0oVmzZgwcOJDvvvuOpKQkAC5cuMCjjz5KvXr1CA4O5vbbb2fXrl3W40yfPp24uDgWLFhATEwMISEhPPDAA1y6dMm6T0xMDLNnzy51/ri4uFKrEV+4cIHHH3+ciIgIfH19ad++Pd99912p96xatYo2bdoQGBjInXfeyenTp601fPLJJ6xYsQKdTodGo2HdunUAHD9+nGHDhhEaGkqdOnW45557Si1GMWbMGAYPHszMmTNp0KABdevWZcKECTW6E2cLjwkntfqcALo2vxpOh6TfqTKKolBQWMTlwmIKCouc+lGVP5tz586xevVqJkyYUOGyZCV3pO6//36ysrL4/vvv2b59OzfffDN33HEHOTk51n0PHTrE0qVL+e677/juu+/46aefeO2112yux2w2k5iYyMaNG/n000/Zu3cvr732WqkxRAUFBcycOZMFCxawfv16jh07xrPPPgvAs88+y/33388dd9zByZMnOX36NN26dcNkMjFgwACCgoLYsGEDGzdutAbbtUt9rV27lkOHDrF27Vrmz59PamoqqampNtdfHdKsgxr1OYFlhgIfLy3ZeUYOnc2nRX1p2lXksqmY9tPVmRN+778G4O9t21/5gwcPoigKrVu3LrW9fv36XLli+XsyYcIEkpKS2Lp1K1lZWdZ5xWbOnMnSpUv56quveOyxxwBLuKSmplonWBs1ahRpaWm8/PLLNtXzww8/sHXrVtLT02nVqhUAzZo1K7WPyWRizpw5NG/eHLA8Jvavf/0LgMDAQPz8/PDx8SEyMtI6CPPTTz/FbDbz4YcfWsP2448/JjQ0lHXr1tG/f38AwsLCeOedd9DpdNx0003cddddpKWlMW7cOJvqrw4JJ6jxlZOvXsfNjcPYfPgcmw+fk3DyYL/88gu5ubmMHz8eo9HIrl27yMvLo+51Ew5evnyZQ4cOWb+PiYkpNfNjgwYNrI942MJgMNCoUSNrMJXH39/fGky2nmPXrl0cPHiwzKyUV65cKVV/u3btSl2lNWjQgN27d9tcf3VIOEGN+5wAujWvy+bD59h4IJtRtzaxU2Gex0+vY8/0flzKvURQcJBTHwHx09v+GEWLFi3QaDTs37+/1PZmzZqRm5trfUQjLy+PBg0aWPtvrnXtrf3rZ57UaDTWB6EBtFptmWbntX06tqz7V945KmvK5uXlkZCQwGeffVbmtWtXaK6sfkfwmHCq2YO/NbtyAujZqh5vrfmDjQezMRWb0es8pjvPrjQaDf7eXhR56/D39nLZ59Pq1q1Lv379eOedd5g0aVKF/U4333wzZ86cwcvLi5iYmGqfr169etbOa4Dc3FwyMjKs33fs2JETJ07wxx9/3PDq6Ua8vb3L/Pu4+eabWbx4MfXr17/htNZqcM2/GdVQow7xGvY5AXRoGEKdAG8uGYtkdkwP8e6771JUVESnTp1YvHgx6enp7N+/n8WLF7Nv3z50Oh19+/ala9euDB48mNWrV3PkyBE2bdrECy+8wLZt22w+1+23386CBQvYsGEDu3fvZvTo0aWaUb169aJnz57ce++9rFmzhoyMDL7//ntWrlxp8zliYmL4/fff2b9/P9nZ2ZhMJkaOHEl4eDj33HMPGzZsICMjg3Xr1vHkk09y4sSJKv2+7M1jwqlG7HDlpNVq6NHSMqfTT3/Y3pcgXFfz5s3ZuXMnffv2ZcqUKcTGxtK5c2fmzp3L3/72N1588UU0Gg0rVqygZ8+ejB07llatWvHAAw9w9OjRKk2gOGXKFHr16sXdd9/NXXfdxeDBg0v1HwH873//45ZbbuHBBx+kbdu2PP/881VqKTz66KO0bNmSzp07U69ePTZu3Ii/vz/r16+ncePGDB06lDZt2vDII49w5coV1a+kHLqophpKpky5ePFipauvrFixgoEDB6K/dAL+Gwf6AHjhVLXP/fWOEyR/sYsODUP4dtJt1T5OZUrV7uIrgFy5coWMjAyaNm2Kr6/lPwGz2Uxubi7BwcEu26yriNRum/L+3EvY+m/UvX67jmKHKyeAHi0tHYi7T14kO69qE9cJIUqTcII/+5yUYiiu/qjXekE+tIuy/E+w4cBZe1QmRK3lMeFkl8dXoMrziF+vVyvL1dPafRJOQtSEx4RTzR9fuTo5Vg3D6Y429QFYuz8LU7Fjx4EI4ck8JpxqRKMBvWVaUUw1m/YkLjqM8EBvLl0pYsvhnMrfIIQol4RTCe+ScKrZlZNOq6FvG8st5DV7z9S0KiFqLQmnEiVXToU1n0CsX9uScMqUWQqEqCYJpxJ2atYBdG8Rjp9ex6mLV/j9VG6NjydEbSThVMJOzTqwzFJQctdu9d7MGh9PiNpIwqmEtVlnn3nAS5p2q3+XfidRdSWzT9ZmEk4lvK8+dW6yz6T1d7Spj5dWw74zlzgkC266pTFjxqDRaKwfdevWJTExkT179qhdWq3gMeFUo0GYAPqr8+XYoUMcINTfm9uuPgj83a7TlewtXFXJPNynT58mLS0NLy8vHnjggQr3d/S82rWJx4RTjQZhguWhX7DblRNAUscoAL797ZTctXNTJdPaRkZGEhcXx9///ndOnjzJ2bNnOXLkCBqNhsWLF9OrVy98fX357LPPMJvN/Otf/6JRo0b4+PgQFxdXZmqT3bt3c/vtt+Pn50fdunV57LHHyMur+Ar7119/pV69erz++uuAZQbLPn36EBQURHBwMAkJCVWaosUdeMxkczVm7RC3Xzj1axeB9xItB7Py2J95iZsiXWsyL1UoiqVfz1QAhTpw5pP9en/LgNtqysvL47PPPqNZs2bUrVvXOt/R5MmTeeutt4iPj8fX15f//Oc/vPXWW7z//vvEx8czb948Bg0axO+//07Lli3Jz89nwIABdO3alV9//ZWsrCweffRRJk6cWO6iAT/++CNDhw7ljTfesM5JPnLkSOLj43nvvffQ6XQYDAaXn6GiqiScSthxnFOJYF89vVvVY/XeTL7ddUrCCcBUgPa1RoSqce5/nPqzb9FG3333HYGBljnh8/PzadCgAZ9//nmpKUeefvpphg4dav1+5syZ/P3vf7c2/15//XXWrl3L7NmzSUlJYeHChVy5coVPPvnEOsPmO++8Q1JSEq+//nqpeaCWLFnCQw89xIcffsjw4cOt248dO8Zzzz3HTTfdBEDLli2r+MtwfR7TrKsxO45zulZS7NWm3a7T0rRzQ3369MFgMGAwGNi6dSv9+/fn/vvv5+jRo9Z9OnXqZP06NzeXU6dO0b1791LH6d69O+np6QCkp6cTGxtbaurf7t27YzabS81ZvmXLFu6//34WLFhQKpgAkpOTefTRR+nbty+vvfZaqcUIPIVcOZWw4zina93Rpj5+eh3HcgrYffIiHRuF2vX4bkfvj3nyCXIvXSI4yLkLHFj/A6qCgIAAWrRoYf1+7ty5hIWF8eGHH1qXRapofvGaat68OXXr1mXevHncddddpZpt06dPZ8SIESxfvpzvv/+eadOmsWjRIoYMGeKQWtQgV04l7DzOqYS/t5d1poIlO0/a9dhuSaOxNK30/pbPzvyoQX/Tn+Vr0Gq1XL5c/n9iwcHBREVFsXHjxlLbN27cSNu2bQFo06YNu3btIj8/v9TrWq221Dp54eHh/Pjjjxw8eJBhw4aVuRPYqlUrnnnmGVavXs3QoUP5+OOPa/zzuRIJpxJ2Hud0rXtvbgTAMsMpCotkGhV3YjQaOXPmDGfOnCE9PZ0nn3ySvLw87r777grf89xzz/H666+zePFi9u/fz+TJkzEYDDz11FOApTPb19eX0aNHs2fPHtauXcukSZMYNWpUmXnH69evz48//si+fft48MEHKSoq4vLly0ycOJF169Zx9OhRNm7cyK+//kqbNm0c+rtwNmnWlXBAh3iJHi3DqR/kQ9YlIz/uy+LO9pF2P4dwjJUrV9KgQQMAgoKCuOmmm0hNTaV3794cO3as3Pc8+eSTXLx4kb/97W9kZWXRtm1bvvnmG2untb+/P6tWreKpp57illtuwd/fn3vvvZdZs2aVe7zIyEh+/PFHevfuzciRI/nkk084d+4cDz30EJmZmYSHhzN06FBmzJjhmF+CSlwynGJiYqyTsIeFhbF27VrHn1Rv/6EEJbx0Wobc3JD3fzrMV9tPSDi5idTU1DK39ksWCQDL39PybnJotVqmTZvGtGnTKjx2hw4d+PHHH2947ms1aNCgVGf5559/bsNP4N5cMpwANm3aZL2F6xQOGOd0rftubsT7Px1m7f4szl4yUi/IxyHnEcJTSJ9TCQc26wBaRgQRGx1KsVlhmUE6xoWojN3Daf369SQlJREVFYVGo2Hp0qVl9klJSSEmJgZfX1+6dOnC1q1bS72u0Wjo1asXt9xyS7lruDuEAzvES9yXYOkY/3LbCRnzJEQl7B5O+fn5xMbGkpKSUu7rixcvJjk5mWnTprFjxw5iY2MZMGAAWVl/rpL7888/s337dr755hteeeUVfvvtN3uXWVbJg78ODKdBsVH46rXsz7zE9qPnHXYeITyB3cMpMTGRl156qcLBYLNmzWLcuHGMHTuWtm3bMmfOHPz9/Zk3b551n4YNGwKWTsCBAweyY8cOe5dZVkmzrriwRmvX3UiIn976MPCnvxytZG8hajendogXFhayfft2pkyZYt2m1Wrp27cvmzdvBixXXmazmaCgIPLy8vjxxx8ZNmxYhcc0Go0YjX+urltyJ8VkMt1w+oqS16z7aH0pGX9ryr8AfqFV/wFt8ECnhny5/QTLd59m8p2tqBvgXeVjlKndhRUVFaEoCsXFxZjNljFeJU1aRVGs29yF1G6bkj/3oqKiMn9Pbf1769Rwys7Opri4uMxAs4iICPbt2wdAZmam9aqruLiYcePG3XCOpldffbXc8R2rV6/G37/yxxXWrFlj/fpujR6dYmLtqm+47B1u089UHdEBOo7nwysL07ijYfX7nq6t3VVpNBoiIiI4deoUwcHBaK4ZpX3u3DkVK6sZqb1iRUVF5OTkkJeXR1paWpnXCwps6zpxuaEEzZo1Y9euXTbvP2XKFJKTk63f5+bmEh0dTf/+/QkOrngWAJPJxJo1a+jXr5/1mSXt/hAoyKZPt1ugvuNG2+ZHnOAfS/ey81Igb955G1pt1R6rKK92V5afn8/p06et/ygUReHKlSv4+vqWCit3ILXbJiAggGbNmpX797OkdVMZp4ZTeHg4Op2OzMzSk/5nZmYSGVm9gYk+Pj74+PiQkpJCSkoKxcXFAOj1epv+4ZbazycQCrLRm6+AA//RD745mldX/sHx85fZfOQCvVvXr9ZxbP0Z1RYaGkpQUFCp5uj69evp2bOnW9R/Lam9cjqdDi8vrwoD0NZzOzWcvL29SUhIIC0tzTp5u9lsJi0tjYkTJ9bo2BMmTGDChAnk5uYSEhJSzQKDLJ+Njl3Oyd/bi/sSGvHxxiPM33Sk2uHkTnQ6HTqdzvp1UVERvr6+bvcPXGp3HrvfrcvLy7POfwOQkZGBwWCwPoeUnJzM3LlzmT9/Punp6YwfP578/HzGjh1r71KqzqcknBy/IMHorjFoNLB2/1kOZl1y+PmEcDd2D6dt27YRHx9PfHw8YAmj+Ph4pk6dCsDw4cOZOXMmU6dOJS4uDoPBwMqVK8t0kldVjRc4AEuzDqDQ8eEUEx5Av6vLln/0c4bDzyeEu7F7OPXu3RtFUcp8XPsg48SJEzl69ChGo5EtW7bQpUuXGp+3xgscAHhfDSejc65kxvVsBsD/dpwkO89Yyd5C1C7ybN21nNisA+jUJIzYRiEUFplZsFkGZQpxLY8JJ/s065zTIV5Co9HwaA/L1dOCX45yxVTslPMK4Q48Jpzs2qxzQp9TicT2kTQM9SMnv5D/7TjhtPMK4eo8JpzswsnNOrBMRPfwbU0BeP+nwxQVu9cjEUI4iseEk13v1jmpQ7zEg52jqRPgzbGcAr7Zdcqp5xbCVXlMOLlrsw4sgzIf7WG5enpn7UGKzTLXkxAeE0524XP1WTwnXzkBPNQ1hhA/PYfP5rNi92mnn18IVyPhdC2VmnUAgT5ePNz96tXTjwcxy9WTqOU8Jpzs0uekUrOuxJhuMQT6eLE/8xKrfj+jSg1CuAqPCSe79DlZ79ap86xbiL+esd1jAJi15g/pexK1mseEk12UhJOpAMzqDIh8tEczQvz0HMjKk+XLRa0m4XQt72vWyVOpaRfip2d87+YA/HvNHxiLZNS4qJ0knK7l5QO6q3N6X3HOIyzlGd01hvpBPpy8cJnPt5S/5LUQns5jwskuHeIaDfhenajuykX7FFYNft46nryjJWAZ91RQWKRaLUKoxWPCyS4d4uAS4QQw/JZoGtfxJzuvkLnrZb4nUft4TDjZjYuEk16n5bkBrQGY89Mhzly8omo9QjibhNP1XCScAO7u2ICEJmFcNhXzxqp9apcjhFNJOF3PN9Ty+coFNasALPM9Tb27LQBf7zjJbycuqFuQEE4k4XQ9F7pyAoiNDmVovGV59n99u9e6aqsQns5jwskud+vA5cIJ4Lk7W+Or17Lt6HmWy0PBopbwmHDytLt112oQ4scTvSwDM19enk6+UYYWCM/nMeFkNy4YTgBP9GpOdB0/Tl+8wttrD6ldjhAOJ+F0Pb9Qy+fLF9SsogxfvY5/DWoPQOrmY5zMV7kgIRxMwul6LnrlBNDnpvokto+k2KzwxWGdzPkkPJqE0/WsQwlcL5wApia1JcBbx5E8DV/tkFkLhOeScLqeC185gaVz/MnbLZ3jb64+ICsFC48l4XS9kisnYy6YXXOZpodubUxDf4ULl01MW/a72uUI4RASTtfzvbrIAYrTVv6tKi+dlgebF6PTali++7QsiCA8kseEk90GYXr5gJef5WsXeISlItGB8FiPGAD+b+kecvIL1S1ICDvzmHCy2yBMcPl+pxITejenVUQg5/ILmfaNNO+EZ/GYcLIrNwknHy8tM++PRafV8O2uU6zcI8074TkknMrjF2b5fPm8unXYoGOjUB7v2QyAfy7dI3fvhMeQcCqPfx3L54Icdeuw0VN9W9IqIpDsvEKe+3KXzFwgPIKEU3n8SsLpnLp12MjHS8d/HojH20vL2v1n+WTzUbVLEqLGJJzKU3Ll5AbNuhJtGgQzJfEmAF5ekc7+M+osDCqEvUg4lcfNmnUlxnSLoXfrehQWmXny851cMcmad8J9STiVx82adSU0Gg1v3hdLeKA3+zMv8dr3Mu+4cF8STuWxNuvc68oJoF6QD2/eHwtA6qYjrPr9jMoVCVE9LhtOBQUFNGnShGeffdb5J/eve7UI97pyKtGndX0eva0pAM9+sYsj2TL5k3A/LhtOL7/8Mrfeeqs6J/dzzz6na/098SY6NQnjkrGI8Z/tkP4n4XZcMpwOHDjAvn37SExMVKeAkmbdlYtQ7J7zdet1Wt4ZcTN1A7xJP53L1GV71C5JiCqxezitX7+epKQkoqKi0Gg0LF26tMw+KSkpxMTE4OvrS5cuXdi6dWup15999lleffVVe5dmu5IR4igu/fBvZSJDfPnvg/FoNfDFthN88etxtUsSwmZ2D6f8/HxiY2NJSUkp9/XFixeTnJzMtGnT2LFjB7GxsQwYMICsrCwAli1bRqtWrWjVqpW9S7OdTg8+V5+vc+OmHUD3FuEk97P8Lv+5bA87j7nP2C1Ru3nZ+4CJiYk3bI7NmjWLcePGMXbsWADmzJnD8uXLmTdvHpMnT+aXX35h0aJFfPnll+Tl5WEymQgODmbq1KnlHs9oNGI0/vk8WW6uZQ4mk8mEyWSqsI6S1yrax8svDI3xIkWXslBCm974h3ayymq/3rjuTdh57Dxp+87y+ILt/O+JLkQG+zqyxBuqav2uRGq3Xx2V0SgOfBBLo9GwZMkSBg8eDEBhYSH+/v589dVX1m0Ao0eP5sKFCyxbtqzU+1NTU9mzZw8zZ86s8BzTp09nxowZZbYvXLgQf3//atfec/90wgoOs6XpU5wJTaj2cVzFlSL49x4dZy5raBygMKldMd46tasStVFBQQEjRozg4sWLBAcHV7if3a+cbiQ7O5vi4mIiIiJKbY+IiGDfvuoNGJwyZQrJycnW73Nzc4mOjqZ///43/MFNJhNr1qyhX79+6PX6Mq/rcj+BQ4dJaNsMJW5gtWpzlMpqr0jCbQXcN2cLx/JNbLgSzcz72qPRaBxYafmqW78rkNprrqR1UxmnhlNVjRkzptJ9fHx88PHxISUlhZSUFIqLLbfM9Xq9TX8AFe4XYBnr5FV4EVz0L6GtP2OJFhEhvDvyZkbN28o3v52mbcMQ60rCaqhq/a5Eaq/Z+W3h1KEE4eHh6HQ6MjMzS23PzMwkMjKyRse260yY4PYDMSvSrUU405LaAvD6yn18L/OPCxfl1HDy9vYmISGBtLQ06zaz2UxaWhpdu3Z1ZimV83fP5+tsMerWJoy6tQmKAk8vNrD9qHvfkRSeye7hlJeXh8FgwGAwAJCRkYHBYODYsWMAJCcnM3fuXObPn096ejrjx48nPz/feveuuuy2wEGJgHqWz3ln7XM8F6LRaJiW1Ja+bepjLDLz6PxtZMgjLsLF2D2ctm3bRnx8PPHx8YAljOLj461DAYYPH87MmTOZOnUqcXFxGAwGVq5cWaaTvKrs3qwLqG/5nJ9ln+O5GC+dlv8+GE/HRiGcLzAx5uOtnJMpfoULsXs49e7dG0VRynykpqZa95k4cSJHjx7FaDSyZcsWunTpYu8yai6wJJyy1a3Dgfy9vfho9C00CvPj6LkCHpm/jcuF8gyecA0u+WxddTiuWZcFHjwnd70gH1LHdibET4/h+AXGf7adwiLXXOlY1C4eE072b9ZdDadio8uu/GsvLeoH8tHoTvjqtazbf5bkLwwUmz03kIV78Jhwsjtvf/AOtHztgZ3i1+sUU4c5f0lAr9Pw3W+n+b9le2QVF6Eqjwknuzfr4M+rJw/tFL9e79b1+ffwODQaWLjlGG+s2q92SaIW85hwsnuzDq7pFPf8K6cSd3eM4pUhHQB4b90h3lt3SOWKRG3lMeHkENd2itciD3ZuzOSry0y9vnIfH244rHJFojaScLqRWnjlVOKJXs158o6WALy0PJ2Pfs5QuSJR23hMODm0z6mWXTmVeKZvSybd3gKAF7/by8cbJaCE83hMODmkz8naIV77rpzA8phLcr9WTOhjmblgxrd7SZWAEk7iMeHkELW4WVdCo9HwbP/WjO9tCajpElDCSSScbqTk+bpa2qwrodFoeH5Aax7v1QywBNS76w6qXJXwdBJONyJXTlYajYbJd95k7YN6Y+V+3li5TwZqCofxmHBySId4STgV5oExz37HdVMajYa/9W9tHWbw7rpDzPh2L2Z51EU4gMeEk0M6xH2CwDvI8vWlM/Y7rpt7oldzXhzcHo0GUjcd4fn//SbP4gm785hwcpigq9MHXzqlbh0uZtStTZg1LBadVsNX208w6XNZ8lzYl4RTZYIbWD7LlVMZQ+IbkTLiZrx1WlbsPsPoeVu5eNn91nMTrknCqTJBV8MpV66cynNn+0hSx95CkI8XWzJyGDZnM6cvXla7LOEBJJwqEyRXTpXp1iKcxY93pX6QD/szLzH03U3sP3NJ7bKEm5Nwqow1nOTK6UbaRgXz9V+70aJ+IKcvXuH+OZvYctjzVq4RzuMx4eSQoQRwTYe4XDlVplGYP1890ZVOTcLIvVLEqI+28s0uCXVRPR4TTg4ZSgAQHGX5nCuLT9oi1N+bTx/twoB2ERQWm3ny853M/uEPGawpqsxjwslhrFdOpz16oQN78tXreHdkAuN6NAVg9g8HeHKRQYYaiCqRcKpM4NVwMpugQFbGtZVOq+GFu9ry+r0d8NJq+HbXKR744BeyLl1RuzThJiScKuPlDf7hlq+lU7zKht/SmAWPdCHU37L01OB3NpJ+Wu7kicpJONlCBmLWSNfmdVny1+40Cw/g1MUrPPDhVnad06hdlnBxEk62kIGYNdY0PIAlf+1O9xZ1KSgsZt4fOmatOSDP5IkKSTjZwjrWSe7Y1USIv575YzsztlsTAN5bn8HDqb9ysUAeeRFlSTjZIqSR5fPFE+rW4QG8dFr+kdiaUS2K8dVr+emPsyS98zPppz17VWVRdR4TTg4bhAkSTg7QqZ7C4nGdaRTmx7GcAoa+u4lvZcCmuIbHhJPDBmHCNeF03P7HrsXaNgjm24m30aNlOJdNxUz6fCcvfreXwiKz2qUJF+Ax4eRQIdGWzxdPyEBMOwsL8CZ1bGee6GVZQOGjnzMY9v5mTpwvULkyoTYJJ1sENwQ0UHQF8rPVrsbj6LQaJifexAejEgj29cJw/AJ3/fdn0tIz1S5NqEjCyRZe3n8+xiJNO4fp3y6S5U/2ILZRCBcvm3hk/jZeXZGOqViaebWRhJOtpN/JKaLr+PPlE90Y2z0GgPfXH+bBD36RCexqIQknW13b7yQcyttLy7Skdrw38maCfLzYdvQ8A/+zgTV7pZlXm0g42arkyumCXDk5S2KHBnz35G20bxjM+QIT4z7Zxj+X7uZyocxuUBtIONkqtLHlszTrnKpJ3QD+N74bj/W0rDb86S/HSHrnZ/aekkGbns7lwunChQt06tSJuLg42rdvz9y5c9UuyUIGYqrGx0vHPwa2YcEjnakf5MPBrDwGp2zko58zZEFPD+Zy4RQUFMT69esxGAxs2bKFV155hXPnXGAuaukQV12PlvVY+XRP+raxzLL54nd7GZP6q8wR5aFcLpx0Oh3+/v4AGI1GFEVxjSleSzrEC85BoQwQVEudAG/mPpTAS4Pb4+OlZf0fZ0mcvYEf90lnuaexezitX7+epKQkoqKi0Gg0LF26tMw+KSkpxMTE4OvrS5cuXdi6dWup1y9cuEBsbCyNGjXiueeeIzw83N5lVp1vyJ9Lk0vTTlUajYa/3NqE7ybdxk2RQZzLL+Th1G1M+Xo3ecYitcsTdmL3cMrPzyc2NpaUlJRyX1+8eDHJyclMmzaNHTt2EBsby4ABA8jKyrLuExoayq5du8jIyGDhwoVkZrrA/4oaDYRZpvrg/BFVSxEWLSOCWDqhO4/cZpmr/POtx0j8z3pZkspDeNn7gImJiSQmJlb4+qxZsxg3bhxjx44FYM6cOSxfvpx58+YxefLkUvtGREQQGxvLhg0buO+++8o9ntFoxGg0Wr/PzbXcxTGZTJhMFc8TVPLajfa5ni60CdrMPRRnH8TctI/N77O36tTuSuxZvw6YPKAlfVrV5e9f7+F4zmUemPsLY7s2IblvC3z0uhqf41ru/Lt3ldptPb9GcWCHjkajYcmSJQwePBiAwsJC/P39+eqrr6zbAEaPHs2FCxdYtmwZmZmZ+Pv7ExQUxMWLF+nevTuff/45HTp0KPcc06dPZ8aMGWW2L1y40Np3ZS9tT35Oy6zvOVSvP3sa/cWuxxY1d6UIlhzV8kuWpUEQ4afwlxbFNA5UuTBRSkFBASNGjODixYsEBwdXuJ/dr5xuJDs7m+LiYiIiIkptj4iIYN++fQAcPXqUxx57zNoRPmnSpAqDCWDKlCkkJydbv8/NzSU6Opr+/fvf8Ac3mUysWbOGfv36odfrbapfuz0TVn5P0xBoPHCgTe9xhOrU7kocWf9QYO3+s7yw9Hcy8wqZ/bue8T2b8tfezdDrat6L4c6/e1epvaR1UxmnhpMtOnfujMFgsHl/Hx8ffHx8ymzX6/U2/QHYuh8A9VoAoL1wFK0L/MWsUu0uyFH1928fxS1Nw/m/ZXv47rfTvLPuMOsOZPPW/XG0jgyyyznc+Xevdu02Xww4uI5SwsPD0el0ZTq4MzMziYyMrNGxHToTZokwS8cr54+AWZ6Ud2VhAd68M+Jm3n4wnlB/PXtO5nL32xuYteYPjEXy+Is7cGo4eXt7k5CQQFpamnWb2WwmLS2Nrl271ujYDp0Js0RINGi9oNgIebJMlDtIio1i9dM96dc2AlOxwn/TDnDXf39m+9HzapcmKmH3cMrLy8NgMFibZhkZGRgMBo4dOwZAcnIyc+fOZf78+aSnpzN+/Hjy8/Otd++qyylXTjqvPwdj5mQ47jzCruoH+/LBqARSRtxMeKA3B7PyuG/OJqZ/8zv5Mi7KZdk9nLZt20Z8fDzx8fGAJYzi4+OZOnUqAMOHD2fmzJlMnTqVuLg4DAYDK1euLNNJXlVOuXICqFPStJNwcicajYa7Ojbgh+Re3JfQCEWB1E1H6P/v9fz0x1m1yxPlsHuHeO/evSt93GTixIlMnDjR3qd2jpJ+J7lyckuh/t7MvD+WQbFR/GPJbk6cv8zoeVsZGt+Q/7u7LWEB3mqXKK5yuWfrqsspzTqQKycP0bNVPVY93ZOHuzdFo4Gvd56k76yf+HbXKdd4llN4Tjg5rVkXFmP5LFdObi/Ax4upSW35enw3WkUEci6/kEmf72TcJ9tkWmAX4DHh5DRhcuXkaeIbh/HdpB4807cVep2GH9Kz6D9rPZ9tOSrzRalIwqmq6lhmZOTyeSjIUbcWYTfeXlqe6tuS5U/2IL5xKJeMRbywZA8PzP2Fw2fz1C6vVvKYcHJan5O3/5/DCbIPOPZcwulaRQTx1RPdmJbUFn9vHVszcrjzPxt4d91BWaLKyTwmnJzW5wQQ3tLyOfsPx59LOJ1Oq2Fs96aseronPVqGU1hk5o2V+xmcspHfZe5yp/GYcHKqulfD6ZxcOXmy6Dr+fPJwZ966P5ZQfz2/n8rl3ve38M1RLVdM8giMo0k4VYf1yknCydNpNBruTWjEmmd6cXfHBhSbFdJOaUlK2cwvMqmdQ3lMODmtzwmkWVcL1Qvy4Z0RNzNnRBwheoUj5wp44INf+MeS3eRecb+J59yBx4STc/ucWlk+nz8CxfIXsza5o019psQV88AtltV4Fm45Rr9ZP8lqxA7gMeHkVEENwDsQzEUyGLMW8vOCFwe1ZdFjtxJT15/MXCPjPtnGhIU7OHvJWPkBhE0knKpDo4G6lonnpFO89rq1WV1WPt2TJ3o1R6fVsPy30/T790/8b/sJeQTGDiScqkv6nQTgq9cxOfEmlk3oTruoYC4UmPjbl7t4aN5WjufI+oY14THh5NQOcfiz3yn7oHPOJ1xa+4YhLJ3Qnb/feRPeXlo2HMhmwOz1zN90RB6BqSaPCSendojDn806uXISV+l1Wsb3bs7Kp3rQOaYOBYXFTPvmd4Z/sJlD8ghMlXlMODldvdaWz2f3g/QviGs0qxfIosdu5cV72hHgrePXI+dJ/M8G3lt3iCJ5BMZmEk7VVbelZT5x40XIPaV2NcLFaLUaRnWNYdUzPenZqh6FRWZeX7mPwe9uZK88AmMTCafq8vL+s2mXla5uLcJlNQrzZ/7YW5h5fywhfpZVYAa98zNvrd4vq8BUQsKpJuq3tXzO+l3dOoRL02g03JfQiDXJPbmzXSRFZoW3fzzI3f/9mR3HZBWYinhMODn9bh1cE05y5SQqVz/IlzmjEnh3pGUVmANZedz73iZeXr5XHiQuh8eEk9Pv1gFEXA2nTLlyErYb2KEBa57pxdD4higKzN2QQdLbP7P7xEW1S3MpHhNOqqjfxvL57H4wy/98wnZhAd7MGh7HR6M7ER7ow4GsPIa8u5HZP/whk9pdJeFUE6ExoPe3rACcc1jtaoQbuqNNBKuf6cldHRpQZFaY/cMB7n1vEwezLqldmuoknGpCq4V6N1m+ztqrbi3CbdUJ8OadEfH854E4Qvz0/HbiIgP/+zMfbjhcq0eXSzjVVEmneKaEk6g+jUbDPXENWf1MT3pdHRf10vJ0Rnz4S61dpkrCqaZKOsXlyknYQUSwL6ljb+GVIR3w99bxy+EcEv+zgVW/n1G7NKeTcKqpkk5xuWMn7ESj0TCiS2OWP9mDDg1DuFBg4vEF2/m/pXtq1ZADCaeaiuhg+ZxzGIzycKewn6bhAfxvfDce72lZK3HBL0e5552N7D9TOzrLPSacVBmECRBYD4KiAAUy9zj33MLjeXtpmTKwDZ883JnwQB/2Z15i0Ds/s2jrMbVLcziPCSdVBmGWaBBr+Xx6l/PPLWqFnq3qsfLpHvRqVQ9jkZnJX+/m+a92eXQzz2PCSVUSTsIJwgN9+HjMLTx/Z2u0Gvhi2wnum7PJY2fclHCyhwYdLZ9P/6ZuHcLjabUa/tq7BQse6UKdAG/2nMzl7rd/Zu3+LLVLszsJJ3souXI6mw5FsvqGcLzuLcL5btJtxEaHcvGyiYdTf+W/aQc8amEFCSd7CG4IfnUsS0XJeCfhJFGhfnzx+K2M7NIYRYFZa/7gqUUGj+mHknCyB41G+p2EKny8dLw8pAOvDe2Al1bDN7tO8eDcXzxi/TwJJ3uRcBIqeqBzYz55pDMhfnp2HrvA4JSN7Dvj3tMBSzjZi3SKC5V1ax7Okr92o2l4ACcvXOb+OZvZmpGjdlnV5nLhdPz4cXr37k3btm3p2LEjX375pdol2aZBnOVz5h4oNqlaiqi9mtULZMlfu3FLTBiXrhQx6qMt/LA3U+2yqsXlwsnLy4vZs2ezd+9eVq9ezdNPP01+fr7aZVWuTjPwDYWiKzJSXKgq1N+bBY90oW+b+hiLzDz+6Xa+3HZc7bKqzOXCqUGDBsTFxQEQGRlJeHg4OTlucGmq0UDDBMvXJ7apW4uo9Xz1Oub8JYF7b25EsVnhua9+49Mt7vXIi93Daf369SQlJREVFYVGo2Hp0qVl9klJSSEmJgZfX1+6dOnC1q1byz3W9u3bKS4uJjo62t5lOkajTpbPJ7erW4cQgJdOy8z7O/LobU0BmPHdPjac0ahcle3sHk75+fnExsaSkpJS7uuLFy8mOTmZadOmsWPHDmJjYxkwYABZWaVHuObk5PDQQw/xwQcf2LtEx2l4NZzkykm4CI1Gwwt3tbHObPBVho7PtrpHE8/u4ZSYmMhLL73EkCFDyn191qxZjBs3jrFjx9K2bVvmzJmDv78/8+bNs+5jNBoZPHgwkydPplu3bvYu0XFKmnXnDsBlWY9MuAaNRsPkxJt4pHsTAKZ/m+4Wsxp4OfNkhYWFbN++nSlTpli3abVa+vbty+bNmwFQFIUxY8Zw++23M2rUqEqPaTQaMRr/HHCWm2sZ22EymTCZKr5rVvLajfapMu9gvMKaojmfQdGxX1Ga9bHfsa/hkNqdyJ3rd+fak29vyuHDGaw9reUfS3YT4qujb5v6Tq/D1t+dU8MpOzub4uJiIiIiSm2PiIhg3759AGzcuJHFixfTsWNHa3/VggUL6NChQ7nHfPXVV5kxY0aZ7atXr8bf37/SmtasWVPFn+LGbiaSaDI4sO5z/tjn2Lmf7V27s7lz/e5a+z1N4HIx/JKl5cnPdzKhXTFNg5xbQ0GBbbMoODWcbHHbbbdhNtu+bteUKVNITk62fp+bm0t0dDT9+/cnODi4wveZTCbWrFlDv3790Ov1Nar5WtpfT8DqzbT2z6XFwIF2O+61HFW7s7hz/Z5Q+weP9eGpL39n7f5sUg/5sWhcZ5rXC3BaHSWtm8o4NZzCw8PR6XRkZpYeFJaZmUlkZGS1junj44OPjw8pKSmkpKRQXGx56FGv19v0l8fW/WzWuAsA2lM70Hp5WYYYOIjda3cyd67fnWv38/EhZWQCI+ZuwXD8AuMXGlg2sTvBvs75eWz9vTl1nJO3tzcJCQmkpaVZt5nNZtLS0ujatWuNjq3qTJjXiuwAOm+4nAPnM9StRYgK+Ht78dHoTjQM9SMjO59nFhlcbo08u4dTXl4eBoMBg8EAQEZGBgaDgWPHLHcHkpOTmTt3LvPnzyc9PZ3x48eTn5/P2LFj7V2KOrx8/nwI+Hj547eEcAV1A314f1QCPl5a0vZlMTvtgNollWL3cNq2bRvx8fHEx8cDljCKj49n6tSpAAwfPpyZM2cydepU4uLiMBgMrFy5skwneVWptsBBeRrfavl8dKO6dQhRifYNQ3h1qOVm03/TDvDTH2dVruhPdg+n3r17oyhKmY/U1FTrPhMnTuTo0aMYjUa2bNlCly5danxel2nWATS+Ojbr6GZ16xDCBkNvbsRDXS1joJ79chc5+YUqV2Thcs/WeYSSK6dzByDPdf4nEqIi/xjYhpb1Azl7ycjk//3mEtP9ekw4uVSzzr8O1Lu6EvAxuXoSrs9Xr2P2A3HodRpW783ky+0n1C7Jc8LJpZp1AE2u3n2UcBJuol1UCMn9WgPwyop0zuWpO9Wvx4STy7H2O21Stw4hqmBcj6a0aRDMhQITr36/T9VaPCacXKpZB39eOZ35DYy1Y2174f68dFpeHtIejQa+2n6CLYfPqVaLx4STyzXrQhpBSGNQzDLeSbiVmxuH8WDnxgC8tDxdtcGZHhNOLkn6nYSb+lu/VgT6eLH75EVW7DmtSg0STo7UpLvlc8YGdesQoorqBvowrodlgrqZq/ZjKrb9YXx78Zhwcrk+J4BmvSyfT24DY566tQhRRY/2aEp4oDdHzhXw9Q7nDy3wmHByuT4ngLAYCG1iWaZc7toJNxPg48XjPZsD8P76w07ve/KYcHJZJVdPGT+pW4cQ1fBgl8YE+Xpx+Gw+a9Kdu/6dhJOjNb0aToclnIT7CfTxYtStlufuPlh/2KnnlnBytKY9LZ8zd0N+trq1CFENY7rF4KXVsP3oefadsW0WS3vwmHByyQ5xgMD6UL+t5euM9erWIkQ11A/2pW8by5RGi5y4rJTHhJNLdoiXaCr9TsK9PdDZsrDt1ztOcMVU7JRzekw4ubSSTvHD61QtQ4jq6tGyHlEhvuReKWLd/qzK32AHEk7O0KQ7aL3g/BE4d0jtaoSoMp1Ww10dGwCwYvcZp5xTwskZfIOh8dVHWQ7+oG4tQlRTYgdLOKWlZzqlaSfh5Cwt+lo+H3DPxRiFiI8OJSrEl/zCYtY7Ya5xjwknl71bV6JlP8vnIxvA5NiVgIVwBI1Gw4D2lvUl09Id3+/kMeHk0nfrwDKcICgKiq7AEVmVRbinXq3qAfDzwWyHzzPuMeHk8jSaP6+eDkrTTrinLk3r4q3TcvLCZTKy8x16LgknZyoJpwOr1a1DiGry89aR0CQMsFw9OZKEkzM17WUZUpBzWIYUCLd1W8twAH5x8BS+Ek7OJEMKhAe4ubHlymnX8YsOPY+Ek7O17G/5vP97desQopo6NApBo4GTFy6TdemKw84j4eRsN91l+XxkA1w+r24tQlRDoI8XreoHAY69epJwcra6zS2rAZuLZECmcFux0SEAGI477j9Yjwknlx+Eea2Sq6d936lbhxDVFBsdCsCek46b38ljwsnlB2FeqyScDvwAJse12YVwlFYRlmbdwSzHLdzhMeHkVqLiLaPFTfkyx5NwSy3qBQKWTvF8Y5FDziHhpAaNRpp2wq2FBXgTHugDwKGzjrl6knBSS0k47f8ezM6ZWVAIe2pZ33L1dCBTwsmzxNwGPiGQfxaOb1W7GiGqrHn9AAAOZ0s4eRadHlrfafl671JVSxGiOhqF+QNw8rxjpgCScFJTuyGWz78vlaadcDsNQ/0AS6e4I0g4qan57eAbAnln4NhmtasRokoahl0NJ7ly8kBePnBTkuXrPV+rW4sQVdTo6pXTmdwrmIrNdj++S4bTkCFDCAsL47777lO7FMdrf7Vpt3cZFDtmvIgQjhAe6IO3TotZgTMX7T+Y2CXD6amnnuKTTz5RuwznaNoL/OpAQTYckRWBhfvQajVEhFjGOjlidgKXDKfevXsTFBSkdhnOodND20GWr6VpJ9xM3QBLOGXnFdr92HYPp/Xr15OUlERUVBQajYalS5eW2SclJYWYmBh8fX3p0qULW7fW8nE+7e+1fE7/Fors/4cshKOEB3oDcM4dwik/P5/Y2FhSUlLKfX3x4sUkJyczbdo0duzYQWxsLAMGDCAryzlLHLukJt0hMAKuXJAZMoVbKblyysk32v3YXvY+YGJiIomJiRW+PmvWLMaNG8fYsWMBmDNnDsuXL2fevHlMnjy5yuczGo0YjX/+YnJzLVM4mEwmTCZThe8ree1G+ziTtt1QdFvew2xYSHHzfjfc19Vqryp3rl9qLy3UzxIhWblXbD6urfvZPZxupLCwkO3btzNlyhTrNq1WS9++fdm8uXrjfF599VVmzJhRZvvq1avx9/ev9P1r1rjGhG/BBQ3pAyj7v2fNN19g8gqs9D2uUnt1uXP9UrtF5ikNoGPPgSOsWHHYpvcUFBTYtJ9Twyk7O5vi4mIiIiJKbY+IiGDfvn3W7/v27cuuXbvIz8+nUaNGfPnll3Tt2rXcY06ZMoXk5GTr97m5uURHR9O/f3+Cg4MrrMVkMrFmzRr69euHXq+v4U9mH8rcReiy9jCgYR7mhGEV7ueKtVeFO9cvtV93zF2nWXp0N74h4Qwc2Mmm95S0birj1HCy1Q8/2N7v4uPjg4+PDykpKaSkpFBcbHkMRK/X2/QHYOt+ThH3IKx+Ad2eL9Hd+nilu7tU7dXgzvVL7Rb1gy0DMXMKTDYf09b9nDqUIDw8HJ1OR2ZmZqntmZmZREZG1ujYbjUTZkU63A8aHZz4FbIPqF2NEJUK9LVc3+Q5YMI5p4aTt7c3CQkJpKWlWbeZzWbS0tIqbLbVKkER0OIOy9e7FqlbixA2CPKxhJMjZsO0ezjl5eVhMBgwGAwAZGRkYDAYOHbsGADJycnMnTuX+fPnk56ezvjx48nPz7fevasut1rg4EZiH7R8/m0xmO3/vJIQ9nTtlZOiKHY9tt37nLZt20afPn2s35d0Vo8ePZrU1FSGDx/O2bNnmTp1KmfOnCEuLo6VK1eW6SSvqgkTJjBhwgRyc3MJCQmp0bFU1XqgZRK6i8ct84s371P5e4RQScDVKydTsYKxyIyvXme3Y9s9nHr37l1pgk6cOJGJEyfa+9SeQe8LHe+HXz+EHfMlnIRLC/D+M0LyjUV2DSeXfLauOjymWQeQMMbyOf07yDurailC3IhOqyHA2xJI9u4U95hw8oi7dSUiO0DDBDCbwPCZ2tUIcUMlTbtLVyScaoeSq6cd86VjXLi0kk5xe9+x85hw8qhmHUC7oeAdBDmH4cgGtasRokKBPo4Z6+Qx4eRRzToAn0BLxzjA9lRVSxHiRny8LDFiLLLvFb7HhJNHSrg69iv9W+kYFy7Lx8vSIV4o4VSLNOj4Z8f4jlS1qxGiXN7WKyf7Lm/mMeHkcX1OJTpffQD414+g2P3mEBKer6RZJ1dOFfC4PqcS7QZDQH24dBrSv1G7GiHK8JY+p1rKywc6PWz5esv76tYiRDmkQ7w26zQWtHo4vgVO7VS7GiFKkSun2iwoEtpdXXxzywfq1iLEdeRuXSU8tkO8RJcnLJ/3fAV5tXilGuFy5G5dJTy2Q7xEowRo2AmKC9Fun6d2NUJYyd06Ad0s08xot3+Ertj+64QJUR3S5ySgzSAIa4rm8nka5/ykdjVCAOCtk3ASWh10mwRAi6yVYLb/vM1CVJX+ajgV23n2DAkndxM3AsU/HP/CbDTpy9SuRgi0Wg0AxWb7ziEu4eRu9H6YbxkHgG7zO2DnSeWFqCqdpiSc7Htcjwknjx9KcA1zwsMUab3RZO6GQz+qXY6o5a626jDb+T9Kjwknjx9KcC2/MI7W7W35+ud/q1qKEFqNNOvENQ7VvxNFq7fMknl0k9rliFpMd7XPSa6cBACXvcMxlyzAue41dYsRtZpOOsTF9czdnwGtl2XxzaOb1S5H1FISTqKskGiIG2n5+ie5ehLqKLlbJ806UVqPv1mung6vg2Nb1K5G1EIyzkmUL6wJlPQ9ydWTUIF1nJOdh9xJOHmCHn8Djc4y5un4VrWrEbWM9W6dXDmVrzYNwiyjTlOIu3r1lPYvGTUunKqkWVck4VS+WjUIszy9/g46b8u4Jxk1LpzI2iEu4STKFdoYrj5zR9oMsPMT4kJURHs1RYrlbp2oUI9k8A6C07tg7xK1qxG1hFw5icoFhFvne+LHl2QRTuEUXrqSu3USTuJGuv4V/MMh5zDsXKB2NaIWkAd/hW18gqDnc5av170Gxjx16xEeT4YSCNt1GgthMZCXCRtnq12N8HDWKydp1olKeflAvxctX296Gy4cV7ce4dGuZpPduWQ4fffdd7Ru3ZqWLVvy4Ycfql2Oe2qTBE1ug6Ir8MN0tasRospcLpyKiopITk7mxx9/ZOfOnbz55pucO3dO7bLcj0YDA14GNJZVgo/X0sGpwm25XDht3bqVdu3a0bBhQwIDA0lMTGT16tVql+WeouL+nFJl5WR5rEW4FbuH0/r160lKSiIqKgqNRsPSpUvL7JOSkkJMTAy+vr506dKFrVv/fFj11KlTNGzY0Pp9w4YNOXnypL3LrD3u+D/QB8DJbbD7K7WrEcJmdg+n/Px8YmNjSUlJKff1xYsXk5yczLRp09ixYwexsbEMGDCArKwse5ciAIIiocczlq/X/B8YL6lbjxA28rL3ARMTE0lMTKzw9VmzZjFu3DjGjh0LwJw5c1i+fDnz5s1j8uTJREVFlbpSOnnyJJ07d67weEajEaPRaP0+NzcXAJPJhMlU8QjpktdutI+rqnLttzyB187P0JzPoPjHlzH3fdGB1VWuVv3uXYijai8qsqw8rSi2HdvW82sUxXEdERqNhiVLljB48GAACgsL8ff356uvvrJuAxg9ejQXLlxg2bJlFBUV0aZNG9atW0dISAgJCQls2rSJunXrlnuO6dOnM2PGjDLbFy5ciL+/vyN+LLdU/+Iuuh5+CzNa1t30Ipf8otUuSXiIk/nwxm9eBOsVXuxUXOn+BQUFjBgxgosXLxIcHFzhfna/crqR7OxsiouLiYiIKLU9IiKCffv2WQry8uKtt96iT58+mM1mnn/++QqDCWDKlCkkJydbv8/NzSU6Opr+/fvf8Ac3mUysWbOGfv36odfra/iTOVf1ah+I+at9aPcvp3f+txQP/dZxA1QqUft+967BUbWnn77EG79txtfXl4EDe1W6f0nrpjJODSdbDRo0iEGDBtm0r4+PDz4+PmW26/V6m/4AbN3PFVW59sTX4fBatMd/QZv+NcQ+4LjibFCrfvcuxN61e3n9GSO2/puzhVOHEoSHh6PT6cjMzCy1PTMzk8jIyBodu1bPhGmr0Og/n7tb/U+4fEHVcoS4EaeGk7e3NwkJCaSlpVm3mc1m0tLS6Nq1a42OXetnwrRV14kQ3gryz1qm9BXCRdk9nPLy8jAYDBgMBgAyMjIwGAwcO3YMgOTkZObOncv8+fNJT09n/Pjx5OfnW+/eVZdcOdnIyxvuesvy9baPZDFO4bLsHk7btm0jPj6e+Ph4wBJG8fHxTJ06FYDhw4czc+ZMpk6dSlxcHAaDgZUrV5bpJK8quXKqgqY9IX6U5etvJoHpirr1CI9g79v+du8Q7927N5WNTpg4cSITJ06096lFVfR/CQ6sgXMHYP0bcMdUtSsSbqpWzUpQHdKsqyK/ULhrpuXrjf+B07+pWo4Q1/OYcJJmXTW0SYK294C5CL6ZCMVFalckhJXHhJOopsQ3wTfUsmLL5nfUrkYIKwmn2i4oAga8Yvl67SuQtU/deoS4ymPCSfqcaiBuBLTsD8VGWPIYFBWqXZEQnhNO0udUAxoNDHob/MIszbv1b6hdkXBD9p5CwGPCSdRQUCTc/W/L1xvekml9hc1kKIFwvHZDoMMwUMyw5HEozFe7IlGLeUw4SZ+TnQx8A4KiIOcQrJmmdjWiFvOYcJI+JzvxC4PBV6dY/nWuZRS5ECrwmHASdtT8duj8uOXrJU/ApTPq1iNqJQknUb5+/4KI9lCQDV+PA3Pl068KYU8STqJ8el+472PQ+0PGevh5ltoVCZdn37EEHhNO0iHuAPVawcCrDwevfVXmfhLl0uCYsQQeE07SIe4gcSOuDi8ohv89CgU5alckagmPCSfhIBoN3D0L6jSD3BOWyelkWXPhBBJOonI+QZb+J60e9n0nsxcIp5BwEraJioM7X7V8vWYaHPlZ1XKE55NwEra75VHoONzS//TlGMg9pXZFwoN5TDjJ3Ton0Gjg7tmW8U/5Z+GL0TK9irCSWQkqIHfrnMTbH4Z9Aj4hcGIrrH5B7YqEymRWAuE66jaHoR9Yvt76AexapG49wiNJOInqaX0n9Hze8vU3T8KJ7erWIzyOhJOovt6TodWdlul9F42QDnJhVxJOovq0Ohg6F+q1gbwzloAqLFC7KuEhJJxEzfgGw4Ofg18dOLUTlk2QEeTCLiScRM3VaQrDF4DWC37/GtbPVLsioQJ7/5ck4STsI+Y2uOsty9drX4K9y9StRziNg0YSeE44ySBMF5AwBro8Yfn668fg2BZVyxHuzWPCSQZhuoj+L0OrRCi6Ap8/AOcOqV2RcFMeE07CRei84L6PICoeLufAp/dCfrbaVQk3JOEk7M87AEZ8AaFN4HwGLBwuQwxElUk4CccIrA9/+Z9lqamT22SRBFFlEk7CccJbwgOfg87HMkndiudkDJQHU+z8ZyvhJByrSVcY+j6ggW0fwdqX1a5I2JmjZiXwcsxhhbhGuyGWhRGWJ8P6N9F6BwNN1K5KuDi5chLOccsjcPv/AaD74f+IPrdB5YKEq3PJcBoyZAhhYWHcd999apci7KnH36DrRADijn2EZv8KlQsSrswlw+mpp57ik08+UbsMYW8aDfR/CXPHB9FiRrfkUTj8k9pVCRflkuHUu3dvgoKC1C5DOIJGQ/Fd/+Z0SAKa4kL4/EE49ovaVQkXVOVwWr9+PUlJSURFRaHRaFi6dGmZfVJSUoiJicHX15cuXbqwdetWe9QqPIXWi20x4zE37QWmfPj0Pjgujx25O9VnJcjPzyc2NpaUlJRyX1+8eDHJyclMmzaNHTt2EBsby4ABA8jKyrLuExcXR/v27ct8nDolMynWFmatN8X3L4CYHlB4CT4dCidlql/35JixBFUeSpCYmEhiYmKFr8+aNYtx48YxduxYAObMmcPy5cuZN28ekydPBsBgMFSvWuFZ9P4wYrHlyunYJlgwBB76xrKAp6j17DrOqbCwkO3btzNlyhTrNq1WS9++fdm8ebM9T2VlNBoxGo3W73NzcwEwmUyYTKYK31fy2o32cVXuXDtcV7/eG4Z9hm7RcLQntqIsGEzRyCWWtfFckDv/7h1Ve1FRkeULxbZj23p+u4ZTdnY2xcXFRERElNoeERHBvn37bD5O37592bVrF/n5+TRq1Igvv/ySrl27lrvvq6++yowZM8psX716Nf7+/pWea82aNTbX5WrcuXYoXb9XnUfomnOOOgWHMKcmsbHFZC75RatY3Y258+/e3rVnXgbwotBUyIoVlQ8PKSiw7SFwlxwh/sMPP9i875QpU0hOTrZ+n5ubS3R0NP379yc4OLjC95lMJtasWUO/fv3Q6/U1qtfZ3Ll2uEH9V/piXngvPqcN9Dn6FkUPfgkNYtUrtBzu/Lt3VO2HzubzimEj3npvBg7sU+n+Ja2bytg1nMLDw9HpdGRmZpbanpmZSWRkpD1PZeXj44OPjw8pKSmkpKRQXGx58l2v19v0B2Drfq7InWuHcurXh8NDS+HTe9Gc3I7+s6GWmQ2iXW92U3f+3du7di+vqzGiweZ/c7aw6zgnb29vEhISSEtLs24zm82kpaVV2CyzF5kJ00P4hcGopdC4KxgvwoLBcORntasSNrD3hBNVDqe8vDwMBoP1jltGRgYGg4Fjx44BkJyczNy5c5k/fz7p6emMHz+e/Px86907ISrlG2y5YmraCwrzLHfzDqZV/j6hCpeZlWDbtm306fNnu7Kkv2f06NGkpqYyfPhwzp49y9SpUzlz5gxxcXGsXLmyTCe5vV3frBNurmQ2zS8eggOrLPORD/sEWlc8jEV4lipfOfXu3RtFUcp8pKamWveZOHEiR48exWg0smXLFrp06WLPmsslzToPpPeF4Z9CmyQoLoTFf4HdX6ldlXASl3y2TggrL2+4LxU63A/mIvjfo7DlfbWrEk7gMeEk69Z5MJ0XDHkfbhkHKPD98/DjSzLlr4fzmHCSZp2H0+pg4JvQ5wXL9+vfhG+fguIidesSDuMx4SRqAY0Gej0Pd88GjRZ2zIcvR4PpitqVCWSBgwpJs64W6TQW7p//56ounw6FyxfUrqrWctBIAs8JJ2nW1TJtB1nGQvkEw9GN8HEiXDiudlXCjjwmnEQt1LQHjFkOgRGQtRc+7AundqpdlbATCSfh3hp0hEfToH5byDsDHw+EfbJwgifwmHCSPqdaLDQaHl4FzW8HUwEsGgG/vCdDDdycx4ST9DnVcr7BlsddEsYCCqycbBkPJUMN3JbHhJMQ6PRw97+h/0uABrZ+AIseBOMltSurFVRf4EAIl6bRQLdJMHwBePnBgdXwUX/IyVC7Mo+lcdC0BBJOwjO1SYKxyyEw0nInb24fOLxO7apEFXhMOEmHuCijYQI8tg4adoLL52HBUNj8rnSUuwmPCSfpEBflCm5gGQsVOwKUYlg1BZb+VR55cQMeE05CVEjvC4PfhTtfA40Odi2E1IGQe1rtysQNSDiJ2kGjgVvHw6ivLfOUn9wOH/SG41vVrkxUQMJJ1C7NesO4tdeMKE+UAZv2ovYCB0K4vTpN4ZE10G6oZXbNlZPhyzFwxbb11ERpMitBJeRunagSn0C4bx4kvglaPexdahlukPm72pWJqzwmnORunagyjQa6PAZjv4fgRnDuIMy9A3YtUrsygQeFkxDVFn0LPL7e8uBw0WVY8rhlCmAZbqAqCSchAALqwsivoPcUQAPbU+GjfpB9UO3Kai0JJyFKaHXQe7Jlhk2/OnDmN3i/Jxg+V7uyWknCSYjrtbgDxm+EJreBKR+WPgFfPyZ38yohsxII4QzBUTD6G+jzT8uo8t8Ww/s90ZzaoXZlLsdBkxJIOAlRIa0Oej0HY1dASDScz0A3fyAtMpeDYla7Oo8n4SREZRrfCk9sgLb3oDEX0e7UYnSf3w+5p9SuzKN5TDjJIEzhUH5hcP98igbOokjjjTbjJ3i3K+z+Su3KPJbHhJMMwhQOp9GgxD/ETzf9C3ODOLhyAf73CHz1sGW+KGFXHhNOQjhLnm8UxaO/h15/t3SW7/kfvNsNDv2odmkeRcJJiOrQ6aHPPywPENdpDpdOwYIhsOJ5KCxQuzpVKHae2UHCSYiaaJRg6Sy/5VHL91vfh/d7wLEt6tblRBoHzUsg4SRETXkHwF1vWUaWB0ZaHiCeNwBW/qPWXkXZg4STEPbSoi9M+MUyXzkK/JICc7rDkY1qV+aWJJyEsCe/MBjynuUh4uCGkHPYMl/5iufAmKd2dW5FwkkIR2jZD/66GW5+yPL91g/gvW5w+Cd163IjEk5COIpvCAx6G0YtsTz+cuEofDIIlk2Eghy1q3N5LhdOx48fp3fv3rRt25aOHTvy5Zdfql2SEDXT/HbLVVSnRyzf71wAKZ3hty89amEFj5+VwMvLi9mzZ7N3715Wr17N008/TX5+vtplCVEzPkFw9ywYuxLq3QT5Z+HrR+HToZCToXZ1NVJrZiVo0KABcXFxAERGRhIeHk5OjlwCCw/RpCs8vsEyFYvOxzKq/N2u8PO/odikdnUupcrhtH79epKSkoiKikKj0bB06dIy+6SkpBATE4Ovry9dunRh69bqLVy4fft2iouLiY6Ortb7hXBJXt6WqVjGb4KYHpZ5y3+Yblnk88Q2tatzGVUOp/z8fGJjY0lJSSn39cWLF5OcnMy0adPYsWMHsbGxDBgwgKysLOs+cXFxtG/fvszHqVN/TkGRk5PDQw89xAcffFCNH0sINxDeAkZ/C4Pfs0wLnLkHPuxrWVxBOszxquobEhMTSUxMrPD1WbNmMW7cOMaOHQvAnDlzWL58OfPmzWPy5MkAGAyGG57DaDQyePBgJk+eTLdu3Srd12g0Wr/PzbVMpWoymTCZKr5MLnntRvu4KneuHdy7fofU3u5+aHo7uh+mot29GLanouxdhrn3C5jjRlkmvbMDR/3eTUV/Hs+WY9t6fo1Sg6f1NBoNS5YsYfDgwQAUFhbi7+/PV199Zd0GMHr0aC5cuMCyZcsqPaaiKIwYMYLWrVszffr0SvefPn06M2bMKLN94cKF+Pv72/qjCOES6ubto8PxBYRcOQ7Aef+m/NboIS4ENFe5soqduwL/2umFt1bhzS7Fle5fUFDAiBEjuHjxIsHBwRXuZ9dwOnXqFA0bNmTTpk107drVut/zzz/PTz/9xJYtlT8M+fPPP9OzZ086duxo3bZgwQI6dOhQ7v7lXTlFR0eTnZ19wx/cZDKxZs0a+vXrh16vr7QuV+LOtYN71++U2s1FaLd9hHb9a2iMl1DQoMSNpLjP/4F/3Wof1lG1Hz9fwO2zfsZPr+W3qX0r3T83N5fw8PBKw6nKzTpHu+222zCbbZ+f2cfHBx8fH1JSUkhJSaG42JLcer3epj8AW/dzRe5cO7h3/Y6tXQ/dJ0LH+2HNVDS/LUJj+BTtvu/gjqmQMKZGTT171673KjmWxuZ/c7aw61CC8PBwdDodmZmZpbZnZmYSGRlpz1OVITNhCo8TFAFD37csl16/nWXmzeXJ8EEvyNigdnUOZ9dw8vb2JiEhgbS0NOs2s9lMWlpaqWaeEKIKmnSzLJd+5+vgEwJndsP8u2HxXywPFnuoKodTXl4eBoPBesctIyMDg8HAsWPHAEhOTmbu3LnMnz+f9PR0xo8fT35+vvXunaPIAgfCo+m84NYn4MkdlontNFpI/xZSusCaqR654GeVw2nbtm3Ex8cTHx8PWMIoPj6eqVOnAjB8+HBmzpzJ1KlTiYuLw2AwsHLlSiIiIuxb+XWkWSdqhYBwy8R2T2yEZn2guBA2/gfevhm2p4K58rtl7qLKHeK9e/eudK7giRMnMnHixGoXJYSoRERby2wHB1bDqn9YZt/89inYOhfufBWa9lS7whpzuWfrqkuadaLW0Wig1QAYvxnufM0yRUvmHpifBJ8Ng8y9Ti1HsfO8BB4TTtKsE7WWlzfcOh6eNEDnx0DrBQdWWaYIXjoBLp506OlrzawEQohq8q8DA9+ECVuh7T2gmMHwqaU/as00uHJR7QqrxGPCSZp1QlxVtzkM+wQeTYMm3aHoCmycjde7nWiWtRKKjJUfwwV4TDhJs06I6zTqBGOWw4OLoN5NaC6fp8PJhXjN6Qq/fQFVeBJDDR4TTkKIcmg00DoRnthI0V2zuawPQ3PxGHw9ztInlf6dy04VLOEkRG2g80KJ+wtpbd+guPc/LSPNs/bC4pEwtw8c/MHlQspjwkn6nISoXLHWB3P3p+HpXdDjWdAHwKmd8Om98PHAGi0Aau9s85hwkj4nIarALwzu+D94ahd0nWiZz/zYJssCoJ8MhhPbbT6UxkFjCTwmnIQQ1RBYDwa8DE8ZLEtXab3g8Fr48Hb4/EHLQ8YqkXASQkBwlGXpqknbIW6k5cHi/Stgzm2waCScMji9JAknIcSfwmJg8LuWgZzt7wU0sO87yxxSC4dXqblXUx4TTtIhLoQdhbeE++ZZQqrjcMuV1B8rLc29T++F49Vb7q0qPCacpENcCAeo1wqGfgATfoXYEaDRWYYdfNTP0nF+dLPDTu0x4SSEcKDwFjDkPZi0DeJH/dlx/vGdhH91L3Gag3aek0DCSQhRFXWawT3vwKQdVxda0ONzYiP/857GI5pv7XoqCSchRNWFNYGk/8CTOyloPRSdRuFv2s/tOhJTwkkIUX2h0eT2fhEAL419HySWcBJCuCSPCScZSiCEZ/GYcJKhBEJ4Fo8JJyGEZ5FwEkLUjCxwIISoTSSchBAuScJJCOGSJJyEEC5JwkkI4ZI8JpxkEKYQnsVjwkkGYQqhDo2DxhJ4TDgJITyLhJMQwiVJOAkhXJKEkxDCJUk4CSFckoSTEMIlSTgJIWpEU1tmJbhw4QKdOnUiLi6O9u3bM3fuXLVLEkKowEvtAq4XFBTE+vXr8ff3Jz8/n/bt2zN06FDq1q2rdmlCCCdyuSsnnU6Hv78/AEajEUVRUOy43IwQwj1UOZzWr19PUlISUVFRaDQali5dWmaflJQUYmJi8PX1pUuXLmzdWrV11S9cuEBsbCyNGjXiueeeIzw8vKplCiHcXJXDKT8/n9jYWFJSUsp9ffHixSQnJzNt2jR27NhBbGwsAwYMICsry7pPSX/S9R+nTp0CIDQ0lF27dpGRkcHChQvJzMys5o8nhHBXVe5zSkxMJDExscLXZ82axbhx4xg7diwAc+bMYfny5cybN4/JkycDYDAYbDpXREQEsbGxbNiwgfvuu6/cfYxGI0aj0fr9xYsXAcjJycFkMlV4bJPJREFBAefOnUOv19tUj6tw59rBveuX2ss6n3MeX6Ol68V07lylt+8uXboEUHl3jVIDgLJkyRLr90ajUdHpdKW2KYqiPPTQQ8qgQYNsOuaZM2eU3NxcRVEU5cKFC0q7du2U3377rcL9p02bpgDyIR/y4WYfx48fv2EW2PVuXXZ2NsXFxURERJTaHhERwb59+2w6xtGjR3nsscesHeGTJk2iQ4cOFe4/ZcoUkpOTrd+bzWZycnKoW7cumhskeG5uLtHR0Rw/fpzg4GCbanMV7lw7uHf9UnvNKYrCpUuXiIqKuuF+LjeUoHPnzjY3+wB8fHzw8fEptS00NNTm9wcHB7vdX7IS7lw7uHf9UnvNhISEVLqPXYcShIeHo9PpynRgZ2ZmEhkZac9TCSE8nF3Dydvbm4SEBNLS0qzbzGYzaWlpdO3a1Z6nEkJ4uCo36/Ly8jh48KD1+4yMDAwGA3Xq1KFx48YkJyczevRoOnXqROfOnZk9ezb5+fnWu3euwsfHh2nTppVpEroDd64d3Lt+qd15NFfvutls3bp19OnTp8z20aNHk5qaCsA777zDm2++yZkzZ4iLi+O///0vXbp0sUvBQojaocrhJIQQzuByz9YJIQRIOAkhXJSEkxDCJXl0OFV1doQvv/ySm266CV9fXzp06MCKFSucVGlZVan9999/59577yUmJgaNRsPs2bOdV2g5qlL73Llz6dGjB2FhYYSFhdG3b98qz2Jhb1Wp/+uvv6ZTp06EhoYSEBBAXFwcCxYscGK1pVV3RpBFixah0WgYPHiwYwusCpseeHNDixYtUry9vZV58+Ypv//+uzJu3DglNDRUyczMLHf/jRs3KjqdTnnjjTeUvXv3Kv/85z8VvV6v7N6928mVV732rVu3Ks8++6zy+eefK5GRkcq///1v5xZ8jarWPmLECCUlJUXZuXOnkp6erowZM0YJCQlRTpw44eTKLapa/9q1a5Wvv/5a2bt3r3Lw4EFl9uzZik6nU1auXOnkyqtee4mMjAylYcOGSo8ePZR77rnHOcXawGPDqXPnzsqECROs3xcXFytRUVHKq6++Wu7+w4YNU+66665S27p06aI8/vjjDq2zPFWt/VpNmjRRNZxqUruiKEpRUZESFBSkzJ8/31El3lBN61cURYmPj1f++c9/OqK8G6pO7UVFRUq3bt2UDz/8UBk9erRLhZNHNusKCwvZvn07ffv2tW7TarX07duXzZs3l/uezZs3l9ofYMCAARXu7yjVqd1V2KP2goICTCYTderUcVSZFapp/YqikJaWxv79++nZs6cjSy2jurX/61//on79+jzyyCPOKLNKXO7BX3uozuwIZ86cKXf/M2fOOKzO8thjZge12KP2v//970RFRZX5j8IZqlv/xYsXadiwIUajEZ1Ox7vvvku/fv0cXW4p1an9559/5qOPPqrSg/bO5JHhJNzTa6+9xqJFi1i3bh2+vr5ql2OzoKAgDAYDeXl5pKWlkZycTLNmzejdu7fapVXo0qVLjBo1irlz57rsNNgeGU7VmR0hMjLSJWZTcOeZHWpS+8yZM3nttdf44Ycf6NixoyPLrFB169dqtbRo0QKwTEGdnp7Oq6++6tRwqmrthw4d4siRIyQlJVm3mc1mALy8vNi/fz/Nmzd3bNGV8Mg+p+rMjtC1a9dS+wOsWbPG6bMpuPPMDtWt/Y033uDFF19k5cqVdOrUyRmllstev3uz2Vxq6mhnqGrtN910E7t378ZgMFg/Bg0aRJ8+fTAYDERHRzuz/PKp3SPvKIsWLVJ8fHyU1NRUZe/evcpjjz2mhIaGKmfOnFEURVFGjRqlTJ482br/xo0bFS8vL2XmzJlKenq6Mm3aNFWHElSldqPRqOzcuVPZuXOn0qBBA+XZZ59Vdu7cqRw4cMDla3/ttdcUb29v5auvvlJOnz5t/bh06ZLTa69O/a+88oqyevVq5dChQ8revXuVmTNnKl5eXsrcuXNdvvbrudrdOo8NJ0VRlLfffltp3Lix4u3trXTu3Fn55ZdfrK/16tVLGT16dKn9v/jiC6VVq1aKt7e30q5dO2X58uVOrvhPVak9IyOj3Dmae/Xq5fzClarV3qRJk3JrnzZtmvMLv6oq9b/wwgtKixYtFF9fXyUsLEzp2rWrsmjRIhWqtqjq3/lruVo4yawEQgiX5JF9TkII9yfhJIRwSRJOQgiXJOEkhHBJEk5CCJck4SSEcEkSTkIIlyThJIRwSRJOQgiXJOEkhHBJEk5CCJck4SSEcEn/D0X9e2hNOZv1AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# get for both genuchten and brooks\n", + "ls_gen = pe.Soil(\"VS2D_Limon Silt\").from_name(sm=pe.Genuchten)\n", + "ls_bro = pe.Soil(\"VS2D_Limon Silt\").from_name(sm=pe.Brooks)\n", + "\n", + "ax = ls_gen.model.plot()\n", + "ls_bro.model.plot(ax=ax)\n", + "ax.legend()\n", + "ax.set_title(ls_gen.name)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "pydon", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/doc/examples/03_pedotransfer_functions.ipynb b/doc/examples/03_pedotransfer_functions.ipynb new file mode 100644 index 0000000..6f6eee9 --- /dev/null +++ b/doc/examples/03_pedotransfer_functions.ipynb @@ -0,0 +1,129 @@ +{ + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Pedotransfer Function**" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pedon as pe\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# create soil sample\n", + "sand_p = 50 # sand [%]\n", + "silt_p = 10 # silt [%]\n", + "clay_p = 30 # clay [%]\n", + "rho = 1.5 # bulk density [g/cm3]\n", + "om_p = 10 # organic matter [%]\n", + "m50 = 1e4 # median sand fraction\n", + "\n", + "ss = pe.SoilSample(sand_p=sand_p, silt_p=silt_p, clay_p=clay_p, rho=rho, om_p=om_p, m50=m50)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# wosten pedotransfer function (van Genuchten)\n", + "wos = ss.wosten(ts=False)\n", + "\n", + "# wosten pedotransfer function for sand (van Genuchten)\n", + "woss = ss.wosten_sand(ts=False)\n", + "\n", + "# wosten pedotransfer function for clay (van Genuchten)\n", + "wosc = ss.wosten_clay()\n", + "\n", + "# cosby pedotransfer function (Brook-Corey)\n", + "cosb = ss.cosby()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAJOCAYAAAAqFJGJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADjp0lEQVR4nOzdd3gU1dvG8e/sZtMrSUgIafQmvQkoIQoiKIKiovijdwJKF1ApSlF6MXSkWgBRLDSRIlVAMAjSBCGhh5aE9E123j9i9iUmwYSUySbP57q4NLOzM/dsdufk2TnnjKKqqooQQgghhBBC5IFO6wBCCCGEEEIIyyeFhRBCCCGEECLPpLAQQgghhBBC5JkUFkIIIYQQQog8k8JCCCGEEEIIkWdSWAghhBBCCCHyTAoLIYQQQgghRJ5JYSGEEEIIIYTIMykshBBCCCGEEHkmhYX4Ty1atKBFixbmny9fvoyiKKxcuVKzTKLgBAYG0r17d61jCCGKiKJwzlcUhQkTJph/XrlyJYqicPnyZc0yFTQtj7F79+4EBgbm+nlF4b1SlD3u62pJpLAohk6ePMmrr75KQEAAtra2lC1bllatWjF//vxCy3DkyBEURWH27NmZHmvfvj2KorBixYpMjzVv3pyyZcvmal9ffPEFc+bMedyoj6VFixYoimL+Z2dnR61atZgzZw4mk+mxtlmYx3Hw4EEmTJhAVFRUoewvNy5evEi/fv0oX748tra2ODs706xZM+bOnUtCQoLW8YTQXPofnL/99luWj7do0YInnniikFNZvpJ27rl+/ToTJkwgLCysQPezZcuWDEVhfgkMDMzQDj/8LzExMd/3l1OF9boWVVZaBxD56+DBgwQHB+Pv70+fPn3w9vbmypUr/Prrr8ydO5fBgwfneps//fRTrp9Tr1497O3t2b9/P0OHDs2U0crKigMHDtCjRw/z8uTkZI4ePUq7du1yta8vvviCU6dOMWTIkFznzAtfX1+mTp0KwJ07d/jiiy8YOnQot2/fZvLkybneXmEex8GDB5k4cSLdu3fH1dU1w2Pnzp1Dp9PmO4fNmzfz2muvYWNjQ9euXXniiSdITk5m//79jBw5kj///JMlS5Zokk0IUXR06dKFN954Axsbm3zZXkk891y/fp2JEycSGBhInTp1Mjy2dOnSx/qSLCAggISEBAwGg3nZli1bCA0NLZDiok6dOgwfPjzTcmtr63zfV04VxOtqSaSwKGYmT56Mi4sLR48ezfQHY2Rk5GNt83E+oFZWVjRu3JgDBw5kWH7u3Dnu3LlD586d2b9/f4bHjh07RmJiIk899dRj5cxPJpOJ5ORkbG1ts13HxcWF//3vf+af+/fvT9WqVZk/fz4ffvgher2+MKLmu/xqqHPr0qVLvPHGGwQEBLBr1y7KlCljfiwkJIQLFy6wefPmfNlXXFwcDg4O+bItIUSawvxc6fX6fDvHFua5x1I8XBjkhqIoj2w381vZsmUztMNF3eO+rpZEukIVMxcvXqRGjRqZigqA0qVLZ/g5JSWFjz76iAoVKmBjY0NgYCBjx44lKSkpw3r/HmORU0899RS3bt3iwoUL5mUHDhzA2dmZvn37mouMhx9Lfx7Ad999xwsvvICPjw82NjZUqFCBjz76iNTU1AzZNm/eTHh4uPkS6MP9F5OSkhg/fjwVK1bExsYGPz8/Ro0alekYFUVh0KBBfP7559SoUQMbGxu2bduWq+O1tbWlYcOGPHjwIFMRt3btWurXr4+dnR2lSpXijTfe4MqVKwV2HJs2beKJJ57AxsaGGjVqZDiWCRMmMHLkSADKlStn3l96P96sxlj8/fffvPbaa5QqVQp7e3uefPLJTA3tnj17UBSF9evXM3nyZHx9fbG1teXZZ5/N8B7IzrRp04iNjWX58uUZGvZ0FStW5J133gEe3Y/3332xJ0yYgKIonD59ms6dO+Pm5sZTTz3FjBkzUBSF8PDwTNsYM2YM1tbW3L9/37zs8OHDPP/887i4uGBvb09QUFCmwlmIoigoKIjatWtn+ViVKlVo3bq1+eeoqCi6d++Oi4sLrq6udOvWLcsuk927d8fR0ZGLFy/Stm1bnJyceOuttwDYt28fr732Gv7+/ubz1dChQzN1J8qubclJP/Tsxh9s3bqVoKAgnJyccHZ2pmHDhnzxxReP3FZuzj2Q87YzMDCQF198kf3799OoUSNsbW0pX748q1evzrSPP//8k2eeeQY7Ozt8fX2ZNGlSlt9s//v89vC+/n3ejoqKYujQoQQGBmJjY4Ovry9du3blzp077Nmzh4YNGwLQo0cPczuQfk59+HdgNBopVapUhh4G6WJiYrC1tWXEiBFA5nNz9+7dCQ0NNWdP/6eqKoGBgbRv3z7TNhMTE3FxcaFfv36ZHsuN9HP/v2X13snN7yq/Xtd0cXFxDB8+HD8/P2xsbKhSpQozZsxAVdUM6+WkfS8K5IpFMRMQEMChQ4c4derUf/ax7d27N6tWreLVV19l+PDhHD58mKlTp3LmzBm+/fbbPGdJLxD2799PxYoVgbTi4cknn6Rx48YYDAYOHjzISy+9ZH7MycnJ3ACuXLkSR0dHhg0bhqOjI7t27WLcuHHExMQwffp0AN577z2io6O5evWqeTyHo6MjkHbV4aWXXmL//v307duXatWqcfLkSWbPns358+fZtGlThry7du1i/fr1DBo0CA8PjzwNXHu4sJs8eTIffPABr7/+Or179+b27dvMnz+f5s2b8/vvv+Pq6pqvx7F//36++eYbBg4ciJOTE/PmzaNjx45ERETg7u7OK6+8wvnz5/nyyy+ZPXs2Hh4eAHh6emZ5TLdu3aJp06bEx8fz9ttv4+7uzqpVq3jppZf4+uuvefnllzOs//HHH6PT6RgxYgTR0dFMmzaNt956i8OHDz/ytfvhhx8oX748TZs2zc1LnmOvvfYalSpVYsqUKaiqyosvvsioUaNYv369udBKt379ep577jnc3NyAtPdGmzZtqF+/PuPHj0en07FixQqeeeYZ9u3bR6NGjQoksxCPEh0dneHLmXRGozHDz126dKFPnz6Z2oWjR49y/vx53n//fQBUVaV9+/bs37+f/v37U61aNb799lu6deuW5f5TUlJo3bq1uVC3t7cHYMOGDcTHxzNgwADc3d05cuQI8+fP5+rVq2zYsCG/Dj+TlStX0rNnT2rUqMGYMWNwdXXl999/Z9u2bXTu3Dnb5+X23JObtvPChQu8+uqr9OrVi27duvHZZ5/RvXt36tevT40aNQC4efMmwcHBpKSkMHr0aBwcHFiyZAl2dnaP/VrExsby9NNPc+bMGXr27Em9evW4c+cO33//PVevXqVatWp8+OGHjBs3jr59+/L0008DZPkaGAwGXn75Zb755hsWL16coRfDpk2bSEpK4o033sgyR79+/bh+/To7duxgzZo15uWKovC///2PadOmce/ePUqVKmV+7IcffiAmJiZHVyKMRmOmz4C9vb35vZgbOfld5efrCmmfuZdeeondu3fTq1cv6tSpw/bt2xk5ciTXrl3LNE71v9r3IkEVxcpPP/2k6vV6Va/Xq02aNFFHjRqlbt++XU1OTs6wXlhYmAqovXv3zrB8xIgRKqDu2rXLvCwoKEgNCgoy/3zp0iUVUFesWPHILDExMaper1d79eplXlalShV14sSJqqqqaqNGjdSRI0eaH/P09FRbtWpl/jk+Pj7TNvv166fa29uriYmJ5mUvvPCCGhAQkGndNWvWqDqdTt23b1+G5YsWLVIB9cCBA+ZlgKrT6dQ///zzkceULigoSK1atap6+/Zt9fbt2+rZs2fVkSNHqoD6wgsvmNe7fPmyqtfr1cmTJ2d4/smTJ1UrK6sMy/PrOKytrdULFy6Yl504cUIF1Pnz55uXTZ8+XQXUS5cuZdpfQECA2q1bN/PPQ4YMUYEM+3/w4IFarlw5NTAwUE1NTVVVVVV3796tAmq1atXUpKQk87pz585VAfXkyZOZ9pUuOjpaBdT27dtnu87DHvUeBNTx48ebfx4/frwKqG+++WamdZs0aaLWr18/w7IjR46ogLp69WpVVVXVZDKplSpVUlu3bq2aTCbzevHx8Wq5cuUyvGeFKAwrVqxQgUf+q1Gjhnn9qKgo1dbWVn333XczbOftt99WHRwc1NjYWFVVVXXTpk0qoE6bNs28TkpKivr0009n+rx169ZNBdTRo0dnypfVuXvq1KmqoihqeHi4edm/25aHt/3vc+G/P9fpr0H6OSwqKkp1cnJSGzdurCYkJGR47sOf23/L7bknN21nQECACqh79+41L4uMjFRtbGzU4cOHm5eln2MPHz6cYT0XF5dM5+l/vw4P7+vh8/a4ceNUQP3mm28yrZv+ehw9ejTb8+i/fwfbt29XAfWHH37IsF7btm3V8uXLm3/O6twcEhKiZvXn5rlz51RAXbhwYYblL730khoYGPjI35uq/v/r++9/6a9P+rn/3/793nl4W//1u8rv1zX9Mzdp0qQM67366quqoigZ2vKctu9ak65QxUyrVq04dOgQL730EidOnGDatGm0bt2asmXL8v3335vX27JlCwDDhg3L8Pz0QVD50Z/UycmJWrVqmcdS3Llzh3Pnzpkr92bNmpm7kpw/f57bt29nGF/x8Lc1Dx484M6dOzz99NPEx8dz9uzZ/9z/hg0bqFatGlWrVuXOnTvmf8888wwAu3fvzrB+UFAQ1atXz/HxnT17Fk9PTzw9PalatSrTp0/npZdeytA955tvvsFkMvH6669nyODt7U2lSpUyZciP42jZsiUVKlQw/1yrVi2cnZ35+++/c3xsD9uyZQuNGjXK8LtxdHSkb9++XL58mdOnT2dYv0ePHhm+0Ur/xuZR+4+JiQHS3jMFpX///pmWderUiWPHjnHx4kXzsnXr1mFjY2O+RB8WFsZff/1F586duXv3rvn1j4uL49lnn2Xv3r3FfjCeKJpCQ0PZsWNHpn+1atXKsJ6Liwvt27fnyy+/NHevSE1NZd26dXTo0ME8LmLLli1YWVkxYMAA83P1ev0jJ/14eN10D5+74+LiuHPnDk2bNkVVVX7//fc8HXN2duzYwYMHDxg9enSmPv5ZdYdJl9tzT27bzurVq5vPgZB2ZbhKlSoZzodbtmzhySefzHDl09PT09y17HFs3LiR2rVrZ7qiDI9+PbLzzDPP4OHhwbp168zL7t+/z44dO+jUqdNjZaxcuTKNGzfm888/Ny+7d+8eW7du5a233spRzsaNG2d6/3ft2vWx8uTkd5Xfr+uWLVvQ6/W8/fbbGZYPHz4cVVXZunVrhuX53b4XBOkKVQw1bNiQb775huTkZE6cOMG3337L7NmzefXVVwkLC6N69eqEh4ej0+nMXZTSeXt74+rqmmW/88fx1FNPMX/+fO7cucPBgwfR6/U8+eSTQNqlwQULFpCUlJRpfAWk9Tl9//332bVrl/nkny46Ovo/9/3XX39x5syZbLv4/HscRLly5XJ1bIGBgeYZHi5evMjkyZO5fft2hkbtr7/+QlVVKlWqlOU2cjKQK7fH4e/vn2kdNze3DOMFciM8PJzGjRtnWl6tWjXz4w93r/j3/tO7Ez1q/87OzkBaAVlQsvr9vvbaawwbNox169YxduxYVFVlw4YNtGnTxpzpr7/+Asi2OwikvR/Tj1OIwtKoUSMaNGiQabmbm1um7iFdu3Zl3bp17Nu3j+bNm/Pzzz9z69YtunTpYl4nPDycMmXKmLthpqtSpUqW+7eyssLX1zfT8oiICMaNG8f333+f6XOfk3P340j/ciC30+zm9tyT27YzJ+fj7M6x2b3uOXHx4kU6duz42M//NysrKzp27MgXX3xBUlISNjY2fPPNNxiNxscuLCDtfTlo0CDCw8MJCAhgw4YNGI3GDO/LR/Hw8KBly5aPvf+H5eR3ld+va3h4OD4+PpkK24fb19xm1JoUFsWYtbU1DRs2pGHDhlSuXJkePXqwYcMGxo8fb17ncSrs3EgvLA4cOMDBgwepWbOmudFq2rQpSUlJHD16lP3792NlZWUuOqKioggKCsLZ2ZkPP/yQChUqYGtry/Hjx3n33Xdz9A2xyWSiZs2azJo1K8vH/fz8Mvyc2/6sDg4OGU5ozZo1o169eowdO5Z58+aZMyiKwtatW7OcweTfDXhWcnsc2c2Uov5rIFhBeZz9Ozs74+Pjw6lTp3K0j+zetw8P7P+3rH6/Pj4+PP3006xfv56xY8fy66+/EhERwSeffGJeJ/29Nn369ExTB6bLye9RCC21bt0aLy8v1q5dS/PmzVm7di3e3t55+qPMxsYm09TUqamptGrVinv37vHuu+9StWpVHBwcuHbtGt27d89w7k4fxPtvj/oc57fcnnvS5bTtLKzzcWG8Zm+88QaLFy9m69atdOjQgfXr11O1atVsJwbI6TaHDh3K559/ztixY1m7di0NGjTIU1GVLrfthNZtZ05YQkYpLEqI9G+1bty4AaQN8jaZTPz111/myhjSBupGRUUREBCQL/t9eAD3oUOHaNasmfkxHx8fAgICOHDgAAcOHKBu3brmAVd79uzh7t27fPPNNzRv3tz8nEuXLmXaR3YnjwoVKnDixAmeffbZAi+gIO2S5P/+9z8WL17MiBEj8Pf3p0KFCqiqSrly5ahcufIjn1+Yx5Gb7QQEBHDu3LlMy9O7o+XXe+XFF19kyZIlHDp0iCZNmjxy3fSrA/+ereZxrrR16tSJgQMHcu7cOdatW4e9vX2Ge6mkX3Z2dnbOt2/GhChser2ezp07s3LlSj755BM2bdpEnz59MvyhEhAQwM6dO4mNjc1QLGf1+c/OyZMnOX/+PKtWrcrQJWXHjh2Z1nVzc8uyC8fjfI7TP6enTp3KdDXhv+Tm3FMQbWdAQID5yujDsnrd3dzcMp33kpOTzW17ugoVKvxnsZTb9qR58+aUKVOGdevW8dRTT7Fr1y7ee++9/3zeo/ZTqlQpXnjhBT7//HPeeustDhw4kG83in24nXh4QpW89MjI79c1ICCAn3/+mQcPHmS4apHf7WthkjEWxczu3buzrFzT+4WmfwvQtm1bgEwf4PRvxV944YV8yePj40O5cuXYuXMnv/32W6aZEZo2bcqmTZs4d+5chm5Q6Y3dw8eSnJzMggULMu3DwcEhy8vrr7/+OteuXWPp0qWZHktISCAuLu6xjys7o0aNwmg0ml/HV155Bb1ez8SJEzP9XlRV5e7du+afC/M40vtU5+TO223btuXIkSMcOnTIvCwuLo4lS5YQGBiYq3EpjzJq1CgcHBzo3bs3t27dyvT4xYsXmTt3LpD2R76Hhwd79+7NsE5W74//0rFjR/R6PV9++SUbNmzgxRdfzDAXf/369alQoQIzZswgNjY20/Nv376d630KoYUuXbpw//59+vXrR2xsbKZZd9q2bUtKSgoLFy40L0tNTWX+/Pk53kdW525VVc2f3YdVqFCBs2fPZvgMnThx4rGmcX7uuedwcnJi6tSpme66/F/f5ubm3FMQbWfbtm359ddfOXLkiHnZ7du3M4w9SFehQoVM570lS5Zk+ha+Y8eO5q7Q/5b+euSmHQDQ6XS8+uqr/PDDD6xZs4aUlJQcdYP6r/106dKF06dPM3LkSPR6fbYzTOVWerH58OsVFxfHqlWrHnub+f26tm3bltTUVD799NMMy2fPno2iKLRp0+axs2pFrlgUM4MHDyY+Pp6XX36ZqlWrkpyczMGDB1m3bh2BgYHmeahr165Nt27dWLJkibnb0ZEjR1i1ahUdOnQgODg43zI99dRT5mnmHr5iAWmFxZdffmle7+Hlbm5udOvWjbfffhtFUVizZk2WDUT9+vVZt24dw4YNo2HDhjg6OtKuXTu6dOnC+vXr6d+/P7t376ZZs2akpqZy9uxZ1q9fz/bt27Psn5wX1atXp23btixbtowPPviAChUqMGnSJMaMGcPly5fp0KEDTk5OXLp0iW+//Za+ffua5/8uzOOoX78+kDZd7xtvvIHBYKBdu3ZZ3txq9OjRfPnll7Rp04a3336bUqVKsWrVKi5dusTGjRvz7S7dFSpU4IsvvqBTp05Uq1Ytw91vDx48yIYNGzLM0967d28+/vhjevfuTYMGDdi7dy/nz5/P9X5Lly5NcHAws2bN4sGDB5kaSp1Ox7Jly2jTpg01atSgR48elC1blmvXrrF7926cnZ354Ycf8nr4QhS4unXr8sQTT5gnhKhXr16Gx9u1a0ezZs0YPXo0ly9fpnr16nzzzTe5GhdRtWpVKlSowIgRI7h27RrOzs5s3Lgxyz7gPXv2ZNasWbRu3ZpevXoRGRnJokWLqFGjRqZxdf/F2dmZ2bNn07t3bxo2bGi+Z82JEyeIj49/5B+TuTn3FETbOWrUKNasWcPzzz/PO++8Y55uNiAggD/++CPDur1796Z///507NiRVq1aceLECbZv326eNjzdyJEj+frrr3nttdfo2bMn9evX5969e3z//fcsWrSI2rVrU6FCBVxdXVm0aBFOTk44ODjQuHHjR4437NSpE/Pnz2f8+PHUrFkzw1Wb7KS3N2+//TatW7fOVDy88MILuLu7m8e3/fueW4/rueeew9/fn169epmLls8++wxPT08iIiIea5v5/bq2a9eO4OBg3nvvPS5fvkzt2rX56aef+O677xgyZEiGgdoWozCnoBIFb+vWrWrPnj3VqlWrqo6Ojqq1tbVasWJFdfDgweqtW7cyrGs0GtWJEyeq5cqVUw0Gg+rn56eOGTMmw1Suqvr4082mW7x4sQqoZcuWzfTY8ePHzVPE/TvfgQMH1CeffFK1s7NTfXx8zFPnAuru3bvN68XGxqqdO3dWXV1dVSDDVG7JycnqJ598otaoUUO1sbFR3dzc1Pr166sTJ05Uo6OjzesBakhISI6OR1XTXpOHp3N82J49ezJNCbhx40b1qaeeUh0cHFQHBwe1atWqakhIiHru3LlCOY5/T0Woqqr60UcfqWXLllV1Ol2GqfeyWvfixYvqq6++qrq6uqq2trZqo0aN1B9//DHDOunTzW7YsCHD8ty+X86fP6/26dNHDQwMVK2trVUnJye1WbNm6vz58zO8N+Pj49VevXqpLi4uqpOTk/r666+rkZGR2U43e/v27Wz3uXTpUhVQnZycMk1Vme73339XX3nlFdXd3V21sbFRAwIC1Ndff13duXNnjo5LiPySPl3m0aNHs3z8UeenadOmqYA6ZcqULB+/e/eu2qVLF9XZ2Vl1cXFRu3Tpov7+++9ZTjfr4OCQ5TZOnz6ttmzZUnV0dFQ9PDzUPn36mKfF/Pd5YO3atWr58uVVa2trtU6dOur27dsfa7rZdN9//73atGlT1c7OTnV2dlYbNWqkfvnll1nm/Lecnnty2nYGBARkmH48XVbT7P7xxx9qUFCQamtrq5YtW1b96KOP1OXLl2c6xtTUVPXdd99VPTw8VHt7e7V169bqhQsXsjxv3717Vx00aJBatmxZ1draWvX19VW7deum3rlzx7zOd999p1avXl21srLK8PvJ6negqmlTqvr5+WU5RaqqZn2+T0lJUQcPHqx6enqqiqJkOQXswIEDVUD94osvMj2Wnexe34cdO3ZMbdy4sWptba36+/urs2bNyna62Zz+rvL7dX3w4IE6dOhQ1cfHRzUYDGqlSpXU6dOnZ5puNzftu5YUVS1CIz6EEEIIUWDmzp3L0KFDuXz5cpYzzAihhaFDh7J8+XJu3rz5WDe3E0WHFBZCCCFECaCqKrVr18bd3T1H99ARojAkJibi5+fHiy++yIoVK7SOI/KoRIyxuHTpEj179uTWrVvo9Xp+/fXXLPuSCyGEEFC82o24uDi+//57du/ezcmTJ/nuu++0jiQEkZGR/Pzzz3z99dfcvXuXd955R+tIIh+UiMKie/fuTJo0iaeffpp79+5hY2OjdSQhhBBFWHFqN27fvk3nzp1xdXVl7NixvPTSS1pHEoLTp0/z1ltvUbp0aebNm5ftfYKEZSn2hcWff/6JwWAw36a9VKlSGicSQghRlBW3diMwMLBI3UBLCIAWLVrI+7IYKvL3sdi7dy/t2rXDx8cHRVHYtGlTpnVCQ0MJDAzE1taWxo0bZ5gL+q+//jJP21mvXj2mTJlSiOmFEEIUNmk3hBBCG0W+sIiLi6N27dqEhoZm+Xj6vP/jx4/n+PHj1K5dm9atWxMZGQlASkoK+/btY8GCBRw6dIgdO3ZkeQdQIYQQxYO0G0IIoQ2LmhVKURS+/fZbOnToYF7WuHFjGjZsaL5roclkws/Pj8GDBzN69GgOHTrEhAkT2L59OwDTp08H0m5ykpWkpCSSkpLMP5tMJu7du4e7u3uubtMuhBBFkaqqPHjwAB8fn3y7uWFRJu2GEELkTW7aDYseY5GcnMyxY8cYM2aMeZlOp6Nly5YcOnQIgIYNGxIZGcn9+/dxcXFh79699OvXL9ttTp06lYkTJxZ4diGE0NKVK1fw9fXVOkahk3ZDCCEeT07aDYsuLO7cuUNqaipeXl4Zlnt5eXH27FkArKysmDJlCs2bN0dVVZ577jlefPHFbLc5ZswYhg0bZv45Ojoaf39/zp8/bx7Ap4Tvx2pDF1SPqqR031oAR6ate2vWEBW6AOt6dfFdsEDrOIXGaDSye/dugoODMRgM5uXrzq3j0z8+xVpnzaJnF1HJtZKGKfNfdsdd3JXU47537x6VK1fGyclJ6yiaKMx24/ShQyR+MI6Uy5fRe3hQ5tP5WAcGFshx5RdL/1xYcn5Lzg6SX0sFnf3BgweUK1cuR+2GRRcWOdWmTRvatGmTo3VtbGyynFawVKlSuLu7p/0Q5Qw2CtgbIH1ZMWLXoQMpixbDHydxTk3FULq01pEKhdFoxN7eHnd39wwfzP5N+nM64TS/XP2FD098yLoX1+FkXXz+KMvuuIu7knrc6aSLzqPlR7tRulIlXL76kogePUk6f54Hb7+D/4rPsK1cOb/j5htL/1xYcn5Lzg6SX0sFnT19mzlpNyy6g62Hhwd6vZ5bt25lWH7r1i28vb3ztO3Q0FCqV69Ow4YN87QdS2QoW5YEPz9QVR5s26Z1HM3pFB2Tn5qMj4MPVx5cYdyBcTJFnhAWqrDbDSt3d/xXrcSmejVS794loms3Es+cydN+hBCiqLLowsLa2pr69euzc+dO8zKTycTOnTtp0qRJnrYdEhLC6dOnOXr0aF5jWqQHdWoDEL15s8ZJigYXGxdmBM3ASmfFzxE/s/bMWq0jCSEegxbthpWbGwErVmBbsyapUVGEd+9BwslTedqXEEIURUW+sIiNjSUsLIywsDAALl26RFhYGBEREQAMGzaMpUuXsmrVKs6cOcOAAQOIi4ujR48eGqa2fA9q1QKdjsQTf5B85YrWcYqEmp41GdkgbVaYWb/NIiwyTNtAQogsFcV2Q+/igv9ny7GrUwdTdDQRPXoQ//vvBbY/IYTQQpEfY/Hbb78RHBxs/jl9gFy3bt1YuXIlnTp14vbt24wbN46bN29Sp04dtm3blmlgXm6FhoYSGhpKampqnrZjqVKdnbFr2JCEw4eJ2bwFj/7Zz4hSkrxZ9U2ORx5n++XtjPhlBBvabcDN1k3rWEKIhxTVdkPv5ITfsmVc7d+f+N9+40qv3vgtWYx9gwZ52q8Qj5KamorRaCzw/RiNRqysrEhMTLTIv50sOX9esxsMBvR6fb5kKfKFRU5u+T5o0CAGDRqUr/sNCQkhJCSEmJgYXFxc8nXblsKpbZt/CovNUlj8Q1EUJjadyLl757gcc5kx+8awoOUCdEqRv/gnRIlRlNsNvaMDfksWc2VgCPG//kpEn774LVyIw5ON8zWLEKqqcvPmTaKiogptf97e3ly5csUiJ4ew5Pz5kd3V1RVvb+88H3uRLyyEdhyebQmTJpP0118knjuPbZWiO5NJYXIwODCzxUze2vwWB64fYMkfS+hfu7/WsYQQFkJnb4/fooVcDRlE3IEDXOnXD9/QUByfaqZ1NFGMpBcVpUuXxt7evsD/WDaZTMTGxuLo6GiRN9+05Px5ya6qKvHx8URGRgJQpkyZPGWRwiIbJb0rFIDexRnHp58mdtcuYjZvlsLiIZXdKvPek+/xwYEPWBC2gBruNXja92mtYwkhNJSbdkNna4vvglCuvf0Osb/8wtWBA/GdPw/HoKBCSCqKu9TUVHNR4V5I0+KbTCaSk5OxtbW1uD/MwbLz5zW7nZ0dAJGRkZQuXTpP3aIs65UrRCV9Vqh0Li++AEDMli0yxeq/dKjYgVcrv4qKyrv73iUiJkLrSEIIDeW23dDZ2OA7fx5OrVqiJidzZdBgHjw0W5UQjyt9TIW9vb3GSYSlSH+v5HU8jhQW4pEcg4NR7O0xXr1K4okTWscpcsY0GkNtz9o8SH7AO7vfId4Yr3UkIYQFUaytKTtrFk5tngejkavvDCFG7h8k8omljRUQ2smv94oUFuKRdHZ2OD3zDADRm7donKbosdZbM6vFLDzsPLgQdYEPDnwgV3aEELmiGAyUnT4d53btICWFa8OGE/3Dj1rHEkKIXJPCIhsl+c7b/+b8QlsAYrZuRU1J0ThN0VPavjSzWszCSmfFT+E/seLPFVpHEkJoIC/thmJlhc/HU3F5+WUwmbg+ahRR327K/5BCCFGApLDIhoyx+H+OzZqhd3Ul9c4d4g4d0jpOkVS3dF3GNBoDwNzjczl47aDGiYQQhS2v7Yai11Nm8iRcX38dVJUbY8dyf/36fE4pRNG1aNEinJycSHnoS8zY2FgMBgMtWrTIsO6ePXtQFIWLFy8+9v4uX76Moijmm2mKvJPCQvwnxdoa5xfSBnFHyzdo2Xqt8mt0rNQRk2pi5N6RXHkgdywXQuSOotPhPXECbm+9BarKzXHjuff551rHEqJQBAcHExsby2+//WZetm/fPry9vTl8+DCJiYnm5bt378bf358KFSpoEVVkQwoLkSMuHToA8GDnTlIfPNA2TBGlKApjG4+llkctYpJjZDC3EOKxKIqC1/vvUap7dwBufTSJuytXappJiMJQpUoVypQpw549e8zL9uzZQ/v27SlXrhy//vprhuXBwcEkJSXx9ttvU7p0aWxtbXnqqacyXDW8f/8+b731Fp6entjZ2VGpUiVWrEjrslyuXDkA6tati16v58UXXzQ/b9myZVSrVg1bW1uqVq3KggULzI+lX+n45ptvCA4Oxt7entq1a3NIenVIYZEdGWORke0TNbCuWAE1KUlmLHmE9MHc7rbu/HX/L97b/x4m1aR1LCFEIcjPdkNRFEq/Owr3Pn0AiPz4E+4uW5bn7YqSS1VV4pNTCvRfQnJqlstzM6lJcHAwu3fvNv+8e/duWrRoQVBQkHl5QkIChw8fJjg4mFGjRrFx40ZWrVrF8ePHqVixIq1bt+bevXsAfPDBB5w+fZqtW7dy5swZFi5ciIeHBwBHjhwB4Oeff+batWusWbMGgM8//5xx48YxefJkzpw5w5QpU/jggw9YtWpVhqzvvfceI0aMICwsjMqVK/Pmm29m6MZVEskN8rIREhJCSEgIMTExuLi4aB1Hc4qi4NK+PbdnziJ603e4vfaa1pGKLC8HL+YEz6Hn9p78HPEzn/7+KW/Xe1vrWEKIApbf7YaiKHgOG4pibc2d0FAiZ8zElJyM58CB+ZBWlDQJxlSqj9uuyb5Pf9gae+uc/ckZHBzMkCFDSElJISEhgd9//52goCCMRiOLFi0C4NChQyQlJdGiRQv69OnDypUradOmDQBLly5lx44dLF++nJEjRxIREUHdunVp0KABAIGBgeZ9eXp6AuDu7o63tzcxMTEAjB8/npkzZ/LKK68AaVc2Tp8+zeLFi+nWrZv5+SNGjOCFf7qKT5w4kRo1anDhwgWqVq2ah1fLsskVC5FjLi+9BDodCceOkRwhN4N7lDql6zCh6QQAlp5cyua/N2sbSAhhkRRFwXPwIDyHvAPAnXnziZw7V6a1FsVWixYtiIuL4+jRo+zbt4/KlSvj6elJUFCQeZzFnj17KF++PNHR0RiNRpo1a2Z+vsFgoFGjRpw5cwaAAQMG8NVXX1GnTh1GjRrFwYOPnlwlLi6Oixcv0qtXLxwdHc3/Jk2alGmgeK1atcz/X6ZMGSDt7tUlmVyxEDlm8PLCoUkT4g4cIPq77/EcPEjrSEXaSxVe4mLURT479RnjDozD18mX2p61tY4lhLBAHv37oxisiZw+nbsLF4HRiOfw4XIDNJFjdgY9pz9sXWDbN5lMPIh5gJOzEzpdxu+t7Qz6HG+nYsWK+Pr6snv3bu7fv09QUBAAPj4++Pn5cfDgQXbv3s0z/9xj67+0adOG8PBwtmzZwo4dO3j22WcJCQlhxowZWa4fGxsLpF35aNy4cYbH9PqMx2EwGMz/n/5ZNJlKdvdnuWIhcsWlQ3sAor/7Tr4xy4F36r1DC78WJJuSeWfXO9yIvaF1JCGEhXLv1ROvsWMBuLtsOZEffyznYZFjiqJgb21VoP/srPVZLs9tARwcHMyePXvYs2dPhmlmmzdvztatWzly5AjBwcFUqFABa2trDhw4YF7HaDRy9OhRqlevbl7m6elJt27dWLt2LXPmzGHJkiUAWFtbA5Cammpe18vLCx8fH/7++28qVqyY4V/6YG+RPSkssiGDt7Pm1LIlOgcHjFevknDsmNZxijydouPjpz+msltl7ibeZfCuwTJTlBDFVGG0G6W6dsF7wngA7q1aza2PPkIt4d+QiuInODiY/fv3ExYWZr5iARAUFMTixYtJTk4mODgYBwcHBgwYwMiRI9m2bRunT5+mT58+xMfH06tXLwDGjRvHd999x4ULF/jzzz/58ccfqVatGgClS5fGzs6Obdu2cevWLaKjo4G08RJTp05l3rx5nD9/npMnT7JixQpmzZpV+C+GhZHCIhtyg7ys6ezscHo+7VJq1KZN2oaxEA4GB+Y/M59StqU4d/8cY/aNkZmihCiGCqvdcHvjDcpMngSKwv0vvuTm+PFSXIhiJTg4mISEBCpWrIiXl5d5eVBQEA8ePDBPSwvw8ccf07FjR7p06UK9evW4cOEC27dvx83NDUi7KjFmzBhq1apF8+bN0ev1fPXVVwBYWVkxb948Fi9ejK+vL2+99RYAvXv3ZtmyZaxYsYKaNWsSFBTEypUr5YpFDsgYC5FrLu3bE73xGx5s3YZp7Fh09vZaRyryfBx9mBs8l57be7Lryi7mHZ/HkPpDtI4lhLBQrh07olhZcX3MWKI2fI1qTKHM5Eko+pz3ZReiqAoMDMyym19AQECm5ba2tsybN4958+Zlua3333+f999/P9t99e7dm969e2MymcyzQgF07tyZzp075zifq6urdE1ErliIx2DfoAEGf39McXHEbNNm6jpLVKd0HSY2nQjA8lPL+eavbzROJISwZC7t2+MzfRro9URv2sT1d0ejlvA59IUQ2pLCQuSaotPh+uqrAERt2KBxGsvSrkI7+tRMu+HVh4c+5MC1A//xDCGEyJ7LCy9QdtYssLIi5scfuTZ8BKrRqHUsIUQJJYWFeCwuHdqDXk/C77+TdOGC1nEsyuC6g3mh/AukqqkM2zOMc/fOaR1JCGHBnFs/h++8uSgGAw+2b+fqkKGYkpO1jiWEKIGksBCPxVC6NI7/TAEX9fVGbcNYGEVR+LDphzT0bkh8SjwDdw7kZtxNrWMJISyY0zPP4Bv6KYq1NbE7d3J18GBMSUlaxxJClDBSWGRDppv9b66vdgQgetMm+XYsl6z11sxuMZvyLuWJjI8kZGcIscmxWscSQuSB1u2GY/Pm+C1aiGJrS9wve7k6YCCmhARNsgghSiYpLLIh083+N8enn8bKy4vUqChid+7UOo7FcbFxYUHLBbjbunP+/nmG7RmG0SR9o4WwVEWh3XBo2hS/JYtR7O2JO3iQK/36Y4qL0yyPEKJkkcJCPDbFygqXV14GIGrD1xqnsUxlHcsS+mwodlZ2HLpxiA8PfSjT1Qkh8sShUSP8ly1F5+BA/JEjRPTtR2qsXBEVQhQ8KSxEnrh2TOsOFXfwIMlXr2qcxjLV8KjB9ObT0Sk6Nl3YxOI/FmsdSQhh4ezr1cP/s+XonJxIOHaMK716k/rQHP1CCFEQpLAQeWLt64tD06YARG2UQdyPK8gviDGNxgAQGhbKxvPyWgoh8saudm38V6xA5+JCwokTRPTsRWpUlNaxhBDFmBQWIs9cX0u7p0X0xm/k5kx58EbVN+j1RC8APvz1Q3ZF7NI4kRDC0tk9UYOAVSvRu7mReOoU4T16knL/vtaxhBAaCAwMZM6cOQW6DyksRJ45Pvssejc3UiIjif3lF63jWLR36r3DyxVfxqSaGLV3FMduHdM6khDCwtlWrUrA6lXoPTxIOnOGiK7dSLlzR+tYQmSyaNEinJycSHnoS8rY2FgMBgMt/pniPt2ePXtQFIWLFy/maZ+XL19GURTCwsLytJ2cOnHiBC+99BKlS5fG1taWwMBAOnXqRGRkZKHsv6BJYSHyTGdtbZ569v7nX2icxrIpisK4JuNo4duCpNQkBu8czPn757WOJYSwcDaVKhGwehVWnp4k/fUX4V27YbxVPP6QEcVHcHAwsbGx/Pbbb+Zl+/btw9vbm8OHD5OYmGhevnv3bvz9/alQoYIWUR/L7du3efbZZylVqhTbt2/nzJkzrFixAh8fH+KKyextUliIfOHaqRMoCnEHD5J06ZLWcSyalc6KaUHTqFu6Lg+MD+i/oz/XYq9pHUsIYeFsypcnYO0arMqUIfnvvwnv2gXjjRtaxxLCrEqVKpQpU4Y9e/aYl+3Zs4f27dtTrlw5fv311wzLg4ODAUhKSuLtt982XwV46qmnMkz7fP/+fd566y08PT2xs7OjUqVKrFixAoBy5coBUL9+fdzc3HjmmWfMz1u2bBnVqlXD1taWqlWrsmDBAvNj6Vc6vvnmG4KDg7G3t6d27docOnQo2+M7cOAA0dHRLFu2jLp161KuXDmCg4OZPXu2OUdqaiq9evWiXLly2NnZUaVKFebOnZthO927d6dDhw7MmDGDMmXK4OnpyYgRIzAa/3/K+sjISNq1a4ednR3lypXj888/z/HvIS+ksBD5wtrXF8fmzQGI+mqdxmksn52VHfOfmU9F14rcTrhN/x39uZd4T+tYQggLZx0QQMCa1RjKlsUYHkF4l64kX5UvLkoEVYXkuIL9Z4zPenkuplEPDg5m9+7d5p93795NixYtCAoKMi9PSEjg8OHD5sJi1KhRbNy4kVWrVnH8+HEqVqxI69atuXcvrd384IMPOH36NFu3buXMmTMsXLgQDw8PAI4cOQLATz/9xNmzZ/n667Tp8z///HPGjRvH5MmTOXPmDFOmTOGDDz5g1apVGfK+9957jBgxgrCwMCpXrsybb76ZoSvXw7y9vUlJSeHbb7/Ndmp5k8mEr68vGzZs4PTp04wbN46xY8eyfv36DOvt3r2bixcvsnv3blasWMGXX37JypUrzY93796dK1eusHv3br7++msWLFhQKN2trAp8DxYqNDSU0NBQUlNTtY5iMdze6kzsL78Q9e23eA55B52dndaRLJqLjQuLWi6iy9YuXI65TMjPISxvvRx7g73W0YQQWbCUdsPa15eANasJ794DY0QE4V27ELByJdb+/lpHEwXJGA9TfAps8zrANbsHx14Ha4ccbSc4OJghQ4aQkpJCQkICv//+O0FBQRiNRhYtWgTAoUOHSEpKIjg4mLi4OBYuXMjKlStp06YNAEuXLmXHjh0sX76ckSNHEhERQd26dWnQoAGQNog5naenJwDu7u54eXnh7OwMwPjx45k5cyavvPIKkHZl4/Tp0yxevJhu3bqZnz9ixAheeOEFACZOnEiNGjW4cOECVatWzXRsTz75JGPHjqVz587079+fRo0a8cwzz9C1a1e8vLwAMBgMTJw40fyccuXKcejQIdavX8/rr79uXu7m5sann36KXq+ncuXKPPfcc+zatYt+/fpx/vx5tm7dypEjR2jYsCEAy5cvp1q1ajn6HeSFXLHIRlG4g6qlcXjqKQy+vphiYojZvFnrOMWCl4MXi1otwtXGlVN3TzF0z1CMqXJ3biGKIktqNww+PgSsWY11uXKkXL9BeJeuJP0t3ViF9lq0aEFcXBxHjx5l3759VK5cGU9PT4KCgszjLPbs2UP58uXx9/fn4sWLGI1GmjVrZt6GwWCgUaNGnDlzBoABAwbw1VdfUadOHUaNGsXBgwcfmSEuLo6LFy/Sq1cvHB0dzf8mTZqUabB4rVq1zP9fpkwZgEdeGZg8eTI3b95k0aJF1KhRg0WLFlG1alVOnjxpXic0NJT69evj6emJo6MjS5YsISIiIsN2atSogV6vN//s5eXF7du3AThz5gxWVlbUr1/f/HjVqlVxdXV95HHnB7liIfKNotPh9uYbRE6fwb0vvsClY0cURdE6lsUr71KeBc8uoNdPvTh4/SDv7nuXac2nYaWTj68Q4vEZvLwIWL2K8B49SL5wkfBuXSm7dKnWsURBMdinXTkoICaTiZgHD3B2ckKn+9f31rm40l6xYkV8fX3ZvXs39+/fJygoCAAfHx/8/Pw4ePAgu3fvzjAW4r+0adOG8PBwtmzZwo4dO3j22WcJCQlhxowZWa4f+8+d6pcuXUrjxo0zPPbwH/OQVsSkS/+bx2QyPTKPu7s7r732Gq+99hpTpkyhbt26zJgxg1WrVvHVV18xYsQIZs6cSZMmTXBycmL69OkcPnw42/2m7/u/9lsY5IqFyFcur7yCYm1N0ukzJP7xh9Zxio2anjWZEzwHg87AjvAdTDg4AZOq/QlECGHZrDw9CVi9GpsqVUi9fYdrPXtifeOm1rFEQVCUtO5IBfnPYJ/18lx+yRgcHMyePXvYs2dPhmlmmzdvbu7ikz6+okKFClhbW3PgwAHzekajkaNHj1K9enXzMk9PT7p168batWuZM2cOS5YsAcDa2hogQxdGLy8vfHx8+Pvvv6lYsWKGf+mDrPOLtbU1FSpUMM8KdeDAAZo2bcrAgQOpW7cuFStWzPWUulWrViUlJYVjx/5/yvpz584RVQg3yJTCQuQrKzc3nNu2BeD+F19qnKZ4aerTlOlB09Erer67+B2fHPkk28FfQgiRU1alSuG/cgW21auTeu8+fkuWkPRPFxIhtBAcHMz+/fsJCwszX7EACAoKYvHixSQnJ5sLCwcHBwYMGMDIkSPZtm0bp0+fpk+fPsTHx9OrV9pNZ8eNG8d3333HhQsX+PPPP/nxxx/N4w1Kly6NnZ0d27dvJzIykujoaCBtvMTUqVOZN28e58+f5+TJk6xYsYJZs2Y99nH9+OOP/O9//+PHH3/k/PnznDt3jhkzZrBlyxbat28PQKVKlfjtt9/Yvn0758+f54MPPsh198oqVarw/PPP069fPw4fPsyxY8fo3bs3doUw9lUKC5Hv3Dq/CUDM1q1yh9d89qz/s3zU7CMUFL44+wXzf5+vdSQhRDFg5eaG/8oV2NR8An18PNd69SbhoT7fQhSm4OBgEhISqFixonlQM6QVFg8ePDBPS5vu448/pmPHjnTp0oV69epx4cIFtm/fjpubG5B2VWDMmDHUqlWL5s2bo9fr+eqrrwCwsrJi3rx5LFmyhGrVqvHyyy8D0Lt3b5YtW8aKFSuoWbMmQUFBrFy5Mk9XLKpXr469vT3Dhw+nTp06PPnkk6xfv55ly5bRpUsXAPr168crr7xCp06daNy4MXfv3mXgwIG53lf6/TGCgoJ45ZVX6Nu3L6VLl37s7DmlqPKV5yPFxMTg4uLCnTt3cHd3T1t4cTes6QBeT8CAA498viUyGo1s2bKFtm3bZurDl1OXXn2NxFOn8Bw+DI8+ffI5YcHIj+MuLOvPreejXz8C0u7W3btm78feliUdd34qqcd99+5dPDw8iI6ONs9+IvJXlu2GhUi6f58/33gTu/BwdI6O+C1Zgn29ulrHyjFL/lznZ/bExEQuXbpEuXLlsLW1zaeEj2YymYiJicHZ2TnzGAsLYMn58yP7o94z6ee0nLQblvXKCYvh1rkzkHYnbvWhG7aI/PF6ldcZVn8YAHOPz+Wrs19pnEgIURzoHB252qsntvXrY4qN5Urv3sRbwCxXQoiiQQoLUSCcX2iL3t2dlJs3ebBjh9ZxiqUeT/Sgb62+AEw+PJnvL36vcSIhRHGg2tjgsyAU+yZPYoqPJ6JvP+IecTdhIYRIJ4WFKBA6Gxvc3kwba3Fv1WqN0xRfg+oM4n/V/gfABwc+YEe4FHFCiLzT2dvjt3AhDk8/jZqQwJX+A4jdt1/rWEKIIk4KC1Fg3N7ohGIwkHDiBAlhYVrHKZYURWFkw5G8XPFlTKqJUXtHse/qPq1jCSGKAZ2tLb6hn+IYHIyalMTVgQN5sHu31rGEEEVYiSgsAgMDqVWrFnXq1DFPTyYKnpWHB84vvgjAvdVy1aKg6BQd45uMp3Vga1JMKQzZPYRD16XbghB5Ie1GGp21Nb5z5+DUqhWq0cjVt98hRrq3CiGyUSIKC4CDBw8SFhbGbvm2pVCV6tYVgJjtP2G8cUPjNMWXXqdn6lNTCfYLJtmUzOBdgzl84/B/P1EIkS1pN9Io1taUnTUT57ZtwGjk2pChxGzdqnUsIUQRVGIKC6EN26pVsW/cGFJTuf/FF1rHKdYMegMzg2YS5BtEUmoSg3cN5uhNmc1FCJF3isGAz7RpuLR/CVJTuTZ8BNE//KB1LCFEEVPkC4u9e/fSrl07fHx8UBSFTZs2ZVonNDSUwMBAbG1tady4MUeOHMnwuKIoBAUF0bBhQz7//PNCSi7SpV+1uL9+A6b4eI3TFG8GvYFZLWbxVNmnSEhJIGRnCMdvHdc6lhCFStqNgqFYWVFmyhRcOr4CJhPXR71L1Dffah1LCFGEFPnCIi4ujtq1axMaGprl4+vWrWPYsGGMHz+e48ePU7t2bVq3bk1kZKR5nf3793Ps2DG+//57pkyZwh9//FFY8QXg2KIFBn9/TNHRRH/3ndZxij1rvTVzgufQpEwTElISGPDzAMIiw7SOJUShkXaj4Ch6PWU++gjXNzqBqnJj7Fjur1uvdSwhRBFhpXWA/9KmTRvatGmT7eOzZs2iT58+9OjRA4BFixaxefNmPvvsM0aPHg1A2bJlAShTpgxt27bl+PHj1KpVK8vtJSUlkZSUZP45JiYGSLsjpvGfG70pqalYAaqqklIMb/6WfpzGfDw2l86dufPxx9xduQqHl19G0evzbdv5pSCOWys6dMx8eibv/PIOR28dpf+O/ix8ZiFPeDyRad3idNy5UdKPuzgriu2Gpcjp58J97FhUvZ7oz7/g5vjxpCQm4tr5zcKI+EiW/LnOz+xGoxFVVTGZTJhMpjxvLydUVTX/t7D2mZ+KUv49e/bw7LPPcvfuXVxdXf9z/fzIbjKZUFUVo9GI/l9/o+XmPVnkC4tHSU5O5tixY4wZM8a8TKfT0bJlSw79czOfuLg4TCYTTk5OxMbGsmvXLl5//fVstzl16lQmTpyYafnu3buxt7cHwDPmFE1Jazz2bNmSvwdVhOzIx5k/FHs7ytvZQXg4+2bOJPaJzH/gFhX5edxaa6O24bb+NpdTLtP3p770cOxBWauyWa5bnI47N0racceX8O6IWrUbliZHn4uaNfFo3pxSe/dyZ+pUTv/xB1HNny74cDlgyZ/r/MhuZWWFt7c3sbGxJCcn50OqnHvw4MFjP/ezzz5j/PjxXLp0CSurtD9RY2NjKVeuHI0bN+bHH380r7t//37atWvH8ePHKVeu3GPvMyIigtq1a7N3715q1qyZp/w59ccffzBr1iwOHjxITEwMZcuW5amnnmLw4MFUrFjRfJ5+8OABOl3OOxflJXtycjIJCQns3buXlJSUDI/lpt2w6MLizp07pKam4uXllWG5l5cXZ8+eBeDWrVu8/PLLAKSmptKnTx8aNmyY7TbHjBnDsGHDzD/HxMTg5+dHcHAw7u7uACiXHOAiODs707Zt2/w+LM0ZjUZ27NhBq1atMBgM+bbdu1eucn/pUsqdOIHvyJEoipJv284PBXXcWnvO+ByD9gwi7HYYnyd/zqKnFlG1VFXz48X1uP9LST3uu3fvah1BU1q1G5Yit58LtW1b7s2fz/2lyyi9eTPVKlbErXevQkiaNUv+XOdn9sTERK5cuYKjoyO2trb5lPDRVFXlwYMHODk5PXb73qZNG4YPH8758+d58sknAThw4ADe3t4cO3YMa2tr8/EcOXIEf39/ateunafcjo6OAOYvAfKSPyd+/PFHXnvtNZ577jnWrl1LhQoViIyM5Ouvv2batGl89dVXGbI4Ozv/5zbz47VPTEzEzs6O5s2bZ3rPpF+FzQmLLixyonz58pw4cSLH69vY2GBjY0NoaCihoaGkpqYCYDAY/v+D/s8lIkVRLO7ElRsZjjkfeHTrStSqVST9cZKUEyewf0RDraX8Pm6tuRhcWNRqEf129OPE7RMM2D2A5c8tp0qpKhnWK27HnVMl7bhL0rE+rgJpNyxMbrJ7DRuG3taWO/M/5e7cuSimVDxDQgo44aOVlNc+O6mpqSiKgk6ny9U33nmR3gUnfb+Po1q1apQpU4a9e/fStGlTIG0yhvbt27Nr1y6OHDlCixYtAPjll18IDg5Gp9ORlJTEyJEj+eqrr4iJiaFBgwbMnj3b/IXA/fv3GTRoED/99BOxsbH4+voyduxYevToQYUKFQBo0KABAEFBQezZsweAZcuWMXPmTC5dukRgYCBvv/02AwcOBODy5cuUK1eOjRs3Mn/+fA4fPkylSpVYtGgRTZo0yfL44uPj6dWrF23btuXbb/9/4oMKFSrQpEkToqKiMvzO0v//7t27DBo0iL1793L//n0qVKjA2LFjefPNtO6HK1euZNiwYVy7dg07Ozvzdjt06ICTkxNr1qz5z9dep9OZ/6799/svN+/HIj94+1E8PDzQ6/XcunUrw/Jbt27h7e2dp22HhIRw+vRpjh6V6Trzi5WHBy6vpH0LeHfZco3TlCwOBgcWtVxELY9aRCdF0+enPpy7d07rWEIUOmk38p+iKHiGhOA5dCgAd+Z/SuScOeZ+36JoUFWVeGN8gf5LSEnIcnlu3gvBwcEZ7h2ze/duWrRoQVBQkHl5QkIChw8fNt+8ctSoUWzcuJFVq1Zx/PhxKlasSOvWrbl37x4AH3zwAadPn2br1q2cOXOGhQsX4uHhAWCeEe6nn37i7NmzfP311wB8/vnnjBs3jsmTJ3PmzBmmTJnCBx98wKpVqzLkfe+99xgxYgRhYWFUrlyZN998M1NXonTbt2/nzp07jBo1KsvHsxtPkZiYSP369dm8eTOnTp2ib9++dOnSxZz9tddeIzU1le+//978nMjISDZv3kzPnj2zf7ELgEVfsbC2tqZ+/frs3LmTDh06AGkV886dOxk0aJC24USW3Hv0IGrdemJ/+YXE8+exrVxZ60glhqO1IwtbLaTvT3358+6f9P6pN0ufW0oFpwpaRxOi0Ei7UXA8+vVFMRiInDaNu4sWoxqNlB4xosh1ey2pElISaPxFY032fbjzYewNORtvFBwczJAhQ0hJSSEhIYHff/+doKAgjEYjixYtAuDQoUMkJSURHBxMXFwcCxcuZOXKleZJG5YuXcqOHTtYvnw5I0eOJCIigrp165qvSgQGBpr35+npCYC7uzteXl7mrkfjx49n5syZvPLKKwCUK1eO06dPs3jxYrp162Z+/ogRI3jhhRcAmDhxIjVq1ODChQtUrfr/XY7T/fXXXwBZPvYoZcuWZcSIEeafBw8ezPbt21m/fj2NGjXCzs6OV199lZUrV9KpUycA1q5di7+/v/kKT2Ep8lcsYmNjCQsLIywsDIBLly4RFhZGREQEAMOGDWPp0qWsWrWKM2fOMGDAAOLi4syzfTyu0NBQqlev/sh+tSL3rAMCcHruOQDuLf9M4zQlj7O1M0ueW0JNj5pEJUXRa3svTt87rXUsIfKVtBvace/ZA6/33gPSzvG3pk6VKxciV1q0aEFcXBxHjx5l3759VK5cGU9PT4KCgjh8+DCJiYns2bOH8uXL4+/vz8WLFzEajTRr1sy8DYPBQKNGjThz5gwAAwYM4KuvvqJOnTqMGjWKgwcPPjJDXFwcFy9epFevXjg6Opr/TZo0iYsXL2ZY9+HZ4sqUKQOQYerqhz3uZyE1NZWPPvqImjVrUqpUKRwdHdm+fbv5nAbQrVs3duzYwbVr14C07lHdu3cv9MK+yF+x+O2338yXugDzALlu3bqZK7Pbt28zbtw4bt68SZ06ddi2bVumgXm5FRISQkhICDExMbi4uORpWyIj9969eLB9O9GbN+P5ztsYfHy0jlSiOFs7s7jVYgb8PIATt0/Qf2d//mfzP61jCZFvpN3QVqku/0MxGLg5YQL3V69BNRrx/uADlELq6y+yZmdlx+HOhwts+yaTyTyA+N9jLOys7LJ5VmYVK1bE19eX3bt3c//+fYKCggDw8fHBz8+PgwcPsnv3bp555pkcb7NNmzaEh4ezZcsWduzYwbPPPktISAgzZszIcv3Y2Fgg7cpH48YZr/L8eyrWh8cfpP8Rn92Ur5X/6aVx9uzZbMdhZGX69OnMnTuXOXPmULNmTRwcHBgyZEiGGb9q1apF7dq1Wb16Nc899xx//vknmzdvzvE+8kuRLyxatGjxnxXeoEGD5BK2BbGrWRP7xo2JP3yYe6tW4zVmtNaRShwnaycWt1rMwJ8HcjzyOCuMK2h8uzENfBpoHU2IPJN2Q3tub3RCMRi48f77RH35FarRSJmJE4vkPYxKCkVRctwd6XGYTCZSrFKwN9jnecB4cHAwe/bs4f79+4wcOdK8vHnz5mzdupUjR44wYMAAIG3gs7W1NQcOHCAgIABIm2Hr6NGjDBkyxPxcT09PunXrRrdu3Xj66acZOXIkM2bMwNraGsA86QKkzRLn4+PD33//zVtvvZWnY3nYc889h4eHB9OmTcsweDtdVFRUluMsDhw4QPv27fnf/9K+BDSZTJw/f57q1atnWK9nz57MmzePa9eu0bJlS/z8/PIte07J1wfZkEvaBcv9n+kI72/YQGp0tMZpSiYHgwMLWy6kfun6JJFEyO4Qjt86rnUsISyWtBsZuXZ8BZ9PPgadjuivN3Jj7FjUh/54EyI7wcHB7N+/n7CwMPMVC0ibsWnx4sUkJyebr0o6ODgwYMAARo4cybZt2zh9+jR9+vQxz8AEMG7cOL777jsuXLjAn3/+yY8//ki1atUAKF26NHZ2dmzfvp3IyEii//mbZOLEiUydOpV58+Zx/vx5Tp48yYoVK5g1a9ZjH5eDgwPLli1j8+bNvPTSS/z8889cvnyZ3377jVGjRtG/f/8sn1epUiV27NjBwYMHOXPmDP369cs0AQVA586duXr1KkuXLi30QdvppLDIRkmd3aOwODz1FDZVqqDGx3Nv7Vqt45RY9gZ75rWYR3mr8sSnxNP/5/4cvSnveSEeh7Qbmbm89BJlZ0wHvZ7o777n+shRqBZ4V2xRuIKDg0lISKBixYoZuigGBQXx4MEDqlSpYh7PAPDxxx/TsWNHunTpQr169bhw4QLbt2/Hzc0NSJu0YcyYMdSqVYvmzZuj1+v56quvgLSbCc6bN48lS5ZQrVo18z1sevfuzbJly1ixYgU1a9YkKCiIlStX5ulmfADt27fn4MGDGAwGOnfuTNWqVXnzzTeJjo5m0qRJWT7n/fffp169erRu3ZoWLVrg7e1tnnziYS4uLnTs2BFHR8csHy8MRb4rlCieFEXBvW8frg8fwb3VayjVrRv6f25SIwqXnZUd/3P4Hz/Z/cSvN39l4M8Dmf/sfJ4s86TW0YQQxYBz27ZgMHBt2HBitmxBTUmh7IzpKP90QRHi3wIDA7PszhgQEJDlcltbW+bNm8e8efOy3N7777/P+++/n+3+evfuTc+ePYmJiclwQ7rOnTvTuXPnHGd0dXXN0QDtBg0asHHjxmwf/3d3zlKlSrFp06b/3C7AtWvXeOutt7CxscnR+vlNrlgIzTg//zzW5cphio7m/hdfah2nRLNWrJkdNJtmZZuRmJrIoJ2DOHjt0bNmCCFETjm3aoXv3LkoBgMPfvqJq0OGYnpo4KkQIm+ioqL49ttv2bNnDyEa3qBSCotsSF/Zgqfo9bj36wvAvRUrMMXHa5yoZLPR2zAveB5BvkEkpSYxeNdg9l7dq3UsISyGtBuP5vRMML4LQlFsbIjdtYurgwZhSkzUOpYQxULz5s3p2bMnn3zyCVWqVNEshxQW2ZC+soXD5cUXMfj5kXr/PvfXr9c6TolnrbdmdovZBPsFk2xKZsjuIey5skfrWEJYBGk3/pvj00/jt2ghiq0tcXv3cXXgQEwJCVrHEsLi/fHHH9y/fz/DjfS0IIWF0JRiZYV73z5A2s2UTElJGicSBr2BmS1m0iqgFUaTkaF7hrIzfKfWsYQQxYRDkyb4LVmMYm9P3MFDXOnXH1NcnNaxhBD5QAoLoTnX9u2x8ilDyu3bRH39tdZxBGDQGfik+Sc8H/g8KaYURvwygm2Xt2kdSwhRTDg0aoT/smXoHByIP3KEiD59Sf3npmRCCMslhYXQnGJtjXvv3gDcXbYcVQb0FQkGnYGpT0/lhfIvkKKm8O7ed/nh4g9axxJCFBP29eriv+IzdM7OJBw/TkSvXqTGxGgdSwiRB1JYZEMG4RUu144dsfL0JOXGDaJyOKWaKHhWOismN5vMyxVfxqSaeG//e3z7V+a7hQohpN14HHa1auG/4jP0Li4knviDiO49SI2K0jqWEOIxSWGRDRmEV7h0NjaU6pV2l8i7S5bKDZSKEL1Oz4SmE+hUpRMqKuMOjmPd2XVaxxKiyJF24/HY1aiB/+pV6EuVIvH0acK79yDl3j2tYwkhHoMUFqLIcOvUCb27O8arV4n+7jut44iH6BQd7zV+j/9V+x8Akw5PYvWfqzVOJYQoLmyrVCFg9Sr0Hh4knT1LRLdupNy+rXUsIUQuSWEhigydnR3ufdLGWtxesEBunlTEKIrCqIaj6PlE2pWl6b9NZ9nJZRqnEkIUFzYVKxKwejVWpUuT9NcFwrt2w3grUutYohhauXIlrq6uWscolqSwEEWK2xtvYFW6NCnXb8gMUUWQoigMqTeEAbUHADD3+FwWhC1AVVWNkwkhigOb8uUIWLMaqzJlSL50ifCuXTDeuKF1LKGBmzdvMnjwYMqXL4+NjQ1+fn60a9eOnTtl+vOiTAqLbMggPG3obG1x798PgLsLF8ldWYsgRVEYWGcg79R7B4CFJxYy9/hcKS5EiSftRv6wDgggYM0aDGXLYgyPIPx/XUi+ek3rWKIQXb58mfr167Nr1y6mT5/OyZMn2bZtG8HBwYSEhGgdTzyCFBbZkEF42nF99VUMPj6k3L7N/S+/0jqOyEbvmr0Z2WAkAMtPLWfa0WlSXIgSTdqN/GPtW5aAtWswBPhjvHaN8C5dSA4P1zqWKCQDBw5EURSOHDlCx44dqVy5MjVq1GDYsGH8+uuvAERERNC+fXscHR1xdnbm9ddf59atW+ZtnDhxguDgYJycnHB2dqZ+/fr89ttvGfazadMmKlWqhK2tLc8//zxXr14F0gobnU6Xaf05c+YQEBCAyWQq4FfAcklhIYocnbU1HgPTutrcXbpU7shahHWt0ZX3Gr8HwNoza5l8eDImVU64Qoi8M5QpQ8DqNViXK0fKjRuEd+lK0t+XtI5lsVRVxRQfX7D/EhKyXJ6bL53u3bvHtm3bCAkJwcHBIdPjrq6umEwm2rdvz7179/jll1/YsWMHf//9N506dTKv99Zbb+Hr68vRo0c5duwYo0ePxmAwmB+Pj49n8uTJrF69mgMHDhAdHU2vXr0ACAwMpGXLlqxYsSLDvlesWEH37t3R6eTP5+xYaR1AiKy4tG/PnaVLMYZHcG/t53j066t1JJGNN6q+gbXemgkHJ7Du3DqMJiPjnhyHXqfXOpoQwsIZvEoTsGY1ET16/DOguysBKz7DplIlraNZHDUhgXP16hf4fm5lsazK8WMo9vY5ev6FCxdQVZWqVatmu87OnTs5efIkly5dws/PD4DVq1dTo0YNjh49SsOGDYmIiGDkyJHm7VT613vGaDTy6aef0rhxYyCtaKhRowZHjhzhySefpHfv3vTv359Zs2ZhY2PD8ePHOXnyJN/JrJWPJCWXKJIUgwHPQYMAuLt8udyNtYh7pdIrTH5qMjpFxzd/fcP7B94nxZSidSwhRDFg5eGB/6pV2FStSuqdO4R37Ubi2bNaxxIFJCdXN86cOYOfn5+5qACoXr06rq6unDlzBoBhw4bRu3dvWrZsyccff8zFixczbMPKyirDeKiqVavi4uJifn6HDh3Q6/V8+23aTWFXrlxJcHAwgYGBeT3EYk2uWIgiy7ltW+4sXkzyhYvcW7kKz7cHax1JPEK7Cu0w6A2M3juaH//+keTUZD5u/jEGneG/nyyEEI9gVaoUAStXENGrN4l//klEt+74fbYcuxo1tI5mMRQ7O6ocP1Zg2zeZTMQ8eICzk1OmrkKKnV2Ot1OpUiUUReFsHovHCRMm0LlzZzZv3szWrVsZP348X331FS+//HKOnm9tbU3Xrl1ZsWIFr7zyCl988QVz587NU6aSQK5YiCJL0evxHJRWTNxbtYqU+/c1TiT+y/OBzzOzxUysdFb8FP4Tw/cMJzlV7kcihMg7vasr/is+w7Z2LVKjo4no0ZOEP/7QOpbFUBQFnb19wf6zs8tyuaIoOc5ZqlQpWrduTWhoKHFZjLGMioqiWrVqXLlyhStXrpiXnz59mqioKKpXr25eVrlyZYYOHcpPP/3EK6+8kmHMREpKSobB2efOnSM6Oppq1aqZl/Xu3Zuff/6ZBQsWkJKSwiuvvJLj4yippLDIhkwbWDQ4PdcKm+rVMMXFcXfRIq3jiBx41v9Z5gbPxVpnze4ru3ln9zskpsi0waL4k3aj4OmdnfFfvhy7evUwxcQQ0aMn8cePax1L5LPQ0FBSU1Np1KgRGzdu5K+//uLMmTPMmzePJk2a0LJlS2rWrMlbb73F8ePHOXLkCF27diUoKIgGDRqQkJDAoEGD2LNnD+Hh4Rw4cICjR49mKBoMBgODBw/m8OHDHDt2jJ49e9KwYUMaNWpkXqdatWo8+eSTvPvuu7z55pvY5eLKS0klhUU2ZNrAokHR6Sg9bDgA9774kuR/poITRVtz3+Z8+uyn2Opt2X9tP4N2DSLeGK91LCEKlLQbhUPv6Ij/0iXYN2qEKS6OiN59iDtyROtYIh+VL1+e48ePExwczPDhw3niiSdo1aoVO3fuZOHChSiKwnfffYebmxvNmzenZcuWlC9fnnXr1gGg1+u5e/cuXbt2pXLlyrz++uu0adOGiRMnmvdhb2/Pu+++S+fOnWnWrBkODg4sX748U5ZevXqRnJxMz549C+34LZmMsRBFnkOzptg3eZL4Q79ye+48yk6fpnUkkQNNfJqwsOVCQnaGcPjGYUJ2hhD6bCj2hpzNDCKEENnROTjgt3gRV0NCiDt4iCt9++G3cAHWDRpoHU3kkzJlyvDpp5/y6aefZvm4v79/tjM0WVtb8+WXX2a77e7du9O9e3cAc/cmk8lETBYTxVy7do2aNWvKlcgckisWoshTFIXSw0cAEPPDDySePq1xIpFTDbwbsLjVYhwMDvx26zdCdobIlQshRL7Q2dnhu3AhDs2fRk1M5Er/AcTt3691LFFMxMbGcurUKT799FMGD5bJY3JKCgthEeyeqIFz27YARM6arXEakRt1StdhcavFOBoc+e3WbwzcOVCKCyFEvtDZ2OD76ac4PvMMalISN95+Bwf58knkg0GDBlG/fn1atGgh3aByQQoLYTE8hw4Bg4G4/fuJO3RI6zgiF2p71jYXF8duHWPAzwOkuBBC5AudtTW+c2bj9NxzYDTis2YtsT//rHUsYeFWrlxJUlIS69atQ6+XG77mlBQWwmJY+/nh1qkTAJEzZqKaTBonErlRy7OWubg4HnlcigshRL5RrK0pO2smjm3aoJhM3BwxkpgtW7SOJUSJI4WFsCgeA/qjs7cn8c8/idm6Ves4IpdqedZiSaslOBmczMVFnDHzPOVCCJFbipUVXlOnEF2vHqSmcm3ESKK//17rWJrKyV2shYD8e69IYSEsipW7O6V69wLg9uw5mJLl5muWpqZnTZY8J8WFECL/KXo9t157FeeOr4DJxPV3RxO1caPWsQqdwWAAID5ergqLnEl/r6S/dx6XTDcrLI57t25EffkVxqtXub9mLe69ZFCVpXnC4wmWPLeEvj/15ffI3xnw8wAWtlyIg8FB62hCCEun0+E5bhw6a2uivvyKG++9j2pMwe2NTlonKzR6vR5XV1ciIyOBtHs25Obu14/DZDKRnJxMYmIiOp3lfW9tyfnzkl1VVeLj44mMjMTV1TXP40mksMhGaGio+c6PomjROTjgOWQIN957jzsLF+LycgesSpXSOpbIpSc8nmDpc0vps6MPv0f+zsCfB7Kw5UK5z4WwWNJuFB2KTof3uHEoBgP3V6/h5oQJqEYjpbr8T+tohcbb2xvAXFwUNFVVSUhIwM7OrsCLmIJgyfnzI7urq6v5PZMXUlhkIyQkhJCQEGJiYnBxcdE6jvgXl5c7cO/ztSSdPsPtefMoM2GC1pHEY6jhUYOlrZbS56c+HI88zju73+HTZz/FRm+jdTQhck3ajaJFURS8xoxBMRi4t/wzbk2ejGo04t6zh9bRCoWiKJQpU4bSpUtjNBoLfH9Go5G9e/fSvHnzPHen0YIl589rdoPBkG8zX0lhISySotPhNXo0EV27EbV+A26dO2NbubLWscRjqOFRgwUtF9B3R19+vfErw/YMY06LORj0lnViF0IUPYqiUHrECBRra+4uXETktGmoycl49O+ndbRCo9frC2W6VL1eT0pKCra2thb3hzlYdv6ilN2yOpEJ8RCHRo1watUKTCYiP5kms19YsDql6xD6bCg2ehv2Xt3Lu/veJcWUonUsIUQxoCgKpd95B4+30+6efHvOHG7P/1TaDCEKgBQWwqKVHjkCxWAg7sAB4vbu1TqOyIOG3g2ZGzwXg87AjvAdvH/gfVJN0lddCJE/PAcOxHP4MADuhIZye85cKS6EyGdSWAiLZu3vj1vXLgDc+vgT1ELoRyoKTrOyzZgZNBMrxYrNf2/mo18/wqTKjRCFEPnDo08fSo9+F4C7ixcTOW26FBdC5CMpLITF8+jfH32pUiRfusT9r9ZpHUfkUbB/MFOfnopO0bHxr41MPyoNvxAi/7h3747XB+8DcG/FCm5NniLnGCHyiRQWwuLpnZzw/Kfv7J1PPyXl/n2NE4m8er7c83zY9EMA1p5Zy/JTyzVOJIQoTkq99RbeEyeConB/7VpuTpiIapKro0LklRQWolhwffVVbCpXJjU6mttz5modR+SD9hXbM7LBSADmHp/LxvMl7+65QoiC49bpdcpMngyKQtS6ddx4/wNUuQeJEHkihYUoFhQrK7z/ubQdtX49CSdPaZxI5IeuNbrS64leAHz464fsjNipcSIhRHHi+srL+Ez7BHQ6or/5hutjxqCmyIx0QjyuElNYxMfHExAQwIgRI7SOIgqIfcOGOLdrB6rKzUkfyWXtYuKdeu/wcsWXMakmRv0yit9u/qZ1JFECSJtRcri0a0fZWTNBryfm+x+4PmqUTAQixGMqMYXF5MmTefLJJ7WOIQpY6REj0Nnbk3jiD6K//VbrOCIfKIrCuCbjaOHXgmRTMoN3DebcvXNaxxLFnLQZJYvz88/jO3cOGAzEbNnKtWHDUJOTtY4lhMUpEYXFX3/9xdmzZ2nTpo3WUUQBM3iVxmPQIAAiZ84iNTpa40QiP1jprJjefDr1Stcj1hjLoF2DuB1/W+tYopiSNqNkcmrZEt/581AMBh7s+Jmrb7+DSYoLIXKlyBcWe/fupV27dvj4+KAoCps2bcq0TmhoKIGBgdja2tK4cWOOHDmS4fERI0YwderUQkostFaqy/+wrlCB1Hv3uD1vvtZxRD6xtbJl3jPzCHQO5GbcTQbtGkS8MV7rWKKIkTZD5IVTixb4LlyIYmND7J49XA0ZhCkxUetYQliMIl9YxMXFUbt2bUJDQ7N8fN26dQwbNozx48dz/PhxateuTevWrYmMjATgu+++o3LlylSuXLkwYwsNKQYD3u+/B8D9L78k8exZjROJ/OJi48KCZxfgZuPG6bunGbNvjNydW2QgbYbIK8enmuG3eBGKnR1x+/ZxZcAATPHyJYYQOWGldYD/0qZNm0dejp41axZ9+vShR48eACxatIjNmzfz2WefMXr0aH799Ve++uorNmzYQGxsLEajEWdnZ8aNG5fl9pKSkkhKSjL/HBMTA4DRaMT4z2AuJTUVK0BVVVKK4QCv9OM0WvCxWTdogONzzxH700/c+PBDyq5ciaIoj3xOcTjux2Fpx+1t583M5jPpt7Mfu67sYubRmQytNzTX27G0484vxf14C7vNgJy1G5bC0j8X+ZXfun59fBYu4PrAEOIP/Up4n774hH6KzsEhP2JmSV57bVly/oLOnpvtKqoF3W5SURS+/fZbOnToAEBycjL29vZ8/fXX5mUA3bp1Iyoqiu+++y7D81euXMmpU6eYMWNGtvuYMGECEydOzLT8iy++wN7eHgDPmFM0vTiNaFs/9lSbnPcDEwXCKiqKwBkz0RmN3HztVWIaNNA6kshHJ5JPsCF+AwAv2b1EI5tGGieyDPHx8XTu3Jno6GicnZ21jlOgCqPNgJy1G8Iy2YaHU3b5Z+iTkkgICOBajx6Y7Gy1jiVEocpNu1Hkr1g8yp07d0hNTcXLyyvDci8vL84+ZveXMWPGMGzYMPPPMTEx+Pn5ERwcjLu7OwDKJQe4CM7OzrRt2/bxD6CIMhqN7Nixg1atWmEwGLSOkyf3ExK5O2cOPjt+psngwejd3LJdtzgdd25Y6nG3pS0eJz1YeHIhmxM3065pO+p71c/x8y31uPPq7t27WkfQTEG0GZCzdsNSWPrnoiDyJz79NNf79sMuPJwaG7/GZ+Ei9C75X5TLa68tS85f0NnTr8LmhEUXFrnVvXv3/1zHxsYGGxubTMsNBsP//7L0eiDt2zBLe/PlRoZjtlCevXoSu3kzSX/9xb3Zc/CZOuU/n1McjvtxWOJxD6g7gPDYcLZc2sK7B95l3Yvr8HbwztU2LPG486IkHWte5aTNgBy2GxbGkrND/uY31K1LwKqVRPTsRdLJU1zv2wf/5cuxesQXVXnan7z2mrLk/AWVPTfbLPKDtx/Fw8MDvV7PrVu3Miy/desW3t65++Pi30JDQ6levToNGzbM03aEthSDAe8P07ooRH/7LXGHj/zHM4QlURSFCU0nUMWtCvcS7zFszzCSU2V6SJG1gmwzQNqN4sy2enX8V61CX6oUSafPENGtOykl+OqfENmx6MLC2tqa+vXrs3PnTvMyk8nEzp07adKkSZ62HRISwunTpzl69GheYwqN2deti+sbnQC4OX68zEtezNhZ2TE7eDbO1s6cvHOSKYf/+6qUKJkKss0AaTeKO9sqlQlYvQq9pwdJ588T3q0bKbflfjpCPKzIFxaxsbGEhYURFhYGwKVLlwgLCyMiIgKAYcOGsXTpUlatWsWZM2cYMGAAcXFx5hk/hAAoPWwYeg8Pki9f5u6SpVrHEfnMz8mPac2noaCw8a+NbDy/UetIQiPSZoiCZFOxIgGrV2Pl5UXyhYuEd+mK8V9XwIQoyYp8YfHbb79Rt25d6tatC6Q1CnXr1jVP/depUydmzJjBuHHjqFOnDmFhYWzbti3T4LzckkvaxYve2RnvsWMAuLt4MUl/X9I4kchvzco24+16bwMw9chULty/oHEioQWt2gyQdqOksClXjoA1q7HyKUPy5ctpxcX161rHEqJIKPKFRYsWLVBVNdO/lStXmtcZNGgQ4eHhJCUlcfjwYRo3bpzn/col7eLHqU0bHJ5+GtVo5OaECVjQTMsih3o+0ZNmPs1ISk1i5N6RJKQkaB1JFDKt2gyQdqMksfb3J3DNGgy+vhgjIgjv0pXkq1e1jiWE5op8YSFEflEUBe/x41BsbYk/coToTd/995OERdEpOiY/NRkPOw8uRF1g+tHpWkcSQhRThrJlCVi7BuuAAIzXrhH+vy4kh4drHUsITUlhkQ25pF08Wfv64hEyEIDIjz8m5c4djROJ/OZu586Up6agoLDh/Aa2X96udSRRQki7UfIYvL3xX7Ma6/LlSbl5k/D/dSHp77+1jiWEZqSwyIZc0i6+3Lt3x6ZqVVKjo7k5Se6cXhw18WlCr5q9APjw0IfcjpeZW0TBk3ajZDKULk3A6lXYVKpEyu3bhHfpSuL581rHEkITUliIEkcxGCgzeRLo9TzYto2Y7T9pHUkUgIF1BlKtVDVikmP48NCHMqZGCFFgrDw88F+9Cptq1Ui9e5eIbt1JzMPd3IWwVFJYiBLJrkYN3Hv3BuDmRx+Rcv++xolEfjPoDEx6ahJWOiv2XN3Dj3//qHUkIUQxZuXmRsCKz7B94glS798nvFt3Ek79qXUsIQqVFBbZkL6yxZ/HwAFYV6hA6p07RH78sdZxRAGo7FaZAbUHAGlT0EbGR2qcSBRn0m4Ivasr/is+w652bUzR0UT06EHCiRNaxxKi0EhhkQ3pK1v86Wxs8Jk8CRSF6O++J27vPq0jiQLQ84meVHevzoPkB0z6dZLWcUQxJu2GANA7OeG3fDl29etjevCAiJ69iD92TOtYQhQKKSxEiWZXpw6lunUD4PaHH6JLSNQ4kchvVjorJjWbhJVixe4ru/nlyi9aRxJCFHN6Rwf8ly7BvnFjTHFxRPTpS9zhI1rHEqLASWEhSjzPd97G4O9Pyq1beGzZonUcUQAquVWiS/UuQFqXqMQUKSCFEAVLZ2+P36KFODRrhhofz5V+/Yg7eFDrWEIUKCkssiF9ZUsOnZ0dZSZ9BIDrkSPE//qrxolEQehfuz+l7UtzLfYaK06t0DqOKIak3RD/prOzw3dBKA5BzVETE7nSfwCxe/dqHUuIAiOFRTakr2zJ4tCoEc6dXgcgctx4UmNjNU4k8pu9wZ5RDUcBsOzkMq7GXtU4kShupN0QWdHZ2OA7fz6Ozz6LmpzM1ZBBPNi1S+tYQhQIKSyE+IfH0KEklypFyo0b3JoyVes4ogA8F/AcT5Z5kmRTMvPD5msdRwhRQuisrfGdMxun559HNRq5+vY7cg8lUSxJYSHEP3QODtx6/bW0WaK++YYHO3dqHUnkM0VRGNFgBAoKOyJ2cC3lmtaRhBAlhGIwUHbGdJxffBFSUrg2bBjRP27WOpYQ+UoKCyEeklCuHK7d02aJuvHBOFLu3tU4kchvVUpV4YXyLwDwU6J8YyiEKDyKlRU+n3yMS4cOkJrK9VGjiNq0SetYQuQbKSyyIYPwSq5SISHYVKpE6r173JwwAVVVtY4k8llInRCsdFZcTLnI4ZuHtY4jiglpN0ROKHo9ZaZMxvW118Bk4saYsUR9/bXWsYTIF1JYZEMG4ZVcOhsbfKZ9AgYDD3b8TPR332kdSeQzXydfXq34KgChJ0KleBT5QtoNkVOKTof3xAm4de4MqsqN9z8get06rWMJkWdSWAiRBdtq1fAcNAiAW5MmY7x+XeNEIr/1fqI3BgycuntKrloIIQqdotPh9cH7lOrWFYDbkybjun+/xqmEyBspLITIhnuvntjVqYMpNpbrY99DNZm0jiTyUSnbUtS3rg/A8pPLNU4jhCiJFEWh9OjRuPfpDUDpH37k/gq5z46wXFJYCJENxcoKn4+notjZEf/rr9xfu1brSCKfNbNphl7R8+uNX/nzzp9axxFClECKouA5bBhu/foBcHfWbO4sWqRxKiEejxQWQjyCdWAgXqNGAhA5YyaJ585rnEjkJze9G88HPA/A8lNy1UIIoQ1FUXAfFMKd51oBcHvOXG7Pmy/jv4TFkcJCiP/g+sYbOAYFoSYnc33EcEyJiVpHEvmoe/XuAOyM2MmN2BvahhFClGj3nn0W96FDALizYAG3Z82W4kJYFCkssiHTBop0iqJQZuoU9J4eJP11gchp07SOJPJRBdcKNPZujEk18fVfMuWjeHzSboj84NazJ15jRgNwd+lSIj+ZJsWFsBhSWGRDpg0UD7MqVQqfqR8DcP+LL+Wu3MXMa1VeA+Cbv77BaDJqnEZYKmk3RH4p1a0bXuM+AODeypXcmjRZJhARFkEKCyFyyPGpZpTq0QOAG2Pfw3jrlsaJRH55xv8ZPOw8uJNwh10Ru7SOI4QQlOrcGe+PPgRF4f7nn3NzwkQpLkSRJ4WFELlQeugQbKtXJzU6muvvjpaTfDFh0Bl4ueLLAHx9XrpDCSGKBrfXXqPM1Cmg0xG1fj033nsfNTVV61hCZEsKCyFyQbG2xmfGDPMUtHeXy0xCxcUrlV4B4MjNI9yOv61xGiGESOPaoQM+n3wCej3R336b9qVWSorWsYTIkhQWQuSSTflyeL83FoDbc+eR8McfGicS+cHXyZfanrUxqSa2Xd6mdRwhhDBzafciZWfOBCsrYn78kWsjRqIaZTyYKHqksBDiMbh07IjT889DSgrXhg0nNSZG60giH7Qt1xaALX9v0TiJEEJk5Px8a3znzgGDgQfbtnF16FDU5GStYwmRgRQWQjwGRVEo8+FEDL6+GK9e5cZ778l0gMVA68DW6BU9p+6eIjwmXOs4QgiRgdOzz+L36XwUa2tif97J1cFvY0pK0jqWEGZSWAjxmPTOzpSdPSvt26MdP3N/zVqtI4k8crdzp3GZxkDaDfOEEKKocQwKwnfhAhQbG2J/+YWrA0Pkxq2iyJDCQog8sKtZE69RowC4NX26jLcoBlr4tQDglyu/aBtECCGy4disGX6LF6PY2RF34ABX+g/AFB+vdSwhpLDIjtxBVeSU2//ewum558Bo5NqQoaRGR2sdSeRBkG8QAGG3w4hKjNI2jLAo0m6IwuTwZGP8ly1FZ29P/K+/EtG3L6mxcVrHEiWcFBbZkDuoipxSFIUykydh8PPDeP0618fKeAtL5uPoQ2W3yphUE/uu7dM6jrAg0m6IwmZfvz7+ny1H5+REwm/HuNK7N6kPHmgdS5RgUlgIkQ/0Tk6UnT0bxWAgdudO7q1apXUkkQfpVy32XZXCQghRtNnVqYP/Z5+hc3EhISyMiJ695Mq50IwUFkLkE7snalB69LsARM6YSUJYmLaBxGNr6tMUSLtZnlx9EkIUdXY1nyBg5Qr0rq4knjxJePcepNy/r3UsUQJJYSFEPnLr3Nl8f4urQ4aScveu1pHEY6jlWQsbvQ13E+/yd/TfWscRQoj/ZFutGv6rV6F3dyfpzBkiunWXNkgUOikshMhHiqJQZtJHWJcrR8rNm1wbNhw1JUXrWCKXrPXW1CldB0i7aiGEEJbAtnJlAtasxsrTk6Tz5wnv2g1jZKTWsUQJIoWFEPlM7+iI7/x5KPb2xB8+TOTs2VpHEo+hoVfazD5Hb8pAXCGE5bApXz6tuPD2JvniRSK6dMV486bWsUQJIYWFEAXApmJFfKZMBuDe8s+I2bZN40Qitxp4NwDgROQJjZMIIUTuWAcGErB2DQYfH5LDwwnv0hXjtWtaxxIlgBQWQhQQ5+efp1TPngBcH/seSRcuaJxI5Ea1UtXQK3oiEyK5FXdL6zhCCJEr1r6+BKxZnTYV+pUrhHfpSvKVK1rHEsWcFBZCFKDSw4Zi37gxanw8VwcNJjU2VutIIofsDfZUcK0AwKk7pzROI4QQuWcoW5aAtWuwDgzEeP16WnFx+bLWsUQxJoWFEAVIsbKi7KyZaX1dL1/mxpgxMn2pBanpUROAU3elsBBCWCaDlxf+q1dhXaECKTdvEt6lK0kXL2odSxRTxb6wiIqKokGDBtSpU4cnnniCpUuXah1JlDBW7u74zpuLYjDwYMfP3F26TOtIIoee8HgCgJN3TmqcRBQmaTdEcWMoXZqA1auwqVyZlNu3Ce/ajcTz57WOJYqhYl9YODk5sXfvXsLCwjh8+DBTpkzhrszrLAqZXa1aeL3/PgC3Z88m9pdfNE4kciK9sDh997RcaSpBpN0QxZGVuzv+q1ZiU70aqXfvEtG1G4lnzmgdSxQzxb6w0Ov12NvbA5CUlISqqvIHgtCE6+uv4fr666CqXBs+Qi5FW4DyLuXRKToeJD/gTsIdreOIQiLthiiurNzcCFixAtuaNUmNiiK8ew8STkpXT5F/inxhsXfvXtq1a4ePjw+KorBp06ZM64SGhhIYGIitrS2NGzfmyJGMN7SKioqidu3a+Pr6MnLkSDw8PAopvRD/T1EUvN9/D7sG9THFxnJl4EBSo6O1jiUewVpvjb+TPwAXomRWL0sh7YYQ2dO7uOD/2XLs6tTBFB1NRI8exP/+u9axRDFR5AuLuLg4ateuTWhoaJaPr1u3jmHDhjF+/HiOHz9O7dq1ad26NZEP3WnS1dWVEydOcOnSJb744gtu3ZKpI4U2FGtrfOfNw+DjgzE8gmtDh8mduYu48i7lAfg7+m+Nk4icknZDiEfTOznht2wZ9g0apH3R1as38ceOaR1LFANWWgf4L23atKFNmzbZPj5r1iz69OlDjx49AFi0aBGbN2/ms88+Y/To0RnW9fLyonbt2uzbt49XX301y+0lJSWRlJRk/jkmJgYAo9GI0WgEQElNxQpQVZWUf5YVJ+nHaSyGx/YohXbcTk54z5vL1S5diDt4kBsff4Lnu6MKdp+PIL/vRx93OedyAJy/d75YvEbF4Rj+S1FsNyyFpZ8PLDl/oWe3scY79FNuvP02CYePENG7N2U+/RT7Ro0ea3OW/NqDZecv6Oy52W6RLyweJTk5mWPHjjFmzBjzMp1OR8uWLTl06BAAt27dwt7eHicnJ6Kjo9m7dy8DBgzIdptTp05l4sSJmZbv3r3b3OfWM+YUTUlrPPZs2ZK/B1WE7NixQ+sImiis43bs2BGftZ8TvXYt5xITiGnYsFD2mx35fWctJjntj8Rjl46x5Y7lf97j4+O1jqAprdoNS2Pp5wNLzl/Y2ZV27fC5H4XD+fNc7def6926El+58mNvz5Jfe7Ds/AWVPTfthkUXFnfu3CE1NRUvL68My728vDh79iwA4eHh9O3b1zz4bvDgwdSsWTPbbY4ZM4Zhw4aZf46JicHPz4/g4GDc3d0BUC45wEVwdnambdu2BXBk2jIajezYsYNWrVphMBi0jlNoCv2427blnrMz9xYsxHvTd9R/6SXs6tYt+P3+i/y+H33cFe5XYMPWDUTpo4rF572kz26kVbthKSz9fGDJ+bXMbnr+eW4OH078L3vxW7MW79mzcWj+dK62YcmvPVh2/oLOnn4VNicsurDIiUaNGhEWFpbj9W1sbLCxsSE0NJTQ0FBSU1MBMBgM///L0uuBtMG4lvbmy40Mx1yCFOZxlx40COOFizz46SduDh1GuQ3rMfj4FMq+/01+31kr75Y2xiI6OZpENREna6fCilYgSuLvOLcKpN2wMJacHSw7vybZDQb858/n2vDhPNjxMzeGDMF3zmycnn32MTZlua89WHb+gsqem20W+cHbj+Lh4YFer880qO7WrVt4e3vnadshISGcPn2ao0eP5mk7QjyKotPh8/FUbKpWJfXuXa70H0BqbKzWscRD7A32uNm4AXA99rrGaUReSbshRNYUa2vKzpqFU5vnwWjk6jtDiNm2TetYwsJYdGFhbW1N/fr12blzp3mZyWRi586dNGnSRMNkQuSczt4evwWh6D09SDp/XmaKKoJ8HNOuIl2NvapxEpFX0m4IkT3FYKDs9Ok4t2sHKSlcGzac6B9+1DqWsCBFvrCIjY0lLCzMfFn60qVLhIWFERERAcCwYcNYunQpq1at4syZMwwYMIC4uDjzbB+PKzQ0lOrVq9NQ4wG1omQw+Pjgt2Ahiq0tcfv2cXPyZLkhVxFS1rEsIFcsLIW0G0I8PsXKCp+Pp+Ly8stgMnF91Ciivt2kdSxhIYr8GIvffvuN4OBg88/pA+S6devGypUr6dSpE7dv32bcuHHcvHmTOnXqsG3btkwD83IrJCSEkJAQYmJicHFxydO2hMgJu5pP4DN9GtfefoeoL7/COiAA9+7dtY4l+P/C4lrsNY2TiJyQdkOIvFH0espMnoRiMBC1fj03xo5FNSbj9vrrWkcTRVyRLyxatGjxn9/cDho0iEGDBhVSIiEKjnOrVhhHjiRy2jQiP5mGtZ/fYw2eE/nLXFg8kMLCEki7IUTeKTod3hMnoBgM3P/8c26OG4+akkKpzp21jiaKsCLfFUqIkqZUj+64duoEqsq1ESNJOPWn1pFKPG+HtEG9kQmR/7GmEEIUH4qi4PX+e5T65+r5rQ8/4t6qVdqGEkWaFBbZkL6yQiuKouD9/ns4NGuGmpDA1QEDMN64oXWsEs3DzgOAOwl3NE4iijJpN0RxpCgKpd8dhXvfvgDcmvoxd5ct0ziVKKqksMiGTBsotKQYDJSdMxubSpVIuX2bK/36yzS0GkovLO4l3MOkmjROI4oqaTdEcaUoCp5Dh+AREgJA5IyZ3F6wQONUoiiSwkKIIkrv5ITfooXoPdKmob06eDBqcrLWsUqkUnalAEhRU4hKitI2jBBCaEBRFDwHD8JzyDsA3Jk3n8i5c2UGQ5GBFBbZkEvaoigwlC2L36JFKPb2xB/6letj30M1yTfmhc2gM5hvkifdoUR2pN0QJYFH//6UHjkSgLsLF3F75kwpLoSZFBbZkEvaoqiwe6IGvnPngpUVMT/+SOSMmVpHKpE87GWchXg0aTdESeHeqydeY8cCcHfZciI//liKCwFIYSGERXB8+inKTPoIgHuffSazcmjAw1YKCyGESFeqaxe8J4wH4N6q1dyZPAXkinqJJ4WFEBbCtUMHPP+50detqR8Ts2WLxolKFjfbtK5Q9xPva5xECCGKBrc33qDM5EmgKESvW4fXN99Kd90STgoLISyIe5/euL31FgDX3x1N3K+HNU5UcjhbOwMQkxyjcRIhhCg6XDt2xOfjqaDT4XL0KJEfjENNTdU6ltCIFBbZkEF4oihSFAWvsWNwat0a1Wjk6qBBJJ47p3WsEsHZ5p/CIkkKC5E1aTdESeXSvj1eH09F1el48P33XH93NGpKitaxhAaksMiGDMITRZWi1+Mz7RPsGtTHFBvLlT59MV67pnWsYk+uWIj/Iu2GKMmc2rThRuc3zRONXBs+AtVo1DqWKGRSWAhhgXQ2NviFhmJTqSIpkZFE9OxFyh0ZVFyQ0guL6ORojZMIIUTRFFuzJmVmz0IxGHiwfTtXhwzFJPdfKlGksBDCQuldXPBbuhSDjw/J4eFE9O5Daox8m15Q0rtCPUh6oHESIYQouhxatMA39FMUa2tid+7k6uDBmJKStI4lCokUFkJYMIO3N/6fLU+7O/fZs1zpPwBTQoLWsYol6QolhBA549i8OX6LFqLY2hL3y16uDhgobVMJIYVFNmQQnrAU1oGB+C9fhs7ZmYTjx7n69juocuk530lhIf6LtBtC/D+Hpk3xW7IYxd6euIMHudKvP6a4OK1jiQImhUU2ZBCesCS2Vargt3gRip0dcfv2cW3UuzLdXz5zsXEB0maFkjvMiqxIuyFERg6NGuG/bCk6Bwfijxwhom8/UmOluCjOpLAQopiwr1sX30/ng8HAg23buDF+vPwBnI8cDA4ApKgpJJvkipAQQuSEfb16+H+2HJ2TEwnHjnGlVy8ZD1iMSWEhRDHi2KwZZWfMAJ2O6K83Ejl9hhQX+cTOys78/wlG6SsshBA5ZVe7Nv4rVqB3cSHhxAkievYiNSpK61iiAEhhIUQx49z6Ocp89BEA9z77jLuLF2ucqHiw0llh0BkASEiRwkIIIXLD7oka+K9aid7NjcRTpwjv0ZOU+/e1jiXymRQWQhRDrh1fofTodwG4PWcud1es1DZQMZF+1SIhVQoLIYTILduqVQlYvSptJsMzZ4jo2k3uwVTMSGEhRDHl3r07HoMHARD5ySfcW/u5xoksn62VLSBXLIQQ4nHZVKpEwOpVWHl6kvTXX4R37YbxVqTWsUQ+kcIiGzJtoCgOPAYOxL1/PwBuTZrE/XXrNU5k2eyt7AEZYyGyJu2GEDljU748AWvXYFWmDMl//0141y4Yb9zQOpbIB1JYZEOmDRTFgaIoeL7zDqV69gTg5vjxRG38RuNUlsvcFUquWIgsSLshRM5ZBwQQsGY1hrJlMYZHEN6lK8lXr2kdS+SRFBZCFHOKolB65AjcunQB4Mb77xP9ww8ap7JMUlgIIUT+sfb1TSsu/P0xXr1KeNcuJEdEaB1L5IEUFkKUAIqi4DV2DK5vvgGqyvV3RxOzbZvWsSxOemGRmJqocRIhhCgeDD4+BKxZjXW5cqRcv0F4l64kXbqkdSzxmKSwEKKEUBQF7w8+wOXVjmAycW34CGJ27NA6lkUxX7GQMRZCCJFvDF5eBKxehXXFCqTcukV4164kXbigdSzxGKSwEKIEUXQ6ykyciEv7lyA1lWvDhhP3yy9ax7IYMiuUEEIUDCtPTwJWr8amShVSb98hvGs3Es+d1zqWyCUpLIQoYRS9njJTpuDcti0YjdwYMhSHP//UOpZFkPtYCCFEwbEqVQr/lSuwrV6d1Hv3iOjWjcTTp7WOJXJBCgshSiBFr8dn2ic4tXkeUlLwWfs5sdIt6j+l33nbmGrUOIkQQhRPVm5uacVFrVqkRkUR3r0HCSdPah1L5JAUFkKUUIqVFWWnT8exbVsUk4mbI0cRs2WL1rGKtPTCIsWUonESIYQovvTOzvh/thy7unUxxcQQ0aMn8cd/1zqWyAEpLIQowRQrK7ymTCa6Xr20MRcjRhL9w49axyqyDPp/rliY5IqFEEIUJL2jI/7LlmLfoAGm2Fiu9O5NvNwjpsiTwiIbcgdVUVIoej23XnsVp5dfBpOJ6+++S9SmTVrHKpLMXaGksBBZkHZDiPylc3DAb8li7Js8iSk+noi+/Yj79VetY4lHkMIiG3IHVVGi6HSUnjAe19dfB5OJG2PGErVxo9apihzpCiUeRdoNIfKfzt4ev4ULcXj6adSEBK7060/svv1axxLZkMJCCAGkTUXrPWE8bp3fBFXlxnvvc/+rdVrHKlKsdFaAXLEQQojCpLO1xTf0UxyDg1GTkrg6cCAPdu/WOpbIghQWQggzRafD64MPcOvaBYCbEyZwb+3nGqcqOmRWKCGE0IbO2hrfuXNwatUK1Wjk6tvvyE1eiyApLIQQGSiKgteYMZTq2ROAW5MmcWfJUo1TFQ0yxkIIIbSjWFtTdtZM832Yrg0ZSszWrVrHEg+RwkIIkYmiKJQeOQL3/v0AuD1rFpEzZ6GqqsbJtJU+K5SMsRBCCG0oBgM+0z7Bpf1LabMZDh9B9A8/aB1L/EMKCyFElhRFofSQIZQeOQKAu0uXcuujj1BNJo2TaUeuWAghhPYUKyvKTJmCS8dX0mYzHPUuUd98q3UsgRQWQoj/4N6rF94TJoCicP+LL7k+ejRqSsn8xl4KCyGEKBoUvZ4yH32E6xud0iYcGTuW++vWax2rxJPCQgjxn9ze6ITPtGmg1xPz/Q9cHTIEU3Ky1rEKncwKJYQQRYei0+E9fjxuXf6ZcGT8eJlwRGNSWAghcsSl3Yv4zp+PYm1N7M87udq/P6b4eK1jFSqZFUoIIYoWRVHwGptxwpG7K1dqG6oEK/aFxZUrV2jRogXVq1enVq1abNiwQetIQlgsp2eC8VuyGMXenriDh4jo2YvU6GitYxUa8w3y1JLZFaykkHZDCMtinnCkX9qEI5EffyKzGWqk2BcWVlZWzJkzh9OnT/PTTz8xZMgQ4uLitI4lhMVyePJJAj5bjs7ZmYSwMML/1wXjrUitYxWK9FmhklNLXjewkkTaDSEsj6IoeA55B4/Bg4C02Qxvh4ZqnKrkKfaFRZkyZahTpw4A3t7eeHh4cO/ePW1DCWHh7OrUIWDNavSeHiT99Rfhb75J0t+XtI5V4HRK2inTpJbcmbFKAmk3hLBMiqLgGRKC59ChANyZ/ymRc+aU+KnSC1ORLyz27t1Lu3bt8PHxQVEUNm3alGmd0NBQAgMDsbW1pXHjxhw5ciTLbR07dozU1FT8/PwKOLUQxZ9tlSoEfvkl1gEBGK9fJ7xzZxL++EPrWAUqvbBQkUaqKJN2Q4iSzaNfX0q/+y4AdxctJnLGDCkuCkmRLyzi4uKoXbs2odlczlq3bh3Dhg1j/PjxHD9+nNq1a9O6dWsiIzN2zbh37x5du3ZlyZIlhRFbiBLB2teXgC+/wPaJJ0iNiiK8W3di9+3TOlaBUVAASDWlapxEPIq0G0II9x7d8Xr/fQDuLf+MW1OnSnFRCKy0DvBf2rRpQ5s2bbJ9fNasWfTp04cePXoAsGjRIjZv3sxnn33G6NGjAUhKSqJDhw6MHj2apk2bPnJ/SUlJJCUlmX+OiYkBwGg0YjSmzQSjpKZiBaiqSoqx+M0Ok36cxmJ4bI8ix/2Yx+3khM/yZdwYOoyEgwe5MmAgXh9+iFO7F/MxZf57nONWU9MaJZNqstj3iaXmzo2i2G5YCks/D1pyfkvODkUzv1On1zEpCrc/+oj7q9eQmpSE59ixKLrM36sXxfw5VdDZc7PdIl9YPEpycjLHjh1jzJgx5mU6nY6WLVty6NAhIO2P/+7du/PMM8/Q5Z95jh9l6tSpTJw4MdPy3bt3Y29vD4BnzCmaktZ47NmyJX8OpgjasWOH1hE0Icf9mF5oi3d8HM5hJ7g1diynDuznfvPm+ROuAOXmuK+lXAMgLj6OLRb62Y8vYVME/5tW7YalsfTzoCXnt+TsUATzOzrg/OqreG3cSMy69Vz5+29uvfIKZFFcQBHMnwsFlT037YZFFxZ37twhNTUVLy+vDMu9vLw4e/YsAAcOHGDdunXUqlXL3M92zZo11KxZM8ttjhkzhmHDhpl/jomJwc/Pj+DgYNzd3QFQLjnARXB2dqZt27YFcGTaMhqN7Nixg1atWmEwGLSOU2jkuPN+3OqLL3Jn+gyi167Fc/MWKnl64j50aJbfDmntcY777L2zLNy2EBtbG4v97N+9e1frCJrSqt2wFJZ+HrTk/JacHYp4/rZteVCvHrfefx+Xo7/h6+1N6Y8+QtHrzasU6fz/oaCzp1+FzQmLLixy4qmnnsJkyvkMLjY2NtjY2GRabjAY/v+X9c8bUVEUi3vz5UaGYy5B5Ljzpsx7Y7H2Ks3tmbOIWrkK0+07lJk6BZ21dT6kzH+5OW5rQ9oxqKgW+x6x1NyFqUDaDQtjydnBsvNbcnYouvlLvfIyVrY2XBs5igc//IiSasJn2icoVhn/FC6q+XOioLLnZptF72vEXPDw8ECv13Pr1q0My2/duoW3t3eeth0aGkr16tVp2LBhnrYjREmjKAoeffpQZupUsLIiZvNmrvTsRWpUlNbR8kxR/hm8rcrgbUsl7YYQJZdz27aUnTMbDAZitmzh2rDhqMlyX6L8ZNGFhbW1NfXr12fnzp3mZSaTiZ07d9KkSZM8bTskJITTp09z9OjRvMYUokRyfbkD/ksWo3NwIP6337jc+S2Sr17VOlae6JW0q5Uys4jlknZDiJLNuVUrfOfNRTEYePDTT1wdMhSTFBf5psgXFrGxsYSFhREWFgbApUuXCAsLIyIiAoBhw4axdOlSVq1axZkzZxgwYABxcXHm2T6EENpxaNqUgC8+x8rLi+S//+ZypzdIOHlS61iPTa5YWAZpN4QQj+IUHIzvggUoNjbE7trF1UGDMCUmah2rWCjyYyx+++03goODzT+nD5Dr1q0bK1eupFOnTty+fZtx48Zx8+ZN6tSpw7Zt2zINzMut0NBQQkNDSU2VPyCEyAvbKlUIXL+OK/36k3T2LOFdu1F25gycnnlG62i5Jlcscu6Px7hZYvXq1bGyynuz9H/t3XlYVOXfBvB7GHaRTRFEWVRQBBVMRc0UpkgjX3fNV01xo1LcIrXMhazMMjUzxyVN0DZtcelniiEvuOeGmAlmGO6CSyiyD8N5/zDm1wjoDDPDmWHuz3XNpfPMmXPuZ2Dm4TvnPOdw3CCiJ3Ho+Qy81q7B1UmTUXjgIG5OnQZJX9M8KYcx0egTfOXKlVqveNy4cWjYsKHWz3tUeHj4EwfxKVOmYMqUKTpv699iYmIQExOD/Px8ODk56XXdRObGyt0dPl99ieszXkfhoUO4NmUq3Oe+DddRo8SOphWLf3byco/Fk4WEhEAikWhchFlYWODChQto2bKlztvmuEFEmmjQvTu8Pl+Hq69NQvGvv6LZrVuo6N0b4Pu31jQqLGbMmIHmzZtD+q/Tcj3O1atX8T//8z96KSyIqH6QOjjAa81q3Fy4EPd/+BG5770PxbXraDJrplGejrY6lYdCCeAeC00cO3YMbm5uT1xOEAS0a9euDhIREalrEBoK7w0bcCU6GvZ//YUbr02C9/rPIXVwEDuaSdJ4n/PJkyfRpEkTjZatDwUFd2kT6Z/EygpN33sP1s2b4/aKT/F3fDwU167C86OPYGECFxKrPBSqQtD8VKTmKiwsDH5+fnB2dtZo+V69esHOzs6woQyM4waRabJ/qiOarf8clydMQMnp07gyYQK816+H1NFR7GgmR6OvCePi4uCgReX29ttvw9XVtdahjAHP7kFkGBKJBI1fe+3h+cOtrPAgaR8uvfwyFDk5Ykd7Ik7e1lxKSorGRQUA7N69G02bNjVcoDrAcYPIdNm2b49r0dGwcHJCyZnfcGXc+HpxmvS6pnFhYa/Ft4lz5szRakAhIvPj1L8/vDclQOrqitKMTFwa9pLRnzGKk7eJiOqv0mbN0OyLLyB1dUXJuXO4PHYcyv/+W+xYJsXozwpFRPWX/VNPwfe773Bt0mso/TMLl18eDc+PPoTjCy+IHa1a3GNRO4Ig4IcffkBKSgpu3bpV5arW27ZtEykZEZE6mzat4bN5Ey6PHYfS8+dxJSoK3hs3wlKD+WJUi+tY3L17FzExMQgMDETjxo3h6uqqdqsveAVVorph3bwZfL79Fg3CekEoLcX1Ga/jzpo1RrlXoHKPBcC9FtqYMWMGRo8ejezsbDg4OMDJyUntVl9w3CCqH2z8/OCzeTMsmzR5+KXXmCgocm+JHcskaL3HYvTo0cjKysKECRPg7u6u+gavvuFpA4nqjtTBAV6rV+PWkiX4e9Nm3P50JUov/oWmi96HhY2N2PFULCT//S6mQqhQKzSoZl9++SW2bduGF1+s3+eI57hBVH/YtGwBn6++xOWxY1GWnY3LY0bDJyEBViY+F8zQtC4sDh48iEOHDiE4ONgQeYjITEmkUrjPmQPrlq2Q8957yN+1C4qrV9FcvgqWjRuLHQ8A1L5IqRAqIAULC004OTnp5foURER1ydrbGz6bv8SVqCgoLl/B5ZdHw3vTJlg3byZ2NKOl9aFQAQEBKC4uNkQWIiK4DH8J3hvWw8LJCcVnziB72EsoPndO7FgA1A+FqgBPOaupd955BwsXLuTYQUQmx7p5M/h89SWsfLyhuH4dl0ePRtnly2LHMlpaFxarV6/G3LlzsX//fty9exf5+flqt/qCx8oSiadBt27w3fItrH19UX7zJi6PHIX7/9kldixI8N89FsoKTuDW1EsvvYS8vDw0adIE7du3x1NPPaV2qy84bhDVT1ZNm8Jn85ewbtHi4Zg0egxK/8oWO5ZR0vpQKGdnZ+Tn5+PZZ59VaxcEARKJpN5cGIjHyhKJy6ZFC/h+txXXZ81C4f4DuDFrFkoyM9HkjVhIpOIcgiS1+NfkbV59W2NRUVE4deoUXn75Zc7NIyKTZOXeBD5fbsaVceP+mdA9Bj4J8bDx8xM7mlHRurAYNWoUrKys8M0339TrAYKIxCd1dITX6tW4vfIz3F23Dn9v3IjSP/5As+XLIBXhDzeLf+3k5SlnNffzzz9j7969eOaZZ8SOQkRUa5aNG8N70yZcGT8BpefP4/KYKHjHb4RtmzZiRzMaWhcWv//+O06fPo02fBGJqA5IpFI0eX0GbAPa4Mbbc1F4+DCyh70EL/kq2Pj713GYut1cfeHl5QVHR0exYxAR6czS1RU+CfG4MmEiSs6dw5UxUfDa+AXsgoLEjmYUtJ5j0blzZ1y9etUQWYiIauQYGQnfb7+BVbNmUFy5gkvD/xcP9u0TOxZpYNmyZZg9ezYuXbokdhQiIp1JnZ0f7qkI7gDl/fu4Mm48in/7TexYRkHrwmLq1KmYPn06EhIScOrUKfz2229qNyIiQ7ENCIDvD9/Dvls3VBQV4dqUqbj92SoIFTxDkzF7+eWXkZKSglatWqFhw4b19sKqRGQ+pI6O8P7iC9h16oSK/HxcGTceRWlpYscSndaHQg0fPhwAMH78eFWbRCKpd5O35XI55HJ5vekPUX1h6eIC7w3rkbtkCfI2f4k7cjlKMjLg+dGHkPJwG6O0YsUKsSPUCY4bROZF6uAA78/X4eqkySg6fhxXJkbDa+0aNAgNFTuaaLQuLLKzzeP0Wjy7B5HxklhawuPtt2HbNhA5cXEoSElB9tBhaL7yU9gGBIgdjx4RFRUldoQ6wXGDyPxYNGgAr3VrcS0mBoVHjuLqK6/Ca81qNOjeXexootD6UCgfH5/H3oiI6orzoIHw+UZ93sW9HTvEjkWP2L17N/bu3Vul/ZdffsGePXtESEREpD8WdnZovmYNGvTqCaGkBFdfm4SCgwfFjiUKrQuLxYsXY+PGjVXaN27ciI8++kgvoYiINGXXLggtfvzh4Qd6aSluvjUHN995BxVlZWJHo3+89dZb1R4eVFFRgbfeekuERERE+mVhY4Pmq1bB4dlnIZSW4trkGDz4vxSxY9U5rQuLdevWIaCaQw2CgoKwdu1avYQiItKG1NkZXmvXovGUKYBEgntbtuLyqJehuHFD7GgE4M8//0RgYGCV9oCAAGRlZYmQiIhI/yysrdF8xSdo2Ls3BIUC16ZNQ/4vv4gdq05pXVjk5OSgadOmVdrd3Nxw8+ZNvYQiItKWxMICblNi4PX5OkidnFBy9iyyBw9BwaHDYkcze05OTvjrr7+qtGdlZaFBgwYiJCIiMgyJtTWaLV8Gx759gfJyXH89Fvm7d4sdq85oXVh4eXnh8OGqA/Xhw4fh6empl1DGQC6XIzAwEF26dBE7ChFpwaFnT/j++CNsg4KgvHcPV6OjcWfNGp6SVkQDBgzAjBkzcPHiRVVbVlYW3njjDfTv31/EZPrFcYOIgIcnGPFc8hGcBgwAlEpcnzkL93/6SexYdULrwiI6OhozZsxAfHw8Ll++jMuXL2Pjxo14/fXXER0dbYiMooiJiUFGRgZOnDghdhQi0pJ182bw+eZrOA8bBggCbn+6EtcmTUZ5Xp7etiEIgt7WVd8tWbIEDRo0QEBAAFq0aIEWLVqgbdu2aNSoEZYuXSp2PL3huEFElSRSKZou/gDOw4YCFRW48eZbuPfjj2LHMjitTzc7a9Ys3L17F5MnT0bZP5MjbW1t8eabb2LOnDl6D0hEVBsWNjZo+t67sAsJQc6776Jg/35kDx6CZsuWwf6pjmLHMytOTk44cuQIkpKScObMGdjZ2aFDhw7o1auX2NGIiAxGYmEBj4ULAUtL3Pt2C27OnQdBUQ6X/x0udjSD0bqwkEgk+OijjzB//nxkZmbCzs4O/v7+sLGxMUQ+IiKdOA8ZDNugQFyf8TrKLl3C5dGj0eT1GWg4erTW65JAYoCE5kEikaB3797o3bu32FGIiOqMxMICHgsWQGJlhbzNXyLnnXcgKBRwHf2y2NEMQutDoSo5ODigS5cuaNeuHYsKIjJqtgEB8P3hh4eT6ZRK3Fq6DDdjpsCisFDsaPXWypUrUVJSovHya9euxYMHDwyYiIhIHBKJBO5z5sB1wngAQO6iRbi7MV7kVIahUWExePBg5Ofna7zSUaNG4datW7UORUSkb1KHBvBc+jE83l0IiY0Nig4dgs+KT1GcliZ2tHrp9ddf16pQmD17Nm7fvm3ARERE4pFIJGgycyYaTXoNAHBryRLcWfe5yKn0T6NDoXbu3KnxB74gCPjPf/6D9957D02aNNEpHBGRPkkkEri89BLsgoNxbfoM4NIlXB8/AWXTp6PRxAmQWNR6Jy49QhAEPPfcc7C01OyI2+LiYgMnIiISl0QiQZPp0yGxssKdlZ/h9iefQFAo0DhmMiSS+nGorUaf+IIgoHXr1obOQkRUJ2zbtIHX1i1If20SHE+fxu3ly1F04gQ8P/oQlq6uYserF+Li4rRafsCAAXDla09EZsBt8mRIrKxwe9ly3Fm1CoJCAbcZ0+tFcaFRYZGSov0lyZs1a6b1c4iI6oqFvT1yhr8Ev0EDcXvRByg8eBDZAwfB8+OP0aBrqNjxTJ62hQURkTlpHB0NiZUVbn34Ee6uWwehrAxNZs8y+eJCo8IiLCzM0DmIiOqeRALHQYPQICTk4Vmj/voLV8aORaNXXoHblBhIrKzETkhERPVUo7FjIbGyQu577+Pv+HgICgXc575t0sUFDyiuAa+gSmQ+bFu3RosfvofT0CGAIODuunW4NOpllF25InY0MiEcN4hIW66jRsHj3YWARIK8r75CzjsLIVRUiB2r1lhY1IBXUCUyLxb29vB8/300W/EJLBwdUfLbb8geNBj3f/pJ7GhkIjhuEFFtuLz0EpouWgRIJLi3dStuzpsPQakUO1atsLAgIvoXxxdeQMsd22HXuRMqCgtxY/abuD5rNpQFBWJHIyKiesp58CB4LvkIsLDA/W3bcGPOHAjl5WLH0hoLCyKiR1h5esJn0yY0njYVkEqR/5//IHvgIBSfOSN2NJNy5coVXLlyBVevXsX9+/fFjkNEZNSc+vVDs+XLHo47P/0HN2bPhqBQiB1LK5qdYPxfNm/erHbfwsICbm5u6NmzJ+zt7fUWjIhITBKpFG6TJ6NBt+64MWsWFNeu4drLURjcQ8D27qY7sa4u+fr6qk1CbNasGcaPH4+3334b1tbWIiYjIjJOji+8AImlJa69Hov83XsgKMrRbNlSSEzkM1PrwmL69Olq95VKJQoKCuDm5ob/+7//Q1BQkN7CERGJzf6pjmixYzty3lmI/J9/xv8eANpfAir6FwI2TmLHM2qVpyoXBAE3btzAyZMnsXTpUiQlJWHfvn2ws7MTOSERkfFpGBGB5p+txPWp0/AgKQnXYmPR/LPPTOJsUVofCpWXl6d2y8/Px82bN/HMM89gxowZBohIRCQuacOG8Fz6MTw+/AAlVkDQFaD012NixzJ6YWFhCAsLQ3h4OEaOHInly5fj3LlzuHr1Kt59912x4xERGa2G4eFovmYNYGmJgn3JUFy+LHYkjWi9x+K3336rtn38+PEYNGgQjh8/DltbWwBAhw4ddEtHRGQkJBIJHPv3R9aauWh3WQDKTfOMHXUpPz+/SpuLiwveeOMNfPbZZ3j77bchCAIcHR1FSEdEZNwcnukBqZMTlHfvoqKsTOw4GtG6sAgJCYFEIoEgCFUek0gk6Natm+r/ShM9VRYREenO2dn5sbvunZycOFYQEdUjWhcW2dnZ1bZfunQJzz//PH777TceN0tERKo5Fo9KTEzEpk2b8O2339ZxIiIiMiStCwsXFxe1+xUVFbh06RLef/999OnTBwEBAXoLR0REpissLKxKW2FhIWbMmIG+fftW+zgREZkurSdvOzs7w8XFRXVr1KgRnnrqKeTn50Mulxsio84GDRoEFxcXDB06VOwoRERmo/I6FpcvX8avv/6K1atXIygoCA8ePMAHH3wgdrzH4rhBRKQ9rfdYPLprWyqVwtvbG97e3noLpW/Tp0/H+PHjsWnTJrGjEBGZjX9fx0IQBFhZWWHo0KH45JNP4ObmJnK6x+O4QUSkPa0LC1PcdR0eHo7U1FSxYxARmZXKL6IkEgkaNmyINm3amMyFVDluEBFpT+tDoeragQMH0K9fP3h6ekIikWDHjh1VlpHL5fD19YWtrS26du2K48eP131QIjIrVc+LR4+qvI5Fr1690LFjxzorKjhuEBGJw+gLi8LCQgQHB9c4f2Pr1q2IjY1FXFwc0tLSEBwcjD59+uDWrVt1nJSIiIwBxw0iInFofShUXYuMjERkZGSNjy9fvhzR0dEYN24cAGDt2rX4+eefsXHjRrz11ltab6+0tBSlpaWq+5UXeFIoFFAoFAAAiVIJSzw8Zrj8n7b6pLKfinrYt8dhv9nvJ6kQKlT/VyrLTfI1M8XM2jLGccNUmPrngSnnN+XsAPMbzD/XjSsvr3nMMXR2bdZr9IXF45SVleHUqVOYM2eOqs3CwgIRERE4evRorda5ePFiLFy4sEp7SkqKaje+W/7veBoPB4/U3btrtR1TkJSUJHYEUbDf5kWbfv+7sDh79neckpreNXuKiorEjiAqscYNU2PqnwemnN+UswPMr28ty8pgCeDgwYMo+/PPxy5rqOzajBsmXVjcuXMHSqUS7u7uau3u7u44f/686n5ERATOnDmDwsJCNG/eHN9//z26d+9e7TrnzJmD2NhY1f38/Hx4eXlBJpOhUaNGAABJdgPgIuDo6IgXX3zRAD0Tl0KhQFJSEp5//nlYWVmJHafOsN/s95NUCBX4ac1cAED79u3gboLv/7t374odQVRijRumwtQ/D0w5vylnB5jfULI/WgIlgJ49e8LG37/aZQydvXIvrCZMurDQ1L59+zRe1sbGBjY2NlXarays/vvDkkoBPDzTiTH98umbWp/NCPttXrTp97/3WEillib5epliZjHofdwwMaacHTDt/KacHWB+vfvnlN2Wlk8ecwyVXZt1Gv3k7cdp3LgxpFIpcnNz1dpzc3Ph4eGh07rlcjkCAwPRpUsXndZDRETGg+MGEZHhmHRhYW1tjU6dOiE5OVnVVlFRgeTk5Bp3WWsqJiYGGRkZOHHihK4xiYjISHDcICIyHKM/FKqgoABZWVmq+9nZ2UhPT4erqyu8vb0RGxuLqKgodO7cGaGhoVixYgUKCwtVZ/uoLblcDrlcDqVSqWsXiIioDnHcICISh9EXFidPnoRMJlPdr5wgFxUVhYSEBAwfPhy3b9/GggULkJOTg5CQECQmJlaZmKetmJgYxMTEID8/H05OTjqti4iI6g7HDSIicRh9YREeHg5BePw1bqdMmYIpU6bUUSIiIjJmHDeIiMRh0nMsiIjEIuDxf7gSERGZGxYWNeDZPYiISBscN4jI3LGwqAHP7kFERNrguEFE5o6FBRGRhiSQiB2BiIjIaLGwqAF3aRMRkTY4bhCRuWNhUQPu0iYiIm1w3CAic8fCgoiIiIiIdMbCgoiIiIiIdMbCgoiIiIiIdMbCogachEdERNrguEFE5o6FRQ04CY+IiLTBcYOIzB0LCyKiWhHEDkBERGRUWFgQEREREZHOWFgQEREREZHOWFjUgJPwiIhIGxw3iMjcsbCoASfhEdGjJBKJ2BHIiHHcICJzx8KCiIiIiIh0xsKCiIiIiIh0xsKCiIiIiIh0xsKCiIiIiIh0xsKCiIiIiIh0xsKiBjxtIBERaYPjBhGZOxYWNeBpA4nocQRB7ARkbDhuEJG5Y2FBREREREQ6Y2FBREREREQ6Y2FBREREREQ6Y2FBREREREQ6Y2FBREREREQ6Y2FBREREREQ6Y2FBREREREQ6Y2FBREREREQ6Y2FRA15BlYiItMFxg4jMHQuLGvAKqkREpA2OG0Rk7lhYEBERERGRzlhYEBHVggBB7AhERERGhYUFERERERHpjIUFERERERHpjIUFERERERHpjIUFERERERHpjIUFERERERHpjIUFERERERHpzCwKi127dqFNmzbw9/fHhg0bxI5DRERGjuMGEZH2LMUOYGjl5eWIjY1FSkoKnJyc0KlTJwwaNAiNGjUSOxoRERkhjhtERLVT7/dYHD9+HEFBQWjWrBkcHBwQGRmJX375RexYRERkpDhuEBHVjtEXFgcOHEC/fv3g6ekJiUSCHTt2VFlGLpfD19cXtra26Nq1K44fP6567MaNG2jWrJnqfrNmzXD9+vW6iE5ERCLguEFEJA6jLywKCwsRHBwMuVxe7eNbt25FbGws4uLikJaWhuDgYPTp0we3bt2q46RERGQMOG4QEYnD6AuLyMhIvP/++xg0aFC1jy9fvhzR0dEYN24cAgMDsXbtWtjb22Pjxo0AAE9PT7Vvmq5fvw5PT886yU5ERHWP4wYRkThMevJ2WVkZTp06hTlz5qjaLCwsEBERgaNHjwIAQkND8fvvv+P69etwcnLCnj17MH/+/BrXWVpaitLSUtX9/Px8AIBCoYBCoQAASJRKWAIQBAHl/7TVJ5X9VNTDvj0O+81+a0OpVJrka2aKmfVJrHHDVJj654Ep5zfl7ADzG4wgAHh4Uomashk6uzbrNenC4s6dO1AqlXB3d1drd3d3x/nz5wEAlpaWWLZsGWQyGSoqKjB79uzHntlj8eLFWLhwYZX2lJQU2NvbAwDc8n/H03g4eKTu3q2/DhmZpKQksSOIgv02L7Xt9++//450ywZ6TmN4RUVFYkcQlVjjhqkx9c8DU85vytkB5te3lmVlsARw8OBBlP3552OXNVR2bcYNky4sNNW/f3/0799fo2XnzJmD2NhY1f38/Hx4eXlBJpOpBhZJdgPgIuDo6IgXX3zRIJnFpFAokJSUhOeffx5WVlZix6kz7Df7rYkdqx9+092uXTt4muD7/+7du2JHMAn6HjdMhal/HphyflPODjC/oWR/tARKAD179oSNv3+1yxg6e+VeWE2YdGHRuHFjSKVS5ObmqrXn5ubCw8OjVuu0sbGBjY0N5HI55HI5lEolAMDKyuq/PyypFAAgkUiM6pdP39T6bEbYb/NS235LpVKTfL1MMbM+iTZumBhTzg6Ydn5Tzg4wv95JJAAe7kl9Ui5DZddmnUY/eftxrK2t0alTJyQnJ6vaKioqkJycjO7du+u07piYGGRkZODEiRO6xiQiIiPBcYOIyHCMfo9FQUEBsrKyVPezs7ORnp4OV1dXeHt7IzY2FlFRUejcuTNCQ0OxYsUKFBYWYty4cSKmJiIisXDcICISh9EXFidPnoRMJlPdrzyONSoqCgkJCRg+fDhu376NBQsWICcnByEhIUhMTKwyMU9bj+7SJiIi08Bxg4hIHEZfWISHh0P451RbNZkyZQqmTJmi1+3GxMQgJiYG+fn5cHJy0uu6iYjIcDhuEBGJw6TnWBARERERkXFgYVEDuVyOwMBAdOnSRewoRGSMnvCNOJkfjhtEZO5YWNSAZ/cgIiJtcNwgInPHwoKIiIiIiHTGwoKIiIiIiHTGwqIGPFaWiIi0wXGDiMwdC4sa8FhZIiLSBscNIjJ3LCyIiIiIiEhnLCyIiIiIiEhnLCxqwGNliYhIGxw3iMjcsbCoAY+VJSIibXDcICJzx8KCiIiIiIh0xsKCiKgWBAhiRyAiIjIqLCyIiIiIiEhnLCyIiIiIiEhnLCxqwLN7EBGRNjhuEJG5Y2FRA57dg4iItMFxg4jMHQsLIiIiIiLSGQsLIiIiIiLSGQsLIiKtSMQOQEREZJRYWBARERERkc5YWBARERERkc5YWNSApw0kIiJtcNwgInPHwqIGPG0gERFpg+MGEZk7FhZERLUgCILYEYiIiIwKCwsiIiIiItIZCwsiIiIiItIZCwsiIiIiItIZCwsiIiIiItIZCwsiIiIiItIZCwsiIm1IxA5ARERknFhY1IAXOiIiIm1w3CAic8fCoga80BEREWmD4wYRmTsWFkREREREpDMWFkREREREpDMWFkREREREpDMWFkREREREpDMWFkREREREpDMWFkREREREpDMWFkREREREpDMWFkREREREpDMWFkREREREpDOzKCwGDRoEFxcXDB06VOwoRERkAjhuEJFREcQOoBmzKCymT5+OzZs3ix2DiIhMBMcNIjIKEonYCbRiFoVFeHg4GjZsKHYMIiIyERw3iIi0J3phceDAAfTr1w+enp6QSCTYsWNHlWXkcjl8fX1ha2uLrl274vjx43UflIiIjALHDSIi4yR6YVFYWIjg4GDI5fJqH9+6dStiY2MRFxeHtLQ0BAcHo0+fPrh165ZqmZCQELRr167K7caNG3XVDSIiqiMcN4iIjJOl2AEiIyMRGRlZ4+PLly9HdHQ0xo0bBwBYu3Ytfv75Z2zcuBFvvfUWACA9PV1veUpLS1FaWqq6n5+fDwBQKBRQKBQAAIlSCUsAgiCg/J+2+qSyn4p62LfHYb/Zb22UK8tN8jUzxcyPMsVxw1SY+ueBKec35ewA8xuM8HDWdnl5zZ8nhs6uzXpFLywep6ysDKdOncKcOXNUbRYWFoiIiMDRo0cNss3Fixdj4cKFVdpTUlJgb28PAHDL/x1P4+Hgkbp7t0FyGIOkpCSxI4iC/TYvWvf7nw/5c+fO4ay16b3/i4qKxI5gUMY6bpgaU/88MOX8ppwdYH59a1laCksABw8eQllW1mOXNVR2bcYNoy4s7ty5A6VSCXd3d7V2d3d3nD9/XuP1RERE4MyZMygsLETz5s3x/fffo3v37tUuO2fOHMTGxqru5+fnw8vLCzKZDI0aNQIASLIbABcBR0dHvPjii7XomXFTKBRISkrC888/DysrK7Hj1Bn2m/3WxI41bwMQEBQUBC8TfP/fvXtX7AgGZazjhqkw9c8DU85vytkB5jeU7CUfQ1lQgJ49n4FN69bVLmPo7JV7YTVh1IWFvuzbt0/jZW1sbGBjY1Ol3crK6r8/LKkUACCRSIzql0/f1PpsRthv81LbfltKLU3y9TLFzGLQ+7hhYkw5O2Da+U05O8D8evfP6WYtLZ+cy1DZtVmn6JO3H6dx48aQSqXIzc1Va8/NzYWHh4dBty2XyxEYGIguXboYdDtERKQ/HDeIiMRj1IWFtbU1OnXqhOTkZFVbRUUFkpOTa9wlrS8xMTHIyMjAiRMnDLodIiLSH44bRETiEf1QqIKCAmT9azJKdnY20tPT4erqCm9vb8TGxiIqKgqdO3dGaGgoVqxYgcLCQtXZPgxFLpdDLpdDqVQadDtERKQdjhtERMZJ9MLi5MmTkMlkqvuVE+CioqKQkJCA4cOH4/bt21iwYAFycnIQEhKCxMTEKhPz9C0mJgYxMTHIz8+Hk5OTQbdFRKZDInYA4rhBRGSkRC8swsPDIfxz+saaTJkyBVOmTKmjREREZMw4bhARGSejnmNBRERERESmgYVFDXh2DyJ6nCd9Y07mh+MGEZk7FhY14Nk9iIhIGxw3iMjcsbAgIiIiIiKdsbCoAXdpExGRNjhuEJG5Y2FRA+7SJiIibXDcICJzx8KCiIiIiIh0Jvp1LOqDiooKlJWViR1DbxQKBSwtLVFSUmJWV5A1dL+tra1hYcFanoiIiOonFhY6KisrQ3Z2NioqKsSOojeCIMDDwwNXr16FRGI+1xk2dL8tLCzQokULWFtb633dRERERGJjYVEDuVwOuVz+2G+uBUhw8+ZNSKVSeHl51ZtvoysqKlBQUAAHB4d60ydNGLLfFRUVuHHjBm7evAlvb2+zKtiIzIUm4wYRUX3GwqIGMTExiImJQX5+PpycnKpdptyyAYqKiuDp6Ql7e/s6Tmg4lYd22draml1hYch+u7m54caNGygvL4eVlZXe109E4tJk3CAiqs/M569GA1Ba2gEAD20hjVT+nvDbTCIiIqqPWFjo5OHhLDyshTTB3xMiIiKqz1hYEBHVggBB7AhERERGhYVFDXgFVSIi0gbHDSIydywsalBfr6C6du1aNGzYEOXl5aq2goICWFlZITw8XG3Z1NRUSCQSXLx4sdbbu3TpEiQSCdLT02u9DiIiU1Bfxw0iIk2xsDAzMpkMBQUFOHnypKrt4MGD8PDwwLFjx1BSUqJqT01Nhbe3N1q1aiVGVCIiIiIyISwszEybNm3QtGlTpKamqtpSU1MxYMAAtGjRAr/++quqff/+/ZDJZCgtLcW0adPQpEkT2Nra4plnnlH7Ri4vLw+jRo2Cm5sb7Ozs4O/vj/j4eABAixYtAAAdO3aERCJR2yuyYcMGtG3bFra2tggICMDq1atVj1Xu6di2bRtkMhns7e0RHByMo0ePGuiVISIiIiJdsLDQI0EQUFRWLspNEDSfSCqTyZCSkqK6n5KSgvDwcISFhanai4uLcezYMchkMsyePRs//vgjNm3ahLS0NPj5+aFPnz74+++/AQDz589HRkYG9uzZg8zMTKxZswaNGzcGABw/fhwAsG/fPty8eRPbtm0DAHz99ddYsGABFi1ahMzMTHzwwQeYP38+Nm3apJZ17ty5mDlzJtLT09G6dWuMGDFC7TAuIiIiIjIOvECeHhUrlAhcsFeUbWe82wf21pr9OGUyGWbMmIHy8nIUFxfj9OnTCAsLg0KhwNq1axEXF4cTJ06gtLQU4eHhiI6ORkJCAiIjIwEA69evR1JSEr744gvMmjULV65cQceOHdG5c2cAgK+vr2pbbm5uAIBGjRrBw8ND1R4XF4dly5Zh8ODBAB7u2cjIyMC6desQFRWlWm7mzJno27cvAGDhwoUICgpCVlYWAgICav9iEREREZHesbAwQ+Hh4SgsLMSJEyeQl5eH1q1bw83NDWFhYRg3bhxKSkpw6NAhtGzZEvfv34dCoUCPHj1Uz7eyskJoaCgyMzMBAJMmTcKQIUOQlpaG3r17Y+DAgXj66adr3H5hYSEuXryICRMmIDo6WtVeXl5e5Wq1HTp0UP2/adOmAIBbt26xsCAiIiIyMiwsaiCXyyGXy7W6SrKdlRQZ7/YxYKrHb1tTfn5+aN68OVJSUpCXl4ewsDAAgKenJ7y8vHDkyBEcPHgQMplMo/VFRkbi8uXL2L17N5KSkvDcc88hJiYGS5curXb5goICAA/3fHTt2lXtMalUvR9WVlaq/1deYK6iokKzjhIZBC90SNWrzbhBRFSfcI5FDWpz2kCJRAJ7a0tRbtpe1VkmkyE1NRWpqalqE6p79eqFxMREpKWlITw8HK1atYK1tTUOHz6sWkahUODEiRMIDAxUtbm5uSEqKgpfffUVVqxYgc8//xwAYG1tDQBqA627uzs8PT3x119/wc/PT+1WOdmbiMjU8HSzRGTuuMfCTMlkMsTExEChUKj2WABAWFgYpkyZgrKyMshkMjRo0ACTJk3CrFmz4OrqCm9vbyxZsgRFRUWYMGECAGDBggXo1KkTgoKCUFpail27dqFt27YAgCZNmsDOzg6JiYlo3rw5bG1t4eTkhIULF2LatGlwcnLCCy+8gNLSUpw8eRJ5eXmIjY0V5TUhIiIiotrjHgszJZPJUFxcDD8/P7i7u6vaw8LC8ODBA/j7+6vmNHz44YcYMmQIRo8ejaeeegpZWVnYu3cvXFxcADzcKzFnzhx06NABvXr1glQqxZYtWwAAlpaWWLlyJdatWwdPT08MGDAAADBx4kRs2LAB8fHxaN++PcLCwpCQkMA9FkREREQminsszJSvr2+1p6j18fGBUqlEfn6+qs3W1hYrV67EypUrq13XvHnzMG/evBq3NXHiREycOLFK+8iRIzFy5EiN8zk7O2t1Wl0ig+LvIhERkRrusSAiIiIiIp2xsCAiIiIiIp2xsCAiIiIiIp2xsNAFD7EmIiIiIgLAwoKIiIiIiPSAhUUN5HI5AgMD0aVLF7GjEBGRCeC4QUTmjoVFDXgFVSIi0gbHDSIydywsiIi0IRE7ABERkXFiYUFERERERDpjYUGkR76+vlixYoXYMagOCDwtHBERkRoWFmZm7dq1aNiwIcrLy1VtBQUFsLKyQnh4uNqyqampkEgkuHjxok7bvHTpEiQSCdLT03Vaj6bOnDmD/v37o0mTJrC1tYWvry+GDx+OW7du1cn2iYiIiMwRCwszI5PJUFBQgJMnT6raDh48CA8PDxw7dgwlJSWq9tTUVHh7e6NVq1ZiRK2V27dv47nnnoOrqyv27t2LzMxMxMfHw9PTE4WFhWLHIyIiIqq3WFiYmTZt2qBp06ZITU1VtaWmpmLAgAFo0aIFfv31V1X7/v37IZPJAAClpaWYNm2aai/AM888o3bmk7y8PIwaNQpubm6ws7ODv78/4uPjAQAtWrQAAHTs2BESiURtz8iGDRvQtm1b2NraIiAgAKtXr1Y9VrmnY9u2bZDJZLC3t0dwcDCOHj1aY/8OHz6M+/fvY8OGDejYsSNatGgBmUyGTz75RJVDqVRiwoQJaNGiBezs7NCmTRt8+umnausZO3YsBg4ciKVLl6Jp06Zo1KgRYmJioFAoVMvcunUL/fr1g52dHVq0aIGvv/5a0x8DERERUb1jKXYAkySp4bQwggAoiuo2SyUr+5pzPUImkyElJQVvvfUWACAlJQWzZ8+GUqlESkoKevXqheLiYhw7dgzjx48HAMyePRs//vgjNm3aBB8fHyxZsgR9+vRBVlYWXF1dMX/+fGRkZGDPnj1o3LgxsrKyUFxcDAA4fvw4QkNDsW/fPgQFBcHa2hoA8PXXX2PBggVYtWoVOnbsiNOnTyM6OhoNGjRAVFSUKu/cuXOxdOlS+Pv7Y+7cuRgxYgSysrJgaVn119fDwwPl5eXYvn07hg4dCkk1r0lFRQWaN2+O77//Ho0aNcKRI0fwyiuvwN3dHS+88IJquZSUFDRt2hQpKSnIysrC8OHDERISgujoaAAPi48bN24gJSUFVlZWmDZtGg+3IiIiIrPFwkKfFEXAB57ibPvtG4B1A40WlclkmDFjBsrLy1FcXIzTp08jLCwMCoUCa9euRVxcHE6cOIHS0lLIZDIUFhZizZo1SEhIQGRkJABg/fr1SEpKwhdffIFZs2bhypUr6NixIzp37gzg4STmSm5ubgCARo0awcPDQ9UeFxeHZcuWYfDgwQAe7tnIyMjAunXr1AqLmTNnom/fvgCAhQsXIigoCFlZWQgICKjSt27duuHtt9/GyJEj8dprryE0NBTPPvssxowZA3d3dwCAlZUVFi5cqHpOixYtcPToUXz//fdqhYWLiwtWrVoFqVSKgIAA9O3bF8nJyYiOjsaFCxewZ88eHD9+XHUxrC+++AJt27bV6GdAREREVN/U+0Ohrl69ivDwcAQGBqJDhw74/vvvxY4kuvDwcBQWFuLEiRM4ePAgWrduDTc3N4SFhanmWRw6dAgtW7aEt7c3Ll68CIVCgR49eqjWYWVlhdDQUGRmZgIAJk2ahC1btiAkJASzZ8/GkSNHHpuhsLAQFy9exIQJE+Dg4KC6vf/++1Umi3fo0EH1/6ZNmwLAY/cMLFq0CDk5OVi7di2CgoKwdu1aBAQE4OzZs6pl5HI5OnXqBDc3Nzg4OODzzz/H1atX1dYTFBQEqVSqtu3K7WZmZsLS0hKdOnVSPR4QEABnZ+fH9puIjB/HDSKi2qn3eywsLS2xYsUKhISEICcnB506dcKLL76IBg00+3ZfK1b2D/cciMHKXuNF/fz80Lx5c6SkpCAvLw9hYWEAAE9PT3h5eeHIkSM4ePCgan6FJiIjI3H58mXs3r0bSUlJeO655xATE4OlS5dWu3xBQQGAh3s+unbtqvbYv/+YBx4WMZUqD22qqKh4bJ5GjRph2LBhGDZsGD744AN07NgRS5cuxaZNm7BlyxbMnDkTy5YtQ/fu3dGwYUN8/PHHOHbsWI3brdz2k7ZLRKavTscNIqJ6pN4XFk2bNlV9y+3h4YHGjRvj77//NswAIZFofDiS2GQyGVJTU5GXl4dZs2ap2nv16oXExESkpaUhJiYGANCqVStYW1vj8OHD8PHxAQAoFAqcOHECM2bMUD3Xzc0NUVFRiIqKQs+ePTFr1iwsXbpUNadCqVSqlnV3d4enpyf++usvjBo1yqB9tba2RqtWrVRnhTp8+DCefvppTJ48WbWMtqfUDQgIQHl5OU6dOqU6FOqPP/7AvXv39JabiMRRp+MGEVE9IvqhUAcOHEC/fv3g6ekJiUSCHTt2VFlGLpfD19cXtra26Nq1K44fP16rbZ06dQpKpRJeXl46pjZ9MpkMhw4dQnp6umqPBQCEhYXh888/R1lZmWqPRYMGDTBp0iTMmjULiYmJyMjIQHR0NIqKijBhwgQAwIIFC7Bz505kZWXh3Llz2LVrl2q+QZMmTWBnZ4fExETk5ubi/v37AB7Ol1i8eDFWrlyJCxcu4OzZs4iPj8fy5ctr3a9du3bh5Zdfxq5du3DhwgX88ccfWLp0KXbv3o0BAwYAAPz9/XHy5Ens3bsXFy5cwPz589XOcKWJNm3a4IUXXsCrr76KY8eO4dSpU5g4cSLs7OxqnZ2INMNxg4jIOIleWBQWFiI4OBhyubzax7du3YrY2FjExcUhLS0NwcHB6NOnj9ox9iEhIWjXrl2V240b/z0s6e+//8aYMWPw+eefG7xPpkAmk6G4uBh+fn6qSc3Aw8LiwYMH8Pf3V31jBwAffvghhgwZgtGjR+Opp55CVlYW9u7dCxcXFwAP9wrMmTMHHTp0QK9evSCVSrFlyxYADw8rWLlyJdatWwdPT0/VH/gTJ07Ehg0bEB8fj/bt2yMsLAwJCQmq08LWRmBgIOzt7fHGG28gJCQE3bp1w3fffYcNGzZg9OjRAIBXX30VgwcPxvDhw9G1a1fcvXtXbe+FpiqvjxEWFobBgwfjlVdeQZMmTWqdnYg0w3GDiMhICUYEgLB9+3a1ttDQUCEmJkZ1X6lUCp6ensLixYs1Xm9JSYnQs2dPYfPmzVpnun//vgBAuHPnzn8bL6YIQpyjUPzFQCEjI0MoLi7Wer3GTKlUCnl5eYJSqRQ7Sp0ydL+Li4uN8velrKxM2LFjh1BWViZ2lDpV235//0KQkNEmQLj4/SYDJTOsO3fuCACE+/fvix1FL0xm3DARpv55YMr5TTm7IDC/ofzR4xkho02AUHz+jxqXMXT2ys80TcYNo55jUVZWhlOnTmHOnDmqNgsLC0RERDz2Imn/JggCxo4di2effVb1jfXjlJaWorS0VHU/Pz8fwMM5BZUXR5OUK2EJQIAAQRBQUVFRryb1CoKg+rc+9etJDN3viooKCIIAhUJRZYK6mCp/r/998T9zoGu/K5RKk3zNTDGzNox13DAVpv55YMr5TTk7wPwG88/fJuXlNX+eGDq7Nus16sLizp07UCqVaofqAA8n/p4/f16jdRw+fBhbt25Fhw4dVMfhfvnll2jfvn21yy9evFjtGgeVUlJSYG//8MxLjR+cQw8ABQWFKC4uRkFBAcrKyjTvmIl48OCB2BFEYah+l5WVobi4GAcOHEB5eblBtqGLpKQksSOIQtt+VxagGRkZOGe72xCRDKqoSKSLeNYRYx03TI2pfx6Ycn5Tzg4wv761LC2FJYCDBw+hLCvrscsaKrs244ZRFxb68Mwzz2j17fOcOXMQGxurup+fnw8vLy/IZDI0atQIACDJdgCyAAeHBrCzs4ODgwNsbW31nl0sgiDgwYMHaNiwYbVXrq6vDN3vkpIS2NnZoVevXkb1+6JQKJCUlITnn3++yil267Pa9nvn2rkAHs7n8XnxRUPFM5i7d++KHcHoGWLcMBWm/nlgyvlNOTvA/IaSveRjKAsK0LPnM7Bp3braZQydvXIvrCaMurBo3LgxpFIpcnNz1dpzc3PVruCsTzY2NrCxsYFcLodcLledItXKyuq/PyzLh4exSCCBRCKBhYUFLCxEnwevN5UDamXfzIWh+21hYQGJRKL+u2REjDWXodW23xZSqUm+XqaYWRtGO26YGFPODph2flPODjC/3v3zRael5ZNzGSq7Nus06r8ara2t0alTJyQnJ6vaKioqkJycjO7duxt02zExMcjIyND6NKRERCQejhtEROIRfY9FQUEBsv51zFh2djbS09Ph6uoKb29vxMbGIioqCp07d0ZoaChWrFiBwsJCjBs3TsTUREQkFo4bRETGSfTC4uTJk6oLsQFQHacaFRWFhIQEDB8+HLdv38aCBQuQk5ODkJAQJCYmVpmYp2+P7tImIiLjwHGDiMg4iV5YhIeHq86yUpMpU6ZgypQpdZTooZiYGMTExCA/Px9OTk41LPX43EREpH+mPW4QEdVfRj3HgoiIiIiITAMLixrI5XIEBgaiS5cuYkchA0hNTYVEIsG9e/fEjkJE9QTHDSIydywsalBfz+6xdu1aNGzYUO0CbQUFBbCyskJ4eLjaspV/fF+8eFGnbV66dAkSiQTp6ek6rUcbp0+fxrBhw+Du7g5bW1v4+/sjOjoaFy5cqLMMRGRe6uu4QUSkKRYWZkYmk6GgoAAnT55UtR08eBAeHh44duwYSkpKVO2pqanw9vZGq1atxIhaa7t27UK3bt1QWlqKr7/+GpmZmfjqq6/g5OSE+fPnix2P6gtOsSIiIlLDwsLMtGnTBk2bNkVqaqqqLTU1FQMGDECLFi3w66+/qtr379+vOvNKaWkppk2bhiZNmsDW1hbPPPOM2rdyeXl5GDVqFNzc3GBnZwd/f3/Ex8cDAFq0aAEA6NixIyQSidqekQ0bNqBt27awtbVFQEAAVq9erXqsck/Htm3bIJPJYG9vj+DgYBw9erTG/hUVFWHcuHF48cUX8dNPPyEiIgItWrRA165dsXTpUqxbt67a5929excjR45EYGAgHBwc0L59e3z77beqxzdv3oxGjRqhtLRU7XkDBw7E6NGja8xDREREZC5YWNSgNsfKCoKAIkWRKLcnnSHl32QyGVJSUlT3U1JSEB4ejrCwMFV7cXExjh07piosZs+ejR9//BGbNm1CWloa/Pz80KdPH/z9998AgPnz5yMjIwN79uxBZmYm1qxZg8aNGwMAjh8/DgDYt28fbt68iW3btgEAvv76ayxYsACLFi1CZmYmPvjgA8yfPx+bNm1Syzt37lzMnDkT6enpaN26NUaMGKF2KNe/7d27F3fu3MHs2bOrfdzZ2bna9pKSEnTq1Albt27Fb7/9hldeeQWjR49WZR82bBiUSiV++ukn1XNu3bqFn3/+GePHj6/5xSYis8E5FkRk7kQ/3ayxqs1pA4vLi9H1m64GTla9YyOPwd7KXqNlZTIZZsyYgfLychQXF+P06dMICwuDQqHA2rVrERcXhxMnTqC0tBQymQyFhYVYs2YNEhISEBkZCQBYv349kpKS8MUXX2DWrFm4cuUKOnbsiM6dOwMAfH19Vdtzc3MDADRq1AgeHh6q9ri4OCxbtgyDBw8G8HDPRkZGBtatW4eoqCjVcjNnzkTfvn0BAAsXLkRQUBCysrIQEBBQpW9//vknAFT72OM0a9YMb7zxBvLz8+Ho6IipU6di7969+O677xAaGgo7OzuMHDkS8fHxGDZsGADgq6++gre3d5W5KURknni6WSIydywszFB4eDgKCwtx4sQJ5OXloXXr1nBzc0NYWBjGjRuHkpISHDp0CC1btoS3tzd+++03KBQK9OjRQ7UOKysrhIaGIjMzEwAwadIkDBkyBGlpaejduzcGDhyIp59+usYMhYWFuHjxIiZMmIDo6GhVe3l5eZUBuUOHDqr/N23aFMDDvQXVFQ/a7Ln5N6VSiUWLFmHLli3IyclBWVkZSktLYW//32ItOjoaXbp0wfXr19GsWTMkJCRg7NixkEgktdomERERUX3CwkKP7CztcGzkMdG2rSk/Pz80b94cKSkpyMvLQ1hYGADA09MTXl5eOHLkCA4ePKh2ZdsniYyMxOXLl7F7924kJSXhueeeQ0xMDJYuXVrt8gUFBQAe7vno2lV9L49UKlW7b2Vlpfp/5R/xFRUV1a63devWAIDz58+je/fuGuf/+OOPsXLlSixatAihoaFo2LAhZsyYgbKyMtUyHTt2RHBwMDZv3ozevXvj3Llz+PnnnzXeBhEREVF9xsKiBnK5HHK5HEqlUuPnSCQSjQ9HEptMJkNqairy8vIwa9YsVXuvXr2QmJiItLQ0xMTEAABatWoFa2trHD58GD4+PgAAhUKBEydOYMaMGarnurm5ISoqClFRUejZsydmzZqFpUuXwtraGgDUXkt3d3d4enrir7/+wqhRo/TWr969e6Nx48ZYsmQJtm/fXuXxe/fuVTvP4vDhw+jfvz+GDx8OR0dHAMCFCxcQGBiottzEiROxYsUKXL9+HREREfDy8tJbdiIybbUZN4iI6hNO3q5BfT8fuUwmw6FDh5Cenq7aYwEAYWFh+Pzzz1FWVqbaY9GgQQNMmjQJs2bNQmJiIjIyMhAdHY2ioiJMmDABALBgwQLs3LkTWVlZOHfuHHbt2oW2bdsCAJo0aQI7OzskJiYiNzcX9+/fB/BwvsTixYuxcuVKXLhwAWfPnkV8fDyWL19e6341aNAAGzZswM8//4z+/ftj3759uHTpEk6ePInZs2fjtddeq/Z5/v7+2LdvH44dO4bMzEy8+uqryM3NrbLcyJEjce3aNaxfv56TtolITX0fN4iInoSFhZmSyWQoLi6Gn58f3N3dVe1hYWF48OAB/P39VfMZAODDDz/EkCFDMHr0aDz11FPIysrC3r174eLiAgCwtrbGnDlz0KFDB/Tq1QtSqRRbtmwBAFhaWmLlypVYt24dPD09MWDAAAAPv/3fsGED4uPj0b59e4SFhSEhIUF1etraGjBgAI4cOQIrKyuMHDkSAQEBGDFiBO7fv4/333+/2ufMmzcPHTt2xNChQ/Hss8/Cw8MDAwcOrLKck5MThgwZAgcHh2ofJyIiIjJXPBTKTPn6+lY70dnHxwdKpRL5+flq7ba2tli5ciVWrlxZ7frmzZuHefPm1bi9iRMnYuLEiVXaR44ciZEjR2qc0dnZWaMJ2p07d8aPP/5Y4+Ph4eFq63F1dcX27dtVZ4WysKi55r5+/TpGjRoFGxubJ+YgIiIiMhcsLIg0lJeXh9TUVKSmpqpdyI+IiIiIWFgQaaxjx47Iy8vDRx99hDZt2ogdh0RXu1MbExER1VcsLGrAs3vQoy5duiR2BCIyYhw3iMjccfJ2DR5/dg9eEI2IiNTxrFBEZO5YWBARERERkc5YWBARERERkc5YWBARERERkc5YWBARERERkc5YWBARERERkc5YWNRALpcjMDAQXbp0ETuKSUpISICzs7PYMYiI6gzHDSIydywsaqDRaQMF075AVk5ODqZOnYqWLVvCxsYGXl5e6NevH5KTk8WORkRkcni6WSIyd7xAnpm6dOkSevToAWdnZ3z88cdo3749FAoF9u7di6lTp+LXX38VOyIRERERmRDusTBTkydPhkQiwfHjxzFkyBC0bt0aQUFBiI2NxZEjRwAAV65cwYABA+Dg4ABHR0e89NJLyM3NVa3jzJkzkMlkaNiwIRwdHdGpUyecPHlSbTs7duyAv78/bG1t0adPH1y9ehXAw8LGwsKiyvIrVqyAj48PKioqDPwKENWO5J8LZAow7T2WRERE+sY9FnokCAKE4mJRti2xs4NEotkVwf/++28kJiZi0aJFaNCgQZXHnZ2dce/ePQwaNAgODg7Yv38/ysvLERMTg+HDhyM1NRUAMGrUKHTs2BFr1qyBVCpFeno6rKysVOspKirCokWLsHnzZlhbW2Py5Mn43//9Xxw+fBi+vr6IiIhAfHw8OnfurHpOfHw8xo4dCwsL1rxEREREpoSFhR4JxcX446lOomy7TdopSOztNVo2KysLgiAgICCgxmX279+Ps2fPIjs7G15eXgCAzZs3IygoCCdOnECXLl1w5coVzJo1S7Uef39/tXUoFAqsWrUKXbt2BQBs2rQJbdu2xfHjxxEaGoqJEyfitddew/Lly2FjY4O0tDScPXsWO3furM1LQEREREQi4tfCZkjQYNL5hQsX4OXlpSoqACAwMBDOzs7IzMwEAMTGxmLixImIiIjAhx9+iIsXL6qtw9LSUu3sKAEBAWrPHzhwIKRSKbZv3w7g4ZmkZDIZfH19de0iEREREdUx7rHQI4mdHdqknRJt25ry9/eHRCLB+fPnddrmO++8g5EjR+Lnn3/Gnj17EBcXhy1btmDQoEEaPd/a2hpjxoxBfHw8Bg8ejG+++QaffvqpTpmIiIiISBzcY6FHEokEFvb2otw0nV8BAK6urujTpw/kcjkKCwurPH7v3j20bt0aV69eVU22BoCMjAzcu3cPgYGBqrbWrVvj9ddfxy+//ILBgwcjPj5e9Vh5ebna5Ow//vgD9+7dQ9u2bVVtEydOxL59+7B69WqUl5dj8ODBGveDiIiIiIwHC4sa1PcLHcnlciiVSoSGhuLHH3/En3/+iczMTKxcuRI9evRAeHg42rdvj1GjRiEtLQ3Hjx/HmDFjEBYWhs6dO6O4uBhTpkxBamoqLl++jMOHD+PEiRNqRYOVlRWmTp2KY8eO4dSpUxg7diy6deuG0NBQ1TJt27ZFt27d8Oabb2LEiBGw02LPCxGRManv4wYR0ZOwsKhBfb/QUcuWLZGWlgaZTIY33ngD7dq1w/PPP4/k5GTI5XJIJBJs374dLi4u6NWrFyIiItCyZUts3boVACCVSnH37l2MGTMGrVu3xksvvYTIyEgsXLhQtQ17e3u8+eabGDlyJHr06AEHBwfV8/9twoQJKCsrw/jx4+us/0RE+lbfxw0ioifhHAsz1rRpU6xatQqrVq1Sa6+oqEB+fj68vb1rPEOTtbU1vv322xrXPXbsWIwdOxYAnnh40/Xr19G+fXt+y0dERERkwrjHgkRTUFCA33//HatWrcLUqVPFjkNEREREOmBhQaKZMmUKOnXqhPDwcB4GRURERGTieCgUiSYhIQEJCQlixyCqFQ0uB0NERGRWuMeCiIiIiIh0xsJCJw+/stTkStZE/D0hIiKi+oyFhQ6k5UUAgLKyMpGTkCmo/D2RSqUiJyEiIiLSP86x0IFleSHs7e1x+/ZtWFlZwcKiftRpFRUVKCsrQ0lJSb3pkyYM2e+Kigrcvn0b9vb2sLTk246IiIjqH/6FowMJBDRt2hTZ2dm4fPmy2HH0RhAEFBcXw87ODhKJROw4dcbQ/bawsIC3t7dZvaZERERkPup9YXHv3j1ERESgvLwc5eXlmD59OqKjo/W2fmtra/j7+9erw6EUCgUOHDiAXr16wcrKSuw4dcbQ/ba2tjarPUBEpsrQ4wYRUX1V7wuLhg0b4sCBA7C3t0dhYSHatWuHwYMHo1GjRnrbhoWFBWxtbfW2PrFJpVKUl5fD1tbWrAoLc+03Eamri3GDiKg+qvdfn0qlUtjb2wMASktLIQgCz85DREQ14rhBRFQ7ohcWBw4cQL9+/eDp6QmJRIIdO3ZUWUYul8PX1xe2trbo2rUrjh8/rtU27t27h+DgYDRv3hyzZs1C48aN9ZSeiIjqGscNIiLjJHphUVhYiODgYMjl8mof37p1K2JjYxEXF4e0tDQEBwejT58+uHXrlmqZkJAQtGvXrsrtxo0bAABnZ2ecOXMG2dnZ+Oabb5Cbm1snfSMiIv3juEFEZJxEn2MRGRmJyMjIGh9fvnw5oqOjMW7cOADA2rVr8fPPP2Pjxo146623AADp6ekabcvd3R3BwcE4ePAghg4dWu0ypaWlKC0tVd2/f/8+AODvv/9WtUnu34dlqQChSIHyu3c12rYpUSgUKCoqwt27d81qrgH7zX5roqhciQKlEhYPHuCuCb7/Kz/LTPnQHlMcN0yFqX8emHJ+U84OML+hFCgUUCqV+DsvDzY1jDmGzv7gwQMAGo4bghEBIGzfvl11v7S0VJBKpWptgiAIY8aMEfr376/ROnNycoT8/HxBEATh3r17QlBQkPDbb7/VuHxcXJyAh5fU5o033nirt7eLFy9q/RltjACOG7zxxhtvdXG7evXqEz8/Rd9j8Th37tyBUqmEu7u7Wru7uzvOnz+v0TouX76MV155RTX5burUqWjfvn2Ny8+ZMwexsbGq+/fu3YOPjw+uXLkCJyen2nXExOTn58PLywtXr16Fo6Oj2HHqDPvNfpuD+/fvw9vbG66urmJHMQiOG7ox9feFKec35ewA84vJ0NkFQcCDBw/g6en5xGWNurDQh9DQUI13eQOAjY0NbGxsqrQ7OTmZ3C+arhwdHc2uzwD7bW7Mtd+8pkrNOG6Y/vvClPObcnaA+cVkyOyafkli1CNL48aNIZVKq0yay83NhYeHh0ipiIjIWHHcICISj1EXFtbW1ujUqROSk5NVbRUVFUhOTkb37t1FTEZERMaI4wYRkXhEPxSqoKAAWVlZqvvZ2dlIT0+Hq6srvL29ERsbi6ioKHTu3BmhoaFYsWIFCgsLVWf7MDQbGxvExcVVu5u7vjLHPgPsN/ttHupDvzluGI4pZwdMO78pZweYX0zGlF3yz1k1RJOamgqZTFalPSoqCgkJCQCAVatW4eOPP0ZOTg5CQkKwcuVKdO3atY6TEhGRMeC4QURknEQvLIiIiIiIyPQZ9RwLIiIiIiIyDSwsiIiIiIhIZywsiIiIiIhIZywsAMjlcvj6+sLW1hZdu3bF8ePHH7v8999/j4CAANja2qJ9+/bYvXt3HSXVH236fO7cOQwZMgS+vr6QSCRYsWJF3QXVM236vX79evTs2RMuLi5wcXFBRETEE383jJU2/d62bRs6d+4MZ2dnNGjQACEhIfjyyy/rMK3+aPverrRlyxZIJBIMHDjQsAENRJt+JyQkQCKRqN1sbW3rMK35GTRoEFxcXDB06NAqj+3atQtt2rSBv78/NmzYIEI6zX3yyScICgpCYGAgpk2bBlObspmdnQ2ZTIbAwEC0b98ehYWFYkfSWlFREXx8fDBz5kyxo2js6tWrCA8PR2BgIDp06IDvv/9e7EhPZErvy0fV+estmLktW7YI1tbWwsaNG4Vz584J0dHRgrOzs5Cbm1vt8ocPHxakUqmwZMkSISMjQ5g3b55gZWUlnD17to6T1562fT5+/Lgwc+ZM4dtvvxU8PDyETz75pG4D64m2/R45cqQgl8uF06dPC5mZmcLYsWMFJycn4dq1a3WcXDfa9jslJUXYtm2bkJGRIWRlZQkrVqwQpFKpkJiYWMfJdaNtvytlZ2cLzZo1E3r27CkMGDCgbsLqkbb9jo+PFxwdHYWbN2+qbjk5OXWc2rykpKQIP/30kzBkyBC1doVCIfj7+wvXrl0THjx4ILRu3Vq4c+eOSCkf79atW0LLli2F4uJioby8XHj66aeFI0eOiB1LK7169RIOHDggCIIg3L17V1AoFCIn0t7bb78tvPTSS8Ibb7whdhSN3bhxQzh9+rQgCIJw8+ZNwdPTUygoKBA31GOY0vuyOnX9ept9YREaGirExMSo7iuVSsHT01NYvHhxtcu/9NJLQt++fdXaunbtKrz66qsGzalP2vb533x8fEy2sNCl34IgCOXl5ULDhg2FTZs2GSqiQejab0EQhI4dOwrz5s0zRDyDqU2/K/9A2rBhgxAVFWWShYW2/Y6PjxecnJzqKB1VSklJqVJYHD58WBg4cKDq/vTp04VvvvmmrqNp5NatW4K3t7eQl5cnFBcXC126dBGysrLEjqWx33//XXjuuefEjqGTCxcuCIMHDxbi4+NNqrB4VIcOHYQrV66IHaNGpvS+1IShX2+zPhSqrKwMp06dQkREhKrNwsICEREROHr0aLXPOXr0qNryANCnT58alzc2telzfaCPfhcVFUGhUMDV1dVQMfVO134LgoDk5GT88ccf6NWrlyGj6lVt+/3uu++iSZMmmDBhQl3E1Lva9rugoAA+Pj7w8vLCgAEDcO7cubqIa5QOHDiAfv36wdPTExKJBDt27KiyTG0PsXuSGzduoFmzZqr7zZo1w/Xr12u1LkP3w83NDTNnzoS3tzc8PT0RERGBVq1a1SqrGPn//PNPODg4oF+/fnjqqafwwQcf6C07UDe/RzNnzsTixYv1lPi/6vI9cOrUKSiVSnh5eemYuma69kef78va0OfPoy5eb7MuLO7cuQOlUgl3d3e1dnd3d+Tk5FT7nJycHK2WNza16XN9oI9+v/nmm6oB1FTUtt/379+Hg4MDrK2t0bdvX3z22Wd4/vnnDR1Xb2rT70OHDuGLL77A+vXr6yKiQdSm323atMHGjRuxc+dOfPXVV6ioqMDTTz+Na9eu1UVko1NYWIjg4GDI5fJqH9+6dStiY2MRFxeHtLQ0BAcHo0+fPrh165ZqmZCQELRr167K7caNG3XVDYP3Iy8vD7t27cKlS5dw/fp1HDlyBAcOHDCZ/OXl5Th48CBWr16No0ePIikpCUlJSSaTf+fOnWjdujVat26tt8x1lb3S33//jTFjxuDzzz/Xex/03R8x6St/Xb3eZn0o1PXr1wUAVY4LnTVrlhAaGlrtc6ysrKrsApPL5UKTJk0MllOfatPnfzPVQ6F07ffixYsFFxcX4cyZM4aKaBC17bdSqRT+/PNP4fTp08LSpUsFJycnISUlxcBp9Ufbfufn5wu+vr7C7t27VW2meCiUrr/ngiAIZWVlQqtWrUzu0DdDACBs375drU0fhxYKguaHQn399dfaB3+EIfrx3XffCZMnT1bdX7JkifDRRx/pnLU6hsh/5MgRoXfv3qr7S5YsEZYsWaKXvI8yRP633npLaN68ueDj4yM0atRIcHR0FBYuXKjP2IIgGO49UFJSIvTs2VPYvHmzvqJqpDb9MdT7sjZq+/Ooy9fbrPdYNG7cGFKpFLm5uWrtubm58PDwqPY5Hh4eWi1vbGrT5/pAl34vXboUH374IX755Rd06NDBkDH1rrb9trCwgJ+fH0JCQvDGG29g6NChBtnlbija9vvixYu4dOkS+vXrB0tLS1haWmLz5s346aefYGlpiYsXL9ZVdJ3o4/1tZWWFjh07IisryxARTZqhDyUNDQ3F77//juvXr6OgoAB79uxBnz59dF7vo/TRDy8vLxw5cgQlJSVQKpVITU1FmzZt9J61OvrI36VLF9y6dQt5eXmoqKjAgQMH0LZtW0NFVqOP/IsXL8bVq1dx6dIlLF26FNHR0ViwYIGhIqvoI7sgCBg7diyeffZZjB492lBRNaJJf+rqfVkbmuSv69fbrAsLa2trdOrUCcnJyaq2iooKJCcno3v37tU+p3v37mrLA0BSUlKNyxub2vS5Pqhtv5csWYL33nsPiYmJ6Ny5c11E1St9/bwrKipQWlpqiIgGoW2/AwICcPbsWaSnp6tu/fv3h0wmQ3p6ukGPR9Unffy8lUolzp49i6ZNmxoqpsnS16GkERERGDZsGHbv3o3mzZur/gCwtLTEsmXLIJPJVEV9o0aN9NoHQD/96NatG1588UV07NgRHTp0QKtWrdC/f3+9Z62OPvJbWlrigw8+QK9evdChQwf4+/vjf/7nfwwRtwpTPiRZH9kPHz6MrVu3YseOHQgJCUFISAjOnj1riLhPpEl/6up9WRua5K/r19vSYGs2EbGxsYiKikLnzp0RGhqKFStWoLCwEOPGjQMAjBkzBs2aNVN9Wzt9+nSEhYVh2bJl6Nu3L7Zs2YKTJ08a/pg1PdK2z2VlZcjIyFD9//r160hPT4eDgwP8/PxE64e2tO33Rx99hAULFuCbb76Br6+v6k3q4OAABwcH0fqhLW37vXjxYnTu3BmtWrVCaWkpdu/ejS+//BJr1qwRsxta06bftra2aNeundrznZ2dAaBKu7HT9uf97rvvolu3bvDz88O9e/fw8ccf4/Lly5g4caKY3ajX9u3bV+Nj/fv3r7M/0HW1aNEiLFq0SOwYtRYZGYnIyEixY+hs7NixYkfQyjPPPIOKigqxY2jFlN6Xj6rr19vsC4vhw4fj9u3bWLBgAXJychASEoLExERV9XflyhVYWPx3x87TTz+Nb775BvPmzcPbb78Nf39/7Nixw6T++NC2zzdu3EDHjh1V95cuXYqlS5ciLCwMqampdR2/1rTt95o1a1BWVlblIlZxcXF455136jK6TrTtd2FhISZPnoxr167Bzs4OAQEB+OqrrzB8+HCxulAr2va7vtC233l5eYiOjkZOTg5cXFzQqVMnHDlyBIGBgWJ1wWjVl0NJTb0fzC8eU85eHVPvj1HmN/gsDiIiIhOEGiZKTpkyRXVfqVQKzZo103rydl0y9X4wv3hMOXt1TL0/ppDf7PdYEBERVSooKFCbuJ6dnY309HS4urrC29v7iYeaGQtT7wfzi8eUs1fH1PtjcvlFKWeIiIiMUEpKigCgyi0qKkq1zGeffSZ4e3sL1tbWQmhoqPDrr7+KF7gGpt4P5hePKWevjqn3x9TySwRBEAxcuxARERERUT1X/2YuEhERERFRnWNhQUREREREOmNhQUREREREOmNhQUREREREOmNhQUREREREOmNhQWZlzZo18Pb2RoMGDTB48GDcvn37scv7+vpCIpFAIpHg3r17dRPSSFy6dEnV95CQELHjEBERkZFjYUFmY9u2bZg1axY+++wznDx5Eg8ePMDQoUOf+Lx3330XN2/ehJOTk8Gyffvttxg4cCD69OmD4cOHo6ioSO3xhQsX4uWXXzbItq9evYoRI0bghRdewPPPP4+DBw8CALy8vHDz5k288cYbBtkuERER1S8sLMhsLFq0CFOmTMGAAQPQtm1bbNq0CYcOHcKhQ4ce+7yGDRvCw8MDEonEYNlGjBiBLl264ObNm9i+fTuuXbum9vjOnTvRv39/g2zby8sLr7/+OoqLi3H06FH88ssvAACpVAoPDw84ODgYZLtERERUv7CwILOQl5eHtLQ09O3bV9Xm6emJdu3aYd++fVqv7/DhwwgPD4e9vT1cXFzQp08f5OXlAQDCw8MxdepUzJgxAy4uLnB3d8f69etRWFiIcePGoWHDhvDz88OePXvU1jl37lycOHECb775Jry8vFTtV69exblz5/DCCy8AAO7du4dXX30V7u7usLW1Rbt27bBr1y4AQEJCApydnbFr1y60adMG9vb2GDp0KIqKirBp0yb4+vrCxcUF06ZNg1KpVG0jNDQU+/fvx+rVqw1WwBAREVH9xsKCzMJff/0FAPDz81Nr9/f3Vz2mqfT0dDz33HMIDAzE0aNHcejQIfTr10/tD/VNmzahcePGOH78OKZOnYpJkyZh2LBhePrpp5GWlobevXtj9OjRqkOeiouLAQDW1tb4v//7P+zdu1e1rp9++gnh4eFwdHRERUUFIiMjcfjwYXz11VfIyMjAhx9+CKlUqlq+qKgIK1euxJYtW5CYmIjU1FQMGjQIu3fvxu7du/Hll19i3bp1+OGHHwAAJSUlqueWlJRg0aJFWr0eRESkH6mpqaq5bQMHDhQ7DgBAIpFgx44davclEgmcnZ1Fy0TGy1LsAER1ofIPeH9/f7X20tJSDBgwQKt1LVmyBJ07d8bq1atVbUFBQWrLBAcHY968eQCAOXPm4MMPP0Tjxo0RHR0NAFiwYAHWrFmD3377Dd26dcPUqVNx4cIF3L9/H35+fnjuuedU69q5c6cq4759+3D8+HFkZmaidevWAICWLVuqbVuhUGDNmjVo1aoVAGDo0KH48ssvkZubCwcHBwQGBkImkyElJQXDhw9HYmIilixZAgsLCxQUFGDFihVavR5EROZq7NixuHfvntof3j/88ANefvllLFq0qNZz1P744w80adJETykfb+HChfjzzz/x1VdfabT8zZs3sXXrVsTFxRk4GZkiFhZkFuzt7QE8/Dbo39+yTJ8+XfWYptLT0zFs2LDHLtOhQwfV/6VSKRo1aoT27dur2tzd3QEAt27dAgBs2LCh2vXk5+dj//79+OKLL1Tbbt68uaqoqI69vb2qqKjclq+vr9pcCXd3d9W2Bw4caDTfjBERmbINGzYgJiYGa9euxbhx42q9niZNmtTZHoGdO3firbfe0nh5Dw8Pg57MhEwbD4Uis1D5rb6joyP8/PxUt5KSkirf+D+JnZ3dE5exsrJSuy+RSNTaKieCV1RUPHY9e/bsQWBgoGrOhT62Xdn2pG0TEZHmlixZgqlTp2LLli1qRcUPP/yA9u3bw87ODo0aNUJERAQKCwu1WndFRQWWLFkCPz8/2NjYwNvbW3XYauWpwb/77jv07NkTdnZ26NKlCy5cuIATJ06gc+fOcHBwQGRkZJVTrD86h+/PP/9Er169YGtri8DAQCQlJen4qpC5YWFBZsHFxQWdOnVSnUoVAAoKCnD06FE8//zzWq2rQ4cOSE5O1nfEav37MKjKbV+7dg0XLlyok+0TEdGTvfnmm3jvvfewa9cuDBo0SNV+8+ZNjBgxAuPHj0dmZiZSU1MxePBgCIKg1forD6mdP38+MjIy8M0336j2fFeKi4vDvHnzkJaWBktLS4wcORKzZ8/Gp59+ioMHDyIrKwsLFixQe86jc/gGDx4Ma2trHDt2DGvXrsWbb75Z+xeFzBIPhSKzMXfuXEyaNAleXl5o0aIF5s2bh65du6JHjx5arWfOnDlo3749Jk+ejNdeew3W1tZISUnBsGHD0LhxY73lLS8vx549ezBz5kxVW1hYGHr16oUhQ4Zg+fLl8PPzw/nz5yGRSFTfOBERUd3Zs2cPdu7cieTkZDz77LNqj928eRPl5eUYPHgwfHx8AEDtsFhNPHjwAJ9++ilWrVqFqKgoAECrVq3wzDPPqC03c+ZM9OnTB8DDw3xHjBiB5ORk1Rg3YcIEJCQkqD3n0Tl858+fx969e+Hp6QkA+OCDDxAZGalVXjJv3GNBZmPQoEF45513MGHCBAQHB0OhUOC7777Tej2tW7fGL7/8gjNnziA0NBTdu3fHzp07YWmp3zp9//79cHBwwFNPPaXW/uOPP6JLly4YMWIEAgMDMXv2bLUzUhERUd3p0KEDfH19ERcXh4KCArXHgoOD8dxzz6F9+/YYNmwY1q9frzo1uaYyMzNRWlqqdlKPmnJUqtyb8ejcvsq5dcB/5/BVnmI8MzMTXl5eqqICALp3765VViLusSCz8tprr+G1117TeT1hYWE4fPhwtY+lpqZWabt06VKVtiftCt+5cyf69etXpd3V1RUbN26s9jljx47F2LFj1dreeecdvPPOO2ptj35rRUREtdOsWTP88MMPkMlkeOGFF7Bnzx40bNgQwMOTdyQlJeHIkSP45Zdf8Nlnn2Hu3Lk4duwYWrRoodH6NZlbB6DaeXyPtv17bt2jc/iI9IF7LIie4M0334SDgwPu379fp9tt164dJk2aVKfb/LcrV67AwcEBH3zwgWgZiIhMgY+PD/bv34+cnBy88MILePDggeoxiUSCHj16YOHChTh9+jSsra2xfft2jdft7+8POzs7vc/te3QOX9u2bXH16lXcvHlT1fbrr7/qdZtU/3GPBdFj7N+/HwqFAgBU30DVlVdeeaVOt/coT09PpKenAwBsbGxEzUJEZOy8vLyQmpoKmUyGPn36IDExEZmZmUhOTkbv3r3RpEkTHDt2DLdv30bbtm01Xq+trS3efPNNzJ49G9bW1ujRowdu376Nc+fOYcKECbXKWt0cvoiICLRu3RpRUVH4+OOPkZ+fj7lz59Zq/WS+WFgQPUblZDtzZGlpWeVK5UREVLPmzZurFRdr167FgQMHsGLFCuTn58PHxwfLli3TekL0/PnzYWlpiQULFuDGjRto2rSpTof1VjeHz8LCAtu3b8eECRMQGhoKX19frFy5kicGIa1IBG3PeUZEREREeldZlOTl5Rn0AnnTpk1DeXk5Vq9eXavnJyQkYMaMGbh3755+g5HJ4x4LIiIiIiPSvHlz9OvXD99++61B1t+uXbtan/HJwcEB5eXlsLW11XMqqg+4x4KIiIjICBQXF+P69esAHv4B7+HhIXKiqrKysgA8POOVpme2IvPBwoKIiIiIiHTG080SEREREZHOWFgQEREREZHOWFgQEREREZHOWFgQEREREZHOWFgQEREREZHOWFgQEREREZHOWFgQEREREZHOWFgQEREREZHOWFgQEREREZHO/h/+fnEiZy8EygAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# More extensive plot method\n", + "f, axs = plt.subplots(1, 2, figsize=(8,6))\n", + "\n", + "pe.plot_swrc(wos, ax=axs[0], label=\"Wosten\")\n", + "pe.plot_swrc(woss, ax=axs[0], label=\"Wosten Sand\")\n", + "pe.plot_swrc(wosc, ax=axs[0], label=\"Wosten Clay\")\n", + "pe.plot_swrc(cosb, ax=axs[0], label=\"Cosby\")\n", + "\n", + "axs[0].legend()\n", + "axs[0].set_yscale(\"log\")\n", + "axs[0].set_ylabel(\"\\N{GREEK SMALL LETTER PSI} [cm]\")\n", + "axs[0].set_title(\"Soil Water Retention Curve\")\n", + "axs[0].set_xlabel(\"\\N{GREEK SMALL LETTER THETA} [cm\\N{SUPERSCRIPT THREE}/cm\\N{SUPERSCRIPT THREE}]\")\n", + "axs[0].set_xlim(0,0.5)\n", + "\n", + "\n", + "pe.plot_hcf(wos, ax=axs[1], label=\"Wosten\")\n", + "pe.plot_hcf(woss, ax=axs[1], label=\"Wosten Sand\")\n", + "pe.plot_hcf(wosc, ax=axs[1], label=\"Wosten Clay\")\n", + "pe.plot_hcf(cosb, ax=axs[1], label=\"Cosby\")\n", + "\n", + "axs[1].legend()\n", + "axs[1].set_yscale(\"log\")\n", + "axs[1].set_ylabel(\"\\N{GREEK CAPITAL LETTER PSI} [cm]\")\n", + "axs[1].set_title(\"Hydraulic Conductivity Function\")\n", + "axs[1].set_xlabel(\"Ks [cm/d]\")\n", + "axs[1].set_xscale(\"log\")\n", + "axs[1].set_xlim(1e-10, 1e3)\n", + "\n", + "f.tight_layout()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "pydon", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/doc/examples/04_curve_fitting.ipynb b/doc/examples/04_curve_fitting.ipynb new file mode 100644 index 0000000..e69de29 From 530b5171bb8c8a47ca76f4933c1090ebfebc0ff4 Mon Sep 17 00:00:00 2001 From: martinvonk Date: Wed, 27 Dec 2023 17:04:40 +0100 Subject: [PATCH 02/16] add local poetry working environment --- pyproject.toml | 27 +++++++++++++++++++++++++++ 1 file changed, 27 insertions(+) diff --git a/pyproject.toml b/pyproject.toml index 16fa028..7f0b7de 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -33,6 +33,33 @@ pytesting = ["pytest>=7", "pytest-cov", "pytest-sugar"] coveraging = ["coverage"] dev = ["pedon[linting,formatting,typing,pytesting]", "tox"] +[tool.poetry] +name = "pedonenv" +version = "0.0.0" +description = "Development Virtual Environment" +authors = ["poetry"] + +[tool.poetry.dependencies] +python = "^3.10" +numpy = "^1.3" +scipy = "^1.6" +pandas = "^2.0" +matplotlib = "^3.6" +openpyxl = "^3.0" +flake8 = "^6.1.0" +ruff = "^0.1.9" +black = { extras = ["jupyter"], version = "^23.12.1" } +isort = "^5.13.2" +mypy = "^1.8.0" +pandas-stubs = "^2.1.4.231218" +pytest = "^7.4.3" +pytest-cov = "^4.1.0" +pytest-sugar = "^0.9.7" +coverage = "^7.3.4" +tox = "^4.11.4" +setuptools = "^69.0.3" +ipykernel = "^6.28.0" + [tool.setuptools] include-package-data = true From 4a8d6e0cb3cdb476290c16d04d885c653c87e46f Mon Sep 17 00:00:00 2001 From: martinvonk Date: Wed, 27 Dec 2023 17:05:51 +0100 Subject: [PATCH 03/16] use csv as dataset instead of xlsx --- src/pedon/datasets/soilsamples.csv | 110 +++++++++++++++++++++++++++++ src/pedon/soil.py | 76 ++++++++++---------- src/pedon/soilmodel.py | 2 +- 3 files changed, 151 insertions(+), 37 deletions(-) create mode 100644 src/pedon/datasets/soilsamples.csv diff --git a/src/pedon/datasets/soilsamples.csv b/src/pedon/datasets/soilsamples.csv new file mode 100644 index 0000000..501dd30 --- /dev/null +++ b/src/pedon/datasets/soilsamples.csv @@ -0,0 +1,110 @@ +name;source;soilmodel;description;soil type;k_s;theta_r;theta_s;alpha;n;l;h_b;silt_p;clay_p;om_p;m50;rho;silt_p min;silt_p max;clay_p min;clay_p max;om_p min;om_p max;m50 min;m50 max;rho min;rho max +Sand;HYDRUS;Genuchten;;Sand;712.8;0.045;0.43;0.145;2.68;0.5;;;;;;;;;;;;;;;; +Loamy Sand;HYDRUS;Genuchten;;Loamy Sand;350.2;0.057;0.41;0.125;2.28;0.5;;;;;;;;;;;;;;;; +Sandy Loam;HYDRUS;Genuchten;;Sandy Loam;106.1;0.065;0.41;0.075;1.89;0.5;;;;;;;;;;;;;;;; +Loam;HYDRUS;Genuchten;;Loam;24.96;0.078;0.43;0.036;1.56;0.5;;;;;;;;;;;;;;;; +Silt;HYDRUS;Genuchten;;Silt;6;0.034;0.46;0.016;1.37;0.5;;;;;;;;;;;;;;;; +Silt Loam;HYDRUS;Genuchten;;Silt Loam;10.8;0.067;0.45;0.02;1.41;0.5;;;;;;;;;;;;;;;; +Sandy Clay Loam;HYDRUS;Genuchten;;Sandy Clay Loam;31.44;0.1;0.39;0.059;1.48;0.5;;;;;;;;;;;;;;;; +Clay Loam;HYDRUS;Genuchten;;Clay Loam;6.24;0.095;0.41;0.019;1.31;0.5;;;;;;;;;;;;;;;; +Silty Clay Loam;HYDRUS;Genuchten;;Silty Clay Loam;1.68;0.089;0.43;0.01;1.23;0.5;;;;;;;;;;;;;;;; +Sandy Clay;HYDRUS;Genuchten;;Sandy Clay;2.88;0.1;0.38;0.027;1.23;0.5;;;;;;;;;;;;;;;; +Silty Clay;HYDRUS;Genuchten;;Silty Clay;0.48;0.07;0.36;0.005;1.09;0.5;;;;;;;;;;;;;;;; +Clay;HYDRUS;Genuchten;;Clay;4.8;0.068;0.38;0.008;1.09;0.5;;;;;;;;;;;;;;;; +B01;Staring_2018;Genuchten;leemarm zeer fijn tot matig fijn zand;Sand;31.23;0.02;0.427;0.0217;1.735;0.981;;5;0;7.50;0.01575;;0;10;;;0;15;0.0105;0.0210;1.40;1.70 +B02;Staring_2018;Genuchten;zwak lemig zeer fijn tot matig fijn zand;Sand;83.24;0.02;0.434;0.0216;1.35;7.202;;14;0;7.50;0.01575;;10;18;;;0;15;0.0105;0.0210;1.20;1.60 +B03;Staring_2018;Genuchten;sterk lemig zeer fijn tot matig fijn zand;Sand;19.08;0.02;0.443;0.015;1.51;0.139;;25.50;0;7.50;0.01575;;18;33;;;0;15;0.0105;0.0210;1.10;1.50 +B04;Staring_2018;Genuchten;zeer sterk lemig zeer fijn tot matig fijn zand;Sand;34.88;0.02;0.462;0.0149;1.40;0.295;;41.50;0;7.50;0.01575;;33;50;;;0;15;0.0105;0.0210;1.10;1.50 +B05;Staring_2018;Genuchten;grof zand;Sand;63.65;0.01;0.381;0.0428;1.81;0.024;;0;0;7.50;0.1105;;;;;;0;15;0.0210;0.2000;1.30;1.60 +B06;Staring_2018;Genuchten;keileem;Sand;104.1;0.01;0.385;0.0209;1.24;-1.2;;25;0;7.50;0.1025;;0;50;;;0;15;0.0050;0.2000;1.10;1.60 +B07;Staring_2018;Genuchten;zeer lichte zavel;Sand;14.58;0;0.401;0.0183;1.25;0.952;;0;10;7.50;;;;;8;12;0;15;;;1.20;1.80 +B08;Staring_2018;Genuchten;matig lichte zavel;Sand;3;0.01;0.433;0.0105;1.28;-1.919;;0;15;7.50;;;;;12;18;0;15;;;1.20;1.60 +B09;Staring_2018;Genuchten;zware zavel;Sand;1.75;0;0.43;0.007;1.27;-2.387;;0;21.50;7.50;;;;;18;25;0;15;;;1.20;1.60 +B10;Staring_2018;Genuchten;lichte klei;Clay;3.83;0.01;0.448;0.0128;1.14;4.581;;0;30;7.50;;;;;25;35;0;15;;;1.10;1.60 +B11;Staring_2018;Genuchten;matig zware klei;Clay;6.31;0.01;0.591;0.0216;1.11;-5.549;;0;42.50;7.50;;;;;35;50;0;15;;;0.90;1.70 +B12;Staring_2018;Genuchten;zeer zware klei;Clay;2.25;0.01;0.53;0.0166;1.09;-4.494;;0;75;7.50;;;;;50;100;0;15;;;0.90;1.30 +B13;Staring_2018;Genuchten;zandige leem;Sandy Loam;29.83;0.01;0.416;0.0084;1.44;-1.357;;67.50;0;7.50;;;50;85;;;0;15;;;1;1.60 +B14;Staring_2018;Genuchten;siltige leem;Silt Loam;0.9;0.01;0.417;0.0054;1.30;-0.335;;92.50;0;7.50;;;85;100;;;0;15;;;1.10;1.60 +B15;Staring_2018;Genuchten;venig zand;Peat;87.45;0.01;0.528;0.0237;1.28;-1.478;;0;4;20;;;;;0;8;15;25;;;1;1.30 +B16;Staring_2018;Genuchten;zandig veen en veen;Peat;12.36;0.01;0.786;0.0211;1.28;-1.221;;0;4;62.50;;;;;0;8;25;100;;;0.20;1 +B17;Staring_2018;Genuchten;venige klei;Peat;4.48;0;0.719;0.0191;1.14;0;;0;54;30.50;;;;;8;100;16;45;;;0.90;1.20 +B18;Staring_2018;Genuchten;kleiig veen;Peat;13.14;0;0.765;0.0205;1.15;0;;0;54;47.50;;;;;8;100;25;70;;;0.40;0.80 +O01;Staring_2018;Genuchten;leemarm zeer fijn tot matig fijn zand;Sand;22.32;0.01;0.366;0.016;2.16;2.868;;5;0;1.50;0.01575;;0;10;;;0;3;0.0105;0.0210;1.40;1.80 +O02;Staring_2018;Genuchten;zwak lemig zeer fijn tot matig fijn zand;Sand;22.76;0.02;0.387;0.0161;1.52;2.44;;14;0;1.50;0.01575;;10;18;;;0;3;0.0105;0.0210;1.40;1.70 +O03;Staring_2018;Genuchten;sterk lemig zeer fijn tot matig fijn zand;Sand;12.37;0.01;0.34;0.0172;1.70;0;;25.50;0;1.50;0.01575;;18;33;;;0;3;0.0105;0.0210;1.40;1.80 +O04;Staring_2018;Genuchten;zeer sterk lemig zeer fijn tot matig fijn zand;Sand;25.81;0.01;0.364;0.0136;1.49;2.179;;41.50;0;1.50;0.01575;;33;50;;;0;3;0.0105;0.0210;1.40;1.70 +O05;Staring_2018;Genuchten;grof zand;Sand;17.42;0.01;0.337;0.0303;2.89;0.074;;;0;1.50;0.1105;;;;;;0;3;0.0210;0.2000;1.50;1.70 +O06;Staring_2018;Genuchten;keileem;Sand;32.83;0.01;0.333;0.016;1.29;-1.01;;25;0;1.50;0.1025;;0;50;;;0;3;0.0050;0.2000;1.10;1.60 +O07;Staring_2018;Genuchten;beekleem;Sand;37.55;0.01;0.513;0.012;1.15;-2.013;;41.50;0;1.50;0.0100;;33;50;;;0;3;0.0050;0.0105;1;1.70 +O08;Staring_2018;Genuchten;zeer lichte zavel;Sand;8.64;0;0.454;0.0113;1.35;-0.904;;0;10;1.50;;;;;8;12;0;3;;;1.40;1.60 +O09;Staring_2018;Genuchten;matig lichte zavel;Sand;3.77;0;0.458;0.0097;1.38;-1.013;;0;15;1.50;;;;;12;18;0;3;;;1.30;1.70 +O10;Staring_2018;Genuchten;zware zavel;Sand;2.3;0.01;0.472;0.01;1.25;-0.793;;0;21.50;1.50;;;;;18;25;0;3;;;1.30;1.50 +O11;Staring_2018;Genuchten;lichte klei;Clay;2.12;0;0.444;0.0143;1.13;2.357;;0;30;1.50;;;;;25;35;0;3;;;1.30;1.60 +O12;Staring_2018;Genuchten;matig zware klei;Clay;1.08;0.01;0.561;0.0088;1.16;-3.172;;0;42.50;1.50;;;;;35;50;0;3;;;1;1.50 +O13;Staring_2018;Genuchten;zeer zware klei;Clay;9.69;0.01;0.573;0.0279;1.08;-6.091;;0;75;1.50;;;;;50;100;0;3;;;1;1.40 +O14;Staring_2018;Genuchten;zandige leem;Sandy Loam;2.5;0.01;0.394;0.0033;1.62;0.514;;67.50;0;1.50;;;50;85;;;0;3;;;1;1.60 +O15;Staring_2018;Genuchten;siltige leem;Silt Loam;2.79;0.01;0.41;0.0078;1.29;0;;92.50;0;1.50;;;85;100;;;0;3;;;1.10;1.60 +O16;Staring_2018;Genuchten;oligotroof veen;Peat;1.46;0;0.889;0.0097;1.36;-0.665;;0;0;67.50;;;;;;;35;100;;;0.10;0.70 +O17;Staring_2018;Genuchten;mesotroof en eutroof veen;Peat;3.4;0.01;0.849;0.0119;1.27;-1.249;;0;0;67.50;;;;;;;35;100;;;0.10;0.60 +O18;Staring_2018;Genuchten;moerige tussenlaag;Peat;35.95;0.01;0.58;0.0127;1.32;-0.786;;0;0;25;;;;;;;15;35;;;0.80;1.40 +Medium Sand;VS2D;Genuchten;;Medium Sand;40000;0.02;0.375;0.0431;3.1;0.5;;;;;;;;;;;;;;;; +Sandy Loam;VS2D;Genuchten;;Sandy Loam;70;0.15;0.496;0.00847;4.8;0.5;;;;;;;;;;;;;;;; +Silt Loam;VS2D;Genuchten;;Silt Loam;22.5;0.17;0.43;0.00505;7.0;0.5;;;;;;;;;;;;;;;; +Del Monte Sand;VS2D;Genuchten;20 mesh;Sand;700000;0.036;0.36;0.00142;6.30;0.5;;;;;;;;;;;;;;;; +Fresno Medium Sand;VS2D;Genuchten;;Sand;40000;0.02;0.375;0.00232;3.10;0.5;;;;;;;;;;;;;;;; +Unconsolidated Sand;VS2D;Genuchten;;Sand;850;0.051;0.424;0.00134;9.00;0.5;;;;;;;;;;;;;;;; +Sand;VS2D;Genuchten;;Sand;820;0.069;0.435;0.00326;3.90;0.5;;;;;;;;;;;;;;;; +Fine Sand;VS2D;Genuchten;G.E. 13 - alpha 0.0104 in VS2DRTI;Sand;210;0.072;0.377;0.0096;6.90;0.5;;;;;;;;;;;;;;;; +Columbia Sandy Loam;VS2D;Genuchten;;Sandy Loam;70;0.15;0.496;0.0118;4.80;0.5;;;;;;;;;;;;;;;; +Touchet Silt Loam;VS2D;Genuchten;G.E. 3;Silt Loam;22;0.17;0.43;0.0198;7.00;0.5;;;;;;;;;;;;;;;; +Hygiene Sandstone;VS2D;Genuchten;;Sand;15;0.15;0.25;0.0126;10.60;0.5;;;;;;;;;;;;;;;; +Adelanto Loam;VS2D;Genuchten;;Loam;3.9;0.16;0.42;0.0274;2.06;0.5;;;;;;;;;;;;;;;; +Limon Silt;VS2D;Genuchten;imbibition data;Silt;1.3;0.001;0.449;0.00651;1.30;0.5;;;;;;;;;;;;;;;; +Yolo Light Clay;VS2D;Genuchten;alpha 0.0249 in VS2DRTI;Clay;1.1;0.175;0.495;0.00401;1.60;0.5;;;;;;;;;;;;;;;; +Del Monte Sand;VS2D;Brooks;20 mesh;Sand;700000;0.011;0.36;;;2.5;0.112;;;;;;;;;;;;;;; +Fresno Medium Sand;VS2D;Brooks;;Sand;40000;0;0.375;;;0.84;0.149;;;;;;;;;;;;;;; +Unconsolidated Sand;VS2D;Brooks;;Sand;850;0.09;0.424;;;4.4;0.114;;;;;;;;;;;;;;; +Sand;VS2D;Brooks;;Sand;820;0;0.435;;;0.84;0.196;;;;;;;;;;;;;;; +Fine Sand;VS2D;Brooks;G.E. 13 - alpha 0.0104 in VS2DRTI;Sand;210;0.063;0.377;;;3.7;0.82;;;;;;;;;;;;;;; +Columbia Sandy Loam;VS2D;Brooks;;Sandy Loam;70;0.11;0.496;;;1.6;0.85;;;;;;;;;;;;;;; +Touchet Silt Loam;VS2D;Brooks;G.E. 3;Silt Loam;22;0.095;0.43;;;1.7;1.45;;;;;;;;;;;;;;; +Hygiene Sandstone;VS2D;Brooks;;Sand;15;0.13;0.25;;;2.9;1.06;;;;;;;;;;;;;;; +Adelanto Loam;VS2D;Brooks;;Loam;3.9;0.13;0.42;;;0.51;1.41;;;;;;;;;;;;;;; +Limon Silt;VS2D;Brooks;imbibition data;Silt;1.3;0;0.449;;;0.22;0.338;;;;;;;;;;;;;;; +Yolo Light Clay;VS2D;Brooks;alpha 0.0249 in VS2DRTI;Clay;1.1;0.055;0.495;;;0.25;0.181;;;;;;;;;;;;;;; +B01;Staring_2001;Genuchten;leemarm zeer fijn tot matig fijn zand;Sand;31.23;0.02;0.427;0.0217;1.735;0.981;;7;0;2.50;0.0155;1.55;;;;;;;;;; +B02;Staring_2001;Genuchten;zwak lemig zeer fijn tot matig fijn zand;Sand;83.24;0.02;0.434;0.0216;1.35;7.202;;14.50;0;5.50;0.0150;1.40;0;10;;;0;15;0.0105;0.0210;; +B03;Staring_2001;Genuchten;sterk lemig zeer fijn tot matig fijn zand;Sand;19.08;0.02;0.443;0.015;1.51;0.139;;23.50;0;8;0.0135;1.30;10;18;;;0;15;0.0105;0.0210;; +B04;Staring_2001;Genuchten;zeer sterk lemig zeer fijn tot matig fijn zand;Sand;34.88;0.02;0.462;0.0149;1.40;0.295;;43.50;0;3.50;0.0139;1.30;18;33;;;0;15;0.0105;0.0210;; +B05;Staring_2001;Genuchten;grof zand;Sand;63.65;0.01;0.381;0.0428;1.81;0.024;;0;0;2;0.0425;1.45;33;50;;;0;15;0.0105;0.0210;; +B06;Staring_2001;Genuchten;keileem;Sand;104.1;0.01;0.385;0.0209;1.24;-1.2;;22;0;4.50;0.0275;1.35;;;;;0;15;0.0210;0.2000;; +B07;Staring_2001;Genuchten;zeer lichte zavel;Sand;14.58;0;0.401;0.0183;1.25;0.952;;0;11;3.50;;1.50;0;50;;;0;15;0.0050;0.2000;; +B08;Staring_2001;Genuchten;matig lichte zavel;Sand;3;0.01;0.433;0.0105;1.28;-1.919;;0;14;2;;1.40;;;8;12;0;15;;;; +B09;Staring_2001;Genuchten;zware zavel;Sand;1.75;0;0.43;0.007;1.27;-2.387;;0;21.50;4.50;;1.40;;;12;18;0;15;;;; +B10;Staring_2001;Genuchten;lichte klei;Clay;3.83;0.01;0.448;0.0128;1.14;4.581;;0;30.50;3.50;;1.35;;;18;25;0;15;;;; +B11;Staring_2001;Genuchten;matig zware klei;Clay;6.31;0.01;0.591;0.0216;1.11;-5.549;;0;42.50;9;;1.30;;;25;35;0;15;;;; +B12;Staring_2001;Genuchten;zeer zware klei;Clay;2.25;0.01;0.53;0.0166;1.09;-4.494;;0;64;4;;1.10;;;35;50;0;15;;;; +B13;Staring_2001;Genuchten;zandige leem;Sandy Loam;29.83;0.01;0.416;0.0084;1.44;-1.357;;67.50;0;4.50;;1.30;;;50;100;0;15;;;; +B14;Staring_2001;Genuchten;siltige leem;Silt Loam;0.9;0.01;0.417;0.0054;1.30;-0.335;;90;0;3;;1.35;50;85;;;0;15;;;; +B15;Staring_2001;Genuchten;venig zand;Peat;87.45;0.01;0.528;0.0237;1.28;-1.478;;0;4;18.50;;1.15;85;100;;;0;15;;;; +B16;Staring_2001;Genuchten;zandig veen en veen;Peat;12.36;0.01;0.786;0.0211;1.28;-1.221;;0;4;54;;0.60;;;0;8;15;25;;;; +B17;Staring_2001;Genuchten;venige klei;Peat;4.48;0;0.719;0.0191;1.14;0;;0;55;25;;1.05;;;0;8;25;100;;;; +B18;Staring_2001;Genuchten;kleiig veen;Peat;13.14;0;0.765;0.0205;1.15;0;;0;45;47.50;;0.60;;;8;100;16;45;;;; +O01;Staring_2001;Genuchten;leemarm zeer fijn tot matig fijn zand;Sand;22.32;0.01;0.366;0.016;2.16;2.868;;5.50;0;1.50;0.0155;1.60;;;8;100;25;70;;;; +O02;Staring_2001;Genuchten;zwak lemig zeer fijn tot matig fijn zand;Sand;22.76;0.02;0.387;0.0161;1.52;2.44;;13;0;2;0.0140;1.55;0;10;;;0;3;0.0105;0.0210;; +O03;Staring_2001;Genuchten;sterk lemig zeer fijn tot matig fijn zand;Sand;12.37;0.01;0.34;0.0172;1.70;0;;26;0;1;0.0143;1.60;10;18;;;0;3;0.0105;0.0210;; +O04;Staring_2001;Genuchten;zeer sterk lemig zeer fijn tot matig fijn zand;Sand;25.81;0.01;0.364;0.0136;1.49;2.179;;41.50;0;1;0.0149;1.55;18;33;;;0;3;0.0105;0.0210;; +O05;Staring_2001;Genuchten;grof zand;Sand;17.42;0.01;0.337;0.0303;2.89;0.074;;0;0;1;0.0310;1.60;33;50;;;0;3;0.0105;0.0210;; +O06;Staring_2001;Genuchten;keileem;Sand;32.83;0.01;0.333;0.016;1.29;-1.01;;22.50;0;4;0.0275;1.35;;;;;0;3;0.0210;0.2000;; +O07;Staring_2001;Genuchten;beekleem;Sand;37.55;0.01;0.513;0.012;1.15;-2.013;;40;0;2;0.0120;1.35;0;50;;;0;3;0.0050;0.2000;; +O08;Staring_2001;Genuchten;zeer lichte zavel;Sand;8.64;0;0.454;0.0113;1.35;-0.904;;0;9.50;1;;1.50;33;50;;;0;3;0.0050;0.0150;; +O09;Staring_2001;Genuchten;matig lichte zavel;Sand;3.77;0;0.458;0.0097;1.38;-1.013;;0;14.50;1;;1.50;;;8;12;0;3;;;; +O10;Staring_2001;Genuchten;zware zavel;Sand;2.3;0.01;0.472;0.01;1.25;-0.793;;0;20;1.50;;1.40;;;12;18;0;3;;;; +O11;Staring_2001;Genuchten;lichte klei;Clay;2.12;0;0.444;0.0143;1.13;2.357;;0;30.50;2;;1.45;;;18;25;0;3;;;; +O12;Staring_2001;Genuchten;matig zware klei;Clay;1.08;0.01;0.561;0.0088;1.16;-3.172;;0;41.50;1.50;;1.25;;;25;35;0;3;;;; +O13;Staring_2001;Genuchten;zeer zware klei;Clay;9.69;0.01;0.573;0.0279;1.08;-6.091;;0;63.50;1.50;;1.20;;;35;50;0;3;;;; +O14;Staring_2001;Genuchten;zandige leem;Sandy Loam;2.5;0.01;0.394;0.0033;1.62;0.514;;67.50;0;1;;1.30;;;50;100;0;3;;;; +O15;Staring_2001;Genuchten;siltige leem;Silt Loam;2.79;0.01;0.41;0.0078;1.29;0;;88.50;0;2;;1.35;50;85;;;0;3;;;; +O16;Staring_2001;Genuchten;oligotroof veen;Peat;1.46;0;0.889;0.0097;1.36;-0.665;;0;0;68;;0.40;85;100;;;0;3;;;; +O17;Staring_2001;Genuchten;mesotroof en eutroof veen;Peat;3.4;0.01;0.849;0.0119;1.27;-1.249;;0;0;70;;0.35;;;;;35;100;;;; +O18;Staring_2001;Genuchten;moerige tussenlaag;Peat;35.95;0.01;0.58;0.0127;1.32;-0.786;;0;0;22.50;;1.10;;;;;35;100;;;; diff --git a/src/pedon/soil.py b/src/pedon/soil.py index b2828ed..af97f17 100644 --- a/src/pedon/soil.py +++ b/src/pedon/soil.py @@ -3,8 +3,8 @@ from pathlib import Path from typing import Type -from numpy import append, exp, log, ones -from pandas import DataFrame, read_excel +from numpy import append, array2string, exp, log, ones +from pandas import DataFrame, read_csv from scipy.optimize import least_squares from ._params import get_params @@ -37,19 +37,18 @@ def from_staring(self, name: str, year: str = "2018") -> "SoilSample": f"No Staring series available for year '{year}'" "please use either '2001' or '2018'" ) - path = Path(__file__).parent / f"datasets/Staring_{year}.xlsx" - properties = read_excel(path, sheet_name="properties", index_col=0) - measurements = read_excel(path, sheet_name="measurements", index_col=[0, 1]) - self.h = measurements.columns.astype(float).values - self.k = measurements.loc[name, "k"].astype(float).values - self.theta = measurements.loc[name, "theta"].astype(float).values - - self.silt_p = properties.loc[name, "silt_p"] - self.clay_p = properties.loc[name, "clay_p"] - self.om_p = properties.loc[name, "om_p"] - self.m50 = properties.loc[name, "m50"] + path = Path(__file__).parent / f"datasets/soilsamples.csv" + properties = read_csv(path, delimiter=";") + staring_properties = properties[ + properties["source"] == f"Staring_{year}" + ].set_index("name") + + self.silt_p = staring_properties.loc[name, "silt_p"] + self.clay_p = staring_properties.loc[name, "clay_p"] + self.om_p = staring_properties.loc[name, "om_p"] + self.m50 = staring_properties.loc[name, "m50"] if year == "2001": - self.rho = properties.loc[name, "rho"] + self.rho = staring_properties.loc[name, "rho"] return self def fit_seperate( @@ -413,13 +412,14 @@ def cosby(self) -> Brooks: @dataclass class Soil: name: str - type: str | None = None model: SoilModel | None = None sample: SoilSample | None = None source: str | None = None description: str | None = None - def from_name(self, sm: Type[SoilModel] | SoilModel | str) -> "Soil": + def from_name( + self, sm: Type[SoilModel] | SoilModel | str, source: str | None = None + ) -> "Soil": if isinstance(sm, SoilModel): if hasattr(sm, "__name__"): smn = sm.__name__ @@ -429,21 +429,30 @@ def from_name(self, sm: Type[SoilModel] | SoilModel | str) -> "Soil": elif isinstance(sm, str): smn = sm sm = get_soilmodel(smn) - else: raise ValueError( f"Argument must either be Type[SoilModel] | SoilModel | str," f"not {type(sm)}" ) - path = Path(__file__).parent / "datasets/Soil_Parameters.xlsx" - ser = read_excel(path, sheet_name=smn, index_col=0).loc[self.name].to_dict() - # path = Path(__file__).parent / f"datasets/{sm.__name__}.csv" - # ser = read_csv(path, index_col=["name"]).loc[self.name].to_dict() - self.__setattr__("type", ser.pop("soil type")) - self.__setattr__("source", ser.pop("source")) - self.__setattr__("description", ser.pop("description")) - self.__setattr__("model", sm(**ser)) + path = Path(__file__).parent / "datasets/soilsamples.csv" + ser = read_csv(path, delimiter=";", index_col=0) + sersm = ser[ser["soilmodel"] == smn].loc[[self.name], :] + if source is None and len(sersm) > 1: + raise Exception( + f"Multiple sources for soil {self.name}: " + f"{array2string(sersm.loc[:, 'source'].values)}. " + f"Please provide the source using the source argument" + ) + elif (source is not None) and len(sersm) > 1: + sersm = sersm[sersm["source"] == source] + + serd = sersm.squeeze().to_dict() + + self.__setattr__("source", serd.pop("source")) + self.__setattr__("description", serd.pop("description")) + smserd = {x: serd[x] for x in sm.__dataclass_fields__.keys()} + self.__setattr__("model", sm(**smserd)) return self @staticmethod @@ -464,21 +473,16 @@ def list_names(sm: Type[SoilModel] | SoilModel | str) -> list[str]: f"not {type(sm)}" ) - path = Path(__file__).parent / "datasets/Soil_Parameters.xlsx" - names = read_excel(path, sheet_name=smn).loc[:, "name"].to_list() - return names + path = Path(__file__).parent / "datasets/soilsamples.csv" + names = read_csv(path, delimiter=";") + + return names[names["soilmodel"] == smn].loc[:, "name"].unique().tolist() def from_staring(self, year: str = "2018") -> "Soil": if year not in ("2001", 2001, "2018", 2018): raise ValueError(f"Year must either be '2001' or '2018', not {year}") - path = Path(__file__).parent / f"datasets/Staring_{year}.xlsx" - parameters = read_excel(path, sheet_name="parameters", index_col=0) - ser = parameters.loc[self.name].to_dict() - self.__setattr__("type", ser.pop("soil type")) - self.__setattr__("source", ser.pop("source")) - self.__setattr__("description", ser.pop("description")) - sm = Genuchten(**ser) - self.__setattr__("model", sm) + + self.from_name(sm=Genuchten, source=f"Staring_{year}") ss = SoilSample().from_staring(name=self.name, year=year) self.__setattr__("sample", ss) return self diff --git a/src/pedon/soilmodel.py b/src/pedon/soilmodel.py index a57b733..fb27c67 100644 --- a/src/pedon/soilmodel.py +++ b/src/pedon/soilmodel.py @@ -209,7 +209,7 @@ def __post_init__(self): theta_fc = ( self.beta ** -(0.60 * (2 + log10(self.k_s))) * (self.theta_s - self.theta_r) + self.theta_r - ) + ) # assumes k_s is in [cm] self.sy = self.theta_s - theta_fc def theta(self, h: FloatArray) -> FloatArray: From ac601aac57c28aad29790f6521ab3de4719039ce Mon Sep 17 00:00:00 2001 From: martinvonk Date: Wed, 27 Dec 2023 17:06:13 +0100 Subject: [PATCH 04/16] update documentation --- doc/examples/00_pedon_structure.ipynb | 102 +++++++++++++------ doc/examples/01_soil_models.ipynb | 36 ++++--- doc/examples/02_datasets.ipynb | 71 +++++++------ doc/examples/03_pedotransfer_functions.ipynb | 56 +++++++--- 4 files changed, 169 insertions(+), 96 deletions(-) diff --git a/doc/examples/00_pedon_structure.ipynb b/doc/examples/00_pedon_structure.ipynb index 1fde50b..4584649 100644 --- a/doc/examples/00_pedon_structure.ipynb +++ b/doc/examples/00_pedon_structure.ipynb @@ -8,9 +8,16 @@ "**Package Structure**" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Python Packages" + ] + }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -19,23 +26,36 @@ "import pedon as pe" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Pedon Structure\n", + "\n", + "Pedon knows three classes;\n", + "- Soil\n", + "- SoilModel\n", + "- SoilSample\n", + "\n", + "The Soil class encapsulates the SoilModel and SoilSample class. The soil class has the following attributes:" + ] + }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'name': str,\n", - " 'type': str | None,\n", " 'model': pedon.soilmodel.SoilModel | None,\n", " 'sample': pedon.soil.SoilSample | None,\n", " 'source': str | None,\n", " 'description': str | None}" ] }, - "execution_count": 41, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -46,63 +66,81 @@ "pe.Soil.__annotations__" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The name of the soil, the soil type (e.g. sand or clay) are strings. The source is the origin of the soil, and description contains extra information. The SoilModel is the relation between the pressure head, hydraulic conducitivity and water content. Possible SoilModels are:" + ] + }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "{'sand_p': float | None,\n", - " 'silt_p': float | None,\n", - " 'clay_p': float | None,\n", - " 'rho': float | None,\n", - " 'th33': float | None,\n", - " 'th1500': float | None,\n", - " 'om_p': float | None,\n", - " 'm50': float | None,\n", - " 'h': float | numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]] | None,\n", - " 'k': float | numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]] | None,\n", - " 'theta': float | numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]] | None}" + "['Brooks',\n", + " 'Fredlund',\n", + " 'Gardner',\n", + " 'Genuchten',\n", + " 'Panday',\n", + " 'Protocol',\n", + " 'SoilModel']" ] }, - "execution_count": 38, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "# class for sample measurements\n", - "pe.SoilSample.__annotations__" + "# classes for soil models\n", + "soilmodels = [\n", + " cls_name\n", + " for cls_name, cls_obj in inspect.getmembers(sys.modules[\"pedon.soilmodel\"])\n", + " if inspect.isclass(cls_obj)\n", + "]\n", + "soilmodels" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The SoilSample atttribute can contain measurements of the sand percentage `sand_p`, silt percentage `silt_p`, bulkd density `rho` or measurements of the pressure head `h` and the resulting hydraulic conductivity `k` or water content `theta`. " ] }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "['Brooks',\n", - " 'Fredlund',\n", - " 'Gardner',\n", - " 'Genuchten',\n", - " 'Panday',\n", - " 'Protocol',\n", - " 'SoilModel']" + "{'sand_p': float | None,\n", + " 'silt_p': float | None,\n", + " 'clay_p': float | None,\n", + " 'rho': float | None,\n", + " 'th33': float | None,\n", + " 'th1500': float | None,\n", + " 'om_p': float | None,\n", + " 'm50': float | None,\n", + " 'h': float | numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]] | None,\n", + " 'k': float | numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]] | None,\n", + " 'theta': float | numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]] | None}" ] }, - "execution_count": 40, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "# classes for soil models\n", - "soilmodels = [cls_name for cls_name, cls_obj in inspect.getmembers(sys.modules['pedon.soilmodel']) if inspect.isclass(cls_obj)]\n", - "soilmodels" + "# class for sample measurements\n", + "pe.SoilSample.__annotations__" ] } ], @@ -122,7 +160,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.9" + "version": "3.10.12" }, "orig_nbformat": 4 }, diff --git a/doc/examples/01_soil_models.ipynb b/doc/examples/01_soil_models.ipynb index 9b899e5..85f7990 100644 --- a/doc/examples/01_soil_models.ipynb +++ b/doc/examples/01_soil_models.ipynb @@ -6,7 +6,8 @@ "metadata": {}, "source": [ "**Soil Models**\n", - "\n" + "\n", + "Soil Models are method to describe the relation between the pressure head, water content and the hydraulic conductivity. This notebooks shows two soil models present in the pedon library." ] }, { @@ -34,9 +35,9 @@ "outputs": [], "source": [ "# shared properties\n", - "k_s = 100 # saturated conductivity [cm/d]\n", - "theta_r = 0.03 # residual water content[cm^3/cm^3]\n", - "theta_s = 0.42 # saturated water content[cm^3/cm^3]" + "k_s = 100 # saturated conductivity [cm/d]\n", + "theta_r = 0.03 # residual water content [-]\n", + "theta_s = 0.42 # saturated water content [-]" ] }, { @@ -46,8 +47,8 @@ "outputs": [], "source": [ "# Mualem-van Genuchten\n", - "alpha = 0.04 # shape parameter [1/cm]\n", - "n = 1.4 # shape parameter [-]\n", + "alpha = 0.04 # shape parameter [1/cm]\n", + "n = 1.4 # shape parameter [-]\n", "\n", "gen = pe.Genuchten(k_s=k_s, theta_r=theta_r, theta_s=theta_s, alpha=alpha, n=n)" ] @@ -59,8 +60,8 @@ "outputs": [], "source": [ "# Brooks-Corey\n", - "h_b = 10 # bubbling pressure [cm]\n", - "l = 1.1 # connectivity parameter [-]\n", + "h_b = 10 # bubbling pressure [cm]\n", + "l = 1.1 # connectivity parameter [-]\n", "\n", "bro = pe.Brooks(k_s=k_s, theta_r=theta_r, theta_s=theta_s, h_b=h_b, l=l)" ] @@ -72,7 +73,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAScAAAIBCAYAAAALR3n3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXWUlEQVR4nO3de1xUdf7H8deZAQZH7iA3hfB+SQVFJbMSzUtYllmbu7pFVrZbUG1stbL7W612N7u4Lm3RWpZr15WtTWu1NY00zCyvmOUVw7ugiIAMAsPM/P44MIqA3ObG8Hk+HvMY5syZc77fEd6e7/d8z/coFovFghBCuBiNswsghBCNkXASQrgkCSchhEuScBJCuCQJJyGES5JwEkK4JAknIYRLknASQrgkCSchhEuScBJCuCQJJyGES3LJcMrPz2fcuHEMGjSIIUOGYDAYnF0kIYSDKa544e/YsWP585//zPXXX09xcTF+fn54eHg4u1hCCAdyub/4H3/8EU9PT66//noAgoKCnFwiIYQz2LxZl5OTw9SpU4mMjERRFFauXNlgnczMTGJiYvD29iYhIYEtW7ZY3zt48CA+Pj5MnTqV4cOH89xzz9m6iEKIDsDmR04Gg4HY2Fjuu+8+pk+f3uD9rKws0tLSWLx4MQkJCWRkZDB58mT2799PaGgoNTU1bNy4kdzcXEJDQ7npppsYOXIkEydObHR/VVVVVFVVWV+bzWaKi4sJDg5GURRbV08I0U4Wi4Xz588TGRmJRnOF4yOLHQGWFStW1Fs2atQoS0pKivW1yWSyREZGWhYsWGCxWCyWb775xjJp0iTr+y+++KLlxRdfbHIf8+fPtwDykIc8Otjj2LFjV8wPh/Y5VVdXs337dtLT063LNBoNEyZMYPPmzQCMHDmS06dPc+7cOfz9/cnJyeFXv/pVk9tMT08nLS3N+rq0tJTo6Gjy8/Px9fVt8nOa7W+hXf9nzANuZV2fP/Dbj34gtoc/y+6Nt0FN28doNLJ+/XrGjRuHp6ens4tjM1KvjsVe9Tp//jw9e/a84t8nOLhDvKioCJPJRFhYWL3lYWFh7Nu3Ty2QhwfPPfccN9xwAxaLhUmTJnHLLbc0uU2dTodOp2uwPCgoCD8/v6YL4+sDOgV8vOke3g2NTk+loiM4OLhtlbMho9GIXq8nODjY7X7ZpV4dh73qVbet5rpdXO5sHUBSUhJJSUmt+kxmZiaZmZmYTKZW78/PW/2yyiqNrf6sEMI+HDoIMyQkBK1WS2FhYb3lhYWFhIeHt2vbKSkp7Nmzh61bt7b6s3XhdL6ypl1lEELYjkPDycvLi/j4eLKzs63LzGYz2dnZjB49ul3bzszMZNCgQYwcObLVn/Xroh5AVlSbMJrM7SqHEMI2bN6sKy8vJy8vz/o6Pz+f3NxcgoKCiI6OJi0tjeTkZEaMGMGoUaPIyMjAYDAwe/bsdu03JSWFlJQUysrK8Pf3b9VnfXQXv4bzlTUEdfVqV1lEQ2azmaqqKjw8PKisrGxT89tVGY1GqdclPD090Wq17d6/zcNp27ZtjBs3zvq67kxacnIyy5YtY8aMGZw5c4Z58+ZRUFBAXFwca9asadBJ7kgeWg1dvbQYqk2crzRKONlYdXU1+fn5mEwmwsPDOXbsmFuNQbNYLFKvywQEBBAeHt6u78Pm4ZSYmIilmcv1UlNTSU1Ntel+29MhDuDXxRNDtYmyC9LvZEsWi4VTp06h1Wrp3r07FRUV+Pj4XHnwXQdjNpspLy+XeqH+e1dUVHD69GkAIiIi2rx/lzxb1xbtadYB+Hp7cKpUztjZWk1NDRUVFURGRqLX66mpqcHb29vt/oirq6ulXrW6dOkCwOnTpwkNDW1zE899vsl2sg4nuCDhZEt1R7JeXtJU7kz0ej2g9lu1lYRTLb8uMpzAntypL0Y0zxb/3m4TTm0eSlDbP+brrbZwpVknhGtwm3Bq9SDMy5K9rllXKs060QEtW7aMgIAAZxfDptwmnNorUK+GU0mFhJO4qKCggMcee4w+ffrg7e1NWFgYY8aM4R//+AcVFRXOLl6r3HvvvUybNs3ZxWgxtzlb116BtWObiiuqnVwS4Sp++uknxowZQ0BAAM899xxDhgxBp9Oxe/du3njjDbp3786tt97q7GK6Lbc5cmrP5SuAdeDlOYOEk1A9/PDDeHh4sG3bNu666y4GDhxIr169uO2221i9ejVTp04FoKSkhEcffZSwsDD8/PwYP348u3btsm7n6aefJi4ujnfffZeYmBj8/f35+c9/zvnz563rxMTEkJGRUW//cXFxPP3009bXJSUl/OpXvyIsLAxvb28GDx7MqlWr6n3m888/Z+DAgfj4+HDTTTdx6tQpaxnefvttPvnkExRFQVEUNmzYAMCxY8e46667CAgIICgoiNtuu43Dhw9btzl79mymTZvGwoULiYiIIDg4mJSUlHadiWsJtzlyau84p0B97ZGThJNdWSwWKqprnDIeqIuntsVnkc6ePcvatWt57rnn6Nq1a6Pr1G3rrrvuwtPTk9WrVxMYGMjrr7/OjTfeyIEDB6xz4B86dIiVK1eyatUqzp07x1133cXzzz/PX/7ylxaVx2w2k5SUxPnz53nvvffo3bs3e/bsqTeGqKKigoULF/Luu++i0Wj45S9/yRNPPMH777/PE088wd69eykrK+Of//wnoE4rZDQamTx5MqNHj2bjxo14eHjw5z//mZtuuonc3FzrttevX09ERATr168nLy+PGTNmEBcXx5w5c1pU/rZwm3BqL+uRkzTr7KrSaGbYC+ucsu89z05G79WyX/m8vDwsFgv9+/evtzwkJITKykpA/Q9x6tSpbN26lQMHDtCtWzc0Gg0LFy5k5cqVfPTRRzz44IOAGi7Lli2zTrB29913k52d3eJw+uKLL9iyZQt79+6lX79+APTq1aveOkajkcWLF9O7d29AvRLj2WefBcDHx4cuXbpQVVVVbwaQ9957D7PZzJtvvmkN23/+858EBASwYcMGrrnmGgACAwN59dVX0Wq1DBgwgJtvvpns7GwJJ0cItDbrjFgsFhmXIxq1ZcsWzGYzs2bNoqqqil27dlFeXm4NhDoXLlzg0KFD1tcxMTH1Zn6MiIiwXuLRErm5ufTo0cMaTI3R6/X1ytGSfezatYu8vLwGs1JWVlZy6NAhazhdffXV9Y7SIiIi2L17d4vL3xYSTrWCapt11SYzhmpTvZkKhO14e2r44emJTmvWtVSfPn1QFIX9+/fXW153tFJ3iUZ5eTkRERF8+umnDa5Bu/TU/uUzSSqKgtl8cXoejUbT4JrUS/t06vZ3JY3to7nrXMvLy4mPj+f9999v8N6ls8I2V357cJu/wPZe+NvFS4u3p4ZKo5lzhmoJJztRFAW9l4fLX4MWHBzMxIkTefXVV3nkkUea7HcaPnw4BQUFeHh40KdPnzbXq1u3btbOa4CysjLy8/Otr4cOHcrx48c5cODAFY+ersTLy6vB38fw4cPJysoiNDS0wbTWZrOZsrKyNu3LFlz7N6QV2jMTZp0g6RQXl3jttdeoqalhxIgRZGVlsXfvXvbv3897773Hvn370Gq1TJgwgdGjRzNr1izWrl3L4cOH+eabb/jDH/7Atm3bWryv8ePH8+6777Jx40Z2795NcnJyvWbU2LFjueGGG7jjjjtYt24d+fn5/O9//2PNmjUt3kdMTAzff/89+/fvp6ioCKPRyKxZswgJCeG2225j48aN5Ofns2HDBh599FGOHz/equ/L1twmnGwhQC9jncRFvXv3ZufOnUyYMIH09HRiY2MZMWIEr7zyCk888QR/+tOfUBSFVatWce2113L//ffTr18/fv7zn3PkyJFWzVGWnp7O2LFjueWWW7j55puZNm1ag36s//znP4wcOZJf/OIXDBo0iKeeeqpVLYU5c+bQv39/RowYQbdu3di0aRN6vZ6cnByio6OZPn06AwcO5P7776eysvLKNwhxAMXSXKO0g6kbSlBaWnrlL/fbf8CauTD4TrjzLQB++eZ3fJ1XxKK7Ypk+vIeDStyQ0Wjks88+Y8qUKR3+bh6VlZXk5+fTs2dPvLy8KCsrw8/Pz+Wbda1R1/yRel106b+7t7d3vfda+jfqPt9km13MZusocWnWCeF0nTicGg4VCK4Np6JyCSchnM1twqm9l68AhPqpN+c8fb7SVsUSQrSR24STLc7WdfNRw+nM+SpbFUsI0UZuE062EOqndtxJOAnhfBJOlwj1rWvWSTgJ4WwSTpeoC6diQ7Xc+VcIJ5NwukSg3gsPjXoWr6hcjp6EcCYJp0toNAoh0ikuhEuQcLqMdThBmYSTcJ6ONt+3PUg4XaZuOIF0iot7773XOqWtoigEBwdz00038f333zu7aJ2C24STLQZhwsUjJ2nWCcA6D/epU6fIzs7Gw8ODW265pcn17T2vdmfiNuHU5kGYl133HOqrjnUqlFHiAtDpdISHhxMeHk5cXBxz587l2LFjnDlzhsOHD6MoCllZWdx8883o9Xref/99zGYzzz77LD169ECn0xEXF9dgapPdu3czfvx4unTpQnBwMA8++CDl5eVNlmPr1q1069aNF154AVBnsBw3bhy+vr74+fkRHx/fqilaOoLOO6NaE9PwRgao4XSq5IIjS9N5WCxQbQBnXL3vqW/y370lysvLee+99+jTpw/BwcEYDAYAfv/73/Pss89y7bXXotfrefnll/nrX//K66+/zrBhw1i6dCm33norP/74I3379sVgMFhvKrB161ZOnz7NAw88QGpqKsuWLWuw3y+//JLp06fz4osvWucknzVrFsOGDeMf//gHWq2W3NzcDj+DxeU6bzg1IcJfnQ71ZIkcOdlFzQU0zw90zr5/fxK8Gp/RsimrVq3Cx8cHAIPBQEREBKtWrao3hchjjz3G1KlTrVOLLFy4kN/97nf8/Oc/B+CFF15g/fr1ZGRkkJmZyQcffEBlZSXvvPOOdYbNV199lalTp/LCCy/UmwdqxYoV3HPPPbz55pvMmDHDuvzo0aM8+eSTDBgwAIC+ffu27TtxYW7TrLOVyIC6cJIjJwHjxo0jNzeX3NxctmzZwuTJk0lKSuLIkSPWdeLj460/l5WVcfLkScaMGVNvO2PGjGHv3r0A7N27l9jY2HpT/44ZMwaz2VxvzvLvvvuOn/3sZ7z77rv1ggkgLS2NBx54gAkTJvD888/Xu5mCu5Ajp8vUNevOV9VQVmnEz9u9DpWdzqML5rnHnTMpm6e+1R/p2rUrffr0sb5+88038ff3Z8mSJTzwwAPWdeyhd+/eBAcHs3TpUm6++eZ6zbann36amTNnsnr1av73v/8xf/58li9fzu23326XsjiDHDldRu/lQaBe/SWQoyc7UBS1aeWMhw1u96UoChqNhgsXGv/d8PPzIzIykk2bNtVbvmnTJgYNGgTAwIED2bVrl7XPqu59jUZT7z55ISEhfPnll+Tl5XHXXXc1OBPYr18/Hn/8cdauXcv06dOtN8t0FxJOjZCmnahTVVVFQUEBBQUF7N27l0ceeYTy8nLrrcgb8+STT/LCCy+QlZXF/v37mTt3Lrm5uTz22GOA2pnt7e1NcnIyP/zwA+vXr+eRRx7h7rvvbjDveGhoKF9++SX79u3jF7/4BTU1NVy4cIHU1FQ2bNjAkSNH2LRpE1u3bmXgQCf15dmJNOsaERnQhR9PlkmnuGDNmjVEREQA4Ovry4ABA/jwww9JTEzk8OHDjX7m0UcfpbS0lN/+9recPn2aQYMG8emnn1o7rfV6PZ9//jmPPfYYI0eORK/Xc8cdd7Bo0aJGtxceHs6XX35JYmIis2bN4p133uHs2bPcc889FBYWEhISwvTp03nmmWfs8h04i4RTIyL91X4nOXLq3JYtW9boqf06MTExWCyWBvd302g0zJ8/n/nz5zf52SFDhvDll19ecd+XioiIqNdZ/q9//av5CnRwLhlOMTEx1tOygYGBrF+/3qH7l2adEM7nkuEE8M0331jHlzha90A1nI6fk3ASwlmkQ7wR0UHqKecjxRVOLokQnZfNwyknJ4epU6cSGRmJoiisXLmywTqZmZnExMTg7e1NQkICW7Zsqfe+oiiMHTuWkSNH8v7779u6iM26Kkgdt3LmfBWGqhqH718IYYdwMhgMxMbGkpmZ2ej7WVlZpKWlMX/+fHbs2EFsbCyTJ0/m9OnT1nW+/vprtm/fzqeffspzzz1n5ykqGt7w2F/vSUDtWKejcvQkhFPYvM8pKSmJpKSkJt9ftGgRc+bMYfbs2QAsXryY1atXs3TpUubOnQtA9+7dAfUMxZQpU9ixYwdDhw5tdHtVVVVUVV2c3qTurInRaLzi9BUakxkt6i2XTY2sFx3UhZIKIz+dLqNPSJcrV9rG6srtDtNv1NTUYLFYMJlMWGpngKg7w+UupF4N1f2719TUNPg9bunvtUM7xKurq9m+fTvp6enWZRqNhgkTJrB582ZAPfIym834+vpSXl7Ol19+yV133dXkNhcsWNDo+I61a9ei1zd9uULPMz8yFDh16hTbPvuswfseFzSAhs837aDmcMOjK0dYt26dU/ZrS4qiEBYWxsmTJ/Hz80NRFM6ePevsYtmF1EtVU1NDcXEx5eXlZGdnN3i/oqJlrRGHhlNRUREmk6nBKNiwsDD27dsHQGFhofX6IJPJxJw5c644gVx6ejppaWnW12VlZURFRTFp0iT8/Pya/Jxm60k4fvHo7HL7vfLY8dVP6MOuYsqUQa2qZ3sZjUbWrVvHxIkT3WIaDIPBwKlTpygqKqKyshJvb28UG1xK4iosFovU6zJdu3alV69ejf7+Xjom7EpcbihBr1692LVrV4vX1+l06HQ6MjMzyczMxGQyAeDp6XnlP2ytFlCP3DSNrNcr1BeA4+cqnRYQzdahgwgICMDX15cLFy7w1VdfccMNN7hFveoYjUZycnKkXrW0Wi0eHh5NBlpLt+XQcAoJCUGr1VJYWFhveWFhIeHh4e3adkpKCikpKZSVleHv79+ubQFcFaw2CQ+fNTSzpmgJrVaLTqejpqYGb29vt/oj1mq1Ui87cOg4Jy8vL+Lj4+u1Q81mM9nZ2YwePdqRRWlWXTidLLlApdHk5NII0fnY/MipvLycvLw86+v8/Hxyc3MJCgoiOjqatLQ0kpOTGTFiBKNGjSIjIwODwWA9e9dWlzfr2qubjw4/bw/KKms4fNbAgPCm+6+EELZn83Datm0b48aNs76u66xOTk5m2bJlzJgxgzNnzjBv3jwKCgqsk79f3kneWrZu1imKQt8wX7YfOcfBwnIJJyEczObhlJiYaB0f0ZTU1FRSU1NtvWub69PNRw2n003fFUMIYR9uc22dre5bd6m+YeqFx4cknIRwOLcJpzbft+4Keoeq4XTw9HmbbVMI0TJuE05tdoUmaN/acMovMmA0uc9lCUJ0BG4TTq1u1rVgxGukfxe6eGoxmiwcOSsXAAvhSG4TTvZo1mk0Cn1qj57ypN9JCIdym3Cyl7qm3f4C6XcSwpEknJoxMEId37T3VMsuVhRC2IbbhJM9hhIAXB2phtOPp0ptul0hxJW5TTjZo88JYFBtOB0rvkDphY4/+ZsQHYXbhJO9BOi96F57qyhp2gnhOBJOLVB39PTjSQknIRxFwqkFBtV2iu+RcBLCYdwmnOzVIQ6XdIqflE5xIRzFbcLJXh3iAFd3V6dgyTtdLhPPCeEgbhNO9hTp702Ijxc1ZoscPQnhIBJOjdxU83KKohAXFQjAzqMldi6PEAIknK44K8GlhkUHALDzWIn9yiKEsOq84WSdlaB14ZQrR05COITbhFPrz9bVhlMLj5yG9ghAUeBEyQUKyyrbVkghRIu5TTi1+mxdK+9g6qPzoH+YeqNN6XcSwv7cJpxar/W3jbb2Ox09Z+OyCCEu14nDqVYLm3UAw6PVM3ZbDxfbqzRCiFqdN5xa2SEOcE2vYAC+P16KoarGDoUSQtTpvOHUyg5xgB6BXege0IUas4XtR6RpJ4Q9dd5wasORk6IoJPQKAuC7/LN2KJQQok7nDac2HDnBxabdtz9Jv5MQ9tR5w6mVQwnqjK4Np13HSqioln4nIezFbcKp7VOmtO7IqUdgFyL9vaXfSQg7c5twav2UKW1r1imKYm3abcqTfich7MVtwqnV2tAhXueGft0A+OrAGRsWSAhxqc4bTm08cgK4vm8IiqLe8ECusxPCPjpvOLXjyCnYR8eQ2tkxc+ToSQi76Lzh1I4jJ4BEadoJYVedN5zaOJSgztj+ajhtPFhEjclsixIJIS7RecPJqm1HTrE9AvDz9qD0gpFdx0tsWyQhRGcOp/Y16zy0GutZu3V7TtuqUEKIWp03nNrRIV5n8tXhAHz+YwGWNoacEKJxLhtOFRUVXHXVVTzxxBP23VE7QmXcgFC8tBryiwwcPF1uw0IJIVw2nP7yl79wzTXX2G8H7ewQB3Xq3uv6hgCw5oeCdm9PCHGRS4bTwYMH2bdvH0lJSXbcS/v6nOpMvjoMUJt2QgjbsXk45eTkMHXqVCIjI1EUhZUrVzZYJzMzk5iYGLy9vUlISGDLli313n/iiSdYsGCBrYtWnw2OnAAmDAxDo8CPJ8s4Vlxhk20KIewQTgaDgdjYWDIzMxt9Pysri7S0NObPn8+OHTuIjY1l8uTJnD6tnvH65JNP6NevH/369bN10ZrQviOnYB8dI2PUCej+98MpWxRICAF42HqDSUlJV2yOLVq0iDlz5jB79mwAFi9ezOrVq1m6dClz587l22+/Zfny5Xz44YeUl5djNBrx8/Nj3rx5jW6vqqqKqqoq6+uysjIAjEYjRqOxyXIoJjMegNlswnSF9VoiaXAY3+UXs3LnCWaPjm7XtgBrua9U/o5I6tWx2KteLd2eYrHjOXBFUVixYgXTpk0DoLq6Gr1ez0cffWRdBpCcnExJSQmffPJJvc8vW7aMH374gYULFza5j6effppnnnmmwfIPPvgAvV7f5OciSrYyKv8Vznbtx9f9/q91FbtMuRH+uF2L2aKQHltDeNO7FaLTq6ioYObMmZSWluLn59fkejY/crqSoqIiTCYTYWFh9ZaHhYWxb9++Nm0zPT2dtLQ06+uysjKioqKYNGnSFSuu7DNDPgQGBjJlypQ27ftSX5zfwfr9RZQE9OW+CX3btS2j0ci6deuYOHEinp6e7S6bq5B6dSz2qldd66Y5Dg2n1rr33nubXUen06HT6cjMzCQzMxOTyQSAp6fnlb9QD7XqGgU0Nvjipw3rwfr9RazaXcBTNw1EsUGHe7N16KCkXh2LrevV0m05dChBSEgIWq2WwsLCessLCwsJDw9v17bbPBOmjUwcFIbeS8ux4gvskDsCC9FuDg0nLy8v4uPjyc7Oti4zm81kZ2czevRoRxblIht1uem9PLip9nKWj7afsMk2hejMbB5O5eXl5ObmkpubC0B+fj65ubkcPXoUgLS0NJYsWcLbb7/N3r17eeihhzAYDNazd23V6hscKLVVt9huupOfjYgC4NPcE3JHYCHayeZ9Ttu2bWPcuHHW13Wd1cnJySxbtowZM2Zw5swZ5s2bR0FBAXFxcaxZs6ZBJ3lrpaSkkJKSQllZGf7+/s1/QKNVny2mdu33Utf0CiImWM/hsxWs+v4kM0a2f1iBEJ2VzcMpMTGx2Sv0U1NTSU1NtfWuW0epDSez7cJJURRmjIzmhTX7WL71mISTEO3gktfWtUWrm3WaumadbYd53RHfHQ+Nws6jJewvOG/TbQvRmbhNOLX6bJ21z8l2R04Aob7e3DgwFIB/bTlq020L0Zm4TTi1mh2adXV+MUptzv1n+3HKpWNciDZxm3BqfbPO9h3idW7o241e3bpyvqqGj7Yds/n2hegM3CacWt+ss9+Rk0ajMHtMTwD++c1hzGaZwleI1nKbcGo1Ox45AdwxvDt+3h4cOVvBl/vkBghCtFbnDae6DnGzfe45p/fysPY9/fObfLvsQwh35jbh5AojxC93z7UxaDUKm/LOsudky67EFkKo3CacWt3nZOdmHUD3gC4kDVavt3ttQ57d9iOEO3KbcGo1O3aIXyplXB8AVu8+xaEzcvsoIVqq84aTA46cAAZG+DFxUBgWC7y2/pBd9yWEO+m84WQ9crJfn1Od1Nqjp5W5J+QOLUK0kNuEU9uvrbPvkRNAbFQA1/cNwWS2sPgrOXoSoiXcJpxcaRBmYx4Zr84r/uG24xw/J0dPQjTHbcKp1RwwlOBSo3oGMaZPMNUmM39bd9Ah+xSiI+u84eSgDvFLPTV5AAAf7zwu06kI0YxOHE61d4Aw19h8TqemxEYFkDQ4HIsFFq7d75B9CtFRdd5w0l5yexqz46Y1+e2k/mgUWLenkO1H5C4tQjSlE4eT18Wfa6qaXs/G+oT68LN49UYIf1m9p9kpjYXorNwmnFo9lODScDJV26dQTXh8Yj/0Xlp2HC3hk9yTDt23EB2F24RTq4cSaD0unrEzGe1XsEaE+3tbL2tZ8L+9chspIRrhNuHUJnVHTw4+cgK4/7qeRAfpKSyrkouChWiEhBM4JZy8PbX84eaBACzZmM/RszIwU4hLdfJwqj1j54RwApg0KIzr+oRQXWNm3qc/SOe4EJfo5OGkU5+dFE6KovD0rVfjpdWwYf8Z/vv9KaeUQwhX1MnDqe7IybEd4pfqE+pj7Rx/9r8/UlLhnKAUwtV08nCq7XNy4Dinxvw6sRd9Qn0oKq9mwWf7nFoWIVyFhBM4rVlXR+ehZcH0IQBkbTvGtz8VO7U8QrgCtwmnVg/CBJdo1tUZGRPErAT1bi3pK3+k0nHXIwvhktwmnFo9CBPAw1t9rqm0T6FaaW7SALoHdOH4uQusOOw2/zRCtEnn/gvw7KI+G11jjJGvtyd/vSsWRYFvT2vI3is34xSdV+cOJ6+u6nO1wbnluMQ1vYK579qrAPjDJ3soKnduZ70QztK5w8lTrz67yJFTncdv7ENEFwtnDdWkf7xbBmeKTqlzh5NXbThVu1Y46Ty13N3XhKdWYd2eQt7+5rCziySEw3XucPKsbda52JETQPeu8NTkfgD85bO97DpW4twCCeFgnTycXKtD/HLJ10Rz09XhGE0WUj7YQWmF84c8COEonTucXLRZV0dRFF782VCig/QcP3eBJz7aJf1PotPo3OFkbda5ztm6y/l5e/LarOF4aTWs21PImxvznV0kIRzC5cKppKSEESNGEBcXx+DBg1myZIn9dubiR051Bnf3549TBwHqzJk5B844uURC2J/LhZOvry85OTnk5uby3Xff8dxzz3H27Fn77MzLR32ucv17yP0yIZo743tgtkDqBzvIL3Ldoz0hbMHlwkmr1aLXq0c0VVVVWCwW+/WzdAlQnytL7bN9G1IUhb/cPphh0QGUVdYw551tlFVKB7lwXzYPp5ycHKZOnUpkZCSKorBy5coG62RmZhITE4O3tzcJCQls2bKl3vslJSXExsbSo0cPnnzySUJCQmxdTJV3gPpcWWKf7duYzkPL67+MJ9zPm7zT5fxmeS4ms3SQC/fkYesNGgwGYmNjue+++5g+fXqD97OyskhLS2Px4sUkJCSQkZHB5MmT2b9/P6GhoQAEBASwa9cuCgsLmT59OnfeeSdhYWGN7q+qqoqqqouXeJSVlQFgNBoxGps5svDoiidguVBCTXPrOlBduRsrf2AXLa/NjOUXb27ly32nefqT3fzx5gEoiuLoYrbalerVkUm92rbd5igWO56bVhSFFStWMG3aNOuyhIQERo4cyauvvgqA2WwmKiqKRx55hLlz5zbYxsMPP8z48eO58847G93H008/zTPPPNNg+QcffGBtHjbFs+Y8U3anAPBp3FIsis2z2m5yzyosO6DBgsJtV5kYHylHUKJjqKioYObMmZSWluLn59fkeg79a6yurmb79u2kp6dbl2k0GiZMmMDmzZsBKCwsRK/X4+vrS2lpKTk5OTz00ENNbjM9PZ20tDTr67KyMqKiopg0adIVKw6A2QS14ZSUOBq6dmtH7WzHaDSybt06Jk6ciKenZ6PrTAHCNx1mwZoDfHJEy7iEodw8JNyxBW2lltSrI5J6tU5d66Y5Dg2noqIiTCZTgyZaWFgY+/ap09MeOXKEBx980NoR/sgjjzBkyJAmt6nT6dDpdA2We3p6tuAL9QSdH1SV4VlTAS72i9VcHR4c24dTZdUs++YwT/3nByIC9CT0CnZgCdumZf82HY/Uq+XbawmXa8eMGjWK3NzcVn8uMzOTzMxMTKZWTiHpHQBVZR2mU/xSiqLwx1sGcar0Ap//WMgDb2/jXw9ew+Du/s4umhDt5tChBCEhIWi1WgoLC+stLywsJDy8fU2SNs2ECaAPVJ8r7DSWys60GoWXfz6MUT2DOF9Vwz1Lt5B32vXHbQnRHIeGk5eXF/Hx8WRnZ1uXmc1msrOzGT16dLu23aY5xAG6qmcIKe+4s056e2p5K3kEQ3v4U2yoZtab33Gs2LVHvQvRHJuHU3l5Obm5udamWX5+Prm5uRw9ehSAtLQ0lixZwttvv83evXt56KGHMBgMzJ49u137bfORk29t/1d54ZXXc3G+3p68PXsU/cJ8KCyrYtab31FY5hpzowvRFjYPp23btjFs2DCGDRsGqGE0bNgw5s2bB8CMGTNYuHAh8+bNIy4ujtzcXNasWdPkOCa783GPcAII7OrFe/cncFWwnqPFFfzijW8pKJWAEh2TzcMpMTHReqbt0seyZcus66SmpnLkyBGqqqr47rvvSEhIaPd+29ysc6NwAgj18+a9+xPoHtCFn4oM/PyNzZwqveDsYgnRai53bV1btblZ59Px+5wuFxWkZ/mD19AjsAuHz1Yw4/VvOVEiASU6FrcJpzbzqT1LeL7AueWwsaggPVm/Gk10kNrEm/H6ZukkFx2KhJNfpPpcdgLMZueWxca6B3Rh+YPXEBOszqR51+ubZZiB6DDcJpza3Ofk1x0ULZiqody9jp4AIgO6sPzB0fTu1pVTpZX8bPFmcuVmCaIDcJtwanOfk9YD/LurP587YvuCuYBwf28+/PW1xPbw51yFkZlLvuXrg0XOLpYQV+Q24dQuAeoddilxz3ACCOrqxftzruG6PiFUVJuYvWwLn+0+5exiCdEkCSeAwNpwctMjpzo+Og/euncEU4ZcvN3U0q/z5Y4uwiW5TTi1uc8JIDBGfT7n/nc20XloeeUXw5mVEI3FAs+u2sPTn/5Ijcm9TgaIjs9twqnNfU4AwX3V5zP7bVsoF6XVKPx52mB+P2UAAG9vPsKcd7ZRXlXj5JIJcZHbhFO7hA5Un8/sd7vhBE1RFIUHb+jNP2YNR+ehYf3+M/xssYwmF65DwgkgqBdoPNWba5Ydd3ZpHCppSATLH7yGEB8v9p4qY1rmJnYePefsYgkh4QSA1hNCapt2p/c5tyxOMCw6kBUPj7HOaDDj9W/599Zjzi6W6OTcJpza1SEO0E3tf+H0j7YrVAcSFaTn44fHMGlQGNUmM0/953vmffIDRukoF07iNuHUrg5xgMg49fnEdpuVqaPx0Xmw+JfxpE3sB8A7m48wa8l3FJVXNfNJIWzPbcKp3brHq88ndji3HE6m0Sg8emNf3rxnBL46D7YcLmbqK1+z/Uixs4smOhkJpzoRcaBo1AuAy2Tk9IRBYaxMHUOv2mvyZrz+LW/kHJIBm8JhJJzq6HygW+2Qgk7ctLtU724+fJp6HVNjI6kxW3jus33MeWcbJRXVzi6a6AQknC7Vo7Zpd+xb55bDhfjoPPj7z+P4y+2D8fLQ8MXe09z896/ZIcMNhJ25TTi1+2wdQMwN6vNPX9mmUG5CURRmJVzFioevJSZYz4mSC9y1eDOLvzqE2SzNPGEfbhNO7T5bB9BrrPpc8D0YOuZ97Ozp6kh//vvIddw8NIIas4Xn/7ePmW9+y0mZAljYgduEk034hELo1erP+RucWhRX5evtyau/GMYLdwxB76Xl25+KuSkjh//uOunsogk3I+F0uV6J6nNe9hVX68wURWHGyGhWP3o9sVEBlFXW8Mi/dpKWlUtZpdHZxRNuQsLpcv1vUp/3fwYm+UO7kp4hXfno16N5dHwfNAp8vPMESRkb2XxImsSi/SScLhd9LeiD4cI5OPy1s0vj8jy1GtIm9effvxpNVFAXTpRc4BdLvmX+Jz9gkClYRDtIOF1O6wEDblF/3vOJc8vSgYyICeKzR6/nF6OiAXWOqJtezpGjKNFmEk6NGXSr+rz3v9K0awVfb08WTB/Cu/ePontAF44Vq0dR8+QoSrSBhFNjeo6FrqFQUQQH1ji7NB3O9X27seY3F4+i3qk9ivpGjqJEK7hNONlkEGYdrSfEzVR/3v52+7fXCdUdRb13f4L1KCp52XbeO6jhrEEufxHNc5twsskgzEsNv0d9zvsCSo7aZpud0HV9Q/j88RtIHn0VigJbizTc9PIm/r31mFxELK7IbcLJ5oJ7q807LPDd684uTYfmo/PgmdsG8+GDCXTXWyi5YOSp/3zPjDe+ldujiyZJOF3JtY+qz9uXwYUSZ5bELcT28Oe3Q03MvakfXTy1bMkvJunljSxau59Ko8nZxRMuRsLpSvrcqF7OUl0O295ydmncglaB+8fEsC7tBsYPCMVosvD3L/NIenkjOQfOOLt4woVIOF2JosCY2qOnb16Roycb6hGo563kEfxj1nBCfXXkFxm4Z+kW5ryzjaNnK5xdPOECJJyaM/hOCOmvjhjflOHs0rgVRVFIGhLBF78dy/3X9USrUVi3p5AJf/uKRWv3c6FamnqdmYRTc7QeMOFp9edv/wFlcvW9rfl5e/LHWwax5rHrGdMnmOoaM3//Mo8b/7qB1d+fkrN6nZSEU0v0T4Lo0VBTCWv/6OzSuK2+Yb68d38C/5g1nO4BXThZWknKBzuYueQ79hfIWb3ORsKpJRQFblqg3gDhh4/g4Dpnl8htWZt6aWN57Ma+6Dw0bP7pLFP+vpH5n/xAsQzg7DRcLpyOHTtGYmIigwYNYujQoXz44YfOLpIqchhc87D686rHoarcueVxc128tDw+sR9fpI3lpqvDMZktvL35CGNfWs8bOYeoqpH+KHfncuHk4eFBRkYGe/bsYe3atfzmN7/BYDA4u1iqcb+HgGgoPQZfzHd2aTqFqCA9i++O5/0HEhgY4cf5yhqe+2wfExZ9Jf1Rbs7lwikiIoK4uDgAwsPDCQkJobjYRW7o6NUVpr6s/rz1Tdi7yrnl6UTG9Alh1SPX8eIdQwn11XGs+AIpH+zgzsWb5U4wbsrm4ZSTk8PUqVOJjIxEURRWrlzZYJ3MzExiYmLw9vYmISGBLVu2NLqt7du3YzKZiIqKsnUx2673eLj2EfXnT1LkujsH0moU7hoZxfonEnnsxr508dSy/cg5pr/2Dakf7OBYsYyPcic2DyeDwUBsbCyZmZmNvp+VlUVaWhrz589nx44dxMbGMnnyZE6fPl1vveLiYu655x7eeOMNWxex/cbPg8jhUFkCy2dCtYs0OzuJrjoPHp/Yj/VPJPKz+B4oCqz6/hQ3/vUr/rJ6D+ek09wteNh6g0lJSSQlJTX5/qJFi5gzZw6zZ88GYPHixaxevZqlS5cyd+5cAKqqqpg2bRpz587l2muvveL+qqqqqKqqsr4uKysDwGg0YjTaa6I4Baa/hcc/J6EU7Mb88a8wTX9LPZtnA3Xltl/5ncPW9QrWa3lu2iB+mdCD59ccYPNPxSzZmM8HW45y/5gYZl97FT46m/+KNyD/Xm3bbnMUix17FBVFYcWKFUybNg2A6upq9Ho9H330kXUZQHJyMiUlJXzyySdYLBZmzpxJ//79efrpp5vdx9NPP80zzzzTYPkHH3yAXq+3UU0aF1h+kDF5C9BaasgLTeLHyJ+rww6Ew1kssLdEYdVRDScq1H8DHw8LE3uYuS7MgofL9a52XhUVFcycOZPS0lL8/PyaXM/+/61coqioCJPJRFhYWL3lYWFh7Nu3D4BNmzaRlZXF0KFDrf1V7777LkOGDGl0m+np6aSlpVlfl5WVERUVxaRJk65YcVux7I6ATx+mz+n/0XPgMMzXpTX/oWYYjUbWrVvHxIkT8fT0tEEpXYO963UzkGa28NkPBWRkH+JIcQUrDmv57pw3j4zvzbTYCDy0tk8p+fdqnbrWTXMcGk4tcd1112E2m1u8vk6nQ6fTkZmZSWZmJiaTOv7F09PTMb8ow2dBVSl8no72q+fQdvGDax6yyaYdVgcHs3e9bo+P5pa4Hny47TgvZx/gZGkl6St+5M2vD/PEpP7cNDgcxQ5HuPLv1fLttYRDD3ZDQkLQarUUFhbWW15YWEh4eHi7tm3zmTBbY/TDMPZ36s9r5sLGRY4vg6jHU6thZkI0Xz05jt9PGUCA3pNDZww89P4ObsvcxNcHi5xdRNEMh4aTl5cX8fHxZGdfvJuu2WwmOzub0aNHO7IotpeYDjc8qf6c/Qx88YzaESKcyttTy4M39CbnqXE8Or4Pei8t3x8v5ZdvfcfMJd+yU8ZIuSybh1N5eTm5ubnk5uYCkJ+fT25uLkePquOB0tLSWLJkCW+//TZ79+7loYcewmAwWM/etZVNb3DQFooC4/8PJj6rvv56Eax8GGqqrvw54RB+3p6kTepPzlPjuPfaGLy0Gr45dJbbX/uGB9/ZxoFCubDY5VhsbP369RagwSM5Odm6ziuvvGKJjo62eHl5WUaNGmX59ttvbbb/0tJSC2ApLS212TZbbetSi+XpQItlvp/F8tZki6X8TKs+Xl1dbVm5cqWlurraTgV0Dleq17Fig+W3/8619Jy7ynLV71ZZYuausjyetdNy9Kyh1dtypXrZkr3q1dK/UZsfOSUmJmKxWBo8li1bZl0nNTWVI0eOUFVVxXfffUdCQoKti+FcI2bDrA9B5w9HN8OScXAy19mlEpfoEahn4c9i+fw3N3DT1eFYLPDxjhOM/+sGnv70R86clyNeZ3Ob0R9Ob9Zdrs+N8MAXENhTvcTlrYnqXVykH8ql9A3zZfHd8XySMobr+oRgNFlY9s1hxr60noWf76es0r0GVnYkbhNOTj1b15Ru/eDB9TDgFjBVw/+egqxfQoWLXMgsrGKjAnjvgQTefyCB2KgAKqpNvLo+j+tfWM/irw7JlMFO4Dbh5LK6BMKM9yDpRdB6wb5V8No1sG+1s0smGjGmTwgrH76Wxb+Mp2+oD6UXjDz/v30kLlzP+98dwWhq+Rg80T5uE04u16y7lKJAwq/g/rUQ3BfKC9ULhj+6Dwwy3sbVKIrCTYPDWfObG1j4s1i6B3ShsKyKP6z4gYmLvuKT3BOYzdI8tze3CSeXbNZdLnIY/PpruO5xULTww38gcxTseAdaMSpeOIZWo3BnfA++fGIsT08dRIiPF4fPVvDY8lxufuVrvtxXKJPd2ZHbhFOH4emt3s3lgS/UG3ZWnIVPH1HP6B39ztmlE43QeWi5d0xPvnpyHE9M6oevzoO9p8q4b9k27np9M1sPy0BOe5Bwcpbuw+HBDTDpL6Dzg1O5sHQS/GcOlJ1wdulEI7rqPEgd35ecp8bxqxt6ofPQsPXwOWa+tZXX92rkDjE25jbh5NJ9Tk3x8IJrU+GR7TDsbkCB3f/G47WRDD7+nto3JVxOYFcv0qcM5KsnxzEzIRqtRmFPiYapr20mLStXZuS0EbvO5+QMZWVl+Pv7NztXjEs6sUO9L96RrwGweHRBGTUHxvwGugY7t2w2YDQa+eyzz5gyZYpbXb1/4FQJv3tvIzvPqv/Xe2oVZiVcxSPj+xDso3Ny6drOXv9eLf0bdZsjJ7fQfTjcu4qamf+hWN8bpeYCfPN3eHkofP4HKD3u7BKKRvQM6cq9/cx8/OuEegM5b3hxPRlfHKC8qsbZReyQJJxcjaJg6TmWjf3mUXPXBxA+FKrLYfOr8HIsfPwgFOx2dilFI4Z09+e9BxJ47/4EhnT3x1BtIuOLg4x9cT3LNuXLvfZaScLJVSkKlr6T4Fc5MPNDiLkezDXwfRYsvg7emabeeViGILic6/qG8EnKGDJnDqdnSFfOGqp5+r97uPGvX7Fyp4yRaim3CacO2SHeEooC/SbBvatgznq4erp6I4Wf1sP7d8LfYyFnIZyXznNXotEo3Dw0grWP38Bfbh9MqK+O4+cu8JusXKa9tonvfjrr7CK6PLcJpw4xCLO9ug+Hn/0THt0JCQ+Bt796UfGXf4K/DYJ/3wM/bZCjKRfiqdUwK+EqvnpyHE9O7o+PzoPvj5cy441v+dW72zhcJLcVa4rbhFOnEhgDSc9D2j6Y9g/oMUpt8u35BN65Df4eB1/+Gc4ccHZJRa0uXlpSxvVhw5OJzEqIRqPA5z8WMvFvX/Hsf/dQUiH32ruchFNH5qWHuJnwwDr49SYY+YA6oLPkCOS8BJkj4fWxsPk1afa5iBAfHX+5fQhrfnMDif27YTRZWLopn7EvbeCtr/PlwuJLSDi5i/DBcPNf4bf74Y63oO9k0HioI88/T4dFA+Dd22Hne2CQ/g5n6xfmy7LZo3j7vlH0D/Ol9IKRP63aQ9LLG/kmTy4GBxe8NZRoJy89DLlTfRiK4McV8P2/4fgWOPSl+lA0EH0tDLxFnWsqIMrZpe60xvbrxpjewfx723EWrt1P3ulyZr75HTcPjeAPUwYSGdDF2UV0Grc5cnLbs3Xt0TUERs1Rm32P7oRx/6eOm7KY1VHoa+ZCxmB4/Qb46iU4vVdm6nQCj9rbWK3/bSLJo69Co8Dq709x41+/4rUNeZ12fJTbhFOnOFvXHkG9YOyT8OuN8NgumLwArhqjHkWd2gXr/6xOgvfyUFj1OOxdBZUtuzOrsA1/vSfP3DaY/z5yHSOuCuSC0cSLa/ZzU8ZGvjpwxtnFczhp1nVGgTHqjUBHPwzlZ+DA/9Qw+mm9OjRh21L1ofGAqGugz3joMwHChoDGbf4/c1lXR/rz4a9Hs2LnCZ77bB/5RQaSl27h1thI5k0dREgHvl6vNSScOjufbjD8HvVRbYDDX0PeF+qj+Ce1+Xfka8h+FrqGQu/x0PMGiBkDAVepg0SFzSmKwvThPZgwKIyMdQdZ9k0+n+46Sc7BM/zx5kFMH97dLrdUdyUSTuIir67Qb7L6ADWc8rLVR34OGE7D98vVB4B/lNo0jLlODavAnhJWNubn7cm8qYOYNiySpz76nn0F5/nth7tYmXuC524fQlSQ3tlFtBsJJ9G0oF4wqpfaqV5TBce+U8/2Hd4EJ3dA6bH6YeXX/ZKwuk79vISVTQztEcB/H7mON3J+4uXsg2w8WMSkv+Xw+5sH8suEaLc8ipJwEi3joVObcz1vUF9XG9SwOrxJbQqe2K7O4Ln73+oDQB8MPUZCjxHqKPbQIc4rvxvw1GpIGdeHpMHhzP14N1vyi/njyh/I3lvIi3cMJdTP29lFtCkJJ9E2Xl3V/qfe49XX1RXqWKrDm+DIJji+VZ0f/cAa9QF4oJDo3QOtZR1EJ0DUKPVuNNLJ3iq9uvmwfM41/PObw7ywZh8b9p9hckYOz90+hKQhEc4uns1IOAnb8NJDr0T1AWozsGC3GlK1D6XkKP6VxyD3XfUB6i3be8Srd6aJiFXHYQXGSHOwGRqNwv3X9eT6viE8npXLjyfLeOj9HdwxvAfP3nY1XXUd/0+749egVmZmJpmZmZhMnXPAmsvx0NU250YADwFgLD7Gjv8uYUS4Be3JHWq/VVXpxZHrdbz91ZCKiL34CO4DGq1z6uLC+oX5suLhMbycfYB/bDjEf3YcZ9fxEhb/cjh9Qn2dXbx2cZtwSklJISUlxTo/sXBBvuEUBMRjHj8FracnmGrg9I9wfJs6EPTULji9BypL4fBG9VHHUw/hQy4JraEQ0l+91VYn5+Wh4cnJAxjbL5TUD3aQd7qcW1/dxILpQ7gtrruzi9dmbhNOogPSelw8MqpTUw1n9kHB9xcDq2A3GCvUDvhjl9zbT9FAUG8IHQihgyBskPoc2FPddiczqmcQqx+9nseW7+SbQ2d5bHkuWw8X88dbBqHz6HhHnZ3vX1C4Ng8v9agoYigM+6W6zGyCs3lw6nt1loW6wKosgbMH1cfeTy9uQ6uDbv3UoKoLrtCB6rgsN+/L6uar4937E8j44gCvfJnHe98e5UBBOYvvjieoq5ezi9cqEk7C9Wm00K2/+hj6M3WZxQLnC9Rm4Om9tY896lGXsUINr8tvBOHlC6ED1OZgSB+1Hyu4rzoey6Nj/eFeiVaj8NtJ/RkeHcij/9rJlsPF3P7aJpbeO5Le3XycXbwWk3ASHZOigF+E+uhz48XlZrM62V5dWNUFV9EBqD5/8exhvW1p1EtxQvqqYRVSG1ohfcEnrMMebY0bEMp/Hr6W+5Zt5cjZCm7P3MTiu+O5tneIs4vWIhJOwr1oNBDUU30MmHJxuckIZw+pgXU2Tw2rooPqz9XlcC5ffRxcW397Oj8I7n0xrIL7qK8De4K369+0tV+YLytTxvDgO9vYcbSEe97awl/viu0QHeUSTqJz0HqqTbrQAfWX1zUPzx68GFZFtf1YJUehqgxO7lQfl+sSBEE90fpHM+CsCSX3HHTrowaXb4TLDC4N8dHxwZxrePKj7/nvrpP8JiuXimoTvxgV7eyiXZGEk+jcLm0e1l2aU6emSr34uS6sivLU5+J8qCiCC8VwohjNie30B1h9Wad84FXqgNLAnupzUO1zYAx4OnaGS29PLS/PiMO/iwfvfXuU9I93Y6iq4YHrezm0HK0h4SREUzx0tWf7BjZ8r+o8nDsM5w5jKsrj6K4crvKzoDl3WL0g2lRV23Rs4g44PuFqSAVEgX8P9Uyif1Tt6yjQ2b7jWqNR+NNtg/HRebL4q0P8efVetBqF2WN62nxftuCS4XT77bezYcMGbrzxRj766CNnF0eIhnS+tYNCh2A2Gvm+uBc9pkxBUze4tOy4Gl7F+bUhVvtcfFgdFV9eoD6Ofdv49r0DLgaVNbR6gH+0+uwT2qaOekVRmJs0AC+twt+/zOOZ/+5B56FlZoLrNfFcMpwee+wx7rvvPt5++21nF0WI1tN6XGy+1V1rWMdigQvn1NAqOQKlx9UjrdLjUHIMSo+qI+QrS6CgpOFwCOs+dODfvf7Rln8U+EWqD9+IK3bYPz6xH5U1Zt7I+Yk/rNyNfxdPbh7qWhcNu2Q4JSYmsmHDBmcXQwjbUxTQB6mPHvGNr1NZVhtax9WwKjlWP8TOn1KbjcU/qY+mePmoIeUXAb6R9Z4V30jSx4RTWRXJO9+d5PF/5xLmp2NETJB96t0GNg+nnJwcXnrpJbZv386pU6dYsWIF06ZNq7dOZmYmL730EgUFBcTGxvLKK68watQoWxdFiI7J2w+8ay/HaYzJqM6dZT3auiTEzp+CslNq07G6/OII+kYowDOKhse7BnLE6E/xsmDKhlyNX2g0+Eai6EPxqTyp9q95Oj60bB5OBoOB2NhY7rvvPqZPn97g/aysLNLS0li8eDEJCQlkZGQwefJk9u/fT2hoqK2LI4T70XpebDY2pdqghtT5k008n4LzBSgWE4GmswRqzgI/we6LA1Q9gBsB9s5VR9f7RdQeiUVe9lx7ROYTZtPhEzYPp6SkJJKSkpp8f9GiRcyZM4fZs2cDsHjxYlavXs3SpUuZO3duq/dXVVVFVVWV9XVZmXo7I6PRiNFobPX2XEFduTtq+Zsi9XIgxQv8r1IfTTGbwHAG5fwpSk4f5c3/bcan+gwjgyoZGVQJ509iOnccT/MFdXR90fmmzz4C5qvGYJq1stmO+pZ+Tw7tc6qurmb79u2kp6dbl2k0GiZMmMDmzZvbtM0FCxbwzDPPNFi+du1a9PqOPfn7unXrnF0Eu5B6uSJPPGNuYNEeLebTCj/3MTE62gLRoDVV0sV4Du/aR5fq4os/X/KsObKJ/372WbPhVFFR0aISOTScioqKMJlMhIWF1VseFhbGvn37rK8nTJjArl27MBgM9OjRgw8//JDRo0c3us309HTS0tKsr8vKyoiKimLSpEn4+bn+5QWNMRqNrFu3jokTJ+Lp6ens4tiM1Mv1eW/M56W1B/nvcS/uu3kke7d9zfibpl65XhVn4W/9AZgyZUqz4VTXummOS56t++KLL1q8rk6nQ6fTNZgJ09PTs8P/orhDHRoj9XJdv07sy1cHzrLlcDH/99/9/CK8BfXyuPiep6dns+HU0u/IoRf/hISEoNVqKSwsrLe8sLCQ8PDwdm1bbkcuRPtpNQoLfxaL3kvLlsPnyClw3owMDg0nLy8v4uPjyc7Oti4zm81kZ2c32WwTQjhWdLCe309RL9n53zENReVVzXzCPmweTuXl5eTm5pKbmwtAfn4+ubm5HD16FIC0tDSWLFnC22+/zd69e3nooYcwGAzWs3dtlZmZyaBBgxg5cmR7qyBEpzdzVDRDuvtRaVL467o8p5TB5uG0bds2hg0bxrBhwwA1jIYNG8a8efMAmDFjBgsXLmTevHnExcWRm5vLmjVrGnSSt5Y064SwHY1G4Y9T1Oll/rPzBN8fL3F4GWzeIZ6YmIjFYrniOqmpqaSmptp610IIGxoWHcCIEDPbijS89Pl+3r0/waH7d43ZsGxAmnVC2N6UKDMeGoWNB4vYcfScQ/ftNuEkzTohbC/YG6bFRQLwSnbj1+jZi9uEkxDCPn49tidajcL6/WfYc7JlAyhtwW3CSZp1QtjHVUF6bhqsjkN899sjDtuv24STNOuEsJ+7r1EvIF658wRllY65wNltwkkIYT8JPYPoG+rDBaOJFTtOOGSfEk5CiGYpimK9ldSKnRJOrSJ9TkLY1y2xEWgUyD1WwrHilk170h5uE07S5ySEfYX6ejO6dzAAn+46aff9uU04CSHs75ah6pindXsKm1mz/SSchBAtNq6/Os//ruMlFBuq7bovCSchRIuF+3szINwXiwU2Hjxj1325TThJh7gQjjG2fzcAvjog4dQi0iEuhGOM7auG0zd5Z+26H7cJJyGEY8RFB6DVKBSUVXKy5ILd9iPhJIRoFb2XBwMjfAHsOo2KhJMQotWGRwcCsONIid32IeEkhGi1YdEBgDqkwF4knIQQrTYwQr1h7YGC81i48rTcbeU24SRDCYRwnF4hPnhoFM5X1VBYVmmXfbhNOMlQAiEcx8tDQ8+QrgDknSm3yz7cJpyEEI7VL1w9Y3fotISTEMKF9A31ASC/yGCX7Us4CSHaJDpID8CpEulzEkK4kB6BajidLJVwEkK4kB6BXQAoKLXPJSwSTkKINgnz88ZDo1BjlnFOQggXotUoRAZ0sdv23SacZBCmEI4X4e9tt227TTjJIEwhHC/ER2e3bbtNOAkhHC/Yx8tu25ZwEkK0WXBXOXISQrggOXISQrikEAknIYQrCpYOcSGEK/Lv4mm3bUs4CSHazEfnYbdtSzgJIdrMx7uThdOqVavo378/ffv25c0333R2cYQQTejqZb9wst+W26impoa0tDTWr1+Pv78/8fHx3H777QQHBzu7aEKIy2g1CnovrV227XJHTlu2bOHqq6+me/fu+Pj4kJSUxNq1a51dLCFEE7raqd/J5uGUk5PD1KlTiYyMRFEUVq5c2WCdzMxMYmJi8Pb2JiEhgS1btljfO3nyJN27d7e+7t69OydOnLB1MYUQNmKvpp3Nt2owGIiNjeW+++5j+vTpDd7PysoiLS2NxYsXk5CQQEZGBpMnT2b//v2Ehoa2en9VVVVUVVVZX5eVlQFgNBoxGo1tr4gT1ZW7o5a/KVKvjqWl9dLrNGC45DOK0qLtNsfm4ZSUlERSUlKT7y9atIg5c+Ywe/ZsABYvXszq1atZunQpc+fOJTIyst6R0okTJxg1alST21uwYAHPPPNMg+Vr165Fr9e3oybOt27dOmcXwS6kXh1Lc/WqPH/xBgefffZZs+FUUVHRov0qFovFPtPYAYqisGLFCqZNmwZAdXU1er2ejz76yLoMIDk5mZKSEj755BNqamoYOHAgGzZssHaIf/PNN012iDd25BQVFUVRURF+fn72qppdGY1G1q1bx8SJE/H0tN8gN0eTenUsLa3Xb/65nsyTP1M/8/szzYZTWVkZISEhlJaWXvFv1KFn64qKijCZTISFhdVbHhYWxr59+9QCeXjw17/+lXHjxmE2m3nqqaeueKZOp9Oh0zUcQu/p6dnhf1HcoQ6NkXp1LM3VS3fJ2TpPT89mw6ml35HLDSUAuPXWW7n11ltb9ZnMzEwyMzMxmUx2KpUQojFeWvuc9HfoUIKQkBC0Wi2FhYX1lhcWFhIeHt6ubctMmEI4h5eHG4STl5cX8fHxZGdnW5eZzWays7MZPXp0u7Ytc4gL4Rw6O4WTzZt15eXl5OXlWV/n5+eTm5tLUFAQ0dHRpKWlkZyczIgRIxg1ahQZGRkYDAbr2bu2SklJISUlhbKyMvz9/dtbDSFEC3l52GeEuM3Dadu2bYwbN876Oi0tDVDPyC1btowZM2Zw5swZ5s2bR0FBAXFxcaxZs6ZBJ7kQomOwV5+TzcMpMTGR5kYnpKamkpqaatP9Soe4EM7hFn1O9iQd4kI4h87jykMH2sptwkkI4Rz26nOScBJCtIs065ohQwmEcA5tMyPC28ptwkn6nIRwDo2dUsRtwkkI4RxaRZp1QggXZKdhTu4TTtLnJIRzaKTP6cqkz0kI59BoJJyEEC5IztYJIVySnK0TQrgkOXJqhnSIC+EcWq2E0xVJh7gQzqFBwkkI4YK0crZOCOGKZJyTEMIlyZGTEMIlyVCCZsjZOiGcQ2undHKbcJKzdUI4h4xzEkK4JGnWCSFckiLjnIQQnYmEkxDCJUk4CSFckoSTEMIlSTgJIVyS24STDMIUwjnsc67OjcJJBmEK4V7cJpyEEO5FwkkI4ZIknIQQLknCSQjhkiSchBDtYqdJCSSchBCuScJJCOGSJJyEEC7JJcPp9ttvJzAwkDvvvNPZRRFCOIlLhtNjjz3GO++84+xiCCGcyCXDKTExEV9fX2cXQwjRAi4zE2ZOTg5Tp04lMjISRVFYuXJlg3UyMzOJiYnB29ubhIQEtmzZYouyCiE6kVaHk8FgIDY2lszMzEbfz8rKIi0tjfnz57Njxw5iY2OZPHkyp0+ftq4TFxfH4MGDGzxOnjzZ9poIIdyKR2s/kJSURFJSUpPvL1q0iDlz5jB79mwAFi9ezOrVq1m6dClz584FIDc3t22lbURVVRVVVVXW12VlZQAYjUaMRqPN9uNIdeXuqOVvitSrY2lpvWpMF983Go3Njsps6ffU6nC6kurqarZv3056erp1mUajYcKECWzevNmWu7JasGABzzzzTIPla9euRa/X22WfjrJu3TpnF8EupF4dS3P1Ki47z4Danz/77LNmw6mioqJF+7VpOBUVFWEymQgLC6u3PCwsjH379rV4OxMmTGDXrl0YDAZ69OjBhx9+yOjRoxtdNz09nbS0NOvrsrIyoqKimDRpEn5+fm2riJMZjUbWrVvHxIkT8fT0dHZxbEbq1bG0tF6HjhyBQ+rPU6ZMaTac6lo3zbFpONnKF1980eJ1dTodOp2OzMxMMjMzMZlMAHh6enb4XxR3qENjpF4dS3P18vDwrLduc+HU0u/IpkMJQkJC0Gq1FBYW1lteWFhIeHi4LXfVgMyEKYR7sWk4eXl5ER8fT3Z2tnWZ2WwmOzu7yWaZEEI0ptXNuvLycvLy8qyv8/Pzyc3NJSgoiOjoaNLS0khOTmbEiBGMGjWKjIwMDAaD9eydvVzerBNCdGytDqdt27Yxbtw46+u6zujk5GSWLVvGjBkzOHPmDPPmzaOgoIC4uDjWrFnToJPc1lJSUkhJSaGsrAx/f3+77ksIYX+tDqfExEQsFssV10lNTSU1NbXNhRJCCJe8tq4t5L51QjiH3LeuGXK2Tgj34jbhJIRwL24TTtKsE8K9uE04SbNOCPfiNuEkhHAvEk5CiHaR+9Y1Q/qchHAvbhNO0uckhHtxm3ASQrgXCSchhEuScBJCuCS3CSfpEBfCWVzkvnWuSjrEhXAvbhNOQgj3IuEkhHBJEk5CCJck4SSEaBe5fKUZcrZOCPfiNuEkZ+uEcC9uE05CCPci4SSEcEkSTkIIlyThJIRoF7k1lBCiU5FwEkK4JAknIYRLcptwkkGYQrgXtwknGYQphHtxm3ASQjiHXFsnhOhUJJyEEC5JwkkI4ZIknIQQLknCSQjhkiSchBDtItfWCSE6FZcLp2PHjpGYmMigQYMYOnQoH374obOLJIRwAg9nF+ByHh4eZGRkEBcXR0FBAfHx8UyZMoWuXbs6u2hCCAdyuXCKiIggIiICgPDwcEJCQiguLpZwEqKTaXWzLicnh6lTpxIZGYmiKKxcubLBOpmZmcTExODt7U1CQgJbtmxpU+G2b9+OyWQiKiqqTZ8XQnRcrQ4ng8FAbGwsmZmZjb6flZVFWloa8+fPZ8eOHcTGxjJ58mROnz5tXScuLo7Bgwc3eJw8edK6TnFxMffccw9vvPFGG6olhHAUe11b1+pmXVJSEklJSU2+v2jRIubMmcPs2bMBWLx4MatXr2bp0qXMnTsXgNzc3Cvuo6qqimnTpjF37lyuvfbaZtetqqqyvi4rKwPAaDRiNBpbUiWXU1fujlr+pki9OpaW1stYY6r/mWbSqqXfk037nKqrq9m+fTvp6enWZRqNhgkTJrB58+YWbcNisXDvvfcyfvx47r777mbXX7BgAc8880yD5WvXrkWv17e88C5o3bp1zi6CXUi9Opbm6nW+/Dy9an/+7LPPmg2nioqKFu3XpuFUVFSEyWQiLCys3vKwsDD27dvXom1s2rSJrKwshg4dau3PevfddxkyZEij66enp5OWlmZ9XVZWRlRUFJMmTcLPz69tFXEyo9HIunXrmDhxIp6ens4ujs1IvTqWltbr2InjcFD9ecqUKc2GU13rpjkud7buuuuuw2w2t3h9nU6HTqcjMzOTzMxMTCb1ENPT07PD/6K4Qx0aI/XqWJqrl6eHtt66zYVTS78jmw7CDAkJQavVUlhYWG95YWEh4eHhttxVAzITphDuxabh5OXlRXx8PNnZ2dZlZrOZ7OxsRo8ebctdCSFchGKnq+ta3awrLy8nLy/P+jo/P5/c3FyCgoKIjo4mLS2N5ORkRowYwahRo8jIyMBgMFjP3tnL5c06IUTH1upw2rZtG+PGjbO+ruuMTk5OZtmyZcyYMYMzZ84wb948CgoKiIuLY82aNQ06yW0tJSWFlJQUysrK8Pf3t+u+hBD21+pwSkxMxGKxXHGd1NRUUlNT21woIYRwuVkJ2kruWyeEe3GbcJKzdUK4F7cJJyGEc8h965ohzToh3IvbhJM064RwL24TTkII9yLhJIRwSW4TTtLnJIR7cZtwkj4nIdyL24STEMK9SDgJIVyShJMQwiW5TThJh7gQ7sVtwkk6xIVwL24TTkII55Br64QQnYqEkxDCJUk4CSFckoSTEMIluU04yVACIdyL24STDCUQwjkUO52uc5twEkK4FwknIYRLknASQrgkCSchhEuScBJCuCQJJyFEu9jp0joJJyGEa3KbcJJBmEK4F7cJJxmEKYR7cZtwEkK4FwknIYRLknASQrSPzIQphOhMJJyEEC5JwkkI4ZIknIQQLknCSQjhklwunEpKShgxYgRxcXEMHjyYJUuWOLtIQogrUOx0us7DLlttB19fX3JyctDr9RgMBgYPHsz06dMJDg52dtGEEA7kckdOWq0WvV4PQFVVFRaLBYvF4uRSCSEcrdXhlJOTw9SpU4mMjERRFFauXNlgnczMTGJiYvD29iYhIYEtW7a0ah8lJSXExsbSo0cPnnzySUJCQlpbTCFEB9fqZp3BYCA2Npb77ruP6dOnN3g/KyuLtLQ0Fi9eTEJCAhkZGUyePJn9+/cTGhoKQFxcHDU1NQ0+u3btWiIjIwkICGDXrl0UFhYyffp07rzzTsLCwhotT1VVFVVVVdbXpaWlABQXF2M0GltbPZdgNBqpqKjg7NmzeHp6Ors4NiP16lhaWq9z587RpUpt3RjPnoVm7sZy/vx5gOZbRJZ2ACwrVqyot2zUqFGWlJQU62uTyWSJjIy0LFiwoE37eOihhywffvhhk+/Pnz/fAshDHvLoYI9jx45d8W/fph3i1dXVbN++nfT0dOsyjUbDhAkT2Lx5c4u2UVhYiF6vx9fXl9LSUnJycnjooYeaXD89PZ20tDTra7PZTHFxMcHBwXa7n5a9lZWVERUVxbFjx/Dz83N2cWxG6tWx2KteFouF8+fPExkZecX1bBpORUVFmEymBk2wsLAw9u3b16JtHDlyhAcffNDaEf7II48wZMiQJtfX6XTodLp6ywICAlpddlfk5+fnVr/sdaReHYs96uXv79/sOi43lGDUqFHk5uY6uxhCCCez6VCCkJAQtFothYWF9ZYXFhYSHh5uy10JIdycTcPJy8uL+Ph4srOzrcvMZjPZ2dmMHj3alrtyazqdjvnz5zdornZ0Uq+Oxdn1UmrPurVYeXk5eXl5AAwbNoxFixYxbtw4goKCiI6OJisri+TkZF5//XVGjRpFRkYG//73v9m3b1+TwwGEEOJyrQ6nDRs2MG7cuAbLk5OTWbZsGQCvvvoqL730EgUFBcTFxfH3v/+dhIQEmxRYCNE5tDqchBDCEVzu2johhAAJJyGEi5JwEkK4JAknJ2jNrA0//vgjd9xxBzExMSiKQkZGhuMK2gatqduSJUu4/vrrCQwMJDAwkAkTJrR6BgtHaU29Pv74Y0aMGEFAQABdu3YlLi6Od99914Glbbm2ziCyfPlyFEVh2rRp9itcm67GFW22fPlyi5eXl2Xp0qWWH3/80TJnzhxLQECApbCwsNH1t2zZYnniiScs//rXvyzh4eGWv/3tb44tcCu0tm4zZ860ZGZmWnbu3GnZu3ev5d5777X4+/tbjh8/7uCSX1lr67V+/XrLxx9/bNmzZ48lLy/PkpGRYdFqtZY1a9Y4uORX1tp61cnPz7d0797dcv3111tuu+02u5VPwsnB2jNrw1VXXeXS4dTeGSlqamosvr6+lrffftteRWwTW8y0MWzYMMv//d//2aN4bdaWetXU1FiuvfZay5tvvmlJTk62azhJs86B6mZtmDBhgnVZa2dtcFW2qFtFRQVGo5GgoCB7FbPV2lsvi8VCdnY2+/fv54YbbrBnUVulrfV69tlnCQ0N5f7777d7GV3uwl93ZotZG1yVLer2u9/9jsjIyHp/MM7W1nqVlpbSvXt3qqqq0Gq1vPbaa0ycONHexW2xttTr66+/5q233nLYhfkSTsIlPP/88yxfvpwNGzbg7e3t7OK0m6+vL7m5uZSXl5OdnU1aWhq9evUiMTHR2UVrk/Pnz3P33XezZMkSh02bLeHkQO48a0N76rZw4UKef/55vvjiC4YOHWrPYrZaW+ul0Wjo06cPoE5LvXfvXhYsWOAy4dTaeh06dIjDhw8zdepU6zKz2QyAh4cH+/fvp3fv3jYto/Q5OZA7z9rQ1rq9+OKL/OlPf2LNmjWMGDHCEUVtFVv9m5nN5npz3Ttba+s1YMAAdu/eTW5urvVx6623Mm7cOHJzc4mKirJ9Ie3W1S4atXz5cotOp7MsW7bMsmfPHsuDDz5oCQgIsBQUFFgsFovl7rvvtsydO9e6flVVlWXnzp2WnTt3WiIiIixPPPGEZefOnZaDBw86qwpNam3dnn/+eYuXl5flo48+spw6dcr6OH/+vLOq0KjW1uu5556zrF271nLo0CHLnj17LAsXLrR4eHhYlixZ4qwqNKq19bqcvc/WSTg5wSuvvGKJjo62eHl5WUaNGmX59ttvre+NHTvWkpycbH2dn5/f6OTwY8eOdXzBW6A1dbvqqqsardv8+fMdX/BmtKZef/jDHyx9+vSxeHt7WwIDAy2jR4+2LF++3Amlbl5r6nU5e4eTzEoghHBJ0uckhHBJEk5CCJck4SSEcEkSTkIIlyThJIRwSRJOQgiXJOEkhHBJEk5CCJck4SSEcEkSTkIIlyThJIRwSf8PUH0QQSBSBn8AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAScAAAIBCAYAAAALR3n3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXWUlEQVR4nO3de1xUdf7H8deZAQZH7iA3hfB+SQVFJbMSzUtYllmbu7pFVrZbUG1stbL7W612N7u4Lm3RWpZr15WtTWu1NY00zCyvmOUVw7ugiIAMAsPM/P44MIqA3ObG8Hk+HvMY5syZc77fEd6e7/d8z/coFovFghBCuBiNswsghBCNkXASQrgkCSchhEuScBJCuCQJJyGES5JwEkK4JAknIYRLknASQrgkCSchhEuScBJCuCQJJyGES3LJcMrPz2fcuHEMGjSIIUOGYDAYnF0kIYSDKa544e/YsWP585//zPXXX09xcTF+fn54eHg4u1hCCAdyub/4H3/8EU9PT66//noAgoKCnFwiIYQz2LxZl5OTw9SpU4mMjERRFFauXNlgnczMTGJiYvD29iYhIYEtW7ZY3zt48CA+Pj5MnTqV4cOH89xzz9m6iEKIDsDmR04Gg4HY2Fjuu+8+pk+f3uD9rKws0tLSWLx4MQkJCWRkZDB58mT2799PaGgoNTU1bNy4kdzcXEJDQ7npppsYOXIkEydObHR/VVVVVFVVWV+bzWaKi4sJDg5GURRbV08I0U4Wi4Xz588TGRmJRnOF4yOLHQGWFStW1Fs2atQoS0pKivW1yWSyREZGWhYsWGCxWCyWb775xjJp0iTr+y+++KLlxRdfbHIf8+fPtwDykIc8Otjj2LFjV8wPh/Y5VVdXs337dtLT063LNBoNEyZMYPPmzQCMHDmS06dPc+7cOfz9/cnJyeFXv/pVk9tMT08nLS3N+rq0tJTo6Gjy8/Px9fVt8nOa7W+hXf9nzANuZV2fP/Dbj34gtoc/y+6Nt0FN28doNLJ+/XrGjRuHp6ens4tjM1KvjsVe9Tp//jw9e/a84t8nOLhDvKioCJPJRFhYWL3lYWFh7Nu3Ty2QhwfPPfccN9xwAxaLhUmTJnHLLbc0uU2dTodOp2uwPCgoCD8/v6YL4+sDOgV8vOke3g2NTk+loiM4OLhtlbMho9GIXq8nODjY7X7ZpV4dh73qVbet5rpdXO5sHUBSUhJJSUmt+kxmZiaZmZmYTKZW78/PW/2yyiqNrf6sEMI+HDoIMyQkBK1WS2FhYb3lhYWFhIeHt2vbKSkp7Nmzh61bt7b6s3XhdL6ypl1lEELYjkPDycvLi/j4eLKzs63LzGYz2dnZjB49ul3bzszMZNCgQYwcObLVn/Xroh5AVlSbMJrM7SqHEMI2bN6sKy8vJy8vz/o6Pz+f3NxcgoKCiI6OJi0tjeTkZEaMGMGoUaPIyMjAYDAwe/bsdu03JSWFlJQUysrK8Pf3b9VnfXQXv4bzlTUEdfVqV1lEQ2azmaqqKjw8PKisrGxT89tVGY1GqdclPD090Wq17d6/zcNp27ZtjBs3zvq67kxacnIyy5YtY8aMGZw5c4Z58+ZRUFBAXFwca9asadBJ7kgeWg1dvbQYqk2crzRKONlYdXU1+fn5mEwmwsPDOXbsmFuNQbNYLFKvywQEBBAeHt6u78Pm4ZSYmIilmcv1UlNTSU1Ntel+29MhDuDXxRNDtYmyC9LvZEsWi4VTp06h1Wrp3r07FRUV+Pj4XHnwXQdjNpspLy+XeqH+e1dUVHD69GkAIiIi2rx/lzxb1xbtadYB+Hp7cKpUztjZWk1NDRUVFURGRqLX66mpqcHb29vt/oirq6ulXrW6dOkCwOnTpwkNDW1zE899vsl2sg4nuCDhZEt1R7JeXtJU7kz0ej2g9lu1lYRTLb8uMpzAntypL0Y0zxb/3m4TTm0eSlDbP+brrbZwpVknhGtwm3Bq9SDMy5K9rllXKs060QEtW7aMgIAAZxfDptwmnNorUK+GU0mFhJO4qKCggMcee4w+ffrg7e1NWFgYY8aM4R//+AcVFRXOLl6r3HvvvUybNs3ZxWgxtzlb116BtWObiiuqnVwS4Sp++uknxowZQ0BAAM899xxDhgxBp9Oxe/du3njjDbp3786tt97q7GK6Lbc5cmrP5SuAdeDlOYOEk1A9/PDDeHh4sG3bNu666y4GDhxIr169uO2221i9ejVTp04FoKSkhEcffZSwsDD8/PwYP348u3btsm7n6aefJi4ujnfffZeYmBj8/f35+c9/zvnz563rxMTEkJGRUW//cXFxPP3009bXJSUl/OpXvyIsLAxvb28GDx7MqlWr6n3m888/Z+DAgfj4+HDTTTdx6tQpaxnefvttPvnkExRFQVEUNmzYAMCxY8e46667CAgIICgoiNtuu43Dhw9btzl79mymTZvGwoULiYiIIDg4mJSUlHadiWsJtzlyau84p0B97ZGThJNdWSwWKqprnDIeqIuntsVnkc6ePcvatWt57rnn6Nq1a6Pr1G3rrrvuwtPTk9WrVxMYGMjrr7/OjTfeyIEDB6xz4B86dIiVK1eyatUqzp07x1133cXzzz/PX/7ylxaVx2w2k5SUxPnz53nvvffo3bs3e/bsqTeGqKKigoULF/Luu++i0Wj45S9/yRNPPMH777/PE088wd69eykrK+Of//wnoE4rZDQamTx5MqNHj2bjxo14eHjw5z//mZtuuonc3FzrttevX09ERATr168nLy+PGTNmEBcXx5w5c1pU/rZwm3BqL+uRkzTr7KrSaGbYC+ucsu89z05G79WyX/m8vDwsFgv9+/evtzwkJITKykpA/Q9x6tSpbN26lQMHDtCtWzc0Gg0LFy5k5cqVfPTRRzz44IOAGi7Lli2zTrB29913k52d3eJw+uKLL9iyZQt79+6lX79+APTq1aveOkajkcWLF9O7d29AvRLj2WefBcDHx4cuXbpQVVVVbwaQ9957D7PZzJtvvmkN23/+858EBASwYcMGrrnmGgACAwN59dVX0Wq1DBgwgJtvvpns7GwJJ0cItDbrjFgsFhmXIxq1ZcsWzGYzs2bNoqqqil27dlFeXm4NhDoXLlzg0KFD1tcxMTH1Zn6MiIiwXuLRErm5ufTo0cMaTI3R6/X1ytGSfezatYu8vLwGs1JWVlZy6NAhazhdffXV9Y7SIiIi2L17d4vL3xYSTrWCapt11SYzhmpTvZkKhO14e2r44emJTmvWtVSfPn1QFIX9+/fXW153tFJ3iUZ5eTkRERF8+umnDa5Bu/TU/uUzSSqKgtl8cXoejUbT4JrUS/t06vZ3JY3to7nrXMvLy4mPj+f9999v8N6ls8I2V357cJu/wPZe+NvFS4u3p4ZKo5lzhmoJJztRFAW9l4fLX4MWHBzMxIkTefXVV3nkkUea7HcaPnw4BQUFeHh40KdPnzbXq1u3btbOa4CysjLy8/Otr4cOHcrx48c5cODAFY+ersTLy6vB38fw4cPJysoiNDS0wbTWZrOZsrKyNu3LFlz7N6QV2jMTZp0g6RQXl3jttdeoqalhxIgRZGVlsXfvXvbv3897773Hvn370Gq1TJgwgdGjRzNr1izWrl3L4cOH+eabb/jDH/7Atm3bWryv8ePH8+6777Jx40Z2795NcnJyvWbU2LFjueGGG7jjjjtYt24d+fn5/O9//2PNmjUt3kdMTAzff/89+/fvp6ioCKPRyKxZswgJCeG2225j48aN5Ofns2HDBh599FGOHz/equ/L1twmnGwhQC9jncRFvXv3ZufOnUyYMIH09HRiY2MZMWIEr7zyCk888QR/+tOfUBSFVatWce2113L//ffTr18/fv7zn3PkyJFWzVGWnp7O2LFjueWWW7j55puZNm1ag36s//znP4wcOZJf/OIXDBo0iKeeeqpVLYU5c+bQv39/RowYQbdu3di0aRN6vZ6cnByio6OZPn06AwcO5P7776eysvLKNwhxAMXSXKO0g6kbSlBaWnrlL/fbf8CauTD4TrjzLQB++eZ3fJ1XxKK7Ypk+vIeDStyQ0Wjks88+Y8qUKR3+bh6VlZXk5+fTs2dPvLy8KCsrw8/Pz+Wbda1R1/yRel106b+7t7d3vfda+jfqPt9km13MZusocWnWCeF0nTicGg4VCK4Np6JyCSchnM1twqm9l68AhPqpN+c8fb7SVsUSQrSR24STLc7WdfNRw+nM+SpbFUsI0UZuE062EOqndtxJOAnhfBJOlwj1rWvWSTgJ4WwSTpeoC6diQ7Xc+VcIJ5NwukSg3gsPjXoWr6hcjp6EcCYJp0toNAoh0ikuhEuQcLqMdThBmYSTcJ6ONt+3PUg4XaZuOIF0iot7773XOqWtoigEBwdz00038f333zu7aJ2C24STLQZhwsUjJ2nWCcA6D/epU6fIzs7Gw8ODW265pcn17T2vdmfiNuHU5kGYl133HOqrjnUqlFHiAtDpdISHhxMeHk5cXBxz587l2LFjnDlzhsOHD6MoCllZWdx8883o9Xref/99zGYzzz77LD169ECn0xEXF9dgapPdu3czfvx4unTpQnBwMA8++CDl5eVNlmPr1q1069aNF154AVBnsBw3bhy+vr74+fkRHx/fqilaOoLOO6NaE9PwRgao4XSq5IIjS9N5WCxQbQBnXL3vqW/y370lysvLee+99+jTpw/BwcEYDAYAfv/73/Pss89y7bXXotfrefnll/nrX//K66+/zrBhw1i6dCm33norP/74I3379sVgMFhvKrB161ZOnz7NAw88QGpqKsuWLWuw3y+//JLp06fz4osvWucknzVrFsOGDeMf//gHWq2W3NzcDj+DxeU6bzg1IcJfnQ71ZIkcOdlFzQU0zw90zr5/fxK8Gp/RsimrVq3Cx8cHAIPBQEREBKtWrao3hchjjz3G1KlTrVOLLFy4kN/97nf8/Oc/B+CFF15g/fr1ZGRkkJmZyQcffEBlZSXvvPOOdYbNV199lalTp/LCCy/UmwdqxYoV3HPPPbz55pvMmDHDuvzo0aM8+eSTDBgwAIC+ffu27TtxYW7TrLOVyIC6cJIjJwHjxo0jNzeX3NxctmzZwuTJk0lKSuLIkSPWdeLj460/l5WVcfLkScaMGVNvO2PGjGHv3r0A7N27l9jY2HpT/44ZMwaz2VxvzvLvvvuOn/3sZ7z77rv1ggkgLS2NBx54gAkTJvD888/Xu5mCu5Ajp8vUNevOV9VQVmnEz9u9DpWdzqML5rnHnTMpm6e+1R/p2rUrffr0sb5+88038ff3Z8mSJTzwwAPWdeyhd+/eBAcHs3TpUm6++eZ6zbann36amTNnsnr1av73v/8xf/58li9fzu23326XsjiDHDldRu/lQaBe/SWQoyc7UBS1aeWMhw1u96UoChqNhgsXGv/d8PPzIzIykk2bNtVbvmnTJgYNGgTAwIED2bVrl7XPqu59jUZT7z55ISEhfPnll+Tl5XHXXXc1OBPYr18/Hn/8cdauXcv06dOtN8t0FxJOjZCmnahTVVVFQUEBBQUF7N27l0ceeYTy8nLrrcgb8+STT/LCCy+QlZXF/v37mTt3Lrm5uTz22GOA2pnt7e1NcnIyP/zwA+vXr+eRRx7h7rvvbjDveGhoKF9++SX79u3jF7/4BTU1NVy4cIHU1FQ2bNjAkSNH2LRpE1u3bmXgQCf15dmJNOsaERnQhR9PlkmnuGDNmjVEREQA4Ovry4ABA/jwww9JTEzk8OHDjX7m0UcfpbS0lN/+9recPn2aQYMG8emnn1o7rfV6PZ9//jmPPfYYI0eORK/Xc8cdd7Bo0aJGtxceHs6XX35JYmIis2bN4p133uHs2bPcc889FBYWEhISwvTp03nmmWfs8h04i4RTIyL91X4nOXLq3JYtW9boqf06MTExWCyWBvd302g0zJ8/n/nz5zf52SFDhvDll19ecd+XioiIqNdZ/q9//av5CnRwLhlOMTEx1tOygYGBrF+/3qH7l2adEM7nkuEE8M0331jHlzha90A1nI6fk3ASwlmkQ7wR0UHqKecjxRVOLokQnZfNwyknJ4epU6cSGRmJoiisXLmywTqZmZnExMTg7e1NQkICW7Zsqfe+oiiMHTuWkSNH8v7779u6iM26Kkgdt3LmfBWGqhqH718IYYdwMhgMxMbGkpmZ2ej7WVlZpKWlMX/+fHbs2EFsbCyTJ0/m9OnT1nW+/vprtm/fzqeffspzzz1n5ykqGt7w2F/vSUDtWKejcvQkhFPYvM8pKSmJpKSkJt9ftGgRc+bMYfbs2QAsXryY1atXs3TpUubOnQtA9+7dAfUMxZQpU9ixYwdDhw5tdHtVVVVUVV2c3qTurInRaLzi9BUakxkt6i2XTY2sFx3UhZIKIz+dLqNPSJcrV9rG6srtDtNv1NTUYLFYMJlMWGpngKg7w+UupF4N1f2719TUNPg9bunvtUM7xKurq9m+fTvp6enWZRqNhgkTJrB582ZAPfIym834+vpSXl7Ol19+yV133dXkNhcsWNDo+I61a9ei1zd9uULPMz8yFDh16hTbPvuswfseFzSAhs837aDmcMOjK0dYt26dU/ZrS4qiEBYWxsmTJ/Hz80NRFM6ePevsYtmF1EtVU1NDcXEx5eXlZGdnN3i/oqJlrRGHhlNRUREmk6nBKNiwsDD27dsHQGFhofX6IJPJxJw5c644gVx6ejppaWnW12VlZURFRTFp0iT8/Pya/Jxm60k4fvHo7HL7vfLY8dVP6MOuYsqUQa2qZ3sZjUbWrVvHxIkT3WIaDIPBwKlTpygqKqKyshJvb28UG1xK4iosFovU6zJdu3alV69ejf7+Xjom7EpcbihBr1692LVrV4vX1+l06HQ6MjMzyczMxGQyAeDp6XnlP2ytFlCP3DSNrNcr1BeA4+cqnRYQzdahgwgICMDX15cLFy7w1VdfccMNN7hFveoYjUZycnKkXrW0Wi0eHh5NBlpLt+XQcAoJCUGr1VJYWFhveWFhIeHh4e3adkpKCikpKZSVleHv79+ubQFcFaw2CQ+fNTSzpmgJrVaLTqejpqYGb29vt/oj1mq1Ui87cOg4Jy8vL+Lj4+u1Q81mM9nZ2YwePdqRRWlWXTidLLlApdHk5NII0fnY/MipvLycvLw86+v8/Hxyc3MJCgoiOjqatLQ0kpOTGTFiBKNGjSIjIwODwWA9e9dWlzfr2qubjw4/bw/KKms4fNbAgPCm+6+EELZn83Datm0b48aNs76u66xOTk5m2bJlzJgxgzNnzjBv3jwKCgqsk79f3kneWrZu1imKQt8wX7YfOcfBwnIJJyEczObhlJiYaB0f0ZTU1FRSU1NtvWub69PNRw2n003fFUMIYR9uc22dre5bd6m+YeqFx4cknIRwOLcJpzbft+4Keoeq4XTw9HmbbVMI0TJuE05tdoUmaN/acMovMmA0uc9lCUJ0BG4TTq1u1rVgxGukfxe6eGoxmiwcOSsXAAvhSG4TTvZo1mk0Cn1qj57ypN9JCIdym3Cyl7qm3f4C6XcSwpEknJoxMEId37T3VMsuVhRC2IbbhJM9hhIAXB2phtOPp0ptul0hxJW5TTjZo88JYFBtOB0rvkDphY4/+ZsQHYXbhJO9BOi96F57qyhp2gnhOBJOLVB39PTjSQknIRxFwqkFBtV2iu+RcBLCYdwmnOzVIQ6XdIqflE5xIRzFbcLJXh3iAFd3V6dgyTtdLhPPCeEgbhNO9hTp702Ijxc1ZoscPQnhIBJOjdxU83KKohAXFQjAzqMldi6PEAIknK44K8GlhkUHALDzWIn9yiKEsOq84WSdlaB14ZQrR05COITbhFPrz9bVhlMLj5yG9ghAUeBEyQUKyyrbVkghRIu5TTi1+mxdK+9g6qPzoH+YeqNN6XcSwv7cJpxar/W3jbb2Ox09Z+OyCCEu14nDqVYLm3UAw6PVM3ZbDxfbqzRCiFqdN5xa2SEOcE2vYAC+P16KoarGDoUSQtTpvOHUyg5xgB6BXege0IUas4XtR6RpJ4Q9dd5wasORk6IoJPQKAuC7/LN2KJQQok7nDac2HDnBxabdtz9Jv5MQ9tR5w6mVQwnqjK4Np13HSqioln4nIezFbcKp7VOmtO7IqUdgFyL9vaXfSQg7c5twav2UKW1r1imKYm3abcqTfich7MVtwqnV2tAhXueGft0A+OrAGRsWSAhxqc4bTm08cgK4vm8IiqLe8ECusxPCPjpvOLXjyCnYR8eQ2tkxc+ToSQi76Lzh1I4jJ4BEadoJYVedN5zaOJSgztj+ajhtPFhEjclsixIJIS7RecPJqm1HTrE9AvDz9qD0gpFdx0tsWyQhRGcOp/Y16zy0GutZu3V7TtuqUEKIWp03nNrRIV5n8tXhAHz+YwGWNoacEKJxLhtOFRUVXHXVVTzxxBP23VE7QmXcgFC8tBryiwwcPF1uw0IJIVw2nP7yl79wzTXX2G8H7ewQB3Xq3uv6hgCw5oeCdm9PCHGRS4bTwYMH2bdvH0lJSXbcS/v6nOpMvjoMUJt2QgjbsXk45eTkMHXqVCIjI1EUhZUrVzZYJzMzk5iYGLy9vUlISGDLli313n/iiSdYsGCBrYtWnw2OnAAmDAxDo8CPJ8s4Vlxhk20KIewQTgaDgdjYWDIzMxt9Pysri7S0NObPn8+OHTuIjY1l8uTJnD6tnvH65JNP6NevH/369bN10ZrQviOnYB8dI2PUCej+98MpWxRICAF42HqDSUlJV2yOLVq0iDlz5jB79mwAFi9ezOrVq1m6dClz587l22+/Zfny5Xz44YeUl5djNBrx8/Nj3rx5jW6vqqqKqqoq6+uysjIAjEYjRqOxyXIoJjMegNlswnSF9VoiaXAY3+UXs3LnCWaPjm7XtgBrua9U/o5I6tWx2KteLd2eYrHjOXBFUVixYgXTpk0DoLq6Gr1ez0cffWRdBpCcnExJSQmffPJJvc8vW7aMH374gYULFza5j6effppnnnmmwfIPPvgAvV7f5OciSrYyKv8Vznbtx9f9/q91FbtMuRH+uF2L2aKQHltDeNO7FaLTq6ioYObMmZSWluLn59fkejY/crqSoqIiTCYTYWFh9ZaHhYWxb9++Nm0zPT2dtLQ06+uysjKioqKYNGnSFSuu7DNDPgQGBjJlypQ27ftSX5zfwfr9RZQE9OW+CX3btS2j0ci6deuYOHEinp6e7S6bq5B6dSz2qldd66Y5Dg2n1rr33nubXUen06HT6cjMzCQzMxOTyQSAp6fnlb9QD7XqGgU0Nvjipw3rwfr9RazaXcBTNw1EsUGHe7N16KCkXh2LrevV0m05dChBSEgIWq2WwsLCessLCwsJDw9v17bbPBOmjUwcFIbeS8ux4gvskDsCC9FuDg0nLy8v4uPjyc7Oti4zm81kZ2czevRoRxblIht1uem9PLip9nKWj7afsMk2hejMbB5O5eXl5ObmkpubC0B+fj65ubkcPXoUgLS0NJYsWcLbb7/N3r17eeihhzAYDNazd23V6hscKLVVt9huupOfjYgC4NPcE3JHYCHayeZ9Ttu2bWPcuHHW13Wd1cnJySxbtowZM2Zw5swZ5s2bR0FBAXFxcaxZs6ZBJ3lrpaSkkJKSQllZGf7+/s1/QKNVny2mdu33Utf0CiImWM/hsxWs+v4kM0a2f1iBEJ2VzcMpMTGx2Sv0U1NTSU1NtfWuW0epDSez7cJJURRmjIzmhTX7WL71mISTEO3gktfWtUWrm3WaumadbYd53RHfHQ+Nws6jJewvOG/TbQvRmbhNOLX6bJ21z8l2R04Aob7e3DgwFIB/bTlq020L0Zm4TTi1mh2adXV+MUptzv1n+3HKpWNciDZxm3BqfbPO9h3idW7o241e3bpyvqqGj7Yds/n2hegM3CacWt+ss9+Rk0ajMHtMTwD++c1hzGaZwleI1nKbcGo1Ox45AdwxvDt+3h4cOVvBl/vkBghCtFbnDae6DnGzfe45p/fysPY9/fObfLvsQwh35jbh5AojxC93z7UxaDUKm/LOsudky67EFkKo3CacWt3nZOdmHUD3gC4kDVavt3ttQ57d9iOEO3KbcGo1O3aIXyplXB8AVu8+xaEzcvsoIVqq84aTA46cAAZG+DFxUBgWC7y2/pBd9yWEO+m84WQ9crJfn1Od1Nqjp5W5J+QOLUK0kNuEU9uvrbPvkRNAbFQA1/cNwWS2sPgrOXoSoiXcJpxcaRBmYx4Zr84r/uG24xw/J0dPQjTHbcKp1RwwlOBSo3oGMaZPMNUmM39bd9Ah+xSiI+u84eSgDvFLPTV5AAAf7zwu06kI0YxOHE61d4Aw19h8TqemxEYFkDQ4HIsFFq7d75B9CtFRdd5w0l5yexqz46Y1+e2k/mgUWLenkO1H5C4tQjSlE4eT18Wfa6qaXs/G+oT68LN49UYIf1m9p9kpjYXorNwmnFo9lODScDJV26dQTXh8Yj/0Xlp2HC3hk9yTDt23EB2F24RTq4cSaD0unrEzGe1XsEaE+3tbL2tZ8L+9chspIRrhNuHUJnVHTw4+cgK4/7qeRAfpKSyrkouChWiEhBM4JZy8PbX84eaBACzZmM/RszIwU4hLdfJwqj1j54RwApg0KIzr+oRQXWNm3qc/SOe4EJfo5OGkU5+dFE6KovD0rVfjpdWwYf8Z/vv9KaeUQwhX1MnDqe7IybEd4pfqE+pj7Rx/9r8/UlLhnKAUwtV08nCq7XNy4Dinxvw6sRd9Qn0oKq9mwWf7nFoWIVyFhBM4rVlXR+ehZcH0IQBkbTvGtz8VO7U8QrgCtwmnVg/CBJdo1tUZGRPErAT1bi3pK3+k0nHXIwvhktwmnFo9CBPAw1t9rqm0T6FaaW7SALoHdOH4uQusOOw2/zRCtEnn/gvw7KI+G11jjJGvtyd/vSsWRYFvT2vI3is34xSdV+cOJ6+u6nO1wbnluMQ1vYK579qrAPjDJ3soKnduZ70QztK5w8lTrz67yJFTncdv7ENEFwtnDdWkf7xbBmeKTqlzh5NXbThVu1Y46Ty13N3XhKdWYd2eQt7+5rCziySEw3XucPKsbda52JETQPeu8NTkfgD85bO97DpW4twCCeFgnTycXKtD/HLJ10Rz09XhGE0WUj7YQWmF84c8COEonTucXLRZV0dRFF782VCig/QcP3eBJz7aJf1PotPo3OFkbda5ztm6y/l5e/LarOF4aTWs21PImxvznV0kIRzC5cKppKSEESNGEBcXx+DBg1myZIn9dubiR051Bnf3549TBwHqzJk5B844uURC2J/LhZOvry85OTnk5uby3Xff8dxzz3H27Fn77MzLR32ucv17yP0yIZo743tgtkDqBzvIL3Ldoz0hbMHlwkmr1aLXq0c0VVVVWCwW+/WzdAlQnytL7bN9G1IUhb/cPphh0QGUVdYw551tlFVKB7lwXzYPp5ycHKZOnUpkZCSKorBy5coG62RmZhITE4O3tzcJCQls2bKl3vslJSXExsbSo0cPnnzySUJCQmxdTJV3gPpcWWKf7duYzkPL67+MJ9zPm7zT5fxmeS4ms3SQC/fkYesNGgwGYmNjue+++5g+fXqD97OyskhLS2Px4sUkJCSQkZHB5MmT2b9/P6GhoQAEBASwa9cuCgsLmT59OnfeeSdhYWGN7q+qqoqqqouXeJSVlQFgNBoxGps5svDoiidguVBCTXPrOlBduRsrf2AXLa/NjOUXb27ly32nefqT3fzx5gEoiuLoYrbalerVkUm92rbd5igWO56bVhSFFStWMG3aNOuyhIQERo4cyauvvgqA2WwmKiqKRx55hLlz5zbYxsMPP8z48eO58847G93H008/zTPPPNNg+QcffGBtHjbFs+Y8U3anAPBp3FIsis2z2m5yzyosO6DBgsJtV5kYHylHUKJjqKioYObMmZSWluLn59fkeg79a6yurmb79u2kp6dbl2k0GiZMmMDmzZsBKCwsRK/X4+vrS2lpKTk5OTz00ENNbjM9PZ20tDTr67KyMqKiopg0adIVKw6A2QS14ZSUOBq6dmtH7WzHaDSybt06Jk6ciKenZ6PrTAHCNx1mwZoDfHJEy7iEodw8JNyxBW2lltSrI5J6tU5d66Y5Dg2noqIiTCZTgyZaWFgY+/ap09MeOXKEBx980NoR/sgjjzBkyJAmt6nT6dDpdA2We3p6tuAL9QSdH1SV4VlTAS72i9VcHR4c24dTZdUs++YwT/3nByIC9CT0CnZgCdumZf82HY/Uq+XbawmXa8eMGjWK3NzcVn8uMzOTzMxMTKZWTiHpHQBVZR2mU/xSiqLwx1sGcar0Ap//WMgDb2/jXw9ew+Du/s4umhDt5tChBCEhIWi1WgoLC+stLywsJDy8fU2SNs2ECaAPVJ8r7DSWys60GoWXfz6MUT2DOF9Vwz1Lt5B32vXHbQnRHIeGk5eXF/Hx8WRnZ1uXmc1msrOzGT16dLu23aY5xAG6qmcIKe+4s056e2p5K3kEQ3v4U2yoZtab33Gs2LVHvQvRHJuHU3l5Obm5udamWX5+Prm5uRw9ehSAtLQ0lixZwttvv83evXt56KGHMBgMzJ49u137bfORk29t/1d54ZXXc3G+3p68PXsU/cJ8KCyrYtab31FY5hpzowvRFjYPp23btjFs2DCGDRsGqGE0bNgw5s2bB8CMGTNYuHAh8+bNIy4ujtzcXNasWdPkOCa783GPcAII7OrFe/cncFWwnqPFFfzijW8pKJWAEh2TzcMpMTHReqbt0seyZcus66SmpnLkyBGqqqr47rvvSEhIaPd+29ysc6NwAgj18+a9+xPoHtCFn4oM/PyNzZwqveDsYgnRai53bV1btblZ59Px+5wuFxWkZ/mD19AjsAuHz1Yw4/VvOVEiASU6FrcJpzbzqT1LeL7AueWwsaggPVm/Gk10kNrEm/H6ZukkFx2KhJNfpPpcdgLMZueWxca6B3Rh+YPXEBOszqR51+ubZZiB6DDcJpza3Ofk1x0ULZiqody9jp4AIgO6sPzB0fTu1pVTpZX8bPFmcuVmCaIDcJtwanOfk9YD/LurP587YvuCuYBwf28+/PW1xPbw51yFkZlLvuXrg0XOLpYQV+Q24dQuAeoddilxz3ACCOrqxftzruG6PiFUVJuYvWwLn+0+5exiCdEkCSeAwNpwctMjpzo+Og/euncEU4ZcvN3U0q/z5Y4uwiW5TTi1uc8JIDBGfT7n/nc20XloeeUXw5mVEI3FAs+u2sPTn/5Ijcm9TgaIjs9twqnNfU4AwX3V5zP7bVsoF6XVKPx52mB+P2UAAG9vPsKcd7ZRXlXj5JIJcZHbhFO7hA5Un8/sd7vhBE1RFIUHb+jNP2YNR+ehYf3+M/xssYwmF65DwgkgqBdoPNWba5Ydd3ZpHCppSATLH7yGEB8v9p4qY1rmJnYePefsYgkh4QSA1hNCapt2p/c5tyxOMCw6kBUPj7HOaDDj9W/599Zjzi6W6OTcJpza1SEO0E3tf+H0j7YrVAcSFaTn44fHMGlQGNUmM0/953vmffIDRukoF07iNuHUrg5xgMg49fnEdpuVqaPx0Xmw+JfxpE3sB8A7m48wa8l3FJVXNfNJIWzPbcKp3brHq88ndji3HE6m0Sg8emNf3rxnBL46D7YcLmbqK1+z/Uixs4smOhkJpzoRcaBo1AuAy2Tk9IRBYaxMHUOv2mvyZrz+LW/kHJIBm8JhJJzq6HygW+2Qgk7ctLtU724+fJp6HVNjI6kxW3jus33MeWcbJRXVzi6a6AQknC7Vo7Zpd+xb55bDhfjoPPj7z+P4y+2D8fLQ8MXe09z896/ZIcMNhJ25TTi1+2wdQMwN6vNPX9mmUG5CURRmJVzFioevJSZYz4mSC9y1eDOLvzqE2SzNPGEfbhNO7T5bB9BrrPpc8D0YOuZ97Ozp6kh//vvIddw8NIIas4Xn/7ePmW9+y0mZAljYgduEk034hELo1erP+RucWhRX5evtyau/GMYLdwxB76Xl25+KuSkjh//uOunsogk3I+F0uV6J6nNe9hVX68wURWHGyGhWP3o9sVEBlFXW8Mi/dpKWlUtZpdHZxRNuQsLpcv1vUp/3fwYm+UO7kp4hXfno16N5dHwfNAp8vPMESRkb2XxImsSi/SScLhd9LeiD4cI5OPy1s0vj8jy1GtIm9effvxpNVFAXTpRc4BdLvmX+Jz9gkClYRDtIOF1O6wEDblF/3vOJc8vSgYyICeKzR6/nF6OiAXWOqJtezpGjKNFmEk6NGXSr+rz3v9K0awVfb08WTB/Cu/ePontAF44Vq0dR8+QoSrSBhFNjeo6FrqFQUQQH1ji7NB3O9X27seY3F4+i3qk9ivpGjqJEK7hNONlkEGYdrSfEzVR/3v52+7fXCdUdRb13f4L1KCp52XbeO6jhrEEufxHNc5twsskgzEsNv0d9zvsCSo7aZpud0HV9Q/j88RtIHn0VigJbizTc9PIm/r31mFxELK7IbcLJ5oJ7q807LPDd684uTYfmo/PgmdsG8+GDCXTXWyi5YOSp/3zPjDe+ldujiyZJOF3JtY+qz9uXwYUSZ5bELcT28Oe3Q03MvakfXTy1bMkvJunljSxau59Ko8nZxRMuRsLpSvrcqF7OUl0O295ydmncglaB+8fEsC7tBsYPCMVosvD3L/NIenkjOQfOOLt4woVIOF2JosCY2qOnb16Roycb6hGo563kEfxj1nBCfXXkFxm4Z+kW5ryzjaNnK5xdPOECJJyaM/hOCOmvjhjflOHs0rgVRVFIGhLBF78dy/3X9USrUVi3p5AJf/uKRWv3c6FamnqdmYRTc7QeMOFp9edv/wFlcvW9rfl5e/LHWwax5rHrGdMnmOoaM3//Mo8b/7qB1d+fkrN6nZSEU0v0T4Lo0VBTCWv/6OzSuK2+Yb68d38C/5g1nO4BXThZWknKBzuYueQ79hfIWb3ORsKpJRQFblqg3gDhh4/g4Dpnl8htWZt6aWN57Ma+6Dw0bP7pLFP+vpH5n/xAsQzg7DRcLpyOHTtGYmIigwYNYujQoXz44YfOLpIqchhc87D686rHoarcueVxc128tDw+sR9fpI3lpqvDMZktvL35CGNfWs8bOYeoqpH+KHfncuHk4eFBRkYGe/bsYe3atfzmN7/BYDA4u1iqcb+HgGgoPQZfzHd2aTqFqCA9i++O5/0HEhgY4cf5yhqe+2wfExZ9Jf1Rbs7lwikiIoK4uDgAwsPDCQkJobjYRW7o6NUVpr6s/rz1Tdi7yrnl6UTG9Alh1SPX8eIdQwn11XGs+AIpH+zgzsWb5U4wbsrm4ZSTk8PUqVOJjIxEURRWrlzZYJ3MzExiYmLw9vYmISGBLVu2NLqt7du3YzKZiIqKsnUx2673eLj2EfXnT1LkujsH0moU7hoZxfonEnnsxr508dSy/cg5pr/2Dakf7OBYsYyPcic2DyeDwUBsbCyZmZmNvp+VlUVaWhrz589nx44dxMbGMnnyZE6fPl1vveLiYu655x7eeOMNWxex/cbPg8jhUFkCy2dCtYs0OzuJrjoPHp/Yj/VPJPKz+B4oCqz6/hQ3/vUr/rJ6D+ek09wteNh6g0lJSSQlJTX5/qJFi5gzZw6zZ88GYPHixaxevZqlS5cyd+5cAKqqqpg2bRpz587l2muvveL+qqqqqKqqsr4uKysDwGg0YjTaa6I4Baa/hcc/J6EU7Mb88a8wTX9LPZtnA3Xltl/5ncPW9QrWa3lu2iB+mdCD59ccYPNPxSzZmM8HW45y/5gYZl97FT46m/+KNyD/Xm3bbnMUix17FBVFYcWKFUybNg2A6upq9Ho9H330kXUZQHJyMiUlJXzyySdYLBZmzpxJ//79efrpp5vdx9NPP80zzzzTYPkHH3yAXq+3UU0aF1h+kDF5C9BaasgLTeLHyJ+rww6Ew1kssLdEYdVRDScq1H8DHw8LE3uYuS7MgofL9a52XhUVFcycOZPS0lL8/PyaXM/+/61coqioCJPJRFhYWL3lYWFh7Nu3D4BNmzaRlZXF0KFDrf1V7777LkOGDGl0m+np6aSlpVlfl5WVERUVxaRJk65YcVux7I6ATx+mz+n/0XPgMMzXpTX/oWYYjUbWrVvHxIkT8fT0tEEpXYO963UzkGa28NkPBWRkH+JIcQUrDmv57pw3j4zvzbTYCDy0tk8p+fdqnbrWTXMcGk4tcd1112E2m1u8vk6nQ6fTkZmZSWZmJiaTOv7F09PTMb8ow2dBVSl8no72q+fQdvGDax6yyaYdVgcHs3e9bo+P5pa4Hny47TgvZx/gZGkl6St+5M2vD/PEpP7cNDgcxQ5HuPLv1fLttYRDD3ZDQkLQarUUFhbWW15YWEh4eHi7tm3zmTBbY/TDMPZ36s9r5sLGRY4vg6jHU6thZkI0Xz05jt9PGUCA3pNDZww89P4ObsvcxNcHi5xdRNEMh4aTl5cX8fHxZGdfvJuu2WwmOzub0aNHO7IotpeYDjc8qf6c/Qx88YzaESKcyttTy4M39CbnqXE8Or4Pei8t3x8v5ZdvfcfMJd+yU8ZIuSybh1N5eTm5ubnk5uYCkJ+fT25uLkePquOB0tLSWLJkCW+//TZ79+7loYcewmAwWM/etZVNb3DQFooC4/8PJj6rvv56Eax8GGqqrvw54RB+3p6kTepPzlPjuPfaGLy0Gr45dJbbX/uGB9/ZxoFCubDY5VhsbP369RagwSM5Odm6ziuvvGKJjo62eHl5WUaNGmX59ttvbbb/0tJSC2ApLS212TZbbetSi+XpQItlvp/F8tZki6X8TKs+Xl1dbVm5cqWlurraTgV0Dleq17Fig+W3/8619Jy7ynLV71ZZYuausjyetdNy9Kyh1dtypXrZkr3q1dK/UZsfOSUmJmKxWBo8li1bZl0nNTWVI0eOUFVVxXfffUdCQoKti+FcI2bDrA9B5w9HN8OScXAy19mlEpfoEahn4c9i+fw3N3DT1eFYLPDxjhOM/+sGnv70R86clyNeZ3Ob0R9Ob9Zdrs+N8MAXENhTvcTlrYnqXVykH8ql9A3zZfHd8XySMobr+oRgNFlY9s1hxr60noWf76es0r0GVnYkbhNOTj1b15Ru/eDB9TDgFjBVw/+egqxfQoWLXMgsrGKjAnjvgQTefyCB2KgAKqpNvLo+j+tfWM/irw7JlMFO4Dbh5LK6BMKM9yDpRdB6wb5V8No1sG+1s0smGjGmTwgrH76Wxb+Mp2+oD6UXjDz/v30kLlzP+98dwWhq+Rg80T5uE04u16y7lKJAwq/g/rUQ3BfKC9ULhj+6Dwwy3sbVKIrCTYPDWfObG1j4s1i6B3ShsKyKP6z4gYmLvuKT3BOYzdI8tze3CSeXbNZdLnIY/PpruO5xULTww38gcxTseAdaMSpeOIZWo3BnfA++fGIsT08dRIiPF4fPVvDY8lxufuVrvtxXKJPd2ZHbhFOH4emt3s3lgS/UG3ZWnIVPH1HP6B39ztmlE43QeWi5d0xPvnpyHE9M6oevzoO9p8q4b9k27np9M1sPy0BOe5Bwcpbuw+HBDTDpL6Dzg1O5sHQS/GcOlJ1wdulEI7rqPEgd35ecp8bxqxt6ofPQsPXwOWa+tZXX92rkDjE25jbh5NJ9Tk3x8IJrU+GR7TDsbkCB3f/G47WRDD7+nto3JVxOYFcv0qcM5KsnxzEzIRqtRmFPiYapr20mLStXZuS0EbvO5+QMZWVl+Pv7NztXjEs6sUO9L96RrwGweHRBGTUHxvwGugY7t2w2YDQa+eyzz5gyZYpbXb1/4FQJv3tvIzvPqv/Xe2oVZiVcxSPj+xDso3Ny6drOXv9eLf0bdZsjJ7fQfTjcu4qamf+hWN8bpeYCfPN3eHkofP4HKD3u7BKKRvQM6cq9/cx8/OuEegM5b3hxPRlfHKC8qsbZReyQJJxcjaJg6TmWjf3mUXPXBxA+FKrLYfOr8HIsfPwgFOx2dilFI4Z09+e9BxJ47/4EhnT3x1BtIuOLg4x9cT3LNuXLvfZaScLJVSkKlr6T4Fc5MPNDiLkezDXwfRYsvg7emabeeViGILic6/qG8EnKGDJnDqdnSFfOGqp5+r97uPGvX7Fyp4yRaim3CacO2SHeEooC/SbBvatgznq4erp6I4Wf1sP7d8LfYyFnIZyXznNXotEo3Dw0grWP38Bfbh9MqK+O4+cu8JusXKa9tonvfjrr7CK6PLcJpw4xCLO9ug+Hn/0THt0JCQ+Bt796UfGXf4K/DYJ/3wM/bZCjKRfiqdUwK+EqvnpyHE9O7o+PzoPvj5cy441v+dW72zhcJLcVa4rbhFOnEhgDSc9D2j6Y9g/oMUpt8u35BN65Df4eB1/+Gc4ccHZJRa0uXlpSxvVhw5OJzEqIRqPA5z8WMvFvX/Hsf/dQUiH32ruchFNH5qWHuJnwwDr49SYY+YA6oLPkCOS8BJkj4fWxsPk1afa5iBAfHX+5fQhrfnMDif27YTRZWLopn7EvbeCtr/PlwuJLSDi5i/DBcPNf4bf74Y63oO9k0HioI88/T4dFA+Dd22Hne2CQ/g5n6xfmy7LZo3j7vlH0D/Ol9IKRP63aQ9LLG/kmTy4GBxe8NZRoJy89DLlTfRiK4McV8P2/4fgWOPSl+lA0EH0tDLxFnWsqIMrZpe60xvbrxpjewfx723EWrt1P3ulyZr75HTcPjeAPUwYSGdDF2UV0Grc5cnLbs3Xt0TUERs1Rm32P7oRx/6eOm7KY1VHoa+ZCxmB4/Qb46iU4vVdm6nQCj9rbWK3/bSLJo69Co8Dq709x41+/4rUNeZ12fJTbhFOnOFvXHkG9YOyT8OuN8NgumLwArhqjHkWd2gXr/6xOgvfyUFj1OOxdBZUtuzOrsA1/vSfP3DaY/z5yHSOuCuSC0cSLa/ZzU8ZGvjpwxtnFczhp1nVGgTHqjUBHPwzlZ+DA/9Qw+mm9OjRh21L1ofGAqGugz3joMwHChoDGbf4/c1lXR/rz4a9Hs2LnCZ77bB/5RQaSl27h1thI5k0dREgHvl6vNSScOjufbjD8HvVRbYDDX0PeF+qj+Ce1+Xfka8h+FrqGQu/x0PMGiBkDAVepg0SFzSmKwvThPZgwKIyMdQdZ9k0+n+46Sc7BM/zx5kFMH97dLrdUdyUSTuIir67Qb7L6ADWc8rLVR34OGE7D98vVB4B/lNo0jLlODavAnhJWNubn7cm8qYOYNiySpz76nn0F5/nth7tYmXuC524fQlSQ3tlFtBsJJ9G0oF4wqpfaqV5TBce+U8/2Hd4EJ3dA6bH6YeXX/ZKwuk79vISVTQztEcB/H7mON3J+4uXsg2w8WMSkv+Xw+5sH8suEaLc8ipJwEi3joVObcz1vUF9XG9SwOrxJbQqe2K7O4Ln73+oDQB8MPUZCjxHqKPbQIc4rvxvw1GpIGdeHpMHhzP14N1vyi/njyh/I3lvIi3cMJdTP29lFtCkJJ9E2Xl3V/qfe49XX1RXqWKrDm+DIJji+VZ0f/cAa9QF4oJDo3QOtZR1EJ0DUKPVuNNLJ3iq9uvmwfM41/PObw7ywZh8b9p9hckYOz90+hKQhEc4uns1IOAnb8NJDr0T1AWozsGC3GlK1D6XkKP6VxyD3XfUB6i3be8Srd6aJiFXHYQXGSHOwGRqNwv3X9eT6viE8npXLjyfLeOj9HdwxvAfP3nY1XXUd/0+749egVmZmJpmZmZhMnXPAmsvx0NU250YADwFgLD7Gjv8uYUS4Be3JHWq/VVXpxZHrdbz91ZCKiL34CO4DGq1z6uLC+oX5suLhMbycfYB/bDjEf3YcZ9fxEhb/cjh9Qn2dXbx2cZtwSklJISUlxTo/sXBBvuEUBMRjHj8FracnmGrg9I9wfJs6EPTULji9BypL4fBG9VHHUw/hQy4JraEQ0l+91VYn5+Wh4cnJAxjbL5TUD3aQd7qcW1/dxILpQ7gtrruzi9dmbhNOogPSelw8MqpTUw1n9kHB9xcDq2A3GCvUDvhjl9zbT9FAUG8IHQihgyBskPoc2FPddiczqmcQqx+9nseW7+SbQ2d5bHkuWw8X88dbBqHz6HhHnZ3vX1C4Ng8v9agoYigM+6W6zGyCs3lw6nt1loW6wKosgbMH1cfeTy9uQ6uDbv3UoKoLrtCB6rgsN+/L6uar4937E8j44gCvfJnHe98e5UBBOYvvjieoq5ezi9cqEk7C9Wm00K2/+hj6M3WZxQLnC9Rm4Om9tY896lGXsUINr8tvBOHlC6ED1OZgSB+1Hyu4rzoey6Nj/eFeiVaj8NtJ/RkeHcij/9rJlsPF3P7aJpbeO5Le3XycXbwWk3ASHZOigF+E+uhz48XlZrM62V5dWNUFV9EBqD5/8exhvW1p1EtxQvqqYRVSG1ohfcEnrMMebY0bEMp/Hr6W+5Zt5cjZCm7P3MTiu+O5tneIs4vWIhJOwr1oNBDUU30MmHJxuckIZw+pgXU2Tw2rooPqz9XlcC5ffRxcW397Oj8I7n0xrIL7qK8De4K369+0tV+YLytTxvDgO9vYcbSEe97awl/viu0QHeUSTqJz0HqqTbrQAfWX1zUPzx68GFZFtf1YJUehqgxO7lQfl+sSBEE90fpHM+CsCSX3HHTrowaXb4TLDC4N8dHxwZxrePKj7/nvrpP8JiuXimoTvxgV7eyiXZGEk+jcLm0e1l2aU6emSr34uS6sivLU5+J8qCiCC8VwohjNie30B1h9Wad84FXqgNLAnupzUO1zYAx4OnaGS29PLS/PiMO/iwfvfXuU9I93Y6iq4YHrezm0HK0h4SREUzx0tWf7BjZ8r+o8nDsM5w5jKsrj6K4crvKzoDl3WL0g2lRV23Rs4g44PuFqSAVEgX8P9Uyif1Tt6yjQ2b7jWqNR+NNtg/HRebL4q0P8efVetBqF2WN62nxftuCS4XT77bezYcMGbrzxRj766CNnF0eIhnS+tYNCh2A2Gvm+uBc9pkxBUze4tOy4Gl7F+bUhVvtcfFgdFV9eoD6Ofdv49r0DLgaVNbR6gH+0+uwT2qaOekVRmJs0AC+twt+/zOOZ/+5B56FlZoLrNfFcMpwee+wx7rvvPt5++21nF0WI1tN6XGy+1V1rWMdigQvn1NAqOQKlx9UjrdLjUHIMSo+qI+QrS6CgpOFwCOs+dODfvf7Rln8U+EWqD9+IK3bYPz6xH5U1Zt7I+Yk/rNyNfxdPbh7qWhcNu2Q4JSYmsmHDBmcXQwjbUxTQB6mPHvGNr1NZVhtax9WwKjlWP8TOn1KbjcU/qY+mePmoIeUXAb6R9Z4V30jSx4RTWRXJO9+d5PF/5xLmp2NETJB96t0GNg+nnJwcXnrpJbZv386pU6dYsWIF06ZNq7dOZmYmL730EgUFBcTGxvLKK68watQoWxdFiI7J2w+8ay/HaYzJqM6dZT3auiTEzp+CslNq07G6/OII+kYowDOKhse7BnLE6E/xsmDKhlyNX2g0+Eai6EPxqTyp9q95Oj60bB5OBoOB2NhY7rvvPqZPn97g/aysLNLS0li8eDEJCQlkZGQwefJk9u/fT2hoqK2LI4T70XpebDY2pdqghtT5k008n4LzBSgWE4GmswRqzgI/we6LA1Q9gBsB9s5VR9f7RdQeiUVe9lx7ROYTZtPhEzYPp6SkJJKSkpp8f9GiRcyZM4fZs2cDsHjxYlavXs3SpUuZO3duq/dXVVVFVVWV9XVZmXo7I6PRiNFobPX2XEFduTtq+Zsi9XIgxQv8r1IfTTGbwHAG5fwpSk4f5c3/bcan+gwjgyoZGVQJ509iOnccT/MFdXR90fmmzz4C5qvGYJq1stmO+pZ+Tw7tc6qurmb79u2kp6dbl2k0GiZMmMDmzZvbtM0FCxbwzDPPNFi+du1a9PqOPfn7unXrnF0Eu5B6uSJPPGNuYNEeLebTCj/3MTE62gLRoDVV0sV4Du/aR5fq4os/X/KsObKJ/372WbPhVFFR0aISOTScioqKMJlMhIWF1VseFhbGvn37rK8nTJjArl27MBgM9OjRgw8//JDRo0c3us309HTS0tKsr8vKyoiKimLSpEn4+bn+5QWNMRqNrFu3jokTJ+Lp6ens4tiM1Mv1eW/M56W1B/nvcS/uu3kke7d9zfibpl65XhVn4W/9AZgyZUqz4VTXummOS56t++KLL1q8rk6nQ6fTNZgJ09PTs8P/orhDHRoj9XJdv07sy1cHzrLlcDH/99/9/CK8BfXyuPiep6dns+HU0u/IoRf/hISEoNVqKSwsrLe8sLCQ8PDwdm1bbkcuRPtpNQoLfxaL3kvLlsPnyClw3owMDg0nLy8v4uPjyc7Oti4zm81kZ2c32WwTQjhWdLCe309RL9n53zENReVVzXzCPmweTuXl5eTm5pKbmwtAfn4+ubm5HD16FIC0tDSWLFnC22+/zd69e3nooYcwGAzWs3dtlZmZyaBBgxg5cmR7qyBEpzdzVDRDuvtRaVL467o8p5TB5uG0bds2hg0bxrBhwwA1jIYNG8a8efMAmDFjBgsXLmTevHnExcWRm5vLmjVrGnSSt5Y064SwHY1G4Y9T1Oll/rPzBN8fL3F4GWzeIZ6YmIjFYrniOqmpqaSmptp610IIGxoWHcCIEDPbijS89Pl+3r0/waH7d43ZsGxAmnVC2N6UKDMeGoWNB4vYcfScQ/ftNuEkzTohbC/YG6bFRQLwSnbj1+jZi9uEkxDCPn49tidajcL6/WfYc7JlAyhtwW3CSZp1QtjHVUF6bhqsjkN899sjDtuv24STNOuEsJ+7r1EvIF658wRllY65wNltwkkIYT8JPYPoG+rDBaOJFTtOOGSfEk5CiGYpimK9ldSKnRJOrSJ9TkLY1y2xEWgUyD1WwrHilk170h5uE07S5ySEfYX6ejO6dzAAn+46aff9uU04CSHs75ah6pindXsKm1mz/SSchBAtNq6/Os//ruMlFBuq7bovCSchRIuF+3szINwXiwU2Hjxj1325TThJh7gQjjG2fzcAvjog4dQi0iEuhGOM7auG0zd5Z+26H7cJJyGEY8RFB6DVKBSUVXKy5ILd9iPhJIRoFb2XBwMjfAHsOo2KhJMQotWGRwcCsONIid32IeEkhGi1YdEBgDqkwF4knIQQrTYwQr1h7YGC81i48rTcbeU24SRDCYRwnF4hPnhoFM5X1VBYVmmXfbhNOMlQAiEcx8tDQ8+QrgDknSm3yz7cJpyEEI7VL1w9Y3fotISTEMKF9A31ASC/yGCX7Us4CSHaJDpID8CpEulzEkK4kB6BajidLJVwEkK4kB6BXQAoKLXPJSwSTkKINgnz88ZDo1BjlnFOQggXotUoRAZ0sdv23SacZBCmEI4X4e9tt227TTjJIEwhHC/ER2e3bbtNOAkhHC/Yx8tu25ZwEkK0WXBXOXISQrggOXISQrikEAknIYQrCpYOcSGEK/Lv4mm3bUs4CSHazEfnYbdtSzgJIdrMx7uThdOqVavo378/ffv25c0333R2cYQQTejqZb9wst+W26impoa0tDTWr1+Pv78/8fHx3H777QQHBzu7aEKIy2g1CnovrV227XJHTlu2bOHqq6+me/fu+Pj4kJSUxNq1a51dLCFEE7raqd/J5uGUk5PD1KlTiYyMRFEUVq5c2WCdzMxMYmJi8Pb2JiEhgS1btljfO3nyJN27d7e+7t69OydOnLB1MYUQNmKvpp3Nt2owGIiNjeW+++5j+vTpDd7PysoiLS2NxYsXk5CQQEZGBpMnT2b//v2Ehoa2en9VVVVUVVVZX5eVlQFgNBoxGo1tr4gT1ZW7o5a/KVKvjqWl9dLrNGC45DOK0qLtNsfm4ZSUlERSUlKT7y9atIg5c+Ywe/ZsABYvXszq1atZunQpc+fOJTIyst6R0okTJxg1alST21uwYAHPPPNMg+Vr165Fr9e3oybOt27dOmcXwS6kXh1Lc/WqPH/xBgefffZZs+FUUVHRov0qFovFPtPYAYqisGLFCqZNmwZAdXU1er2ejz76yLoMIDk5mZKSEj755BNqamoYOHAgGzZssHaIf/PNN012iDd25BQVFUVRURF+fn72qppdGY1G1q1bx8SJE/H0tN8gN0eTenUsLa3Xb/65nsyTP1M/8/szzYZTWVkZISEhlJaWXvFv1KFn64qKijCZTISFhdVbHhYWxr59+9QCeXjw17/+lXHjxmE2m3nqqaeueKZOp9Oh0zUcQu/p6dnhf1HcoQ6NkXp1LM3VS3fJ2TpPT89mw6ml35HLDSUAuPXWW7n11ltb9ZnMzEwyMzMxmUx2KpUQojFeWvuc9HfoUIKQkBC0Wi2FhYX1lhcWFhIeHt6ubctMmEI4h5eHG4STl5cX8fHxZGdnW5eZzWays7MZPXp0u7Ytc4gL4Rw6O4WTzZt15eXl5OXlWV/n5+eTm5tLUFAQ0dHRpKWlkZyczIgRIxg1ahQZGRkYDAbr2bu2SklJISUlhbKyMvz9/dtbDSFEC3l52GeEuM3Dadu2bYwbN876Oi0tDVDPyC1btowZM2Zw5swZ5s2bR0FBAXFxcaxZs6ZBJ7kQomOwV5+TzcMpMTGR5kYnpKamkpqaatP9Soe4EM7hFn1O9iQd4kI4h87jykMH2sptwkkI4Rz26nOScBJCtIs065ohQwmEcA5tMyPC28ptwkn6nIRwDo2dUsRtwkkI4RxaRZp1QggXZKdhTu4TTtLnJIRzaKTP6cqkz0kI59BoJJyEEC5IztYJIVySnK0TQrgkOXJqhnSIC+EcWq2E0xVJh7gQzqFBwkkI4YK0crZOCOGKZJyTEMIlyZGTEMIlyVCCZsjZOiGcQ2undHKbcJKzdUI4h4xzEkK4JGnWCSFckiLjnIQQnYmEkxDCJUk4CSFckoSTEMIlSTgJIVyS24STDMIUwjnsc67OjcJJBmEK4V7cJpyEEO5FwkkI4ZIknIQQLknCSQjhkiSchBDtYqdJCSSchBCuScJJCOGSJJyEEC7JJcPp9ttvJzAwkDvvvNPZRRFCOIlLhtNjjz3GO++84+xiCCGcyCXDKTExEV9fX2cXQwjRAi4zE2ZOTg5Tp04lMjISRVFYuXJlg3UyMzOJiYnB29ubhIQEtmzZYouyCiE6kVaHk8FgIDY2lszMzEbfz8rKIi0tjfnz57Njxw5iY2OZPHkyp0+ftq4TFxfH4MGDGzxOnjzZ9poIIdyKR2s/kJSURFJSUpPvL1q0iDlz5jB79mwAFi9ezOrVq1m6dClz584FIDc3t22lbURVVRVVVVXW12VlZQAYjUaMRqPN9uNIdeXuqOVvitSrY2lpvWpMF983Go3Njsps6ffU6nC6kurqarZv3056erp1mUajYcKECWzevNmWu7JasGABzzzzTIPla9euRa/X22WfjrJu3TpnF8EupF4dS3P1Ki47z4Danz/77LNmw6mioqJF+7VpOBUVFWEymQgLC6u3PCwsjH379rV4OxMmTGDXrl0YDAZ69OjBhx9+yOjRoxtdNz09nbS0NOvrsrIyoqKimDRpEn5+fm2riJMZjUbWrVvHxIkT8fT0dHZxbEbq1bG0tF6HjhyBQ+rPU6ZMaTac6lo3zbFpONnKF1980eJ1dTodOp2OzMxMMjMzMZlMAHh6enb4XxR3qENjpF4dS3P18vDwrLduc+HU0u/IpkMJQkJC0Gq1FBYW1lteWFhIeHi4LXfVgMyEKYR7sWk4eXl5ER8fT3Z2tnWZ2WwmOzu7yWaZEEI0ptXNuvLycvLy8qyv8/Pzyc3NJSgoiOjoaNLS0khOTmbEiBGMGjWKjIwMDAaD9eydvVzerBNCdGytDqdt27Yxbtw46+u6zujk5GSWLVvGjBkzOHPmDPPmzaOgoIC4uDjWrFnToJPc1lJSUkhJSaGsrAx/f3+77ksIYX+tDqfExEQsFssV10lNTSU1NbXNhRJCCJe8tq4t5L51QjiH3LeuGXK2Tgj34jbhJIRwL24TTtKsE8K9uE04SbNOCPfiNuEkhHAvEk5CiHaR+9Y1Q/qchHAvbhNO0uckhHtxm3ASQrgXCSchhEuScBJCuCS3CSfpEBfCWVzkvnWuSjrEhXAvbhNOQgj3IuEkhHBJEk5CCJck4SSEaBe5fKUZcrZOCPfiNuEkZ+uEcC9uE05CCPci4SSEcEkSTkIIlyThJIRoF7k1lBCiU5FwEkK4JAknIYRLcptwkkGYQrgXtwknGYQphHtxm3ASQjiHXFsnhOhUJJyEEC5JwkkI4ZIknIQQLknCSQjhkiSchBDtItfWCSE6FZcLp2PHjpGYmMigQYMYOnQoH374obOLJIRwAg9nF+ByHh4eZGRkEBcXR0FBAfHx8UyZMoWuXbs6u2hCCAdyuXCKiIggIiICgPDwcEJCQiguLpZwEqKTaXWzLicnh6lTpxIZGYmiKKxcubLBOpmZmcTExODt7U1CQgJbtmxpU+G2b9+OyWQiKiqqTZ8XQnRcrQ4ng8FAbGwsmZmZjb6flZVFWloa8+fPZ8eOHcTGxjJ58mROnz5tXScuLo7Bgwc3eJw8edK6TnFxMffccw9vvPFGG6olhHAUe11b1+pmXVJSEklJSU2+v2jRIubMmcPs2bMBWLx4MatXr2bp0qXMnTsXgNzc3Cvuo6qqimnTpjF37lyuvfbaZtetqqqyvi4rKwPAaDRiNBpbUiWXU1fujlr+pki9OpaW1stYY6r/mWbSqqXfk037nKqrq9m+fTvp6enWZRqNhgkTJrB58+YWbcNisXDvvfcyfvx47r777mbXX7BgAc8880yD5WvXrkWv17e88C5o3bp1zi6CXUi9Opbm6nW+/Dy9an/+7LPPmg2nioqKFu3XpuFUVFSEyWQiLCys3vKwsDD27dvXom1s2rSJrKwshg4dau3PevfddxkyZEij66enp5OWlmZ9XVZWRlRUFJMmTcLPz69tFXEyo9HIunXrmDhxIp6ens4ujs1IvTqWltbr2InjcFD9ecqUKc2GU13rpjkud7buuuuuw2w2t3h9nU6HTqcjMzOTzMxMTCb1ENPT07PD/6K4Qx0aI/XqWJqrl6eHtt66zYVTS78jmw7CDAkJQavVUlhYWG95YWEh4eHhttxVAzITphDuxabh5OXlRXx8PNnZ2dZlZrOZ7OxsRo8ebctdCSFchGKnq+ta3awrLy8nLy/P+jo/P5/c3FyCgoKIjo4mLS2N5ORkRowYwahRo8jIyMBgMFjP3tnL5c06IUTH1upw2rZtG+PGjbO+ruuMTk5OZtmyZcyYMYMzZ84wb948CgoKiIuLY82aNQ06yW0tJSWFlJQUysrK8Pf3t+u+hBD21+pwSkxMxGKxXHGd1NRUUlNT21woIYRwuVkJ2kruWyeEe3GbcJKzdUK4F7cJJyGEc8h965ohzToh3IvbhJM064RwL24TTkII9yLhJIRwSW4TTtLnJIR7cZtwkj4nIdyL24STEMK9SDgJIVyShJMQwiW5TThJh7gQ7sVtwkk6xIVwL24TTkII55Br64QQnYqEkxDCJUk4CSFckoSTEMIluU04yVACIdyL24STDCUQwjkUO52uc5twEkK4FwknIYRLknASQrgkCSchhEuScBJCuCQJJyFEu9jp0joJJyGEa3KbcJJBmEK4F7cJJxmEKYR7cZtwEkK4FwknIYRLknASQrSPzIQphOhMJJyEEC5JwkkI4ZIknIQQLknCSQjhklwunEpKShgxYgRxcXEMHjyYJUuWOLtIQogrUOx0us7DLlttB19fX3JyctDr9RgMBgYPHsz06dMJDg52dtGEEA7kckdOWq0WvV4PQFVVFRaLBYvF4uRSCSEcrdXhlJOTw9SpU4mMjERRFFauXNlgnczMTGJiYvD29iYhIYEtW7a0ah8lJSXExsbSo0cPnnzySUJCQlpbTCFEB9fqZp3BYCA2Npb77ruP6dOnN3g/KyuLtLQ0Fi9eTEJCAhkZGUyePJn9+/cTGhoKQFxcHDU1NQ0+u3btWiIjIwkICGDXrl0UFhYyffp07rzzTsLCwhotT1VVFVVVVdbXpaWlABQXF2M0GltbPZdgNBqpqKjg7NmzeHp6Ors4NiP16lhaWq9z587RpUpt3RjPnoVm7sZy/vx5gOZbRJZ2ACwrVqyot2zUqFGWlJQU62uTyWSJjIy0LFiwoE37eOihhywffvhhk+/Pnz/fAshDHvLoYI9jx45d8W/fph3i1dXVbN++nfT0dOsyjUbDhAkT2Lx5c4u2UVhYiF6vx9fXl9LSUnJycnjooYeaXD89PZ20tDTra7PZTHFxMcHBwXa7n5a9lZWVERUVxbFjx/Dz83N2cWxG6tWx2KteFouF8+fPExkZecX1bBpORUVFmEymBk2wsLAw9u3b16JtHDlyhAcffNDaEf7II48wZMiQJtfX6XTodLp6ywICAlpddlfk5+fnVr/sdaReHYs96uXv79/sOi43lGDUqFHk5uY6uxhCCCez6VCCkJAQtFothYWF9ZYXFhYSHh5uy10JIdycTcPJy8uL+Ph4srOzrcvMZjPZ2dmMHj3alrtyazqdjvnz5zdornZ0Uq+Oxdn1UmrPurVYeXk5eXl5AAwbNoxFixYxbtw4goKCiI6OJisri+TkZF5//XVGjRpFRkYG//73v9m3b1+TwwGEEOJyrQ6nDRs2MG7cuAbLk5OTWbZsGQCvvvoqL730EgUFBcTFxfH3v/+dhIQEmxRYCNE5tDqchBDCEVzu2johhAAJJyGEi5JwEkK4JAknJ2jNrA0//vgjd9xxBzExMSiKQkZGhuMK2gatqduSJUu4/vrrCQwMJDAwkAkTJrR6BgtHaU29Pv74Y0aMGEFAQABdu3YlLi6Od99914Glbbm2ziCyfPlyFEVh2rRp9itcm67GFW22fPlyi5eXl2Xp0qWWH3/80TJnzhxLQECApbCwsNH1t2zZYnniiScs//rXvyzh4eGWv/3tb44tcCu0tm4zZ860ZGZmWnbu3GnZu3ev5d5777X4+/tbjh8/7uCSX1lr67V+/XrLxx9/bNmzZ48lLy/PkpGRYdFqtZY1a9Y4uORX1tp61cnPz7d0797dcv3111tuu+02u5VPwsnB2jNrw1VXXeXS4dTeGSlqamosvr6+lrffftteRWwTW8y0MWzYMMv//d//2aN4bdaWetXU1FiuvfZay5tvvmlJTk62azhJs86B6mZtmDBhgnVZa2dtcFW2qFtFRQVGo5GgoCB7FbPV2lsvi8VCdnY2+/fv54YbbrBnUVulrfV69tlnCQ0N5f7777d7GV3uwl93ZotZG1yVLer2u9/9jsjIyHp/MM7W1nqVlpbSvXt3qqqq0Gq1vPbaa0ycONHexW2xttTr66+/5q233nLYhfkSTsIlPP/88yxfvpwNGzbg7e3t7OK0m6+vL7m5uZSXl5OdnU1aWhq9evUiMTHR2UVrk/Pnz3P33XezZMkSh02bLeHkQO48a0N76rZw4UKef/55vvjiC4YOHWrPYrZaW+ul0Wjo06cPoE5LvXfvXhYsWOAy4dTaeh06dIjDhw8zdepU6zKz2QyAh4cH+/fvp3fv3jYto/Q5OZA7z9rQ1rq9+OKL/OlPf2LNmjWMGDHCEUVtFVv9m5nN5npz3Ttba+s1YMAAdu/eTW5urvVx6623Mm7cOHJzc4mKirJ9Ie3W1S4atXz5cotOp7MsW7bMsmfPHsuDDz5oCQgIsBQUFFgsFovl7rvvtsydO9e6flVVlWXnzp2WnTt3WiIiIixPPPGEZefOnZaDBw86qwpNam3dnn/+eYuXl5flo48+spw6dcr6OH/+vLOq0KjW1uu5556zrF271nLo0CHLnj17LAsXLrR4eHhYlixZ4qwqNKq19bqcvc/WSTg5wSuvvGKJjo62eHl5WUaNGmX59ttvre+NHTvWkpycbH2dn5/f6OTwY8eOdXzBW6A1dbvqqqsardv8+fMdX/BmtKZef/jDHyx9+vSxeHt7WwIDAy2jR4+2LF++3Amlbl5r6nU5e4eTzEoghHBJ0uckhHBJEk5CCJck4SSEcEkSTkIIlyThJIRwSRJOQgiXJOEkhHBJEk5CCJck4SSEcEkSTkIIlyThJIRwSf8PUH0QQSBSBn8AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -83,7 +84,7 @@ ], "source": [ "# Quick plot method\n", - "ax = gen.plot();\n", + "ax = gen.plot()\n", "bro.plot(ax=ax)\n", "ax.legend();" ] @@ -95,7 +96,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxUAAAJOCAYAAADBIyqKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADCs0lEQVR4nOzdd1xV9RvA8c+5l70FFAUVFCcOXLh3qblNTUszt+VMLUsbjvb6WWmkZrmzHLlK00wtxb1wb3ErQwUElHl+f5wgCVAQLnfwvF+v+7pw7rnnPOfcy/nynO9SVFVVEUIIIYQQQognpDN2AEIIIYQQQgjzJkmFEEIIIYQQIl8kqRBCCCGEEELkiyQVQgghhBBCiHyRpEIIIYQQQgiRL5JUCCGEEEIIIfJFkgohhBBCCCFEvkhSIYQQQgghhMgXSSqEEEIIIYQQ+SJJhciTli1b0rJly4zfL126hKIoLFiwwGgxCcPx8/NjwIABxg5DCGEEpnB9VxSFqVOnZvy+YMECFEXh0qVLRovJ0Ix5jAMGDMDPzy/P7zOF74ope9Lzam4kqbBwx44do2fPnvj6+mJnZ4ePjw9t2rRh5syZhRbDvn37UBSFL7/8MstrXbt2RVEU5s+fn+W15s2b4+Pjk6d9LV26lK+++upJQ30iLVu2RFGUjIe9vT01a9bkq6++Ii0t7Ym2WZjHsWvXLqZOnUp0dHSh7C8vLly4wMsvv0z58uWxs7PDxcWFJk2a8PXXX3P//n1jhydEoUr/Z/PAgQPZvt6yZUuqV69eyFGZv6J2nblx4wZTp04lNDTUoPvZsGFDpoSwoPj5+WUqcx9+PHjwoMD3l1uFdV5NmZWxAxCGs2vXLlq1akXZsmUZOnQoJUuW5OrVq+zZs4evv/6a0aNH53mbf/zxR57fU6dOHRwcHAgJCWHcuHFZYrSysmLnzp0MHDgwY3lSUhL79++nc+fOedrX0qVLOX78OGPHjs1znPlRunRpPv74YwCioqJYunQp48aNIzIykg8//DDP2yvM49i1axfTpk1jwIABuLm5ZXrtzJkz6HTGufewfv16nnvuOWxtbXnppZeoXr06SUlJhISEMGHCBE6cOMF3331nlNiEEMbRr18/nn/+eWxtbQtke0XxOnPjxg2mTZuGn58ftWrVyvTa3Llzn+hmmK+vL/fv38fa2jpj2YYNGwgODjZIYlGrVi1ee+21LMttbGwKfF+5ZYjzam4kqbBgH374Ia6uruzfvz/LP4sRERFPtM0n+YO1srKiQYMG7Ny5M9PyM2fOEBUVRZ8+fQgJCcn02sGDB3nw4AFNmzZ9ojgLUlpaGklJSdjZ2eW4jqurKy+++GLG76+88gpVqlRh5syZvPfee+j1+sIItcAVVMGdV2FhYTz//PP4+vqydetWSpUqlfHayJEjOX/+POvXry+QfcXHx+Po6Fgg2xKiKCrMvyG9Xl9g19PCvM6Yi4eTgrxQFOWRZWRB8/HxyVTmmronPa/mRpo/WbALFy5QrVq1LAkFQIkSJTL9npKSwvvvv4+/vz+2trb4+fnx1ltvkZiYmGm9//apyK2mTZsSHh7O+fPnM5bt3LkTFxcXhg0blpFgPPxa+vsA1q5dS8eOHfH29sbW1hZ/f3/ef/99UlNTM8W2fv16Ll++nFEV+nAbxsTERKZMmUKFChWwtbWlTJkyvPHGG1mOUVEURo0axY8//ki1atWwtbVl48aNeTpeOzs7goKCuHfvXpYEbsmSJdStWxd7e3vc3d15/vnnuXr1qsGOY82aNVSvXh1bW1uqVauW6VimTp3KhAkTAChXrlzG/tLb8mbXp+LixYs899xzuLu74+DgQMOGDbMUvH/99ReKorB8+XI+/PBDSpcujZ2dHU899VSm70BOPvvsM+Li4vjhhx8yFfTpKlSowKuvvgo8ui3vf9tjT506FUVROHnyJH369KFYsWI0bdqUL774AkVRuHz5cpZtTJo0CRsbG+7evZuxbO/evTzzzDO4urri4OBAixYtsiTNQhhbixYtCAwMzPa1ypUr065du4zfo6OjGTBgAK6urri5udG/f/9sm0QOGDAAJycnLly4QIcOHXB2dqZv374A7Nixg+eee46yZctmXJvGjRuXpQlRTuVIbtqd59Tf4Pfff6dFixY4Ozvj4uJCUFAQS5cufeS28nKdgdyXk35+fnTq1ImQkBDq16+PnZ0d5cuXZ9GiRVn2ceLECVq3bo29vT2lS5fmgw8+yPaO9n+vZQ/v67/X6OjoaMaNG4efnx+2traULl2al156iaioKP766y+CgoIAGDhwYMY1P/36+fBnkJycjLu7e6ZWBOliY2Oxs7Pj9ddfB7JehwcMGEBwcHBG7OkPVVXx8/Oja9euWbb54MEDXF1defnll7O8lhfp1/n/yu67k5fPqqDOa7r4+Hhee+01ypQpg62tLZUrV+aLL75AVdVM6+WmLDcVUlNhwXx9fdm9ezfHjx9/bDvbIUOGsHDhQnr27Mlrr73G3r17+fjjjzl16hSrV6/OdyzpyUFISAgVKlQAtMShYcOGNGjQAGtra3bt2kWXLl0yXnN2ds4oEBcsWICTkxPjx4/HycmJrVu3MnnyZGJjY/n8888BePvtt4mJieHatWsZ/TecnJwArbahS5cuhISEMGzYMKpWrcqxY8f48ssvOXv2LGvWrMkU79atW1m+fDmjRo3C09MzXx3XHk7qPvzwQ95991169erFkCFDiIyMZObMmTRv3pzDhw/j5uZWoMcREhLCqlWrGDFiBM7OzsyYMYMePXpw5coVPDw86N69O2fPnuWnn37iyy+/xNPTE4DixYtne0zh4eE0btyYhIQExowZg4eHBwsXLqRLly6sXLmSZ599NtP6n3zyCTqdjtdff52YmBg+++wz+vbty969ex957n799VfKly9P48aN83LKc+25556jYsWKfPTRR6iqSqdOnXjjjTdYvnx5RpKVbvny5bRt25ZixYoB2nejffv21K1blylTpqDT6Zg/fz6tW7dmx44d1K9f3yAxC5EuJiYm002YdMnJyZl+79evH0OHDs1SBuzfv5+zZ8/yzjvvAKCqKl27diUkJIRXXnmFqlWrsnr1avr375/t/lNSUmjXrl1GQu7g4ADAihUrSEhIYPjw4Xh4eLBv3z5mzpzJtWvXWLFiRUEdfhYLFixg0KBBVKtWjUmTJuHm5sbhw4fZuHEjffr0yfF9eb3O5KWcPH/+PD179mTw4MH079+fefPmMWDAAOrWrUu1atUAuHXrFq1atSIlJYWJEyfi6OjId999h729/ROfi7i4OJo1a8apU6cYNGgQderUISoqinXr1nHt2jWqVq3Ke++9x+TJkxk2bBjNmjUDyPYcWFtb8+yzz7Jq1SrmzJmTqaXCmjVrSExM5Pnnn882jpdffpkbN26wefNmFi9enLFcURRefPFFPvvsM+7cuYO7u3vGa7/++iuxsbG5qoFITk7O8jfg4OCQ8V3Mi9x8VgV5XkH7m+vSpQvbtm1j8ODB1KpVi02bNjFhwgSuX7+epQ/q48pyk6EKi/XHH3+oer1e1ev1aqNGjdQ33nhD3bRpk5qUlJRpvdDQUBVQhwwZkmn566+/rgLq1q1bM5a1aNFCbdGiRcbvYWFhKqDOnz//kbHExsaqer1eHTx4cMayypUrq9OmTVNVVVXr16+vTpgwIeO14sWLq23atMn4PSEhIcs2X375ZdXBwUF98OBBxrKOHTuqvr6+WdZdvHixqtPp1B07dmRaPnv2bBVQd+7cmbEMUHU6nXrixIlHHlO6Fi1aqFWqVFEjIyPVyMhI9fTp0+qECRNUQO3YsWPGepcuXVL1er364YcfZnr/sWPHVCsrq0zLC+o4bGxs1PPnz2csO3LkiAqoM2fOzFj2+eefq4AaFhaWZX++vr5q//79M34fO3asCmTa/71799Ry5cqpfn5+ampqqqqqqrpt2zYVUKtWraomJiZmrPv111+rgHrs2LEs+0oXExOjAmrXrl1zXOdhj/oOAuqUKVMyfp8yZYoKqC+88EKWdRs1aqTWrVs307J9+/apgLpo0SJVVVU1LS1NrVixotquXTs1LS0tY72EhAS1XLlymb6zQhS0+fPnq8AjH9WqVctYPzo6WrWzs1PffPPNTNsZM2aM6ujoqMbFxamqqqpr1qxRAfWzzz7LWCclJUVt1qxZlr+t/v37q4A6ceLELPFld53++OOPVUVR1MuXL2cs+2858vC2/3vd++/fcPo5SL9eRUdHq87OzmqDBg3U+/fvZ3rvw3+j/5XX60xeyklfX18VULdv356xLCIiQrW1tVVfe+21jGXp19O9e/dmWs/V1TXLNfm/5+HhfT18jZ48ebIKqKtWrcqybvr52L9/f47XzP9+Bps2bVIB9ddff820XocOHdTy5ctn/J7ddXjkyJFqdv9mnjlzRgXUWbNmZVrepUsX1c/P75Gfm6r+e37/+0g/P+nX+f/673fn4W097rMq6POa/jf3wQcfZFqvZ8+eqqIomcrt3JblpkCaP1mwNm3asHv3brp06cKRI0f47LPPaNeuHT4+Pqxbty5jvQ0bNgAwfvz4TO9P7wRVEG1KnZ2dqVmzZkbfiaioKM6cOZORxTdp0iSj+cjZs2eJjIzM1J/i4Ts39+7dIyoqimbNmpGQkMDp06cfu/8VK1ZQtWpVqlSpQlRUVMajdevWAGzbti3T+i1atCAgICDXx3f69GmKFy9O8eLFqVKlCp9//jldunTJ1CRn1apVpKWl0atXr0wxlCxZkooVK2aJoSCO4+mnn8bf3z/j95o1a+Li4sLFixdzfWwP27BhA/Xr18/02Tg5OTFs2DAuXbrEyZMnM60/cODATHe30u/ePGr/sbGxgPadMZRXXnkly7LevXtz8OBBLly4kLFs2bJl2NraZlTVh4aGcu7cOfr06cPt27czzn98fDxPPfUU27dvLxKd8YRxBQcHs3nz5iyPmjVrZlrP1dWVrl278tNPP2U0qUhNTWXZsmV069Ytox/Ehg0bsLKyYvjw4Rnv1ev1jxzM4+F10z18nY6PjycqKorGjRujqiqHDx/O1zHnZPPmzdy7d4+JEydmadOfXROYdHm9zuS1nAwICMi43oFW+1u5cuVM174NGzbQsGHDTLWbxYsXz2hO9iR++eUXAgMDs9Qaw6PPR05at26Np6cny5Yty1h29+5dNm/eTO/evZ8oxkqVKtGgQQN+/PHHjGV37tzh999/p2/fvrmKs0GDBlm+/y+99NITxZObz6qgz+uGDRvQ6/WMGTMm0/LXXnsNVVX5/fffMy0v6LLcUKT5k4ULCgpi1apVJCUlceTIEVavXs2XX35Jz549CQ0NJSAggMuXL6PT6TKaJaUrWbIkbm5u2bYzfxJNmzZl5syZREVFsWvXLvR6PQ0bNgS0KsJvv/2WxMTELP0pQGt3+s4777B169aMwiBdTEzMY/d97tw5Tp06lWOznv/2eyhXrlyejs3Pzy9jdIcLFy7w4YcfEhkZmamQO3fuHKqqUrFixWy3kZuOXHk9jrJly2ZZp1ixYpn6B+TF5cuXadCgQZblVatWzXj94WYW/91/ehOiR+3fxcUF0JJHQ8nu833uuecYP348y5Yt46233kJVVVasWEH79u0zYjp37hxAjs1CQPs+ph+nEIZQv3596tWrl2V5sWLFsjQJeemll1i2bBk7duygefPm/Pnnn4SHh9OvX7+MdS5fvkypUqUymlmmq1y5crb7t7KyonTp0lmWX7lyhcmTJ7Nu3bosf+O5uU4/ifSbAHkdSjev15m8lpO5ufbmdD3N6bznxoULF+jRo8cTv/+/rKys6NGjB0uXLiUxMRFbW1tWrVpFcnLyEycVoH0vR40axeXLl/H19WXFihUkJydn+l4+iqenJ08//fQT7/9hufmsCvq8Xr58GW9v7yxJ7cNlaV5jNAWSVBQRNjY2BAUFERQURKVKlRg4cCArVqxgypQpGes8SbadF+lJxc6dO9m1axc1atTIKMQaN25MYmIi+/fvJyQkBCsrq4yEIzo6mhYtWuDi4sJ7772Hv78/dnZ2HDp0iDfffDNXd4bT0tKoUaMG06dPz/b1MmXKZPo9r21aHR0dM13gmjRpQp06dXjrrbeYMWNGRgyKovD7779nO3rJfwv07OT1OHIaJUX9T0cwQ3mS/bu4uODt7c3x48dztY+cvrcPd+L/r+w+X29vb5o1a8by5ct566232LNnD1euXOHTTz/NWCf9u/b5559nGTIwXW4+RyEKS7t27fDy8mLJkiU0b96cJUuWULJkyXz9Q2Zra5tlqOnU1FTatGnDnTt3ePPNN6lSpQqOjo5cv36dAQMGZLpOp3fY/a9H/c0WtLxeZ9LltpwsrGtvYZyz559/njlz5vD777/TrVs3li9fTpUqVXIcBCC32xw3bhw//vgjb731FkuWLKFevXr5SqjS5bVMMHY5mRvmECNIUlEkpd/hunnzJqB16E5LS+PcuXMZWTJonXKjo6Px9fUtkP0+3Fl79+7dNGnSJOM1b29vfH192blzJzt37qR27doZHa7++usvbt++zapVq2jevHnGe8LCwrLsI6eLib+/P0eOHOGpp54yePIEWtXkiy++yJw5c3j99dcpW7Ys/v7+qKpKuXLlqFSp0iPfX5jHkZft+Pr6cubMmSzL05ugFdR3pVOnTnz33Xfs3r2bRo0aPXLd9FqB/45U8yQ1bL1792bEiBGcOXOGZcuW4eDgkGmulPTqZxcXlwK7SyaEIen1evr06cOCBQv49NNPWbNmDUOHDs30T4qvry9btmwhLi4uU1Kc3d96To4dO8bZs2dZuHBhpmYomzdvzrJusWLFsm228SR/s+l/k8ePH89Si/A4ebnOGKKc9PX1zaj9fFh2571YsWJZrnFJSUkZ5Xg6f3//xyZKeS07mjdvTqlSpVi2bBlNmzZl69atvP32249936P24+7uTseOHfnxxx/p27cvO3fuLLAJXx8uEx4eKCU/rS4K+rz6+vry559/cu/evUy1FQVdlhY26VNhwbZt25ZtFpveNjT9jkCHDh0AsvxBp98N79ixY4HE4+3tTbly5diyZQsHDhzIMipC48aNWbNmDWfOnMnU9Cm98Hv4WJKSkvj222+z7MPR0THbavZevXpx/fp15s6dm+W1+/fvEx8f/8THlZM33niD5OTkjPPYvXt39Ho906ZNy/K5qKrK7du3M34vzONIb1edmxm1O3TowL59+9i9e3fGsvj4eL777jv8/Pzy1A/lUd544w0cHR0ZMmQI4eHhWV6/cOECX3/9NaD9g+/p6cn27dszrZPd9+NxevTogV6v56effmLFihV06tQp0/j7devWxd/fny+++IK4uLgs74+MjMzzPoUwtH79+nH37l1efvll4uLisoyu06FDB1JSUpg1a1bGstTUVGbOnJnrfWR3nVZVNePv9GH+/v6cPn0609/LkSNHnmhY5rZt2+Ls7MzHH3+cZTblx93Fzct1xhDlZIcOHdizZw/79u3LWBYZGZmpr0E6f3//LNe47777Lsvd9x49emQ0df6v9PORl2s+gE6no2fPnvz6668sXryYlJSUXDV9etx++vXrx8mTJ5kwYQJ6vT7HkaTyKj3RfPh8xcfHs3DhwifeZkGf1w4dOpCamso333yTafmXX36Joii0b9/+iWM1JqmpsGCjR48mISGBZ599lipVqpCUlMSuXbtYtmwZfn5+GWNPBwYG0r9/f7777ruMpkb79u1j4cKFdOvWjVatWhVYTE2bNs0YXu7hmgrQkoqffvopY72HlxcrVoz+/fszZswYFEVh8eLF2RYYdevWZdmyZYwfP56goCCcnJzo3Lkz/fr1Y/ny5bzyyits27aNJk2akJqayunTp1m+fDmbNm3Kto1yfgQEBNChQwe+//573n33Xfz9/fnggw+YNGkSly5dolu3bjg7OxMWFsbq1asZNmxYxpjfhXkcdevWBbQheZ9//nmsra3p3LlztpNZTZw4kZ9++on27dszZswY3N3dWbhwIWFhYfzyyy8FNvu2v78/S5cupXfv3lStWjXTTLe7du1ixYoVmcZmHzJkCJ988glDhgyhXr16bN++nbNnz+Z5vyVKlKBVq1ZMnz6de/fuZSk4dTod33//Pe3bt6datWoMHDgQHx8frl+/zrZt23BxceHXX3/N7+ELUaBq165N9erVMwZ6qFOnTqbXO3fuTJMmTZg4cSKXLl0iICCAVatW5akfRJUqVfD39+f111/n+vXruLi48Msvv2Tb5nvQoEFMnz6ddu3aMXjwYCIiIpg9ezbVqlXL0mfucVxcXPjyyy8ZMmQIQUFBGfPPHDlyhISEhEf+I5mX64whysk33niDxYsX88wzz/Dqq69mDCnr6+vL0aNHM607ZMgQXnnlFXr06EGbNm04cuQImzZtyhgGPN2ECRNYuXIlzz33HIMGDaJu3brcuXOHdevWMXv2bAIDA/H398fNzY3Zs2fj7OyMo6MjDRo0eGRfwt69ezNz5kymTJlCjRo1MtXW5CS9bBkzZgzt2rXLkjh07NgRDw+PjL5r/50/60m1bduWsmXLMnjw4IyEZd68eRQvXpwrV6480TYL+rx27tyZVq1a8fbbb3Pp0iUCAwP5448/WLt2LWPHjs3UKdusFOZQU6Jw/f777+qgQYPUKlWqqE5OTqqNjY1aoUIFdfTo0Wp4eHimdZOTk9Vp06ap5cqVU62trdUyZcqokyZNyjRcq6o++ZCy6ebMmaMCqo+PT5bXDh06lDE03H/j27lzp9qwYUPV3t5e9fb2zhgeF1C3bduWsV5cXJzap08f1c3NTQUyDeGWlJSkfvrpp2q1atVUW1tbtVixYmrdunXVadOmqTExMRnrAerIkSNzdTyqqp2Th4dxfNhff/2VZSjAX375RW3atKnq6OioOjo6qlWqVFFHjhypnjlzplCO479DEKqqqr7//vuqj4+PqtPpMg25l926Fy5cUHv27Km6ubmpdnZ2av369dXffvst0zrpQ8quWLEi0/K8fl/Onj2rDh06VPXz81NtbGxUZ2dntUmTJurMmTMzfTcTEhLUwYMHq66urqqzs7Paq1cvNSIiIschZSMjI3Pc59y5c1VAdXZ2zjJEZbrDhw+r3bt3Vz08PFRbW1vV19dX7dWrl7ply5ZcHZcQTyJ9SMz9+/dn+/qjrkWfffaZCqgfffRRtq/fvn1b7devn+ri4qK6urqq/fr1Uw8fPpztkLKOjo7ZbuPkyZPq008/rTo5Oamenp7q0KFDM4a+/O/f/JIlS9Ty5curNjY2aq1atdRNmzY90ZCy6datW6c2btxYtbe3V11cXNT69eurP/30U7Zx/ldurzO5LSd9fX0zDSeeLruhdI8ePaq2aNFCtbOzU318fNT3339f/eGHH7IcY2pqqvrmm2+qnp6eqoODg9quXTv1/Pnz2V6jb9++rY4aNUr18fFRbWxs1NKlS6v9+/dXo6KiMtZZu3atGhAQoFpZWWX6fLL7DFRVGza1TJky2Q6DqqrZX9tTUlLU0aNHq8WLF1cVRcl2mNcRI0aogLp06dIsr+Ukp/P7sIMHD6oNGjRQbWxs1LJly6rTp0/PcUjZ3H5WBX1e7927p44bN0719vZWra2t1YoVK6qff/55liF181KWG5uiqibWy0MIIYQQBerrr79m3LhxXLp0KduRZIQwhnHjxvHDDz9w69atJ5q4TpgWSSqEEEIIC6aqKoGBgXh4eORqPhwhCsODBw8oU6YMnTp1Yv78+cYORxSAItGnIiwsjEGDBhEeHo5er2fPnj3ZthcXQghRtFhy+RAfH8+6devYtm0bx44dY+3atcYOSQgiIiL4888/WblyJbdv3+bVV181dkiigBSJpGLAgAF88MEHNGvWjDt37mBra2vskIQQQpgASy4fIiMj6dOnD25ubrz11lt06dLF2CEJwcmTJ+nbty8lSpRgxowZOc75I8yPxScVJ06cwNraOmMKdnd3dyNHJIQQwhRYevng5+dncpNjCdGyZUv5Xlook5+nYvv27XTu3Blvb28URWHNmjVZ1gkODsbPzw87OzsaNGiQacznc+fOZQzHWadOHT766KNCjF4IIYShSPkghBCmw+STivj4eAIDAwkODs729fSx/KdMmcKhQ4cIDAykXbt2REREAJCSksKOHTv49ttv2b17N5s3b852hk8hhBDmRcoHIYQwHWY1+pOiKKxevZpu3bplLGvQoAFBQUEZsxKmpaVRpkwZRo8ezcSJE9m9ezdTp05l06ZNAHz++eeANpFJdhITE0lMTMz4PS0tjTt37uDh4ZHnqe2FEMIcqKrKvXv3cHZ2xsXFxSyvdVI+CCGEYaSXEd7e3o+c5Nas+1QkJSVx8OBBJk2alLFMp9Px9NNPs3v3bgCCgoKIiIjg7t27uLq6sn37dl5++eUct/nxxx8zbdo0g8cuhBCmKCYmBhcXF2OHkW9SPgghRMG6evUqpUuXzvF1s04qoqKiSE1NxcvLK9NyLy8vTp8+DYCVlRUfffQRzZs3R1VV2rZtS6dOnXLc5qRJkxg/fnzG7zExMZQtW5awsDCcnZ1zF1j0Zay/b4lq7UjKq8cBeGr6Du4kJPPzkCAql8zldkxEcnIy27Zto1WrVlhbWxs7HJMl5+nx5BzlTmGfp3v37lGuXDmuXr2a++uciSvM8uHs2bNm28nb3P8mJX7jM/djMPf4wfDHkF5GPK58MOukIrfat29P+/btc7Wura1ttkMKuru75/7unRIDtgrY6MHDAwAPdzeiU+NR7Jzx+GeZuUhOTsbBwQEPDw+z/YMrDHKeHk/OUe4U9nlK34e5Nn3Kj4IqH8ztup7O3P8mJX7jM/djMPf4wfDHkL7Nx5UPJt9R+1E8PT3R6/WEh4dnWh4eHk7JkiXzte3g4GACAgIICgrK13bSudprH0jM/eQC2Z4QQoicmVP5IIQQlsCskwobGxvq1q3Lli1bMpalpaWxZcsWGjVqlK9tjxw5kpMnT7J///78hgk8nFQkFcj2hBBC5MycygchhLAEJt/8KS4ujvPnz2f8HhYWRmhoKO7u7pQtW5bx48fTv39/6tWrR/369fnqq6+Ij49n4MCBRow6KzcHG0BqKoQQoqBYSvkghBCWwOSTigMHDtCqVauM39M7yfXv358FCxbQu3dvIiMjmTx5Mrdu3aJWrVps3LgxS+e8vAoODiY4OJjU1NR8bSddek1FdIIkFUIIURAspXwQQghLYPJJRW6mcx81ahSjRo0q0P2OHDmSkSNHEhsbi6ura763V+yfmoq7CdL8SQghCoKllA9CCGEJzLpPhTnxcNKSiqg4SSqEEEIIIYRlkaQiBwU9uofnP0nFnXhJKoQQwpzJ6E9CCJGVJBU5KOjRPdwdtbHNb8clFsj2hBBCGIeM/iSEEFlJUlFI0ps/3ZbmT0IIIYQQwsJIUlFIPP+pqbiXmEJiiowYIoQQQgghLIckFTko6DazLvZWWOm06c2lX4UQQpgv6VMhhBBZSVKRg4JuM6soCu6O0gRKCCHMnfSpEEKIrCSpKEQeTloTqCjprC2EEEIIISyIJBWFSIaVFUIIIYQQlkiSihwYos2shzR/EkIIsyd9KoQQIitJKnJgiDaz6XNVRMVL8ychhDBX0qdCCCGykqSiEHk6azUVkfckqRBCCCGEEJZDkopC5OVsB0BErCQVQgghhBDCckhSUYhKumpJRXjsAyNHIoQQQgghRMGRpCIHhuiI5+Wi9am4JUmFEEKYLemoLYQQWUlSkQNDdMQr4aLVVNx7kEJCUkqBbVcIIUThkY7aQgiRlSQVhcjZ1goHGz0g/SqEEEIIIYTlkKSiECmKgtc/tRXSBEoIIYQQQlgKSSoKWXq/CumsLYQQQgghLIUkFYUsvaZCkgohhBBCCGEpJKkoZCUzkgrpUyGEEEIIISyDJBU5MNSQgSWkT4UQQpg1GVJWCCGykqQiB4YaMjCjT0WMJBVCCGGOZEhZIYTISpKKQubtZg/Ajej7Ro5ECCGEEEKIgiFJRSErXUxLKm7FPiA5Nc3I0QghhBBCCJF/klQUsuJOttha6UhT4ZY0gRJCCCGEEBZAkopCpigKPv80gbp6N8HI0QghhBBCCJF/klQYgc8/TaCu3ZV+FUIIIYQQwvxJUmEEpYs5AJJUCCGEEEIIyyBJhRGUzqipkOZPQgghhBDC/ElSYQSlpfmTEEIIIYSwIJJU5KBgZkxVs12anlRcl6RCCCHMjsyoLYQQWUlSkQNDzpia3qfiVuwDUmSuCiGEMCsyo7YQQmQlSYURFHeyxcZKR2qayo1omatCCCGEEEKYN0kqjECnU/B112orwm7HGzkaIYQQQggh8keSCoNQtCc1+z4VAH6ejgBcipKkQgghhBBCmDdJKoyk/D9JRZgkFUIIIYQQwsxJUmEk5f5JKi5KUiGEEEIIIcycJBUGJc2fhBBCCCGE5ZOkwhAU5bGrpDd/unY3gaQUGVZWCCGEEEKYL0kqjKS4sy2ONnrSVLhyJ8HY4QghhBBCCPHEJKkwEkVRMppASWdtIYQQQghhzqyMHUBh8PPzw8XFBZ1OR7Fixdi2bZuB9/j4IWVB66x94kYsYVFxgJeBYxJCCPFfhV8+CCGEZSoSSQXArl27cHJyMnYYmZQvrsVzPiLOyJEIIUTRZYrlgxBCmBtp/mRElby0QuxsuCQVQgghhBDCfJl8UrF9+3Y6d+6Mt7c3iqKwZs2aLOsEBwfj5+eHnZ0dDRo0YN++fZleVxSFFi1aEBQUxI8//mj4oDNGf3p086fKXs4AnAu/R1rao9cVQgiRmamUD5tPhj/R+4QQwpKYfFIRHx9PYGAgwcHB2b6+bNkyxo8fz5QpUzh06BCBgYG0a9eOiIiIjHVCQkI4ePAg69at46OPPuLo0aOFFf4j+Xk6Yq1XiE9K5Xr0fWOHI4QQZsVUyoc3Vp1g2q8nZHhwIUSRZvJ9Ktq3b0/79u1zfH369OkMHTqUgQMHAjB79mzWr1/PvHnzmDhxIgA+Pj4AlCpVig4dOnDo0CFq1qyZ7fYSExNJTEzM+D02NhaA5ORkkpOTcxd0SgrWaPUUKY95T3lPR86Ex3HyRjQlna1zt/1Cln7cuT7+IkrO0+PJOcqdwj5P5vp5mEr5ADB/5yUOX7nLjN6BlHK1y/exFRZz/5uU+I3P3I/B3OMHwx9Dbrdr8knFoyQlJXHw4EEmTZqUsUyn0/H000+ze/duQLuTlZaWhrOzM3FxcWzdupVevXrluM2PP/6YadOmZVn+xx9/4ODgkKu47JOiaAukpaayYcOGR67rlKoDdPy6/QAPLph2E6jNmzcbOwSzIOfp8eQc5U5hnaeEBMubK6cwy4eXKqbyy3WV0KsxtP/qb/pVTKOqm2lfz//L3P8mJX7jM/djMPf4wXDHkNsywqyTiqioKFJTU/Hyyjwcq5eXF6dPnwYgPDycZ599FoDU1FSGDh1KUFBQjtucNGkS48ePz/g9NjaWMmXK0LZtW1xcXHIXWMw1OKEVYB06dHjkqlf+vsjBP8+jcytNhw41crf9QpacnMzmzZtp06YN1tamWZtiCuQ8PZ6co9wp7PP08B13S1GY5cOo7i0ZqNgz+ucjnLx5jzmn9YxsUZ5RrfzR65Qct2cKzP1vUuI3PnM/BnOPHwx/DLktI8w6qciN8uXLc+TIkVyvb2tri62tLcHBwQQHB5OamgqAtbV17j8oK+20Kv+871GqersBcD4y3uS/zHk6B0WYnKfHk3OUO4V1norqZ1GQ5YO/hyurRjRh2q8n+WnfFb756yKh12L56vlaeDrZGuoQCoy5/01K/MZn7sdg7vGD4Y4ht9s0+Y7aj+Lp6Yleryc8PPPIG+Hh4ZQsWTJf2x45ciQnT55k//79+drO41QuqY0AdT4yjpRU6eQnhBAFwRjlg521no+712B6r0DsrfWEnI+i44wdHLh0J1/7E0IIc2DWSYWNjQ1169Zly5YtGcvS0tLYsmULjRo1Ml5guRxSFsDHzR5HGz1JKWlcjIo3bFxCCFFEGLN86F6nNGtHNaF8cUfCYxPp/d0e5m6/iKqaVz8LIYTIC5NPKuLi4ggNDSU0NBSAsLAwQkNDuXLlCgDjx49n7ty5LFy4kFOnTjF8+HDi4+MzRvt4UsHBwQQEBDyyfW1B0OkUqnm7AnDsWoxB9yWEEJbElMuHSl7OrBvVlM6B3qSmqXy44RSvLDlIzH3zHWFGCCEexeT7VBw4cIBWrVpl/J7eSa5///4sWLCA3r17ExkZyeTJk7l16xa1atVi48aNWTrn5dXIkSMZOXIksbGxuLq65mtbj1Pdx5V9l+5w7HoMPeqWNui+hBDCUph6+eBka8WM52sR5FeM9387yaYT4Zy+FcK3fetk3EwSQghLYfJJRcuWLR9bZTxq1ChGjRpVSBHlRt5G+6juo40qdeKG1FQIIURumUP5oCgKLzXyo2ZpN0b+eIjLtxN49ttdvNelGr2DyqAopj06lBBC5JbJN38ylgJp/pTL9rM1fLQ7ViduxJKaJm1uhRDClD1J+VCrjBvrxzSldZUSJKWkMXHVMV5fcZT7SakGjFQIIQqPJBU5KKzRnwDKF3fC3lpPQlIqYVFxBt+fEEKIJ/ek5YObgw3fv1SPN56pjE6BXw5do1vwTi5EynVfCGH+JKkwAXqdQoC31gTq+HXLm4RKCCGERqdTGNGyAj8OaYinky1nwu/RZWYIvx29YezQhBAiXySpMIQ8DCmbrvo/ScWx69KvQgghLF0jfw82jGlKg3LuxCelMmrpYaauO0FSisxXJIQwT5JU5KCwhpRNV6O0GwBHrkYXyv6EEEI8mYIqH0q42PHjkAYMb+kPwIJdl+g1ZzfXo+8XRJhCCFGoJKnIQWH2qQCo61sMgKPXY0hMkY57QghhqgqyfLDS63jzmSr80L8eLnZWhF6NpuOMHWw7E1EAkQohROGRpMIg8j5EoJ+HA+6ONiSlpHHihvSrEEKIouSpql6sH9OMGj6uRCckM3D+fv73xxkZEVAIYTYkqTCkXA4pC9pY5nXKugFw6PJdAwUkhBDCVJVxd2Dl8Eb0a+gLwMyt5+n3w14i7yUaOTIhhHg8SSpMSJ1/mkAduiJJhRBCFEW2Vnre71adr5+vhYONnl0XbtNxxg72hd0xdmhCCPFIklTkIF8d8Z5whtS6ZbWk4uDlu4+dJVYIIYRxFMZAHl1r+bBuVBMqlHAi4l4iL8zdw5y/L0jZIIQwWZJU5KBgOuLl7eJfs7QbVjqF8NhEbsQ8yMd+hRBCGEphDeRRoYQza0c2oVstb1LTVD7+/TTDFh8k5n6yQfcrhBBPQpIKE2Jvo8+YBO/AJanqFkKIos7R1oove9fig27VsdHr2HwynE4zd3Bc5jQSQpgYSSoM4smaP8G/Q8vul6RCCCEE2kAeLzb05ZfhjSldzJ6rd+7TfdYulu69Is2hhBAmQ5IKE9OovAcAuy7cNnIkQgghTEmN0q6sH92Mp6uWICkljbdWH+O15UdISEoxdmhCCCFJRU4KpCPeE9xBalDeA50CFyPjCY+VfhVCCGFqCqOjdk5cHaz5rl89Jravgl6nsOrwdboF7+R8RFyhxyKEEA+TpCIHhT2jdjpXe2uqebsCsFtqK4QQwuQYq3xIp9MpvNLCn6VDGlDc2Zaz4XF0/SaEdUduGCUeIYQASSoM4wmHlE3XyF9rAiVJhRBCiJw0KO/B+jFNaVTeg/ikVMb8dJgpa4+TmJJq7NCEEEWQJBUG9WQd6NKTil0XowoyGCGEEBamhLMdiwfXZ2QrfwAW7r5Mr9m7uXY3wciRCSGKGkkqTFCQnzt6ncLVO/e5ekcKBiGEEDmz0uuY0K4K8wbUw9XemiPXYug4I4RtpyOMHZoQogiRpMIg8tf8ycnWisDSWr+KkPNSWyGEEOLxWlfxYv2YpgSWdiXmfjIDF+zn802nSUlNM3ZoQogiQJIKE9WycgkA/jojd5qEEELkTuliDix/pRH9G/kCELztAv1+2EfEPRlNUAhhWJJU5MCYQwYCtPonqQg5F0VSitxlEkIIU2Hs8uFxbK30TOtanZkv1MbRRs/ui7fpOCOEvRdl8A8hhOFIUpGDfA0ZmM/RnwCqebvg6WRLfFIqB2R2bSGEMBnGHlI2tzoHerN2VFMqeTkReS+RPt/vZfbfF0hLk1m4hRAFT5IKE6XTKbSoVByAv85GGjkaIYQQ5qhCCSfWjGxC99o+pKapfPL7aYYtPkBMQrKxQxNCWBhJKgztCWbVTteqipZUyAgeQgghnpSDjRX/6xXIx91rYGOl489TEXScuYNj12KMHZoQwoJIUmHCmlUojl6ncC4iTsYcF0II8cQUReGF+mVZNbwxZd0duHb3Pj1m7WLpvqv5ufclhBAZJKkwiPz3qQBwdbCmbtliAPx5MrxAtimEEKLoqu7jyq+jm9I2wIuk1DSm/HqKxed1xCemGDs0IYSZk6TCxLWt5gXAphOSVAghhMg/V3tr5vSry9sdqqLXKRyM0tFjzl7OR9wzdmhCCDMmSYWh5bNeuV21kgDsDbvNnfikgohICCFEEacoCkObl2fJoHq4WqtciIynyzc7WRt63dihCSHMlCQVhlAAQ8qmK+PuQDVvF9JUaQIlhBCiYNXzLcaEwFQal3cnISmVV38O5Z01x0hMSTV2aEIIMyNJhRloX12rrfj9+E0jRyKEEMLSOFvDvP51GdO6AooCS/Zc4bnZu7l6RwYIEULkniQVOSi4GVPzP6zGM/8kFTvP3yb2gYwtLoQQxmTqM2o/Cb1OYXzbyswfEEQxB2uOXouh44wdUkMuhMg1SSpyUGAzphbAWH0VSjjjX9yRpNQ0tpySC7wQQhiTucyo/SRaVi7B+jHNqF3WjdgHKQxZdIBPN54mJTXN2KEJIUycJBWGoDx8WgtmAPBONb0BWBt6o0C2J4QQQmTH282eZcMaMaCxHwCz/rpA3+/3EhH7wLiBCSFMmiQVhvBwUqEWzN2dbrV9ANhxLoqouMQC2aYQQgiRHRsrHVO7VCO4Tx2cbK3YG3aHDjNC2H3htrFDE0KYKEkqDOHh0Z8KKKko5+lIYGlXUtNUfjsitRVCCCEMr2PNUqwb1YQqJZ2Jikuk7/d7+Pav86SlyTTcQojMJKkwhEw1FQV34e1aS6utWCNNoIQQQhSS8sWdWD2iCT3qlCZNhc82nmHoogNEJ8jcSUKIf0lSYRAFX1MB0DnQG71OIfRqNJei4gtsu0IIIcSj2Nvo+eK5mnzaowY2Vjq2nI6g44wQjl6LNnZoQggTIUmFIRigozZAcWdbmlTwBGD1YZn1VAghROFRFIXeQWVZPaIxvh4OXI++T89Zu1m85zJqAdbKCyHMkyQVhmCAPhXpetTRmkCtOHCVVGnTKoQQopBV83bl19FNaVfNi6TUNN5dc5xXfw4lPjHF2KEJIYxIkgpDMFCfCoB21Uri5mDNjZgHbD8XWaDbFkIIIXLDxc6a2S/W5Z2OVdHrFNYduUHX4J2cC79n7NCEEEZSZJKKhIQEfH19ef311wthb4arqbCz1vPsP8PL/rzvSoFuWwghiqLCLR8sh6IoDGlWnp+HNcTLxZbzEXF0+WYna0Olea4QRVGRSSo+/PBDGjZsWDg7Uwx7Wl+oXxaALaciiLgnkxEJIUR+FGr5YIGC/NxZP6YZTSt4cj85lVd/DuWdNcdITEk1dmhCiEJUJJKKc+fOcfr0adq3b184OzRgnwqASl7O1CnrRkqaysqD1wp8+0IIUVQUevlgoTydbFk4qD5jnqqIosCSPVfoOWs3V+8kGDs0IUQhMfmkYvv27XTu3Blvb28URWHNmjVZ1gkODsbPzw87OzsaNGjAvn37Mr3++uuv8/HHHxdSxBg8qYB/ayt+3ndVJiESQhRJZlk+WDC9TmF8m0rMHxBEMQdrjl2PoeOMHfx5MtzYoQkhCoHJJxXx8fEEBgYSHByc7evLli1j/PjxTJkyhUOHDhEYGEi7du2IiIgAYO3atVSqVIlKlSoVZtj/NoEy0DB7nWp642JnxZU7Cfx1NsIg+xBCCFNmtuWDhWtZuQTrxzSjdlk3Yh+kMGTRAT7deJqUVMPcZBNCmAYrYwfwOO3bt39ktfT06dMZOnQoAwcOBGD27NmsX7+eefPmMXHiRPbs2cPPP//MihUriIuLIzk5GRcXFyZPnpzt9hITE0lMTMz4PTY2FoDk5GSSk5NzHbcVCgqQnJwIeXhfrrevQK96pfk+5BLf77hIM3/3At9HuvTjzsvxF0Vynh5PzlHuFPZ5MtfPw1zLB1NiqO9acUcrlgysx2d/nGXh7ivM+usCBy/d4cteNSnhbFtg+zH3a4q5xw/mfwzmHj8Y/hhyu11FNaMZaxRFYfXq1XTr1g2ApKQkHBwcWLlyZcYygP79+xMdHc3atWszvX/BggUcP36cL774Isd9TJ06lWnTpmVZvnTpUhwcHHIda+fQgejUVDZV+4oHNob5h/9OIrx/SE8aCm8GpuCd+/CEECJDQkICffr0ISYmBhcXF2OH80TMqXwoag7fVvjpvI7ENAVna5X+FdOo6Go2/3oIUeTltoww+ZqKR4mKiiI1NRUvL69My728vDh9+vQTbXPSpEmMHz8+4/fY2FjKlClD27Zt81TYKkf1kJpK69atwMXniWLJjX2JR/j9RDgXrXwZ0qGaQfaRnJzM5s2badOmDdbW1gbZhyWQ8/R4co5yp7DPU/odd0tSmOVDq1at8PDwyFe8xlIY37UOwAuR8Yz++QhnI+L49pSe8U9XZGhTP3Q65bHvfxRzv6aYe/xg/sdg7vGD4Y8ht2WEWScVeTVgwIDHrmNra4utbdaqWWtr67x9UP/0qbDW68GAX9Ihzcvz+4lw1h65ycT2VfFwKrhq5f/K8zkoouQ8PZ6co9wprPMkn0Uhlw8myNDHUNnbjbWjmvLOmuP8cugaX2w+x+GrMfyvVyBuDjb53r65fwbmHj+Y/zGYe/xguGPI7TZNvqP2o3h6eqLX6wkPzzyyRHh4OCVLlszXtoODgwkICCAoKOgJt/DP3RcDjf6Urk7ZYgSWdiUpJY0f98pkeEIIAaZePhRN9jZ6vniuJp/2qIGNlY4tpyPoOCOEo9eijR2aEKIAmHVSYWNjQ926ddmyZUvGsrS0NLZs2UKjRo3yte2RI0dy8uRJ9u/f/2QbyJgAz7DtRhVFYVDTcgAs3HWJ+0ky2ZAQQph0+VCEKYpC76CyrB7RGF8PB65H36fnrN0s3nMZM+riKYTIhsknFXFxcYSGhhIaGgpAWFgYoaGhXLmi3ZUfP348c+fOZeHChZw6dYrhw4cTHx+fMdqH0SiFU1MB0LFGKcq6O3A7Pomf9klthRCiaDDb8kFQzduVdaOa0jbAi6TUNN5dc5yxy0KJT0wxdmhCiCdk8n0qDhw4QKtWrTJ+T+8k179/fxYsWEDv3r2JjIxk8uTJ3Lp1i1q1arFx48YsnfPyKjg4mODgYFJTn/DOv4HnqXiYlV7HKy38eWv1Mb7bfpG+Dctia6U3+H6FEMKYzLZ8EAC42lszp19dfggJ4+PfT7M29AYnbsQyq28dKno5Gzs8IUQemXxNRcuWLVFVNctjwYIFGeuMGjWKy5cvk5iYyN69e2nQoEG+95v/5k/pNRWFU53bo64PJV3suBX7gFWHrhfKPoUQwpjMtnwQGRRFYUiz8vw8rCFeLracj4ijyzc7WRsq5ZgQ5sbkkwrzVXjNnwBsrfQMa14egFl/XZCZS4UQQpiNID931o9pRpMKHtxPTuXVn0N5Z80xElOkNkgIcyFJRQ7yPbpHIXXUftgL9cvi4WjDlTsJrDosd3mEEMIQZPQnw/B0smXRoAaMaV0BRYEle67Qc9Zurt5JMHZoQohckKQiBwXX/KnwagzsbfS83EKrrfj6z3Nyh0cIIQxAmj8Zjl6nML5tZeYPCKKYgzXHrsfQccYO/jwZ/vg3CyGMSpIKQ9H90wc+rXBHsnipkR9eLrZcj77PUpm3QgghhBlqWbkE68c0o3ZZN2IfpDBk0QE+3XhamvYKYcIkqTAUIyUVdtZ6xjxVEYBvtp6X4fmEEEKYJW83e5YNa8TAJn6A1l+w7/d7iYh9YNzAhBDZkqQiB/luM6v7Z0jXtMJvgtSrXhn8PLR5K+bvDCv0/QshhCWTPhWFx8ZKx5TO1QjuUwdHGz17w+7QYUYIuy/cNnZoQoj/kKQiB/luM2ukmgoAa72OcW0qATDn74vciU8q9BiEEMJSSZ+KwtexZinWjW5KZS9nouIS6fv9Hr796zxpaTILtxCmQpIKQzFiUgHQuaY3AaVcuJeYwvTNZ4wSgxBCCFFQ/Is7sWZkE3rUKU2aCp9tPMMrSw8Tn2zsyIQQIEmF4eistWcjJRU6ncLkzgEALN17hdO3Yo0ShxBCCFFQ7G30fPFcTT7tUQMbKx3bzkTxxTE9x67HGDs0IYo8SSpyUHB9KozXUbpheQ/aVy9Jmgrv/3YStZBm9xZCCEsmfSqMS1EUegeVZdXwxpR1t+dOokLvuftYvOeylHNCGJEkFTkouD4Vxp0r4q0OVbGx0rHz/G02yzjfQgiRb9KnwjRU93Fl9SsNqVEsjeRUlXfXHGfsslAZ9VAII5GkwlCM3KciXRl3B4Y2KwfAhxtOyYR4QgghLIaLvTWDK6cx6ZlK6HUKa0Nv0DV4J+fC7xk7NCGKHEkqDMVEkgqAES0rUMLZlsu3E/h22wVjhyOEEEIUGEWBQU38+HlYQ7xcbDkfEUeXb3ayNvS6sUMTokiRpMJQTKBPRTpHW6uMTtuz/rrA+Yg4I0ckhBBCFKwgP3fWj2lGkwoe3E9O5dWfQ3lnzTGpoReikEhSkYP8d9Q2jT4V6TrWKEWrysVJSk3jrdXHZGxvIYR4QtJR23R5OtmyaFADxrSugKLAkj1X6DlrN1fvJBg7NCEsniQVOTDnye+yoygK73Wtjr21nn1hd1hx8KqxQxJCCLMkHbVNm16nML5tZeYPCKKYgzXHrsfQaWYIW07JYCVCGJIkFYZiYkkFaJ22x7WpCMBHG04TFZdo5IiEEEIIw2hZuQS/jWlGrTJuxNxPZvDCA3y68TQpqWnGDk0IiyRJhaGYUJ+Khw1qUo6AUi7E3E9m8trjMqa3EEIIi+XjZs/ylxsxoLEfoPUr7Pv9XiJiHxg3MCEskCQVhmJifSrSWel1fNazJlY6hQ3HbrHuyA1jhySEEEIYjI2VjqldqhHcpw6ONnr2ht2hw4wQdl+4bezQhLAoklQYSnpSkZps3DiyUd3HldGttWZQ7645zq0YuWMjhBDCsnWsWYp1o5tS2cuZqLhE+n6/h2//Oi8DlwhRQCSpMBQrO+051TT7LYxo5U9gaVdiH6QwYeURaQYlhBDC4vkXd2LNyCZ0r+NDmgqfbTzD0EUHiE5IMnZoQpg9SSpykO8hA61stOcU00wqrPU6/terFrZWOnaci2LJ3ivGDkkIIcyCDClr3uxt9PzvuUA+6V4DGysdW05H0HFGCEevRRs7NCHMmiQVOcj3kIHpNRUpptu0qEIJJ958pgoAH60/xYVImRRPCCEeR4aUNX+KovB8/bKsGt4YXw8Hrkffp+es3Szec1lq7oV4QpJUGIqVrfacYtpVqgMa+9HYX5t9dOSPh3iQbFody4UQQghDqe7jyrpRTWkb4EVSahrvrjnO2GWhxCea1siNQpgDSSoMRZ+eVJhuTQWATqfwVe9aeDjacPrWPd7/7aSxQxJCCCEKjau9NXP61eXtDlXR6xTWht6ga/BOzoXfM3ZoQpgVSSoMJaOmwjT7VDyshIsdX/auBcCPe6/w21EZZlYIIUTRoSgKQ5uX5+dhDfFyseV8RBxdvtnJ2tDrxg5NCLMhSYWhmEGfioc1r1ScES39AZj0yzEu3443ckRCCCFE4Qryc2f9mGY0qaA1C37151DeWXOMxBRpGizE40hSYSjpoz+Z6JCy2RnfphL1fItxLzGFlxcfJCFJ2pQKIYQoWjydbFk0qAFjWldAUWDJniv0nLWbq3cSjB2aECZNkgpDyaipMJ+kwkqv45s+dfB0suX0rXtMWHlURsEQQghR5Oh1CuPbVmb+gCDcHKw5dj2GTjND2HIq3NihCWGyJKkwFDNr/pSupKsds16sg5VOYf3Rm8zZftHYIQkhhBBG0bJyCdaPaUatMm7E3E9m8MIDfLrxNCmpacYOTQiTI0mFoZjJkLLZCfJzZ0qXagB8tvE0O85HGTkiIYQQwjh83OxZ/nIjBjT2A2DWXxfo+/1eImLN66ahEIYmSUUO8j1jasaQsvcLLqhC9GKDsvSqV5o0FcYtP0q4eR6GEEIUOJlRu+ixsdIxtUs1gvvUwdFGz96wO3SYEcLuC7eNHZoQJkOSihzke8ZUGwftOck8O3YpisJ7XatTu6wbMfdTmHNKz+1486t1EUKIgvbf8kG5HALS/6xI6FizFOtGN6WylzNRcYn0/X4P3/51nrQ0+fyFkKTCUGyctOck8x2a1c5az9yX6lHazY7biQojlobKjNtCCPEfViv6wbeN4MB8s72RJHLPv7gTa0Y2oXsdH9JU+GzjGYYuOkB0gtx4E0WbJBWGkpFUxBk3jnzydLJlbr862OtVDl2J5vUVR+SOjBBCPES1coDIU/DbWJheFTZPhuirxg5LGJC9jZ7/PRfIJ91rYGOlY8vpCDrOCOHotWhjhyaE0UhSYSi2DyUVZl4tXqGEE4Mrp2GlU/jt6E0+/+OMsUMSQgiTkfLKHmj3Ebj5woNo2Pk1fB0Iy1+Cy7vMvgwQ2VMUhefrl2XV8Mb4ejhwPfo+PWftZvGeyzIcuyiSJKkwlPSaCjUNks2/Oryiq8qH3QIAbeSLH0LCjByREEKYCDtnaDQSxhyG53+Ccs1BTYWTa2F+e5jTHEKXmtW8RSL3qvu4sm5UU9oGeJGUmsa7a44zdlko8YkygawoWiSpMBQbR0DRfk407yZQ6brX9mFCu8oAvP/bSX45eM3IEQkhhAnR6aFKB+j/KwzfBXVe0uYsunUU1gyHL6vB1g/h3i1jRyoKmKu9NXP61eXtDlXR6xTWht6ga/BOzoXfM3ZoQhQaSSoMRVEspl/Fw0a09Gdw03IAvPHLUTaflNlFhRAiC69q0GUmjD8FT00BFx+Ij4Ttn8GX1eGXoXD9oLGjFAVIURSGNi/Pz8Ma4uViy/mIOLp8s5O1odeNHZoQhUKSCkOytbykQlEU3u5QlR51SpOapjJy6SH2XJRxuoUQIlsO7tBsPLx6BJ5bAGUaQloyHFsOc1vD923g2EpITTZ2pKKABPm5s35MM5pU8OB+ciqv/hzKO2uOkZgioycKyyZJhSHZOGrPFtL8KZ1Op/Bpjxq0CfAiKSWNwQv2c/DyHWOHJYQQpktvDdWehcGbYNhfUPN50FnDtX3wy2D4qiZs/wLio4wdqSgAnk62LBrUgDGtKwCwZM8Ves7azdU75t/HUoicSFJhSLbO2nOi5bWptNLrmPlCbRr7exCflEr/efs5ePmuscMSQgjT510bus+BcSeg5SRwLAH3bsDW92F6AKwdCbeOGztKkU96ncL4tpWZPzAINwdrjl2PodPMELackmbDwjJZfFIRHR1NvXr1qFWrFtWrV2fu3LmFt3M7N+35QXTh7bMQ2Vnr+aF/EI3KexCXmEL/efs4dEUSCyGEeTBq+QDg7AUtJ8K44/Dsd1qykZoIh5fA7CYwvyOc+hXSpNmMOWtVuQTrxzSjVhk3Yu4nM3jhAT7deJqU1DRjhyZEgbL4pMLZ2Znt27cTGhrK3r17+eijj7h9u5D6ADi4a88JltvnwN5Gzw8D6tGwvLuWWPywj8OSWAghzIBRy4eHWdlCYG8Yug0G/aE1k1L0cDkElr0IM2rBrplwX66t5srHzZ7lLzdiQGM/QBua/cUf9hJ5T4YZFpbD4pMKvV6Pg4MDAImJiaiqWniT0tinJxWW3d/AwcaKeQOCaFDOnXuJKbz0wz5pCiWEMHlGLR+yoyhQtoHWoXvsUWg6XitHoq/AH+9oTaN+Gw+RZ40Xo3hiNlY6pnapxjd9auNoo2fPxTt0m7WHC7HGjkyIgmHyScX27dvp3Lkz3t7eKIrCmjVrsqwTHByMn58fdnZ2NGjQgH379mV6PTo6msDAQEqXLs2ECRPw9PQsnODTayruW3ZSAVpiMX9gEPX/SSxe/H4vO85FGjssIYQFM+vy4XFcS8PTU2D8Seg8A0oEaBOpHvgBgoNg8bNw9g9IkyY05qZTTW/WjmpKJS8nIu4l8s0JPd+HXJJZuIXZM/mkIj4+nsDAQIKDg7N9fdmyZYwfP54pU6Zw6NAhAgMDadeuHRERERnruLm5ceTIEcLCwli6dCnh4YXUSaqI1FSkc7CxYsHAIJpV9OR+ciqDFxxg4/Gbxg5LCGGhzLp8yC1re6jbX5tMr/+vULkjoMCFrbD0OS3B2PudRQ4IYskqlHBizcgmdKlZijQUPt10lleWHCT2gQwtLMyXlbEDeJz27dvTvn37HF+fPn06Q4cOZeDAgQDMnj2b9evXM2/ePCZOnJhpXS8vLwIDA9mxYwc9e/bMdnuJiYkkJv7bxjE2VquXTE5OJjk5b3/siq0LVkBawm1S8/heU5J+3Lk5fmsFZvWpxesrj7HxRDgjfjzER92q0aOOj6HDNLq8nKeiSs5R7hT2eTLXz8Ocy4cnUroR9GwEdy+hO/gDutAfUW6fh98noG59j7TAPqTVGwrF/HK9SXP/mzTn+K0V+LhrZWzvXWPNFSs2nQjn9M0QZj4fSNVSzsYOL9fM+TMA848fDH8Mud2uoppRfZuiKKxevZpu3boBkJSUhIODAytXrsxYBtC/f3+io6NZu3Yt4eHhODg44OzsTExMDE2aNOGnn36iRo0a2e5j6tSpTJs2LcvypUuXZrS9za0SsUdpdOELYuzL8leVD/L0XnOXpsLPF3TsjdQqw571S6VlKbP5qglRpCQkJNCnTx9iYmJwcXExdjhPxNzKh4KgT31A2TshlI/8A6fEWwCoKNxyrcXF4m2JcgrQ+mkIk3c5Duaf0XM3ScFaUXmufBoNSkiZKUxDbssIk6+peJSoqChSU1Px8vLKtNzLy4vTp08DcPnyZYYNG5bRAW/06NE5FhgAkyZNYvz48Rm/x8bGUqZMGdq2bZvnwla5UQoufIGLVTIdOnTI03tNSXJyMps3b6ZNmzZYW1vn+n0dVZVPNp5l3q7LrL6kx93HlzfaVkKns8xC7knPU1Ei5yh3Cvs8pd9xtySFWT60atUKDw8PwxzIY3UHNY2Ui9vQ7fsO3cUtlIo5TKmYw6jFq5IaNBS1ek+wzj7pMfe/SUuJf8izbXg+WWXCyuP8fS6KpRf0pLj58G7HKthZ640d5iNZymdgrvGD4Y8ht2WEWScVuVG/fn1CQ0Nzvb6trS22trYEBwcTHBxMaqo2Pri1tXXePyg3rcmPEh+JtV4POpPvwvJIT3IO3u1cDQ9nOz7fdIYfdl7mZmwi03vVMvmLZH480XeliJFzlDuFdZ6K6mdh1PKhoFV5RntEnYO9cyB0KUrkKaw2jIdt70Od/lB/qNYBPBsmcQz5YAnxl3CwZv7A+gRvO8/0P8+y/OB1Tty8x6y+dSnrUfg1YXllCZ+BOccPhjuG3G7TrP/L9fT0RK/XZ+lYFx4eTsmSJfO17ZEjR3Ly5En279//5Btx8gJFB2kpEF80R0JSFIWRrSrwZe9ArPUKG47dou/3e7kTn2Ts0IQQFszkywdD8awIHb/QRo1q+yG4ldXmt9j5FXxVE5b3h8u7wXxaPhcpOp3C6KcqsnhQA9wdbThxI5aOM3ew+aSJDSAgRDbMOqmwsbGhbt26bNmyJWNZWloaW7ZsoVGjRkaM7B96K3Asof1874ZxYzGyZ2uXZtGgBrjYWXHw8l26f7uTS1Hxxg5LCGGhTL58MDR7N2g8CsaEwvNLwa8ZqKlwcg3Mfwa+awGhP0GKTL5mippW9GT9mKbUKevGvQcpDF0ks3AL02fySUVcXByhoaEZVdRhYWGEhoZy5coVAMaPH8/cuXNZuHAhp06dYvjw4cTHx2eM9vGkgoODCQgIICgoKH8H4FJKe46VoVUb+Xvwy/DG+LjZc+l2As9+u5M9Fy13tnEhhGGZfflQGHR6qNIRBvwGr+yE2v3Ayg5uHoE1r2D1TS0q31wFcXIn3NSUcrXn52GNGNjED/h3Fu6Iew+MG5gQOTD5pOLAgQPUrl2b2rVrA1ohUbt2bSZPngxA7969+eKLL5g8eTK1atUiNDSUjRs3Zumcl1cFVr3t7K09F/GainQVvZxZPbIxNUu7cjchmRe/38vi3TLpjxAi78y+fChsJatD129g3El4ajI4e6PER1Ll1hqsZtaCVcPg+iFjRykeYmOlY0rnagT3qZMxC3enGSHsCysa818J82LyHbVbtmz52H84R40axahRowopojySmoosSjjbsWxYI9785Sjrjtzg3bUnOHEjlmldq2FrZbkduIUQBcvsywdjcfSAZq9B4zGkHF9DzB+f4hF/Do4u0x6l60PDV6BqF9Cbd8dVS9GxZimqlHJm+JKDnA2P44W5e3jzmcoMbVYeRYYNFibC5GsqzJ5zelIhNRUPs7fR8/XztZjYvgqKAj/vv0qfuVKtK4QQhUZvjRrQjZBK75IycDPUfB501nBtH6wcpHXs3vE/iJdmqqbAv7g2C3e3Wt6kpql8tOG0zMItTIokFTkosDaz6TOb3r2U35AsjqIovNLCn3kDgnD+pwN3l5k7OXI12tihCSFEjsyqT0Uuqd61ofscGHcCWkwEx+Jas90t78GXAbB2FNw6buwwizwHGyu+7F2LD7pVx0avY9OJcLrMDOHkDcuba0aYH0kqclBgbWbdy2vPdy7kPygL1apyCdaObIJ/cUduxT7gudm7WbhL+lkIIUyT2fapyA1nL2g1SUsunp0DpWpBygM4vBhmN4EFneDUb5CWauxIiyxFUXixoS8rXmmUaeCTFQeuGjs0UcRJUmFo6UlFXDgkxhk3FhNW/p9q3XbVvEhKTWPKuhOMWnpYqnWFEMIYrGwh8HkY9hcM2gQB3UDRw6UdsKwvzKgFu2bC/WjjxlmEBZZx47fRTWlZuTiJKWlMWHmUib8c5UGyJHzCOCSpyEGBVW/bu4GDh/bznYv5jsuSOdtZM/vFurzbKQArncL6YzfpMjOEEzdijB2aEEJksMTmTzlSFCjbEHothLFHoek4sC8G0Vfgj3dgegCsfw0izxo70iKpmKMN8/oH8VqbShn9E3vM2sWV2wnGDk0UQZJU5KBAq7czmkBJUvE4iqIwuGk5lmeq1t3F0r1XpDmUEMIkWHTzp0dxLQ1PT9WGpO38NZQIgOR42P89BAfB4u5wbjOkyQRthenhWbg9ZBZuYUSSVBQGd3/tWfpV5FqdssVYP6YpT1UpQVJKGm+tPsaonw4TkyDNoYQQwqhsHKDuABi+C15aB5U7AApc2AI/9oTg+rBvrjT5LWRNK3ry25im1PUtJrNwC6OQpKIweFbUniNOGTcOM+PmYMPcl+oxsX0V9DqF9Udv8szX29l1IcrYoQkhhFAUKN8CXvgJxhyGhiPB1gVun4MNr8P0qrDxLbgTZuxIiwxtFu6GDGpSDpBZuEXhkqSiMJSsqT3LcHx5ptNpw87+Mrwx5TwduRnzgL7f7+XjDadITJHOaEIIYRLcy8EzH8H4k9D+c/CoAImxsCcYZtSGn/rAxb9BmrEanLVex+TOATILtyh0klTkoEA74pWsrj1HnYVkuVvwJGr9M8rFC/XLoKowZ/tFng3exbnwe8YOTQhRxBSpjtp5ZesMDYbByP3QdyX4PwWocGY9LOoCs5rAwYWQfN/YkVq8jjVLsW50Uyp5ORFxL5EX5u7hu+0XpH+iMBhJKnJQoB3xnEuBvTuoqRApTaCelKOtFR93r8l3/eri7mjDyZuxdJoZwvydYaSlyUVSCFE4imxH7bzQ6aBiG+i3SkswgoaAtQNEnIBfx2hNo/6cCjHXjB2pRUufhfvZ2j4yC7cwOEkqCoOiQMka2s+3jhk3FgvQtlpJNo5tRotK2tjc0349Se/vdhMWFW/s0IQQQvxX8UrQ8X8w/hS0/QDcysL9uxDyJXxVE1YMgCt7pGmUgTjYWDG9V2CWWbhP3ZRZuEXBkqSisJT6p1/FjcPGjcNClHC2Y8HAIN7vVh1HGz37L93lma+2M3f7RVKl1kIIIUyPvRs0Hg1jQqH3j+DXTKvBP7Ea5rWD71rCkZ8hJdHIgVqe9Fm4Vw7PPAv3qkNSUyQKjiQVhaV0fe35yl7jxmFBFEWhX0NfNo5tTrOKniSmpPHhhlP0mCV9LYQQwmTp9FC1Ewz4DV4Jgdr9QG8LN0Nh9cvwZXXY9jHck3kWClrN0m6sH9OUFpWK8yA5jfHLj/DumuMkpciwsyL/JKnIQYF3xCvbUHuOOAn3owtmmwKAMu4OLBpUn0+618DZ1orQq9F0nBFC8LbzMj63EKLASUftAlSyBnT9Rmsa1fpdcPaG+Aj4+xP4shqsellq+AuYm4MN8wcE8epTFVEUWLznMr3m7OZmjHSeF/kjSUUOCrwjnlMJKFYOUOGadO4raIqi8Hz9svwxvjmtKhcnKTWNzzedofM3Ozl85a6xwxNCWBDpqG0Ajh7Q/HUYexR6ztNq99OS4ejPWrOoH9rC8VWQKh2MC4JOpzCuTSXm9Q/C1d6a0KvRdJoRwq7zMg+UeHKSVBSm9NqKy7uMG4cFK+Vqz7wBQUzvFYirvTWnbsbSfdYu3l59TGbjFkIIU6e3huo9YMhmGLoVavYGnTVc3QsrB8LXgbDjf5Agcy4UhFZVSvDb6KZU83bhdnwSL/6wl1l/ybCz4slIUlGYyjXXni9sNW4cFk5RFLrXKc3W11rQs25pVBV+3HuFp6b/xZrD1+ViKYQQ5sCnLnT/DsYdhxZvgmNxiL0OW97ThqRdN1prUizypYy7A78Mb8xzdUuTpsKnG2XYWfFkJKkoTP5Pac83QyEuwqihFAUeTrZ88VwgPw9rSIUSTkTFJTF2WSh9v9/Lhcg4Y4cnhBAiN5xLQqu3YNwJ6DYbSgVCygM4tAjruc1pfO5jlDMbIC3V2JGaLTtrPZ/1rMnH3WtkDDvb9ZudnLklg56I3JOkojA5e0HJf4aWldqKQtOwvAcbxjRjQrvK2Frp2HXhNu2/2sEXm86QkJRi7PCEEELkhpUt1HoBhv0NAzdCQFdURU/xuFNYrXwJZtSGXd/IYChPSFEUXqhflhWvaMPOhkXF0y14J2tDrxs7NGEmJKkobBXbaM/nNhs3jiLGxkrHyFYV2DyuBS3/6cj9zbbztP7ib9aGSpMoIYQwG4oCvo2g1yJSRh7kXImOqHZuEH0Z/ngbpgfA+tch6pyxIzVLgWXc+HV0U5pV9OR+ciqv/hzK1HUnZNhZ8ViSVOTAYEMGVmyrPZ/bLBP8GEFZDwfmDwhi9ot1KF3MnluxD3j151B6zt7N0WvRxg5PCGEGZEhZE+JampM+vUkZcxQ6fw3Fq0JyPOyfC9/UgyU94NyfkCb/EOeFu6MNCwbWZ1SrCgAs2HWJF+buITz2gZEjE6ZMkoocGGzIwNL1tXG4E2Pg/JaC3bbIFUVReKZ6Kf4c34IJ7SrjYKPn4OW7dPlmJxNWHCHinlw0hRA5kyFlTZC1A9QdACN2w0troVJ7QIHzf8KPPSC4PuybC4nSny639DqF19tV5vuX6uFsZ8XBy3fpOCOEPRdvGzs0YaIkqShsOh1U66b9fGKVUUMp6uys9YxsVYGtr7Wke20fAFYcvEbrL/5m9t8XSEyRTn9CCGFWFAXKt4Q+P8OYQ9BwBNi6wO1zsOF1rWnUprfh7iVjR2o2ng7w4tdRTalS0pmouET6fr+X77bLsLMiK0kqjKFad+359Aa5a2ICSrraMb13LVaNaExgGTfiElP45PfTPPW/v1lz+DppaXLhFEIIs+NeHp75GMafhPafg7u/1kpg9zfwdS34qQ+EbQf55/ix/DwdWT2iCd1r+5CapvLRhtOM+PEQcYky2In4lyQVxlC6nnZxS46H478YOxrxjzpli7F6eGP+91wgXi62XLt7n7HLQun8TQgh52SWUSGEMEu2ztBgGIw6AH1WgH9rQIUz62FhZ5jdFA4tguT7xo7UpNnb6Plfr0De71Yda73C78dv0eWbEM5FyM1RoZGkwhgUBer2134+ON+4sYhMdDqFHnVL89frrZjQrjLOtlacuBHLiz/spd8PezlxI8bYIQohhHgSOh1Uagv9VsPIfVBvsNYXI/y4NpHe9AD4cxrEyBCqOVEUhX4NfVn2ciNKudpxMTKennP2cjhKMXZowgRIUmEstfqC3gZuHIYbocaORvyHvY3W3+LvN1oxsIkf1nqFHeei6DQzhHHLQrl2N8HYIQohhHhSxStDp+la06g274NrWbh/B0Kmw1c1YMUAuLJXmkbloE7ZYvw6uimN/T1ISEplwTk9n246S0qqjLJVlElSYSyOnlC1i/bznlnGjUXkyN3Rhimdq7FlfEu6BHqjqrD68HVaf/E37/92kqg4GRZYCCHMln0xaDIGXg2F3kvAtymoqXBiNcxrC3NbwZGfZQj4bHg62bJoUH2GNvUD4PuQS/Sfv4878UnGDUwYjSQVxtRopPZ8bAVEXzFuLOKRyno4MOOF2vw6Srszk5Saxg8hYTT7dBufbjzNXbmICiGE+dLpoWpnGLgeXt4BtV8Eva3WmmD1y/BldfjrE4iLMHakJsVKr+ONdpUYUDEVBxs9O8/fpvPMEI5fl6bCRZEkFcbkU0cb+k5NhV0zjR2NyIUapV35cUgDFg2qT2AZN+4npzLrrws0+2wbM7ae574MhCGEEOatVE3oGqw1jWr9DjiXgvgI+Otj+LIarH5FSzZEhtqeKiuG1cfXw4Hr0ffpMWsXqw9fM3ZYopBJUpGDQpsxtel47fnQIrh3y7D7EgVCURSaVyrOmhGN+f6lelQt5UJcYgozt13kvUN6Zv99kXgZZk8IiyUzahcRjp7QfAKMPQY9foDSQZCaBEd+gu9awg/ttGZSqXK9B6jk5cy6kU1pWbk4iSlpjFt2hGm/niBZ+lkUGZJU5KDQZkwt11ybZTvlAWz7yLD7EgVKURSeDvBi/eimfNu3DhWKO5KQqvC/P8/T/LNtzN1+kftJMoGeEJZGZtQuYvTWUKMnDPkThmyFGr1AZw1X92gdur+uCTumQ8IdY0dqdK4O1vzQP4jRrSsAMH/nJV78fq/0PywiJKkwNkWBth9oPx9eDOEnjRuPyDOdTqFDjVL8Nqox/Sqk4uvuwO34JD7ccIqmn25l1l8XZIIgIYSwBKXrQo+5MO44NH8DHDwh9jpsmaYNSbtuTJEvx/U6hdfaVmZOv7o42VqxN+wOnWeGcORqtLFDEwYmSYUpKNtAGwlKTYPN7xo7GvGE9DqFesVVNo5pzGc9alLG3Z7b8Ul8uvE0TT/dyowt54i5n2zsMIUQQuSXc0lo/TaMOwHdZkHJmpByHw4thFmNtEn1Tm+AtKJbW92uWknWjGxM+eKO3Ix5wHNzdrN8/1VjhyUMSJIKU/H0VK069fyfcOpXY0cj8sFKr6NXUBm2vtaS/z0XSHlPR6ITkpm++SxNP9nKF5vOyJB7QghhCaztoFYfeHk7DPxdu0Go6CBsO/z8AsysA7uD4UHRHA2pQgln1o5sQpsAL5JS0njjl6O8s+YYSSnSz8ISSVJhKjz8tbGyAda/XmQvQJbEWq+jR93SbB7fgpkv1KaylzP3ElP4Ztt5mnyylQ/XnyTi3gNjhymEECK/FAV8G0PvxfDqUWjyKti5wd1LsOktrWnUhgkQdd7YkRY6Zztr5rxYl/FtKqEosGTPFV6Yu4eIWCn/LI0kFaak+Rvg7g9xt+APaQZlKfQ6hc6B3vz+ajPm9KtLdR8X7ienMneHNs/FO2uOcfl2vLHDFEIIURDcykCb97QhaTt9BcWrQFIc7PsOvqkLS3pqrRKK0GzdOp3CmKcq8kP/ejjbWXHw8l06zQzh0JW7xg5NFCBJKkyJtR10maH9fGghnPrNuPGIAqXTKbSrVpJfRzVl/sAg6pR1IzEljSV7rtDqi78YufQQx65JDZUQQlgEG0eoNxBG7IF+a6BSe0CB85thSQ8Iro/u4Dz0qUXnjn3rKl6sG9WUSl5ORNxL5Pnv9vDLQZnPwlJIUmFq/JpC49Haz+tGQcx148YjCpyiKLSqXIJfhjfmp6ENaVm5OGkqrD96k87fhNBn7h62n41ELUJ3sYQQwmIpCvi3gj4/w+iD0GA42DhD1Fn0G9+g3Ymx6P6cDHcvGzvSQlHO05FVI5rQ9p9+Fq+tOMIHv50kReazMHuSVJii1pOhVCDcvwsrB0GKdOq1RIqi0MjfgwUD6/P7q83oXtsHK53Crgu3eWnePjrMCGFt6HW50AohhKXw8If2n2hNo9p/hlqsHNapCej3fgszasHPfSFsh8U3jXKytWL2i3UZ8898Ft+HhDFo4QFiEmSERHNm8UnF1atXadmyJQEBAdSsWZMVK1YYO6THs7KBHvPA1kWbXOf3CRZ/gSnqqpZyYXrvWvz9RisGNSmHg42eUzdjefXnUFp8/hcLdoaRkCRzXQhRkMyyfBCWwc4FGrxMyvC97Ck/nrRyLbVh5U//Bgs7weymcGgRJN83dqQGo9MpjG9bmeA+dbC31rP9bCTPfruTC5Fxxg5NPCGLTyqsrKz46quvOHnyJH/88Qdjx44lPt4MOsV6VoAePwAKHFwA+783dkSiEPi42TO5cwC7Jrbm9baV8HC04Xr0fab+epLGn2xl+h9niLwnM5MKURDMtnwQlkPREe5ai9Q+K2HEXqg3CKwdIPw4rButjRq15T2IvWHsSA2mY81SrBzeCB83ey5GxdPtm51sOxNh7LDEE7D4pKJUqVLUqlULgJIlS+Lp6cmdO3eMG1RuVWoLT0/Rfv79DZm/oghxc7BhVOuK7JzYmg+6VcfXw4HohGRmbNWGo31t+RFO3og1dphCmDWzLh+E5SlRBTp9qTWNavMeuJaB+3dgx//gqxqwYiBc3WeRLReqebuydlQT6vu5cy8xhUEL9jPn7wvSt9DMmHxSsX37djp37oy3tzeKorBmzZos6wQHB+Pn54ednR0NGjRg37592W7r4MGDpKamUqZMGQNHXYCajIXa/bRq0ZWDtbaWosiws9bzYkNftr7WkuA+dahd1o2k1DR+OXSNDjN28MJ3e9h8Mpy0NLnwiqKnyJcPwjLZF9PmuRgTCr0Wg28TSEuBE6vghzYwtzUcXW5x/S09nWxZMqQBL9Qvg6rCx7+fZvzyIzxILrqzkpsbk08q4uPjCQwMJDg4ONvXly1bxvjx45kyZQqHDh0iMDCQdu3aERGRuerszp07vPTSS3z33XeFEXbBURRtnOsqnSA1EX56Aa4dMHZUopDpdQoda5Zi9YgmrBrRmE41S6HXKey+eJuhiw7Q+n9/sXDXJeITpd+FKDqKfPkgLJveCgK6wMAN8PIOqPUi6G3hxiFYNRS+qg5/fQpxltNUyMZKx0fP1uC9rtXQ6xRWH75O7+/2EC4T5ZkFK2MH8Djt27enffv2Ob4+ffp0hg4dysCBAwGYPXs269evZ968eUycOBGAxMREunXrxsSJE2ncuPEj95eYmEhi4r9t1mNjtSYmycnJJCcbcVSCrrPR3++N7vJO1EVdSO39E2rZRx9LQUk/bqMevxkorPNUo5QTXz5XgwltKrBk71WWHbjGpdsJTFl3gi/+OEOvuj681LAs3m72Bo3jSch3KXcK+zyZ6+ch5UP+mfvfZJGJ37MqdPwKWr6D7vBCdAfnocSFw18foe74ArVad1LrDdVGjixkhvgMXqjng5+7HWN+PsqRq9F0nhnCnL61qe7jUmD7SGfu3yEw/DHkdruKakYN1hRFYfXq1XTr1g2ApKQkHBwcWLlyZcYygP79+xMdHc3atWtRVZU+ffpQuXJlpk6d+th9TJ06lWnTpmVZvnTpUhwcHAroSJ6MPjWRBhe/pHjcSVIUG/aVH0ukS3WjxiSMLzEV9kUq/H1TR+QDBQAdKoEeKi1KpeHnpFV4CZGThIQE+vTpQ0xMDC4uBV9oF4aiXj6IokVJS8E7ej/lI//APeFCxvLbjpW4ULwtt9zqoip6I0ZYMKIewPen9dy8r2CtU+lXIY1AD7P5t9Vi5LaMMOuk4saNG/j4+LBr1y4aNWqUsd4bb7zB33//zd69ewkJCaF58+bUrFkz4/XFixdTo0aNbPeR3Z2oMmXKEBUVZRqFbfJ99L8MRHfhT1S9Dakdv0Kt0cuwu0xOZvPmzbRp0wZra2uD7sucGfs8paWp/HUuigW7LrP74r+dTat7u/BigzJ0qlESW2vjFjLGPkfmorDPU2xsLJ6enhaVVBRm+XDz5k08PDwMc2AGZu5/kxI/KNcPotv/HcqptShpWhNY1cWHtLqDSavdT+ujYUCG/gzuPUhh3PKj/H0uCoDX21RkWDM/lAK6W2bu3yEw/DHktoww+eZP+dW0aVPS0nI/eZitrS22trZZlltbW5vGl83aGl5YCquGopxci9W6ERBzBVpONPjtaJM5BybOmOepXXVv2lX35tTNWOaFhLH2yA2O34hl4uoTfLrpLM/XL0vfBmUpXcy4d1Xlu5Q7hXWeiupnYXHlQz6Y+zEU6fj9GmqP2Jtw4Ac4MB8l9jr6be+h3/E5BPaG+i+DV0DBBv0fhvoM3K2t+WFAEO//dpKFuy/zxeZzXLl7nw+61cDGquC6Bpv7dwgMdwy53abJd9R+FE9PT/R6PeHh4ZmWh4eHU7JkyXxtOzg4mICAAIKCgvK1HYOwsoWeC7TRIQD+/kTrtJWUYNSwhOmoWsqFz58LZM+kp3jjmcr4uNlzNyGZWX9doPln2xi26AA7z0fJcH3CYhXZ8kEUXS6loPU7MO4EdP0WStaAlPvaXFezGsHCLnDmd0gzv9GUrPQ6pnWtzrQu1dApsPzANV6at5foBMsaAcvcmXVSYWNjQ926ddmyZUvGsrS0NLZs2ZKpuvtJjBw5kpMnT7J///78hmkYOp02jnXnr0FnBcdWwPdPQ9Q5Y0cmTIi7ow0jWlbg7wktmdOvLk0qeJCmwh8nw+n7/V7afLmdRbsvESejRgkLU6TLB1G0WdtB7b7aiFEDNkDVLqDoIOxv+Ol5mFkHdn8LD2KMHWme9W/sxw/9g3CytWLPxTt0/3YXYVEyYaWpMPmkIi4ujtDQUEJDQwEICwsjNDSUK1euADB+/Hjmzp3LwoULOXXqFMOHDyc+Pj5jtA+LV3cA9FsNjiUg4gTMaQFHVxg7KmFirPQ62lUryY9DGrJ5XHNeauSLo42e8xFxTF57goYfbWHquhNciIwzdqhC5JqUD0I8gqKAXxPovRhePQKNx4CdK9y9BJsmabN1b3gDbl947KZMSasqJTLNwP3stzvZc/G2scMSmEGfigMHDtCqVauM38ePHw9oI3gsWLCA3r17ExkZyeTJk7l16xa1atVi48aNeHl55Wu/wcHBBAcHk5pqBtWE5ZrDKyHwy2C4tANWDYGwv6DdR9oFRIiHVPRy5r2u1ZnQrjKrDl1n4e5LXIyMZ8GuSyzYdYlmFT15qZEfrauUQK+TYaPE4x09ejTP7wkICMDKKn9FkJQPQuSSW1lo+77W//LoMtg7ByJPw7452qNiW2jwCvi3NovhAquUdGH1yMYMXXSQI1ej6ffDXj7tUZPudUobO7QiLVdX9BkzZuR5wwMHDsTZ2TnP7/uvli1bPrbd96hRoxg1alS+9/WwkSNHMnLkSGJjY3F1NYN/zJ294KW18NcnsP1zOLwELmyDLjOhwlPGjk6YIGc7a/o39uOlRr7sPH+bBbsuseV0ODvORbHjXBQ+bvb0a+RL73plKOZoY+xwhQmrVasWiqLkuo+OTqfj7NmzlC9fPl/7lfJBiDyycYR6g6DuQLi4TUsuzm6Cc39oD8/K0GAYBL6grWvCSjjbsWxYQ15bcYT1R28yfvkRbsY8YERL/wIbGUrkTa6SirFjx1K6dGn0+twNR3n16lU6depUIEmFyAOdHlq/DeVbwtoRWhXnku5Qpz+0/QDszHOoSGFYiqLQtKInTSt6cvVOAkv2XmbZ/qtcj77PJ7+f5svNZ+kS6E3/xn5U95F/oET29u7dS/HixR+7nqqqVK8u8+sIYVSKotVK+LfWmj/t+w4O/whRZ2D9a7DlPajzEgQNhWK+xo42R3bWemY+XxsfN3u+236Rzzed4WbMfaZ1qS417UaQ67rnAwcOUKJEiVytawnJhFlXb/s1geG74M9pWrXmoYXanYi270ON58yialMYRxl3Bya1r8q4pyux7sgNFu66xIkbsaw4eI0VB69R17cYLzXypX31UgU6lJ8wby1atKBChQq4ubnlav3mzZtjb296M77nllmXD0L8l4c/tP8UWr0NoUth72y4Gwa7ZsLuYKjcARoOB98mJvn/g06n8FaHqpR0seP99SdZsucKEbGJzHihNnZGnpupqMnVfwVTpkzByckp1xt96623cHd3f+KgTIHZj+5h4wgdPoP+v0GxchB3Sxt2dn57uJn39s+iaLGz1tOrXhl+G92UX4Y3pmstb6z1Cgcv3+XVn0Np/MlW/veHdkdIiG3btuU6oQDYsGEDpUqVMlxABmb25YMQ2bFzgYavwOhD8MIyrdWDmganf4MFHWF2Mzi0GJIfGDvSbA1qWo7gPnWwsdLxx8lw+szdw514GXK2MOU6qXBwyP1kWZMmTcpTASMMqFwzGLEHWr8L1g5wZTd810Kr3oyLNHZ0wsQpikJd32J8/Xxtdk5szbinK+HlYktUXCIzt56n6afbeGXxQXbJnBdCCGEZdDqo/IzWT3PEXq3/hZU9hB+DdaPgywDY8j7E3jB2pFl0qFGKJYMb4GJnxaEr0fSctYurd2QOr8Ji8qM/iQJgbQfNX4fA5+GPd+DEatj/PYT+pFVpNh4N9m7GjlKYuBLOdrz6dEVGtPJn88lwFu66xN6wO2w8cYuNJ25RoYQT/Rr60r2OD8525j0rqXhyqqqycuVKtm3bRkRERJYZq1etWmWkyIQQeVaiCnT+Cp6aDIcXw765EHMVdnwBO7+CgK4o9YYaO8pM6pdz55fhjRkwf/8/Q87uYsHAIOkTWAjy3Cj69u3bjBw5koCAADw9PXF3d8/0sBQWOWOqa2l4bgH0/xW860ByvHZh+DoQQr6UGblFrljrdXSoUYplLzdi09jmvNiwLA7/zHkxZZ0258W7a45zLvyesUMVRjB27Fj69etHWFgYTk5OuLq6ZnpYAossH4R4FAd3aPIqjAmFXougbGNIS4Hjv2C14Bman5mKcnwFpJhGc6OKXs6sGtGYKiWdiYpL5IXv9rBX5rIwuDzXVPTr14/z588zePBgvLy8LHbYLoseMrBccxi6FU6vh60fQOQp+HOqNsNmoxHacHMyv4XIhcolnfmgWw3efKYKqw5dZ9HuS1yIjGfxnsss3nOZhuXdeamRH20CvLDWS8fuomDx4sWsWrWKDh06GDsUg7Ho8kGIR9FbQUBX7XHzCOydg3psBcUSLsLa4bBlGgQN1ppMOT1+NDhD8nKxY/krjRiy8AD7wu7w0rx9zHqxDq2r5G+eGpGzPCcVO3bsICQkhMDAQEPEIwqLokDVTlC5PRxbAds+gujLWnKxYzrUGwgNR4BzSWNHKszAw3Ne7L5wm4W7L7H5ZDh7Lt5hz8U7eLnY0qe+L8/VMd/OuSJ3XF1d8z3/hBDCDJQKhG7fktLyHc4ve4cq90JQ4m7Btg+1+bKq99Q6fpcy3v+LLnbWLBpUn5E/HmLL6QiGLTrI/3oF0rWWj9FismR5vnVYpUoV7t+XEV8shk6v9bUYdQC6zYLiVSAxFnZ+DV/VgHWj4fY5Y0cpzISiKDSu4MmcfvUIebM1o1pVwNPJhvDYRL788ywt/redhWd1HLh8Vzp2W6ipU6cybdo0KSeEKCoci3O2ZFdSRh2G7t+DT11ITYIjS2FOc5jXHk6uhdQUo4RnZ61ndr+6dKvlTUqaythloSzec9kosVi6PNdUfPvtt0ycOJHJkydTvXp1rK0zd8h0cbGMCdaK3DjkVjZQqw/UfB7ObYKQr+DqHji0COtDi2jkXA3ldBoEdNaqP4V4DG83e15vV5nRT1Vg4/FbLNx1iUNXojl0W8cL3++nSklnXmrkR7fa3jjYyHfKUvTq1YuffvqJEiVK4Ofnl6WMOHTokJEiKzhFrnwQIjf0NlDzOe1x7QDsmQUn18CVXdrDtQwEDdEm1XMo3D641nod03vVwsXemkW7L/PumuPE3k9mREv/Qo3D0uW5JHdzcyM2NpbWrVtnWq6qKoqiWMxFtsi2mdXptCZRldvDlT2w82vUM79T4t4J+GUA/FFKm6G7bn9w8TZ2tMIM2Frp6VrLh661fAi9fJtPftlF6F0rTt+6x1urj/Hx76foWbc0LzXyo5yno7HDFfnUv39/Dh48yIsvvmix/e6KbPkgRG6Vrgc9f4DY92H/D3BwvjZq1J9T4K9PILA3NHgFSlQttJB0OoVpXarham/NzK3n+XzTGR4kpzK6ZblCi8HS5Tmp6Nu3L9bW1ixdutRiCwzxj7INoWxDUiIvELZyChXv7Ua5dxP+/kRrL1m5vXbHwb816GUIUfF41bxdeME/jW9atWDNkVss3nOZy7cTmL/zEgt2XaJ15RIMbFKOJhU85NpiptavX8+mTZto2rSpsUMRQhibizc89S40nwDHV8Ke2dp8FwcXaI/yLbXkomI77aamgSmKwmttK+NsZ8VHG04zc+t5klNSqSKtcQtEnpOK48ePc/jwYSpXrmyIeIQpcivLKe/nKNd2NtbnN2p3Ha7s0mbZPP0bOHhCjZ5Qszd419Y6gQvxCK721gxpVp5BTcrx97lIFu26xLYzkWw5HcGW0xFU8nJiQONyPFvbB3sbvbHDFXlQpkwZi2kGK4QoINZ2UPtFqNUXLu+EvbO1ESgv/qU9ipWDBi9rr9sZ/voxrLk/ep2O9387yeztYTzlraOD9PPLtzynhfXq1ePq1auGiEWYOitbLXkY9DsM363dXXDwhIQo7QIxtxUEN4Ad/4No+Y6Ix9PpFFpVLsH8gfXZ+loL+jfyxcFGz9nwON5afYxGn2zh042nuREtnX7Nxf/+9z/eeOMNLl26ZOxQhBCmRlHAryn0XqLNedF4tDaE/d0w2DgRpgfA72/C7QsGD2Vw03JM7RwAwJYbOj7ddFYGEMmnPNdUjB49mldffZUJEyZQo0aNLJ3watasWWDBCRPmFQDtP4W2H8CFrXDkZzizAaLOwJb3YMv7ULYRBHSBqp21ifeEeITyxZ2Y1rU649tWZsWBqyzYdYlrd+8z668LfLf9Is9UL8mgJn7UKVtMmkaZsBdffJGEhAT8/f1xcHDIUkbcuXPHSJEJIUxKMV/tf4iWk7T/IfbO0f6H2Dtb+7liW21I2vKtDNYCYkCTcqCmMfW30/yw8zIqOt7tVFXKmCeU56Sid+/eAAwaNChjmaIoFtdRW0b3yCW9NVRqpz0exGjDxh1ZBpdD/h3xYeNEbQbvqp21CXM8ZLQFkbP0plEDm5Tjz1PhzN8Zxp6Ld1h/9Cbrj96kZmlXBjbxo2MNb2ysZEI9U/PVV18ZOwSDk/JBiAJk46hNmFdvEFzcpvW7OLfp34dnZa1pVODz2roFrG+Dspw4cYIVYXrm7QxDUeCdjpJYPIk8JxVhYWGGiMPkyOgeT8DOVeu4XeclrfnTqV+1x5XdcOOQ9tgyDUoEQNUu2uR7XtWlD4bIll6n0K5aSdpVK8nJG7Es2BXGmtAbHL0Ww7hlR/jk99MMbFKOPg3K4mInAwWYiv79+xs7BIOT8kEIA1AUbeAX/9Za86e9cyD0R632Yv147f+HOv2h/lBwK1ugu25aUqVmjQDeXXeSH0LCcLS1YnybSgW6j6Igz0mFr6+vIeIQlsatDDQaoT3iIrQO3ad+hbDtEHFSe/z9CTh7Q4WnoGIbbRQIOymgRVYB3i581jOQN5+pwk/7rrBo92XCYxP55PfTfLP1PC/UL8OgpuUo5Wpv7FCLvA0bNqDX62nXrl2m5X/88Qepqam0b9/eSJEJIcyGhz90+Axavw2hS7UE424Y7JoBu7+BKh2hwXDwbVxgNyafDypNqgpTfz3JjC3ncLLVM6y5tKzIizy3Hfj444+ZN29eluXz5s3j008/LZCghIVxKqFVa/ZbDa+fg26zoXIHsLKHezfg8GJY/hJ8Vh7md4Ad0+HWMZAOU+I/PJxsGdW6IiFvtubznjWp5OVEXGIKc3eE0ezTbYxfHsrpW7HGDrNImzhxYrbNgtLS0pg4caIRIhJCmC07V2g4HEYfhBd+hnItQE3TblIu6ABzmsHhJZD8oEB2N6BJOSa000Y3/WjDaZl5O4/ynFTMmTOHKlWqZFlerVo1Zs+eXSBBCQvm4A61XoAXfoI3L8GLq6DhCPCoCGkp2lBzW6bB7KYwvSqsHQnHVsK9W8aOXJgQGysdz9Urw6axzZk/IIiG5d1JSVNZdeg6z3y1g/7z9rHrQpSM5GEE586dIyAgIMvyKlWqcP78eSNEJIQwezq9NjdW/3UwYg/UHaDdmLx1TPs/4ctqsPUDiL2Z712NbFUhY6btd9ccZ9Wha/neZlGR5+ZPt27dolSpUlmWFy9enJs38/9hiiLE2k5r+lThKXjmY7gTBuf/hHObtWZS925qdyAOL9HW96gI5Zppw9H5NdNqQESRpigKraqUoFWVEhy5Gs132y/y+/Gb/H02kr/PRlLDx5XhLf15plpJdDrpu1MYXF1duXjxIn5+fpmWnz9/HkdHmTFdCJFPJapC56/hqSlwaBHsmwux17RJeUO+hIBuWu1G6XpPvIsJ7SqTkJTKgl2XeGPlUTycbGlRqXjBHYOFynNNRZkyZdi5c2eW5Tt37sTb27tAgjIFwcHBBAQEEBQUZOxQig73cloHrL7L/63FaDQKSgUCCtw+BwfmwcpB8EVFbU6M9a/BiTUQH2Xk4IWxBZZxI7hvHba93pKXGvliZ63j2PUYRvx4iHZfbWdt6HVS06TmwtC6du3K2LFjuXDh33Hmz58/z2uvvUaXLl2MGFnBkfJBCBPg4A5Nx8KrR+C5hVC2sdbi4fhK+P4pmPuU1tIhJSnPm1YUhcmdAuhWy5uUNJXhSw5y/HpMwR+DhclzTcXQoUMZO3YsycnJtG7dGoAtW7bwxhtv8NprrxV4gMYio3sY2cO1GAD378LlXXApBMJ2QPgxiDytPfZ/r61TvCqUCYLS9aFMA/CoADoZcrSo8fVw5L2u1Rn7dCUW7Axj/q5LnIuI49WfQ/nqz3OMaOlPt9o+WOvlu2EIn332Gc888wxVqlShdGltfppr167RrFkzvvjiCyNHVzCkfBDChOitoFo37XEjVOvUfXwlXD8AvwwGp5IQNATqDQRHz1xvVqdT+KxnIJFxiew8f5sB8/ezekRjyrg7GOpIzF6ek4oJEyZw+/ZtRowYQVKSlv3Z2dnx5ptvMmnSpAIPUAgA7Itpoz1U6aj9nnBH638RtgMu7dBGk4o8pT0OLdLWsXOD0kFaglEmCHzqgq2z0Q5BFC53RxvGt63MkOblWbTrEt+HhBEWFc+ElUf5ess5hrf0p2fd0tha6Y0dqkVxdXVl165dbN68mSNHjmBvb0/NmjVp3ry5sUMTQlg671rw7CxoMw0OLtBuOsbdgm0faM2javSEBq9AqdxN1GxjpWP2i3XpNWcPp27G0n/+Pn55pTHFHG0MehjmKs9JhaIofPrpp7z77rucOnUKe3t7KlasiK2trSHiEyJ7Du7aZHpVO2u/x0fB1b1wdZ/2uHEYHkTD+c3aA0DRaXNklKmv1WaUrgfu/lKbYeFc7KwZ1boiA5uUY8mey8zdcZFrd+/z9urjfLvtAmOeqkCPOqWxkpqLAqMoCm3btqVt27bGDkUIURQ5lYAWb0CTsXByDeyZpc2VFfqj9vBtok2oV7njYzflbGfNgoFBdP92Fxcj4xm2+ABLhjSQG1LZyHNSkc7JyUnakwrT4eiZuSYjNVkbFeLa/n8TjZgrEH5cexz4Z1hkG2ftjkWpWlrfDe9a/zSbkouFpXG0teLlFv681MiPn/dfYfbfF7gefZ83fznGnL8vMq5NJTrWKCUdup/AjBkzGDZsGHZ2drlaf/bs2fTt2xdnZ6k5FEIYkJUN1OwFNZ7T/h/YOxtOrtVaOlzeCa5l0NUdhHVKyUduxsvFTkssZu1i/6W7TF5zgk961JBZt/8jV7fmunfvTmxs7sd+79u3LxEREU8clBD5prcGnzranYieP8C4Y/DaGei1GBqPhjINteHoku5pF5Y9wbB6GATXh4/LwA/t4Pc3tUl3wk9Caoqxj0gUEHsbPQOblOPvCa14p2NVijlYczEqntE/HabjzBC2nAqXoWjzaNy4cdy7dy/X67/xxhtERkYaMCIhhHiIomitFHrOg7HHoNlrYO8OMVfRb51G2xOvotvwGkScznETFb2c+aZPHXQKLDtwlQW7LhVe/GYiVzUVa9euzXUBoKoqv/76K++//z4lSsiQn8KEOJeEgC7aA7REIeos3AyFm0e0Dl63jkJyPFzdoz3SWdlDyepajYZXNe1RvArYuRjhQERBsLPWM6RZeXoHlWFeyCW+33GRUzdjGbzwAHXKujGxfVXql3M3dphmQVVVnnrqKaysclf5ff/+fQNHJIQQOXDxhqcmQ/MJcGwl6p5ZWEWcgMMLtUf5Vlq/i4ptszSPblGpOG91qMoH60/x/m8nqVDCiWYVZajZdLkqAVRVpVKlSoaORYjCpbcCrwDtUauPtiwtFaLOaUnGzdB/E42kOK3q9Nr+zNtwLau9v0QAimdlnO/f1ppeWVsX9tGIJ+RsZ82rT1fkpUa+zN5+gYW7LnHoSjS95uymQ42STGpfVUb7eIwpU6bkaf2uXbvi7i4JmxDCiKztoU4/Uqr3Zu/yL2msP4Lu7O9wcZv2cC8P9V/W/j946Abi4KblOH3rHisPXmPkj4dYO6op5TxlDh7IZVKxbdu2PG/Yx8cnz+8Rwuh0eihRRXsE9taWpaXBnQtagnEzVBtpKuKUNjlfzBXtcXYjVkBrQP1sCnhW0ibo8QqAEtW0Z9cyWhWsMEnFHG2Y1L4qg5uU48s/z7Fs/xU2HLvFnycjGNS0HCNb+eNsJ8lidvKaVAghhMlQFG47VyG1w3h0cTdg33dwaDHcuQgb39Rm6q79ojaPloc/iqLw4bPVuRgZx6Er0Yz48RCrRzTGzlr6YuYqqWjRooWh4xDCdOl04FlRe9R87t/lCXe0BCP8JEScIO3WCVJvHsM67QFEnNAexx/ajq2Llmx4Vvp3e56VoFg5rTOZMAklXOz4uHsN+jf25f3fTrLz/G1m/32BlQev8lrbyvSqVwa9dOYWQgjLU8wX2n0ILSfB0Z+1OS+izsLeWVon70rtoMEr2JZvyawX69Lh6x2cuhnLtF9P8nH3GsaO3uieePQnSxccHExwcDCpqanGDkWYKgd38GuqPYDU5GQ2rF9PhyY1sL5zFsJPaDUaESe1i1JirDYZz/UDmbej6LXZxD0eSjTSEw8HaSJiLFVKurBkcAO2nIrgow2nuBgVz6RVx1i8+zIfPlud2mWLGTtEYSRSPghh4WydtAnz6g7SmkLtnQ3n/oCzG7VH8Sp4NXiZmT3b0HfRUX7ad4UG5dzpVrtot9KRpCIHMmOqeCKKAm5lobg/VG7/7/KUJLh9Tksuos7/83xW67+RHA+3z2uPs79n3p6Dx0M1G5W0xMOjgrYPqd0wOEVReDrAi+aVirN4z2W+/vMsJ2/G0n3WLvo2KMuEdlVwtZcmUUWNlA9CFBE6HVR4SntEnYd9c7RRISNPw2/jaGznxvLyXRh7oS5vrT5GdR9XKpRwMnbURiNJhRCFwcrm31GjHqaqWt+M9AQj4/kcxF6DhNtwZbf2eJiiA5fS4O6nNZ9yL6/VdhQrpz3LzOEFysZKx+Cm5ehay5uPNpxi1aHrLNlzhY3Hb/FupwC6BHrLeOVCCGHJPCtAh8+h9Ttw+Ectwbh7iaDri9hht4SNqfWYtSiMj14diq110fz3umgetRCmQlG04e1cvKF8y8yvJcZptRdR5x6q5TindR5LTvi3k3jY9qzbdfDUkgv38v8mGunPjsWlw/gT8nSyZXqvWjxXtwxvrznGxch4Xv05lHWhN/ioew28XHI3+ZslunLlCqDV7ri4uMgdfCGEZbJzhUYjtHmwzm6CvbPRhf1NB/0+OsTt49aX8ynZ5lWo3gOsi1aZkOekYtGiRZl+1+l0FC9enGbNmuHgIMMuClFgbJ20Gb69a2VerqoQFw53wuBuWNbnhNuQEKU9/jsELoCN0z8Jhp/27FZWG5nKrYz2LHNvPFYjfw9+f7UZc/6+yMyt59hyOoK2X25napcAutXyKZK1Fn5+fpmO28fHh0GDBvHWW29hYyNN9YQQFkanhyodtEf4Sa5u/JLiF1dTMuEMrB0BmydDvYFQbzC4lDJ2tIUiz0nFq6++mun31NRU4uLiKF68OFu3bqVatWo5vFMIUSAURZvIz7kk+DbK+vqDmOwTjjthEHtdm3Mj/Jj2yI6d2z8JRtl/Ew23Mv8kH2W1zuNF8J/m/7K10jPmqYq0q1aS11cc4dj1GMYtO8KGY7f4pHsNPJxsjR1ioUofelxVVW7cuMGBAwf44osv2Lx5M3/++Sf29vZGjlAIIQzEK4Ay/efy7tJ+OJ74kYE2f+KVEAXbP4eQL6Has9BgOJSua+xIDSrPScXdu3ezLAsPD2fEiBGMHTuWzZs3F0hgQognZOeafQ0HQPIDiL7yUMJxCWKuastirsL9u/AgGm5Fw60ckg5rh/8kGmUy13Y4lcwyC6klq1zSmVUjGjPn7wt8veUcm0+Gc+RqNF89X4vG/p7GDq/Q/Hfo8T59+vDqq6/SrFkz3nvvPT7++GMjRSaEEIVjQvdGPHM5mbkxHfmgchgvqL9rfSKPrdAepYO02boDuoLe8gb5yHNScfTo0WyXDxo0iGeffZZ9+/ZhZ6e1IatZs2b+ohNCFCxrOyheSXtkJ/EeRF/NnGhEX/l3WVy41p8j6oz2yI7OGlx9wMUHnEv902fEB1xKoTh4YZd0B9JSAMu5oFrrdYxqXZHWVbwY8/NhzkfE0ff7vYxsWYGxT1fESm/5SVZsbGyWZcWKFeO1115j5syZvPXWW6iqiouLNK8TQlgmFztrvngukD7f72XSmQpUeGUpQTaXtfkujv+iNUm+th/+eAeCBkPdgeBoOTef8pxU1KpVC0VRUFU1y2uKotCwYcOMn2UMbyHMjK2zNvu3V0D2ryc/0JpQRV95KOm4+u9z7HVIS9ZqQO5eyvJ2K6AdoJ4cr9VouPyTdDh7Z0o+MpaZWSe3AG8X1o1qwnu/nuTn/Vf5Ztt59obdJrhvHUo4m9ex5JWbm9sj+5K4urpKuSCEsHiNK3jSu14Zlh24yturj/Hb6GbYPDsb2rwHB+bDgR+0UR+3fgB/fw41noOGr0BJ8588L89JRVhYWLbLL126RJs2bTh69Ki0nRXCUlnbgYe/9shOagrcuwEx1yD2hnbhjL2R8VBjr6PG3kKnpmrr3bsB1w/mvD9796yJRvpoWc6lwMnL5Pp4ONhY8UmPmjSp4Mlbq46x/9Jduszcyex+dalVxs3Y4RlMep+K/9q4cSMLFy7kp59+KuSIhBDCOCa2r8LmU+GcDY/jh5Awhrf0B6cS0PJNaDoOTqzWZum+cRhCl2gP36baiFJVOmqdwM1QnpOKYsUyzyKblpbGpUuX+OCDD2jXrh1VqlQpsOCEEGZGb6X1r3Arm+3LKcnJbFj/Gx2a18P6fuS/Cce9G5mSD2JvQMp9uH9He+TUqRy05lZOJbQEw8lL+9m55D/LSv67zMmrUGs+Ogd6U83bhWGLD3I+Io5es3fzwbPV6VWvTKHFUJj+26cCID4+nrFjx9KxY8dsXxdCCEtUzNGGtztU5bUVR/h6y1k61SxFGfd/Rki1soHA3lCzl9YUas8sOLkWLodoD9eyUH8o1OkH9sUevSMTk+ekIrsqblVVCfp/e/ceHlV57/3/MzkTkkBIIJiQEBWkRiBBIBSPRAOYdoOAuHnsUw3Uh7YK1u54gq2CtFUsHkq1UXaxbKxuleoW8IdCiSmIIhUEQlVAREFOIRxDSAI5TNbvjyEjMQmZSWZmrZW8X9c1F1lr1qz1ve8wuec792ENHaq//OUvPgvMl8aPH6+1a9fqxhtv1FtvvWV2OEDH5ghyfejvliwlXdn0MYbhmjBedkgqK3YNqzp97t+y4u96Qc6ccA23KjvoerQkosu5RONcktEg+ThvX6dYn/R+XNI9Skvvvkr3/W2bVm8v0YNv/Ut7j1XogdH92t2ys/X3qTAMQ8XFxdqyZYvmzZunkJAQPfHEEyZH1zzaBwD+MOHKJL21+YA2fHNcv1mxXQvvGNLwAIdDSs50PU4ddA2L+vS/XfefKnhUWjtXSv8/rond3fuZUwgveZ1UfL+LOzg4WCkpKUpJafqbSSu499579bOf/Uwvv/yy2aEA8ITD4fpg3ym28V3Iz1dbLVUclcoPS+VHpNPn/m1q21ntWm737KnmJ5nXCwpt2MMRnSB17uGaUNc53nVzwc7dXY/Ibhfsqo6OCNWCnw7WHwu/0h8Lv9ILa7/W4bKzenLCQIWFtJ8J3Offp8IwDIWGhmrixIn6wx/+oO7du5scXfNoHwD4g8Ph0G/HXaHR8z9UwfYSbfj6uIZfGtf0wV2SpBtnSdc94Fol6p8LpCNfSJ8ucj0uvcGVXPQZaenVFb1OKuzYhT1ixAitXbvW7DAA+FpImOuPcZekCx9X3/PRKPEokU6XuP6tf5w5ea7344Dr0SKHK7FwJxpx55KNcwlI5+4K6hyv/8joros7J+v+Ffv09paDOnq6Sgt+Olidw73+M2xJ9V84ORwORUdHq1+/fra4ISrtAwB/6dMjWj/JTNEr//xWj7+3Xe9Mu0ZBQRfopQ7tJF15hzTodmnvR9InC6Sd70pf/8P16HapK7nI+InrBrkWY/nWbN26dXrqqae0efNmFRcXa+nSpRo3blyDY/Lz8/XUU0/p8OHDSk9P1/PPP6/MzExzAgZgPef3fLTUjVxbdS7p+F7iUXHU9ag8fu7nY67hVzLO3cX8eIs9IOMkjQ0P1om6KB37NkZ7nummfpdeotDohr0gjohYRZ0tls6USiHxlpqI3hwzvnCifQBgdb/O7qtlWw/q84NlWrr1oG4Z3KvlFzkc0sXXuh4n90obF0pbXpFOfC2tfEBa8zvpylzXxO4uHpwvQCyfVFRUVCg9PV0/+9nPNGHChEbPL1myRHl5eVqwYIGGDRum+fPna/To0fryyy/Vo0cPEyIGYGsh4edu7OfBhGpnrSuxqE84Ko65HpXHmt4+e0pBhlPxjlOKd5ySqvdLO7Y1DkHSjZK04yEpKOQCvSDnD8M691x4tC2SEF+gfQBgdXFR4bo7q49+v2qnnvr7l/rxwIsUEerF6k6xqdLox6URM6Vtr7smdp/4Wvr4OWlDvpR2sxxDf+m3+L1h+aQiJydHOTk5zT7/7LPPaurUqZoyZYokacGCBXr33Xe1aNEizZgxw+vrVVVVqaqqyr1df0Onmpoa1dTUeH2+9qC+3B21/J6inlrWLusoPNb16NbMDQXP56w+19NxTHv27dOigk8VWVOqtJgqje0bqpAzx909Ic6yEoXWnXHdKLD8sOvhAaNrqmr/3xpXcuEhu/4+aB/azu7vSeI3n93LEIj4b89M0isb9urQqbP668d7NOWq3t6fJChcGjRZyrhDjt0FCvrkRQV9+5H0xdsK+eJtXdEjRzU1I30eu+R53Vg+qbiQ6upqbd68WTNnznTvCwoKUnZ2tjZs2NCqc86dO1dz5sxptH/16tW2GB/sTwUFBWaHYAvUU8uoI0lyqFffoXphe7AqTzq0aFed/l+/OgWfN0w2qK5aYbWnFV57WuG1Za6fa8rO/VzWcH9tmULqquQo3asNyxfpZFRfjyOprKz0Q/nMFcj2Yc2aNbZvH+z+niR+89m9DP6O/9o4h5acCtaf3t+p2ONfKKytt6Lo9nPFRIzWDw4v00WnNqt72ed+K4OnbYStk4pjx47J6XQqISGhwf6EhATt3LnTvZ2dna1t27apoqJCvXr10ptvvqnhw4c3ec6ZM2cqLy/PvV1WVqbk5GSNGjVKMTEx/imIxdXU1KigoEAjR45UaGio2eFYFvXUMuqosaH7SpW7+FNtL5U+rO6l34+/QrW1tSooKNCNo3/scT0ZkowXhspxco+uumq4jF6ezxuo/8a9PQlk+5CVlaW4uGZWdbE4u78nid98di9DoOLPrq3TR3/8SAdLz+pk3BWt661ogmNPmvTaLZLktzJ42kbYOqnw1Pvvv+/xseHh4QoPD2+0PzQ01JZvFl+iDjxDPbWMOvrOsEu760+3XalfvLpZS7ce0sXxUbrrulRJrainc3MpQoJDJC9e15F/F7QPLnYvA/Gbz+5l8Hf8oaHS9Bv6aubbn2nhR3t1x1UXeze3ojnB353DX2Xw9JzWXezWA/Hx8QoODlZJSUmD/SUlJerZs2ebzp2fn6+0tDQNHTq0TecBgJZkpyXod+P6S5KeLdilwh1HTI7I/mgfAFjNLVf2UlLXTjp6ukpLNu03Oxyfs3VSERYWpsGDB6uwsNC9r66uToWFhc12X3tq2rRp2r59uzZt2tTWMAGgRbdlpuiO4a7u8Pv+9zOVnDE5IJujfQBgNWEhQfrF9ZdIkhat3yNnnWFyRL5l+aSivLxcRUVFKioqkiTt2bNHRUVF2rdvnyQpLy9PCxcu1Msvv6wdO3borrvuUkVFhXu1j9bimygAgfbov6Up8+Juqqhy6uVdwaqqrTM7JEujfQBgNxMH91KXTqH69nilCraXtPwCG7F8UvHpp59q0KBBGjRokCRXIzFo0CDNmjVLkjRp0iQ9/fTTmjVrljIyMlRUVKRVq1Y1mpznLb6JAhBoocFB+tNPBik2MlQHKx16puArs0OyNNoHAHYTGRai/zssRZL0l4++MTka37L8RO0RI0bIMC7cPTR9+nRNnz49QBEBgP/0iI7QkxP66xevbtV/f/ytbry8p67pG292WJZE+wDAjnKvStXCD7/Rpr0nVbS/VBnJXc0OyScs31MBAB3NDf266+oE19Cn/1z6mc5UO02OCADgKwkxERozMFGS9Non35ocje+QVDSDMbMAzDQ2pU4JMeHad6JSz/2DYVBWQvsAoK3+7w9dQ6D+v23FKjtrz7uRfx9JRTMYMwvATBEh0mP/drkkaeG6b/T10XKTI0I92gcAbXVlSqwuS4jSmRqnlm89aHY4PkFSAQAWlX15D93wgx6qrTP05MqdLb8AAGALDodDt2W6eiv+55N9Lc4PswOSimbQvQ3ACv7zRz9QcJBDBdtL9M9vjpsdDkT7AMA3JgzqpfCQIO08fFpfHCozO5w2I6loBt3bAKygT49o/Z+hyZKkPxTsMjkaSLQPAHyjS2Sosi93LXH9zrZDJkfTdiQVAGBx02/oo9Bghz7Zc0Kbvz1hdjgAAB+5OcO1CtQ7RYdUZ/M7bJNUAIDFXdSlkyYM6iVJemHN1yZHAwDwlev7dVdMRIgOl53Vxr32/tKIpAIAbOAX118ih0Mq3HlEu0pOmx0OAMAHwkOC9aMBF0mSlhfZewgUSUUzmIgHwEou6R6l0Wk9JUmvfbLP5Gg6NtoHAL409twQqPc+K1aNs87kaFqPpKIZTMQDYDU/GeZafvDtLQd0toa7bJuF9gGALw27OE7xUWE6daZGm/bYdwgUSQUA2MQ1feLVK7aTys7W6r3Pis0OBwDgA8FBDt3wgx6SpNXbS0yOpvVIKgDAJoKCHJo0xLW87P9uOWByNAAAX6lfWvb9HSW2vREeSQUA2Mi4QUmSpA1fH9fx8iqTowEA+MK1fbsrPCRIB06e0c7D9lyMg6SiGUzEA2BFyd0iNSCpi+oMe3eT2xntAwBf6xQWrGv7xkuSCmz6t52kohlMxANgVTkDXKtAMa/CHLQPAPzhxnNDoNbtOmpyJK1DUgEANjP6CldS8ck3J1RZXWtyNAAAX7imj6unYuv+Up0+W2NyNN4jqQAAm7kkvrOSunZStbNOn9h4+UEAwHeSu0Wqd1yknHWGNtrwbztJBQDYjMPhcI+9/eirYyZHAwDwlavP9VZ8tNt+f9tJKgDAhq45l1Sst2HDAwBoWv0QKDv+bSepAAAbykztJkn6suS0yquYVwEA7cHwS+LkcEi7Ssp15PRZs8PxCklFM1gyEICV9YiJUFLXTjIM6V/7S80Op0OhfQDgL7Gdw5R2UYwk6Z/f2GteBUlFM1gyEIDVDUrpKknasu+kuYF0MLQPAPxp6Lme6C3f2utvO0kFANjUoJRYSdLWfaXmBgIA8JnBvV1/2zeTVAAAAiG9VxdJ0vbiMpMjAQD4Sn1Ssb24zFb3IiKpAACb6psQLUkqPnVWZTa8URIAoLHErp10UZcIOesMbdt/yuxwPEZSAQA21aVTqBJiwiVJX5WUmxwNAMBXrjzXW2GnOXMkFQBgY5ed6634quS0yZEAAHzlynNz5uw0WZukAgBsrG8PV1Kxi54KAGg36ufMfX6I4U8AgADomxAlSfr6KEkFALQXl18UI4dDKimr0rHyKrPD8QhJBQDYWHJspCTpYOkZkyMBAPhK5/AQXRzXWZL0xSF7rPBHUtEM7pgKwA6SYjtJkg6ePCPD5Fg6CtoHAIFwRZJrCNQXNhkCRVLRDO6YCsAOLuoSIUk6U+NUXR1pRSDQPgAIhCsSYyRJXxykpwIA4GcRocHqHu1aVraWpAIA2g13UkFPBQAgEJK6uoZAkVQAQPtxRaJr+NPe45Uqr7L+nbVJKgDA5urnVdQ660yOBADgK906h7l7oncfsf4KfyQVAGBz3aNcjY7ToKcCANqTPt1dy4aTVAAA/C4+KkySVEdHBQC0K316kFQAAAKkW+dzPRXMqQCAdqX+Bqe7j5w2OZKWkVQAgM116+zqqWD4EwC0Lwx/AgAEzHfDn0gqAKA9qR/+tO9Epc7WOE2O5sI6RFKxYsUK9evXT3379tVLL71kdjgA4FPungqSCq/RPgCwsu7R4YqOCFGdIe05VmF2OBfU7pOK2tpa5eXl6R//+Ie2bt2qp556SsePHzc7LADwmbhzcyrqGP7kFdoHAFbncDjU1yaTtdt9UrFx40ZdccUVSkpKUlRUlHJycrR69WqzwwIAn4mOCDE7BFuifQBgB6nxnSW5hkBZmeWTinXr1mnMmDFKTEyUw+HQsmXLGh2Tn5+v1NRURUREaNiwYdq4caP7uUOHDikpKcm9nZSUpIMHDwYidAAIiKAghzqHBZsdRsDRPgDoCFK6RUqS9pNUtE1FRYXS09OVn5/f5PNLlixRXl6eZs+erS1btig9PV2jR4/WkSNHAhwpAJgnqgP2VtA+AOgI6pOKb4+TVLRJTk6Ofve732n8+PFNPv/ss89q6tSpmjJlitLS0rRgwQJFRkZq0aJFkqTExMQG3zwdPHhQiYmJAYkdAAIlKrzjJRW0DwA6gvqkwurDn2zdClVXV2vz5s2aOXOme19QUJCys7O1YcMGSVJmZqY+//xzHTx4UF26dNHKlSv16KOPNnvOqqoqVVVVubfLysokSTU1NaqpqfFTSaytvtwdtfyeop5aRh15pjX1dP7wp1pnrQwvXtsefx+0D56x+3uS+M1n9zLYIf7EGNcKf8WnzqjiTJXCQr7rE3A4ne4P8/4qg6fntXVScezYMTmdTiUkJDTYn5CQoJ07d0qSQkJC9MwzzygrK0t1dXV68MEHFRcX1+w5586dqzlz5jTav3r1akVGRvq2ADZTUFBgdgi2QD21jDryjDf1dLb8u0bm44836GTUMY9fW1lp7W+/WiOQ7cOaNWts3z7Y/T1J/OazexmsHL9hSKFBwaqpc+j15avUvdN3z3Uv+1xXnfvZX2XwtI2wdVLhqbFjx2rs2LEeHTtz5kzl5eW5t8vKypScnKxRo0YpJibGXyFaWk1NjQoKCjRy5EiFhoaaHY5lUU8to44805p6WlFaJH3t+vmqq4bL6JXp8fXqv3HviHzRPmRlZV0wGbEyu78nid98di+DXeLP/2a9vjpSoUvSM3Vtn3j3fseezu6//f4qg6dthK2Tivj4eAUHB6ukpKTB/pKSEvXs2bNV5wwPD1d4eLjy8/OVn58vp9N198LQ0FBL/2cLBOrAM9RTy6gjz3hTT9GdvjsuJDhE8qJ+2+PvgvbBO3YvA/Gbz+5lsHr8veM666sjFTp0qrphnMHfDX31Vxk8PaflJ2pfSFhYmAYPHqzCwkL3vrq6OhUWFmr48OFtOve0adO0fft2bdq0qa1hAoDfdcSJ2hdC+wCgPUm2wbKylm+FysvLtXv3bvf2nj17VFRUpG7duiklJUV5eXnKzc3VkCFDlJmZqfnz56uiokJTpkwxMWoACKyI0I53nwraBwAdRVJX10SK4lNnTY6keZZPKj799FNlZWW5t+vHs+bm5mrx4sWaNGmSjh49qlmzZunw4cPKyMjQqlWrGk3O89b3u7cBwMrCQ2zd8dwqtA8AOoqeXSIkSYdJKlpvxIgRMgzjgsdMnz5d06dP9+l1p02bpmnTpqmsrExdunTx6bkBwNfCgjteUkH7AKCj6BnjSiqKy86YHEnzOl4rBADtUHgof84BoL2q76koOVXV4pcpZqEVakZ+fr7S0tI0dOhQs0MBgBZ1xJ4Ks9A+AAi0HtERcjikamedTlRUmx1Ok2iFmsHqHgDsJLwDTtQ2C+0DgEALCwlSfFS4JOtO1iapAIB2gJ4KAGjf6udVWHWyNq0QALQDzKkAgPatfl5FcRlJha0wZhaAndBTETi0DwDMcJF7WVlrrgBFK9QMxswCsBPmVAQO7QMAMyS4hz9VmRxJ00gqAKAdoKcCANq37ucmah+vIKkAAPgJcyoAoH2LiwqTJB0vZ0lZW2HMLAA7CQ3iz3mg0D4AMEP9krLHy+mpsBXGzAKwE3KKwKF9AGCG+p6KY+XVlryrNs0QALQDwUEOs0MAAPhRXGdXT0W1s06nq2pNjqYxkgoAaAeCHSQVANCedQoLVucw10p/VpxXQVIBAO1AED0VANDuxUe7eiuOWXBeBUkFALQDISQVANDuxXWuXwGKpMI2WN0DgJ0EMfwpYGgfAJglLqq+p4LhT7bB6h4A7ISJ2oFD+wDALPEWvlcFSQUAtAMkFQDQ/sVHMacCAOBHDH8CgPYvNtLVU3Gykp4KAIAfnN9TUWfBmyIBANquS6dQSdKpMzUmR9IYSQUAtAPn36eCpAIA2ieSCgCAXwWd99fcSVIBAO1S10iSCtthyUAAdnL+8CdyCv+ifQBgFnoqbIglAwHYyfkTtZ11ZBX+RPsAwCznJxV1FvtbT1IBAO0APRUA0P7FnEsqDEM6XVVrcjQNkVQAQDvARG0AaP8iQoMVEer6+F5msSFQJBUA0A4EBTH8CQA6AqvOqyCpAIB2wnGut4KUAgDar66dXDfAK60kqQAA+BE9FQDQftFTAQAAAKBNYkgqAAAAALRF/Q3wSs9UmxxJQyQVzeDmRgCAptA+ADBT/fCnsjMsKWsL3NwIANAU2gcAZuocHiJJquA+FQAAAABaIyo8WBJJBQAAAIBWqu+pKCepAAD4k8EdtQGg3YoiqQAAAADQFp3DmFMBAAAAoA0Y/gQAAACgTaLcqz85TY6kIZIKAAAAwCY6s/oTAAAAgLaIijg3/Km6VlZaloOkAgAAALCJ+uFPhiGdrbHOEKgOkVSMHz9esbGxmjhxotmhAIDfWembK6ujfQBgN51CgxXkcP1MUhFg9957r/7617+aHQYA+JXD7ABsiPYBgN04HA73srIkFQE2YsQIRUdHmx0GAMBiaB8A2FH9srJnaupMjuQ7picV69at05gxY5SYmCiHw6Fly5Y1OiY/P1+pqamKiIjQsGHDtHHjxsAHCgAIKNoHAGha/QpQ9FScp6KiQunp6crPz2/y+SVLligvL0+zZ8/Wli1blJ6ertGjR+vIkSPuYzIyMtS/f/9Gj0OHDgWqGAAAH6N9AICm1U/WtlJSEWJ2ADk5OcrJyWn2+WeffVZTp07VlClTJEkLFizQu+++q0WLFmnGjBmSpKKiIp/FU1VVpaqqKvd2WVmZJKmmpkY1NTU+u46d1Je7o5bfU9RTy6gjz7S1npy1Tq9ea9XfB+2D/9n9PUn85rN7Gewaf3iIq1/gbPV396rwVxk8Pa/pScWFVFdXa/PmzZo5c6Z7X1BQkLKzs7Vhwwa/XHPu3LmaM2dOo/2rV69WZGSkX65pFwUFBWaHYAvUU8uoI894W0/p59Z92rJli5x7T3v8usrKSq+uYwVWah/WrFlj+/bB7u9J4jef3ctgt/hPlwZJCtKOXbt11bl9/iqDp22EpZOKY8eOyel0KiEhocH+hIQE7dy50+PzZGdna9u2baqoqFCvXr305ptvavjw4U0eO3PmTOXl5bm3y8rKlJycrFGjRikmJqZ1BbG5mpoaFRQUaOTIkQoNDTU7HMuinlpGHXmmtfV0aMuDkqRBVw5Sj7TrPH5d/TfudmKl9iErK0txcXGtK4jJ7P6eJH7z2b0Mdo3/3VNF2lF6RL1SUqXjrn3+KoOnbYSlkwpfef/99z0+Njw8XOHh4Y32h4aG2uo/mz9QB56hnlpGHXmmtfUUEhLi1es68u+C9sHF7mUgfvPZvQx2i79zuCvW2vNuTOSvMnh6TtMnal9IfHy8goODVVJS0mB/SUmJevbs6ddr5+fnKy0tTUOHDvXrdQAA3qN9ANCRRYS6Vn+qrmVJWY+EhYVp8ODBKiwsdO+rq6tTYWFhs93TvjJt2jRt375dmzZt8ut1AADeo30A0JFFhLo+wlc7rZNUmD78qby8XLt373Zv79mzR0VFRerWrZtSUlKUl5en3NxcDRkyRJmZmZo/f74qKircq334S35+vvLz8+V0WmepLgDoSGgfAKBpnc71VFRZqKfC9KTi008/VVZWlnu7fhJcbm6uFi9erEmTJuno0aOaNWuWDh8+rIyMDK1atarR5DxfmzZtmqZNm6aysjJ16dLFr9cCADRG+wAATetkweFPpicVI0aMkGEYFzxm+vTpmj59eoAiAgBYAe0DADStfk5FjYWGP1l6TgUAwHstfA4HANhcRNi54U81JBWWx+oeAICm0D4AMFvEuTtqV9FTYX2s7gEAaArtAwCzdTrXU1FTa50FI0gqAAAAABux4kRtkopm0L0NAGgK7QMAs7lvfue0ziQ6kopm0L0NAGgK7QMAs0VY8D4VJBUA0O5Y55srAIDvfTf8iTkVAAAAAFohItT1Eb6a1Z8AAAAAtEb96k9M1LYBJuIBAJpC+wDAbOEhrqSits46w11JKprBRDwAQFNoHwCYLSzEeh/hrRcRAAAAgGaFBVvvI7z1IgIAAADQrNBgh9khNEJSAQDtjGGdIbYAAD9wOByW662wVjQWwkQ8AEBTaB8AWIHV5lVYKxoLYSIeAKAptA8ArMBqQ6BIKgAAAACboacCAAAAQJuEMqcCAAAAQFvQUwEAAACgTVj9CQDgV6woCwDtHz0VNsGSgQBsx1oLgbRbtA8ArICeCptgyUAAQFNoHwBYARO1AQAAALQJw58AAAAAtAlJBQAAAIA2YU4FAAAAgDahpwIA4FeGwaKyANDe0VMBAAAAoE1CQ6y1jjhJBQAAAGAzYcHBZofQAEkFAAAAYDP0VNgEd0wFADSF9gGAFYQzp8IeuGMqAKAptA8ArCA4yFof460VDQAAAIAWhQQz/AkA4EcsKAsA7V9IEEkFAAAAgDYIJqkAAAAA0Bb0VAAAAABokxBWfwIAAADQFvRUAAAAAGgT5lQAAAAAaBOWlA2w/fv3a8SIEUpLS9PAgQP15ptvmh0SAPgXa8p6hPYBgJ2FWOzmdyFmB+BvISEhmj9/vjIyMnT48GENHjxYP/rRj9S5c2ezQwMAn7LWd1bWR/sAwM6sNqei3ScVF110kS666CJJUs+ePRUfH68TJ07QaABAB0f7AMDOmFPxPevWrdOYMWOUmJgoh8OhZcuWNTomPz9fqampioiI0LBhw7Rx48ZWXWvz5s1yOp1KTk5uY9QAAH+jfQCA5oWypGxDFRUVSk9PV35+fpPPL1myRHl5eZo9e7a2bNmi9PR0jR49WkeOHHEfk5GRof79+zd6HDp0yH3MiRMndMcdd+jPf/6z38sEAGg72gcAaJ7VeipMH/6Uk5OjnJycZp9/9tlnNXXqVE2ZMkWStGDBAr377rtatGiRZsyYIUkqKiq64DWqqqo0btw4zZgxQ1dddZXPYgcA+A/tAwA0jzkVXqiurtbmzZs1c+ZM976goCBlZ2drw4YNHp3DMAxNnjxZN9xwg26//fYWj6+qqlJVVZV7u6ysTJJUU1OjmpoaL0vQPtSXu6OW31PUU8uoI8+0tZ6cTqdXr7Xj74P2wTfs/p4kfvPZvQx2jt8wnA22/VUGT89r6aTi2LFjcjqdSkhIaLA/ISFBO3fu9Ogc69ev15IlSzRw4ED3eNxXXnlFAwYMaPL4uXPnas6cOY32r169WpGRkd4VoJ0pKCgwOwRboJ5aRh15xtt6yjAMySFtLSpS0f4Kj19XWVnpbWims1L7sGbNGtu3D3Z/TxK/+exeBjvGv+d0w21/lcHTNsLSSYUvXHPNNaqrq/P4+JkzZyovL8+9XVZWpuTkZI0aNUoxMTH+CNHyampqVFBQoJEjRyo0NNTscCyLemoZdeSZ1tZT8dYHJbnmESQNuN7j19V/497R+Kp9yMrKUlxcnD9C9Du7vyeJ33x2L4Od4//XgVPatH2He9tfZfC0jbB0UhEfH6/g4GCVlJQ02F9SUqKePXv65Zrh4eEKDw9Xfn6+8vPz5XS6upZCQ0Nt95/N16gDz1BPLaOOPNPaegoJDvbqdXb8XdA++Jbdy0D85rN7GewYf3hYw3j9VQZPz2n66k8XEhYWpsGDB6uwsNC9r66uToWFhRo+fLhfrz1t2jRt375dmzZt8ut1AADeo30A0NFZbUlZ03sqysvLtXv3bvf2nj17VFRUpG7duiklJUV5eXnKzc3VkCFDlJmZqfnz56uiosK92gcAoH2ifQCA5rGk7Pd8+umnysrKcm/Xj1fNzc3V4sWLNWnSJB09elSzZs3S4cOHlZGRoVWrVjWanOdr3+/eBgAEFu0DADSPJWW/Z8SIETIM44LHTJ8+XdOnTw9QRC7Tpk3TtGnTVFZWpi5dugT02gDQFhf+i2oftA8A0Dyr9VRYazAWAAAAgBZZbU6FtaKxkPz8fKWlpWno0KFmhwIAsBDaBwBWQE+FTbC6BwCgKbQPAKzAanMqSCoAAAAAmwkJ/i6psMJcOpIKAAAAwGZCgqz1Md5a0VgIY2YBAE2hfQBgBRbLKUgqmsOYWQB2ZYVu8PaM9gGAFQQ5GP4EAAAAoA2CHUzUBgAAANAGFsspSCqaw5hZAEBTaB8AWIHD4VB9XmFYYPwTSUUzGDMLAGgK7QMAqwiyUHcFSQUAAABgQyQVAAAAANrEQjkFSQUAtDdWGFsLAPC/oHNJhRX+7JNUAAAAADbksFBXBUlFM1jdAwDQFNoHAFZhoZyCpKI5rO4BAGgK7QMAq2CiNgAAAIA2qU8qmFMBAAAAoFXc/RQWyCpIKgAAAAAbstDoJ5IKAGh/LPCVFQDA74KDrJNVkFQAAAAANuQQcyosjyUDAQBNoX0AYBUOC32St1Ao1sKSgQCAptA+ALAKlpQFAAAA0CbWSSlIKgAAAABbqp+nzZwKAAAAAK3iYPgTAMBfDCt8ZQUA8LtgkgoAAAAAbUJSAQAAAKAt3Pe+s0APNUkFAAAAYENM1LYBbm4EAGgK7QMAq2Citg1wcyMAQFNoHwBYRZB1cgqSCgAAAMCOHOduf8fwJwCAz7GkLAB0DPRUAAAAAGgTh4U+yVsoFAAAAACeCpJ1uipIKgAAAAAbCrLQ+CeSCgAAAMCG6peUtcJUOpIKAAAAwIbc/RQWyCpIKgAAAAAbstDoJ5IKAGhvDCt8ZQUA8DuGPwVQaWmphgwZooyMDPXv318LFy40OyQA8AsLfWFlC7QPAOzOSj0VIWYH4G/R0dFat26dIiMjVVFRof79+2vChAmKi4szOzQAgIloHwDYXZDDOllFu++pCA4OVmRkpCSpqqpKhmHI4HazANDh0T4AsDsHScV31q1bpzFjxigxMVEOh0PLli1rdEx+fr5SU1MVERGhYcOGaePGjV5do7S0VOnp6erVq5ceeOABxcfH+yh6AIC/0D4AwIVZJ6WwQFJRUVGh9PR05efnN/n8kiVLlJeXp9mzZ2vLli1KT0/X6NGjdeTIEfcx9eNhv/84dOiQJKlr167atm2b9uzZo9dee00lJSUBKRsAoPVoHwDgwuo7KqzQx2r6nIqcnBzl5OQ0+/yzzz6rqVOnasqUKZKkBQsW6N1339WiRYs0Y8YMSVJRUZFH10pISFB6ero+/PBDTZw4scljqqqqVFVV5d4+deqUJOnEiROqqanx6DrtTU1NjSorK3X8+HGFhoaaHY5lUU8to44809p6Ol3lVJkMlZaW6fjx456/7vRpSVJZWZmio6Mt051up/bBruz+niR+89m9DHaPv7KyUmVVhk7XOhXspzLUtxEtDg81LESSsXTpUvd2VVWVERwc3GCfYRjGHXfcYYwdO9ajcx4+fNgoKyszDMMwSktLjSuuuML417/+1ezxs2fPNuRK+Hjw4MGjwz1OnTrl9d/uQJBoH3jw4MHDzMf+/fsv+DfV9J6KCzl27JicTqcSEhIa7E9ISNDOnTs9Ose3336rn//85+4JePfcc48GDBjQ7PEzZ85UXl6ee7uurk4nTpxQXFycZb69C7SysjIlJydr//79iomJMTscy6KeWkYdeSbQ9WQYhk6fPq3o6GhFR0f7/Xq+YIX2obS0VL1799a+ffvUpUuX1hXEZHZ/TxK/+exeBrvHL/m/DPVtRGJi4gWPs3RS4QuZmZked39LUnh4uMLDwxvs69q1q2+DsqmYmBjbvuECiXpqGXXkmUDWk10/FLeFL9oHyVV3dv//bPf3JPGbz+5lsHv8kn/L4EkbYfpE7QuJj49XcHBwo4lzJSUl6tmzp0lRAQDMRvsAANZi6aQiLCxMgwcPVmFhoXtfXV2dCgsLNXz4cBMjAwCYifYBAKzF9OFP5eXl2r17t3t7z549KioqUrdu3ZSSkqK8vDzl5uZqyJAhyszM1Pz581VRUeFe7QP+Fx4ertmzZzfZ7Y/vUE8to448Qz25WL19aA+/J7uXgfjNZ/cy2D1+yTplcJxbVcM0a9euVVZWVqP9ubm5Wrx4sSTpT3/6k5566ikdPnxYGRkZeu655zRs2LAARwoACCTaBwCwD9OTCgAAAAD2Zuk5FQAAAACsj6QCAAAAQJuQVAAAAABoE5IKSJLy8/OVmpqqiIgIDRs2TBs3bmz22C+++EK33HKLUlNT5XA4NH/+/MAFajJv6mnhwoW69tprFRsbq9jYWGVnZ1/w+PbCmzp6++23NWTIEHXt2lWdO3dWRkaGXnnllQBGaw5v6uh8b7zxhhwOh8aNG+ffAOET48ePV2xsrCZOnNjouRUrVqhfv37q27evXnrpJROi894f/vAHXXHFFUpLS9OvfvUr2W1K5p49e5SVlaW0tDQNGDBAFRUVZofUKpWVlerdu7fuv/9+s0Pxyv79+zVixAilpaVp4MCBevPNN80OySN2fK/WC3idG+jw3njjDSMsLMxYtGiR8cUXXxhTp041unbtapSUlDR5/MaNG43777/feP31142ePXsaf/jDHwIbsEm8raef/OQnRn5+vrF161Zjx44dxuTJk40uXboYBw4cCHDkgeNtHa1Zs8Z4++23je3btxu7d+825s+fbwQHBxurVq0KcOSB420d1duzZ4+RlJRkXHvttcbNN98cmGDRJmvWrDHeeecd45Zbbmmwv6amxujbt69x4MAB4/Tp08Zll11mHDt2zKQoPXPkyBHjkksuMc6cOWPU1tYaV111lfHxxx+bHZZXrrvuOmPdunWGYRjG8ePHjZqaGpMjap3//M//NP793//duO+++8wOxSuHDh0ytm7dahiGYRQXFxuJiYlGeXm5uUG1wI7v1fMFus5JKmBkZmYa06ZNc287nU4jMTHRmDt3bouv7d27d4dJKtpST4ZhGLW1tUZ0dLTx8ssv+ytE07W1jgzDMAYNGmQ88sgj/gjPElpTR/Uf4l566SUjNzeXpMJG1qxZ0yipWL9+vTFu3Dj39r333mu89tprgQ7NK0eOHDFSUlKMkydPGmfOnDGGDh1q7N692+ywPPb5558bN954o9lhtNmuXbuMCRMmGP/93/9tu6Ti+wYOHGjs27fP7DAuyI7v1Qvxd50z/KmDq66u1ubNm5Wdne3eFxQUpOzsbG3YsMHEyKzFF/VUWVmpmpoadevWzV9hmqqtdWQYhgoLC/Xll1/quuuu82eopmltHf3mN79Rjx49dOeddwYizA5h3bp1GjNmjBITE+VwOLRs2bJGx7R2mFpLDh06pKSkJPd2UlKSDh482KZz+rs83bt31/3336+UlBQlJiYqOztbl156aZtiDmT8X331laKiojRmzBhdeeWVeuKJJ3wWe71A/J+6//77NXfuXB9F3FAg3xObN2+W0+lUcnJyG6O+sLaWyR/vVW/48ncSiDonqejgjh07JqfTqYSEhAb7ExISdPjwYZOish5f1NNDDz3kbozbo9bW0alTpxQVFaWwsDD9+Mc/1vPPP6+RI0f6O1xTtKaOPvroI/3lL3/RwoULAxFih1FRUaH09HTl5+c3+fySJUuUl5en2bNna8uWLUpPT9fo0aN15MgR9zEZGRnq379/o8ehQ4cCVQw3f5fn5MmTWrFihfbu3auDBw/q448/1rp162wTf21trT788EO98MIL2rBhgwoKClRQUOCz+ANRhuXLl+uyyy7TZZdd5tO4AxV/vRMnTuiOO+7Qn//8Z7+Uw9dlMpOv4g9YnfutDwS2cPDgQUNSo7GxDzzwgJGZmdni6zvK8Ke21tPcuXON2NhYY9u2bf4K0XStrSOn02l89dVXxtatW42nn37a6NKli7FmzRo/R2sOb+uorKzMSE1NNd577z33PoY/+Z4kY+nSpQ32+WIon2F4Pvzpf/7nf7wPvBn+KM/f/vY34+6773Zvz5s3z/j973/vk3i/zx/xf/zxx8aoUaPc2/PmzTPmzZvnk3ib4o8yzJgxw+jVq5fRu3dvIy4uzoiJiTHmzJnjy7Dd/PWeOHv2rHHttdcaf/3rX30VqsdaUyZ/v1e90drfSSDrnJ6KDi4+Pl7BwcEqKSlpsL+kpEQ9e/Y0KSrraUs9Pf3003ryySe1evVqDRw40J9hmqq1dRQUFKQ+ffooIyND9913nyZOnOi37n2zeVtHX3/9tfbu3asxY8YoJCREISEh+utf/6p33nlHISEh+vrrrwMVeofi72GhmZmZ+vzzz3Xw4EGVl5dr5cqVGj16dJvP2xxflCc5OVkff/yxzp49K6fTqbVr16pfv37+CrkBX8Q/dOhQHTlyRCdPnlRdXZ3WrVunyy+/3F8hN+KLMsydO1f79+/X3r179fTTT2vq1KmaNWuWv0JuwBfxG4ahyZMn64YbbtDtt9/ur1A95kmZAv1e9YYn8Qe6zkkqOriwsDANHjxYhYWF7n11dXUqLCzU8OHDTYzMWlpbT/PmzdNvf/tbrVq1SkOGDAlEqKbx1f+luro6VVVV+SNE03lbRz/4wQ/02WefqaioyP0YO3assrKyVFRU5PfxyB2Vr4aFZmdn69Zbb9V7772nXr16uRv6kJAQPfPMM8rKynIn03FxcT4tw/l8UZ4f/vCH+tGPfqRBgwZp4MCBuvTSSzV27Fh/hNuIL+IPCQnRE088oeuuu04DBw5U37599W//9m/+CLdJdh9q7Iv4169fryVLlmjZsmXKyMhQRkaGPvvsM3+E6xFPyhTo96o3PIk/0HUe4rczwzby8vKUm5urIUOGKDMzU/Pnz1dFRYWmTJkiSbrjjjuUlJTk/va4urpa27dvd/988OBBFRUVKSoqSn369DGtHP7mbT39/ve/16xZs/Taa68pNTXV/SaPiopSVFSUaeXwJ2/raO7cuRoyZIguvfRSVVVV6b333tMrr7yiF1980cxi+JU3dRQREaH+/fs3eH3Xrl0lqdF+WM/777/f7HNjx44N2IdyX3n88cf1+OOPmx1Gq+Xk5CgnJ8fsMHxi8uTJZofgtWuuuUZ1dXVmh+E1O75X6wW6zkkqoEmTJuno0aOaNWuWDh8+rIyMDK1atcqd/e7bt09BQd91ah06dEiDBg1ybz/99NN6+umndf3112vt2rWBDj9gvK2nF198UdXV1Y1ufDV79mw99thjgQw9YLyto4qKCt199906cOCAOnXqpB/84Ad69dVXNWnSJLOK4Hfe1hECr70NC7V7eewev2T/Mtg9/qbYvUyWjN/vszYAALAwNTMBcvr06e5tp9NpJCUleT1R2wx2L4/d4zcM+5fB7vE3xe5lskP89FQAADqc8vJy7d692729Z88eFRUVqVu3bkpJSWlxmJrV2L08do9fsn8Z7B5/U+xeJtvFb0oqAwCAidasWWNIavTIzc11H/P8888bKSkpRlhYmJGZmWn885//NC/gFti9PHaP3zDsXwa7x98Uu5fJbvE7DMMw/Jy3AAAAAGjHmA0IAAAAoE1IKgAAAAC0CUkFAAAAgDYhqQAAAADQJiQVAAAAANqEpAId1osvvqiUlBR17txZEyZM0NGjRy94fGpqqhwOhxwOh0pLSwMTpEXs3bvXXfaMjAyzwwEAABZDUoEO6e2339YDDzyg559/Xp9++qlOnz6tiRMntvi63/zmNyouLlaXLl38Ftvrr7+ucePGafTo0Zo0aZIqKysbPD9nzhz99Kc/9cu19+/fr9tuu0033XSTRo4cqQ8//FCSlJycrOLiYt13331+uS4AALA3kgp0SI8//rimT5+um2++WZdffrlefvllffTRR/roo48u+Lro6Gj17NlTDofDb7HddtttGjp0qIqLi7V06VIdOHCgwfPLly/X2LFj/XLt5ORk/cd//IfOnDmjDRs2aPXq1ZKk4OBg9ezZU1FRUX65LgAAsDeSCnQ4J0+e1JYtW/TjH//YvS8xMVH9+/fX+++/7/X51q9frxEjRigyMlKxsbEaPXq0Tp48KUkaMWKE7rnnHv36179WbGysEhIStHDhQlVUVGjKlCmKjo5Wnz59tHLlygbnfPjhh7Vp0yY99NBDSk5Odu/fv3+/vvjiC910002SpNLSUv3iF79QQkKCIiIi1L9/f61YsUKStHjxYnXt2lUrVqxQv379FBkZqYkTJ6qyslIvv/yyUlNTFRsbq1/96ldyOp3ua2RmZuqDDz7QCy+84LfkBQAAtC8kFehwvvnmG0lSnz59Guzv27ev+zlPFRUV6cYbb1RaWpo2bNigjz76SGPGjGnwIf3ll19WfHy8Nm7cqHvuuUd33XWXbr31Vl111VXasmWLRo0apdtvv909zOnMmTOSpLCwMP3jH//Q3//+d/e53nnnHY0YMUIxMTGqq6tTTk6O1q9fr1dffVXbt2/Xk08+qeDgYPfxlZWVeu655/TGG29o1apVWrt2rcaPH6/33ntP7733nl555RX913/9l9566y1J0tmzZ92vPXv2rB5//HGv6gMA4J21a9e656yNGzfO7HAkSQ6HQ8uWLWuw7XA41LVrV9NigvWFmB0AEGj1H9779u3bYH9VVZVuvvlmr841b948DRkyRC+88IJ73xVXXNHgmPT0dD3yyCOSpJkzZ+rJJ59UfHy8pk6dKkmaNWuWXnzxRf3rX//SD3/4Q91zzz3atWuXTp06pT59+ujGG290n2v58uXuGN9//31t3LhRO3bs0GWXXSZJuuSSSxpcu6amRi+++KIuvfRSSdLEiRP1yiuvqKSkRFFRUUpLS1NWVpbWrFmjSZMmadWqVZo3b56CgoJUXl6u+fPne1UfANDeTZ48WaWlpQ0+dL/11lv66U9/qscff7zVc8++/PJL9ejRw0dRXticOXP01Vdf6dVXX/Xo+OLiYi1ZskSzZ8/2c2SwM5IKdDiRkZGSXN8Onf+ty7333ut+zlNFRUW69dZbL3jMwIED3T8HBwcrLi5OAwYMcO9LSEiQJB05ckSS9NJLLzV5nrKyMn3wwQf6y1/+4r52r1693AlFUyIjI90JRf21UlNTG8yNSEhIcF973LhxlvmmDADs4KWXXtK0adO0YMECTZkypdXn6dGjR8B6ApYvX64ZM2Z4fHzPnj39ukAJ2geGP6HDqf82PyYmRn369HE/zp492+ib/pZ06tSpxWNCQ0MbbDscjgb76id919XVXfA8K1euVFpamnuOhS+uXb+vpWsDABqbN2+e7rnnHr3xxhsNEoq33npLAwYMUKdOnRQXF6fs7GxVVFR4de66ujrNmzdPffr0UXh4uFJSUtxDUuuX+f7b3/6ma6+9Vp06ddLQoUO1a9cubdq0SUOGDFFUVJRycnIaLZf+/bl5X331la677jpFREQoLS1NBQUFbawVdFQkFehwYmNjNXjwYPdyqZJUXl6uDRs2aOTIkV6da+DAgSosLPR1iE06f+hT/bUPHDigXbt2BeT6AIDvPPTQQ/rtb3+rFStWaPz48e79xcXFuu222/Szn/1MO3bs0Nq1azVhwgQZhuHV+euHyz766KPavn27XnvtNXfPdr3Zs2frkUce0ZYtWxQSEqKf/OQnevDBB/XHP/5RH374oXbv3q1Zs2Y1eM335+ZNmDBBYWFh+uSTT7RgwQI99NBDra8UdGgMf0KH9PDDD+uuu+5ScnKyLr74Yj3yyCMaNmyYrr76aq/OM3PmTA0YMEB33323fvnLXyosLExr1qzRrbfeqvj4eJ/FW1tbq5UrV+r+++9377v++ut13XXX6ZZbbtGzzz6rPn36aOfOnXI4HO5voAAAvrdy5UotX75chYWFuuGGGxo8V1xcrNraWk2YMEG9e/eWpAZDXj1x+vRp/fGPf9Sf/vQn5ebmSpIuvfRSXXPNNQ2Ou//++zV69GhJriG8t912mwoLC91t2Z133qnFixc3eM335+bt3LlTf//735WYmChJeuKJJ5STk+NVvIBETwU6qPHjx+uxxx7TnXfeqfT0dNXU1Ohvf/ub1+e57LLLtHr1am3btk2ZmZkaPny4li9frpAQ3+brH3zwgaKionTllVc22P+///u/Gjp0qG677TalpaXpwQcfbLDyFADA9wYOHKjU1FTNnj1b5eXlDZ5LT0/XjTfeqAEDBujWW2/VwoUL3cuMe2rHjh2qqqpqsFBHc3HUq+/F+P6cvfo5c9J3c/PqlwvfsWOHkpOT3QmFJA0fPtyrWIF69FSgw/rlL3+pX/7yl20+z/XXX6/169c3+dzatWsb7du7d2+jfS11iy9fvlxjxoxptL9bt25atGhRk6+ZPHmyJk+e3GDfY489pscee6zBvu9/iwUAuLCkpCS99dZbysrK0k033aSVK1cqOjpakmtBjoKCAn388cdavXq1nn/+eT388MP65JNPdPHFF3t0fk/mzElqcn7e9/edP2fu+3PzAF+ipwLwwkMPPaSoqCidOnUqoNft37+/7rrrroBe83z79u1TVFSUnnjiCdNiAAAr6d27tz744AMdPnxYN910k06fPu1+zuFw6Oqrr9acOXO0detWhYWFaenSpR6fu2/fvurUqZPP5+x9f27e5Zdfrv3796u4uNi975///KdPr4mOg54KwEMffPCBampqJMn9jVSg/PznPw/o9b4vMTFRRUVFkqTw8HBTYwEAq0hOTtbatWuVlZWl0aNHa9WqVdqxY4cKCws1atQo9ejRQ5988omOHj2qyy+/3OPzRkRE6KGHHtKDDz6osLAwXX311Tp69Ki++OIL3Xnnna2Ktam5ednZ2brsssuUm5urp556SmVlZXr44YdbdX6ApALwUP2Eu44oJCSk0R3IAQBSr169GiQWCxYs0Lp16zR//nyVlZWpd+/eeuaZZ7ye/Pzoo48qJCREs2bN0qFDh3TRRRe1achuU3PzgoKCtHTpUt15553KzMxUamqqnnvuORb7QKs4DG/XOAMAAIBP1CckJ0+e9OvN7371q1+ptrZWL7zwQqtev3jxYv36179WaWmpbwNDu0FPBQAAgMl69eqlMWPG6PXXX/fL+fv379/qlZ2ioqJUW1uriIgIH0eF9oSeCgAAAJOcOXNGBw8elOT68N6zZ0+TI2ps9+7dklwrW3m6ghU6HpIKAAAAAG3CkrIAAAAA2oSkAgAAAECbkFQAAAAAaBOSCgAAAABtQlIBAAAAoE1IKgAAAAC0CUkFAAAAgDYhqQAAAADQJiQVAAAAANrk/wcPXi65/OVoTAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxUAAAJOCAYAAADBIyqKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADBbElEQVR4nOzdd1QU59fA8e/s0rsUGyAoFsSCDXs3ajS2RKNGY+zG3pIYU15LevtZQxI1MRpbLLG3xBoLdsXeRbAiqICAUuf9YwKRIEpblnI/58xZdnaYuTO7PMPdpymqqqoIIYQQQgghRDbpjB2AEEIIIYQQomCTpEIIIYQQQgiRI5JUCCGEEEIIIXJEkgohhBBCCCFEjkhSIYQQQgghhMgRSSqEEEIIIYQQOSJJhRBCCCGEECJHJKkQQgghhBBC5IgkFUIIIYQQQogckaRCGETz5s1p3rx56vPr16+jKAoLFiwwWkzCcDw9PenXr5+xwxBCZEJ+KI8VRWHKlCmpzxcsWICiKFy/ft1oMRmaMc+xX79+eHp6Zvn38sNnJT/L7nUtrCSpEACcPn2abt264eHhgYWFBa6urrRu3ZrZs2fnWQyHDx9GURSmT5+e7rXOnTujKAq//vpruteaNm2Kq6trlo61dOlSZsyYkd1Qs6V58+YoipK6WFpaUr16dWbMmEFycnK29pmX5xEQEMCUKVOIiIjIk+NlxdWrV3n77bcpV64cFhYW2NnZ0ahRI2bOnMnjx4+NHZ4Qz5Xyz+bRo0ef+Xrz5s2pWrVqHkdV8BW1cuH27dtMmTKFwMBAgx5n8+bNaRLC3OLp6ZnmHvn08uTJk1w/Xmbl1XUtDEyMHYAwvoCAAFq0aEGZMmUYPHgwJUuW5MaNGxw8eJCZM2cyatSoLO/zr7/+yvLv1KpVCysrK/bt28e4cePSxWhiYsL+/fvp379/6vr4+HiOHDlCx44ds3SspUuXcubMGcaOHZvlOHPCzc2NL7/8EoDw8HCWLl3KuHHjCAsL4/PPP8/y/vLyPAICApg6dSr9+vXDwcEhzWsXL15EpzPOdxSbNm3i9ddfx9zcnLfeeouqVasSHx/Pvn37eO+99zh79ixz5841SmxCiMzp06cPPXv2xNzcPFf2VxTLhdu3bzN16lQ8PT2pUaNGmtfmzZuXrS+vPDw8ePz4MaampqnrNm/ejL+/v0ESixo1avDOO++kW29mZpbrx8osQ1zXwkqSCsHnn3+Ovb09R44cSffP4r1797K1z+wUACYmJtSrV4/9+/enWX/x4kXCw8Pp1asX+/btS/PasWPHePLkCY0bN85WnLkpOTmZ+Ph4LCwsMtzG3t6eN998M/X50KFD8fb2Zvbs2XzyySfo9fq8CDXX5dY/AlkVFBREz5498fDwYOfOnZQqVSr1tREjRnDlyhU2bdqUK8eKiYnB2to6V/YlREGQl595vV6fa+VfXpYLBcXTSUFWKIry3HtabnN1dU1zj8zvsntdCytp/iS4evUqVapUSZdQABQvXjzN88TERD799FO8vLwwNzfH09OTDz/8kLi4uDTb/bdPRWY1btyY0NBQrly5krpu//792NnZMWTIkNQE4+nXUn4PYN26dbzyyiuULl0ac3NzvLy8+PTTT0lKSkoT26ZNmwgODk6tWn26TWRcXByTJ0+mfPnymJub4+7uzoQJE9Kdo6IojBw5kiVLllClShXMzc3ZunVrls7XwsICPz8/Hj16lC6BW7x4MbVr18bS0hJHR0d69uzJjRs3DHYea9eupWrVqpibm1OlSpU05zJlyhTee+89AMqWLZt6vJS2wc/qU3Ht2jVef/11HB0dsbKyon79+ulu5Lt370ZRFFasWMHnn3+Om5sbFhYWtGrVKs1nICPffPMN0dHR/PLLL2n+cUhRvnx5xowZAzy/bfB/23dPmTIFRVE4d+4cvXr1olixYjRu3JjvvvsORVEIDg5Ot48PPvgAMzMzHj58mLru0KFDvPzyy9jb22NlZUWzZs3SJc1CZFWzZs3w9fV95muVKlWibdu2qc8jIiLo168f9vb2ODg40Ldv32c2YezXrx82NjZcvXqV9u3bY2trS+/evQHYu3cvr7/+OmXKlEktS8aNG5euCVFG5X5m2p1n1N9gy5YtNGvWDFtbW+zs7PDz82Pp0qXP3VdWygXI/H3N09OTDh06sG/fPurWrYuFhQXlypXjt99+S3eMs2fP0rJlSywtLXFzc+Ozzz575jfa/y17nj7Wf8vUiIgIxo0bh6enJ+bm5ri5ufHWW28RHh7O7t278fPzA6B///6pZXRKeff0e5CQkICjo2OaWv8UUVFRWFhY8O677wLpy81+/frh7++fGnvKoqoqnp6edO7cOd0+nzx5gr29PW+//Xa617IipVz+r2d9drLyXuXWdU0RExPDO++8g7u7O+bm5lSqVInvvvsOVVXTbJeZe29BIzUVAg8PDw4cOMCZM2de2G530KBBLFy4kG7duvHOO+9w6NAhvvzyS86fP8+aNWtyHEtKcrBv3z7Kly8PaIlD/fr1qVevHqampgQEBNCpU6fU12xtbVNvsAsWLMDGxobx48djY2PDzp07mTRpElFRUXz77bcAfPTRR0RGRnLz5s3U/hs2NjaAVtvQqVMn9u3bx5AhQ6hcuTKnT59m+vTpXLp0ibVr16aJd+fOnaxYsYKRI0fi7Oyco45wTyd1n3/+Of/3f/9H9+7dGTRoEGFhYcyePZumTZty4sQJHBwccvU89u3bx+rVqxk+fDi2trbMmjWLrl27EhISgpOTE6+99hqXLl1i2bJlTJ8+HWdnZwBcXFyeeU6hoaE0bNiQ2NhYRo8ejZOTEwsXLqRTp06sWrWKV199Nc32X331FTqdjnfffZfIyEi++eYbevfuzaFDh5577TZs2EC5cuVo2LBhVi55pr3++utUqFCBL774AlVV6dChAxMmTGDFihWpSVaKFStW0KZNG4oVKwZon4127dpRu3ZtJk+ejE6n49dff6Vly5bs3buXunXrGiRmUXBFRkam+dIkRUJCQprnffr0YfDgwenK7CNHjnDp0iU+/vhjAFRVpXPnzuzbt4+hQ4dSuXJl1qxZQ9++fZ95/MTERNq2bZuaQFtZWQGwcuVKYmNjGTZsGE5OThw+fJjZs2dz8+ZNVq5cmVunn86CBQsYMGAAVapU4YMPPsDBwYETJ06wdetWevXqleHvZbVcyMp97cqVK3Tr1o2BAwfSt29f5s+fT79+/ahduzZVqlQB4O7du7Ro0YLExEQmTpyItbU1c+fOxdLSMtvXIjo6miZNmnD+/HkGDBhArVq1CA8PZ/369dy8eZPKlSvzySefMGnSJIYMGUKTJk0AnnkNTE1NefXVV1m9ejVz5sxJ07Jg7dq1xMXF0bNnz2fG8fbbb3P79m22bdvGokWLUtcrisKbb77JN998w4MHD3B0dEx9bcOGDURFRWWqBiIhISHd34CVlVXqZzErMvNe5eZ1Be1vrlOnTuzatYuBAwdSo0YN/vzzT9577z1u3bqVrs/oi+69BY4qiry//vpL1ev1ql6vVxs0aKBOmDBB/fPPP9X4+Pg02wUGBqqAOmjQoDTr3333XRVQd+7cmbquWbNmarNmzVKfBwUFqYD666+/PjeWqKgoVa/XqwMHDkxdV6lSJXXq1Kmqqqpq3bp11ffeey/1NRcXF7V169apz2NjY9Pt8+2331atrKzUJ0+epK575ZVXVA8Pj3TbLlq0SNXpdOrevXvTrP/pp59UQN2/f3/qOkDV6XTq2bNnn3tOKZo1a6Z6e3urYWFhalhYmHrhwgX1vffeUwH1lVdeSd3u+vXrql6vVz///PM0v3/69GnVxMQkzfrcOg8zMzP1ypUrqetOnjypAurs2bNT13377bcqoAYFBaU7noeHh9q3b9/U52PHjlWBNMd/9OiRWrZsWdXT01NNSkpSVVVVd+3apQJq5cqV1bi4uNRtZ86cqQLq6dOn0x0rRWRkpAqonTt3znCbpz3vMwiokydPTn0+efJkFVDfeOONdNs2aNBArV27dpp1hw8fVgH1t99+U1VVVZOTk9UKFSqobdu2VZOTk1O3i42NVcuWLZvmMyvEr7/+qgLPXapUqZK6fUREhGphYaG+//77afYzevRo1draWo2OjlZVVVXXrl2rAuo333yTuk1iYqLapEmTdH8Lffv2VQF14sSJ6eJ7Vrn65ZdfqoqiqMHBwanr/lvuP73v/5ZT//2bS7kGKeVLRESEamtrq9arV099/Phxmt99+m/qv7JaLmTlvubh4aEC6p49e1LX3bt3TzU3N1ffeeed1HUp5d+hQ4fSbGdvb5+uDP3vdXj6WE+XqZMmTVIBdfXq1em2TbkeR44cybCM++978Oeff6qAumHDhjTbtW/fXi1Xrlzq82eVmyNGjFCf9e/jxYsXVUD98ccf06zv1KmT6unp+dz3TVX/vb7/XVKuT0q5/F///ew8va8XvVe5fV1T/uY+++yzNNt169ZNVRQlzX02s/fegkSaPwlat27NgQMH6NSpEydPnuSbb76hbdu2uLq6sn79+tTtNm/eDMD48ePT/H5Kp6rcaKNqa2tL9erVU/tOhIeHc/HixdRvBRo1apTafOTSpUuEhYWl6U/x9DdBjx49Ijw8nCZNmhAbG8uFCxdeePyVK1dSuXJlvL29CQ8PT11atmwJwK5du9Js36xZM3x8fDJ9fhcuXMDFxQUXFxe8vb359ttv6dSpU5omOatXryY5OZnu3buniaFkyZJUqFAhXQy5cR4vvfQSXl5eqc+rV6+OnZ0d165dy/S5PW3z5s3UrVs3zXtjY2PDkCFDuH79OufOnUuzff/+/dN8W5bybdDzjh8VFQVonxlDGTp0aLp1PXr04NixY1y9ejV13fLlyzE3N0+t+g8MDOTy5cv06tWL+/fvp17/mJgYWrVqxZ49e6Rzn0jH39+fbdu2pVuqV6+eZjt7e3s6d+7MsmXLUptUJCUlsXz5crp06ZLaD2Lz5s2YmJgwbNiw1N/V6/XPHXzj6W1TPF2uxsTEEB4eTsOGDVFVlRMnTuTonDOybds2Hj16xMSJE9O16X9WE5gUWS0Xsnpf8/HxSS2fQKutrVSpUpqyavPmzdSvXz9NbaSLi0tqc7Ls+OOPP/D19U1XywvPvx4ZadmyJc7Ozixfvjx13cOHD9m2bRs9evTIVowVK1akXr16LFmyJHXdgwcP2LJlC717985UnPXq1Uv3+X/rrbeyFU9m3qvcvq6bN29Gr9czevToNOvfeecdVFVly5Ytadbn9r3X2KT5kwDAz8+P1atXEx8fz8mTJ1mzZg3Tp0+nW7duBAYG4uPjQ3BwMDqdLrVZUoqSJUvi4ODwzHbm2dG4cWNmz55NeHg4AQEB6PV66tevD2hVjj/88ANxcXHp+lOA1o71448/ZufOnak3lxSRkZEvPPbly5c5f/58hs16/tvvoWzZslk6N09Pz9TRIq5evcrnn39OWFhYmpvm5cuXUVWVChUqPHMfmekYltXzKFOmTLptihUrlqZ/QFYEBwdTr169dOsrV66c+vrTzTb+e/yUJkTPO76dnR2gJY+G8qz39/XXX2f8+PEsX76cDz/8EFVVWblyJe3atUuN6fLlywAZNjMB7fOYcp5CANStW5c6deqkW1+sWLF0TULeeustli9fzt69e2natCnbt28nNDSUPn36pG4THBxMqVKlUptFpqhUqdIzj29iYoKbm1u69SEhIUyaNIn169en+5vMTLmaHSlJe1aH0s1quZDV+1pmysqMyr+MrntmXL16la5du2b79//LxMSErl27snTpUuLi4jA3N2f16tUkJCRkO6kA7XM5cuRIgoOD8fDwYOXKlSQkJKT5XD6Ps7MzL730UraP/7TMvFe5fV2Dg4MpXbp0uqT26XtfVmMsSCSpEGmYmZnh5+eHn58fFStWpH///qxcuZLJkyenbpOd7D0rUpKK/fv3ExAQQLVq1VJvig0bNiQuLo4jR46wb98+TExMUhOOiIgImjVrhp2dHZ988gleXl5YWFhw/Phx3n///Ux9M5ycnEy1atWYNm3aM193d3dP8zyrbWStra3TFJiNGjWiVq1afPjhh8yaNSs1BkVR2LJlyzNHQ/nvPwjPktXzyGjUFfU/HcsMJTvHt7Ozo3Tp0pw5cyZTx8joc/t0J/7/etb7W7p0aZo0acKKFSv48MMPOXjwICEhIXz99dep26R81r799tt0QxCmyMz7KERG2rZtS4kSJVi8eDFNmzZl8eLFlCxZMkf/kJmbm6cbGjopKYnWrVvz4MED3n//fby9vbG2tubWrVv069cvTbma0mH3v573N5bbsloupMjsfS2vysq8uGY9e/Zkzpw5bNmyhS5durBixQq8vb0zHAQgs/scN24cS5Ys4cMPP2Tx4sXUqVMnRwlViqyW4ca+r2VGQYgxKySpEBlK+cbszp07gNahOzk5mcuXL6dm3aB1yo2IiMDDwyNXjvt0Z+0DBw7QqFGj1NdKly6Nh4cH+/fvZ//+/dSsWTO1A9fu3bu5f/8+q1evpmnTpqm/ExQUlO4YGRVOXl5enDx5klatWhk8eQKtqvPNN99kzpw5vPvuu5QpUwYvLy9UVaVs2bJUrFjxub+fl+eRlf14eHhw8eLFdOtTmqDl1melQ4cOzJ07lwMHDtCgQYPnbptSK/DfkW+yU8PWo0cPhg8fzsWLF1m+fDlWVlZp5kpJqc62s7PLtW/dhHiaXq+nV69eLFiwgK+//pq1a9cyePDgNP+keHh4sGPHDqKjo9Mksc/628zI6dOnuXTpEgsXLkzTDGXbtm3pti1WrNgzm21k528s5W/ozJkz6WoRXiQr5YIh7mseHh6ptZVPe9Z1L1asWLoyKT4+PvW+m8LLy+uFiVJWy/qmTZtSqlQpli9fTuPGjdm5cycfffTRC3/vecdxdHTklVdeYcmSJfTu3Zv9+/fn2gStT5fhTw9skpNWErl9XT08PNi+fTuPHj1KU1uR2/e+/Er6VAh27dr1zKw4pa1pyjcM7du3B0hXQKR8G/7KK6/kSjylS5embNmy7Nixg6NHj6YbZaFhw4asXbuWixcvpmn6lHIzffpc4uPj+eGHH9Idw9ra+pnV9t27d+fWrVvMmzcv3WuPHz8mJiYm2+eVkQkTJpCQkJB6HV977TX0ej1Tp05N976oqsr9+/dTn+fleaS0087MjNrt27fn8OHDHDhwIHVdTEwMc+fOxdPTM0v9UJ5nwoQJWFtbM2jQIEJDQ9O9fvXqVWbOnAlo/+A7OzuzZ8+eNNs86/PxIl27dkWv17Ns2TJWrlxJhw4d0oznX7t2bby8vPjuu++Ijo5O9/thYWFZPqYQ/9WnTx8ePnzI22+/TXR0dLrRddq3b09iYiI//vhj6rqkpCRmz56d6WM8q1xVVTX17+ppXl5eXLhwIc3n++TJk9kaRrlNmzbY2try5ZdfpptN+UXf4malXDDEfa19+/YcPHiQw4cPp64LCwtL09cghZeXV7oyae7cuem+fe/atWtq0+T/SrkeWSmjAXQ6Hd26dWPDhg0sWrSIxMTETDV9etFx+vTpw7lz53jvvffQ6/UZjiSVVSmJ5tPXKyYmhoULF2Z7n7l9Xdu3b09SUhLff/99mvXTp09HURTatWuX7VgLAqmpEIwaNYrY2FheffVVvL29iY+PJyAggOXLl+Pp6Zk6lrWvry99+/Zl7ty5qU2NDh8+zMKFC+nSpQstWrTItZgaN26cOlzd0zUVoCUVy5YtS93u6fXFihWjb9++jB49GkVRWLRo0TNvQLVr12b58uWMHz8ePz8/bGxs6NixI3369GHFihUMHTqUXbt20ahRI5KSkrhw4QIrVqzgzz//fGab55zw8fGhffv2/Pzzz/zf//0fXl5efPbZZ3zwwQdcv36dLl26YGtrS1BQEGvWrGHIkCGpY4jn5XnUrl0b0Ibk7dmzJ6ampnTs2PGZk2NNnDiRZcuW0a5dO0aPHo2joyMLFy4kKCiIP/74I9dm3/by8mLp0qX06NGDypUrp5k5NyAggJUrV6YZ633QoEF89dVXDBo0iDp16rBnzx4uXbqU5eMWL16cFi1aMG3aNB49epTuRqzT6fj5559p164dVapUoX///ri6unLr1i127dqFnZ0dGzZsyOnpiyKuZs2aVK1aNXVghlq1aqV5vWPHjjRq1IiJEydy/fp1fHx8WL16dZb6QXh7e+Pl5cW7777LrVu3sLOz448//nhmm+8BAwYwbdo02rZty8CBA7l37x4//fQTVapUSdfH7UXs7OyYPn06gwYNws/PL3W+mJMnTxIbG/vcfySzUi4Y4r42YcIEFi1axMsvv8yYMWNSh5T18PDg1KlTabYdNGgQQ4cOpWvXrrRu3ZqTJ0/y559/pg7bneK9995j1apVvP766wwYMIDatWvz4MED1q9fz08//YSvry9eXl44ODjw008/YWtri7W1NfXq1Xtu378ePXowe/ZsJk+eTLVq1dLU1mQk5V4wevRo2rZtmy5xeOWVV3Byckrta/bf+a6yq02bNpQpU4aBAwemJizz58/HxcWFkJCQbO0zt69rx44dadGiBR999BHXr1/H19eXv/76i3Xr1jF27Ng0nbILpbwcakrkT1u2bFEHDBigent7qzY2NqqZmZlavnx5ddSoUWpoaGiabRMSEtSpU6eqZcuWVU1NTVV3d3f1gw8+SDNcq6pmf0jZFHPmzFEB1dXVNd1rx48fTx1q7r/x7d+/X61fv75qaWmpli5dOnV4XEDdtWtX6nbR0dFqr169VAcHBxVIMyRcfHy8+vXXX6tVqlRRzc3N1WLFiqm1a9dWp06dqkZGRqZuB6gjRozI1PmoqnZNnh4W8mm7d+9ON7TgH3/8oTZu3Fi1trZWra2tVW9vb3XEiBHqxYsX8+Q8/jukoaqq6qeffqq6urqqOp0uzRB+z9r26tWrardu3VQHBwfVwsJCrVu3rrpx48Y026QMKbty5co067P6ebl06ZI6ePBg1dPTUzUzM1NtbW3VRo0aqbNnz07z2YyNjVUHDhyo2tvbq7a2tmr37t3Ve/fuZTikbFhYWIbHnDdvngqotra26Ya8THHixAn1tddeU52cnFRzc3PVw8ND7d69u7pjx45MnZcoGlKGxDxy5MgzX39e2fHNN9+ogPrFF1888/X79++rffr0Ue3s7FR7e3u1T58+6okTJ545pKy1tfUz93Hu3Dn1pZdeUm1sbFRnZ2d18ODBqUNf/vdvdPHixWq5cuVUMzMztUaNGuqff/6ZrSFlU6xfv15t2LChamlpqdrZ2al169ZVly1b9sw4/yuz5UJm72seHh5phv9O8ayhdE+dOqU2a9ZMtbCwUF1dXdVPP/1U/eWXX9KdY1JSkvr++++rzs7OqpWVldq2bVv1ypUrzyxT79+/r44cOVJ1dXVVzczMVDc3N7Vv375qeHh46jbr1q1TfXx8VBMTkzTvz7PeA1XVhk11d3d/5jCoqvrssjgxMVEdNWqU6uLioiqK8sxhXocPH64C6tKlS9O9lpGMru/Tjh07ptarV081MzNTy5Qpo06bNi3DIWUz+17l9nV99OiROm7cOLV06dKqqampWqFCBfXbb79NN6RuVu69BYWiqgW0N4gQQghRxM2cOZNx48Zx/fr1Z44kI4QxjBs3jl9++YW7d+9ma+I6UTBJUiGEEEIUQKqq4uvri5OTU6bmrxEiLzx58gR3d3c6dOjAr7/+auxwRB4qEn0qgoKCGDBgAKGhoej1eg4ePPjMduBCCCFEfhcTE8P69evZtWsXp0+fZt26dcYOSQju3bvH9u3bWbVqFffv32fMmDHGDknksSKRVPTr14/PPvuMJk2a8ODBA8zNzY0dkhBCCJEtYWFh9OrVCwcHBz788EM6depk7JCE4Ny5c/Tu3ZvixYsza9asDOfoEYVXoW/+dPbsWcaMGcP27duNHYoQQgghhBCFUr6fp2LPnj107NiR0qVLoygKa9euTbeNv78/np6eWFhYUK9evTRjQ1++fDl1mM1atWrxxRdf5GH0QgghhBBCFH75PqmIiYnB19cXf3//Z76eMkb/5MmTOX78OL6+vrRt25Z79+4BkJiYyN69e/nhhx84cOAA27Zte+ZMoEIIIYQQQojsKVDNnxRFYc2aNXTp0iV1Xb169fDz80udvTA5ORl3d3dGjRrFxIkTOXDgAFOmTOHPP/8E4NtvvwW0CU+eJS4ujri4uNTnycnJPHjwACcnpyxN1S6EEEWVqqo8evSI0qVL59pEh9klZboQQuRMZsv0At1ROz4+nmPHjvHBBx+krtPpdLz00kscOHAAAD8/P+7du8fDhw+xt7dnz549vP322xnu88svv2Tq1KkGj10IIQq7Gzdu4ObmZtQYpEwXQojc8aIyvUAnFeHh4SQlJVGiRIk060uUKMGFCxcAMDEx4YsvvqBp06aoqkqbNm3o0KFDhvv84IMPGD9+fOrzyMhIypQpQ1BQELa2tpmOTQneh8nKPqjO3iT22wJA71+OcO7OI6Z3r0bzii5ZOdV8JSEhgV27dtGiRQtMTU2NHU6BIdcte+S6ZY8xr9ujR48oW7ZslspMQ8moTL906RKOjo5GjCznCtvfRmE6n8J0LlC4zkfOJesyW6YX6KQis9q1a0e7du0yta25ufkzh5x1dHTEzs4u8weNsANzBaxMwckJgBLOjlx4kESSqTVO/6wriBISErCyssLJyanA/0HmJblu2SPXLXuMed1Sjpcfmhc9r0wvyOUwFL6/jcJ0PoXpXKBwnY+cS9ZltkzP9x21n8fZ2Rm9Xk9oaGia9aGhoZQsWTJH+/b398fHxwc/P78c7edpjtZmADyMic+1fQohhHgxQ5TpQggh/lWgkwozMzNq167Njh07UtclJyezY8cOGjRokKN9jxgxgnPnznHkyJGchpmqmJWWVDyIlaRCCCHykiHKdCGEEP/K982foqOjuXLlSurzoKAgAgMDcXR0pEyZMowfP56+fftSp04d6taty4wZM4iJiaF///5GjPrZHK216iOpqRBCCCGEEIVJvk8qjh49SosWLVKfp3S469u3LwsWLKBHjx6EhYUxadIk7t69S40aNdi6dWu6zttZ5e/vj7+/P0lJSTnaz9OK/dP86UFMQq7tUwghxIsZokwXQgjxr3yfVDRv3pwXTaUxcuRIRo4cmavHHTFiBCNGjCAqKgp7e/tc2afjP82fHkrzJyGEyFOGKNOFEEL8q0D3qShoiklHbSGEEEIIUQhJUpEBQ47+JB21hRAib8noT0IIYViSVGTAkKM/RT5OIDEpOdf2K4QQ4vlk9CchhDAsSSryUDErUxQFVBUexkpnbSGEEEIIUThIUpGHTPS61M7aYY/ijByNEEIIIYQQuUOSigwYqv2ti605APcePcnV/QohhMiY9KkQQgjDkqQiA7nW/vY/w+GmJBVSUyGEEHlH+lQIIYRhSVJhKIryzNXFbS0AuCdJhRBCCCGEKCQkqchjxe2kpkIIIYQQQhQuklRkwGB9KmwkqRBCiLwmfSqEEMKwJKnIgKHa30pNhRBC5D3pUyGEEIYlSUUe+7dPhYz+JIQQQgghCgdJKvKYjP4khBBCCCEKG0kq8ljxf5KKmPgkYuISjRyNEEIIIYQQOSdJRQYM1anP2twEKzM9IMPKCiFEXpGO2kIIYViSVGTAkJ36Stpr/SruRD7O9X0LIYRITzpqCyGEYUlSYQSuDpYA3I6QztpCCCGEEKLgk6TCCEql1FRESE2FEEIIIYQo+CSpMILSKTUV0vxJCCGEEEIUApJUGEFpe2n+JIQQQgghCg9JKowgtaZCmj8JIYQQQohCQJKKDOTe8INqujWlHLQ+FbcjHqOq6V8XQgiRu2RIWSGEMCxJKjKQ8+EHlQxfSWn+FBOfRNQTmQBPCCEMTYaUFUIIw5KkwggszfQUszIFpAmUEEIIIYQo+CSpMJKUfhUyAZ4QQgghhCjoJKkwkpSk4uZDSSqEEEIIIUTBJkmFkZRxtAIg5H6skSMRQgghhBAiZySpMBIPJy2pCH4gSYUQQgghhCjYJKkwEqmpEEIIIYQQhYUkFUbi4WQNQMiDWJmrQgghhBBCFGiSVBiJq4MlOgUeJyQRFh1n7HCEEEIIIYTINkkqMmDo2VfNTHSpI0BJEyghhDAsmVFbCCEMS5KKDOTF7KupnbUlqRBCCIOSGbWFEMKwJKkwojKOWr8KGQFKCCGEEEIUZJJUGFFKTUXI/RgjRyKEEEIIIUT2SVJhRJ7/JBVB4ZJUCCGEEEKIgkuSCkN7znCxXi42AFwNi5FhZYUQQgghRIElSYWhKMoLN/FwskavU4iOSyQ0SoaVFUIIIYQQBZMkFUZkZqJL7Vdx5V60kaMRQgghhBAieySpMLLy/zSBunLvkZEjEUIIIYQQInskqTAyr+L/JBVhUlMhhBBCCCEKJkkqjOzfmgpJKoQQQgghRMFkYuwA8oKnpyd2dnbodDqKFSvGrl27jB1SqvIpNRX3ZFhZIYQQQghRMBWJpAIgICAAGxsbY4eRTkrzp/DoOCJjE7C3MjVyREIIIYQQQmSNNH8yMhtzE0rbWwBwMVQ6awshhBBCiIIn3ycVe/bsoWPHjpQuXRpFUVi7dm26bfz9/fH09MTCwoJ69epx+PDhNK8rikKzZs3w8/NjyZIleRR55lUuZQfA+TtRRo5ECCGKht2XwowdghBCFCr5PqmIiYnB19cXf3//Z76+fPlyxo8fz+TJkzl+/Di+vr60bduWe/fupW6zb98+jh07xvr16/niiy84depUXoWfKSlJxbnbklQIIUReGLfiNJPXneFJQpKxQxFCiEIh3/epaNeuHe3atcvw9WnTpjF48GD69+8PwE8//cSmTZuYP38+EydOBMDV1RWAUqVK0b59e44fP0716tWfub+4uDji4v6d3ToqSvtHPyEhgYSEhEzHrSQmYgKoqCS+4PcqFtcmwDt3JzJLxzCWlBgLQqz5iVy37JHrlj3GvG756b3KqEwHWHggmANX7zOje3UqlMh/fe5epLD9bRSm8ylM5wKF63zkXLJ/nBdRVFVVDRpJLlIUhTVr1tClSxcA4uPjsbKyYtWqVanrAPr27UtERATr1q0jJiaG5ORkbG1tiY6OplmzZvz000/4+fk98xhTpkxh6tSp6dYvXboUKyurTMfq/Ogcja58RZSFK7sqf/ncbe89hs8DTTBVVL6ul4ReyfRhhBAi34mNjaVXr15ERkZiZ2dn1FgyKtMn/7CMVbdtiE5QMFVUOnsm07iEiiLlrxBCpJHZMj3f11Q8T3h4OElJSZQoUSLN+hIlSnDhwgUAQkNDefXVVwFISkpi8ODBGSYUAB988AHjx49PfR4VFYW7uztt2rTJ0s1RuW4LV8DW1pb27ds/d9vkZJXp53YSG59EZb+mqcPM5lcJCQls27aN1q1bY2oqo1Vllly37JHrlj3GvG5P1wYYW0Zl+tBXm/O2uQ0TV5/l78vhrArS89DchS+6VMHR2sx4AWdBYfvbKEznU5jOBQrX+ci5ZF1my/QCnVRkRrly5Th58mSmtzc3N8fc3Bx/f3/8/f1JStLa25qammbtDTPRLq3yz+++iHdJW46HRHApLJbKrsUyfxwjyvI1EYBct+yS65Y9xrhu+el9el6Z7lTMhl/71+XXgOt8veUCOy6E0emHA0zvXoOG5Z2NHHnmFba/jcJ0PoXpXKBwnY+cS9b2nxn5vqP28zg7O6PX6wkNDU2zPjQ0lJIlS+Zo3yNGjODcuXMcOXIkm3vIWh36vyNAybCyQgiR2zIq03U6hYGNy7JmREO8XKwJjYqj9y+H+GrLBRKSko0UrRBCFDwFOqkwMzOjdu3a7NixI3VdcnIyO3bsoEGDBkaMLOtSR4CSYWWFECLPVSltz8ZRTXijbhlUFX76+yrdfgzgeniMsUMTQogCId8nFdHR0QQGBhIYGAhAUFAQgYGBhISEADB+/HjmzZvHwoULOX/+PMOGDSMmJiZ1NKjs8vf3x8fH57n9L3JTVVd7AM7ciqQA9Z0XQogCITNluqWZni9fq8ZPb9bC3tKUkzcjeWXWXv44dlPKZSGEeIF8n1QcPXqUmjVrUrNmTUBLImrWrMmkSZMA6NGjB9999x2TJk2iRo0aBAYGsnXr1nSdt7Mq582fsqZyKVtM9QoPYuK5+fBxnhxTCCGKiqyU6S9XLcWWMU2oV9aRmPgk3ll5kjG/BxL1pOAPQSmEEIaS75OK5s2bo6pqumXBggWp24wcOZLg4GDi4uI4dOgQ9erVM17A2WRuosfnnyZQJ25EGDcYIYQo4ko7WLJ0cH3ebVMRvU5h/cnbtJ+5l2PBD40dmhBC5Ev5Pqkwlrxu/gRQw90BgJOSVAghRK7KTpmu1ymMbFmBlUMb4O5oyc2Hj+k+5wCzd1wmKVmaQwkhxNMkqchAXjd/AvD9J6kIlKRCCCFyVU7K9FplirFpdBM61yhNUrLK/7Zd4o15B7kdIU1VhRAihSQV+UhKTcWZW5EylKEQQuQjdhamzOxZk2ndfbE203M46AEvz9jDltN3jB2aEELkC5JU5COeTtbYWZgQl5jMxbsyX4UQQuQ3r9VyY/OYJvi6OxD1JJFhS47zwepTxMYnGjs0IYQwKkkqMmCMPhU6nZLaBEo6awshRO7JzTLdw8maVUMbMKy5F4oCyw7foOPsfZy9HZkLkQohRMEkSUUGjNGnAqBmmWIAHJcRRoQQItfkdpluqtfx/sveLBlYjxJ25lwNi+FV/wB+3nuNZOnELYQogiSpyGfqejoCcDjogZEjEUII8SINyzuzdUxTWvuUID4pmc82naf/giOEPYozdmhCCJGnJKnIZ2p5OGCiU7gV8ZibD2ONHY4QQogXKGZtxtw+tfmsS1XMTXT8fSmMdjP3sPviPWOHJoQQeUaSinzGysyEqq72gNRWCCFEQaEoCm/W92DDqMZ4l7QlPDqefr8e4ZMN54hLTDJ2eEIIYXCSVGQg1zr1qVlvW1u3rNYE6sh1SSqEECI35NXgGxVL2LJ2RCP6NfQEYP7+ILr4B3DlnozoJ4Qo3CSpyECOO/Upyj8/ZCOp+KdfxSGpqRBCiFyRl4NvWJjqmdKpCr/0rYOjtRnn70TRYfY+lh0OQc3GF01CCFEQSFJhMMqLN8mAn6cjigLXwmKks58QQhRQrSqXYOuYJjSp4MyThGQ+WH2a4UuOExEbb+zQhBAi10lSYWjZ+FbK3soU75J2AARcDc/tiIQQQuSR4nYWLOxflw/be2OqV9hy5i7tZu7l4LX7xg5NCCFylSQVhpKD5k8ATSo4A7DvsiQVQghRkOl0CkOaerF6WCPKOltzJ/IJb8w7yP/+ukhCUrKxwxNCiFwhSUUGct6p75+kIpvtZxuX/yepuBIubXCFECKH8qqj9vNUc7Nn46jGdK/jhqrC7J1X6D7nADceyPDhQoiCT5KKDBizozZoI0CZmei4E/mEq2HR2YtBCCEEkLcdtZ/H2tyEb7r58n2vmthamHAiJIL2M/eyLvCWUeMSQoickqTCYLLfURu00UNSRoHaK02ghBCiUOlQvTRbxjShjkcxHsUlMub3QMYvDyQ6LtHYoQkhRLZIUmFoOWi61PiffhWSVAghROHjVsyK34fUZ+xLFdApsPrELV6ZtZfAGxHGDk0IIbJMkgpDyWHzJ/i3s/bBa/eJT5TOfEIIUdiY6HWMfakiy99ugKuDJcH3Y+n2YwA/7L5CcrL0pxNCFBySVBhMzjpqA1QuaYezjRmx8Ukyu7YQQhRifp6ObB7ThFeqlyIxWeWbrRd585dD3I18YuzQhBAiUySpMJRcqKnQ6RRaehcHYNu50FwISgghRH5lb2nK92/U5Jtu1bEy0xNw9T7tZu7hr7N3jR2aEEK8kCQVGci1IWVz6KXKJQDYfj5UhpYVQohsyg9DymaGoih0r+POxlGNqepqx8PYBIYsOsbHa0/zJCHJ2OEJIUSGJKnIQK4NP5jDPKBxBWfMTXTcfPiYi6GPcrYzIYQoovLLkLKZVc7FhtXDGjGkaTkAFh8MoePsfVy4G2XkyIQQ4tkkqTCU1IqKnGUVVmYmqRPhbZcmUEIIUWSYmej4sH1lfhtQF2cbcy7fi6bT9/tZGHBdaq6FEPmOJBUGk/OO2ile8tGaQG07fy/H+xJCCFGwNK3owtaxTWjpXZz4xGQmrz/LoIVHuR8Tb+zQhBAilSQVhpILHbVTtPqns/bJGxHci5KRQIQQoqhxtjHnl751mNLRBzMTHTsu3KPj9wFciMid/ntCCJFTklQUAMXtLPB1dwDgTxkFRAghiiRFUejXqCzrRjSiQnEbwqLj+fG8nq+2XpS5jIQQRidJhcHkXvMngFeqlQRgw6k7ubI/IYQQBVPlUnasH9mYN/zcAPhlfzBdfwzgWli0kSMTQhRlklQYSi42fwJ4pXppAI5cf0CoNIESQogizdJMzyedfBhYKQkHS1NO34qkw+x9rDh6QzpxCyGMQpIKg8ndmgpXB0tqexRDVWGT1FYIIYQAqjuqbBjZgAblnIiNT2LCqlOMWnaCyMcJxg5NCFHESFJhKErud57rUL0UABtO3c71fQshhCiYStpZsHhQPSa8XAkTncLGU3doP3MvR68/MHZoQogiRJKKDOTe7Ku5Vw3dvlopFAVOhERw82Fsru1XCCEKu4Iyo3Z26XUKw5uXZ9WwhpRxtOJWxGO6zznAjO2XSEySTtxCCMOTpCIDOZ99NXebPwGUsLOgXllHANaflNoKIYTIrII2o3Z21XB3YNPoxrxW05VkFWZsv8wb8w7KF1FCCIOTpMJQcrmjdopXa7oCsOrYTemMJ4QQIh1bC1Om9ajBjB41sDE34cj1h7SbuZeN0nRWCGFAklQYTO7XVIA2CpSlqZ5rYTEcD4nI1X0LIYQoPLrUdGXz6CbUcHfg0ZNERi49wYRVJ4mJSzR2aEKIQkiSCkMxQEdtABtzE9r9M2fFqmM3DXIMIYQQhUMZJytWDm3AyBblURRYcfQmHWfv48ytSGOHJoQoZCSpMLjcb6LUrbY24dHGk7d5HJ+U6/sXQghReJjqdbzbthLLBtenlL0F18JjePWH/czbc43kZGlGK4TIHZJUGIxhmj8B1C/rhFsxSx7FJfLn2bu5vn8hhBCFT/1yTmwZ04S2VUqQkKTy+ebz9P31MPceyYSqQoick6TCUAzUURtAp1NSaytWHL2R6/sXQghRODlYmfHTm7X54tVqWJjq2Hs5nHYz9rLzQqixQxNCFHCSVBiM4WoqAF6v445OgYCr97lyL9ogxxBCCFH4KIpCr3pl2DiqMZVL2XE/Jp4BC44yZf1ZniRIk1ohRPZIUmEoBuqoncLVwZJWlUsAsPhgsEGPJYQQovApX9yWNcMbMqBRWQAWBFyni/9+Loc+MnJkQoiCqMgkFbGxsXh4ePDuu+/m8ZEN1wnurQYegDYKVLQMESiEECKLLEz1TOrow6/9/HCyNuPC3Ud0mL2PxQeDZS4kIUSWFJmk4vPPP6d+/fp5eMSU5k+GO0IjL2fKuVgTHZfImhO3DHcgIYQQhVoL7+JsGduEJhWciUtM5uO1Z3h70TEexsQbOzQhRAFRJJKKy5cvc+HCBdq1a5d3BzVgR+0UOp1Cn/pabcWiA9flWyUhhBDZVtzWgoX96/LxK5Ux1Sv8dS6UdjP3EnA13NihCSEKgHyfVOzZs4eOHTtSunRpFEVh7dq16bbx9/fH09MTCwsL6tWrx+HDh9O8/u677/Lll1/mUcR5q2ttN6zM9FwKjebgtQfGDkcIIUQBptMpDGpSjjXDG1HOxZq7UU/o/fMhvtl6gYSkZGOHJ4TIx/J9UhETE4Ovry/+/v7PfH358uWMHz+eyZMnc/z4cXx9fWnbti337t0DYN26dVSsWJGKFSvmZdj/1lSohi2E7SxMea2WKwDz9l4z6LGEEEIUDVVd7dk4qjE9/dxRVfhh91W6/XSA4Psxxg5NCJFPmRg7gBdp167dc5stTZs2jcGDB9O/f38AfvrpJzZt2sT8+fOZOHEiBw8e5Pfff2flypVER0eTkJCAnZ0dkyZNeub+4uLiiIuLS30eFRUFQEJCAgkJCZkPPEnFFFCTk0jMyu9lQ7/6ZVhyKISdF+5x9uYDKpawNejxUq5Dlq6HkOuWTXLdsseY1y0/vVe5VqbnQ4Z+j00V+LRTZRqWK8bH685x8kYE7WftZWqHynSuUTrXj1eY/tYL07lA4TofOZfsH+dFFLUANcRXFIU1a9bQpUsXAOLj47GysmLVqlWp6wD69u1LREQE69atS/P7CxYs4MyZM3z33XcZHmPKlClMnTo13fqlS5diZWWV6Vgt4u/T9uw4khRTNtb4JdO/l12/XtQR+EBHXZdkepeXKmohhPHExsbSq1cvIiMjsbOzM2osuVWmF3UP4mDxZT1XH2m18LWdk+leNhmLfP/VpBAipzJbphfo4iA8PJykpCRKlCiRZn2JEiW4cOFCtvb5wQcfMH78+NTnUVFRuLu706ZNm6zdHKPuwFnQKSrt27fPVixZ4VY9kq5zDnH8vp7v+janlL2FwY6VkJDAtm3baN26NaampgY7TmEj1y175LpljzGvW0ptQH6QUZneokULnJycjBhZzuX1e/xGssqPf1/j+93XOBauIzTJmmmvV6Omu0Ou7L8w/a0XpnOBwnU+ci5Zl9kyvUAnFVnVr1+/F25jbm6Oubl5uvWmpqZZe8PMtH0oyUl58qGtXdaZ+uUcOXjtAb8dvMHHHXwMfswsXxMByHXLLrlu2WOM65af3qdcK9Pzsbw6F1NgXBtvmlYqzpjfA7n58DFv/HyEcS9VYFjz8uh1uTPpq7w3+VdhOh85l6ztPzPyfUft53F2dkav1xMaGppmfWhoKCVLlszRvv39/fHx8cHPzy97O9Dp//lBhTxqYfZ2My8Alh4O4X503Au2FkKIoiPHZbpIVdvDkc1jmtDRtzRJySrf/XWJ3j8f5E7kY2OHJoQwogKdVJiZmVG7dm127NiRui45OZkdO3bQoEGDHO17xIgRnDt3jiNHjmRvB8pTl9bAI0ClaF7RhWqu9sTGJzFXRoISQohUOS7TRRp2FqbM6lmD7173xcpMz8FrD3h5xl62nrlr7NCEEEaS75OK6OhoAgMDCQwMBCAoKIjAwEBCQkIAGD9+PPPmzWPhwoWcP3+eYcOGERMTkzoalNEYIalQFIWxL1UA4LeAYMKltkIIIYSBKIpCt9pubBrdhOpu9kQ+TmDo4mN8uOY0j+OTjB2eECKP5fuk4ujRo9SsWZOaNWsCWhJRs2bN1CFhe/TowXfffcekSZOoUaMGgYGBbN26NV3n7azKcVX500lFct4Vri29i+PrZs/jhCTm7pHaCiGEAGn+ZEhlna1ZNbQhQ5t5oSiw9FAIHWbv5dzt/NNhXwhhePk+qWjevDmqqqZbFixYkLrNyJEjCQ4OJi4ujkOHDlGvXr0cHzfHVeWpfSoANe+SCq22Qpvo77cD1wl7JLUVQgghzZ8My8xEx8R23iweWI/ituZcDYuhi/9+5u8LogCNXC+EyIF8n1QUWMrTSUXezhvRvJILNdwdeJKQjP+uK3l6bCGEEEVXo/LObB3blJcqFyc+KZlPNp6j/4Ij0hxXiCJAkooMFNTmT6DVVrzbphIASw4FE3w/Jk+PL4QQ+Y00f8o7jtZmzHurDp90roKZiY7dF8N4ecZe/r4UZuzQhBAGJElFBnK3+VPez3DduIIzTSu6kJCk8s3Wi3l+fCGEyE+k+VPeUhSFtxp4smFkYyqVsCU8Oo6+8w/z2cZzxCVKJ24hCiNJKgzFCKM//dcH7bxRFNh0+g7HQx4aJQYhhBBFV6WStqwb2Yi3GngA8PO+IF77IYCrYdFGjkwIkdskqTAURQH+mV00j5s/pahcyo5utdwA+GLTeeksJ4QQIs9ZmOr5pHNVfn6rDsWsTDl7O4oOs/bx++EQuS8JUYhIUpGBXGl/m9IEKg9Hf/qv8W0qYmGq42jwQ5mUSAhRZEmfCuN7yacEW8c2pVF5Jx4nJDFx9WlGLD1OZGyCsUMTQuQCSSoykCvtb1NGgDJS8yeAUvaWDG5SDoDPNp2XCYmEEEWS9KnIH0rYWbBoQD0mtvPGRKew+fRd2s3cw+GgB8YOTQiRQ5JUGFJKvwojNX9KMay5F6XtLbgV8ZgfdssQs0IIIYxHp1MY2syLP4Y1xNPJituRT+g59wAzdlwhSVpDCVFgSVJhSPmg+ROAlZkJkzr6ADDn72sEhcsQs0IIIYzL192BjaOb0K22G8kq+O++xqwzem4+fGzs0IQQ2SBJRQZypf1tSk1FPuiI1rZKSZpWdCE+KZmpG85K5zghRJEifSryJxtzE7573ZdZb9TExtyE69EKHf0PsP7kbWOHJoTIIkkqMpA7fSryR/Mn0MYMn9qpCmZ6bSKiP8+GGjskIYTIM9KnIn/r5FuaDSMa4GmjEh2XyOhlJ3h35Umi4xKNHZoQIpMkqTAkvZn2mJw/RrYo62zNkKZap+3J688Q+Th/xCWEEEK4FbNkdNUkRjQvh06BVcdu0mHWXk7eiDB2aEKITJCkwpBSkoqkeOPG8ZSRLctT1tma0Kg4vtx83tjhCCGEEKn0CoxtVZ5lg+tT2t6C6/dj6fpjAD/9fZXkZGm2K0R+JkmFIelNtMek/FMjYGGq5+uu1QH4/cgN9l4OM3JEQgghRFr1yjmxZUxT2lcrSWKyyldbLtBn/iFCo54YOzQhRAYkqchArnTqy4c1FQB1yzrSt4EHABP/OE2MtFkVQhRy0lG74LG3MsW/Vy2+7loNS1M9+6/c5+UZe9h+TvoECpEfSVKRgVzp1JeaVOSfmooUE172xq2YJbciHvPN1gvGDkcIIQxKOmoXTIqi0MOvDBtGNcanlB0PYxMY9NtRJq07w5ME4w+CIoT4lyQVhqTLf82fUlibm6Q2g1p4IJj9V8KNHJEQQgjxbOWL27BmREMGNS4LwG8Hgun8/X4u3n1k5MiEECkkqTCkfNr8KUWj8s70rlcGgHdWnORhTP6MUwghhDA30fNxBx8WDqiLs405F0Mf0fH7ffx24LrMvSREPiBJhSHl86QC4KNXKlPOxZq7UU/4cM1pKZiFEELka80qurB1bBOaV3IhPjGZSevOMvi3ozyQL8aEMCpJKgwpH47+9F9WZibM6lkTU73CljN3WXn0prFDEkIIIZ7L2cacX/v5MamDD2Z6HdvP3+PlGXukKa8QRiRJhSHls8nvMlLV1Z532lQCYMqGs1wLizZyREIIIcTzKYrCgMZlWTuiEV4u1tx7FMebvxziqy0XiE9MNnZ4QhQ5klRkoDAPKfssQ5qUo0E5J2Ljkxi+5DiP42VUDSFE4SFDyhZePqXt2DiqCb3qlUFV4ae/r9LtpwCCwmOMHZoQRYokFRnIleEH8/HoT/+l0ynM7FkDZxtzLtx9xMdrz0j/CiFEoSFDyhZulmZ6vni1Gj+9WQt7S1NO3YzklVl7WXXsptzLhMgjklQYUgGqqQAobmfB7DdqolPgj+M3WXH0hrFDEkIIITLt5aql2Dq2CfXKOhIbn8S7K08y+vdAop7k/y/3hCjoJKkwpAKWVAA08HLi3bZa/4r/W3eWM7cijRyREEIIkXml7C1ZOrg+77WthF6nsOHkbdrP3Mux4AfGDk2IQk2SCkMytdAeE+OMG0cWDW3qRSvv4sQnJjN08THuRxes+IUQQhRtep3CiBblWTm0Ae6Oltx8+Jjucw4yc/tlkpKlOZQQhiBJhSGZWmqPCbHGjSOLdDqFad1r4Olkxc2Hjxm25LiMpCGEEKLAqVWmGJtHN6FLjdIkJatM336JN+Ye5FbEY2OHJkShI0mFIZlaaY8JBa/wsrcy5ee+dbA1N+Fw0AMmrz8rnd2EEEIUOLYWpszoWZPpPXyxNtNz+PoD2s3Yw+bTd4wdmhCFiiQVhpRaU1HwkgqA8sVtmfVGTRQFlh0O4bcDwcYOSQghhMiWV2u6sXlME3zdHYh6ksjwJceZ+McpYuMTjR2aEIWCJBWGlFpTUbCaPz2thXdxJr7sDcAnG8+x51KYkSMSQgghssfDyZpVQxswvLkXigK/H7lBh9n7ZFASIXKBJBWGVMBrKlIMaVqO12q5kpSsMmzxMc7ejjJ2SEIIIUS2mOp1THjZmyUD61HCzpxrYTG8+sN+ft57jWTpxC1EtklSkYFcmX21ENRUACiKwlevVaehlxMx8UkMXnSc+0+MHZUQQmSezKgt/qtheWe2jmlKG58SJCSpfLbpPP0WHOHeI7nBCZEdklRkIFdmXy0kNRUAZiY6fupTG++StoRFxzPngp6IWJlMSAhRMPy3TFdCAkAGnyjyilmbMadPbT7rUhVzEx17LoXRfuZedl28Z+zQhChwJKkwpEKUVADYWZiyoH9dStqZE/pYYeiSEzxJSDJ2WEIIkWUmK3rD935w4Ad4/NDY4QgjUhSFN+t7sHFUY7xL2hIeHU//X4/wyYZzxCXKPU6IzJKkwpAKSfOnp5W0t2D+W7Wx1KscC4lg2OJjMoeFEKLAUU2t4P5l+PMD+J83rB0ON49K7UURVqGELWtHNKJfQ08A5u8P4lX/AK7cizZuYEIUEJJUGFJKTUV8jHHjyGUVStgw2DsJC1Mduy6GMXb5CRKTJLEQQhQciUMPwivToERVSHwCgUvg51Ywpykc/RXi5B/JosjCVM+UTlX4pW8dHK3NOHcnio6z97H8SIjM1STEC0hSYUjmdtpj3CPjxmEAXnbwQ68amOl1bD59lwl/nJJRM4QQBYe5LfgNhKH7YOA28H0D9OZw9xRsHKvVXmx6B0LPGjtSYQStKpdgy5gmNCrvxOOEJN7/4zQjl54g8rH0JRQiI5JUGJKFvfaYEAtJha8galLeme971USvU1h9/BaT1p+Rb3KEEAWLooB7XXj1J3jnArT5HBy9IP4RHPkZfmwIv7SFk8shQUYFKkpK2FmwaEA93n/ZGxOdwqbTd2g/cy9Hrz8wdmhC5EuSVBhSSk0FwJPCObdDmyolmdbdF0WBxQdD+GTjOUkshBAFk5UjNBwJo47BW+vApzPoTODGQVgzBKZVhr8+hvtXjR2pyCM6ncKw5l6sGtYQDycrbkU8pvucA8zYfkma/QrxH5JUGJLeBMxstZ+fRBg1FEPqXMOVr16rBsCv+68zad1ZaQolhCi4FAXKNYfuv8G4s9DiY7Bzg8cPIGA2zK4Fv3WGc+sLZS20SK+GuwObRjfhtZquJKswY/tles07xK2IwjG6oxC5QZIKQ7P4p7biSaRx4zCwHn5l+KZrdRQFFh0M5sM1pyWxEEIUfLYlodl7MPYUvPE7VGgDKHBtN6zoA9Orwq4vIPKmsSMVBmZjbsK0HjWY3sMXazM9h68/oN2MPWw5fcfYoQmRL0hSYWgp/SriCmfzp6d193Pnf6/7olPg9yM3eG/VKZIksRBCFAY6PVRqB71XwpiT0Hg8WLtA9F34+2uYUQ2W9YLL2yFZmsUUZq/WdGPzmCb4ujsQ9SSRYUuO88HqUzyOlzktRNFW6JOKiIgI6tSpQ40aNahatSrz5s3L2wBSkopCXlOR4rVabkzvUQO9TuGP4zcZtzyQBGl3KoQoTIp5wEuTYdw56DYfPJuAmgwXN8GSrjCrBuybDtFhxo5UGIiHkzWrhjZgWHMvFAWWHb5Bx+/3ce524f8CUYiMFPqkwtbWlj179hAYGMihQ4f44osvuH//ft4FkNJZu5B21H6WzjVcmf1GTUx0CutP3mbIb0eJjU80dlhCCJG7TMygalfotxFGHIZ6w7QvkiKCYfsUrWP3qgFwfb9MqlcImep1vP+yN4sH1qO4rTlX7kXTxX8/v+4PkgFLRJFU6JMKvV6PlZU2s3VcXByqqubtH7ulg/b4+GHeHTMfaF+tFHPfqp06QV7vnw/xMCbe2GEJIYRhuFSCdl/B+AvQ2R9ca0NyApz5Axa0hx/qw6E58DjC2JGKXNaovDNbxzallXdx4pOSmbrhHEMWnyBa+vCLIibfJxV79uyhY8eOlC5dGkVRWLt2bbpt/P398fT0xMLCgnr16nH48OE0r0dERODr64ubmxvvvfcezs7OeRQ9WptbgJiiVw3e0rsESwbVw97SlBMhEXT7KUBGyhBCFG5mVlDzTRi8E4b8DbX6gqkVhF2ALRO02ot1I+HWcWNHKnKRo7UZP/etw9ROVTAz0bH7Ujhfn9Sz/2oetowQwsjyfVIRExODr68v/v7+z3x9+fLljB8/nsmTJ3P8+HF8fX1p27Yt9+7dS93GwcGBkydPEhQUxNKlSwkNDc2r8MH6nwQmJjzvjpmP1PZwZNXQBpSyt+BqWAzdfgzgUmjhm2FcCCHSKV0DOs3SJtVr/x24VNYmQz2xCOa1gDnN4PhvEB9j7EhFLlAUhb4NPVk3ohFeLtZEJSj0X3iML7ecJz5R+haKws/E2AG8SLt27WjXrl2Gr0+bNo3BgwfTv39/AH766Sc2bdrE/PnzmThxYpptS5Qoga+vL3v37qVbt27P3F9cXBxxcXGpz6OitL4QCQkJJCRkvS5TsXDCBEh+FEpSNn4/P0q5Dpm9Hp6OFiwfXJf+C4+lJhaze/rS0MvJkGHmO1m9bkIj1y17jHnd8tN7ldtlerboraBmP6jRF+XmIXTHF6CcX49yJxDWj0L980OSq/UguVY/cPHO9G4L299GYTmf8s6WrBhUm1HzdxMQqmPO39cIuBLO9Ner4+FkZezwsqWwvDcg55KT47yIohag3kSKorBmzRq6dOkCQHx8PFZWVqxatSp1HUDfvn2JiIhg3bp1hIaGYmVlha2tLZGRkTRq1Ihly5ZRrVq1Zx5jypQpTJ06Nd36pUuXpvbNyIrikSdpcO1/RFh68rf3J1n+/cIkJgHmXdQT9EhBp6i8XjaZhiUKzMdPCJFJsbGx9OrVi8jISOzs7IwaS26X6bnFLPERZe7vwSN8Fzbx/9ash9tU4rpTS+441CFZZ2q0+ETuOHlf4ferOmKTFMx1Kq+XS8bPRe57omDJbJleoJOK27dv4+rqSkBAAA0aNEjdbsKECfz9998cOnSIw4cPM2TIkNQO2iNGjODtt9/O8BjP+lbL3d2d8PDw7N0c7wRiOv8lVNtSJI4+nfXfz4cSEhLYtm0brVu3xtQ0aze9uIQkPlx7jvWntMmCBjT0YELbiuh1iiFCzVdyct2KMrlu2WPM6xYVFYWzs3O+SCoyKtPv3LmDk1M+qC1Vk1GC9qA7/ivKpa0oqjbXgWrlTLJvL5JrvgXFPJ/5q4Xtb6Mwnc/T5xIem8Q7q05z5Lo2YEun6qWY0rEythb5vrFIqsL63si5ZE5my/SC84nOprp16xIYGJjp7c3NzTE3N8ff3x9/f3+SkrQC3tTUNHtvmH0pAJSYcExNTEApPP88Z+eamJqaMvONmpQvYcu0bZeYHxBMyMPHzOxZE2vzQv9xBHLwWSri5LpljzGuW356n3K9TDeESq21Jeq21sfi2EKUR7fRH5iF/sAs8GoFfgOhQlvQpy8n89W55ILCdD6mpqaUcbbi9yEN8N91hZk7LrP+1B0Cb0Yys2cNapYpZuwQs6SwvTdyLpnff2bk+47az+Ps7Ixer0/X8To0NJSSJUvmaN8jRozg3LlzHDlyJEf7SR39KTmhyA0rmxFFURjdqgKz36iJmYmO7efv0fXHAG48iDV2aEKIQirXynRDsisNzSfC2NPQY4mWTABc3QG/99Jm7d79lZZ8iAJFr9Pueyvero+rgyUhD2J5/acD/LD7CsnJBabBiBDPVaCTCjMzM2rXrs2OHTtS1yUnJ7Njx440zaGMysT838Qi8qZxY8lnOvqW5vch9XG2MePC3Ud0/H4fey4VvaF3hRAiDb0JVO4AfVbD6BPQaAxYOcGj27D7S5heFX7vjXJttzaTtygwans4snlMEzpUL0Visso3Wy/y5i+HCI16YuzQhMixfJ9UREdHExgYmNqEKSgoiMDAQEJCQgAYP3488+bNY+HChZw/f55hw4YRExOTOhpUdvn7++Pj44Ofn19OTwHs3bXHyBs531chU6tMMdaNbIyvmz0RsQn0/fUw/rvkmxshRO7K1TI9LzmWg9afwPjz0PUXKNMQ1CS4sBGTZd1odf59dAe/hxiZD6GgsLc0ZfYbNfmma3UsTfUEXL3PyzP2sP1cHg53L4QB5Puk4ujRo9SsWZOaNWsCWhJRs2ZNJk2aBECPHj347rvvmDRpEjVq1CAwMJCtW7dSokSJHB03V6vK7d20R6mpeCZXB0uWv92Ann7uqCp8++dFhi4+xqMnBX+4NyFE/lAgmj89j4k5VOsGA7bA8INQdwiquS02caHod0yBad7wx2AIOQgFZ/yVIktRFLr7ubNxdGOqlLbjYWwCg347yuR1Z3iSkGTs8ITIlnyfVDRv3jx15KanlwULFqRuM3LkSIKDg4mLi+PQoUPUq1fPeAE/i0MZ7VFqKjJkYarnq67V+eq1apjpdfx1LpTO3++XifKEEOK/ileG9t+SOPoMJ9wHoJasDknxcHoFzG8LPzaEw/PgSZSxIxUv4OViw+rhDRnYuCwACw8E08V/P5fl3icKoHyfVBQKKTUVEZJUvEjPumVYMbQBpe0tuBYeQ+fv97Pi6A0K0MjHQgiRN8ysCXFuTuLAnTB4F9R8E0ws4d452Pwu/M8b1o+GOyeNHal4DnMTPf/XwYcF/f1S+xh2mL2PxQeD5d4nChRJKjKQu30qUpKKkJzvqwio4e7AhlGNaVzemccJSUxYdYoxvwdKcyghRLYV2D4VmeVaCzr7wzsX4OWvwbkSJMTA8YUwpynMawknlkC8jLKXXzWvVJwtY5rStKILcYnJfLz2DEMXHyMiNt7YoQmRKZJUZCBX2986emmP969KW9dMcrIx57cBdXmvbSX0OoX1J2/TYfY+Tt6IMHZoQogCqMD3qcgsSweoPxRGHIJ+m6FqV9CZwq1jsG641vdiy0QIu2TsSMUzuNias6CfHx+/UhlTvcKfZ0NpN3MvB69JR3yR/0lSkRccywEKxEVCjAyZmlk6ncKIFuVTx/UOvh9L1x8DmLvnqowOJYQQz6Mo4NkIus3XRo5qNVnr3/ckEg79CP5+sKADnPkDEuWb8PxEp1MY1KQca4Y3oqyzNXcin9Br3kGm/XWRxCQZQljkX5JUZCBXq8pNLaCYh/ZzuHw7lFW1PRzZPLoJ7aqWJDFZ5YvNF+i34IiM6y2EyLRC3/zpeWxcoMl4GH0Sev8BldqDooPre2HVAJjuA9unwsNgY0cqnlLV1Z6Noxrzem03klWYtfMKPeYelIliRb4lSUUGcr2q3KmC9hh+OXf2V8TYW5nyQ+9afNalKmYmOvZcCqPN9D2sPykzywohXqzINH96Hp0OKrwEbyzTZu1uOgFsSmo16PumwUxfWPI6XNwKyTKsaX5gbW7Ct6/7MuuNmtiam3As+CHtZ+1lg9z7RD4kSUVeca6oPUpSkW2KovBmfQ82jmpMVVc7Ih8nMHrZCUYsPc7DGKm+F0KITLN3g5Yfwbgz0H0RlGsOqHD5L1jWA2ZUh7+/hUcyIVt+0Mm3NJvHNKFWGQcePUlk1LITTFh1ktj4RGOHJkQqSSrySnFv7TH0jHHjKAQqlrBlzfBGjGlVAb1OYdOpO7SZsYedF+TmJ4QQWaI3BZ9O8NY6GHUcGowEy2IQdRN2faY1jVrxFlz7WwYaMTJ3RytWvN2AUS3Loyiw4uhNOs7ex/k7Mh+JyB8kqcgrpXy1xzsnpWDOBaZ6HeNaV2TN8IaUL25D2KM4Biw4yoRVJ2XoWSGEyA4nL2j7OYy/AK/OBfd6kJwI59bBb53g+zoQ8D3EPjB2pEWWiV7HO20qsWRQPUrYmXM1LIbO/vv57cB1mdNCGJ0kFRnI9U59LpVBbwZPIiBCOsPllupuDmwc1ZhBjcumfnPTetoe/jp719ihCSHykSLdUTurTC3AtwcM/AuG7oc6A8HMBu5fgb8+0ibVWzMUbhyWL8mMpKGXM1vGNKWVd3HiE5OZtO4sby+SOS2EcUlSkYFc79RnYgbFfbSfbwfmzj4FABamej7u4MPvg+vj4WTF3agnDFl0jOFLjnFPRogSQiAdtbOtZFXoME2bVK/DDChZDZLi4OQy+KU1/NQEjvwCcY+MHWmR42htxs996zCpgw9meh1/nQul/cy9HA6SmiRhHJJU5KWnm0CJXFevnBN/jm3KsOZe6HUKm0/fpdW0v/n9cIhUCwshRE6Y20Kd/vD2Xhi0A2r0BhMLCD0Nm8ZrtRcbx8Fd6TeYlxRFYUDjsqwe3pCyztbcjnxCz7kHmLn9Mkkyn5PIY5JU5KXSNbXHm/JNmaFYmOp5/2Vv1o9sRHU3ex49SWTi6tP0nHuQa2HRxg5PCCEKNkUBtzrQ5QdtUr22X2pDpsdHw9H58FMj+Lk1BC6DhMfGjrbIqOpqz4ZRjXmtlivJKkzffole8w5yN1Jq60XekaQiL3k01B5vHpEZTA2sSml7Vg9ryMevVMbSVM+hoAe8PHMv07dd4kmCjL8uhBA5ZuUIDYbDyCPQdwP4dAGdCdw8DGuHwrTK8OdHEH7F2JEWCTbmJkzrXoPpPXyxNtPue+1m7mHHeRkZUeQNSSoyYJBOfc4VwcoZEp/A7eO5t1/xTCZ6HYOalOOvcU1pWtGF+MRkZu64TOvpf7PtXKg0iRKiCJGO2gakKFC2KXRfCOPOQcv/A3t3ePwQDnwP39eGhZ3g7FpIktH5DO3Vmm5sHN2Eqq52PIxNYODCo0zdcJa4RPlCTRiWJBUZMEinPkX5t7bi+r7c2694LndHKxb29+P7XjUpaWfBjQePGfzbUQYsOML18BhjhyeEyAPSUTuP2JaApu/CmJPQawVUfBlQIOhvWNkXpleBnZ9BxA1jR1qolXW25o9hDRnQqCwAv+6/zms/BEgzYGFQklTkNc/G2uP1vcaNo4hRFIUO1Uuz451mDGvuhaleYdfFMNpM38N3f17kcbx8gyOEELlGp4eKbaHXchh7Cpq8C9bFIToU9nwLM6vD0p5w6S9IlvLXEMxN9Ezq6MP8fnVwtDbj7O0oOszexx/Hbho7NFFISVKR17xaao/BATIEnxFYm5vw/svebB3blCYVnIlPSub7XVd4adrfbD59R5pECSFEbnMoA63+D8adhdcXgGcTUJPh0hZY+jrMqgF7/wfR94wdaaHU0rsEW8Y0oUE5J2Ljk3hn5UnGLQ8kOi7R2KGJQkaSirzmVB4cy0FSPFzdaexoiiwvFxt+G1CXn96shauDJbciHjN8yXG6zznAyRsRxg5PCCEKHxMzqPIq9NsII45A/RFg4QARIbDjE0xm+1I7yB8leJ9MqpfLSthZsHhQPd5tUxG9TmHNiVt0mLWX0zcjjR2aKEQkqchrigIV22k/X9xq3FiKOEVReLlqKbaPb8boluWxMNVx5PpDOvvvZ8zvJ7gVIcMhCiGEQbhUhJe/0CbV6/IjuPmhJCfgFnEIk8VdwL8uHPxR6+wtcoVepzCyZQWWD6mPq4Ml1+/H8tqP+/l57zWSZU4LkQskqTCGSi9rj5f/lLak+YClmZ7xbSqx693mvFbLFYB1gbdp8d1uvt56gUdPZLQSIYQwCFNLqNELBm0nYeBOgpxaoJpaQ/gl2DoR/lcZ1o6Am8ek9iKX1PF0ZPPoJrxcpSQJSSqfbTrPwIVHuB8dZ+zQRAEnSUUGDDr8YJkGWpVv7H3psJ2PlLK3ZFr3Gmwc1Zj65RyJT0zmx91Xaf7tbhYfDCYxKdnYIQohskmGlC0ASlbnVJn+JI45A6/8D4pXgcTHELgYfm4Jc5vBsQUQJyMY5ZS9lSk/vlmLz7pUxcxEx66LYbSbuZeAK+HGDk0UYJJUZMCgww/qTbV2pQCnVuT+/kWOVHW1Z9ng+sx7qw7lnK25HxPPx2vP0HbGHrZIZ24hCiQZUrYAMbcFv0EwbD8M+Auq9wS9Odw5CRvGaJPqbXoXQs8ZO9ICTVEU3qzvwfqRjShf3IZ7j+Lo/cshvvvzonyJJrJFkgpjqd5Dezy3HuJjjRuLSEdRFFr7lODPcU2Z0tGHYlamXA2LYdiS43T6fj97LoVJciGEEIakKFCmHrw2B8afhzafaQOdxEXBkXnwYwOY/7L25VyiNN3JLu+SdmwY2Zg36rqjqvD9riv0nHuQ29KvUGSRJBXGUqa+Nsxe/CO4sNHY0YgMmOp19GtUlr8ntGB0qwpYm+k5fSuSt+YfpufcgxwLlk6EQghhcNZO0HAUjDwGfdZC5U6g6CHkAKwerNVe/PV/cP+qsSMtkCzN9Hz5WnW+71UTW3MTjgY/pP2svey8EGrs0EQBIkmFsSgK1Oyj/Xx4nnFjES9kZ2HK+NYV2TOhBQMbl8XMRMehoAd0/TGAQQuPcP5OlLFDFEKIwk+nA68W0GORNu9Fi4/AzlXroxgwC2bXgkWvwvkNkCTzMGRVh+ql2TS6CdXd7ImITWDAgqN8vukcCdIcSmSCJBXGVKsv6Ezh5mG4fcLY0YhMcLIx5/86+LD73eb09HNHr1PYfv4e7WftZczvJ7gaJh0IhRAiT9iVgmYTYMwp6LkMyrcGFG0OqOVvwoyqsOtLiLxl7EgLlDJOVqwc2oD+jTwBmLc3iDd+PsL9J8aNS+R/klQYk22JfztsH5pr3FhElpR2sOSrrtX5a1xTXqleClXVhqFtPe1vxvx+giv3ZLZ0IYTIE3oT8G4Pb66C0Seg8TiwcoZHd+Dvr2BGNfi9N1zZDsnyjXtmmJvomdyxCnP61MbOwoSTNyP59pSebedk1nORMUkqjK3e29rj6ZXarKKiQPFyscG/Vy02jmrMS5VLkJySXEzfw8ilx7kUKsmFEELkGcey8NIUGH8Ouv4CHo1BTdL6Li7uCrNrwr4ZECNDp2ZG2yol2TymCb5u9jxOUhi+LJCpG84SlyhzbIn0JKkwNrc6ULYpJCfA3mnGjkZkU1VXe37uW4eNoxrTtkoJVBU2nrpDm+l7GL7kGBfuSp8LIYTIMybmUK0b9N8Eww9BvaFgbg8Pr8P2yVrH7j8GQXCATKr3Am7FrFg2yI+WpbRanl/3X6fbjwcIvh9j5MhEfiNJRX7QbKL2eGKx1FYUcFVd7ZnTpw6bRzehXdWSAGw+fZeXZ+xlxLJAbkoZLIQQeau4N7T7Gt45D52+h9K1ICleayHwazv4oYHWBPlJpLEjzbdM9To6eyYz982aOFiZcvpWJB1m7WPTqTvGDk3kI5JUZCBPZ1/1bPRvbcXf3xj+eMLgfErb8eObtdk6tgmvVCuFosBf5+7x7SkTBi06zuGgB8YOUYgiRWbUFphZQ60+MGQXDNkNtd4CUysIOw9b3oP/ecP6UTJwynO0qOTC5tFNqONRjEdxiYxYepyP157mSYI0hxKSVGQoz2dfbfGx9nhisRRohYh3STv8e9fiz7FNeaVaSRRU/r4UTvc5B+j2YwA7zoeSnCxV70IYmsyoLdIoXRM6zYZ3LkC7b8HFGxJi4fhvMLc5zG0BxxfJ5LTPUNrBkt+H1Gd4cy8AFh8M4bUfAggKl6r4ok6SivyiTD2o1h1QYfMEaeNZyFQsYcuM7tX5sEYSPeq4YabXcTT4IQMXHqXdzL2sOXFTxgEXQoi8ZmEP9YbA8IPQfwtUex30ZnD7OKwfqdVebHkf7l0wdqT5iolex4SXvVk4oC5O1macuxNFh1l7WRcow/cWZZJU5Cetp4KptTZvxanlxo5GGEBxS/issw/73m/B283KYWNuwsXQR4xbfpLm3+5mYcB1HsdLNbIQQuQpRQGPhtD1Zxh/Hl6aCsU8IS4SDv0EP9SDX1+B06sgMc7Y0eYbzSq6sHlME+qVdSQmPokxvwcy8Y9T0hyqiJKkIj+xKw1N39V+/vNDiA4zbjzCYIrbWfBBu8rsn9iS99pWwtnGjFsRj5m8/iyNvt7JzO2XuR8tNy4hhMhz1s7QeCyMOgFv/gHeHUDRQfA++GMgTPOB7VO0kaQEJewsWDKoHqNbVUBR4PcjN3j1hwCuS3OoIkeSivymwUgoUQ1i78PGsdIMqpCztzRlRIvy7Hu/JZ92qYq7oyUPYuKZvv0SDb/ayQerT8lEekIIYQw6HZR/CXougbFntJEabUtBbDjsmw4za8DibnBhMyQlGjtaozLR6xjfuiKLB9bDydqM83ei6Dh7H1vPyOhQRYkkFfmNiRm8+iPoTLXJek7+buyIRB6wMNXTp74Hu95pzqw3alLdzZ64xGSWHb7BS9P20O/Xw+y7HI4qSaYQQuQ9e1do8YGWXPRYDF4tARWubIPf34CZ1bXRG6OK9j/Rjco7s2l0E/w8tdGhhi4+zmcbz0mfwSJCkor8qGQ1aP6+9vOm8dJBrAgx0evo5FuadSMasXJoA9pWKYGiwO6LYbz5yyHazdzLyqM3ZDZTIYQwBr0JVO4IfdbAqOPQcDRYOkLULdj1OUyvAsv7oAT9DWrR/Ee6pL0FSwfXZ0jTcgD8vC+InnMPcjfyiZEjE4YmSUV+1Xg8lGuuDXG3og/ERRs7IpGHFEXBz9OROX3qsPvd5vRr6ImVmZ4Ldx/x3qpTNPpqF7N3XOZBTLyxQxVCiKLJyQvafKp17H5tHpRpAGoSnF+PydKutDr/PrqD/hBb9OYlMtXr+LB9Zeb0qY2thQnHgh/yyqy97LscbuzQhAFJUpFf6fTw2s9a+83wS7DmbUgumt96FHUeTtZM6VSFAxNbMbGdNyXtLAiPjuN/2y5R/8sdvLvyJGduyUywQghhFKYWUL07DNgKww6A32BUMxts4kLR75isDUu7+m0IOVTk+km2rVKSjaMa41PKjvsx8fSZf4iZ2y/L/EyFVKFPKm7cuEHz5s3x8fGhevXqrFy50tghZZ6NC7y+UBsz+8JG2PZ/xo5IGJG9lSlDm3mx9/0WzOxZg+pu9sQnJrPq2E06zN5H1x8DWBd4i/hEST6FEMIoSvjAK9+ROOYMge79UUtUg6Q4OPU7zG8DPzWGIz/DkyhjR5pnPJysWT28IW/UdUdVYfr2S/RbcERq2guhQp9UmJiYMGPGDM6dO8dff/3F2LFjiYkpQMOclakHnX/Qfj7wPRyeZ9x4hNGZ6nV0ruHKuhGNWD28IZ1rlMZUr3As+CFjfg+k0dc7mbH9EveipP2qEEIYhZkNwc4tSBy4EwbvhBpvgoklhJ6BTe/AtMqwYSzcOWXsSPOEhameL1+rzv9e98XCVMeeS2G8Mmsvx4IfGjs0kYsKfVJRqlQpatSoAUDJkiVxdnbmwYMC1r6x+uvQ4mPt583vQeAy48Yj8gVFUahVphgze9Zk/8SWjHupIsVtzQl7FMeM7Zdp+NVORi87wbHgBzJqlBBCGIOigGtt6OIP75yHl78C54oQHw3HfoU5TWBeKwhcCgmPjR2twXWt7cbaEY0o52zNncgn9JhzgPn7guQeVUjk+6Riz549dOzYkdKlS6MoCmvXrk23jb+/P56enlhYWFCvXj0OHz78zH0dO3aMpKQk3N3dDRy1ATR9F/wGAyqsG67N6inEP4rbWjDmpQrse78ls96oSR2PYiQmq6w/eZuuPx6g4/f7WHn0hsxyKoQQxmJZDOoPgxGHod8mqPKaNnz8raOwdpjW92LrhxB+2diRGpR3STvWj2rMK9VLkZis8snGc4xdHsjjeLk/FXT5PqmIiYnB19cXf3//Z76+fPlyxo8fz+TJkzl+/Di+vr60bduWe/fupdnuwYMHvPXWW8ydOzcvws59igLtvoFab2nD1K0eIomFSMfMRBuSdtWwhmwc1ZjXa7thZqLjzK0o3lt1igZf7uDzTee4GiajiQkhhFEoCng2htd/hfHnoNUksC8DTyLgoD98XwcWdoSzayCxcPY7sDE34fs3ajKpgw96ncK6wNu8+sN+gu8XoObpIh0TYwfwIu3ataNdu3YZvj5t2jQGDx5M//79Afjpp5/YtGkT8+fPZ+LEiQDExcXRpUsXJk6cSMOGDZ97vLi4OOLi4lKfR0VpnakSEhJISEjI6enk3MvfoU+MR3fqd/hjIEmPQkn2G5KnIaRch3xxPQqQvL5ulYpb8UUXH95tXZ6Vx26x9PANbkc+Yd7eIObtDaKuZzF61HGjrU9xzE31eRJTdsjnLXuMed3y03uV78v0HChsfxuF6XwyfS7mxaD+aKg7AuXaLnTHf0W5sg0laA8E7UG1Lk5yjTdJrtkH7I3XysJQ702fem5UKmHF6N9PceHuIzrO3se016vRrKJLrh7naUXyc5ZLx3kRRS1ADdkURWHNmjV06dIFgPj4eKysrFi1alXqOoC+ffsSERHBunXrUFWVXr16UalSJaZMmfLCY0yZMoWpU6emW7906VKsrKxy6UxySE2m2q0llAvbBsClEh05X6qb9u2HEBlIUuF8hMKBUIWzDxVUtM+LlYlKXReVBsWTKZlPPuKiYIuNjaVXr15ERkZiZ2dn1FgKRJkuxFMs48PxCN+Nx/2/sUjUhgtXUQi1q85151aE2lUHJd83NMmSiDj49ZKe69EKCirt3JNp7aqik39r8oXMlukFOqm4ffs2rq6uBAQE0KBBg9TtJkyYwN9//82hQ4fYt28fTZs2pXr16qmvL1q0iGrVqj3zGM/6Vsvd3Z3w8HCj3xzTUFV0ATPQ7/4cgGSfLiS9MhPMrA1+6ISEBLZt20br1q0xNTU1+PEKi/x03e5EPmHV8VusPHaLO0/NclrHw4GeddxoW6UEFvmk9iI/XbeCxJjXLSoqCmdn53yRVGRUpt+5cwcnJycjRpZzhe1vozCdT66cS1ICyuWt6I79iu76ntTVqr07yTXfItm3F9iUyKWIny8v3pu4xGQ+33yBZUduAtCykgvfdauKrUXuHk8+Z1mX2TI93zd/yqnGjRuTnIVJ48zNzTE3N0+33tTUNP99+JpPALuSsHEcunNr0d2/Aj2XQDHPPDl8vrwmBUB+uG5lnE0Z38abMS9VYs+lMJYeDmHnhXscDY7gaHAEn26+yGu1XHmjbhkqlrA1aqwp8sN1K4iMcd3y0/tUoMr0bCpM5wKF63xydC6mplDtNW0Jv6KNFnViMUrkDfS7P0e/52uo3BHqDADPJnnSWsGQ742pKXzZ1ZeaZRz5eN0Zdl4Mo+ucw8zpU9sg9yH5nGVt/5lRoOvPnJ2d0ev1hIaGplkfGhpKyZIlc7Rvf39/fHx88PPzy9F+DK7WW9B3A1i7aONfz20OV3YYOypRQOh1Ci28izPvrTrsf78l77SuiKuDJZGPE/h1/3XaTN9Dtx8D+OPYTRk5ShRoBaZMF+JZnMtD28/hnQvw6hxwqwvJiVpn7oUd4Xs/OPADxBawIfOfobufO6uGNqC0vQVB4TF08d/PplN3jB2WyIQCnVSYmZlRu3Ztduz495/o5ORkduzYkaY5VHaMGDGCc+fOceTIkZyGaXgeDWHIbihdEx4/hMWvwZ8fQWLcC39ViBQl7S0Y1aoCeya0YEF/P9pWKYFep3A0+CHvrDxJ3c+3M2X9WS7cLTozwYrCo0CV6UJkxNQSfHvCoG0wdJ9WS2FmA/cvw58faJPqrRkGN49CwWndnk51Nwc2jGpMo/JOxMYnMWLpcab9dZHk5IJ7TkVBvk8qoqOjCQwMJDAwEICgoCACAwMJCQkBYPz48cybN4+FCxdy/vx5hg0bRkxMTOpoUEWGvRv036IVMKDNvv1zKwi7aNy4RIGj1yk0r1ScOX3qcGBiS95rWwm3YpZEPUlkQcB1Xp6xl9d+2M/KozdkXHEhhDCWktWgw3St9uKVaVCiKiQ+gZNLtfv/nCZw9FeIK5hDiDvZmLOwf10GNS4LwKydVxi6+BgxcYlGjkxkJN/3qTh69CgtWrRIfT5+/HhAG+FpwYIF9OjRg7CwMCZNmsTdu3epUaMGW7dupUSJnHVe8vf3x9/fn6SkAvRPk6mlVsCUbw3rR8Ld0zCnKbT8GOoNA32+f7tFPlPczoIRLcozrJkX+66Es+xwCNvOhXI8JILjIRF8suEcXWpqfS98SuejgQxEgXXq1Kks/46Pjw8mJs8v3wpkmS5EZpjbgt9A7UvFm0fh6C9wZrX2P8DGsfDX/4FvD+31ElWMHW2WmOh1fNzBB+9Sdny4+jR/nQul648BzHurDu6OMnpbfpOp/zJnzZqV5R33798fW9ucd6xp3rz5C6dvHzlyJCNHjszxsZ42YsQIRowYQVRUFPb29rm6b4Pzbg+uAdoMnVd3wl8fw+mV0HGm1kRKiCzS6RSaVnShaUUX7j16wqpjN/n98A1CHsSy6GAwiw4G4+vuQK+67nSoXhprc0lgRfbUqFEDRVFeWO6n0Ol0XLp0iXLlyj13uwJdpguRGYoC7n7a0vYLOLkMjs6H+1fgyM/a4l4P6gwEn85gamHsiDOtW203yrlY8/aiY1y4+4hO3+/jh961aeBVsEdwK2wydecfO3Ysbm5u6PWZG2Lyxo0bdOjQIVeSCpFNtiWh9x8QuFj7luLOSZjXUquxaPEhmNsYO0JRQBW3tWB48/IMbepFwNX7LDscwl/n7nLyRgQnb0Tw6cbzdK5RmjfqlqGqq/zzJrLu0KFDuLi8ePIrVVWpWrVqHkQkRAFj5QgNRkD94RC0R6u9uLAJbhzSlq3vQ43eWu2Fk5exo82UWmWKsX5kI4b8dozTtyLp88shJneqQp/6HsYOTfwj018nHj16lOLFi2dq28KQTBSKqnKdThsdquLLsPUDOLMKDvrDmT+0JlE1eoEuf8xFIAoenU6hcQVnGldwJjw6jj+O3WTZ4RCu349lyaEQlhwKobqbPW/ULUNH39LYSO2FyIRmzZpRvnx5HBwcMrV906ZNsbS0fOF2haJMFyKrFAXKNdOWR3fh+CI4tgCibmp9Lw98D+Waa7UXldqBPn8PsVrK3pKVQxswYdUp1p+8zf+tPcOFO1FM6VQFU32+7yZc6GXqHZg8eTI2Npn/ZvvDDz/E0dEx20HlB4VqpBCb4tDtF63molhZiL6r9bmY01RrHiVEDjnbmPN2My92vtOcpYPr0dG3NKZ6hVM3I/lg9Wnqfb6dD1af5vTNSGOHKvK5Xbt2ZTqhANi8eTOlSpV64XaFqkwXIjtsS0Kz92DsKXhjOVRoAyhwbTes6APTq8KuLyDyprEjfS4LUz0ze9ZgwsuVUBRYciiEfr8eJvJxgrFDK/IynVRYWWW+Q8wHH3yQpZuCyCMVXoIRh7S2lhb22rwWi16Fxd205lFC5JBOp9DQy5nZb9Tk4Aet+Kh9Zco5WxMTn8SywyF0/H4fHWbvZcmhYB49kRuAEELkOZ0eKr0MvVfCmJPQ5B1trqvou/D31zCjGix7Ay5vhyxMHpyXFEVhePPyzOtTByszPfuv3KfrjwHceBBr7NCKNGmPUNSYmGvtLH3fgD3fwuF5cGWbtlRqD80mSGdukSucbMwZ3LQcg5qU5VDQA5YdDmHL6bucuRXFR2vO8Pmm83Ty1fpeVHezR8mD2WBFwaKqKqtWrWLXrl3cu3eP5P/8g7N69WojRSZEIVHMA1pNgmYT4cJGrWP39b1wcbO2OHhA7X5QraexI32ml3xKsOLtBgxceIQr96J59Yf9zHurDjXLFDN2aEVSlhug3b9/nxEjRuDj44OzszOOjo5plsKi0M++auUIL3+p1VxUex0UnVaAzG0OS7rDzWPGjlAUEoqiUL+cEzN71uTgh634+JXKeLlYExufxO9HbtDZfz/tZ+1j0YHrREnthXjK2LFj6dOnD0FBQdjY2GBvb59myYpCX6YLkRMmZlD1Nei3EUYc0QZ1sbCHiGDYMRWTWdWpHfQDSkhAvptUr6qrPWtHNMKnlB3h0fH0nHuQzadlBm5jyHJNRZ8+fbhy5QoDBw6kRIkShfbbxSIz/KCTF3T9GZq9D3u+g9Mr4PKf2lKuOdQfAeVf0jp9C5FDjtZmDGpSjoGNy3Lk+kOWHQ5h0+k7nL8Txf+tO8sXmy/QoXop3qhXhpruDoW2fBGZs2jRIlavXk379u1zvK8iU6YLkVMuFaHdV1oNxtk1cPQXlFvHcIs4CIs6gXMlbdQo355g6WDsaIF/O3CPWnaCnRfuMXzJcSa28+btpuXkPpKHspxU7N27l3379uHr62uIeISxOFeA1+ZozZ/2/g9O/q513rq2G5wqQP2hWpMpM2tjRyoKAUVRqFvWkbplHZnc0YfVx2+x7HAIl+9Fs/LYTVYeu4l3SVveqFuGDlUzN+qcKHzs7e1fOP+EEMJAzKygZm+o2ZuEkKPcWvcZHlGHUcIvakPSbp8C1bpqI0e51jJ2tFibmzDvrTp8uvEcCwKu89WWC4Q8iOXTzlXR6ySxyAtZ/vrZ29ubx48fGyIWkR84eUGXH2D0CWgwEszt4P5l2PQOTKsM2yZB5A1jRykKEQcrMwY0Lstf45ryx7AGdK3lhrmJjgt3HzF5/Vkaffs3S67oOB4SkekJ0UThMGXKFKZOnSr3HCGMrZQvJ8v0J3H0aWj/HRT3gcTHcGIxzGsBc5rBsYUQH2PUMPU6hSmdqjC5ow+KAksPhTB8yTGeJMhQ0nkhy0nFDz/8wEcffcTff//N/fv3iYqKSrMUFkW+/W0xD2j7OYw/B+2+0YaifRIJ+2di8n0t6l/5FuX8OkiMM3akopBQFIXaHo78r7svhz98iamdqlCphC1PEpI5HKajx7zDvDxjLwsDrsvQgUVE9+7defjwIcWLF6datWrUqlUrzZIVRb5MFyI3WNhB3cEwLAAG/AnVuoPeDO4EwobR8D9v2Pwe3Dtv1DD7NyrLD71qYabX8efZUN76RYaczQtZbv7k4OBAVFQULVu2TLNeVVUURSk0EwtJ+9t/mNtCvbfBbxBc/gsO/ogS9DclHp2G1QNhqxNU7wm1+kDxysaOVhQS9lam9G3oyVsNPDgSFM53aw5yKsKEi6Fa7cWXW7SRo3rV88BXRo4qtPr27cuxY8d48803c9yHT8p0IXKRokCZ+try8lcQuEQbOephEByeqy1lGmp9L3w6aSNP5rF21UpRzNqMwQuPcvj6A7r/dICFA+riZCWT/hpKlpOK3r17Y2pqytKlSwt1R23xHzq9NttmpXYk3LtE0B+fUCHmCEr0XW2W7oP+4FpHm6XbpzNYOxs7YlEIKIpCTXcHepdP5scWzdhwOpSlh0O4FBrNiqM3WXH0Jj6l7OhVrwxdarrKrN2FzKZNm/jzzz9p3LixsUMRQmTE2gkajdaaTAft1pKLC5shJEBbtjpBzTehdn9wLJunodUv58SKoQ3oO/8wF0Mf0fXHAH55y/j9PwqrLN+Bz5w5w4kTJ6hUqZIh4hEFQbGynC/9OmVfnodp8B44/htc2gq3jmrL5ve0kaOqvgbeHfLN6BCiYLOzNKVfo7L0bejJseCHLDmkjRx17k4UH689w5ebz9Ophiu965Whqqt8E10YuLu7Y2dnZ+wwhBCZodOBV0ttiboNxxfBsQXw6Dbsn6ktXq202ouKL4M+b74EqlzKjj+GNaTv/MNcC4/hjZ8P01/GfzCILPepqFOnDjduSEddAehMoGJb6LkExp+H1p9CqRqgJsHVHbBuBHxXQZuZ8/QqiIs2dsSiEFAUhTqejkzvUYNDH2jzXpRz+XfW7g6z99H5+30sPxJCbHyiscMVOfC///2PCRMmcP36dWOHIoTICrvS0Px9GHsaei7VkgnQ/jdY3lubtXv3V1rykQfcHa1YNawhvu4OPIxNwP+cnsPXH+TJsYuSLKeJo0aNYsyYMbz33ntUq1YNU1PTNK9Xr14914ITBYhNca36s9FouH8VzqyGM39A2Pl/Z+Y0sYTyrbRvKCq21X5HiBwo9tS8FwevPWDp4RC2nrnDyZuRnLx5ms82nqdrbTf6NPDAy8XG2OGKLHrzzTeJjY3Fy8sLKyurdPebBw/knwIh8jW9CXi/oi0PgrSaixOLtNqL3V/C399oTavrDIByLQw6J5ajtRlLB9Vj0MIjHLj2gIG/HWdunzo0rehisGMWNVlOKnr06AHAgAEDUtcpilLoOmr7+/vj7+9faM4nTzl5QbP3tCX0HJz9J8F4cA0ubNQWFHDz+6efRntwqaR1/BIiGxRFoYGXEw28nAiP9mHVsZssOxxC8P1YFgRcZ0HAdZpUcKZvA09aeBeXMcsLiBkzZuTavqRMF8LIHMtC66nQ4kM4v0HrexG8/9//C4qVhTr9ocabWj8NA7A2N2HumzXpMWsb5yJg0MKjfN+rJm2qlDTI8YqaLCcVQUFBhogj35GRQnJJCR9tafER3D0FF7doy51AuHlYW3ZM1QqTfzqC414fTMyMHbkooJxtzBnazIshTcqx90o4iw5cZ8eFe+y9HM7ey+G4FbOkT30Putdxp5i1fM7ys759++bavqRMFyKfMDGHat205d55OPornFymjRy1bRLs/Ax8umi1F2Xq5/oXjhamegZWSmZbdCm2ng1l2JLjTO9Rg06+pXP1OEVRlpMKDw8PQ8QhCjtFgVK+2tJ8IkTe0jp3X9wCQX9rhcnBH7TF1Ao8GoFXC606tHhlqcUQWabTKTSr6EKzii7ceBDL4oPB/H7kBjcfPubLLReYtu0SnWuU5q0GntKxO5/avHkzer2etm3bpln/119/kZSURLt27YwUmRAiVxSvDO2/gZcmay0ajvyifel4eoW2FPfRkovqPbQ5MnKJiQ6mv14NKzMTVp+4xdjfT6CqKp1ruObaMYqiLDde+/LLL5k/f3669fPnz+frr7/OlaBEEWDvCn4D4c1VMCEIui+CGr3B2gUSYuHKNvjzQ/ixgTaZzuq34eTv8OiusSMXBZC7oxUftK/MwQ9a8U3X6viUsiMuMZkVR2/SYfY+uv4YwPqTt0lISjZ2qOIpEydOfGZzpeTkZCZOnGiEiIQQBmFmDbXegrf/hsG7oGYfrR/mvXOw+V3t/4D1o+F2YK4d0kSv47vXfXmjrjvJKoxbHsjGU3nTcbywynJNxZw5c1i6dGm69VWqVKFnz568//77uRKYKELMbbTJcXw6QXIy3DsLV3fBtV0QHADRd+HU79oC2jcX5ZqDR0Mo00DmxBCZZmmmp7ufO6/XceN4yEMWBgSz+fQdjgU/5FjwQ0rbW9CvkSc9/Mpgb2n64h0Kg7p8+TI+Pj7p1nt7e3PlyhUjRCSEMDjXWtrS5jM4tVyrvQi/CMcXaotrba32osprYGaVo0PpdAqfd6lGUrLKiqM3GfN7IHpFoV21Url0MkVLlpOKu3fvUqpU+ovt4uLCnTt3ciUoUYTpdFCymrY0Gg0JT+DGIS3BuLoL7pzUvrm4d05rKgXgXFFLLlKSDIcy0lxKPJeiKNT2cKS2hyMfv1KZpYdDWHwwmNuRT/hi8wVmbr9Mdz93BjQqi7tjzm5aIvvs7e25du0anp6eadZfuXIFa2tr4wQlhMgblg5Q722oO0T7gvHofDi3Dm4d05Y/PwTfXlqC4VIx24fR6RS+fK06iUkqq0/cYtSyE/ygU6TzdjZkufmTu7s7+/fvT7d+//79lC5deDq5+Pv74+Pjg5+fn7FDKdpMLaBcM3hpilYt+t5V6PbrP4VIZW2b8Evatxdr3oaZ1WF6FVg1EI78rI0+lSxNWkTGittZMPaliux7vyXfdK1OxRI2xMQn8ev+6zT7dhfDFh/jWLAMXWoMnTt3ZuzYsVy9ejV13ZUrV3jnnXfo1KlTlvYlZboQBZSigGcj6PaLNifWS1PAwQOeRMKhH8HfDxZ00PpkJMZn6xB6ncK3r/vSybc0ickqI5YeZ9fFe7l7HkVAlmsqBg8ezNixY0lISKBly5YA7NixgwkTJvDOO+/keoDGIiOF5FPWTtpM3VVf057HPoCQgxASAMEHtA5eUbfgzCptAbBwALc6WpWpa20oXQtsZFxqkZaF6b9No/ZeDufnfUHsuRTGljN32XLmLjXLODC8eXlaeRdHJ0PS5olvvvmGl19+GW9vb9zc3AC4efMmTZo04bvvvsvSvqRMF6IQsHGBxuOg4Ri4ulOrvbi0Ba7v1RZrF60/Ru1+UCxrAwvpdQrTuvuSlKyy6fQdhi0+xpJB9antUcww51IIZTmpeO+997h//z7Dhw8nPl7LCC0sLHj//ff54IMPcj1AIZ7LyhG822sLQHwM3DwKIQe06tKbR+BJBFzZri0pHMr8m2S41tZGpTKT5hRCaxrVtKILTSu6cPHuI37Zd421J25zIiSCwb8dpVIJW4a38OKVaqUw0RtuoiahNX8KCAhg27ZtnDx5EktLS6pXr07Tpk2NHZoQwph0OqjwkrZE3oTjv8GxhVofzH3TYN90qNBaa9VQoQ3o9JnarYlex4yeNYiJT2T3xTAGLDjCyqENqFjC1sAnVDhkOalQFIWvv/6a//u//+P8+fNYWlpSoUIFzM3NDRGfEFljZq01lyrXTHuelKDNj3Hr+D/LMa3DV0SItpxdo22n6LQO4K61/qnNqKk1r5L5Moq0SiVt+aabL++2rcT8fddZfDCYi6GPGPN7IP/76xJDmpajW203LEwzd8MSWacoCm3atKFNmzbGDkUIkR/Zu2kT6jV9Txum/uh8rR/m5b+0xc5Nq7mo1QdsX9xPwlSv44fetej98yFOhETw1i+H+WN4Q1wdLA1/LgVclpOKFDY2NtI2VeR/etN/ayNSPInUhqVL6ex16zg8ug2hZ7Tl+G/adjpTcPH+p+N4Ve2xRFWtdkQUKcVtLZjYzpthzb1YdOA68/dfJ+RBLB+vPcPMHZcZ1Lgsb9b3wNo820Wq+MesWbMYMmQIFhYWmdr+p59+onfv3tjayjeJQhRpetN/R5K8fxWO/QonlkDUTdj1Gfz9FXi/glKjL6jqc3dlZWbC/L5+vD7nAFfuRdPnl0OsGtoQR5kw9bkyVXf/2muvERUVlemd9u7dm3v3pIOLyKcs7LWajCbjoecSeOe81vmrxxJoPB7KNtW2SU6A0NNwcqk2ysTCjvBNWZheFZa9ATs/h3Pr4UHQCwsoUTjYW5oysmUF9r/fkskdfShtb0HYozi+3HKBpt/s4ue913iSkH5eBZF548aN49GjR5nefsKECYSFhRkwIiFEgePkpQ1JO/48vDoX3OtDciKcW4fJ0tdodf59dId+0PplZqCYtRm/DahLaXsLroXFMGjhESnfXyBTX6utW7cu04W2qqps2LCBTz/9lOLFi+coOCHyjF1pbancQXuuqhB5A+6egbuntSZUd09DRLC2PvIGXNz87++b22m1GCWrarUbxStrj1KrUShZmunp36gsvet5sDbwFj/susL1+7F8tuk8c/dcY0SL8vSs6465iTSLyipVVWnVqhUmJpmr9Xn8+LGBIxJCFFimFuDbQ1vunoFjv6Ke/B2buLuwfRLs+lwb+KXOAHDzSzccfWkHS34bWJfXfgjgeEgEE/84xfQeNVBk2PpnylSpraoqFStmfwxgIQocRdE6czuU+bcTOGhNp0LPpk007p2HuChtBKqQgLT7sXbRkgsXb3SOFXB6FAExdcFBJtYpDMxMdHSv485rNV1ZffwWM3dc5lbEYyavP8ucv68yqlUFutV2w1Q6dGfa5MmTs7R9586dcXSU5F0I8QIlq8Ir/yOx2UecXf4JvvFHUUJPw8ll2lKiGtTpD9W7g/m/zSnLF7flxzdr89b8w6wNvI2Xiw2jWlUw4onkX5lKKnbt2pXlHbu6umb5d4TI9yzstUn2PBr+uy4pAcIvawlG6GkIuwhhF7SO4DFh2nJ9L3qgMcCML8DKSesI7lLpn5oNLfHA2kUm7iuATPQ6uvu506WmKyuO3uD7nVe4HfmED1af5sfdV3m3bSU6Vi8l325lQlaTCiGEyBJzW4KdW1Cl3TeY3juldew+84d2/940HrZN0hKLOgO0vpRAo/LOfNq5Kh+uOc3/tl2irIs1HaoXnrnZckumkopmzZoZOg4hCi69KZTw0RZ6/Ls+LlqbmC/sIoSdJzn0PI9DArGKD0OJvQ/B+7TlaZbFwKmC1h7UyQscvcCpPDiWA3ObPD0tkXVmJjrerO9Bt9puLD0Uwg+7rxLyIJbRy07wy74gPmpfmbpl5Vt1IYQwOkXR5rByqwNtP4fAZVqCcf+y9nh0PrjV1ZKLKl3oVa8MV8Oi+WVfEO+sOImHozXV3GTOm6fJUCUZ8Pf3x9/fn6Qk6ZQjssnc5p8hamsBkJSQwPbNm2n/UjNMI6+nJhupNRsPguDxQ7h5WFv+y7bUP0lGuX8SjZSEoyyYyJDO+YmFqZ4BjcvSs6478/cF8ePuq5y8EUH3OQdo41OCie28KeciSWJekjJdCJEhy2LQYDjUH6ZNond0Ppzf8O/9+M8PoEZvPqzXj6Dw4uy8cI+hi4+xaXRjHKxkRKgUklRkQGZfFQZjZg2la2jL0xIea82oHlyF+1fg/jXt8cFViL0Pj+5oy39rN1DAwf3fJMPpn8diZbX1knAYjZWZCSNbVqCHXxlmbL/EssMh/HUulJ0X7jGgcVlGt6qAjQxDmyekTBdCvJCiaCNAlm0Kj0LhxCJtUr3IEDjwPfoD3zPXoymf2NdnaURVxi0P5Je+fuh00rQVJKkQIv8wtYRS1bXlvx4/TJtk3L+ijcN9/yrEP/p3Mr9r/+3/pGg1HMU8wMEDink+9bOH9lomZxoV2edia87nr1ajX0NPvtxygZ0X7jF3zzXWBd7iw/aV6eRbWvpbCCFEfmJbApq+C43HwZXtWu3FpT8xCd7DJ+xhpLkDv19tzsItg+j/ShNjR5svSFIhREFgWQzcamvL01RV6wiemmSkJB1X4eF1SIjVJvZ7dBtCDqTfr94M7N3TJhrFPP9NQCyLScfxXFShhC3z+/mx80IoUzecI/h+LGN+D2TZ4RA+7VyVCiVkAjeAkJAQQJtN287OTmoWhBDGo9NDxbbaEhGi1Vwc/43iMfcYbbKWpMPruH+7BU7NhkH5VkX6i7osJxW//fZbmuc6nQ4XFxeaNGmClZVVrgUmhMgERQGb4try9IhU8E/CEa7NrfHwurZEBMPD4H/m27gJSfFaEvLg6rP3b2abNuGwd9MWu38erV1AJ8OlZlVL7xI09HJm3p5r+O++wsFrD3hl1j5GtizP0GZemJkU7Wvq6emZpubG1dWVAQMG8OGHH2JmJu2XhRBG4lAGWv0fNJ8IFzZyZfMsysccx+nWTli6U3u9dj+o2Ue7LxcxWU4qxowZk+Z5UlIS0dHRuLi4sHPnTqpUqZJrwQkhckBRwMZFW9zqpH89KVGrwXgYnD7heBgM0Xe1plWhZ7TlWXSm2qSB9u5g7/pPwuH6VPLhqg3DK7Ud6ViY6hnVqgKv1nJl8rqz7Lhwj2nbLrH59B2+7lodX3cHY4doNCnDmKuqyu3btzl69Cjfffcd27ZtY/v27VhaWho5QiFEkaY3hSqv4laxEwNm/k7DiA28YbYP64gQ2PEJ7PoSKnfURo7ybFxk7oFZTioePnyYbl1oaCjDhw9n7NixbNu2LVcCE0IYmN7k3wn+yj6jPWjCY62qNyXRiAiGyFtaDUfULa3TeHLCv69lxMxWSzj+m2w8/bOpheHOM59zK2bFz33rsP7kbaZuOMeFu4949Yf9DG5ajndaVyqStRb/Hca8V69ejBkzhiZNmvDJJ5/w5ZdfGikyIYT4l4Wpnnd7daSLvyPfxvZg4f+3d+fxUZbn/se/k8lGCAmQSEIgAWUTDCQIBGnVEg1g9ECF0tLl1Igezq8ttHqirdIFiqdKixutjXKqpaitFfUo9LhQMAWxioJAFFlULAgGEghbNsg2z++PIQMhDGZmMnmWfN6v17zIPPNk5rruMPfkyr08OZ/riqMrpc83Sdtf9N6SB3uLi6xveqcUO1jARcUHH3xw3uO33HKLpk6dqo0bNyo21vsLwogR51lwCsAeorqcvjjfkPM/3tToLSwqTxcazbez75886h3tOLzLe/MnLllK6O1dON4tteW/XZIV03Bc8jRJigpHpqZzuVz6anYfXTkwWfe8vEMrSw7of974l/75SYV++82RGtirc20/W1lZ2epYjx49dMcdd+iRRx7RT3/6UxmGoYSEBBOiA4AzhqUl6I6Jg7XwtV26pWSQXv3RSvVv+NS7sPuD57zXq1p1t/T6Ainza94Co8/ljhy9CLioyM7OlsvlkmEYrR5zuVy64oorfF+zHzjgYO5I75a13dP9n1Nfe6bI8Fd8NNRKtRXeW9m2Vk8RJek6Scb226X4lNZFR6sipKdt13kkxcfot98cqfzM3pr74gfafqBS//bIm/r5DcP0nbEZnWaHqO7du18w18TERD5jAFjGf1x1idZ+dEjv/OuoCp8r0fPf+5LckxdLE+6Rtj0nbVoqHdoulfzZe+ud5S0uMqc76sK2ARcVe/bsOe/xvXv3asKECfrggw+Y7wrAKzpOSh7kvZ2PYXi3y60slarKTl+Lo+W/RuVBqbpcLsNz5lod2ur/NSOiThcYqecvPOJTpK69pLielt2l47rMVI3M6K47n39fb35SoZ+v+FBv7a7Qoukj1C3WmaM1Z2teU3GuVatW6cknn9Rf//rXDo4IAPxzR7j04Deydd3D67Vl33H95d3PdNO4/lJsgjTmP6TRt0r7N3pHL7a/JB18X/q/26TVv5BGzPAWGCnDzE4jZAEXFT16tJwP5vF4tHfvXv3qV7/SpEmTdOmll7ZbcAAczuXy/nIf11NKHX7eUxobGvTqKy/r+qtHK+pUhd/iQ1Vl3u11PQ3Sif3e2wVfO8I77Sq+l3cXqxb/9vIucO/ay1uExCV5R2Y6UEpCrJ6cmaOlb+3Rb1bt0msflunj8ir9z3dHaWAvZ289e+6aCkmqqanR7bffrhtuuOG8jwOAmfp076KfXDdEv1i5XYtWfaQJw1LUO/H0H9ldLiljrPd23UKp5C/eAuPov6RNj3tv6VdIY26Vhk6x7TrDgD8lzzcsbRiGxowZoz/+8Y/tFlh7mjp1qtatW6drr71WL7zwgtnhAAiUK8I7ytDzAlOtJKmxXqo55L/wOD3qoZNHJcPjPbfmUFsC8BYWfguPcwoTd/uMJkREuPQfV12iy/v10A/+vEWfHq7RlN+/pfunZ+mGEb3b5TWsqPk6FYZh6ODBg9qyZYsWLVqkyMhI3XfffSZHBwDn952x/fTS1lJt2Xdc81du1x9uOs/Oi3E9pS/9ULpitrTnDW9xsesVaf873luXu6SR/+7dmjZpQIfnEIqAi4pzh6XdbrcyMjKUkZHRbkG1t9tuu0233HKLnnzySbNDARBOkdFndpW6kKYG7zU8ag5J1YdP/3vIO9JRfajl8ZoKScaZdR9t0aVH62IjLlnqmuQtTuKSvPfjkrznfsEoyOUZPfTyj67UD5/Zqg3/OqLZz2zR3iND9IPxAxy5zuLs61QYhqGoqChNnz5dDz/8sC666CKTowOA84uIcGnhtBG64XdvavWOcq36sEzXZab6O1kakOu9VR6Utj4tbV7mnQ789u+8twHXeKdGDc7v8NHyYAQcoR2HncePH69169aZHQYAq3BHeXebSmjDX/s9TVLtkZbFRnX5OQXJWQWI0eRdJ3LymFTxURuCcUldup9TbPT0ft012Xc8OS5ZT0/rpQffcuuxDeW6/+8fad+RWv1qaqai3PZcmO5P8x+vXC6XunXrpiFDhnBxVQC2MCS1m/7fVy5R0dpPdc//bdf4IRcpNuoL1u8l9Ja+8hPpykLpk9Xe0Yvdr0uf/sN769ZburzAO3rRls8tk1i+7Fm/fr3uv/9+bd68WQcPHtRLL72kG2+8scU5RUVFuv/++1VWVqasrCw98sgjysnJMSdgAM4S4T5z1fIv4vF4p1adO9pRfchbmNQePT3iccR7O3lMknGmCDmy+4JPHynpLkl3donSYU+8jn3QTR9/0lNDLrlYkfHJZxUiPeWK7q6Ek/u8074SUr2jODZhxz9eAUCzH14zSC9tKdWBE6f0xJv/0pxr/GxWci53pHTp9d7bsb3ekYstT3v78Td+La2/Xxr6b9KYWd6L6lmM5YuKmpoaZWVl6ZZbbtG0adNaPb58+XIVFhZqyZIlGjt2rBYvXqxJkybpo48+Uq9ene8S6QBMFBHh/aW+a7KkNuzk0dToLSZqj7QsNmqOnPna99hR79cNtXIbDUp1HVOq65hUt0/aWdLqqSMl5UrSrp97D8QknBkBaZ56FdezxWhIi+Ox3W27NS8AmCk2yq278i/Vbc+W6NF1n+obo9PVKyHAxdc9+kt5v5TG/1Ta+Tdp0x+lfW9LO1Z6bxddqojLZyqyqXsYMgiO5YuK/Px85efn+338oYce0qxZszRz5kxJ0pIlS/TKK69o6dKluvvuuwN+vbq6OtXV1fnuN1+EqaGhQQ0NDQE/nxM1twPtERjaLTiOb7eY7t5bjzYuyGuo9RUY//rsM/2peKu6NBzXpQn1mjIoWjH1x71FSM0R1Z8oU0xTtXc73rpK7+3Y3ja9jBHbXU3fel5G2siAU7LSz8rJfbrT3htOysdJuUjOyqejcskfdpGW9k3U+5+f0G9W7dSvp2YG+Uwu6dKvem/l2xWx5U+K2Pa8XId3yf33uzTBHafGnMuklPDtvtrWtrJ8UXEh9fX12rx5s+bOnes7FhERoby8PG3YsCGo51y4cKEWLFjQ6vjq1auZ03uONWvWmB2CLdFuwaHdzidSfQeN0WM73ao55tIj2w39cFiTYpMkJZ0+xfAoqqlW0Y1Vim6sVkxjpaKbqhXdWKWYxqrTx5u/9h6P8pyU69Rx7Vq9VJ/28v9HHX9qa2vbNctQ+OvT165d65g+3WnvDSfl46RcJGfl0xG5XNNdev/zSL24pVQDGvepT9d2eVZFDr1C6Uff0pCyFYpprNJ7a/6i0p7j2uPJz6utfbqti4qKigo1NTUpJSWlxfGUlBTt2rXLdz8vL0/vv/++ampq1LdvXz3//PMaN+78jT937lwVFhb67ldWVio9PV0TJ05UQkJCeBKxmYaGBq1Zs0YTJkxQVJTzL8TVXmi34NBuXyy3vErf/dN7+rymQf97+CL98abL5ZbH224TJwXcbp6V31PEhy9o6NChGjL2+oDjaR4NsAJ/fXpubq6SkpIu8J3W57T3hpPycVIukrPy6ehcPtYHeuXDMm2p761ZXw985Ne/6Yr4817pszc1fPhwZWUF3le3VVv7dFsXFW31+uuvt/ncmJgYxcTEtDoeFRVl+zdSe6NNgkO7BYd28++yvj311C1j9c0/vKONe4/pv57/UI/M8F5MMKh2O32lcXeEW+4g2txKP6fO0Kc7KRfJWfk4KRfJWfl0VC7/NXGIXtteptd3Hdau8loN75vYbs/tOb31tjvSrcgw5tLWdrL1Krzk5GS53W6Vl5e3OF5eXq7UVD/7ArdRUVGRhg0bpjFjxoT0PADQETL7JOqJgtGKiYzQ6zvLdd+qj80OyVLo0wGYYWCveH01u48k6eHXnd0v27qoiI6O1qhRo1RcXOw75vF4VFxc7Hd6U1vNnj1bO3bs0KZNm0INEwA6xBWXJOm33/QOrz/9zj69Xe68C+MFiz4dgFl+dO0guSNc+seuQ9q675jZ4YSN5YuK6upqlZSUqKSkRJK0Z88elZSUaN++fZKkwsJCPf7443ryySe1c+dOff/731dNTY1vN6hg8VctAHZ0XWaq7pgwWJL0/J4IvfeZcz/AAkGfDsAsFyd31bSR3tGKR9d9anI04WP5ouK9997TyJEjNXKk969vhYWFGjlypObNmydJmjFjhh544AHNmzdP2dnZKikp0apVq1ot3g4Uf9UCYFdzrhmo6zNT5DFc+q/nPtDx2nqzQzIdfToAM/2/r3i3DX99Z7k+PVxtcjThYfmiYvz48TIMo9Vt2bJlvnPmzJmjzz77THV1dXr33Xc1duxY8wIGAJO5XC7dd+NluijWUFllne763w9kGIbZYQFApzWwV7zyhvaSYUh//Oces8MJC8sXFQCAwHWNiVTBoCZFuV36+/ZyLd+03+yQAKBTm3XVJZKkFzZ/rorqui84234oKvxg/i0Au0uPl+6YMEiSdO+rO1VeecrkiMxDnw7AbDkX91RW30TVN3r053c+MzucdkdR4QfzbwE4wc3j+imrb6KqTjVq/srtZodjGvp0AGZzuVy65cqLJUnPbtyvxiaPyRG1L4oKAHAwd4RLv/7aCEVGuLRqe5nW7jpkdkgA0Gldl5mqnl2jVVZ5Sv9wWH9MUeEHQ+UAnGJo7wTfX8fufXWn4/461hb06QCsICbSra+P6itJembjPpOjaV8UFX4wVA7ASWbnDlSPuCjtPlStv3bCRdv06QCs4ls5GZKkNz4+rP1Ha02Opv1QVABAJ5DYJUq353kvivf7f3yiusYmkyMCgM6pf3JXfXlgkgxDenFLqdnhtBuKCgDoJL6Zk67UhFiVV9bpfzc754MMAOxm2kjvFKiVJaWOuY4QRQUAdBIxkW7Nutq7T/qSNz7tlGsrAMAKJmWmKjYqQv+qqNG20hNmh9MuKCr8YFEfACf6Vk66krpGa9/RWr2y7aDZ4XQY+nQAVhIfE6m8oSmSpBVbD5gcTfugqPCDRX0AnCguOlI3jesvSfrLu87aeeRC6NMBWM2N2X0kSf/3wQFHjBxTVABAJzNjTLoiXNLGPUe1+1CV2eEAQKd09eCL1CMuSoer6vTunqNmhxMyigoA6GRSE2N1zaXeYfdn3u1828sCgBVER0ZowjBvX7xmR7nJ0YSOogIAOqHvjPXuk76ipNQRw+4AYEcTh6VKklZvL7P9LlAUFX6wqA+Ak105KFk94qJ0tKbeEcPuX4Q+HYAVXTkoWV2i3Dpw4pS2H6g0O5yQUFT4waI+AE4W5Y7QpMu8fyHrDLtA0acDsKLYKLeuHpwsSVpt8ylQFBUA0EldP7y3JOnvH5apyWPvYXcAsKsJZ02BsjOKCgDopMYNSFK3mEgdqanX9gPOuPgSANjNNZf2kssl7Sqr0qGqU2aHEzSKCgDopKLcEbpiQJIk6c1PKkyOBgA6p55do3VZWoIk6a3d9u2LKSoAoBO7apB3Lu8/KSoAwDRXDrxIkr3/wENRAQCd2JUDvUXF5s+O6WR9k8nRAEDn1NwXv7W7wrZby1JU+MH2gwA6g4uTuyotMVb1TR5t2XfM7HDChj4dgJWN7t9DMZERKq+s0+5D1WaHExSKCj/YfhBAZ+ByuXR5vx6SpPc/P25uMGFEnw7AymKj3Mq5uKck+06BoqgAgE4uO727JOn9/cdNjQMAOrMvDfBOgXp3zxGTIwkORQUAdHIj+naXJL2/n21lAcAsY/p7R403f3bMlusqKCoAoJPL7JOgCJdUVnlK5ZX23SMdAOwss0+iot0Rqqiu12dHas0OJ2AUFQDQycVFR+ri5K6SpI/KqkyOBgA6p9got4b3TZQkvfeZ/TbOoKgAAGhgr3hJsu2uIwDgBKP6NU+BOmpyJIGjqAAAaFCvbpKkTygqAMA0Z4oKRioAADbUPFLxKUUFAJimuaj4uLxaVacaTI4mMBQVAIAz058OU1QAgFmS42OUlhgrSdpxoNLkaAJDUeEHV18F0JlccpF3ofbRmnrVN3lMjqb90acDsIvMPt7F2h9SVDgDV18F0JnERUeqR1yUJOlkfZPJ0bQ/+nQAdtFcVGwvtde1gygqAACSpN6JXSRJJ+sbTY4EADqvzD4JkqRtFBUAADtK6+4tKmobnDf9CQDsIjPNO1Lx6eFq1drojzwUFQAASVKf7t7FgXb6EAMAp+mVEKuLusXIY0g7D9rngqQUFQAASWdGKpy4pgIA7CQzzTsFascB+0yBoqgAAEiSejcXFQ0UFQBgpsGp3guS7rbRtYMoKgAAkqTkrtGSpPpG1lQAgJkG9fIWFR+XU1QAAGymx+mioo6iAgBMNej0BUk/YaQCAGA3SYxUAIAlDDhdVFRU1+lYTb3J0bRNpygqXn75ZQ0ZMkSDBg3SE088YXY4AGBJ3eO8RYVhchwA0NnFx0Sqz+l1brsP22O0wvFFRWNjowoLC/WPf/xDW7du1f33368jR46YHRYAWE50ZIS6xUaaHQYAQNKglNNToGyyrsLxRcXGjRt12WWXqU+fPoqPj1d+fr5Wr15tdlgAYEnNU6AAAOY6s67CHteqsHxRsX79ek2ePFlpaWlyuVxasWJFq3OKiorUv39/xcbGauzYsdq4caPvsQMHDqhPnz6++3369FFpaWlHhA4AttODogIALGHg6aLCLtvKWr6oqKmpUVZWloqKis77+PLly1VYWKj58+dry5YtysrK0qRJk3To0KEOjhQA7C8+hulPAGAF/ZO6SpL2Ha01OZK2sXxRkZ+fr1/96leaOnXqeR9/6KGHNGvWLM2cOVPDhg3TkiVLFBcXp6VLl0qS0tLSWoxMlJaWKi0trUNiBwC7oagAAGvISIqTJJUeO6nGJuvvymfrT4/6+npt3rxZc+fO9R2LiIhQXl6eNmzYIEnKycnRhx9+qNLSUiUmJuq1117TL37xC7/PWVdXp7q6Ot/9yspKSVJDQ4MaGhrClIm9NLcD7REY2i04tFtwgm23LlFn/tbU5GmSJ4h2t9LPysl9utPeG07Kx0m5SM7Kx0659Ix1KzoyQvWNHn1WUaWMnnEtHo8wvHv1NTU2yQhjPm1tK1sXFRUVFWpqalJKSkqL4ykpKdq1a5ckKTIyUg8++KByc3Pl8Xj0k5/8RElJSX6fc+HChVqwYEGr46tXr1ZcXNx5vqPzWrNmjdkh2BLtFhzaLTiBtlvFwTNFxc6dO/XpkVcDfs3aWusM1fvr09euXeuYPt1p7w0n5eOkXCRn5WOXXHpEuVXe6NL/rnpDQ7q33PD7S0eO6CJJ27ZtU2lpfNhiaGufbuuioq2mTJmiKVOmtOncuXPnqrCw0He/srJS6enpmjhxohISEsIVoq00NDRozZo1mjBhgqKioswOxzZot+DQbsEJtt12rflE8g70aujQoRoy9vqAX7t5NMAK/PXpubm5F/wDkx047b3hpHyclIvkrHzslsuKo1tU/lGFUgdl6vox6S0ei/jz41K1NHz4cGVlBd5Xt1Vb+3RbFxXJyclyu90qLy9vcby8vFypqalBPWdMTIxiYmJUVFSkoqIiNTU1SZKioqJs8Z+vI9EmwaHdgkO7BSfQdusWd2b3J3eEW+4g2txKP6fO0Kc7KRfJWfk4KRfJWfnYJZd+SfGSKlR6vK5VvB6XS5LkjnQrMoy5tLWdLL9Q+0Kio6M1atQoFRcX+455PB4VFxdr3LhxIT337NmztWPHDm3atCnUMAHANpy6UJs+HYAd9Tu9WPuzI9aZVuqP5T89qqurtXv3bt/9PXv2qKSkRD179lRGRoYKCwtVUFCg0aNHKycnR4sXL1ZNTY1mzpxpYtQAYE9doy3/sQAAnUZzUWGHbWUt/+nx3nvvKTc313e/eW5sQUGBli1bphkzZujw4cOaN2+eysrKlJ2drVWrVrVavB2oc4fKAaAz6BrjlvU/ugJHnw7Ajpp3fNpPURG68ePHyzCMC54zZ84czZkzp11fd/bs2Zo9e7YqKyuVmJjYrs8NAFYVE+nMooI+HYAd9U7sIkmqqmtU1akGdYu17joQW6+pAAC0r+hIPhYAwCq6xkQqIdY7BlB24pTJ0VwYnx5+FBUVadiwYRozZozZoQBAh3FqUUGfDsCumkcrDlJU2BM7hQDojKLdzvxYoE8HYFe9u8dKkg6eOGlyJBfmzE8PAEBQnDpSAQB21TuxuahgpAIAYBMUFQBgLakJ3ulPrKmwKebfAuiMnDr9iT4dgF01T386QFFhT8y/BdAZxUSd+VgwdOHtvO2EPh2AXTVPfypjTQUAwC5i3G7f1x7n1BQAYFu+NRXHGakAANjE2WsqGqkqAMB0KQneoqKqrlG19Y0mR+MfRYUfzL8F0BmdXVQ0NTmnqKBPB2BX8TGRijndN1dU1ZscjX8UFX4w/xZAZ+SOcMl1+msnjVTQpwOwK5fLpeT4GElSRU2dydH4R1EBAGgh4nRV4TE85gYCAJAkJXc7XVRUUVQAAGzC5fJWFYZzBioAwNaSu0ZLkiqqmf4EALCJ5ulPDpr9BAC21jz96Ug1IxUAAJs4PVAhg6EKALCE5G7NIxUUFbbDTiEAOjsnraigTwdgZ0ldT6+pYPqT/bBTCIDOKsK3psI5IxX06QDsrHmh9mFGKgAAduNx0lAFANhYcrx3+hNrKgAAtuHb/UnOGakAADu7KJ7pTwAAm2H3JwCwlqTTRcWJkw2qb7TmMDJFBQCgBXZ/AgBrSewS5eubT5xsMDcYPygqAAAtcPE7ALAWd4RLCbFRkqQTJ605BYqiwg+2HwTQWfmmPzloTQV9OgC76x7nLSqO1zJSYStsPwigs/JNf7LmtN2g0KcDsLvELs0jFRQVAAAbaB6pYPcnALCO5qKCkQoAgC00r6lg9ycAsI7ucd5rVRxnpAIAYAfs/gQA1tO9efpTLQu1AQA2wkgFAFhH80Jt1lQAAGzBt6aCogIALMO3poKiAgBgBxG+61RQVQCAVbBQGwBgL6eHKpj+BADWwUJtm+JCSQA6K9cXn2I79OkA7K55TUUlRYW9cKEkAHAO+nQAdtfdN/2J3Z8AAAAABCHhdFFRearRkmveKCoAAAAAi+saEylJavIYqmv0mBxNaxQVAAAAgMXFRbl9FyetOtVobjDnQVEBAAAAWFxEhEtdo72jFTV1FBUAAJuw3oxdAOjcusa4JUnVFBUAAOtz4qayAGB/8afXVVBUAAAAAAiKr6hgTQUAAACAYMTHnl5TUU9RAQAAACAIzQu12f3JJFOnTlWPHj00ffp0s0MBAAAAguIbqWBNhTluu+02PfXUU2aHAQAAAASNhdomGz9+vLp162Z2GABgM2wqCwBWQlFxAevXr9fkyZOVlpYml8ulFStWtDqnqKhI/fv3V2xsrMaOHauNGzd2fKAAAACAibqy+5N/NTU1ysrKUlFR0XkfX758uQoLCzV//nxt2bJFWVlZmjRpkg4dOuQ7Jzs7W5mZma1uBw4c6Kg0AAAAgLBqHqmw4u5PkWYHkJ+fr/z8fL+PP/TQQ5o1a5ZmzpwpSVqyZIleeeUVLV26VHfffbckqaSkpN3iqaurU11dne9+ZWWlJKmhoUENDQ3t9jp21twOtEdgaLfg0G7BCa3dvNOePB5PUN9vpZ+Vk/t0p703nJSPk3KRnJWP3XPpEum9OGnlyQYZbm9f3dTYJCOM+bS1rUwvKi6kvr5emzdv1ty5c33HIiIilJeXpw0bNoTlNRcuXKgFCxa0Or569WrFxcWF5TXtas2aNWaHYEu0W3Bot+AE025dT/8SfuDAAe159dWAv7+2tjbg7wkXf3362rVrHdOnO+294aR8nJSL5Kx87JrLriMuSW59Xlaho7FHdJGkbdu2qbQ0Pmyv2dY+3dJFRUVFhZqampSSktLieEpKinbt2tXm58nLy9P777+vmpoa9e3bV88//7zGjRt33nPnzp2rwsJC3/3Kykqlp6dr4sSJSkhICC4Rh2loaNCaNWs0YcIERUVFmR2ObdBuwaHdghNKu72za5l0UkpLS9PQ668P+LWbRwOswF+fnpubq6SkJBMjC53T3htOysdJuUjOysfuuXT7pEJLP96iLvEJ6pmYJFVLw4cPV1ZW4H11W7W1T7d0UdFeXn/99TafGxMTo5iYmFbHo6KibPmfL5xok+DQbsGh3YITXLt5h9cjIiKCanMr/Zw6Q5/upFwkZ+XjpFwkZ+Vj11ziu3j7s7pGj1wub1/tjnQrMoy5tLWdTF+ofSHJyclyu90qLy9vcby8vFypqalhfe2ioiINGzZMY8aMCevrAIDVnP6cchT6dABOEBvl/dX9VEOTyZG0ZumiIjo6WqNGjVJxcbHvmMfjUXFxsd/pS+1l9uzZ2rFjhzZt2hTW1wEAhB99OgAn6BLlliSdtGBRYfr0p+rqau3evdt3f8+ePSopKVHPnj2VkZGhwsJCFRQUaPTo0crJydHixYtVU1Pj2w0qXIqKilRUVKSmJuv90AAAgaFPB+AEsRQV/r333nvKzc313W9eUFdQUKBly5ZpxowZOnz4sObNm6eysjJlZ2dr1apVrRZvt7fZs2dr9uzZqqysVGJiYlhfCwAQXvTpAJygS7S3qDjV4DE5ktZMLyrGjx8vwzAueM6cOXM0Z86cDooIAAAAsJ7m6U+S5PEYllrHYKVYAAAAAPgRe1ZR0fQFf5TvaBQVfrBTCAA4B306ACdwR7gUHen99d1jrZqCosIfdgoBAOegTwfgFM1ToDyMVAAA7MBin1cAAJ1VVFhsqIKiwg+GygHAOejTAThF8w5QTdaqKSgq/GGoHACcgz4dgFPEMv0JAAAAQChio04v1Gb6EwAAAIBgsFAbAAAAQEjOFBUmB3IOigo/WNQHAM5Bnw7AKWKbF2pbrKqgqPCDRX0AYK0PrFDQpwNwCqY/AQAAAAhJDFfUBgAAABCK6NNFhcFIBQAAAIBgRDNSYS8s6gMA56BPB+AU0W5GKmyFRX0A4Bz06QCcormoYKQCAAAAQFBYUwEAsBVrfVwBACTWVAAAAAAIUZRv+pO1qgqKCgAAAMAmzkx/MjmQc1BUAAAAADZx5uJ31qoqKCr8YPtBAHAO+nQATnFmS1mTAzkHRYUfbD8IoLNymR1AGNCnA3AK30Jti22nQVEBAAAA2ETzQm3DY3Ig56CoAACcn7X+CAYAECMVAAAAAELE7k8AAAAAQhLNdSoAAAAAhCKGK2oDAAAACIVvoTYjFQAAAACCEc1IBQAAAIBQnFmoba2qgqLCD66+CqCzs9bHVWjo0wE4RXNRYTXWjMoCuPoqADgHfToAp2je/clqrBkVAAAAgFYoKgAAAACEJCLCJZfL7Chao6gAAAAAbCQqwnq/wlsvIgCAqaz4FzAAwBnuCOt11BQVAAAAgI1EuikqAAA24aQtZQHASSIZqQAAAAAQCjdrKgAAAACEIorpTx1v//79Gj9+vIYNG6YRI0bo+eefNzskAAAAIGhWXKgdaXYA4RYZGanFixcrOztbZWVlGjVqlK6//np17drV7NAAAACAgEVZ8AJ4ji8qevfurd69e0uSUlNTlZycrKNHj1JUAAAAwJasOFJhepmzfv16TZ48WWlpaXK5XFqxYkWrc4qKitS/f3/FxsZq7Nix2rhxY1CvtXnzZjU1NSk9PT3EqAEAAABzsPvTedTU1CgrK0tFRUXnfXz58uUqLCzU/PnztWXLFmVlZWnSpEk6dOiQ75zs7GxlZma2uh04cMB3ztGjR3XTTTfpD3/4Q9hzAgAAAMLFitepMH36U35+vvLz8/0+/tBDD2nWrFmaOXOmJGnJkiV65ZVXtHTpUt19992SpJKSkgu+Rl1dnW688Ubdfffd+tKXvtRusQMAAAAdzYpbyppeVFxIfX29Nm/erLlz5/qORUREKC8vTxs2bGjTcxiGoZtvvlnXXHONvvvd737h+XV1daqrq/Pdr6yslCQ1NDSooaEhwAycqbkdaI/A0G7Bod2CE0q7GaeveufxeIL6fiv9rJzcpzvtveGkfJyUi+SsfJySS+RZAxVNjU0ywphPW9vK0kVFRUWFmpqalJKS0uJ4SkqKdu3a1abneOutt7R8+XKNGDHCt17j6aef1vDhw897/sKFC7VgwYJWx1evXq24uLjAEnC4NWvWmB2CLdFuwaHdghNMu3U7dUqSdPDAQe1/9dWAv7+2tjbg7wkXf3362rVrHdOnO+294aR8nJSL5Kx87J7LieNu39fbtm1TaWl82F6rrX26pYuK9nDllVfK4/G0+fy5c+eqsLDQd7+yslLp6emaOHGiEhISwhGi7TQ0NGjNmjWaMGGCoqKizA7HNmi34NBuwQml3TZ99KRUK/VO663h118f8Gs3jwZYgb8+PTc3V0lJSSZGFjqnvTeclI+TcpGclY9Tcll+6D1pn/fr4cOHKysr8L66rdrap1u6qEhOTpbb7VZ5eXmL4+Xl5UpNTQ3La8bExCgmJkZFRUUqKipSU1OTJCkqKsrW//nCgTYJDu0WHNotOEG1m8s7rh4RERFUm1vp59QZ+nQn5SI5Kx8n5SI5Kx+75xLlPjNS4Y50KzKMubS1nay3yuMs0dHRGjVqlIqLi33HPB6PiouLNW7cuLC+9uzZs7Vjxw5t2rQprK8DAAg/+nQAThLF7k+tVVdXa/fu3b77e/bsUUlJiXr27KmMjAwVFhaqoKBAo0ePVk5OjhYvXqyamhrfblAAAABAZ2LFi9+ZXlS89957ys3N9d1vnvtaUFCgZcuWacaMGTp8+LDmzZunsrIyZWdna9WqVa0Wb7e3c4fKAaDTMcwOoP3QpwNwkki2lG1t/PjxMowLf3LNmTNHc+bM6aCIvGbPnq3Zs2ersrJSiYmJHfraAID2RZ8OwEmsePE765U5AAAAAPyy4vQnigo/ioqKNGzYMI0ZM8bsUACgQ1nvoyp09OkAnCTKgtOfrBeRRbBTCAA4B306ACdxM/0JAAAAQCgimf4EAAAAIBRW3P3JehFZBPNvAXR2hoP2lKVPB+Ak7P5kI8y/BQDnoE8H4CRMfwIAAAAQkggXRQUAAACAEEQwUmEfzL8FAOegTwfgJBasKSgq/GH+LQA4B306ACdxM/0JAAAAQCiY/gQAsA/n7CgLAI7CQm0AAAAAIbHgQAVFBQAAAGAnbgtWFRQVfrBTCAA4B306ACdxMf3JPtgpBACcgz4dgJO4rVdTUFQAAAAAdsLuTwAAAABCwu5PAADbYEdZALAmigoAAAAAIXFb8Dd4C4YEADCV9f4ABgA4C7s/2QjbDwKAc9CnA3ASN0WFfbD9IAA4B306ACeJsOBv8BYMCQAAAIA/LNQGAAAAEBKKCgAAAAAhcXPxOwAAAAChsGBNQVEBAGjJgp9VAICzMP0JAAAAQEgoKgAAAACEhC1lbYQLJQGAc9CnA3ASRipshAslAYBz0KcDcBKKCgCAbRhmBwAAOC+2lAUAAAAQEgsOVFBUAAAAAHbitmBVQVEBAAAA2EgE058AAAAAhIKF2gAAAABCYsGBCooKAAAAwE7Y/QkAYB/sKQsAlsT0JwAAAAAhoagwwfHjxzV69GhlZ2crMzNTjz/+uNkhAQAAAEGLsOBv8JFmBxBu3bp10/r16xUXF6eamhplZmZq2rRpSkpKMjs0AAAAIGBcp8IEbrdbcXFxkqS6ujoZhiHDYKIwAAAA7MlFUdHa+vXrNXnyZKWlpcnlcmnFihWtzikqKlL//v0VGxursWPHauPGjQG9xvHjx5WVlaW+ffvqxz/+sZKTk9spegAAAKBjsfvTedTU1CgrK0tFRUXnfXz58uUqLCzU/PnztWXLFmVlZWnSpEk6dOiQ75zm9RLn3g4cOCBJ6t69u95//33t2bNHzzzzjMrLyzskNwAAAKC9Wa+ksMCaivz8fOXn5/t9/KGHHtKsWbM0c+ZMSdKSJUv0yiuvaOnSpbr77rslSSUlJW16rZSUFGVlZenNN9/U9OnTz3tOXV2d6urqfPdPnDghSTp69KgaGhra9DpO19DQoNraWh05ckRRUVFmh2MbtFtwaLfghNJuNacaVFln6ESN9/sDVVVVJUmWmGp6oT7d7pz23nBSPk7KRXJWPk7J5djxWtXUNarSbajueJUiguir26rNfbphIZKMl156yXe/rq7OcLvdLY4ZhmHcdNNNxpQpU9r0nGVlZUZlZaVhGIZx/Phx47LLLjM++OADv+fPnz/fkHd3dm7cuHHjFsJt//79AX8OtDf6dG7cuHFrn9sX9emmj1RcSEVFhZqampSSktLieEpKinbt2tWm5/jss8/0n//5n74F2j/84Q81fPhwv+fPnTtXhYWFvvsej0dHjx5VUlKSJRfFmKGyslLp6enav3+/EhISzA7HNmi34NBuwTGz3QzDUFVVldLS0jr0dc/n3D79+PHj6tevn/bt26fExEQTIwud094bTsrHSblIzsqHXALX1j7d0kVFe8jJyWnz9ChJiomJUUxMTItj3bt3b9+gHCIhIcH2b0gz0G7Bod2CY1a7WeUX9vP16ZI3Pqf8f3Lae8NJ+TgpF8lZ+ZBLYNrSp5u+UPtCkpOT5Xa7Wy2sLi8vV2pqqklRAQAAADibpYuK6OhojRo1SsXFxb5jHo9HxcXFGjdunImRAQAAAGhm+vSn6upq7d6923d/z549KikpUc+ePZWRkaHCwkIVFBRo9OjRysnJ0eLFi1VTU+PbDQodLyYmRvPnzz/vlAL4R7sFh3YLDu12fk5qFyflIjkrHyflIjkrH3IJH5dhmLvn37p165Sbm9vqeEFBgZYtWyZJ+v3vf6/7779fZWVlys7O1u9+9zuNHTu2gyMFAAAAcD6mFxUAAAAA7M3SayoAAAAAWB9FBQAAAICQUFQAAAAACAlFBc6rqKhI/fv3V2xsrMaOHauNGzf6PXf79u362te+pv79+8vlcmnx4sUdF6jFBNJujz/+uK666ir16NFDPXr0UF5e3gXPd7JA2u3FF1/U6NGj1b17d3Xt2lXZ2dl6+umnOzBa6wik3c727LPPyuVy6cYbbwxvgDY0depU9ejRQ9OnT2/12Msvv6whQ4Zo0KBBeuKJJ0yILjQPP/ywLrvsMg0bNkw/+tGPZOcllXv27FFubq6GDRum4cOHq6amxuyQQlJbW6t+/frpzjvvNDuUkOzfv1/jx4/XsGHDNGLECD3//PNmhxQQu7/Hz2bKz8IAzvHss88a0dHRxtKlS43t27cbs2bNMrp3726Ul5ef9/yNGzcad955p/HXv/7VSE1NNR5++OGODdgiAm23b3/720ZRUZGxdetWY+fOncbNN99sJCYmGp9//nkHR26uQNtt7dq1xosvvmjs2LHD2L17t7F48WLD7XYbq1at6uDIzRVouzXbs2eP0adPH+Oqq64yvvrVr3ZMsDaydu1a429/+5vxta99rcXxhoYGY9CgQcbnn39uVFVVGYMHDzYqKipMijJwhw4dMi655BLj5MmTRmNjo/GlL33JePvtt80OK2hXX321sX79esMwDOPIkSNGQ0ODyRGF5qc//anxjW98w7jjjjvMDiUkBw4cMLZu3WoYhmEcPHjQSEtLM6qrq80Nqo3s/h4/lxk/C4oKtJKTk2PMnj3bd7+pqclIS0szFi5c+IXf269fv05bVITSboZhGI2NjUa3bt2MJ598MlwhWlKo7WYYhjFy5Ejj5z//eTjCs6xg2q35l8knnnjCKCgooKjwY+3ata2Kirfeesu48cYbffdvu+0245lnnuno0IJ26NAhIyMjwzh27Jhx8uRJY8yYMcbu3bvNDisoH374oXHttdeaHUa7+fjjj41p06YZf/rTn2xfVJxrxIgRxr59+8wOo03s/h7/Ih3xs2D6E1qor6/X5s2blZeX5zsWERGhvLw8bdiwwcTIrK092q22tlYNDQ3q2bNnuMK0nFDbzTAMFRcX66OPPtLVV18dzlAtJdh2u+eee9SrVy/deuutHRFmu1u/fr0mT56stLQ0uVwurVixotU5wU4J+yIHDhxQnz59fPf79Omj0tLSdnluKfy5XXTRRbrzzjuVkZGhtLQ05eXlacCAAe0W/9nCncsnn3yi+Ph4TZ48WZdffrnuu+++doy+pY74P3fnnXdq4cKF7RTxhXXke2jz5s1qampSenp6iFG3Tai5hfs9Hqj2/Fl11M+CogItVFRUqKmpSSkpKS2Op6SkqKyszKSorK892u2uu+7yfdh3FsG224kTJxQfH6/o6GjdcMMNeuSRRzRhwoRwh2sZwbTbP//5T/3xj3/U448/3hEhhkVNTY2ysrJUVFR03seXL1+uwsJCzZ8/X1u2bFFWVpYmTZqkQ4cO+c7Jzs5WZmZmq9uBAwc6Ko3zCndux44d08svv6y9e/eqtLRUb7/9ttavX2/LXBobG/Xmm2/q0Ucf1YYNG7RmzRqtWbPGlrmsXLlSgwcP1uDBg8MSf0fn0+zo0aO66aab9Ic//CHsOTVrj9yspL3y6dCfRVjHQWA7paWlhqRWc21//OMfGzk5OV/4/Z11+lOo7bZw4UKjR48exvvvvx+uEC0p2HZramoyPvnkE2Pr1q3GAw88YCQmJhpr164Nc7TWEWi7VVZWGv379zdeffVV3zG7T3+SZLz00kstjrXHVDrDaPv0p7/85S+BB94G4cjtueeeM37wgx/47i9atMj4zW9+0y7xXkg4cnn77beNiRMn+u4vWrTIWLRoUbvEeyHhyOXuu+82+vbta/Tr189ISkoyEhISjAULFrRn2H6F6z106tQp46qrrjKeeuqp9go1YMHk1pHv8UAF+7Pq6J8FIxVoITk5WW63W+Xl5S2Ol5eXKzU11aSorC+UdnvggQf061//WqtXr9aIESPCGablBNtuERERGjhwoLKzs3XHHXdo+vTpHTZ9wAoCbbdPP/1Ue/fu1eTJkxUZGanIyEg99dRT+tvf/qbIyEh9+umnHRV62IR76mZOTo4+/PBDlZaWqrq6Wq+99pomTZoU8vO2RXvklp6errffflunTp1SU1OT1q1bpyFDhoQrZL/aI5cxY8bo0KFDOnbsmDwej9avX6+hQ4eGK2S/2iOXhQsXav/+/dq7d68eeOABzZo1S/PmzQtXyBfUHvkYhqGbb75Z11xzjb773e+GK9SAtSU3M9/jgWpLPmb8LCgq0EJ0dLRGjRql4uJi3zGPx6Pi4mKNGzfOxMisLdh2W7Rokf77v/9bq1at0ujRozsiVEtpr/9vHo9HdXV14QjRkgJtt0svvVTbtm1TSUmJ7zZlyhTl5uaqpKSkw+Y8h1N7Td3My8vT17/+db366qvq27ev7wM6MjJSDz74oHJzc33FbFJSUrvm4E975HbFFVfo+uuv18iRIzVixAgNGDBAU6ZMCUe4F9QeuURGRuq+++7T1VdfrREjRmjQoEH6t3/7t3CEe0FOmy7cHvm89dZbWr58uVasWKHs7GxlZ2dr27Zt4Qg3IG3Jzcz3eKDako8ZP4vIsD47bKmwsFAFBQUaPXq0cnJytHjxYtXU1GjmzJmSpJtuukl9+vTx/WW4vr5eO3bs8H1dWlqqkpISxcfHa+DAgabl0dECbbff/OY3mjdvnp555hn179/f1xHEx8crPj7etDw6WqDttnDhQo0ePVoDBgxQXV2dXn31VT399NN67LHHzEyjwwXSbrGxscrMzGzx/d27d5ekVsc7u9dff93vY1OmTDHlF/H2cu+99+ree+81O4x2kZ+fr/z8fLPDaFc333yz2SGE7Morr5TH4zE7jKDZ/T1+NjN+FhQVaGXGjBk6fPiw5s2bp7KyMmVnZ2vVqlW+injfvn2KiDgzyHXgwAGNHDnSd/+BBx7QAw88oK985Stat25dR4dvmkDb7bHHHlN9fX2ri2zNnz9fv/zlLzsydFMF2m41NTX6wQ9+oM8//1xdunTRpZdeqj//+c+aMWOGWSmYItB2czonT910Um7kYl1Oy+dsTsvNsvl0yMoNAADakfwsXJwzZ47vflNTk9GnT5+AF2qbzUm5kYt1OS2fszktN7vkw0gFAMAWqqurtXv3bt/9PXv2qKSkRD179lRGRsYXTgmzMiflRi7WzEVyXj5nc1putszHtHIGAIAArF271pDU6lZQUOA755FHHjEyMjKM6OhoIycnx3jnnXfMCzgATsqNXKyZi2E4L5+zOS03O+bjMgzDCHPdAgAAAMDBOs8qPgAAAABhQVEBAAAAICQUFQAAAABCQlEBAAAAICQUFQAAAABCQlEBWMRjjz2mjIwMde3aVdOmTdPhw4cveH7//v3lcrnkcrl0/Phxv+ctW7bMd97tt9/evkEDAACIogKwhBdffFE//vGP9cgjj+i9995TVVWVpk+f/oXfd8899+jgwYNKTEz0e86MGTN08OBBjRs3rj1DBgAA8OGK2oAF3HvvvZozZ46++tWvSpKefPJJpaen65///KeuvPJKv9/XrVs3paamXvC5u3Tpoi5duig6OrpdYwYAAGjGSAVgsmPHjmnLli264YYbfMfS0tKUmZmp119/3cTIAAAA2oaiAjDZv/71L0nSwIEDWxwfNGiQ7zEAgP2sW7fOt6btxhtvNDscSZLL5dKKFSta3He5XOrevbtpMcEZKCoAk9XW1kryFhHx8fG+28qVK32PAQDC7+abb271y/8LL7yg2NhYPfjgg0E/70cffaRly5aFFlwbLViwQP/+7//e5vMPHjyoxYsXhy8gdBoUFYDJ4uLiJHn/olVSUuK7TZw40fdYW51dlHzve98LR7gA0Gk88cQT+s53vqPHHntMd9xxR9DP06tXrw4bCVi5cqWmTJnS5vNTU1MvuNkH0FYUFYDJLrnkEklSQkKCBg4c6LudOnXK91hbnV2U3HPPPeEIFwA6hUWLFumHP/yhnn32Wc2cOdN3/IUXXtDw4cPVpUsXJSUlKS8vTzU1NQE9t8fj0aJFizRw4EDFxMQoIyND9957ryRp7969crlceu6553TVVVepS5cuGjNmjD7++GNt2rRJo0ePVnx8vPLz81ttPb5//35t375d1113nSTpk08+0dVXX63Y2FgNGzZMa9asCbFVAP/Y/QkwWY8ePTRq1Ci9+eabGjx4sCSpurpaGzZsCLgwOHddBgAgcHfddZceffRRvfzyy7r22mt9xw8ePKhvfetbWrRokaZOnaqqqiq9+eabMgwjoOefO3euHn/8cT388MO68sordfDgQe3atavFOfPnz9fixYuVkZGhW265Rd/+9rfVrVs3/fa3v1VcXJy+8Y1vaN68eXrsscd83/O3v/1N48ePV0JCgjwej6ZNm6aUlBS9++67OnHiBNcqQlhRVAAW8LOf/Uzf//73lZ6erosvvlg///nPNXbsWH35y182OzQA6FRee+01rVy5UsXFxbrmmmtaPHbw4EE1NjZq2rRp6tevnyRp+PDhAT1/VVWVfvvb3+r3v/+9CgoKJEkDBgxotX34nXfeqUmTJkmSbrvtNn3rW99ScXGx73Ph1ltvbbVOY+XKlb6tyV9//XXt2rVLf//735WWliZJuu+++5Sfnx9QvEBbMf0JsICpU6fql7/8pW699VZlZWWpoaFBzz33nNlhAUCnM2LECPXv31/z589XdXV1i8eysrJ07bXXavjw4fr617+uxx9/XMeOHQvo+Xfu3Km6uroWIyD+4miWkpIiqWUBk5KSokOHDvnuV1ZW6o033vCtp9i5c6fS09N9BYUkLoKKsKKoACzie9/7nvbv36/a2lq9+OKLuuiii8wOCQA6nT59+mjdunUqLS3Vddddp6qqKt9jbrdba9as0WuvvaZhw4bpkUce0ZAhQ7Rnz542P3+XLl3adF5UVJTva5fLdd5jHo/Hd785pvT09DbHArQnigrAxu666y7Fx8frxIkTfs/5y1/+ovj4eL355psdGBkA2Fe/fv30xhtvqKysrFVh4XK59OUvf1kLFizQ1q1bFR0drZdeeqnNzz1o0CB16dJFxcXF7Rrz2VOfJGno0KHav3+/Dh486Dv2zjvvtOtrAmdjTQVgU2+88YYaGhokSd26dfN73pQpUzR27FhJ4uJGANBG6enpWrdunXJzczVp0iStWrVKO3fuVHFxsSZOnKhevXrp3Xff1eHDhzV06NA2P29sbKzuuusu/eQnP1F0dLS+/OUv6/Dhw9q+fbtuvfXWoGJtbGzUa6+9pjvvvNN3LC8vT4MHD1ZBQYHuv/9+VVZW6mc/+1lQzw+0BUUFYFPNiwS/SLdu3S5YdAAAzq9v374tCoslS5Zo/fr1Wrx4sSorK9WvXz89+OCDAS9+/sUvfqHIyEjNmzdPBw4cUO/evUO6ttAbb7yh+Ph4XX755b5jEREReumll3TrrbcqJydH/fv31+9+9zvfdrNAe3MZge6DBgAAgC/UXJAcO3YsrCPFP/rRj9TY2KhHH300qO9ftmyZbr/9dh0/frx9A0OnwkgFAABAGPXt21eTJ0/WX//617A8f2ZmZtA7O8XHx6uxsVGxsbHtHBU6G0YqAAAAwuDkyZMqLS2V5P3lPTU11eSIWtu9e7ck785WF198scnRwM4oKgAAAACEhC1lAQAAAISEogIAAABASCgqAAAAAISEogIAAABASCgqAAAAAISEogIAAABASCgqAAAAAISEogIAAABASCgqAAAAAITk/wNHRTukQqvsRwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -106,14 +107,14 @@ ], "source": [ "# More extensive plot method\n", - "f, axs = plt.subplots(1, 2, figsize=(8,6))\n", + "f, axs = plt.subplots(1, 2, figsize=(8, 6), sharey=True)\n", "\n", "pe.plot_swrc(gen, ax=axs[0])\n", "pe.plot_swrc(bro, ax=axs[0])\n", "axs[0].set_yscale(\"log\")\n", "axs[0].set_ylabel(\"\\N{GREEK SMALL LETTER PSI} [cm]\")\n", "axs[0].set_title(\"Soil Water Retention Curve\")\n", - "axs[0].set_xlabel(\"\\N{GREEK SMALL LETTER THETA} [cm\\N{SUPERSCRIPT THREE}/cm\\N{SUPERSCRIPT THREE}]\")\n", + "axs[0].set_xlabel(\"\\N{GREEK SMALL LETTER THETA} [-]\")\n", "\n", "pe.plot_hcf(gen, ax=axs[1])\n", "pe.plot_hcf(bro, ax=axs[1])\n", @@ -126,6 +127,13 @@ "\n", "f.tight_layout()" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Other soil models that are available are Panday (combination of Genuchten and Brooks-Corey), Fredlund and Gardner. " + ] } ], "metadata": { @@ -144,7 +152,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.9" + "version": "3.10.12" }, "orig_nbformat": 4 }, diff --git a/doc/examples/02_datasets.ipynb b/doc/examples/02_datasets.ipynb index 9b0dbc3..266171f 100644 --- a/doc/examples/02_datasets.ipynb +++ b/doc/examples/02_datasets.ipynb @@ -27,18 +27,18 @@ { "data": { "text/plain": [ - "['HYDRUS_Sand',\n", - " 'HYDRUS_Loamy Sand',\n", - " 'HYDRUS_Sandy Loam',\n", - " 'HYDRUS_Loam',\n", - " 'HYDRUS_Silt',\n", - " 'HYDRUS_Silt Loam',\n", - " 'HYDRUS_Sandy Clay Loam',\n", - " 'HYDRUS_Clay Loam',\n", - " 'HYDRUS_Silty Clay Loam',\n", - " 'HYDRUS_Sandy Clay',\n", - " 'HYDRUS_Silty Clay',\n", - " 'HYDRUS_Clay',\n", + "['Sand',\n", + " 'Loamy Sand',\n", + " 'Sandy Loam',\n", + " 'Loam',\n", + " 'Silt',\n", + " 'Silt Loam',\n", + " 'Sandy Clay Loam',\n", + " 'Clay Loam',\n", + " 'Silty Clay Loam',\n", + " 'Sandy Clay',\n", + " 'Silty Clay',\n", + " 'Clay',\n", " 'B01',\n", " 'B02',\n", " 'B03',\n", @@ -75,20 +75,17 @@ " 'O16',\n", " 'O17',\n", " 'O18',\n", - " 'VS2D_Medium Sand',\n", - " 'VS2D_Sandy Loam',\n", - " 'VS2D_Silt Loam',\n", - " 'VS2D_Del Monte Sand',\n", - " 'VS2D_Fresno Medium Sand',\n", - " 'VS2D_Unconsolidated Sand',\n", - " 'VS2D_Sand',\n", - " 'VS2D_Fine Sand',\n", - " 'VS2D_Columbia Sandy Loam',\n", - " 'VS2D_Touchet Silt Loam',\n", - " 'VS2D_Hygiene Sandstone',\n", - " 'VS2D_Adelanto Loam',\n", - " 'VS2D_Limon Silt',\n", - " 'VS2D_Yolo Light Clay']" + " 'Medium Sand',\n", + " 'Del Monte Sand',\n", + " 'Fresno Medium Sand',\n", + " 'Unconsolidated Sand',\n", + " 'Fine Sand',\n", + " 'Columbia Sandy Loam',\n", + " 'Touchet Silt Loam',\n", + " 'Hygiene Sandstone',\n", + " 'Adelanto Loam',\n", + " 'Limon Silt',\n", + " 'Yolo Light Clay']" ] }, "execution_count": 2, @@ -109,7 +106,7 @@ { "data": { "text/plain": [ - "Soil(name='HYDRUS_Sand', type='Sand', model=Genuchten(k_s=712.8, theta_r=0.045, theta_s=0.43, alpha=0.145, n=2.68, l=0.5), sample=None, source='HYDRUS', description=nan)" + "Soil(name='Sand', model=Genuchten(k_s=712.8, theta_r=0.045, theta_s=0.43, alpha=0.145, n=2.68, l=0.5), sample=None, source='HYDRUS', description=nan)" ] }, "execution_count": 3, @@ -119,7 +116,9 @@ ], "source": [ "# get the HYDRUS sand\n", - "soil = pe.Soil(name=\"HYDRUS_Sand\").from_name(sm=pe.Genuchten)\n", + "soil = pe.Soil(\n", + " name=\"Sand\",\n", + ").from_name(sm=pe.Genuchten, source=\"HYDRUS\")\n", "soil" ] }, @@ -139,7 +138,7 @@ { "data": { "text/plain": [ - "Soil(name='O18', type='Peat', model=Genuchten(k_s=34.45, theta_r=0.01, theta_s=0.57, alpha=0.0138, n=1.323, l=-1.204), sample=SoilSample(sand_p=None, silt_p=0.0, clay_p=0.0, rho=1.1, th33=None, th1500=None, om_p=22.5, m50=nan), source='Staring', description='moerige tussenlaag')" + "Soil(name='O18', model=Genuchten(k_s=35.95, theta_r=0.01, theta_s=0.58, alpha=0.0127, n=1.32, l=-0.786), sample=SoilSample(sand_p=None, silt_p=0.0, clay_p=0.0, rho=1.1, th33=None, th1500=None, om_p=22.5, m50=nan), source='Staring_2001', description='moerige tussenlaag')" ] }, "execution_count": 4, @@ -154,22 +153,22 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Text(0.5, 1.0, 'VS2D_Limon Silt')" + "Text(0.5, 1.0, 'Limon Silt')" ] }, - "execution_count": 5, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAScAAAIQCAYAAADDzajJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABpKklEQVR4nO3deVxU9f7H8dfMMOyroiCK4p4rEKapuZVLWJhaaek1tbLyqi3c6urt/lxue5nXe4uyLMMs0+qmVppLpGlqmsuYJpoL7goiKgI6DMz5/TEyiYAMMDNnZvg8Hw8ewJkz53xAfXu+3/M9369GURQFIYRwMVq1CxBCiPJIOAkhXJKEkxDCJUk4CSFckoSTEMIlSTgJIVyShJMQwiVJOAkhXJKEkxDCJUk4CZeTmpqKRqPhyJEjapfiMEeOHEGj0ZCammrdNn36dDQajXpFuRgJJxc0aNAg/P39uXTpUoX7jBw5Em9vb86dOwdAXl4e06ZNo3379gQEBFC3bl3i4uJ46qmnOHXqlPV9aWlpPPzww7Rq1Qp/f3+aNWvGo48+yunTp8ucIyYmBo1Gg0ajQavVEhoaSocOHXjsscfYsmVLtX62MWPGEBgYWK33uotvv/2WXr16Ub9+fevveNiwYaxcubLKx3rllVdYunSp/Yt0B4pwOYsWLVIAZf78+eW+np+frwQEBChJSUmKoihKYWGhEh8fr/j5+SlPPPGEMmfOHGXmzJnK2LFjlfDwcGXt2rXW9yYkJChNmzZVnn/+eWXu3LnKlClTlKCgICUiIkI5ffp0qfM0adJEiYuLUxYsWKAsWLBAeffdd5VJkyYpkZGRCqA888wzVf7ZRo8erQQEBNxwn6KiIuXy5cuK2Wyu8vHV9uabbyqA0qtXL2XWrFnKnDlzlGeffVaJi4tTRo8ebd3PbDYrly9fVoqKiqzbpk2bplz/TzIgIKDU+2oTCScXVFBQoAQFBSkDBgwo9/WFCxcqgLJo0SJFURTliy++UADls88+K7Pv5cuXlYsXL1q//+mnn5Ti4uJS+/z0008KoLzwwgultjdp0kS56667yq1v8ODBCqC8++67VfrZbAknd2UymZTg4GClX79+5b6emZl5w/dLOJUmzToX5Ofnx9ChQ0lLSyMrK6vM6wsXLiQoKIhBgwYBcOjQIQC6d+9eZl9fX1+Cg4Ot3/fs2ROttvQfe8+ePalTpw7p6ek217dgwQLq1KnDyy+/jGLniS3K63OKiYnh7rvvZt26dXTq1Ak/Pz86dOjAunXrAPj666/p0KEDvr6+JCQksHPnzjLH/fHHH+nRowcBAQGEhoZyzz33lPmZS/p9Dh48yJgxYwgNDSUkJISxY8dSUFBww7qzs7PJzc0t988BoH79+tavy+tzup5GoyE/P5/58+dbm9djxoy5YQ2eRMLJRY0cOZKioiK++OKLUttzcnJYtWoVQ4YMwc/PD4AmTZoA8Mknn1QrKPLy8sjLyyM8PNzm9wQGBjJkyBBOnjzJ3r17q3zO6jh48CAjRowgKSmJV199lfPnz5OUlMRnn33GM888w1/+8hdmzJjBoUOHGDZsGGaz2freH374gQEDBpCVlcX06dNJTk5m06ZNdO/evdyO92HDhnHp0iVeffVVhg0bRmpqKjNmzLhhffXr18fPz49vv/2WnJycGv+8CxYswMfHhx49erBgwQIWLFjA448/XuPjug21L91E+YqKipQGDRooXbt2LbV9zpw5CqCsWrXKuq2goEBp3bq1AihNmjRRxowZo3z00UeVNiNKvPjiiwqgpKWlldpeUbOuxL///W8FUJYtW2bzz2VLs+7jjz9WACUjI6NULYCyadMm67ZVq1YpgOLn56ccPXrUuv39999XgFJ9bXFxcUr9+vWVc+fOWbft2rVL0Wq1ykMPPWTdVtK0evjhh0vVNGTIEKVu3bqV/nxTp05VACUgIEBJTExUXn75ZWX79u1l9svIyFAA5eOPPy5z7mtJs064HJ1OxwMPPMDmzZtL/c++cOFCIiIiuOOOO6zb/Pz82LJlC8899xxgaRY98sgjNGjQgEmTJmE0Gis8z/r165kxYwbDhg3j9ttvr1KNJXfdbnRX0Z7atm1L165drd936dIFgNtvv53GjRuX2X748GEATp8+jcFgYMyYMdSpU8e6X8eOHenXrx8rVqwoc64nnnii1Pc9evTg3Llz5Obm3rDGGTNmsHDhQuLj41m1ahUvvPACCQkJ3HzzzTY3m4WFhJMLGzlyJGAJJIATJ06wYcMGHnjgAXQ6Xal9Q0JCeOONNzhy5AhHjhzho48+onXr1rzzzju8+OKL5R5/3759DBkyhPbt2/Phhx9Wub68vDwAgoKCqvze6rg2gMDyMwNER0eXu/38+fMAHD16FIDWrVuXOWabNm3Izs4mPz//hucKCwsrdcwbefDBB9mwYQPnz59n9erVjBgxgp07d5KUlMSVK1cqfb+wkHByYQkJCdx00018/vnnAHz++ecoimINrYo0adKEhx9+mI0bNxIaGspnn31WZp/jx4/Tv39/QkJCWLFiRbUCZs+ePQC0aNGiyu+tjusDubLtSg066u1xzODgYPr168dnn33G6NGjOXToULXHh9VGEk4ubuTIkezZs4fffvuNhQsX0rJlS2655Rab3hsWFkbz5s3LDLA8d+4c/fv3x2g0smrVKho0aFDluvLy8liyZAnR0dG0adOmyu93ppIbBvv37y/z2r59+wgPDycgIMChNXTq1Amg3MGuN1KbR4xLOLm4kqukqVOnYjAYyr1q2rVrF9nZ2WW2Hz16lL1795ZqzuTn5zNw4EBOnjzJihUraNmyZZVrunz5MqNGjSInJ4cXXnjB5f8BNWjQgLi4OObPn8+FCxes2/fs2cPq1asZOHCgXc5TUFDA5s2by33t+++/B8pvWt5IQEBAqZprEy+1CxA31rRpU7p168ayZcsAyg2nNWvWMG3aNAYNGsStt95KYGAghw8fZt68eRiNRqZPn27dd+TIkWzdupWHH36Y9PT0Up20gYGBDB48uNSxT548yaeffgpYrpb27t3Ll19+yZkzZ/jb3/5WrVvbJpOJl156qcz2OnXq8Ne//rXKx7PFm2++SWJiIl27duWRRx7h8uXLvP3224SEhJT6/dREQUEB3bp149Zbb+XOO+8kOjqaCxcusHTpUjZs2MDgwYOJj4+v0jETEhL44YcfmDVrFlFRUTRt2tTa4e/xVL5bKGyQkpKiAErnzp3Lff3w4cPK1KlTlVtvvVWpX7++4uXlpdSrV0+56667lB9//LHUviW35Mv7aNKkSYX7ajQaJTg4WGnXrp0ybtw4ZcuWLdX6WUaPHl3h+Zs3b64oSsVDCcob1gAoEyZMKLWt5Db9m2++WWr7Dz/8oHTv3l3x8/NTgoODlaSkJGXv3r2l9im5nX/27NlS28ur6Xomk0mZO3euMnjwYKVJkyaKj4+P4u/vr8THxytvvvmmYjQay9RY2VCCffv2KT179lT8/PwUoFYNK9AoiqxbJ4RwPdLnJIRwSS7Z55SRkcHDDz9MZmYmOp2OX375xeF3U0TN5OTkUFhYWOHrOp2OevXqObEi4e5cslnXq1cvXnrpJXr06EFOTg7BwcF4eblkjoqrevfuzU8//VTh602aNPHoyeOE/bncv/jff/8dvV5Pjx49AEo9biBc11tvvXXD0dMlDykLYSu7h9P69et588032b59O6dPn2bJkiVlbk+npKTw5ptvcubMGWJjY3n77bfp3LkzAAcOHCAwMJCkpCROnjzJfffdxz/+8Q97lynsLCEhQe0ShIexe4d4fn4+sbGxpKSklPv64sWLSU5OZtq0aezYsYPY2FjrVBYARUVFbNiwgXfffZfNmzezZs0a1qxZY+8yhRAuzqF9ThqNpsyVU5cuXbjlllt45513ADCbzURHRzNp0iQmT57M5s2bmT59OqtWrQIsg+cA6xP31zMajaWeujebzeTk5FC3bl2XH7ksRG2kKAqXLl0iKiqqzMSH1+/oMICyZMkS6/dGo1HR6XSltimKojz00EPKoEGDFEWxDGSLi4tTcnJylOLiYuXuu+9Wvv322wrPUTJwTT7kQz7c6+P48eM3zA+ndohnZ2dTXFxMREREqe0RERHs27cPAC8vL1555RV69uyJoij079+fu+++u8JjTpkyheTkZOv3Fy9epHHjxmRkZNzwSXuTycTatWvp06cPfh/1QJOXiekv30Bkh0p/DrNZodes9eRdKWbRo7fQOtI5U4aUuLZ2vV7v1HPbgzvXL7XX3KVLl2jatGmlM2G43N06gMTERBITE23a18fHBx8fnzLb69SpU2ru7OuZTCb8/f2pW7cu+kB/MGkgyA/q1rXpvLFNo9h8+BwnCnR0s/E99lKqdjf7BwLuXb/UXnMl566s28WpI8TDw8PR6XRkZmaW2p6ZmUlkZGSNjp2SkkLbtm1tnk6kFK+rt7mLbJ8IrGOjEAB2nbhQ9fMJISrl1HDy9vYmISGBtLQ06zaz2UxaWlqp6VerY8KECezdu5dff/216m/2unrlVVTxdLbXi4sOBWDnsQtVP58QolJ2b9bl5eVx8OBB6/cZGRkYDAbq1KlD48aNSU5OZvTo0XTq1InOnTsze/Zs8vPzGTt2bI3Om5KSQkpKCsXFxVV/s77kyumyzW+5uYll2tZ9Z3LJMxYR6OOSLWQh3Jbd/0Vt27aNPn36WL8v6awePXo0qampDB8+nLNnzzJ16lTOnDlDXFwcK1euLNNJXlUTJkxgwoQJ5ObmWueQtlk1rpwign1pFObHifOX2XX8At1b2L6sUm1kNputz96ZTCa8vLy4cuVK9f4zUZHUXjm9Xl/hNMdVYfdw6t27d6XzLE+cOJGJEyfa+9TVV9LnZLL9ygkgoUkYJ85fZvvR8xJON1BYWEhGRoZ1HTlFUYiMjOT48eNuNxZNardNaGgokZGRNTqPx7RFatSsq8aVE8DNjcNYZjjF9qPnq37OWkJRFE6fPo1OpyM6OhqtVovZbCYvL4/AwMAbD8JzQVL7jSmKQkFBgfWJj+rMT1/CY8KpZs06X8vnKtytA8uVE8COY+cxmxW0Wvf6n9QZioqKKCgoICoqCn9/f+DPJp6vr69b/gOX2m+s5CHvrKws6tevX+0mnnv9dh1FX71wuikyCD+9jktXijh4Ns8Bhbm/kitZb29vlSsRzlTyH5HJZKr2MSScoNpXTl46rXVIwbYj0rS7EXfrnxE1Y48/b48Jp5oNwrwaTqaqr8Z6S4ylabc141zVzyuEqJDHhFPNBmFW78oJ4NZmlkdXNh8+V6MVZoWoidTUVEJDQ9Uuw648JpxqpJp9TmAZjOmt05KZayQjO9/OhQm1nTlzhqeeeooWLVrg6+tLgwYNGDBgAO+99x4FBQVql1clY8eOrXQpe1fiMXfraqQGV06+eh3xjUPZkpHDL4dzaFYv0M7FCbUcPnyY7t27ExoayiuvvEKHDh3Q6/Vs3bqVTz/9lOjoaAYNGqR2mR7LY66c1OpzgtJNO+E5/vrXv+Ll5cW2bdsYNmwYbdq0oVmzZgwcOJDvvvuOpKQkAC5cuMCjjz5KvXr1CA4O5vbbb2fXrl3W40yfPp24uDgWLFhATEwMISEhPPDAA1y6dMm6T0xMDLNnzy51/ri4uFKrEV+4cIHHH3+ciIgIfH19ad++Pd99912p96xatYo2bdoQGBjInXfeyenTp601fPLJJ6xYsQKdTodGo2HdunUAHD9+nGHDhhEaGkqdOnW45557Si1GMWbMGAYPHszMmTNp0KABdevWZcKECTW6E2cLjwkntfqcALo2vxpOh6TfqTKKolBQWMTlwmIKCouc+lGVP5tz586xevVqJkyYUOGyZCV3pO6//36ysrL4/vvv2b59OzfffDN33HEHOTk51n0PHTrE0qVL+e677/juu+/46aefeO2112yux2w2k5iYyMaNG/n000/Zu3cvr732WqkxRAUFBcycOZMFCxawfv16jh07xrPPPgvAs88+y/33388dd9zByZMnOX36NN26dcNkMjFgwACCgoLYsGEDGzdutAbbtUt9rV27lkOHDrF27Vrmz59PamoqqampNtdfHdKsgxr1OYFlhgIfLy3ZeUYOnc2nRX1p2lXksqmY9tPVmRN+778G4O9t21/5gwcPoigKrVu3LrW9fv36XLli+XsyYcIEkpKS2Lp1K1lZWdZ5xWbOnMnSpUv56quveOyxxwBLuKSmplonWBs1ahRpaWm8/PLLNtXzww8/sHXrVtLT02nVqhUAzZo1K7WPyWRizpw5NG/eHLA8Jvavf/0LgMDAQPz8/PDx8SEyMtI6CPPTTz/FbDbz4YcfWsP2448/JjQ0lHXr1tG/f38AwsLCeOedd9DpdNx0003cddddpKWlMW7cOJvqrw4JJ6jxlZOvXsfNjcPYfPgcmw+fk3DyYL/88gu5ubmMHz8eo9HIrl27yMvLo+51Ew5evnyZQ4cOWb+PiYkpNfNjgwYNrI942MJgMNCoUSNrMJXH39/fGky2nmPXrl0cPHiwzKyUV65cKVV/u3btSl2lNWjQgN27d9tcf3VIOEGN+5wAujWvy+bD59h4IJtRtzaxU2Gex0+vY8/0flzKvURQcJBTHwHx09v+GEWLFi3QaDTs37+/1PZmzZqRm5trfUQjLy+PBg0aWPtvrnXtrf3rZ57UaDTWB6EBtFptmWbntX06tqz7V945KmvK5uXlkZCQwGeffVbmtWtXaK6sfkfwmHCq2YO/NbtyAujZqh5vrfmDjQezMRWb0es8pjvPrjQaDf7eXhR56/D39nLZ59Pq1q1Lv379eOedd5g0aVKF/U4333wzZ86cwcvLi5iYmGqfr169etbOa4Dc3FwyMjKs33fs2JETJ07wxx9/3PDq6Ua8vb3L/Pu4+eabWbx4MfXr17/htNZqcM2/GdVQow7xGvY5AXRoGEKdAG8uGYtkdkwP8e6771JUVESnTp1YvHgx6enp7N+/n8WLF7Nv3z50Oh19+/ala9euDB48mNWrV3PkyBE2bdrECy+8wLZt22w+1+23386CBQvYsGEDu3fvZvTo0aWaUb169aJnz57ce++9rFmzhoyMDL7//ntWrlxp8zliYmL4/fff2b9/P9nZ2ZhMJkaOHEl4eDj33HMPGzZsICMjg3Xr1vHkk09y4sSJKv2+7M1jwqlG7HDlpNVq6NHSMqfTT3/Y3pcgXFfz5s3ZuXMnffv2ZcqUKcTGxtK5c2fmzp3L3/72N1588UU0Gg0rVqygZ8+ejB07llatWvHAAw9w9OjRKk2gOGXKFHr16sXdd9/NXXfdxeDBg0v1HwH873//45ZbbuHBBx+kbdu2PP/881VqKTz66KO0bNmSzp07U69ePTZu3Ii/vz/r16+ncePGDB06lDZt2vDII49w5coV1a+kHLqophpKpky5ePFipauvrFixgoEDB6K/dAL+Gwf6AHjhVLXP/fWOEyR/sYsODUP4dtJt1T5OZUrV7uIrgFy5coWMjAyaNm2Kr6/lPwGz2Uxubi7BwcEu26yriNRum/L+3EvY+m/UvX67jmKHKyeAHi0tHYi7T14kO69qE9cJIUqTcII/+5yUYiiu/qjXekE+tIuy/E+w4cBZe1QmRK3lMeFkl8dXoMrziF+vVyvL1dPafRJOQtSEx4RTzR9fuTo5Vg3D6Y429QFYuz8LU7Fjx4EI4ck8JpxqRKMBvWVaUUw1m/YkLjqM8EBvLl0pYsvhnMrfIIQol4RTCe+ScKrZlZNOq6FvG8st5DV7z9S0KiFqLQmnEiVXToU1n0CsX9uScMqUWQqEqCYJpxJ2atYBdG8Rjp9ex6mLV/j9VG6NjydEbSThVMJOzTqwzFJQctdu9d7MGh9PiNpIwqmEtVlnn3nAS5p2q3+XfidRdSWzT9ZmEk4lvK8+dW6yz6T1d7Spj5dWw74zlzgkC266pTFjxqDRaKwfdevWJTExkT179qhdWq3gMeFUo0GYAPqr8+XYoUMcINTfm9uuPgj83a7TlewtXFXJPNynT58mLS0NLy8vHnjggQr3d/S82rWJx4RTjQZhguWhX7DblRNAUscoAL797ZTctXNTJdPaRkZGEhcXx9///ndOnjzJ2bNnOXLkCBqNhsWLF9OrVy98fX357LPPMJvN/Otf/6JRo0b4+PgQFxdXZmqT3bt3c/vtt+Pn50fdunV57LHHyMur+Ar7119/pV69erz++uuAZQbLPn36EBQURHBwMAkJCVWaosUdeMxkczVm7RC3Xzj1axeB9xItB7Py2J95iZsiXWsyL1UoiqVfz1QAhTpw5pP9en/LgNtqysvL47PPPqNZs2bUrVvXOt/R5MmTeeutt4iPj8fX15f//Oc/vPXWW7z//vvEx8czb948Bg0axO+//07Lli3Jz89nwIABdO3alV9//ZWsrCweffRRJk6cWO6iAT/++CNDhw7ljTfesM5JPnLkSOLj43nvvffQ6XQYDAaXn6GiqiScSthxnFOJYF89vVvVY/XeTL7ddUrCCcBUgPa1RoSqce5/nPqzb9FG3333HYGBljnh8/PzadCgAZ9//nmpKUeefvpphg4dav1+5syZ/P3vf7c2/15//XXWrl3L7NmzSUlJYeHChVy5coVPPvnEOsPmO++8Q1JSEq+//nqpeaCWLFnCQw89xIcffsjw4cOt248dO8Zzzz3HTTfdBEDLli2r+MtwfR7TrKsxO45zulZS7NWm3a7T0rRzQ3369MFgMGAwGNi6dSv9+/fn/vvv5+jRo9Z9OnXqZP06NzeXU6dO0b1791LH6d69O+np6QCkp6cTGxtbaurf7t27YzabS81ZvmXLFu6//34WLFhQKpgAkpOTefTRR+nbty+vvfZaqcUIPIVcOZWw4zina93Rpj5+eh3HcgrYffIiHRuF2vX4bkfvj3nyCXIvXSI4yLkLHFj/A6qCgIAAWrRoYf1+7ty5hIWF8eGHH1qXRapofvGaat68OXXr1mXevHncddddpZpt06dPZ8SIESxfvpzvv/+eadOmsWjRIoYMGeKQWtQgV04l7DzOqYS/t5d1poIlO0/a9dhuSaOxNK30/pbPzvyoQX/Tn+Vr0Gq1XL5c/n9iwcHBREVFsXHjxlLbN27cSNu2bQFo06YNu3btIj8/v9TrWq221Dp54eHh/Pjjjxw8eJBhw4aVuRPYqlUrnnnmGVavXs3QoUP5+OOPa/zzuRIJpxJ2Hud0rXtvbgTAMsMpCotkGhV3YjQaOXPmDGfOnCE9PZ0nn3ySvLw87r777grf89xzz/H666+zePFi9u/fz+TJkzEYDDz11FOApTPb19eX0aNHs2fPHtauXcukSZMYNWpUmXnH69evz48//si+fft48MEHKSoq4vLly0ycOJF169Zx9OhRNm7cyK+//kqbNm0c+rtwNmnWlXBAh3iJHi3DqR/kQ9YlIz/uy+LO9pF2P4dwjJUrV9KgQQMAgoKCuOmmm0hNTaV3794cO3as3Pc8+eSTXLx4kb/97W9kZWXRtm1bvvnmG2untb+/P6tWreKpp57illtuwd/fn3vvvZdZs2aVe7zIyEh+/PFHevfuzciRI/nkk084d+4cDz30EJmZmYSHhzN06FBmzJjhmF+CSlwynGJiYqyTsIeFhbF27VrHn1Rv/6EEJbx0Wobc3JD3fzrMV9tPSDi5idTU1DK39ksWCQDL39PybnJotVqmTZvGtGnTKjx2hw4d+PHHH2947ms1aNCgVGf5559/bsNP4N5cMpwANm3aZL2F6xQOGOd0rftubsT7Px1m7f4szl4yUi/IxyHnEcJTSJ9TCQc26wBaRgQRGx1KsVlhmUE6xoWojN3Daf369SQlJREVFYVGo2Hp0qVl9klJSSEmJgZfX1+6dOnC1q1bS72u0Wjo1asXt9xyS7lruDuEAzvES9yXYOkY/3LbCRnzJEQl7B5O+fn5xMbGkpKSUu7rixcvJjk5mWnTprFjxw5iY2MZMGAAWVl/rpL7888/s337dr755hteeeUVfvvtN3uXWVbJg78ODKdBsVH46rXsz7zE9qPnHXYeITyB3cMpMTGRl156qcLBYLNmzWLcuHGMHTuWtm3bMmfOHPz9/Zk3b551n4YNGwKWTsCBAweyY8cOe5dZVkmzrriwRmvX3UiIn976MPCnvxytZG8hajendogXFhayfft2pkyZYt2m1Wrp27cvmzdvBixXXmazmaCgIPLy8vjxxx8ZNmxYhcc0Go0YjX+urltyJ8VkMt1w+oqS16z7aH0pGX9ryr8AfqFV/wFt8ECnhny5/QTLd59m8p2tqBvgXeVjlKndhRUVFaEoCsXFxZjNljFeJU1aRVGs29yF1G6bkj/3oqKiMn9Pbf1769Rwys7Opri4uMxAs4iICPbt2wdAZmam9aqruLiYcePG3XCOpldffbXc8R2rV6/G37/yxxXWrFlj/fpujR6dYmLtqm+47B1u089UHdEBOo7nwysL07ijYfX7nq6t3VVpNBoiIiI4deoUwcHBaK4ZpX3u3DkVK6sZqb1iRUVF5OTkkJeXR1paWpnXCwps6zpxuaEEzZo1Y9euXTbvP2XKFJKTk63f5+bmEh0dTf/+/QkOrngWAJPJxJo1a+jXr5/1mSXt/hAoyKZPt1ugvuNG2+ZHnOAfS/ey81Igb955G1pt1R6rKK92V5afn8/p06et/ygUReHKlSv4+vqWCit3ILXbJiAggGbNmpX797OkdVMZp4ZTeHg4Op2OzMzSk/5nZmYSGVm9gYk+Pj74+PiQkpJCSkoKxcXFAOj1epv+4ZbazycQCrLRm6+AA//RD745mldX/sHx85fZfOQCvVvXr9ZxbP0Z1RYaGkpQUFCp5uj69evp2bOnW9R/Lam9cjqdDi8vrwoD0NZzOzWcvL29SUhIIC0tzTp5u9lsJi0tjYkTJ9bo2BMmTGDChAnk5uYSEhJSzQKDLJ+Njl3Oyd/bi/sSGvHxxiPM33Sk2uHkTnQ6HTqdzvp1UVERvr6+bvcPXGp3HrvfrcvLy7POfwOQkZGBwWCwPoeUnJzM3LlzmT9/Punp6YwfP578/HzGjh1r71KqzqcknBy/IMHorjFoNLB2/1kOZl1y+PmEcDd2D6dt27YRHx9PfHw8YAmj+Ph4pk6dCsDw4cOZOXMmU6dOJS4uDoPBwMqVK8t0kldVjRc4AEuzDqDQ8eEUEx5Av6vLln/0c4bDzyeEu7F7OPXu3RtFUcp8XPsg48SJEzl69ChGo5EtW7bQpUuXGp+3xgscAHhfDSejc65kxvVsBsD/dpwkO89Yyd5C1C7ybN21nNisA+jUJIzYRiEUFplZsFkGZQpxLY8JJ/s065zTIV5Co9HwaA/L1dOCX45yxVTslPMK4Q48Jpzs2qxzQp9TicT2kTQM9SMnv5D/7TjhtPMK4eo8JpzswsnNOrBMRPfwbU0BeP+nwxQVu9cjEUI4iseEk13v1jmpQ7zEg52jqRPgzbGcAr7Zdcqp5xbCVXlMOLlrsw4sgzIf7WG5enpn7UGKzTLXkxAeE0524XP1WTwnXzkBPNQ1hhA/PYfP5rNi92mnn18IVyPhdC2VmnUAgT5ePNz96tXTjwcxy9WTqOU8Jpzs0uekUrOuxJhuMQT6eLE/8xKrfj+jSg1CuAqPCSe79DlZ79ap86xbiL+esd1jAJi15g/pexK1mseEk12UhJOpAMzqDIh8tEczQvz0HMjKk+XLRa0m4XQt72vWyVOpaRfip2d87+YA/HvNHxiLZNS4qJ0knK7l5QO6q3N6X3HOIyzlGd01hvpBPpy8cJnPt5S/5LUQns5jwskuHeIaDfhenajuykX7FFYNft46nryjJWAZ91RQWKRaLUKoxWPCyS4d4uAS4QQw/JZoGtfxJzuvkLnrZb4nUft4TDjZjYuEk16n5bkBrQGY89Mhzly8omo9QjibhNP1XCScAO7u2ICEJmFcNhXzxqp9apcjhFNJOF3PN9Ty+coFNasALPM9Tb27LQBf7zjJbycuqFuQEE4k4XQ9F7pyAoiNDmVovGV59n99u9e6aqsQns5jwskud+vA5cIJ4Lk7W+Or17Lt6HmWy0PBopbwmHDytLt112oQ4scTvSwDM19enk6+UYYWCM/nMeFkNy4YTgBP9GpOdB0/Tl+8wttrD6ldjhAOJ+F0Pb9Qy+fLF9SsogxfvY5/DWoPQOrmY5zMV7kgIRxMwul6LnrlBNDnpvokto+k2KzwxWGdzPkkPJqE0/WsQwlcL5wApia1JcBbx5E8DV/tkFkLhOeScLqeC185gaVz/MnbLZ3jb64+ICsFC48l4XS9kisnYy6YXXOZpodubUxDf4ULl01MW/a72uUI4RASTtfzvbrIAYrTVv6tKi+dlgebF6PTali++7QsiCA8kseEk90GYXr5gJef5WsXeISlItGB8FiPGAD+b+kecvIL1S1ICDvzmHCy2yBMcPl+pxITejenVUQg5/ILmfaNNO+EZ/GYcLIrNwknHy8tM++PRafV8O2uU6zcI8074TkknMrjF2b5fPm8unXYoGOjUB7v2QyAfy7dI3fvhMeQcCqPfx3L54Icdeuw0VN9W9IqIpDsvEKe+3KXzFwgPIKEU3n8SsLpnLp12MjHS8d/HojH20vL2v1n+WTzUbVLEqLGJJzKU3Ll5AbNuhJtGgQzJfEmAF5ekc7+M+osDCqEvUg4lcfNmnUlxnSLoXfrehQWmXny851cMcmad8J9STiVx82adSU0Gg1v3hdLeKA3+zMv8dr3Mu+4cF8STuWxNuvc68oJoF6QD2/eHwtA6qYjrPr9jMoVCVE9LhtOBQUFNGnShGeffdb5J/eve7UI97pyKtGndX0eva0pAM9+sYsj2TL5k3A/LhtOL7/8Mrfeeqs6J/dzzz6na/098SY6NQnjkrGI8Z/tkP4n4XZcMpwOHDjAvn37SExMVKeAkmbdlYtQ7J7zdet1Wt4ZcTN1A7xJP53L1GV71C5JiCqxezitX7+epKQkoqKi0Gg0LF26tMw+KSkpxMTE4OvrS5cuXdi6dWup15999lleffVVe5dmu5IR4igu/fBvZSJDfPnvg/FoNfDFthN88etxtUsSwmZ2D6f8/HxiY2NJSUkp9/XFixeTnJzMtGnT2LFjB7GxsQwYMICsrCwAli1bRqtWrWjVqpW9S7OdTg8+V5+vc+OmHUD3FuEk97P8Lv+5bA87j7nP2C1Ru3nZ+4CJiYk3bI7NmjWLcePGMXbsWADmzJnD8uXLmTdvHpMnT+aXX35h0aJFfPnll+Tl5WEymQgODmbq1KnlHs9oNGI0/vk8WW6uZQ4mk8mEyWSqsI6S1yrax8svDI3xIkWXslBCm974h3ayymq/3rjuTdh57Dxp+87y+ILt/O+JLkQG+zqyxBuqav2uRGq3Xx2V0SgOfBBLo9GwZMkSBg8eDEBhYSH+/v589dVX1m0Ao0eP5sKFCyxbtqzU+1NTU9mzZw8zZ86s8BzTp09nxowZZbYvXLgQf3//atfec/90wgoOs6XpU5wJTaj2cVzFlSL49x4dZy5raBygMKldMd46tasStVFBQQEjRozg4sWLBAcHV7if3a+cbiQ7O5vi4mIiIiJKbY+IiGDfvuoNGJwyZQrJycnW73Nzc4mOjqZ///43/MFNJhNr1qyhX79+6PX6Mq/rcj+BQ4dJaNsMJW5gtWpzlMpqr0jCbQXcN2cLx/JNbLgSzcz72qPRaBxYafmqW78rkNprrqR1UxmnhlNVjRkzptJ9fHx88PHxISUlhZSUFIqLLbfM9Xq9TX8AFe4XYBnr5FV4EVz0L6GtP2OJFhEhvDvyZkbN28o3v52mbcMQ60rCaqhq/a5Eaq/Z+W3h1KEE4eHh6HQ6MjMzS23PzMwkMjKyRse260yY4PYDMSvSrUU405LaAvD6yn18L/OPCxfl1HDy9vYmISGBtLQ06zaz2UxaWhpdu3Z1ZimV83fP5+tsMerWJoy6tQmKAk8vNrD9qHvfkRSeye7hlJeXh8FgwGAwAJCRkYHBYODYsWMAJCcnM3fuXObPn096ejrjx48nPz/feveuuuy2wEGJgHqWz3ln7XM8F6LRaJiW1Ja+bepjLDLz6PxtZMgjLsLF2D2ctm3bRnx8PPHx8YAljOLj461DAYYPH87MmTOZOnUqcXFxGAwGVq5cWaaTvKrs3qwLqG/5nJ9ln+O5GC+dlv8+GE/HRiGcLzAx5uOtnJMpfoULsXs49e7dG0VRynykpqZa95k4cSJHjx7FaDSyZcsWunTpYu8yai6wJJyy1a3Dgfy9vfho9C00CvPj6LkCHpm/jcuF8gyecA0u+WxddTiuWZcFHjwnd70gH1LHdibET4/h+AXGf7adwiLXXOlY1C4eE072b9ZdDadio8uu/GsvLeoH8tHoTvjqtazbf5bkLwwUmz03kIV78Jhwsjtvf/AOtHztgZ3i1+sUU4c5f0lAr9Pw3W+n+b9le2QVF6Eqjwknuzfr4M+rJw/tFL9e79b1+ffwODQaWLjlGG+s2q92SaIW85hwsnuzDq7pFPf8K6cSd3eM4pUhHQB4b90h3lt3SOWKRG3lMeHkENd2itciD3ZuzOSry0y9vnIfH244rHJFojaScLqRWnjlVOKJXs158o6WALy0PJ2Pfs5QuSJR23hMODm0z6mWXTmVeKZvSybd3gKAF7/by8cbJaCE83hMODmkz8naIV77rpzA8phLcr9WTOhjmblgxrd7SZWAEk7iMeHkELW4WVdCo9HwbP/WjO9tCajpElDCSSScbqTk+bpa2qwrodFoeH5Aax7v1QywBNS76w6qXJXwdBJONyJXTlYajYbJd95k7YN6Y+V+3li5TwZqCofxmHBySId4STgV5oExz37HdVMajYa/9W9tHWbw7rpDzPh2L2Z51EU4gMeEk0M6xH2CwDvI8vWlM/Y7rpt7oldzXhzcHo0GUjcd4fn//SbP4gm785hwcpigq9MHXzqlbh0uZtStTZg1LBadVsNX208w6XNZ8lzYl4RTZYIbWD7LlVMZQ+IbkTLiZrx1WlbsPsPoeVu5eNn91nMTrknCqTJBV8MpV66cynNn+0hSx95CkI8XWzJyGDZnM6cvXla7LOEBJJwqEyRXTpXp1iKcxY93pX6QD/szLzH03U3sP3NJ7bKEm5Nwqow1nOTK6UbaRgXz9V+70aJ+IKcvXuH+OZvYctjzVq4RzuMx4eSQoQRwTYe4XDlVplGYP1890ZVOTcLIvVLEqI+28s0uCXVRPR4TTg4ZSgAQHGX5nCuLT9oi1N+bTx/twoB2ERQWm3ny853M/uEPGawpqsxjwslhrFdOpz16oQN78tXreHdkAuN6NAVg9g8HeHKRQYYaiCqRcKpM4NVwMpugQFbGtZVOq+GFu9ry+r0d8NJq+HbXKR744BeyLl1RuzThJiScKuPlDf7hlq+lU7zKht/SmAWPdCHU37L01OB3NpJ+Wu7kicpJONlCBmLWSNfmdVny1+40Cw/g1MUrPPDhVnad06hdlnBxEk62kIGYNdY0PIAlf+1O9xZ1KSgsZt4fOmatOSDP5IkKSTjZwjrWSe7Y1USIv575YzsztlsTAN5bn8HDqb9ysUAeeRFlSTjZIqSR5fPFE+rW4QG8dFr+kdiaUS2K8dVr+emPsyS98zPppz17VWVRdR4TTg4bhAkSTg7QqZ7C4nGdaRTmx7GcAoa+u4lvZcCmuIbHhJPDBmHCNeF03P7HrsXaNgjm24m30aNlOJdNxUz6fCcvfreXwiKz2qUJF+Ax4eRQIdGWzxdPyEBMOwsL8CZ1bGee6GVZQOGjnzMY9v5mTpwvULkyoTYJJ1sENwQ0UHQF8rPVrsbj6LQaJifexAejEgj29cJw/AJ3/fdn0tIz1S5NqEjCyRZe3n8+xiJNO4fp3y6S5U/2ILZRCBcvm3hk/jZeXZGOqViaebWRhJOtpN/JKaLr+PPlE90Y2z0GgPfXH+bBD36RCexqIQknW13b7yQcyttLy7Skdrw38maCfLzYdvQ8A/+zgTV7pZlXm0g42arkyumCXDk5S2KHBnz35G20bxjM+QIT4z7Zxj+X7uZyocxuUBtIONkqtLHlszTrnKpJ3QD+N74bj/W0rDb86S/HSHrnZ/aekkGbns7lwunChQt06tSJuLg42rdvz9y5c9UuyUIGYqrGx0vHPwa2YcEjnakf5MPBrDwGp2zko58zZEFPD+Zy4RQUFMT69esxGAxs2bKFV155hXPnXGAuaukQV12PlvVY+XRP+raxzLL54nd7GZP6q8wR5aFcLpx0Oh3+/v4AGI1GFEVxjSleSzrEC85BoQwQVEudAG/mPpTAS4Pb4+OlZf0fZ0mcvYEf90lnuaexezitX7+epKQkoqKi0Gg0LF26tMw+KSkpxMTE4OvrS5cuXdi6dWup1y9cuEBsbCyNGjXiueeeIzw83N5lVp1vyJ9Lk0vTTlUajYa/3NqE7ybdxk2RQZzLL+Th1G1M+Xo3ecYitcsTdmL3cMrPzyc2NpaUlJRyX1+8eDHJyclMmzaNHTt2EBsby4ABA8jKyrLuExoayq5du8jIyGDhwoVkZrrA/4oaDYRZpvrg/BFVSxEWLSOCWDqhO4/cZpmr/POtx0j8z3pZkspDeNn7gImJiSQmJlb4+qxZsxg3bhxjx44FYM6cOSxfvpx58+YxefLkUvtGREQQGxvLhg0buO+++8o9ntFoxGg0Wr/PzbXcxTGZTJhMFc8TVPLajfa5ni60CdrMPRRnH8TctI/N77O36tTuSuxZvw6YPKAlfVrV5e9f7+F4zmUemPsLY7s2IblvC3z0uhqf41ru/Lt3ldptPb9GcWCHjkajYcmSJQwePBiAwsJC/P39+eqrr6zbAEaPHs2FCxdYtmwZmZmZ+Pv7ExQUxMWLF+nevTuff/45HTp0KPcc06dPZ8aMGWW2L1y40Np3ZS9tT35Oy6zvOVSvP3sa/cWuxxY1d6UIlhzV8kuWpUEQ4afwlxbFNA5UuTBRSkFBASNGjODixYsEBwdXuJ/dr5xuJDs7m+LiYiIiIkptj4iIYN++fQAcPXqUxx57zNoRPmnSpAqDCWDKlCkkJydbv8/NzSU6Opr+/fvf8Ac3mUysWbOGfv36odfrbapfuz0TVn5P0xBoPHCgTe9xhOrU7kocWf9QYO3+s7yw9Hcy8wqZ/bue8T2b8tfezdDrat6L4c6/e1epvaR1UxmnhpMtOnfujMFgsHl/Hx8ffHx8ymzX6/U2/QHYuh8A9VoAoL1wFK0L/MWsUu0uyFH1928fxS1Nw/m/ZXv47rfTvLPuMOsOZPPW/XG0jgyyyznc+Xevdu02Xww4uI5SwsPD0el0ZTq4MzMziYyMrNGxHToTZokwS8cr54+AWZ6Ud2VhAd68M+Jm3n4wnlB/PXtO5nL32xuYteYPjEXy+Is7cGo4eXt7k5CQQFpamnWb2WwmLS2Nrl271ujYDp0Js0RINGi9oNgIebJMlDtIio1i9dM96dc2AlOxwn/TDnDXf39m+9HzapcmKmH3cMrLy8NgMFibZhkZGRgMBo4dOwZAcnIyc+fOZf78+aSnpzN+/Hjy8/Otd++qyylXTjqvPwdj5mQ47jzCruoH+/LBqARSRtxMeKA3B7PyuG/OJqZ/8zv5Mi7KZdk9nLZt20Z8fDzx8fGAJYzi4+OZOnUqAMOHD2fmzJlMnTqVuLg4DAYDK1euLNNJXlVOuXICqFPStJNwcicajYa7Ojbgh+Re3JfQCEWB1E1H6P/v9fz0x1m1yxPlsHuHeO/evSt93GTixIlMnDjR3qd2jpJ+J7lyckuh/t7MvD+WQbFR/GPJbk6cv8zoeVsZGt+Q/7u7LWEB3mqXKK5yuWfrqsspzTqQKycP0bNVPVY93ZOHuzdFo4Gvd56k76yf+HbXKdd4llN4Tjg5rVkXFmP5LFdObi/Ax4upSW35enw3WkUEci6/kEmf72TcJ9tkWmAX4DHh5DRhcuXkaeIbh/HdpB4807cVep2GH9Kz6D9rPZ9tOSrzRalIwqmq6lhmZOTyeSjIUbcWYTfeXlqe6tuS5U/2IL5xKJeMRbywZA8PzP2Fw2fz1C6vVvKYcHJan5O3/5/DCbIPOPZcwulaRQTx1RPdmJbUFn9vHVszcrjzPxt4d91BWaLKyTwmnJzW5wQQ3tLyOfsPx59LOJ1Oq2Fs96aseronPVqGU1hk5o2V+xmcspHfZe5yp/GYcHKqulfD6ZxcOXmy6Dr+fPJwZ966P5ZQfz2/n8rl3ve38M1RLVdM8giMo0k4VYf1yknCydNpNBruTWjEmmd6cXfHBhSbFdJOaUlK2cwvMqmdQ3lMODmtzwmkWVcL1Qvy4Z0RNzNnRBwheoUj5wp44INf+MeS3eRecb+J59yBx4STc/ucWlk+nz8CxfIXsza5o019psQV88AtltV4Fm45Rr9ZP8lqxA7gMeHkVEENwDsQzEUyGLMW8vOCFwe1ZdFjtxJT15/MXCPjPtnGhIU7OHvJWPkBhE0knKpDo4G6lonnpFO89rq1WV1WPt2TJ3o1R6fVsPy30/T790/8b/sJeQTGDiScqkv6nQTgq9cxOfEmlk3oTruoYC4UmPjbl7t4aN5WjufI+oY14THh5NQOcfiz3yn7oHPOJ1xa+4YhLJ3Qnb/feRPeXlo2HMhmwOz1zN90RB6BqSaPCSendojDn806uXISV+l1Wsb3bs7Kp3rQOaYOBYXFTPvmd4Z/sJlD8ghMlXlMODldvdaWz2f3g/QviGs0qxfIosdu5cV72hHgrePXI+dJ/M8G3lt3iCJ5BMZmEk7VVbelZT5x40XIPaV2NcLFaLUaRnWNYdUzPenZqh6FRWZeX7mPwe9uZK88AmMTCafq8vL+s2mXla5uLcJlNQrzZ/7YW5h5fywhfpZVYAa98zNvrd4vq8BUQsKpJuq3tXzO+l3dOoRL02g03JfQiDXJPbmzXSRFZoW3fzzI3f/9mR3HZBWYinhMODn9bh1cE05y5SQqVz/IlzmjEnh3pGUVmANZedz73iZeXr5XHiQuh8eEk9Pv1gFEXA2nTLlyErYb2KEBa57pxdD4higKzN2QQdLbP7P7xEW1S3MpHhNOqqjfxvL57H4wy/98wnZhAd7MGh7HR6M7ER7ow4GsPIa8u5HZP/whk9pdJeFUE6ExoPe3rACcc1jtaoQbuqNNBKuf6cldHRpQZFaY/cMB7n1vEwezLqldmuoknGpCq4V6N1m+ztqrbi3CbdUJ8OadEfH854E4Qvz0/HbiIgP/+zMfbjhcq0eXSzjVVEmneKaEk6g+jUbDPXENWf1MT3pdHRf10vJ0Rnz4S61dpkrCqaZKOsXlyknYQUSwL6ljb+GVIR3w99bxy+EcEv+zgVW/n1G7NKeTcKqpkk5xuWMn7ESj0TCiS2OWP9mDDg1DuFBg4vEF2/m/pXtq1ZADCaeaiuhg+ZxzGIzycKewn6bhAfxvfDce72lZK3HBL0e5552N7D9TOzrLPSacVBmECRBYD4KiAAUy9zj33MLjeXtpmTKwDZ883JnwQB/2Z15i0Ds/s2jrMbVLcziPCSdVBmGWaBBr+Xx6l/PPLWqFnq3qsfLpHvRqVQ9jkZnJX+/m+a92eXQzz2PCSVUSTsIJwgN9+HjMLTx/Z2u0Gvhi2wnum7PJY2fclHCyhwYdLZ9P/6ZuHcLjabUa/tq7BQse6UKdAG/2nMzl7rd/Zu3+LLVLszsJJ3souXI6mw5FsvqGcLzuLcL5btJtxEaHcvGyiYdTf+W/aQc8amEFCSd7CG4IfnUsS0XJeCfhJFGhfnzx+K2M7NIYRYFZa/7gqUUGj+mHknCyB41G+p2EKny8dLw8pAOvDe2Al1bDN7tO8eDcXzxi/TwJJ3uRcBIqeqBzYz55pDMhfnp2HrvA4JSN7Dvj3tMBSzjZi3SKC5V1ax7Okr92o2l4ACcvXOb+OZvZmpGjdlnV5nLhdPz4cXr37k3btm3p2LEjX375pdol2aZBnOVz5h4oNqlaiqi9mtULZMlfu3FLTBiXrhQx6qMt/LA3U+2yqsXlwsnLy4vZs2ezd+9eVq9ezdNPP01+fr7aZVWuTjPwDYWiKzJSXKgq1N+bBY90oW+b+hiLzDz+6Xa+3HZc7bKqzOXCqUGDBsTFxQEQGRlJeHg4OTlucGmq0UDDBMvXJ7apW4uo9Xz1Oub8JYF7b25EsVnhua9+49Mt7vXIi93Daf369SQlJREVFYVGo2Hp0qVl9klJSSEmJgZfX1+6dOnC1q1byz3W9u3bKS4uJjo62t5lOkajTpbPJ7erW4cQgJdOy8z7O/LobU0BmPHdPjac0ahcle3sHk75+fnExsaSkpJS7uuLFy8mOTmZadOmsWPHDmJjYxkwYABZWaVHuObk5PDQQw/xwQcf2LtEx2l4NZzkykm4CI1Gwwt3tbHObPBVho7PtrpHE8/u4ZSYmMhLL73EkCFDyn191qxZjBs3jrFjx9K2bVvmzJmDv78/8+bNs+5jNBoZPHgwkydPplu3bvYu0XFKmnXnDsBlWY9MuAaNRsPkxJt4pHsTAKZ/m+4Wsxp4OfNkhYWFbN++nSlTpli3abVa+vbty+bNmwFQFIUxY8Zw++23M2rUqEqPaTQaMRr/HHCWm2sZ22EymTCZKr5rVvLajfapMu9gvMKaojmfQdGxX1Ga9bHfsa/hkNqdyJ3rd+fak29vyuHDGaw9reUfS3YT4qujb5v6Tq/D1t+dU8MpOzub4uJiIiIiSm2PiIhg3759AGzcuJHFixfTsWNHa3/VggUL6NChQ7nHfPXVV5kxY0aZ7atXr8bf37/SmtasWVPFn+LGbiaSaDI4sO5z/tjn2Lmf7V27s7lz/e5a+z1N4HIx/JKl5cnPdzKhXTFNg5xbQ0GBbbMoODWcbHHbbbdhNtu+bteUKVNITk62fp+bm0t0dDT9+/cnODi4wveZTCbWrFlDv3790Ov1Nar5WtpfT8DqzbT2z6XFwIF2O+61HFW7s7hz/Z5Q+weP9eGpL39n7f5sUg/5sWhcZ5rXC3BaHSWtm8o4NZzCw8PR6XRkZpYeFJaZmUlkZGS1junj44OPjw8pKSmkpKRQXGx56FGv19v0l8fW/WzWuAsA2lM70Hp5WYYYOIjda3cyd67fnWv38/EhZWQCI+ZuwXD8AuMXGlg2sTvBvs75eWz9vTl1nJO3tzcJCQmkpaVZt5nNZtLS0ujatWuNjq3qTJjXiuwAOm+4nAPnM9StRYgK+Ht78dHoTjQM9SMjO59nFhlcbo08u4dTXl4eBoMBg8EAQEZGBgaDgWPHLHcHkpOTmTt3LvPnzyc9PZ3x48eTn5/P2LFj7V2KOrx8/nwI+Hj547eEcAV1A314f1QCPl5a0vZlMTvtgNollWL3cNq2bRvx8fHEx8cDljCKj49n6tSpAAwfPpyZM2cydepU4uLiMBgMrFy5skwneVWptsBBeRrfavl8dKO6dQhRifYNQ3h1qOVm03/TDvDTH2dVruhPdg+n3r17oyhKmY/U1FTrPhMnTuTo0aMYjUa2bNlCly5danxel2nWATS+Ojbr6GZ16xDCBkNvbsRDXS1joJ79chc5+YUqV2Thcs/WeYSSK6dzByDPdf4nEqIi/xjYhpb1Azl7ycjk//3mEtP9ekw4uVSzzr8O1Lu6EvAxuXoSrs9Xr2P2A3HodRpW783ky+0n1C7Jc8LJpZp1AE2u3n2UcBJuol1UCMn9WgPwyop0zuWpO9Wvx4STy7H2O21Stw4hqmBcj6a0aRDMhQITr36/T9VaPCacXKpZB39eOZ35DYy1Y2174f68dFpeHtIejQa+2n6CLYfPqVaLx4STyzXrQhpBSGNQzDLeSbiVmxuH8WDnxgC8tDxdtcGZHhNOLkn6nYSb+lu/VgT6eLH75EVW7DmtSg0STo7UpLvlc8YGdesQoorqBvowrodlgrqZq/ZjKrb9YXx78Zhwcrk+J4BmvSyfT24DY566tQhRRY/2aEp4oDdHzhXw9Q7nDy3wmHByuT4ngLAYCG1iWaZc7toJNxPg48XjPZsD8P76w07ve/KYcHJZJVdPGT+pW4cQ1fBgl8YE+Xpx+Gw+a9Kdu/6dhJOjNb0aToclnIT7CfTxYtStlufuPlh/2KnnlnBytKY9LZ8zd0N+trq1CFENY7rF4KXVsP3oefadsW0WS3vwmHByyQ5xgMD6UL+t5euM9erWIkQ11A/2pW8by5RGi5y4rJTHhJNLdoiXaCr9TsK9PdDZsrDt1ztOcMVU7JRzekw4ubSSTvHD61QtQ4jq6tGyHlEhvuReKWLd/qzK32AHEk7O0KQ7aL3g/BE4d0jtaoSoMp1Ww10dGwCwYvcZp5xTwskZfIOh8dVHWQ7+oG4tQlRTYgdLOKWlZzqlaSfh5Cwt+lo+H3DPxRiFiI8OJSrEl/zCYtY7Ya5xjwknl71bV6JlP8vnIxvA5NiVgIVwBI1Gw4D2lvUl09Id3+/kMeHk0nfrwDKcICgKiq7AEVmVRbinXq3qAfDzwWyHzzPuMeHk8jSaP6+eDkrTTrinLk3r4q3TcvLCZTKy8x16LgknZyoJpwOr1a1DiGry89aR0CQMsFw9OZKEkzM17WUZUpBzWIYUCLd1W8twAH5x8BS+Ek7OJEMKhAe4ubHlymnX8YsOPY+Ek7O17G/5vP97desQopo6NApBo4GTFy6TdemKw84j4eRsN91l+XxkA1w+r24tQlRDoI8XreoHAY69epJwcra6zS2rAZuLZECmcFux0SEAGI477j9Yjwknlx+Eea2Sq6d936lbhxDVFBsdCsCek46b38ljwsnlB2FeqyScDvwAJse12YVwlFYRlmbdwSzHLdzhMeHkVqLiLaPFTfkyx5NwSy3qBQKWTvF8Y5FDziHhpAaNRpp2wq2FBXgTHugDwKGzjrl6knBSS0k47f8ezM6ZWVAIe2pZ33L1dCBTwsmzxNwGPiGQfxaOb1W7GiGqrHn9AAAOZ0s4eRadHlrfafl671JVSxGiOhqF+QNw8rxjpgCScFJTuyGWz78vlaadcDsNQ/0AS6e4I0g4qan57eAbAnln4NhmtasRokoahl0NJ7ly8kBePnBTkuXrPV+rW4sQVdTo6pXTmdwrmIrNdj++S4bTkCFDCAsL47777lO7FMdrf7Vpt3cZFDtmvIgQjhAe6IO3TotZgTMX7T+Y2CXD6amnnuKTTz5RuwznaNoL/OpAQTYckRWBhfvQajVEhFjGOjlidgKXDKfevXsTFBSkdhnOodND20GWr6VpJ9xM3QBLOGXnFdr92HYPp/Xr15OUlERUVBQajYalS5eW2SclJYWYmBh8fX3p0qULW7fW8nE+7e+1fE7/Fors/4cshKOEB3oDcM4dwik/P5/Y2FhSUlLKfX3x4sUkJyczbdo0duzYQWxsLAMGDCAryzlLHLukJt0hMAKuXJAZMoVbKblyysk32v3YXvY+YGJiIomJiRW+PmvWLMaNG8fYsWMBmDNnDsuXL2fevHlMnjy5yuczGo0YjX/+YnJzLVM4mEwmTCZThe8ree1G+ziTtt1QdFvew2xYSHHzfjfc19Vqryp3rl9qLy3UzxIhWblXbD6urfvZPZxupLCwkO3btzNlyhTrNq1WS9++fdm8uXrjfF599VVmzJhRZvvq1avx9/ev9P1r1rjGhG/BBQ3pAyj7v2fNN19g8gqs9D2uUnt1uXP9UrtF5ikNoGPPgSOsWHHYpvcUFBTYtJ9Twyk7O5vi4mIiIiJKbY+IiGDfvn3W7/v27cuuXbvIz8+nUaNGfPnll3Tt2rXcY06ZMoXk5GTr97m5uURHR9O/f3+Cg4MrrMVkMrFmzRr69euHXq+v4U9mH8rcReiy9jCgYR7mhGEV7ueKtVeFO9cvtV93zF2nWXp0N74h4Qwc2Mmm95S0birj1HCy1Q8/2N7v4uPjg4+PDykpKaSkpFBcbHkMRK/X2/QHYOt+ThH3IKx+Ad2eL9Hd+nilu7tU7dXgzvVL7Rb1gy0DMXMKTDYf09b9nDqUIDw8HJ1OR2ZmZqntmZmZREZG1ujYbjUTZkU63A8aHZz4FbIPqF2NEJUK9LVc3+Q5YMI5p4aTt7c3CQkJpKWlWbeZzWbS0tIqbLbVKkER0OIOy9e7FqlbixA2CPKxhJMjZsO0ezjl5eVhMBgwGAwAZGRkYDAYOHbsGADJycnMnTuX+fPnk56ezvjx48nPz7fevasut1rg4EZiH7R8/m0xmO3/vJIQ9nTtlZOiKHY9tt37nLZt20afPn2s35d0Vo8ePZrU1FSGDx/O2bNnmTp1KmfOnCEuLo6VK1eW6SSvqgkTJjBhwgRyc3MJCQmp0bFU1XqgZRK6i8ct84s371P5e4RQScDVKydTsYKxyIyvXme3Y9s9nHr37l1pgk6cOJGJEyfa+9SeQe8LHe+HXz+EHfMlnIRLC/D+M0LyjUV2DSeXfLauOjymWQeQMMbyOf07yDurailC3IhOqyHA2xJI9u4U95hw8oi7dSUiO0DDBDCbwPCZ2tUIcUMlTbtLVyScaoeSq6cd86VjXLi0kk5xe9+x85hw8qhmHUC7oeAdBDmH4cgGtasRokKBPo4Z6+Qx4eRRzToAn0BLxzjA9lRVSxHiRny8LDFiLLLvFb7HhJNHSrg69iv9W+kYFy7Lx8vSIV4o4VSLNOj4Z8f4jlS1qxGiXN7WKyf7Lm/mMeHkcX1OJTpffQD414+g2P3mEBKer6RZJ1dOFfC4PqcS7QZDQH24dBrSv1G7GiHK8JY+p1rKywc6PWz5esv76tYiRDmkQ7w26zQWtHo4vgVO7VS7GiFKkSun2iwoEtpdXXxzywfq1iLEdeRuXSU8tkO8RJcnLJ/3fAV5tXilGuFy5G5dJTy2Q7xEowRo2AmKC9Fun6d2NUJYyd06Ad0s08xot3+Ertj+64QJUR3S5ySgzSAIa4rm8nka5/ykdjVCAOCtk3ASWh10mwRAi6yVYLb/vM1CVJX+ajgV23n2DAkndxM3AsU/HP/CbDTpy9SuRgi0Wg0AxWb7ziEu4eRu9H6YbxkHgG7zO2DnSeWFqCqdpiSc7Htcjwknjx9KcA1zwsMUab3RZO6GQz+qXY6o5a626jDb+T9Kjwknjx9KcC2/MI7W7W35+ud/q1qKEFqNNOvENQ7VvxNFq7fMknl0k9rliFpMd7XPSa6cBACXvcMxlyzAue41dYsRtZpOOsTF9czdnwGtl2XxzaOb1S5H1FISTqKskGiIG2n5+ie5ehLqKLlbJ806UVqPv1mung6vg2Nb1K5G1EIyzkmUL6wJlPQ9ydWTUIF1nJOdh9xJOHmCHn8Djc4y5un4VrWrEbWM9W6dXDmVrzYNwiyjTlOIu3r1lPYvGTUunKqkWVck4VS+WjUIszy9/g46b8u4Jxk1LpzI2iEu4STKFdoYrj5zR9oMsPMT4kJURHs1RYrlbp2oUI9k8A6C07tg7xK1qxG1hFw5icoFhFvne+LHl2QRTuEUXrqSu3USTuJGuv4V/MMh5zDsXKB2NaIWkAd/hW18gqDnc5av170Gxjx16xEeT4YSCNt1GgthMZCXCRtnq12N8HDWKydp1olKeflAvxctX296Gy4cV7ce4dGuZpPduWQ4fffdd7Ru3ZqWLVvy4Ycfql2Oe2qTBE1ug6Ir8MN0tasRospcLpyKiopITk7mxx9/ZOfOnbz55pucO3dO7bLcj0YDA14GNJZVgo/X0sGpwm25XDht3bqVdu3a0bBhQwIDA0lMTGT16tVql+WeouL+nFJl5WR5rEW4FbuH0/r160lKSiIqKgqNRsPSpUvL7JOSkkJMTAy+vr506dKFrVv/fFj11KlTNGzY0Pp9w4YNOXnypL3LrD3u+D/QB8DJbbD7K7WrEcJmdg+n/Px8YmNjSUlJKff1xYsXk5yczLRp09ixYwexsbEMGDCArKwse5ciAIIiocczlq/X/B8YL6lbjxA28rL3ARMTE0lMTKzw9VmzZjFu3DjGjh0LwJw5c1i+fDnz5s1j8uTJREVFlbpSOnnyJJ07d67weEajEaPRaP0+NzcXAJPJhMlU8QjpktdutI+rqnLttzyB187P0JzPoPjHlzH3fdGB1VWuVv3uXYijai8qsqw8rSi2HdvW82sUxXEdERqNhiVLljB48GAACgsL8ff356uvvrJuAxg9ejQXLlxg2bJlFBUV0aZNG9atW0dISAgJCQls2rSJunXrlnuO6dOnM2PGjDLbFy5ciL+/vyN+LLdU/+Iuuh5+CzNa1t30Ipf8otUuSXiIk/nwxm9eBOsVXuxUXOn+BQUFjBgxgosXLxIcHFzhfna/crqR7OxsiouLiYiIKLU9IiKCffv2WQry8uKtt96iT58+mM1mnn/++QqDCWDKlCkkJydbv8/NzSU6Opr+/fvf8Ac3mUysWbOGfv36odfra/iTOVf1ah+I+at9aPcvp3f+txQP/dZxA1QqUft+967BUbWnn77EG79txtfXl4EDe1W6f0nrpjJODSdbDRo0iEGDBtm0r4+PDz4+PmW26/V6m/4AbN3PFVW59sTX4fBatMd/QZv+NcQ+4LjibFCrfvcuxN61e3n9GSO2/puzhVOHEoSHh6PT6cjMzCy1PTMzk8jIyBodu1bPhGmr0Og/n7tb/U+4fEHVcoS4EaeGk7e3NwkJCaSlpVm3mc1m0tLS6Nq1a42OXetnwrRV14kQ3gryz1qm9BXCRdk9nPLy8jAYDBgMBgAyMjIwGAwcO3YMgOTkZObOncv8+fNJT09n/Pjx5OfnW+/eVZdcOdnIyxvuesvy9baPZDFO4bLsHk7btm0jPj6e+Ph4wBJG8fHxTJ06FYDhw4czc+ZMpk6dSlxcHAaDgZUrV5bpJK8quXKqgqY9IX6U5etvJoHpirr1CI9g79v+du8Q7927N5WNTpg4cSITJ06096lFVfR/CQ6sgXMHYP0bcMdUtSsSbqpWzUpQHdKsqyK/ULhrpuXrjf+B07+pWo4Q1/OYcJJmXTW0SYK294C5CL6ZCMVFalckhJXHhJOopsQ3wTfUsmLL5nfUrkYIKwmn2i4oAga8Yvl67SuQtU/deoS4ymPCSfqcaiBuBLTsD8VGWPIYFBWqXZEQnhNO0udUAxoNDHob/MIszbv1b6hdkXBD9p5CwGPCSdRQUCTc/W/L1xvekml9hc1kKIFwvHZDoMMwUMyw5HEozFe7IlGLeUw4SZ+TnQx8A4KiIOcQrJmmdjWiFvOYcJI+JzvxC4PBV6dY/nWuZRS5ECrwmHASdtT8duj8uOXrJU/ApTPq1iNqJQknUb5+/4KI9lCQDV+PA3Pl068KYU8STqJ8el+472PQ+0PGevh5ltoVCZdn37EEHhNO0iHuAPVawcCrDwevfVXmfhLl0uCYsQQeE07SIe4gcSOuDi8ohv89CgU5alckagmPCSfhIBoN3D0L6jSD3BOWyelkWXPhBBJOonI+QZb+J60e9n0nsxcIp5BwEraJioM7X7V8vWYaHPlZ1XKE55NwEra75VHoONzS//TlGMg9pXZFwoN5TDjJ3Ton0Gjg7tmW8U/5Z+GL0TK9irCSWQkqIHfrnMTbH4Z9Aj4hcGIrrH5B7YqEymRWAuE66jaHoR9Yvt76AexapG49wiNJOInqaX0n9Hze8vU3T8KJ7erWIzyOhJOovt6TodWdlul9F42QDnJhVxJOovq0Ohg6F+q1gbwzloAqLFC7KuEhJJxEzfgGw4Ofg18dOLUTlk2QEeTCLiScRM3VaQrDF4DWC37/GtbPVLsioQJ7/5ck4STsI+Y2uOsty9drX4K9y9StRziNg0YSeE44ySBMF5AwBro8Yfn668fg2BZVyxHuzWPCSQZhuoj+L0OrRCi6Ap8/AOcOqV2RcFMeE07CRei84L6PICoeLufAp/dCfrbaVQk3JOEk7M87AEZ8AaFN4HwGLBwuQwxElUk4CccIrA9/+Z9lqamT22SRBFFlEk7CccJbwgOfg87HMkndiudkDJQHU+z8ZyvhJByrSVcY+j6ggW0fwdqX1a5I2JmjZiXwcsxhhbhGuyGWhRGWJ8P6N9F6BwNN1K5KuDi5chLOccsjcPv/AaD74f+IPrdB5YKEq3PJcBoyZAhhYWHcd999apci7KnH36DrRADijn2EZv8KlQsSrswlw+mpp57ik08+UbsMYW8aDfR/CXPHB9FiRrfkUTj8k9pVCRflkuHUu3dvgoKC1C5DOIJGQ/Fd/+Z0SAKa4kL4/EE49ovaVQkXVOVwWr9+PUlJSURFRaHRaFi6dGmZfVJSUoiJicHX15cuXbqwdetWe9QqPIXWi20x4zE37QWmfPj0Pjgujx25O9VnJcjPzyc2NpaUlJRyX1+8eDHJyclMmzaNHTt2EBsby4ABA8jKyrLuExcXR/v27ct8nDolMynWFmatN8X3L4CYHlB4CT4dCidlql/35JixBFUeSpCYmEhiYmKFr8+aNYtx48YxduxYAObMmcPy5cuZN28ekydPBsBgMFSvWuFZ9P4wYrHlyunYJlgwBB76xrKAp6j17DrOqbCwkO3btzNlyhTrNq1WS9++fdm8ebM9T2VlNBoxGo3W73NzcwEwmUyYTKYK31fy2o32cVXuXDtcV7/eG4Z9hm7RcLQntqIsGEzRyCWWtfFckDv/7h1Ve1FRkeULxbZj23p+u4ZTdnY2xcXFRERElNoeERHBvn37bD5O37592bVrF/n5+TRq1Igvv/ySrl27lrvvq6++yowZM8psX716Nf7+/pWea82aNTbX5WrcuXYoXb9XnUfomnOOOgWHMKcmsbHFZC75RatY3Y258+/e3rVnXgbwotBUyIoVlQ8PKSiw7SFwlxwh/sMPP9i875QpU0hOTrZ+n5ubS3R0NP379yc4OLjC95lMJtasWUO/fv3Q6/U1qtfZ3Ll2uEH9V/piXngvPqcN9Dn6FkUPfgkNYtUrtBzu/Lt3VO2HzubzimEj3npvBg7sU+n+Ja2bytg1nMLDw9HpdGRmZpbanpmZSWRkpD1PZeXj44OPjw8pKSmkpKRQXGx58l2v19v0B2Drfq7InWuHcurXh8NDS+HTe9Gc3I7+s6GWmQ2iXW92U3f+3du7di+vqzGiweZ/c7aw6zgnb29vEhISSEtLs24zm82kpaVV2CyzF5kJ00P4hcGopdC4KxgvwoLBcORntasSNrD3hBNVDqe8vDwMBoP1jltGRgYGg4Fjx44BkJyczNy5c5k/fz7p6emMHz+e/Px86907ISrlG2y5YmraCwrzLHfzDqZV/j6hCpeZlWDbtm306fNnu7Kkv2f06NGkpqYyfPhwzp49y9SpUzlz5gxxcXGsXLmyTCe5vV3frBNurmQ2zS8eggOrLPORD/sEWlc8jEV4lipfOfXu3RtFUcp8pKamWveZOHEiR48exWg0smXLFrp06WLPmsslzToPpPeF4Z9CmyQoLoTFf4HdX6ldlXASl3y2TggrL2+4LxU63A/mIvjfo7DlfbWrEk7gMeEk69Z5MJ0XDHkfbhkHKPD98/DjSzLlr4fzmHCSZp2H0+pg4JvQ5wXL9+vfhG+fguIidesSDuMx4SRqAY0Gej0Pd88GjRZ2zIcvR4PpitqVCWSBgwpJs64W6TQW7p//56ounw6FyxfUrqrWctBIAs8JJ2nW1TJtB1nGQvkEw9GN8HEiXDiudlXCjjwmnEQt1LQHjFkOgRGQtRc+7AundqpdlbATCSfh3hp0hEfToH5byDsDHw+EfbJwgifwmHCSPqdaLDQaHl4FzW8HUwEsGgG/vCdDDdycx4ST9DnVcr7BlsddEsYCCqycbBkPJUMN3JbHhJMQ6PRw97+h/0uABrZ+AIseBOMltSurFVRf4EAIl6bRQLdJMHwBePnBgdXwUX/IyVC7Mo+lcdC0BBJOwjO1SYKxyyEw0nInb24fOLxO7apEFXhMOEmHuCijYQI8tg4adoLL52HBUNj8rnSUuwmPCSfpEBflCm5gGQsVOwKUYlg1BZb+VR55cQMeE05CVEjvC4PfhTtfA40Odi2E1IGQe1rtysQNSDiJ2kGjgVvHw6ivLfOUn9wOH/SG41vVrkxUQMJJ1C7NesO4tdeMKE+UAZv2ovYCB0K4vTpN4ZE10G6oZXbNlZPhyzFwxbb11ERpMitBJeRunagSn0C4bx4kvglaPexdahlukPm72pWJqzwmnORunagyjQa6PAZjv4fgRnDuIMy9A3YtUrsygQeFkxDVFn0LPL7e8uBw0WVY8rhlCmAZbqAqCSchAALqwsivoPcUQAPbU+GjfpB9UO3Kai0JJyFKaHXQe7Jlhk2/OnDmN3i/Jxg+V7uyWknCSYjrtbgDxm+EJreBKR+WPgFfPyZ38yohsxII4QzBUTD6G+jzT8uo8t8Ww/s90ZzaoXZlLsdBkxJIOAlRIa0Oej0HY1dASDScz0A3fyAtMpeDYla7Oo8n4SREZRrfCk9sgLb3oDEX0e7UYnSf3w+5p9SuzKN5TDjJIEzhUH5hcP98igbOokjjjTbjJ3i3K+z+Su3KPJbHhJMMwhQOp9GgxD/ETzf9C3ODOLhyAf73CHz1sGW+KGFXHhNOQjhLnm8UxaO/h15/t3SW7/kfvNsNDv2odmkeRcJJiOrQ6aHPPywPENdpDpdOwYIhsOJ5KCxQuzpVKHae2UHCSYiaaJRg6Sy/5VHL91vfh/d7wLEt6tblRBoHzUsg4SRETXkHwF1vWUaWB0ZaHiCeNwBW/qPWXkXZg4STEPbSoi9M+MUyXzkK/JICc7rDkY1qV+aWJJyEsCe/MBjynuUh4uCGkHPYMl/5iufAmKd2dW5FwkkIR2jZD/66GW5+yPL91g/gvW5w+Cd163IjEk5COIpvCAx6G0YtsTz+cuEofDIIlk2Eghy1q3N5LhdOx48fp3fv3rRt25aOHTvy5Zdfql2SEDXT/HbLVVSnRyzf71wAKZ3hty89amEFj5+VwMvLi9mzZ7N3715Wr17N008/TX5+vtplCVEzPkFw9ywYuxLq3QT5Z+HrR+HToZCToXZ1NVJrZiVo0KABcXFxAERGRhIeHk5OjlwCCw/RpCs8vsEyFYvOxzKq/N2u8PO/odikdnUupcrhtH79epKSkoiKikKj0bB06dIy+6SkpBATE4Ovry9dunRh69bqLVy4fft2iouLiY6Ortb7hXBJXt6WqVjGb4KYHpZ5y3+Yblnk88Q2tatzGVUOp/z8fGJjY0lJSSn39cWLF5OcnMy0adPYsWMHsbGxDBgwgKysLOs+cXFxtG/fvszHqVN/TkGRk5PDQw89xAcffFCNH0sINxDeAkZ/C4Pfs0wLnLkHPuxrWVxBOszxquobEhMTSUxMrPD1WbNmMW7cOMaOHQvAnDlzWL58OfPmzWPy5MkAGAyGG57DaDQyePBgJk+eTLdu3Srd12g0Wr/PzbVMpWoymTCZKr5MLnntRvu4KneuHdy7fofU3u5+aHo7uh+mot29GLanouxdhrn3C5jjRlkmvbMDR/3eTUV/Hs+WY9t6fo1Sg6f1NBoNS5YsYfDgwQAUFhbi7+/PV199Zd0GMHr0aC5cuMCyZcsqPaaiKIwYMYLWrVszffr0SvefPn06M2bMKLN94cKF+Pv72/qjCOES6ubto8PxBYRcOQ7Aef+m/NboIS4ENFe5soqduwL/2umFt1bhzS7Fle5fUFDAiBEjuHjxIsHBwRXuZ9dwOnXqFA0bNmTTpk107drVut/zzz/PTz/9xJYtlT8M+fPPP9OzZ086duxo3bZgwQI6dOhQ7v7lXTlFR0eTnZ19wx/cZDKxZs0a+vXrh16vr7QuV+LOtYN71++U2s1FaLd9hHb9a2iMl1DQoMSNpLjP/4F/3Wof1lG1Hz9fwO2zfsZPr+W3qX0r3T83N5fw8PBKw6nKzTpHu+222zCbbZ+f2cfHBx8fH1JSUkhJSaG42JLcer3epj8AW/dzRe5cO7h3/Y6tXQ/dJ0LH+2HNVDS/LUJj+BTtvu/gjqmQMKZGTT171673KjmWxuZ/c7aw61CC8PBwdDodmZmZpbZnZmYSGRlpz1OVITNhCo8TFAFD37csl16/nWXmzeXJ8EEvyNigdnUOZ9dw8vb2JiEhgbS0NOs2s9lMWlpaqWaeEKIKmnSzLJd+5+vgEwJndsP8u2HxXywPFnuoKodTXl4eBoPBesctIyMDg8HAsWPHAEhOTmbu3LnMnz+f9PR0xo8fT35+vvXunaPIAgfCo+m84NYn4MkdlontNFpI/xZSusCaqR654GeVw2nbtm3Ex8cTHx8PWMIoPj6eqVOnAjB8+HBmzpzJ1KlTiYuLw2AwsHLlSiIiIuxb+XWkWSdqhYBwy8R2T2yEZn2guBA2/gfevhm2p4K58rtl7qLKHeK9e/eudK7giRMnMnHixGoXJYSoRERby2wHB1bDqn9YZt/89inYOhfufBWa9lS7whpzuWfrqkuadaLW0Wig1QAYvxnufM0yRUvmHpifBJ8Ng8y9Ti1HsfO8BB4TTtKsE7WWlzfcOh6eNEDnx0DrBQdWWaYIXjoBLp506OlrzawEQohq8q8DA9+ECVuh7T2gmMHwqaU/as00uHJR7QqrxGPCSZp1QlxVtzkM+wQeTYMm3aHoCmycjde7nWiWtRKKjJUfwwV4TDhJs06I6zTqBGOWw4OLoN5NaC6fp8PJhXjN6Qq/fQFVeBJDDR4TTkKIcmg00DoRnthI0V2zuawPQ3PxGHw9ztInlf6dy04VLOEkRG2g80KJ+wtpbd+guPc/LSPNs/bC4pEwtw8c/MHlQspjwkn6nISoXLHWB3P3p+HpXdDjWdAHwKmd8Om98PHAGi0Aau9s85hwkj4nIarALwzu+D94ahd0nWiZz/zYJssCoJ8MhhPbbT6UxkFjCTwmnIQQ1RBYDwa8DE8ZLEtXab3g8Fr48Hb4/EHLQ8YqkXASQkBwlGXpqknbIW6k5cHi/Stgzm2waCScMji9JAknIcSfwmJg8LuWgZzt7wU0sO87yxxSC4dXqblXUx4TTtIhLoQdhbeE++ZZQqrjcMuV1B8rLc29T++F49Vb7q0qPCacpENcCAeo1wqGfgATfoXYEaDRWYYdfNTP0nF+dLPDTu0x4SSEcKDwFjDkPZi0DeJH/dlx/vGdhH91L3Gag3aek0DCSQhRFXWawT3vwKQdVxda0ONzYiP/857GI5pv7XoqCSchRNWFNYGk/8CTOyloPRSdRuFv2s/tOhJTwkkIUX2h0eT2fhEAL419HySWcBJCuCSPCScZSiCEZ/GYcJKhBEJ4Fo8JJyGEZ5FwEkLUjCxwIISoTSSchBAuScJJCOGSJJyEEC5JwkkI4ZI8JpxkEKYQnsVjwkkGYQqhDo2DxhJ4TDgJITyLhJMQwiVJOAkhXJKEkxDCJUk4CSFckoSTEMIlSTgJIWpEU1tmJbhw4QKdOnUiLi6O9u3bM3fuXLVLEkKowEvtAq4XFBTE+vXr8ff3Jz8/n/bt2zN06FDq1q2rdmlCCCdyuSsnnU6Hv78/AEajEUVRUOy43IwQwj1UOZzWr19PUlISUVFRaDQali5dWmaflJQUYmJi8PX1pUuXLmzdWrV11S9cuEBsbCyNGjXiueeeIzw8vKplCiHcXJXDKT8/n9jYWFJSUsp9ffHixSQnJzNt2jR27NhBbGwsAwYMICsry7pPSX/S9R+nTp0CIDQ0lF27dpGRkcHChQvJzMys5o8nhHBXVe5zSkxMJDExscLXZ82axbhx4xg7diwAc+bMYfny5cybN4/JkycDYDAYbDpXREQEsbGxbNiwgfvuu6/cfYxGI0aj0fr9xYsXAcjJycFkMlV4bJPJREFBAefOnUOv19tUj6tw59rBveuX2ss6n3MeX6Ol68V07lylt+8uXboEUHl3jVIDgLJkyRLr90ajUdHpdKW2KYqiPPTQQ8qgQYNsOuaZM2eU3NxcRVEU5cKFC0q7du2U3377rcL9p02bpgDyIR/y4WYfx48fv2EW2PVuXXZ2NsXFxURERJTaHhERwb59+2w6xtGjR3nsscesHeGTJk2iQ4cOFe4/ZcoUkpOTrd+bzWZycnKoW7cumhskeG5uLtHR0Rw/fpzg4GCbanMV7lw7uHf9UnvNKYrCpUuXiIqKuuF+LjeUoHPnzjY3+wB8fHzw8fEptS00NNTm9wcHB7vdX7IS7lw7uHf9UnvNhISEVLqPXYcShIeHo9PpynRgZ2ZmEhkZac9TCSE8nF3Dydvbm4SEBNLS0qzbzGYzaWlpdO3a1Z6nEkJ4uCo36/Ly8jh48KD1+4yMDAwGA3Xq1KFx48YkJyczevRoOnXqROfOnZk9ezb5+fnWu3euwsfHh2nTppVpEroDd64d3Lt+qd15NFfvutls3bp19OnTp8z20aNHk5qaCsA777zDm2++yZkzZ4iLi+O///0vXbp0sUvBQojaocrhJIQQzuByz9YJIQRIOAkhXJSEkxDCJXl0OFV1doQvv/ySm266CV9fXzp06MCKFSucVGlZVan9999/59577yUmJgaNRsPs2bOdV2g5qlL73Llz6dGjB2FhYYSFhdG3b98qz2Jhb1Wp/+uvv6ZTp06EhoYSEBBAXFwcCxYscGK1pVV3RpBFixah0WgYPHiwYwusCpseeHNDixYtUry9vZV58+Ypv//+uzJu3DglNDRUyczMLHf/jRs3KjqdTnnjjTeUvXv3Kv/85z8VvV6v7N6928mVV732rVu3Ks8++6zy+eefK5GRkcq///1v5xZ8jarWPmLECCUlJUXZuXOnkp6erowZM0YJCQlRTpw44eTKLapa/9q1a5Wvv/5a2bt3r3Lw4EFl9uzZik6nU1auXOnkyqtee4mMjAylYcOGSo8ePZR77rnHOcXawGPDqXPnzsqECROs3xcXFytRUVHKq6++Wu7+w4YNU+66665S27p06aI8/vjjDq2zPFWt/VpNmjRRNZxqUruiKEpRUZESFBSkzJ8/31El3lBN61cURYmPj1f++c9/OqK8G6pO7UVFRUq3bt2UDz/8UBk9erRLhZNHNusKCwvZvn07ffv2tW7TarX07duXzZs3l/uezZs3l9ofYMCAARXu7yjVqd1V2KP2goICTCYTderUcVSZFapp/YqikJaWxv79++nZs6cjSy2jurX/61//on79+jzyyCPOKLNKXO7BX3uozuwIZ86cKXf/M2fOOKzO8thjZge12KP2v//970RFRZX5j8IZqlv/xYsXadiwIUajEZ1Ox7vvvku/fv0cXW4p1an9559/5qOPPqrSg/bO5JHhJNzTa6+9xqJFi1i3bh2+vr5ql2OzoKAgDAYDeXl5pKWlkZycTLNmzejdu7fapVXo0qVLjBo1irlz57rsNNgeGU7VmR0hMjLSJWZTcOeZHWpS+8yZM3nttdf44Ycf6NixoyPLrFB169dqtbRo0QKwTEGdnp7Oq6++6tRwqmrthw4d4siRIyQlJVm3mc1mALy8vNi/fz/Nmzd3bNGV8Mg+p+rMjtC1a9dS+wOsWbPG6bMpuPPMDtWt/Y033uDFF19k5cqVdOrUyRmllstev3uz2Vxq6mhnqGrtN910E7t378ZgMFg/Bg0aRJ8+fTAYDERHRzuz/PKp3SPvKIsWLVJ8fHyU1NRUZe/evcpjjz2mhIaGKmfOnFEURVFGjRqlTJ482br/xo0bFS8vL2XmzJlKenq6Mm3aNFWHElSldqPRqOzcuVPZuXOn0qBBA+XZZ59Vdu7cqRw4cMDla3/ttdcUb29v5auvvlJOnz5t/bh06ZLTa69O/a+88oqyevVq5dChQ8revXuVmTNnKl5eXsrcuXNdvvbrudrdOo8NJ0VRlLfffltp3Lix4u3trXTu3Fn55ZdfrK/16tVLGT16dKn9v/jiC6VVq1aKt7e30q5dO2X58uVOrvhPVak9IyOj3Dmae/Xq5fzClarV3qRJk3JrnzZtmvMLv6oq9b/wwgtKixYtFF9fXyUsLEzp2rWrsmjRIhWqtqjq3/lruVo4yawEQgiX5JF9TkII9yfhJIRwSRJOQgiXJOEkhHBJEk5CCJck4SSEcEkSTkIIlyThJIRwSRJOQgiXJOEkhHBJEk5CCJck4SSEcEn/D0X9e2hNOZv1AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAScAAAIQCAYAAADDzajJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABhvklEQVR4nO3deVyU5f7/8dfMMDCyKyiIorhkuYIraZlLLmFp1jFtOUWek3VKzQ6/Fj3nfLU67cdjdoryZBlmmWQnbdFMIg1z33BJNBfcBVRUNh1g5v79MTJGoAwwM/fMzef5ePBg5p577vvDIG/v+7qv+7p0iqIoCCGEh9GrXYAQQlRHwkkI4ZEknIQQHknCSQjhkSSchBAeScJJCOGRJJyEEB5JwkkI4ZEknIQQHknCSTjk8OHD6HQ6UlJS1C7FpWJiYnj44Yftz1evXo1Op2P16tWq1dRQSTgJUlJS0Ol0bNmyRe1SXGbXrl2MGTOG1q1bYzKZaNGiBUOHDuXtt9+u9bYWLlzI7NmznV+kqMRH7QKEd2jdujUXL17EaDSqXUqtrVu3jkGDBtGqVSsmTJhAZGQkx44dY8OGDbz11ltMnjzZvu6+ffvQ66/9f/bChQvZvXs3Tz31lIsrb9gknIRDdDodJpNJ7TLq5OWXXyYkJITNmzcTGhpa6bW8vLxKz/38/NxYmbgWOa0TDqmuzenhhx8mMDCQo0ePcscddxAYGEiLFi1ITk4GbKdSgwcPJiAggNatW7Nw4cIq2z106BD33HMPTZo0wd/fnxtvvJFly5ZVWqei3efzzz/n5ZdfpmXLlphMJm699VYOHDhQY+0HDx6kc+fOVYIJoFmzZpWe/77N6fcGDhzIsmXLOHLkCDqdDp1OR0xMTI01iNqTcBL1YrFYSEhIIDo6mjfeeIOYmBgmTZpESkoKt912G7169eL1118nKCiIhx56iOzsbPt7c3Nz6devH99//z1PPPEEL7/8MpcuXWLUqFEsWbKkyr5ee+01lixZwtNPP820adPYsGEDDzzwQI01tm7dmq1bt7J79+56/7x///vfiYuLIzw8nAULFrBgwQJpf3IVRTR4H330kQIomzdvvuo62dnZCqB89NFH9mWJiYkKoLzyyiv2ZefOnVMaNWqk6HQ6ZdGiRfble/fuVQBlxowZ9mVPPfWUAihr1qyxLyssLFTatGmjxMTEKBaLRVEURVm1apUCKB07dlTMZrN93bfeeksBlF27dl3z51u5cqViMBgUg8Gg9O3bV3n22WeV77//XiktLa2ybuvWrZXExET784p9r1q1yr7s9ttvV1q3bn3NfYr6kyMnUW+PPPKI/XFoaCjXX389AQEBjB071r78+uuvJzQ0lEOHDtmXLV++nD59+nDzzTfblwUGBvLoo49y+PBh9uzZU2k/48ePx9fX1/68f//+AJW2WZ2hQ4eyfv16Ro0axY4dO3jjjTcYPnw4LVq04Ouvv67bDy1cTsJJ1IvJZKJp06aVloWEhNCyZUt0Ol2V5efOnbM/P3LkCNdff32VbXbs2NH++m+1atWq0vPGjRsDVNrm1fTu3Zsvv/ySc+fOsWnTJqZNm0ZhYSFjxoypEoLCM0g4iXoxGAy1Wq7UY1RoZ2zT19eX3r1788orr/Dee+9RVlbG4sWL61yTcB0JJ6Ga1q1bs2/fvirL9+7da3/dlXr16gXAqVOnavW+3x8RCteQcBKqGTFiBJs2bWL9+vX2ZcXFxbz//vvExMTQqVMnp+xn1apV1R5dLV++HKDaU8trCQgI4MKFC06pTVyddMIUdvPmzWPFihVVlk+ZMsUl+5s6dSqfffYZCQkJPPnkkzRp0oT58+eTnZ3N//73vxp7ajtq8uTJlJSUcNddd3HDDTdQWlrKunXrSE1NJSYmhvHjx9dqez179iQ1NZWkpCR69+5NYGAgI0eOdEqt4goJJ2H33nvvVbv8Wp0S6yMiIoJ169bx3HPP8fbbb3Pp0iW6devGN998w+233+60/cycOZPFixezfPly3n//fUpLS2nVqhVPPPEE//jHP6rtnHktTzzxBJmZmXz00Ue8+eabtG7dWsLJBXRKfVoohRDCRaTNSQjhkTwynLKzsxk0aBCdOnWia9euFBcXq12SEMLNPPK0bsCAAbz00kv079+f/Px8goOD8fGR5jEhGhKP+4v/5ZdfMBqN9lsTmjRponJFQgg1OP20LiMjg5EjRxIVFYVOp2Pp0qVV1klOTiYmJgaTyUR8fDybNm2yv7Z//377pdkePXrwyiuvOLtEIYQXcHo4FRcXExsbax/T5/cq+ofMmDGDbdu2ERsby/Dhw+2DfpWXl7NmzRreffdd1q9fT1paGmlpac4uUwjh4Vza5qTT6ViyZAmjR4+2L4uPj6d379688847AFitVqKjo5k8eTJTp05l/fr1PP/883z//fcA/Otf/wLgmWeeqXYfZrMZs9lsf261WsnPzycsLExuMxDCAymKQmFhIVFRUdfuaOvK8VgAZcmSJfbnZrNZMRgMlZYpiqI89NBDyqhRoxRFUZSysjIlLi5Oyc/PVywWi3LHHXco33zzzVX3MWPGDAWQL/mSLy/7Onbs2DXzw60N4mfOnMFisRAREVFpeUREhP1mTx8fH1555RVuueUWFEVh2LBh3HHHHVfd5rRp00hKSrI/v3DhAq1atSI7O5ugoKCrvq+srIxVq1YxaNCgKoP263Ytxuf7Z7G2GYjlDx9Vee8b3//KZ5uPc3+fljwzrIMjP7pTXat2Tye1q8dT6i8sLKRNmzbX/PsED7xaB5CQkEBCQoJD6/r5+VU7KH2TJk0IDg6+6vvKysrw9/cnLCys6i8qshX46YBCCAur8t74G6JJ3ZnPwQsKYdW87mrXrN3DSe3q8ZT6K/ZdU7OLWzthhoeHYzAYyM3NrbQ8NzeXyMjIem07OTmZTp060bt373ptBwD/y4FTcrbal7u1DAFg94kCyi3W+u9PCFGFW8PJ19eXnj17kp6ebl9mtVpJT0+nb9++9dr2xIkT2bNnD5s3b65vmVfC6eK5al9uGx5IkJ8PF8ss7MstrP/+hBBVOD2cioqKyMzMJDMzE7DdipKZmcnRo0cBSEpKYu7cucyfP5+srCwef/xxiouLaz1sxe8598jpcsdPcwGUm6u8rNfr6N7aNkTs1iPVB5gQon6c3ua0ZcsWBg0aZH9e0VidmJhISkoK48aN4/Tp00yfPp2cnBzi4uJYsWJFlUby2po4cSITJ06koKCAkJCQem0LUyjofcBaDsWnIaRllVV6tmpMxq+n2XrkHA/1janf/hoAq9VKaWkpZWVl+Pj4cOnSJSwWi9pl1Yo31w7uq99oNF51SOXacHo4DRw4sMYxnSdNmsSkSZOcvWvn0eshoCkUnoKivOrDSY6cHFZaWkp2djZWqxVFUezTgXtbPzRvrh3cW39oaCiRkZH12o9HXq2ri+TkZJKTk533P0JFOBWfrvbl2OgQ9Do4fu4iuQWXiAj2zqm6XU1RFE6dOoXBYCA6OhqwnfoHBgY6baRLd7FarV5bO7infkVRKCkpsd/x0bx58zpvSzPh5NTTOoDAy9NUF+VV+3KQycj1kcFknSpg25FzJHSt+y9By8rLyykpKSEqKgp/f3/76Z3JZPK6P3Bvrh3cV3+jRo0AyMvLo1mzZnU+xfO+T9hdAi6HU3H14QTQs3UoIKd211JxJPvbyTCF9vn7+wO2dq66knC6msDLE0UWVX9aB9Crte2q3hYJpxp5YxuNqDtn/L41E05O7UoADh452RrFd5+4QLG53Dn7FUIAGgonp3bChBrbnACim/jTsnEjyq0Kmw/nO2e/QtRBSkpKrWeR8XSaCSenC7h8WneVq3UV+ra19SbfcEjCSYtycnKYMmUK7du3x9/fnw4dOtC/f3/ee+89SkpK1C6vVsaPH88DDzygdhkO08zVOqdz4MgJoG+7MBZvPc76Q9Xfhye816FDh7jpppsIDQ3llVdeoXPnzpSVlZGdnc0HH3xAixYtGDVqlNplapZmjpxc1uZ0MR8sV7/icOPlI6fdJy5QeKnuVyaE53niiSfw8fFhy5YtjB07lo4dOxITE8Odd97JsmXL7BNpnj9/nkceeYSmTZsSHBzM4MGD2bFjh307zz//PHFxcSxYsICYmBhCQkK49957KSy8cl9mTEwMs2fPrrT/uLg4nn/+efvz8+fP89hjjxEREYHJZKJLly58++23ld7z/fff07FjRwIDA7nttts4deqUvYaPP/6Y5cuXYzAY0Ol0rF69GoBjx44xduxYQkNDadKkCXfeeSeHDx+2b/Phhx9m9OjRzJw5k+bNmxMWFsbEiRPrdSXOEZoJJ6e3Ofk3Ad3lj6f4zFVXiwptROswfyzS7uQQRVG4WGqhpLTc7V813bnwW2fPnmXlypVMnDiRgICAatepuCJ1zz33kJeXx3fffcfWrVvp0aMHt956K/n5V/49HDx4kKVLl/Ltt9/y7bff8tNPP/Haa685XI/VaiUhIYG1a9fyySefsGfPHl577bVKfYhKSkqYOXMmCxYsICMjg6NHj/L0008D8PTTT3PPPfdw6623cuLECU6dOkW/fv0oKytj+PDhBAUFsWbNGtauXWsPttLSUvu2V61axcGDB1m1ahXz588nJSWFlJQUh+uvCzmtuxq9AfzDbVfrivMg+OqdLPu2DePI2RLWHzzL4Bvqd4+g1l0ss9B31gZV9r3nxeH4+zr2T/7AgQMoisL1119faXm7du3sw0JPnDiRkSNHsmnTJvLy8uzjis2cOZOlS5fyxRdf8OijjwK2cElJSbEPsPbggw+Snp7Oyy+/7FA9P/zwA5s2bSIrK4sOHWwDHLZt27bSOmVlZcyZM4d27doBttvEXnzxRQACAwNp1KgRfn5+REZG2jthfvLJJ1itVj744AN72H700UeEhoayevVqhg0bBkDjxo155513MBgM3HDDDdx+++2kp6czYcIEh+qvCwmnawlsZguma/R1Alu706LNx6TdqQFIT0/H39+fBx98ELPZzI4dOygqKqoy6ODFixc5ePCg/XlMTEylkR+bN29uv8XDEZmZmbRs2dIeTNXx9/e3B5Oj+9ixYwcHDhyoMirlpUuXKtXfuXPnSkdpzZs3Z9euXQ7XXxcSTtdiv2JXQ6P45XanX04WkF9cSpMA6Q19NY2MBtYn3UhQcJDbbwFpZHT8Nor27duj0+nYt29fpeUxMTEEBwfbb9EoKiqiefPm9vab3/rtpf0qQ0HrdFitVwYq1Ov1VU47f9umU7G/a6luHzWdyhYVFdGzZ08+/fTTKq81bdrU4fpdQTPh5PQbfwGCLo/OWZhzzdWaBZvo2Nx2n92a/ae5M66F82rQGJ1ORyNfA/6+Ph59f1pYWBhDhw7lnXfeYfLkyVdtd+rRowc5OTn4+PgQExNT5/01bdrU3ngNUFBQQHZ2tv15t27dOH78OL/++us1j56uxdfXt8rfR48ePUhNTaVZs2bXHNZaDZ77r6OWnN4gDhB0uZ2p8NS11wMGdLD9L/PTr9c+BRTe491336W8vJxevXqRmppKVlYW+/fv55NPPmHv3r0YDAaGDBlC3759GT16NCtXruTw4cOsW7eOv//972zZssXhfQ0ePJgFCxawZs0adu3aRWJiYqXTqAEDBnDLLbfwhz/8gbS0NLKzs/nuu+9YsWKFw/uIiYnhl19+Yd++fZw5c4aysjIeeOABwsPDufPOO1mzZg3Z2dmsXr2aJ598kuPHj9fq83I2zYSTS9QhnDJ+PYPV6vhVIeG52rVrx/bt2xkyZAjTpk2je/fuDB48mOTkZJ5++mn++c9/otPpWL58Obfccgvjx4+nQ4cO3HvvvRw5cqRWAyhOmzaNAQMGcMcdd3D77bczevToSu1HAP/73//o3bs39913H506deLZZ5+t1ZnCI488wnXXXUefPn1o2rQpa9euxd/fn4yMDFq1asXdd99Nx44d+fOf/8ylS5dUP5Jy6aSaaqgYMuXChQs1zr6yfPlyRowYcfWZKLK+gdQ/QoteMCG9+nUuKy230v3FlRSXWvh28s10aeGEYVuuwqHaPcSlS5fIzs6mTZs2mEwmrFYrBQUFBAcHe/RpXXW8uXZwb/2//73/lqN/o973CbtTUJTtuwNHTr4+evq1Dwfk1E4IZ5BwupbfNohbaz58lnYnIZxHM+Hk9NtXAAIjbL3EFcs1e4lXqAinrUfOcaFEbmURoj40E04uuVpn8Llyj13hyRpXj27iT4eIQCxWhVX7HO9gJ4SoSjPh5DIVt60U1NzuBDCsk+1UMG1Pbg1rCiGuRcKpJrXoTgAwtJPt8vHqfXlcKvO+uc2E8BQSTjWpZTh1bRFCZLCJ4lIL6w/KvXZC1JWEU01qeVqn1+vsR08r5dROiDqTcKqJva9TzQ3iFSrC6YesXOktLkQdSTjVxMGbf3/rxrZhBPn5cLrQzPZj511Tl9C0itEnGzIJp5oEXz5yKnD8yMnXR8/gjrYuCMt2OnY6KDzPww8/jE6ns381bdqUMWPGsHPnTrVLaxA0E04u6YQJEHx5+JNL58Fc5PDbRnazhdq3O09ikVM7r1UxDvepU6dIS0vDYDBcc1IDV4+r3ZBoJpxc0gkTwBQMpss38V445vDb+ncIJ9jkQ16hWcYW92IVw9pGRkYSFxfHU089xbFjxzh9+jSHDx9Gp9ORmprKgAEDMJlMfPrpp1itVl588UVatmyJn58fcXFxVYY22bVrF4MHD6ZRo0aEhYXx6KOPUlR09f/8Nm/eTNOmTXn99dcB2wiWgwYNIigoiODgYHr27FmrIVq8gWbCyaVCWtm+n3c8nPx8DNzWxdZe9c0Ox08JNU9RoKwESovd/1XPATiKior4/PPPad++faVheadOncqUKVPIyspi+PDhvPXWW/z73/9m5syZ7Ny5k+HDhzNq1Cj2798PQHFxMcOHD6dx48Zs3ryZxYsX88MPPzBp0qRq9/vjjz8ydOhQXn75ZZ577jkAHnjgAVq2bMnmzZvZunUrU6dO9fgRKmpLMyNhulRIS8jdVasjJ4A7ukXx+ZbjfLc7hxdGdcbHIP8XUFZCaHJHdfb9t5PgW/2Illfz7bffEhgYCNhCJTIykm+++abSkCNPPfUUd999t/35zJkzee6557j33nsBeP3111m1ahWzZ88mOTmZhQsXcunSJT7++GP7CJvvvPMOI0eO5PXXX680DtSSJUt46KGH+OCDDxg3bpx9+dGjR3nmmWe44YYbALjuuutq+WF4PvlrcURotO17LcOpX7swmgT4kl9cyjrpkOmVBg0aRGZmJpmZmWzYsIHBgwdz++23c+TIEfs6vXr1sj8uKCjg5MmT3HTTTZW2c9NNN5GVlQVAVlYWsbGxlYb+vemmm7BarZXGLN+4cSP33HMPCxYsqBRMAElJSTzyyCMMGTKE1157rdJkBFohR06OCLkcTrU4rQPwMegZ0TWSTzYc5ZsdJ7mlQ9Oa36R1Rn/OT8wiOMj9Exxg9K/1WwICAmjfvj1gm4rpP//5D61bt2bu3Lk88sgj9nVcoV27doSFhTFv3jxuv/32Sqdtzz//PPfffz/Lli3ju+++Y8aMGSxatIi77rrLJbWoQY6cHFHHIye4ctXuu905XCyVe+3Q6Wwh4Rvg/q/L87LVr3wder2eixcvVvt6cHAwUVFRrF27ttLytWvX0qlTJwA6duzIjh07KC4urvS6Xq+vNE9eeHg4P/74IwcOHGDs2LFVrgR26NCBv/71r6xcuZK7776bjz76qN4/nyeRcHJEHRrEK/SOaULLxo0oMpfz/S+Od+QUnsFsNpOTk0NOTg5ZWVk8++yzFBUV2acir84zzzzD66+/TmpqKvv27WPq1KlkZmYyZcoUwNaYbTKZSExMZPfu3axatYrJkyfz4IMPVhl3vFmzZvz444/s3buX++67j/Lyci5evMikSZNYvXo1R44cYe3atWzevJmOHVVqy3MRCSdHhLS0fS88BZba9WPR63WM6Wl7/xdb1Z3NQtTeihUraN68Oc2bN6dv375s376d1NRUBg4ceNX3PPnkkyQlJfH//t//o2vXrqxYsYKvv/7a3mjt7+/P999/T35+Pr1792bMmDHceuutvPPOO9VuLzIykh9//JFdu3bxwAMPoNfrOXv2LA899BAdOnRg7NixJCQk8MILL7jiI1CNR05wUDFxoV6vp3Hjxqxatcrh9zp1goMKViu8HAkWM0zZAY1jHK4H4Fh+Cf3fWIVOBz8/N5gWoTVPkHgtMsGBOry5dpAJDpxm3bp1ZGZm1iqYXEavv3L0VIdTu+gm/vRtG4aiwJdy9CSEQzw2nDxOPRrFgSundtuO1zhFtBDCBeGUkZHByJEjiYqKQqfTsXTp0irrJCcnExMTg8lkIj4+nk2bNlV6XafTMWDAAHr37l3tHO6qqGN3ggoJXSMJ9PPhyNkSNmbL7SxC1MTp4VRcXExsbCzJycnVvp6amkpSUhIzZsxg27ZtxMbGMnz4cPLyrkwI8PPPP7N161a+/vprXnnlFc+4C7winC4crdPb/X19GBlrG7hu4ca6bUOIhsTp4ZSQkMBLL7101c5gs2bNYsKECYwfP55OnToxZ84c/P39mTdvnn2dFi1sIwE0b96cESNGsG3bNmeXWXsVjeDnjlxztWt5IL41AN/tPsWZIrMTihJCu9zaQ7y0tJStW7cybdo0+zK9Xs+QIUNYv349YDvyslqtBAUFUVRUxI8//sjYsWOvuk2z2YzZfOUPvaCgALBd0brW8BUVrzk6xIUuOBofQMk/RHkdh8W4vpk/sS1D2HH8Ap9tOMxfBrSt03ZqW7uaysvLURQFi8WC1Wq1t7cpioLValW5utrx5trBvfVX/N7Ly8ur/Dt19N+tW8PpzJkzWCyWKh3NIiIi2Lt3LwC5ubn2oy6LxcKECROuOUbTq6++Wm3/jpUrV+LvX/PtCmlpaQ7V7ltWQAJAwUlWfLsUq97Xoff9Xhc/HTsw8NGa/bQs2ou+Hp2WHa1dTTqdjoiICE6ePElwcDC6y720z5713nsNvbl2cH395eXl5OfnU1RURHp6epXXS0pKHNqOx91b17ZtW3bs2OHw+tOmTSMpKcn+vKCggOjoaIYNG1ZjP6e0tDSGDh3qWF8hRUH59Tl0pcXcdmMnCO/gcI2/NbjMwrJ/ZZB/sQz/9r0ZfH3t77erde0qKy4u5tSpU5w9exZFUbh06RImk8keVN7Cm2sH99YfEBBA27Ztq/33WXF2UxO3hlN4eDgGg4Hc3MqzkuTm5hIZGVmnbfr5+eHn50dycjLJyclYLLb714xGo0N/uI6uB0CTtpCzC2PBMWjeuU71Go1G7unVkrlrslm0+TjDu0TVaTsV2/KGcAoNDSUoKMh+qp2RkcEtt9ziFbX/ljfXDu6r32Aw4OPjc9UAdHTfbg0nX19fevbsSXp6un3wdqvVSnp6+lUH2nLUxIkTmThxor33qUs0bgM5u+Bcdr0280B8a+auyWb1r6fJPlNMm3DX3NXuSQwGg/2rvLwck8nkdX/g3lw7eF/9Tr9aV1RUZB//BiA7O5vMzEyOHrVdPk9KSmLu3LnMnz+frKwsHn/8cYqLixk/fryzS3G+Jm1s3/PrF04x4QEMvqEZigIf/nzICYUJoT1OP3LasmULgwYNsj+vaA9KTEwkJSWFcePGcfr0aaZPn05OTo59fOXfN5LX1u9P61yicUU41T9QHunfhh/35vHF1uP8v6HX0zigbg3sQmiV08Np4MCBNd6eMWnSpHqfxv2eW07rKo6c6nlaB9C3bRhdWgSz+0QBn2w4wuRbtTfMqhD1IffW1UaTy/2Szh0Ba/2O0HQ6HRP627Y3f/0RLpXJQHRC/JZmwsll89b9VnAL0BvBWgYFJ+q9uRFdmxMVYuJMkZmvM2WGFiF+SzPh5LJ5635Lb4DGtltQ6tsoDmA06Bl/k+1Uce6aQ1hl8k0h7DQTTm7jxEZxgHv7RBPk58P+vCJW7smt+Q1CNBCaCSe3nNYBhNlm4uDsAadsLshkJLFfDABv/7hfxnoS4jLNhJNbTusAwi9fVTuz32mb/PPNbfD3NfDLyQJW7cur+Q1CNACaCSe3qbin7syvTttk4wBfHuxra8v6T/oBOXoSAgmn2qs4cjp/BMouOW2zE/q3xWTUk3nsPD8fOOO07QrhrTQTTm5rcwqMAL9gUKxOaxQHCA/04/4+tqOn2T9I25MQmgknt7U56XS/aXdy3qkdwF8G2I6eth45J21PosHTTDi5lb3dyXmN4gDNgk32K3f/+v5X6fckGjQJp7pw0ZETwOMD2hFk8iHrVAHf7JRe46LhknCqCxdcsasQ6u/LY7fY7rmblfYrZRbvG6taCGfQTDi5rUEcroTT2QPggobr8Te1ITzQlyNnS0jdXLd58oTwdpoJJ7c1iIPtFhadAUqLoPCU0zcf4OfDpEG2nuhvpe+nyFzu9H0I4ek0E05u5eN7ZWwnF5zaAdwf35qYMH9OF5p5b7VzbpURwptIONVVxald3l6XbN7XR8/fRnQEYO6abI7lOzadjhBaIeFUV81swUHeLy7bxdBOEfRrF0ZpuZXXVrgmBIXwVBJOddWsk+17XpbLdqHT6fi/Ozqh18GynafYfDjfZfsSwtNoJpzcerUOIOLyvHV5WeDCqZ07Ng9mXO9WALz4zR7pmCkaDM2Ek1uv1oFtXCe90XbF7sJRl+7q/w3rQJCfD7tOXOCzza7dlxCeQjPh5HYGIzS93vY4d49LdxUe6EfSMFsD/Ovf7eVskdml+xPCE0g41Ye93cl1jeIVHryxNZ2jgim4VM5rK1zTfUEITyLhVB8Rl8PJxUdOAD4GPS/f1RWdDpbuOMX+C9XPQy+EVkg41UezikZx14cTQFx0KH+Mt4359PkhPeZyue9OaJeEU31UHDmd2Q/l7mkHenr49YQH+pJ3ScfcNfWfnkoITyXhVB/BLcAvBBSLy25j+b2QRkb+lmBriH/3p0Psyyl0y36FcDcJp/rQ6dza7lThjq6RdGlspcyi8PTiHZTLsCpCgzQTTm7vhFkhsqvte85Ot+1Sp9Mxtq2VYJOt79N/M5w3lrkQnkIz4eT2TpgVmsfavp/a4dbdhvjC/91+AwBv/bCfX3Pl9E5oi2bCSTW/DScX3sZSnTtjm3PrDc0otVjl9E5ojoRTfTW9AQy+YC6A84fdumudTscrd3cl2OTDzuMXeG/1QbfuXwhXknCqL4Pxyk3Abj61A4gINvH8KNv+Z6fvZ/vRc26vQQhXkHByBpXanSrc1b0FI2OjsFgVpizKpPBSmSp1COFMEk7OoHI46XQ6XhrdhRahjTiaX8KMr1x/r58Qribh5AzN42zfT+1wyWwsjghpZOSte+PQ6+DL7SdYuv2EKnUI4SwSTs7QrBPofaDkLBSoFwq9Yprw5K22CT//sXS3jDsuvJqEkzMYTdD08pjiKp3aVZg0qD29WjemyFzOpIXbMJdbVK1HiLry2HAqKSmhdevWPP3002qX4piKdqeT21Utw8egZ/a9cYQ0MrLj+AVe+tZ1Y5wL4UoeG04vv/wyN954o9plOK5FD9v341vUrQNo2dif2ffGodPBgg1HpP1JeCWPDKf9+/ezd+9eEhIS1C7FcS0v39N3Ypvbe4pXZ9D1zZh8edbgaV/ukttbhNdxejhlZGQwcuRIoqKi0Ol0LF26tMo6ycnJxMTEYDKZiI+PZ9OmTZVef/rpp3n11VedXZprNesERn8wX4Cz+9WuBoApQzrQ/7pwLpZZ+MsnW6X/k/AqTg+n4uJiYmNjSU5Orvb11NRUkpKSmDFjBtu2bSM2Npbhw4eTl5cHwFdffUWHDh3o0KGDs0tzLYPPlS4FHnBqB2DQ65g9Lo7mISYOnS4m6fMdMrWU8Bo+zt5gQkLCNU/HZs2axYQJExg/fjwAc+bMYdmyZcybN4+pU6eyYcMGFi1axOLFiykqKqKsrIzg4GCmT59e7fbMZjNm85VRKAsKCgAoKyujrOzqRwoVr11rndrSR/XAcHQdlqMbsXYZ67Tt/l5tag/20/P2vbHc/+Fm0vbk8q/vs0gacp3LaquJKz53d/Hm2sFz6nd0/zpFcV2vQZ1Ox5IlSxg9ejQApaWl+Pv788UXX9iXASQmJnL+/Hm++uqrSu9PSUlh9+7dzJw586r7eP7553nhhReqLF+4cCH+/v5O+Tkc1fz8Zvpkv835Rq346YaX3Lrvmmw+reOTAwYAEq+z0CNcjqCEOkpKSrj//vu5cOECwcHBV13P6UdO13LmzBksFgsRERGVlkdERLB37946bXPatGkkJSXZnxcUFBAdHc2wYcOu+YOXlZWRlpbG0KFDMRqNddp3FQXd4e23Cbl0nBFDBoBvgHO2+zt1qX0E0Oj7X5n782EWZRu589bedG0R4pL6rsUln7ubeHPt4Dn1V5zd1MSt4VRbDz/8cI3r+Pn54efnR3JyMsnJyVgstk6HRqPRoV+Ao+s5JKwVBEWhKzyJ8fQvEHOTc7Z7FbWtfeqIThw8U8KPe/N4YuEOvp50E82CTS6s8Oqc+rm7mTfXDurX7+i+3dqVIDw8HIPBQG5ubqXlubm5REZG1mvbqo2E+Xste9m+H1e5jmoY9DreujeO9s0CySm4xJ/mb6bYXK52WUJUy63h5OvrS8+ePUlPT7cvs1qtpKen07dvX3eW4joV/Z2Obbr2eioJMhn5MLEXYQG+7D5RwKSF22QETeGRnB5ORUVFZGZmkpmZCUB2djaZmZkcPXoUgKSkJObOncv8+fPJysri8ccfp7i42H71rq5Um+Dg91pdDtmj6z2iM2Z1WocF8EFiL0xGPav2neb/vtqNC6+LCFEnTg+nLVu20L17d7p37w7Ywqh79+72rgDjxo1j5syZTJ8+nbi4ODIzM1mxYkWVRvLa8pjTuuax4NMILua7bS67uujeqjH/ubc7eh18tukYyasOqF2SEJU4PZwGDhyIoihVvlJSUuzrTJo0iSNHjmA2m9m4cSPx8fHOLkM9Pr5X2p2OrlO3lhoM6xxpH+J35spf+d/W4ypXJMQVHnlvXV14zGkdQOt+tu9H1qtbhwMe6hvDo7e0BeDZ/+0kPSu3hncI4R6aCSePOa2Dyu1OXmDqbTdwV/cWWKwKT3y6jQ2HzqpdkhDaCSeP0rI36Axw4RicP6Z2NTXS63W8MaYbQzo2w1xu5ZH5W9h5/LzaZYkGTjPh5FGndX6BEBVne+wlR09Gg5537u9B37ZhFJnLSZy3if0yzIpQkWbCyaNO6+DKqd2RterWUQsmo4G5ib2IbRnCuZIy/vjhRhmHXKhGM+HkcbyoUfy3Av18SBnfh+uaBZJbYObe9zdIQAlVSDi5SsWR05l9UJSnbi211DjAl08fiadteAAnzl+UgBKq0Ew4eVSbE4B/E4jsanucnaFuLXXQLNjEZ4/eaA+o++Zu4Pg5CSjhPpoJJ49rcwJoM8D2/dBqVcuoq4jLAdUmPIDj52xHUBJQwl00E04eqe1A2/dDP6k2E3B9RQSb+GzClYC6b66c4gn3kHBypVZ9bTMBXzgK57LVrqbOIkNsARUT5s+x/IuM/e96Dp4uUrssoXESTq7kFwgt+9geH/pJ3VrqKTLExKJH+9K+WSCnLlxi7Jz1/HLygtplCQ3TTDh5XIN4hbaX252yvTucwBZQqY/eSOeoYM4Wl3Lv+xvYeiRf7bKERmkmnDyyQRyuNIpnZ3js+E61ERbox2eP3kjvmMYUXirnjx9s4uf9Z9QuS2iQZsLJY7XoCcYAKDkLubvVrsYpgk1GPv5TvH3Czj+lbGbF7hy1yxIaI+Hkaj6+VyY6OPijurU4USNfAx8k9uK2zpGUWqw88elWFqw/rHZZQkMknNyh/RDb9wM/qFuHk/n5GHjn/u7c1ycaqwL/99UvvL5irwz5K5xCwskdKsLp6Hq45NicXd7Cx6Dnlbu6kjTUNn38e6sP8v8+30Fpufe3rwl1STi5Q1g7aNIOrOVe21v8WnQ6HU/eeh1vjOmGQa/jy+0n+FPKZgoveee03cIzaCacPLYrQYXrhtq+H0hTtw4XGtsrmg8Se+Hva+DnA2cY998NnLpwUe2yhJfSTDh5bFeCChXhtP8Hr72VxRGDrm/GokdvJDzQlz2nCrjznbXsOHZe7bKEF9JMOHm81jfbpowqPAm5v6hdjUt1axnKkidu4vqIIPIKzYz973q+3XlS7bKEl5FwchejCdrcYnu8f6W6tbhBdBN/vni8L4NvsI1LPmnhdt76Yb9cyRMOk3ByJ3u7k7a6FFxNkMnI3Id6MaF/GwDe/OFX/rp4F6UWlQsTXkHCyZ0qwunoBihpGPekGfQ6/n57J17/Q1d89DqW7crhnT0GTl24pHZpwsNJOLlT4xho1hkUC/z6vdrVuNW43q345JF4QhsZOVKk4673Nsj8eOKaJJzc7Ybbbd/3fqtuHSq4sW0YXz4eTwt/hbPFpTzwwUbm/Zwt7VCiWhJO7tbxDtv3A+lQ2vBGlIxu7M9TXSyM6tYci1XhxW/38NfUTC5KQ5T4Hc2Ek8d3wqwQ2Q1CoqH8oiZ7izvC1wAzx3Rh+h2dMOh1LM08yd3vrePo2YYX1uLqNBNOHt8Js4JO95tTu2Xq1qIinU7Hn25uw6ePxBMW4EvWqQJGvvMz6Vm5apcmPIRmwsmrVITTvuVgKVe3FpXd2DaMb5+8mdjoUC5cLOPP87fw6vIsyixy43BDJ+Gkhlb9wBQKF/Ph2Aa1q1Fd85BGfP7YjTzcLwaA/2Yc4t73N3DyvNyX15BJOKnB4APXJ9geN+BTu9/y8zHw/KjOzPljD4JMPmw9co7b/7OGVXu9a7Zk4TwSTmq54fJVuz1fa2JscWe5rUtzlk3uT9cWIZwrKWN8ymZe+26vnOY1QBJOaml/K/gGQsFxOO7hjfhu1irMdl9eYt/WAMz56SD3vi+TeTY0Ek5qMTa60jD+y5fq1uKB/HwMvHBnF959oAdBfrbTvBFvrWHp9hNqlybcRMJJTZ3vtn3/ZSlYpRNidUZ0bc7yKf3p1boxheZynkrN5KlF2ymQUTY1z+PC6fz58/Tq1Yu4uDi6dOnC3Llz1S7JddoNBlMIFOXAkXVqV+Oxopv4s+jRG3lqyHXodbA08yQj3lojE3pqnMeFU1BQEBkZGWRmZrJx40ZeeeUVzp7V6A2iPr7QcaTtsZzaXZOPQc9TQzqw+C99iW7SiOPnLjL2vxuY/cOvlEtjuSZ5XDgZDAb8/f0BMJvNKIqi7RtDK07t9nzV4DtkOqJn6yYsf7I/d3VvgcWqMPuH/YyTxnJNcno4ZWRkMHLkSKKiotDpdCxdurTKOsnJycTExGAymYiPj2fTpk2VXj9//jyxsbG0bNmSZ555hvDwcGeX6TnaDAD/MNuMwNk/qV2NVwgyGXlzXBxv3RtnbyxPeGsNqZuPavs/sgbG6eFUXFxMbGwsycnJ1b6emppKUlISM2bMYNu2bcTGxjJ8+HDy8q50tgsNDWXHjh1kZ2ezcOFCcnM1fL+VwQc63Wl7vOsLdWvxMnfGtWD5lP70jmlMkbmc5/63iz+lbCa3QAay0wIfZ28wISGBhISEq74+a9YsJkyYwPjx4wGYM2cOy5YtY968eUydOrXSuhEREcTGxrJmzRrGjBlT7fbMZjNms9n+vKDANmllWVkZZWVXv6JT8dq11nEXXae78dkyDyXrK8qHvQq+Addc35Nqry1n1x4ZZGTB+F6krD/CrB8OsGrfaYa9+RMz7ujIHV0j0el0TtkPePfnDp5Tv6P71ykuPA7W6XQsWbKE0aNHA1BaWoq/vz9ffPGFfRlAYmIi58+f56uvviI3Nxd/f3+CgoK4cOECN910E5999hldu3atdh/PP/88L7zwQpXlCxcutLddeTxF4dY9zxBYmsfW1o9xvMlNalfklXJK4JMDBo4V2wIpromVe9paCTSqXJiopKSkhPvvv58LFy4QHBx81fWcfuR0LWfOnMFisRAREVFpeUREBHv37gXgyJEjPProo/aG8MmTJ181mACmTZtGUlKS/XlBQQHR0dEMGzbsmj94WVkZaWlpDB06FKNR/X+9+uA9kPE63fV76Tbi5Wuu62m114ara3/QYmVORjbvrj5EZr6eY2YTL93ZiSEdm9V72978uYPn1F9xdlMTt4aTI/r06UNmZqbD6/v5+eHn51dludFodOgX4Oh6Ltf9fsh4HX12BvqSXAhpWeNbPKb2OnBV7UYjJA27gWGdm5P0eSa/5hbx+MJM7u7Rghl3dCbEv/779ObPHdSv39F9u7UrQXh4OAaDoUoDd25uLpGRkfXatteMhHk1jWOg9U2AAjs/V7sar9elRQjfTL6Zxwa0RaeDL7ed4NZZP7F81ym5oucl3BpOvr6+9OzZk/T0dPsyq9VKeno6ffv2rde2vWYkzGuJvc/2fcdnmp6y3F38fAxMS+jIF3/pS7umAZwpMvPEp9t4bMFWuaLnBZweTkVFRWRmZtpPzbKzs8nMzOTo0aMAJCUlMXfuXObPn09WVhaPP/44xcXF9qt3deX1R05g61Lg0wjO/AontqldjWb0bN2EZU/258nB7fHR61i5J5ch//6JhRuPYrXKfwKeyunhtGXLFrp370737t0BWxh1796d6dOnAzBu3DhmzpzJ9OnTiYuLIzMzkxUrVlRpJK8tTRw5mYKv3M6S+am6tWiMyWggadj19iGBC83l/G3JLu6bu4HsM8Vqlyeq4fRwGjhwoP1K22+/UlJS7OtMmjSJI0eOYDab2bhxI/Hx8c4uw3t1f8D2fddiKJU/Gme7ITKYLx/vx//d0YlGRgMbs/MZPjuDd1cfkAHtPIzH3VtXV5o4rQOIuQUatwFzAeyWm4FdwaDX8eeb27Dyr7fQ/7pwSsutvLFiH3e+s5bdJy6oXZ64TDPhpInTOgC9Hno+bHu8NUXNSjQvuok/H/+pD/++J5ZQfyN7ThVwZ/JaXl2eJZN8egDNhJOmxD0AeiOc2AI5u9SuRtN0Oh1/6NmStL8O4I7LsxD/N+MQt72VwboDZ9Qur0GTcPJEgU2vDOErR09u0TTIj3fu78EHD/UiMtjEkbMl3P/BRp77YicXSrzzXjpvp5lw0kybU4WKU7udn0vDuBsN6RRBWtIt/PHGVgCkbjnGkDd/4rtdp1SurOHRTDhpps2pQpsB0jCukiCTkZdGd+Xzx/rSNjyA04VmHv90G08szORCqdrVNRyaCSfN0euhZ6Lt8ab3pce4Cvq0acLyKf2ZNMjWeTMtK49XMw2kbjkut8C4gYSTJ+uRCD4myNkJxzaqXU2DZDIaeHr49Xw96Wa6tgjmokXHP77aw31zN3BYOm+6lGbCSXNtTgD+TaDbWNvjjXPUraWB6xQVzOcT+jC6tQWTUc+GQ7bOm3N+OigTLLiIZsJJc21OFfo8Zvu+52u4IBNKqsnHoGdQlMKySf24uX045nIrr323lzuTpfOmK2gmnDQrsgvE9AfFAps/ULsaAbRq4s+CP/fhX2O6EdLIyC8nbZ03X/tuL5fKpPOms0g4eYP4y0dPW1Og7KKqpQgbnU7HPb2iSUu6hdu72jpvzvnpILfNzmD9QY3Os+hmEk7eoEMChLSCi/kyQ4uHaRZkIvmBHrz/YE8igv04fLaE++ZuYNqXO7lwUTpv1odmwkmTDeIVDD7Q5xHb4w3vSrcCDzSscyRpSQO4P97WefOzTccY9uZPpO3R8LRmLqaZcNJsg3iFHongGwh5e9AdTK95feF2wSYjr9zVldRHb6RNeAC5BWYmfLyFSQu3cbbIXPMGRCWaCSfNaxRqv6VFv/4/qpYiri2+bRjfTenPYwPaotfBtztPMWTWT3yVeUI6b9aChJM3ufEJ0PugP7qOxsUH1a5GXIPJaBu/fOnEm7ghMohzJWVMWZTJn+dv4dQFuajhCAknbxLSArraOmW2z1uucjHCEd1ahvLN5Jv5f0M74GvQ8+PePIbOyuDTjUdk/PIaSDh5m5ueBKD5+S1w9oDKxQhHGA16Jt96HcuevJnurUIpMpfz9yW7uf8DuQXmWjQTTpq+WvdbzTpibT8MHQr6je+qXY2ohesigvjiL/2Yfnn88opbYD5Yc0iOoqqhmXDS/NW637D2nQyAfmcqFOaoXI2oDYNex59ubsP3T93CTe3DMJdbeWlZFvfN3cCx/BK1y/MomgmnhkSJvpGzAdehs5hh7VtqlyPqoFWYP5/8OZ6X7+qCv69tFpjbZmfw2aajckXvMgknb6TTsS9ytO3xlnlQKB39vJFOp+OB+NasmHILfWKaUFxqYdqXu/hTymaZkRgJJ691OqgL1ha9oPwSrJN+T96sVZg/nz16I38f0RFfHz2r9p1m2JsZDb5flISTt9LpsPZ/xvZ484dQlKduPaJeDHodE25py7LJN9O1RQgXLtr6RU36bHuDvUdPwsmLKW0HQ4teUH5R2p404rqIIL58oh9/HdIBH72OZTtPMeKtNWw5nK92aW4n4eTNdDoYONX2ePOHUHRa3XqEUxgNeqYMuY4vHu9Hqyb+nDh/kbH/Xc9bP+zH0oC6HEg4ebv2Q6BFT9vR0zo5etKSuOhQlj15M3d1b4FVgTd/+JX73t/AifMN4/YXzYRTg+mE+Xs6HQy4fPS06QMokPnVtCTIZOTNcXG8OS6WAF8Dmw7nkzA7o0EMxaKZcGpInTCruG4oRN9oO3r66XW1qxEucFf3liyf0p/Y6FAKLpUz4eMtvLFir6YnV9BMODVoOh0Med72eNvHcFZGLNCi1mEBfPGXvoy/KQaAd1cf5KF5mzij0bGiJJy0onVfuG64bSKEH/+pdjXCRYwGPTNGduY/93XH39fAuoNnGfn2z2w7ek7t0pxOwklLbp0O6OCXJXByu9rVCBcaFRvF0ok30bZpAKcuXGLcf9fzyYYjapflVBJOWhLZ5coknOkvqluLcLkOEUF8NfEmErpEUmZR+MfS3Tz/9S+aaYeScNKaQX8DvREO/ggHV6ldjXCxIJORdx/owTPDrwcgZd1h/jR/CwWXvL9XuYST1jSOgd5/tj1e+Q+wyiSPWqfT6Zg4qD3vPdADk1FPxq+n+cO767x+CBYJJy0a8ByYQiF3N2xfoHY1wk0SujZn8WP9iAj2Y39eEXe/t449JwvULqvOPC6cjh07xsCBA+nUqRPdunVj8eLFapfkffybXLmtJf2fcOmCuvUIt+naMoSvJt7MDZFBnC40M+6/69lwyDtnIPa4cPLx8WH27Nns2bOHlStX8tRTT1FcLOMs11rvRyDsOig5A2v+rXY1wo0iQ0ykPtaXPm2aUGgu56F5m/j+F+8bMdXjwql58+bExcUBEBkZSXh4OPn5De+O7HozGGHYS7bHG96D/Gx16xFuFdLIyMd/6sPQThGUllt5/JOtfL3Du25tcno4ZWRkMHLkSKKiotDpdCxdurTKOsnJycTExGAymYiPj2fTpk3Vbmvr1q1YLBaio6OdXWbD0GE4tB0EllJIm652NcLNTEYD7z3Qg3t6tsSqwDP/28WW0zq1y3KY08OpuLiY2NhYkpOTq309NTWVpKQkZsyYwbZt24iNjWX48OHk5VUeLC0/P5+HHnqI999/39klNhw6HQx/BXR6yPoaDq1WuyLhZj4GPa//oRv39o7GqsAnB/R8s9M7jqCcHk4JCQm89NJL3HXXXdW+PmvWLCZMmMD48ePp1KkTc+bMwd/fn3nz5tnXMZvNjB49mqlTp9KvXz9nl9iwRHSytT8BLHsayrV5H5a4Or1exyt3deWeni1Q0PH0F7tY5gUB5ePOnZWWlrJ161amTZtmX6bX6xkyZAjr168HQFEUHn74YQYPHsyDDz5Y4zbNZjNm85U/uIIC26XTsrIyysqu3hGt4rVrreOpal17/+fw+WUpurP7sfz8H6w3PeW64mrQoD53DzNjxHUcPXqMjaf1PJW6nWA/PTe2beL2Ohz9/NwaTmfOnMFisRAREVFpeUREBHv37gVg7dq1pKam0q1bN3t71YIFC+jatWu123z11Vd54YUXqixfuXIl/v7+NdaUlpZWy5/Cc9Sm9pbhd9Gz+L8oP73BqtNNuOgb7sLKatZQPndPc287uGSBHfl6Jny8mSc7W2gR4N4aSkoc6xzq1nByxM0334zV6vi9QdOmTSMpKcn+vKCggOjoaIYNG0ZwcPBV31dWVkZaWhpDhw7FaDTWq2Z3q1PtSgLWT3bhc3QdQ8rSsIxWp3Nmg/vcPUhF/Sl/GcijC3ex+fA5UrID+PzRPrQIbeS2OirObmri1nAKDw/HYDCQm1t5FL/c3FwiIyPrtE0/Pz/8/PxITk4mOTkZi8V2u4bRaHToH5Cj63miWtd+xyyYczP6X79Dfygdrr/NdcXVoEF97h4msJGJDxJ7M3bOevblFvL4wh18+Xg/Gvka3LJ/Rz87t/Zz8vX1pWfPnqSnp9uXWa1W0tPT6du3b7223aBHwnRUs45w4xO2x989C6Xefe+VqLuQRkY+Gt+b8EBfsk4V8Oz/dnrcHHlOD6eioiIyMzPJzMwEIDs7m8zMTI4ePQpAUlISc+fOZf78+WRlZfH4449TXFzM+PHjnV2KqM6A5yC4BZw/AqtfUbsaoaKo0Ea8+0BPfPQ6vtlxkvczDqldUiVOD6ctW7bQvXt3unfvDtjCqHv37kyfbusEOG7cOGbOnMn06dOJi4sjMzOTFStWVGkkr60GO8FBbfkFwh1v2h6vT4YTW9WtR6iqT5smzBjZCYDXV+xlU7bn3I3h9HAaOHAgiqJU+UpJSbGvM2nSJI4cOYLZbGbjxo3Ex8fXe79yWlcLHYZD13tAscJXk6G8VO2KhIr+eGNr7u5hm37qr6mZHjMWlMfdWyfc5LbXwD8M8n6BtbPVrkaoSKfT8eKdXewTeM746he1SwI0FE5yWldLAeGQ8Ibt8U9vQN5edesRqgr08+HNcXEY9DqWbD/BtztPql2SdsJJTuvqoMsfoMNtYC2DryfLqJkNXM/WjZk4qD0Az3+9hwsX1T2900w4iTrQ6eD2WeAbBMc3wYZ31a5IqGzioHa0bRrAmSIzM7/fp2otmgknOa2ro5AWMPzyuE/pL0LuHnXrEary8zHw0uguAHyy8QjbVZwPTzPhJKd19dAj0TYhp6UUljwqV+8auH7twrm7RwsUBV5alqVa50zNhJOoB50ORr0NjZpAzi746TW1KxIqe+62GzAZ9Ww9co4fsvJqfoMLSDgJm6AIGDnb9vjnN+HoRlXLEeqKCDbxp5vaAPDGir1YrO4/etJMOEmbkxN0uhO63WvrnLnkMTAXqV2RUNFjA9oR0sjI/rwivtnh/q4FmgknaXNykoTXIbglnMu2TcopGqyQRkYm9LcdPc356aDb2540E07CSRqFwujLXQq2fgR7vlK1HKGuB2+MIcDXwN6cQlb/etqt+5ZwElW1HQA3TbE9/moynDuibj1CNSH+Ru7r0wqA939y76gFEk6ieoP/D1r2BvMF+N+fweIZN4MK9/vTzW3Q62D9obMcOu2+dkjNhJM0iDuZwQh/+BBMIXB8M/z4T7UrEiqJCm3EoOubAbBo8zG37Vcz4SQN4i7QuDWMesf2eO1bcOAHdesRqqk4tfti63HM5e65B1Mz4SRcpNOoK/PeffkYFOaoW49QxcDrm9IsyI/84lJ+3n/GLfuUcBI1G/YyRHSFkjPwv0fAUq52RcLNfAx6RnRtDsCyXe6ZkFPCSdTMaIJ7PgLfQDi8BtKfV7sioYKKcErbk+uWUzsJJ+GY8Ouu9H9a9zb8skTdeoTb9WrdmGZBfhReKmftAdef2mkmnORqnRt0uhP6PWl7vHQinFZ3vB/hXnq9jtu62OaXdMfNwJoJJ7la5ya3zoCY/lBWDIsegEuOzd4qtGFAh6YAbmkU10w4CTcx+MCYj2xz353dD0sfBw+bjFG4TnzbMHz0Oo7ml3D0rGsnZZVwErUX2BTGfgwGX9j7LWTMVLsi4SaBfj70aNUYgDUHXHuvnYSTqJuWvWDE5VBa9RLs+VrdeoTb3HxdOAAbDrl2Ak4JJ1F3PRMh/nHb4yWPwakd6tYj3KJna9uRU+Yx144vLuEk6mfYS9DuVigrgc/uh8JctSsSLta1ZQg6HRzLv8jZIrPL9iPhJOrH4ANj5kHYdVBwHFIfgLJLalclXCjYZKRd00AAdhw/77L9SDiJ+msUCvenginUNoLBN1PkCp7GxbYMBSDz2AWX7UMz4SSdMFUW1g7uSQGdAXYugtUyg4uWxUWHALD7hIRTjaQTpgdoNwjumGV7/NNrsG2BuvUIl+kQEQTA/rxCl+1DM+EkPETPh6H/07bH30yRMaA06rrL4XT83EVKSl0zSoWEk3C+wf+AbuNAscDniXBqp9oVCSdrEuBLkwBfFAUOnS52yT4knITz6XS2ETTb3AKlRfDpPXDefcO7Cvdo38x2xc5Vp3YSTsI1fHxh3CfQrBMU5cCnY6DEtT2KhXtVhJMcOQnvYwqBBxZDUHM4vRcWjrUdSQlNaNm4EQAnzl10yfYlnIRrhbSEB5dAo8ZwfDOGLx5Gb5VpprSgRagtnI6fl3AS3qpZR3jgCzAGoM9eTc8jc8Dqnhk8hOvIkZPQhpa94N5PUQy+RJ3fjGF5kvQi93ItG/sDkFNwiXKL1enb98hwuuuuu2jcuDFjxoxRuxThTO0GYRn9Pgo69Ds+hbT/k4DyYk0D/fA16LFYFXIKnH8/pUeG05QpU/j444/VLkO4gHLDHWS2+pPtybq34ac31C1I1Jler6NZsB8AeYXOH53AI8Np4MCBBAUFqV2GcJGjYQOwDHnR9mT1K7Dm3+oWJOosLNAWTmeLSp2+baeHU0ZGBiNHjiQqKgqdTsfSpUurrJOcnExMTAwmk4n4+Hg2bdrk7DKEh7PGP2GbLAEg/UXbdOfC64QH+AK4ZFwnp4dTcXExsbGxJCcnV/t6amoqSUlJzJgxg23bthEbG8vw4cPJy3P9VDPCw/RPgkH/sD1Omw7rq/83IzxXWODlcCp2/pGTj7M3mJCQQEJCwlVfnzVrFhMmTGD8+PEAzJkzh2XLljFv3jymTp1a6/2ZzWbM5iupXVBgm6qorKyMsrKr96epeO1a63gqTdXe7yn0ZZcw/DwTvv8bFkWHtfcEFSu8Om/+3ME19Yc2skVIXsFFh7fr6HpOD6drKS0tZevWrUybNs2+TK/XM2TIENavX1+nbb766qu88MILVZavXLkSf3//Gt+flpZWp/16As3UrnSlY8RIOuR+g2HlNHbv2cvhpreqV1wNvPlzB+fWn3dSBxjYvf8wy5cfcug9JSWOTSnl1nA6c+YMFouFiIiISssjIiLYu3ev/fmQIUPYsWMHxcXFtGzZksWLF9O3b99qtzlt2jSSkpLszwsKCoiOjmbYsGEEBwdftZaysjLS0tIYOnQoRqOxnj+Ze2mydmUEllUvYlj/NrHH59Ol0/VYez+qXqHV8ObPHVxTf1nmSZYe2Y1fSDgjRvRy6D0VZzc1cWs4OeqHHxwfA8jPzw8/Pz+Sk5NJTk7GYrH1PDYajQ79AhxdzxNprvZh/7SNaLDuPxhW/g2DxWxrl/Iw3vy5g3PrbxpiOzs5V1Lu8DYdXc+tXQnCw8MxGAzk5laeoSM3N5fIyMh6bVtGwtQAnQ6GvggDLrc9pr8AP74sHTU9WJDJdnxTZHZ+O5xbw8nX15eePXuSnp5uX2a1WklPT7/qaZtoYHQ6GDQNhjxve57xBqz8hwSUhwr0uxxOl5w/GqbTT+uKioo4cOCA/Xl2djaZmZk0adKEVq1akZSURGJiIr169aJPnz7Mnj2b4uJi+9W7uvr9aZ3wcjf/FYz+8N2zsP4dKLtom2FY75H9hhusinAqNjv/787p4bRlyxYGDRpkf17RWJ2YmEhKSgrjxo3j9OnTTJ8+nZycHOLi4lixYkWVRvLamjhxIhMnTqSgoICQkJB6bUt4iPjHwMdkG4t8y4e2gBr1tm2uPOERAi+f1pVarJjLLfj5GJy2baf/lgcOHIhSwyH4pEmTmDRpkrN3LbSoZyIYG8GSv8COhXDpvG0ST2MjtSsTQIDvlQgpulSOX6Dzwkkzx8gyb52GdRsL4xbYjqL2LYcFd8HFc2pXJQCDXoe/ry2QnH1qp5lwkqt1GnfD7bYRNf1C4Oh6+GgEFJxUuyrBlXanQidfsdNMOIkGoHU/+NN3EBgJeXvgw2Fw+le1q2rwKtqdnH3FTjPhJKd1DUREZ/jzSghrDxeOwbzhcHyL2lU1aPYrdk6eXFMz4SSndQ1I49bwp+8hqgdczIf5I+HX79WuqsHy87HFiLnMuUP1aiacRAMTEA6J30C7W6GsBD67Fzb+V+2qGqSK7gOlTh5HXMJJeC+/QLg/Fbo/CIrV1mHzu+dkZhc385Ujp2uTNqcGymC0dcysuN1l4xxY9ACYZfJOd7Gf1smRU/WkzakB0+lst7vck2LrC/Xrd/BRgnQ1cJMrR07Sz0mI6nW+CxK/Bf9wyNkJc2+FnF1qV6V5FUdO0uYkxLVE94YJ6RB+PRSehA+HQ9Y3aleladLmJISjGsfY+kK1GQBlxZD6R1j1KlidPyutkKt1NZIGcVFJo1D445cQ/7jt+U+vwecPgrlQ1bK0SI6caiAN4qIKgw8kvAZ3vgsGX9j7LXwwFM4eVLsyTbnS5iQN4kLUTvcHYPzle/JOZ8HcQXAgveb3CYfIkZMQ9dGyFzy6Glr2hksX4NMxsO5tGf7XCXwNl8OpXMJJiLoJbg4PL4Puf7T1KF/5D1icCJccm6pIVM94OZwsVucGvYSTaFh8/GDUO5DwL9AbYc9X8P5AyP1F7cq8ll6vAySchKg/nQ7iH7W1QwW3hPyDtg6bmQvVrswrGXSXw8nJp8iaCSfpSiBqLbo3PJZhG9mg/CIsfRy+ngxll9SuzKtcPqvDKkdO1ZOuBKJOAsLggS9g0N8BHWz7GD4cAvmH1K7Ma+jlyEkIF9HrYcCztjHK/cNs9+P9dyDs+VrtyryCQdqchHCxdoPgsTUQHQ/mC7Ye5d8m2ebLE1cl4SSEO4S0sHU3uGmK7fmWD+H9QZC7R926PJiEkxDuYjDC0Bdtp3mBEfZe5fqt86TTZjUqrtZZpc1JCDdpNxj+shbaD4XySxhWPEuf7P/IhJ6/I/2chFBDYFO4/3MY/iqK3kjzC1vxmTsAsjPUrsxjXOnn5NztSjgJURO9Hvo+QfnDKyjyi0RXeNI2HdWKv0mfKK60OUk/p6uQTpjC5ZrHsvr6F7F0f8j2fEMyvD8ATu1Qty6VyWldDaQTpnAHi8GEdcQs26leQDM4vRfmDoaMf4HFuTPeegtpEBfCk3QYDk9sgI6jwFoOP75km/GlAQ5kp7+cInLkJISnCAiDsR/DXf8Fv2A4vgnm3Ayb5jao8crlxl8hPJFOB7H3wuPrIKa/bWr05U/bGswbyP15PgZpEBfCc4VGw0Nf28aJMgbAkZ/h3X6w/l3NT49eceNvuYSTEB5Kr7eNE/XEOmhzi20Ylu+n2dqizuxXuzqXka4EQniLxjG2o6g7ZoNvEBzbCO/dBD/P1uQVPRkyRQhvotNBr/HwxHrbYHYWM/wwAz4cqrkp0i9nk9N5ZDh9++23XH/99Vx33XV88MEHapcjRN2FRsMf/2ebO88UAie3wX8HwMr/g9JitavzaB4XTuXl5SQlJfHjjz+yfft2/vWvf3H27Fm1yxKi7nQ629x5EzdBp9GgWGDdf+DdG2F/mtrVeSyPC6dNmzbRuXNnWrRoQWBgIAkJCaxcuVLtsoSov6BIGDvf1rs8pBWcP2qbP2/xw1CYo3Z1Hsfp4ZSRkcHIkSOJiopCp9OxdOnSKuskJycTExODyWQiPj6eTZs22V87efIkLVq0sD9v0aIFJ06ccHaZQqinw3CYuAH6TgKdHn5ZAu/0gc0fNqjOmzVxejgVFxcTGxtLcnJyta+npqaSlJTEjBkz2LZtG7GxsQwfPpy8vDxnlyKE5/INgOEv22YhjupuGxZ4WRLMG97gbySu4OPsDSYkJJCQkHDV12fNmsWECRMYP348AHPmzGHZsmXMmzePqVOnEhUVVelI6cSJE/Tp0+eq2zObzZjNZvvzggLb7K1lZWWUlZVd9X0Vr11rHU8ltavDJbWHd4LEFei3foh+9cvojm9CeX8g1h4PYx3wN2gU6rRdueqzLy+3dY9QFMe27ej+dYriunFHdTodS5YsYfTo0QCUlpbi7+/PF198YV8GkJiYyPnz5/nqq68oLy+nY8eOrF69mpCQEHr27Mm6desICwurdh/PP/88L7zwQpXlCxcuxN/f3xU/lhAuYSrNp/OJRbQ8vwEAs08Qe6LGcrRJf9vpn4c6UQxv7PQh2Kjwz14194YvKSnh/vvv58KFCwQHB191PacfOV3LmTNnsFgsREREVFoeERHB3r17bQX5+PDvf/+bQYMGYbVaefbZZ68aTADTpk0jKSnJ/rygoIDo6GiGDRt2zR+8rKyMtLQ0hg4ditForOdP5l5SuzrcU/sfKT+8BsP3U/E7s4/uRz8ktjwTy22vQ/O4em3ZVfVnnSrkjZ3rMZlMjBgxoMb1K85uauLWcHLUqFGjGDVqlEPr+vn54efnV2W50Wh06Bfg6HqeSGpXh8trv24wtF0LG+fA6tfQn9yKft5Q6Pkw3Dod/JvUa/POrt/H50qMOPo35wi3HiuGh4djMBjIzc2ttDw3N5fIyMh6bVtGwhSaYjBCv8kwaQt0vQdQYOtH8HYP25AsGrwN5vfcGk6+vr707NmT9PR0+zKr1Up6ejp9+/at17ZlJEyhScHN4Q8f2ObSa9bJNvPL8qdhzk1w4Ae1q3Mpp4dTUVERmZmZZGZmApCdnU1mZiZHjx4FICkpiblz5zJ//nyysrJ4/PHHKS4utl+9qys5chKaFnOzbTbiETOhURPb8MCf/AE+GQOn96ldnUs4vc1py5YtDBo0yP68orE6MTGRlJQUxo0bx+nTp5k+fTo5OTnExcWxYsWKKo3ktTVx4kQmTpxIQUEBISEh9dqWEB7J4AN9JkDXMZAx09YmdSANDv4IvR+BgVPr3R5VH86+7O/0cBo4cCA19U6YNGkSkyZNcvauhWgYGjW2deDs9SfbDcT7lsGm/8LOVFtA9X7E1mblJg1qVIK6kNM60eCEtYP7FtrGjoroApfOw4qpkBwPe77y+qnTNRNO0iAuGqy2A+CxDBj5FgQ0hfyD8PlD8MEQOLxW7erqTDPhJESDpjfY+kFN3ga3PAtGfzixBVJGwMJxkJeldoW1JuEkhJaYgmHw3+HJTFublM4Av66A9/ph+HYKptJ8tSt0mGbCSdqchPiNoAi4402YuBE6jgTFin7HpwzZ8wz6Vf+Ei+fVrrBGmgknaXMSohrh18G4T+DPaVijb8SglGFY9xa8FQtrZjl1qGBnt79rJpyEENcQ3QfLg9+wse1TKOEdbFf20l+whdT6d6HsUp03LV0JhBD1o9ORE9KD8glrbFOoN46B4tO2ufX+0x22zIPyUrWrtNNMOEmbkxAO0htsU6hP2mLrfhDcAgpPwrd/hXd6QeZnHjFLsWbCSdqchKglg/FK94PbXoeAZnD+CCz9i21mmN1fqjqmuWbCSQhRR0YT3PgXmJIJQ16w3R5z5lf4Yrxt9IPdX6pyJCXhJISw8Q2Am5+CKTth4N/ALxjy9thC6t2+sPNzt44jJeEkhKjMFAwDn4OndtlCyhQCZ/bBlxMguQ9kLrxKSDm3L4FmwkkaxIVwskahl0NqNwz+P9vpXv5BWPo4vNMTti0ASxk6XNOXQDPhJA3iQriIKRhuedp2JDXkBfAPh3OH4etJ8J8ehOz5BCPOP93TTDgJIVzML8jWJvXUThj2su3q3oWjRGZMZYXvc3RX9jh1dxJOQoja8Q2AfpNsIXXb65Q3Cqed/hRvWl516j0sEk5CiLoxNoIb/8KRu78FIJCLTt28hJMQol4UH9fMrK2ZcJKrdUJoi2bCSa7WCaESGZVACNGQSDgJITyShJMQwiNJOAkhPJKEkxDCI0k4CSE8koSTEKJeXNSTQDvhJJ0whdAWzYSTdMIUQls0E05CCG2RcBJCeCQJJyGER5JwEkJ4JAknIUS96GRUAiFEQyLhJITwSB4ZTnfddReNGzdmzJgxapcihFCJR4bTlClT+Pjjj9UuQwihIo8Mp4EDBxIUFKR2GUIIFdU6nDIyMhg5ciRRUVHodDqWLl1aZZ3k5GRiYmIwmUzEx8ezadMmZ9QqhGhAah1OxcXFxMbGkpycXO3rqampJCUlMWPGDLZt20ZsbCzDhw8nLy/Pvk5cXBxdunSp8nXy5Mm6/yRCCJW4pi+BT23fkJCQQEJCwlVfnzVrFhMmTGD8+PEAzJkzh2XLljFv3jymTp0KQGZmZt2qFUI0GLUOp2spLS1l69atTJs2zb5Mr9czZMgQ1q9f78xd2ZnNZsxms/15QUEBAGVlZZSVlV31fRWvXWsdTyW1q8ObawfX1W+xlFfeRw29Mh3dv1PD6cyZM1gsFiIiIiotj4iIYO/evQ5vZ8iQIezYsYPi4mJatmzJ4sWL6du3b7Xrvvrqq7zwwgtVlq9cuRJ//5pnIk1LS3O4Lk8jtavDm2sH59d/vrCQ6y4/Xr58eY3hVFJS4tB2nRpOzvLDDz84vO60adNISkqyPy8oKCA6Opphw4YRHBx81feVlZWRlpbG0KFDMRqN9arX3aR2dXhz7eC6+g8fOwYHbI9HjBhRYzhVnN3UxKnhFB4ejsFgIDc3t9Ly3NxcIiMjnbkrOz8/P/z8/EhOTiY5ORmLxQKA0Wh06Bfg6HqeSGpXhzfXDs6v32C4EiNGo7HGcHJ0307t5+Tr60vPnj1JT0+3L7NaraSnp1/1tMxZZCRMIbSl1kdORUVFHDhwwP48OzubzMxMmjRpQqtWrUhKSiIxMZFevXrRp08fZs+eTXFxsf3qnRBCW1w1KkGtw2nLli0MGjTI/ryivScxMZGUlBTGjRvH6dOnmT59Ojk5OcTFxbFixYoqjeTO9vvTOiGEd6t1OA0cOBBFUa65zqRJk5g0aVKdi6qLiRMnMnHiRAoKCggJCXHrvoUQzueR99YJIYRmwknmrRNCWzQTTnK1Tght0Uw4CSG0RTPhJKd1QqjDRT0JtBNOclonhLZoJpyEENoi4SSE8EiaCSdpcxJCWzQTTtLmJIS2aCachBDaIuEkhKgXV41KIOEkhPBImgknaRAXQls0E07SIC6EtmgmnIQQ2iLhJITwSBJOQgiPJOEkhKgXGZWgBnK1Tght0Uw4ydU6IbRFM+EkhNAWCSchhEeScBJCeCQJJyGER5JwEkLUi4xKIIRoUCSchBAeSTPhJJ0whdAWzYSTdMIUQls0E05CCG2RcBJCeCQJJyFEvehcNC6BhJMQwiNJOAkhPJKEkxDCI0k4CSE8koSTEMIjeVw4HTt2jIEDB9KpUye6devG4sWL1S5JCKECH7UL+D0fHx9mz55NXFwcOTk59OzZkxEjRhAQEKB2aUKIarhqVAKPC6fmzZvTvHlzACIjIwkPDyc/P1/CSYgGptandRkZGYwcOZKoqCh0Oh1Lly6tsk5ycjIxMTGYTCbi4+PZtGlTnYrbunUrFouF6OjoOr1fCOG9ah1OxcXFxMbGkpycXO3rqampJCUlMWPGDLZt20ZsbCzDhw8nLy/Pvk5cXBxdunSp8nXy5En7Ovn5+Tz00EO8//77dfixhBDertandQkJCSQkJFz19VmzZjFhwgTGjx8PwJw5c1i2bBnz5s1j6tSpAGRmZl5zH2azmdGjRzN16lT69etX47pms9n+vKCgAICysjLKysqu+r6K1661jqeS2tXhzbWD6+ovKy+vvI8aGqEc3b9T25xKS0vZunUr06ZNsy/T6/UMGTKE9evXO7QNRVF4+OGHGTx4MA8++GCN67/66qu88MILVZavXLkSf3//Gt+flpbmUF2eSGpXhzfXDs6vv6iokJjLj5cvX15jOJWUlDi0XaeG05kzZ7BYLERERFRaHhERwd69ex3axtq1a0lNTaVbt2729qwFCxbQtWvXatefNm0aSUlJ9ucFBQVER0czbNgwgoODr7qfsrIy0tLSGDp0KEaj0aHaPIXUrg5vrh1cV/+Jk8dhv+3xiBEjagynirObmnjc1bqbb74Zq9Xq8Pp+fn74+fmRnJxMcnIyFosFAKPR6NAvwNH1PJHUrg5vrh2cX7/R50qMGI3GGsPJ0X07tRNmeHg4BoOB3NzcSstzc3OJjIx05q6qkJEwhdAWp4aTr68vPXv2JD093b7MarWSnp5O3759nbkrIYTG1fq0rqioiAMHDtifZ2dnk5mZSZMmTWjVqhVJSUkkJibSq1cv+vTpw+zZsykuLrZfvXOV35/WCSG8W63DacuWLQwaNMj+vKIxOjExkZSUFMaNG8fp06eZPn06OTk5xMXFsWLFiiqN5M42ceJEJk6cSEFBASEhIS7dlxDC9WodTgMHDkRRlGuuM2nSJCZNmlTnooQQwuNGJagrmbdOCG3RTDjJ1Toh1OGqUQk0E05CCG3RTDjJaZ0Q2qKZcJLTOiG0RTPhJITQFgknIYRH0kw4SZuTENqimXCSNich1KFzUV8CzYSTEEJbJJyEEB5JwkkI4ZE0E07SIC6EtmgmnKRBXAht0Uw4CSG0RcJJCFEvLhqUQMJJCOGZJJyEEB5JwkkI4ZE0E07SlUAIbdFMOElXAiG0RTPhJITQFgknIUT9yAQHQoiGRMJJCOGRJJyEEB5JwkkI4ZEknIQQHkkz4SSdMIXQFs2Ek3TCFEIdOhf1JdBMOAkhtEXCSQjhkSSchBAeScJJCOGRJJyEEB5JwkkI4ZEknIQQ9aJrKKMSnD9/nl69ehEXF0eXLl2YO3eu2iUJIVTgo3YBvxcUFERGRgb+/v4UFxfTpUsX7r77bsLCwtQuTQjhRh535GQwGPD39wfAbDajKAqKoqhclRDC3WodThkZGYwcOZKoqCh0Oh1Lly6tsk5ycjIxMTGYTCbi4+PZtGlTrfZx/vx5YmNjadmyJc888wzh4eG1LVMI4eVqHU7FxcXExsaSnJxc7eupqakkJSUxY8YMtm3bRmxsLMOHDycvL8++TkV70u+/Tp48CUBoaCg7duwgOzubhQsXkpubW8cfTwjhrWrd5pSQkEBCQsJVX581axYTJkxg/PjxAMyZM4dly5Yxb948pk6dCkBmZqZD+4qIiCA2NpY1a9YwZsyYatcxm82YzWb78wsXLgCQn59PWVnZVbddVlZGSUkJZ8+exWg0OlSPp5Da1eHNtYPr6j+Xfw6T2db0Unb2bI2X7woLCwFqbq5R6gFQlixZYn9uNpsVg8FQaZmiKMpDDz2kjBo1yqFt5uTkKAUFBYqiKMr58+eVzp07Kzt37rzq+jNmzFAA+ZIv+fKyr2PHjl0zC5x6te7MmTNYLBYiIiIqLY+IiGDv3r0ObePIkSM8+uij9obwyZMn07Vr16uuP23aNJKSkuzPrVYr+fn5hIWFobtGghcUFBAdHc2xY8cIDg52qDZPIbWrw5trB8+pX1EUCgsLiYqKuuZ6HteVoE+fPg6f9gH4+fnh5+dXaVloaKjD7w8ODvbKf2ggtavFm2sHz6g/JCSkxnWc2pUgPDwcg8FQpQE7NzeXyMhIZ+5KCKFxTg0nX19fevbsSXp6un2Z1WolPT2dvn37OnNXQgiNq/VpXVFREQcOHLA/z87OJjMzkyZNmtCqVSuSkpJITEykV69e9OnTh9mzZ1NcXGy/eucp/Pz8mDFjRpVTQm8gtavDm2sH76tfd/mqm8NWr17NoEGDqixPTEwkJSUFgHfeeYd//etf5OTkEBcXx3/+8x/i4+OdUrAQomGodTgJIYQ7eNy9dUIIARJOQggPJeEkhPBImg2n2o6MsHjxYm644QZMJhNdu3Zl+fLlbqq0erWp/5dffuEPf/gDMTEx6HQ6Zs+e7b5Cq1Gb2ufOnUv//v1p3LgxjRs3ZsiQIbUexcKZalP7l19+Sa9evQgNDSUgIIC4uDgWLFjgxmqrquuIIIsWLUKn0zF69GjXFlgbDt3w5mUWLVqk+Pr6KvPmzVN++eUXZcKECUpoaKiSm5tb7fpr165VDAaD8sYbbyh79uxR/vGPfyhGo1HZtWuXmyu3qW39mzZtUp5++mnls88+UyIjI5U333zTvQX/Rm1rv//++5Xk5GRl+/btSlZWlvLwww8rISEhyvHjx91cee1rX7VqlfLll18qe/bsUQ4cOKDMnj1bMRgMyooVK9xcuU1t66+QnZ2ttGjRQunfv79y5513uqdYB2gynPr06aNMnDjR/txisShRUVHKq6++Wu36Y8eOVW6//fZKy+Lj45XHHnvMpXVeTW3r/63WrVurGk71qV1RFKW8vFwJCgpS5s+f76oSr6q+tSuKonTv3l35xz/+4YryalSX+svLy5V+/fopH3zwgZKYmOhR4aS507rS0lK2bt3KkCFD7Mv0ej1Dhgxh/fr11b5n/fr1ldYHGD58+FXXd6W61O8pnFF7SUkJZWVlNGnSxFVlVqu+tSuKQnp6Ovv27eOWW25xZanVqmv9L774Is2aNePPf/6zO8qsFY+78be+6jIyQk5OTrXr5+TkuKzOq3HGyA5qcUbtzz33HFFRUVX+s3C1utZ+4cIFWrRogdlsxmAw8O677zJ06FBXl1tFXer/+eef+fDDD2t1o707aS6chPd67bXXWLRoEatXr8ZkMqldjkOCgoLIzMykqKiI9PR0kpKSaNu2LQMHDlS7tGsqLCzkwQcfZO7cuR47DLbmwqkuIyNERkZ6zEgK3jyyQ31qnzlzJq+99ho//PAD3bp1c2WZ1apr7Xq9nvbt2wO24aezsrJ49dVX3R5Ota3/4MGDHD58mJEjR9qXWa1WAHx8fNi3bx/t2rVzbdE10FybU11GRujbt2+l9QHS0tJUGUnBm0d2qGvtb7zxBv/85z9ZsWIFvXr1ckepVTjrc7darZWGjXaX2tZ/ww03sGvXLjIzM+1fo0aNYtCgQWRmZhIdHe3O8qundou8KyxatEjx8/NTUlJSlD179iiPPvqoEhoaquTk5CiKoigPPvigMnXqVPv6a9euVXx8fJSZM2cqWVlZyowZM1TvSlCb+s1ms7J9+3Zl+/btSvPmzZWnn35a2b59u7J//36Pr/21115TfH19lS+++EI5deqU/auwsNDja3/llVeUlStXKgcPHlT27NmjzJw5U/Hx8VHmzp3r9trrUv/vedrVOk2Gk6Ioyttvv620atVK8fX1Vfr06aNs2LDB/tqAAQOUxMTESut//vnnSocOHRRfX1+lc+fOyrJly9xccWW1qT87O7vaMZoHDBjg/sKV2tXeunXramufMWOG+wtXalf73//+d6V9+/aKyWRSGjdurPTt21dZtGiRClVfUdt/97/laeEkoxIIITyS5tqchBDaIOEkhPBIEk5CCI8k4SSE8EgSTkIIjyThJITwSBJOQgiPJOEkhPBIEk5CCI8k4SSE8EgSTkIIjyThJITwSP8f75VnH4K2hW8AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -180,8 +179,8 @@ ], "source": [ "# get for both genuchten and brooks\n", - "ls_gen = pe.Soil(\"VS2D_Limon Silt\").from_name(sm=pe.Genuchten)\n", - "ls_bro = pe.Soil(\"VS2D_Limon Silt\").from_name(sm=pe.Brooks)\n", + "ls_gen = pe.Soil(\"Limon Silt\").from_name(sm=pe.Genuchten)\n", + "ls_bro = pe.Soil(\"Limon Silt\").from_name(sm=pe.Brooks)\n", "\n", "ax = ls_gen.model.plot()\n", "ls_bro.model.plot(ax=ax)\n", @@ -206,7 +205,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.9" + "version": "3.10.12" }, "orig_nbformat": 4 }, diff --git a/doc/examples/03_pedotransfer_functions.ipynb b/doc/examples/03_pedotransfer_functions.ipynb index 6f6eee9..4e6a8ae 100644 --- a/doc/examples/03_pedotransfer_functions.ipynb +++ b/doc/examples/03_pedotransfer_functions.ipynb @@ -25,14 +25,16 @@ "outputs": [], "source": [ "# create soil sample\n", - "sand_p = 50 # sand [%]\n", - "silt_p = 10 # silt [%]\n", - "clay_p = 30 # clay [%]\n", - "rho = 1.5 # bulk density [g/cm3]\n", - "om_p = 10 # organic matter [%]\n", - "m50 = 1e4 # median sand fraction\n", + "sand_p = 50 # sand [%]\n", + "silt_p = 10 # silt [%]\n", + "clay_p = 30 # clay [%]\n", + "rho = 1.5 # bulk density [g/cm3]\n", + "om_p = 10 # organic matter [%]\n", + "m50 = 1e4 # median sand fraction\n", "\n", - "ss = pe.SoilSample(sand_p=sand_p, silt_p=silt_p, clay_p=clay_p, rho=rho, om_p=om_p, m50=m50)\n" + "ss = pe.SoilSample(\n", + " sand_p=sand_p, silt_p=silt_p, clay_p=clay_p, rho=rho, om_p=om_p, m50=m50\n", + ")" ] }, { @@ -51,7 +53,7 @@ "wosc = ss.wosten_clay()\n", "\n", "# cosby pedotransfer function (Brook-Corey)\n", - "cosb = ss.cosby()\n" + "cosb = ss.cosby()" ] }, { @@ -61,7 +63,27 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAJOCAYAAAAqFJGJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADjp0lEQVR4nOzdd3gU1dvG8e/sZtMrSUgIafQmvQkoIQoiKIKiovijdwJKF1ApSlF6MXSkWgBRLDSRIlVAMAjSBCGhh5aE9E123j9i9iUmwYSUySbP57q4NLOzM/dsdufk2TnnjKKqqooQQgghhBBC5IFO6wBCCCGEEEIIyyeFhRBCCCGEECLPpLAQQgghhBBC5JkUFkIIIYQQQog8k8JCCCGEEEIIkWdSWAghhBBCCCHyTAoLIYQQQgghRJ5JYSGEEEIIIYTIMykshBBCCCGEEHkmhYX4Ty1atKBFixbmny9fvoyiKKxcuVKzTKLgBAYG0r17d61jCCGKiKJwzlcUhQkTJph/XrlyJYqicPnyZc0yFTQtj7F79+4EBgbm+nlF4b1SlD3u62pJpLAohk6ePMmrr75KQEAAtra2lC1bllatWjF//vxCy3DkyBEURWH27NmZHmvfvj2KorBixYpMjzVv3pyyZcvmal9ffPEFc+bMedyoj6VFixYoimL+Z2dnR61atZgzZw4mk+mxtlmYx3Hw4EEmTJhAVFRUoewvNy5evEi/fv0oX748tra2ODs706xZM+bOnUtCQoLW8YTQXPofnL/99luWj7do0YInnniikFNZvpJ27rl+/ToTJkwgLCysQPezZcuWDEVhfgkMDMzQDj/8LzExMd/3l1OF9boWVVZaBxD56+DBgwQHB+Pv70+fPn3w9vbmypUr/Prrr8ydO5fBgwfneps//fRTrp9Tr1497O3t2b9/P0OHDs2U0crKigMHDtCjRw/z8uTkZI4ePUq7du1yta8vvviCU6dOMWTIkFznzAtfX1+mTp0KwJ07d/jiiy8YOnQot2/fZvLkybneXmEex8GDB5k4cSLdu3fH1dU1w2Pnzp1Dp9PmO4fNmzfz2muvYWNjQ9euXXniiSdITk5m//79jBw5kj///JMlS5Zokk0IUXR06dKFN954Axsbm3zZXkk891y/fp2JEycSGBhInTp1Mjy2dOnSx/qSLCAggISEBAwGg3nZli1bCA0NLZDiok6dOgwfPjzTcmtr63zfV04VxOtqSaSwKGYmT56Mi4sLR48ezfQHY2Rk5GNt83E+oFZWVjRu3JgDBw5kWH7u3Dnu3LlD586d2b9/f4bHjh07RmJiIk899dRj5cxPJpOJ5ORkbG1ts13HxcWF//3vf+af+/fvT9WqVZk/fz4ffvgher2+MKLmu/xqqHPr0qVLvPHGGwQEBLBr1y7KlCljfiwkJIQLFy6wefPmfNlXXFwcDg4O+bItIUSawvxc6fX6fDvHFua5x1I8XBjkhqIoj2w381vZsmUztMNF3eO+rpZEukIVMxcvXqRGjRqZigqA0qVLZ/g5JSWFjz76iAoVKmBjY0NgYCBjx44lKSkpw3r/HmORU0899RS3bt3iwoUL5mUHDhzA2dmZvn37mouMhx9Lfx7Ad999xwsvvICPjw82NjZUqFCBjz76iNTU1AzZNm/eTHh4uPkS6MP9F5OSkhg/fjwVK1bExsYGPz8/Ro0alekYFUVh0KBBfP7559SoUQMbGxu2bduWq+O1tbWlYcOGPHjwIFMRt3btWurXr4+dnR2lSpXijTfe4MqVKwV2HJs2beKJJ57AxsaGGjVqZDiWCRMmMHLkSADKlStn3l96P96sxlj8/fffvPbaa5QqVQp7e3uefPLJTA3tnj17UBSF9evXM3nyZHx9fbG1teXZZ5/N8B7IzrRp04iNjWX58uUZGvZ0FStW5J133gEe3Y/3332xJ0yYgKIonD59ms6dO+Pm5sZTTz3FjBkzUBSF8PDwTNsYM2YM1tbW3L9/37zs8OHDPP/887i4uGBvb09QUFCmwlmIoigoKIjatWtn+ViVKlVo3bq1+eeoqCi6d++Oi4sLrq6udOvWLcsuk927d8fR0ZGLFy/Stm1bnJyceOuttwDYt28fr732Gv7+/ubz1dChQzN1J8qubclJP/Tsxh9s3bqVoKAgnJyccHZ2pmHDhnzxxReP3FZuzj2Q87YzMDCQF198kf3799OoUSNsbW0pX748q1evzrSPP//8k2eeeQY7Ozt8fX2ZNGlSlt9s//v89vC+/n3ejoqKYujQoQQGBmJjY4Ovry9du3blzp077Nmzh4YNGwLQo0cPczuQfk59+HdgNBopVapUhh4G6WJiYrC1tWXEiBFA5nNz9+7dCQ0NNWdP/6eqKoGBgbRv3z7TNhMTE3FxcaFfv36ZHsuN9HP/v2X13snN7yq/Xtd0cXFxDB8+HD8/P2xsbKhSpQozZsxAVdUM6+WkfS8K5IpFMRMQEMChQ4c4derUf/ax7d27N6tWreLVV19l+PDhHD58mKlTp3LmzBm+/fbbPGdJLxD2799PxYoVgbTi4cknn6Rx48YYDAYOHjzISy+9ZH7MycnJ3ACuXLkSR0dHhg0bhqOjI7t27WLcuHHExMQwffp0AN577z2io6O5evWqeTyHo6MjkHbV4aWXXmL//v307duXatWqcfLkSWbPns358+fZtGlThry7du1i/fr1DBo0CA8PjzwNXHu4sJs8eTIffPABr7/+Or179+b27dvMnz+f5s2b8/vvv+Pq6pqvx7F//36++eYbBg4ciJOTE/PmzaNjx45ERETg7u7OK6+8wvnz5/nyyy+ZPXs2Hh4eAHh6emZ5TLdu3aJp06bEx8fz9ttv4+7uzqpVq3jppZf4+uuvefnllzOs//HHH6PT6RgxYgTR0dFMmzaNt956i8OHDz/ytfvhhx8oX748TZs2zc1LnmOvvfYalSpVYsqUKaiqyosvvsioUaNYv369udBKt379ep577jnc3NyAtPdGmzZtqF+/PuPHj0en07FixQqeeeYZ9u3bR6NGjQoksxCPEh0dneHLmXRGozHDz126dKFPnz6Z2oWjR49y/vx53n//fQBUVaV9+/bs37+f/v37U61aNb799lu6deuW5f5TUlJo3bq1uVC3t7cHYMOGDcTHxzNgwADc3d05cuQI8+fP5+rVq2zYsCG/Dj+TlStX0rNnT2rUqMGYMWNwdXXl999/Z9u2bXTu3Dnb5+X23JObtvPChQu8+uqr9OrVi27duvHZZ5/RvXt36tevT40aNQC4efMmwcHBpKSkMHr0aBwcHFiyZAl2dnaP/VrExsby9NNPc+bMGXr27Em9evW4c+cO33//PVevXqVatWp8+OGHjBs3jr59+/L0008DZPkaGAwGXn75Zb755hsWL16coRfDpk2bSEpK4o033sgyR79+/bh+/To7duxgzZo15uWKovC///2PadOmce/ePUqVKmV+7IcffiAmJiZHVyKMRmOmz4C9vb35vZgbOfld5efrCmmfuZdeeondu3fTq1cv6tSpw/bt2xk5ciTXrl3LNE71v9r3IkEVxcpPP/2k6vV6Va/Xq02aNFFHjRqlbt++XU1OTs6wXlhYmAqovXv3zrB8xIgRKqDu2rXLvCwoKEgNCgoy/3zp0iUVUFesWPHILDExMaper1d79eplXlalShV14sSJqqqqaqNGjdSRI0eaH/P09FRbtWpl/jk+Pj7TNvv166fa29uriYmJ5mUvvPCCGhAQkGndNWvWqDqdTt23b1+G5YsWLVIB9cCBA+ZlgKrT6dQ///zzkceULigoSK1atap6+/Zt9fbt2+rZs2fVkSNHqoD6wgsvmNe7fPmyqtfr1cmTJ2d4/smTJ1UrK6sMy/PrOKytrdULFy6Yl504cUIF1Pnz55uXTZ8+XQXUS5cuZdpfQECA2q1bN/PPQ4YMUYEM+3/w4IFarlw5NTAwUE1NTVVVVVV3796tAmq1atXUpKQk87pz585VAfXkyZOZ9pUuOjpaBdT27dtnu87DHvUeBNTx48ebfx4/frwKqG+++WamdZs0aaLWr18/w7IjR46ogLp69WpVVVXVZDKplSpVUlu3bq2aTCbzevHx8Wq5cuUyvGeFKAwrVqxQgUf+q1Gjhnn9qKgo1dbWVn333XczbOftt99WHRwc1NjYWFVVVXXTpk0qoE6bNs28TkpKivr0009n+rx169ZNBdTRo0dnypfVuXvq1KmqoihqeHi4edm/25aHt/3vc+G/P9fpr0H6OSwqKkp1cnJSGzdurCYkJGR47sOf23/L7bknN21nQECACqh79+41L4uMjFRtbGzU4cOHm5eln2MPHz6cYT0XF5dM5+l/vw4P7+vh8/a4ceNUQP3mm28yrZv+ehw9ejTb8+i/fwfbt29XAfWHH37IsF7btm3V8uXLm3/O6twcEhKiZvXn5rlz51RAXbhwYYblL730khoYGPjI35uq/v/r++9/6a9P+rn/3/793nl4W//1u8rv1zX9Mzdp0qQM67366quqoigZ2vKctu9ak65QxUyrVq04dOgQL730EidOnGDatGm0bt2asmXL8v3335vX27JlCwDDhg3L8Pz0QVD50Z/UycmJWrVqmcdS3Llzh3Pnzpkr92bNmpm7kpw/f57bt29nGF/x8Lc1Dx484M6dOzz99NPEx8dz9uzZ/9z/hg0bqFatGlWrVuXOnTvmf8888wwAu3fvzrB+UFAQ1atXz/HxnT17Fk9PTzw9PalatSrTp0/npZdeytA955tvvsFkMvH6669nyODt7U2lSpUyZciP42jZsiUVKlQw/1yrVi2cnZ35+++/c3xsD9uyZQuNGjXK8LtxdHSkb9++XL58mdOnT2dYv0ePHhm+0Ur/xuZR+4+JiQHS3jMFpX///pmWderUiWPHjnHx4kXzsnXr1mFjY2O+RB8WFsZff/1F586duXv3rvn1j4uL49lnn2Xv3r3FfjCeKJpCQ0PZsWNHpn+1atXKsJ6Liwvt27fnyy+/NHevSE1NZd26dXTo0ME8LmLLli1YWVkxYMAA83P1ev0jJ/14eN10D5+74+LiuHPnDk2bNkVVVX7//fc8HXN2duzYwYMHDxg9enSmPv5ZdYdJl9tzT27bzurVq5vPgZB2ZbhKlSoZzodbtmzhySefzHDl09PT09y17HFs3LiR2rVrZ7qiDI9+PbLzzDPP4OHhwbp168zL7t+/z44dO+jUqdNjZaxcuTKNGzfm888/Ny+7d+8eW7du5a233spRzsaNG2d6/3ft2vWx8uTkd5Xfr+uWLVvQ6/W8/fbbGZYPHz4cVVXZunVrhuX53b4XBOkKVQw1bNiQb775huTkZE6cOMG3337L7NmzefXVVwkLC6N69eqEh4ej0+nMXZTSeXt74+rqmmW/88fx1FNPMX/+fO7cucPBgwfR6/U8+eSTQNqlwQULFpCUlJRpfAWk9Tl9//332bVrl/nkny46Ovo/9/3XX39x5syZbLv4/HscRLly5XJ1bIGBgeYZHi5evMjkyZO5fft2hkbtr7/+QlVVKlWqlOU2cjKQK7fH4e/vn2kdNze3DOMFciM8PJzGjRtnWl6tWjXz4w93r/j3/tO7Ez1q/87OzkBaAVlQsvr9vvbaawwbNox169YxduxYVFVlw4YNtGnTxpzpr7/+Asi2OwikvR/Tj1OIwtKoUSMaNGiQabmbm1um7iFdu3Zl3bp17Nu3j+bNm/Pzzz9z69YtunTpYl4nPDycMmXKmLthpqtSpUqW+7eyssLX1zfT8oiICMaNG8f333+f6XOfk3P340j/ciC30+zm9tyT27YzJ+fj7M6x2b3uOXHx4kU6duz42M//NysrKzp27MgXX3xBUlISNjY2fPPNNxiNxscuLCDtfTlo0CDCw8MJCAhgw4YNGI3GDO/LR/Hw8KBly5aPvf+H5eR3ld+va3h4OD4+PpkK24fb19xm1JoUFsWYtbU1DRs2pGHDhlSuXJkePXqwYcMGxo8fb17ncSrs3EgvLA4cOMDBgwepWbOmudFq2rQpSUlJHD16lP3792NlZWUuOqKioggKCsLZ2ZkPP/yQChUqYGtry/Hjx3n33Xdz9A2xyWSiZs2azJo1K8vH/fz8Mvyc2/6sDg4OGU5ozZo1o169eowdO5Z58+aZMyiKwtatW7OcweTfDXhWcnsc2c2Uov5rIFhBeZz9Ozs74+Pjw6lTp3K0j+zetw8P7P+3rH6/Pj4+PP3006xfv56xY8fy66+/EhERwSeffGJeJ/29Nn369ExTB6bLye9RCC21bt0aLy8v1q5dS/PmzVm7di3e3t55+qPMxsYm09TUqamptGrVinv37vHuu+9StWpVHBwcuHbtGt27d89w7k4fxPtvj/oc57fcnnvS5bTtLKzzcWG8Zm+88QaLFy9m69atdOjQgfXr11O1atVsJwbI6TaHDh3K559/ztixY1m7di0NGjTIU1GVLrfthNZtZ05YQkYpLEqI9G+1bty4AaQN8jaZTPz111/myhjSBupGRUUREBCQL/t9eAD3oUOHaNasmfkxHx8fAgICOHDgAAcOHKBu3brmAVd79uzh7t27fPPNNzRv3tz8nEuXLmXaR3YnjwoVKnDixAmeffbZAi+gIO2S5P/+9z8WL17MiBEj8Pf3p0KFCqiqSrly5ahcufIjn1+Yx5Gb7QQEBHDu3LlMy9O7o+XXe+XFF19kyZIlHDp0iCZNmjxy3fSrA/+ereZxrrR16tSJgQMHcu7cOdatW4e9vX2Ge6mkX3Z2dnbOt2/GhChser2ezp07s3LlSj755BM2bdpEnz59MvyhEhAQwM6dO4mNjc1QLGf1+c/OyZMnOX/+PKtWrcrQJWXHjh2Z1nVzc8uyC8fjfI7TP6enTp3KdDXhv+Tm3FMQbWdAQID5yujDsnrd3dzcMp33kpOTzW17ugoVKvxnsZTb9qR58+aUKVOGdevW8dRTT7Fr1y7ee++9/3zeo/ZTqlQpXnjhBT7//HPeeustDhw4kG83in24nXh4QpW89MjI79c1ICCAn3/+mQcPHmS4apHf7WthkjEWxczu3buzrFzT+4WmfwvQtm1bgEwf4PRvxV944YV8yePj40O5cuXYuXMnv/32W6aZEZo2bcqmTZs4d+5chm5Q6Y3dw8eSnJzMggULMu3DwcEhy8vrr7/+OteuXWPp0qWZHktISCAuLu6xjys7o0aNwmg0ml/HV155Bb1ez8SJEzP9XlRV5e7du+afC/M40vtU5+TO223btuXIkSMcOnTIvCwuLo4lS5YQGBiYq3EpjzJq1CgcHBzo3bs3t27dyvT4xYsXmTt3LpD2R76Hhwd79+7NsE5W74//0rFjR/R6PV9++SUbNmzgxRdfzDAXf/369alQoQIzZswgNjY20/Nv376d630KoYUuXbpw//59+vXrR2xsbKZZd9q2bUtKSgoLFy40L0tNTWX+/Pk53kdW525VVc2f3YdVqFCBs2fPZvgMnThx4rGmcX7uuedwcnJi6tSpme66/F/f5ubm3FMQbWfbtm359ddfOXLkiHnZ7du3M4w9SFehQoVM570lS5Zk+ha+Y8eO5q7Q/5b+euSmHQDQ6XS8+uqr/PDDD6xZs4aUlJQcdYP6r/106dKF06dPM3LkSPR6fbYzTOVWerH58OsVFxfHqlWrHnub+f26tm3bltTUVD799NMMy2fPno2iKLRp0+axs2pFrlgUM4MHDyY+Pp6XX36ZqlWrkpyczMGDB1m3bh2BgYHmeahr165Nt27dWLJkibnb0ZEjR1i1ahUdOnQgODg43zI99dRT5mnmHr5iAWmFxZdffmle7+Hlbm5udOvWjbfffhtFUVizZk2WDUT9+vVZt24dw4YNo2HDhjg6OtKuXTu6dOnC+vXr6d+/P7t376ZZs2akpqZy9uxZ1q9fz/bt27Psn5wX1atXp23btixbtowPPviAChUqMGnSJMaMGcPly5fp0KEDTk5OXLp0iW+//Za+ffua5/8uzOOoX78+kDZd7xtvvIHBYKBdu3ZZ3txq9OjRfPnll7Rp04a3336bUqVKsWrVKi5dusTGjRvz7S7dFSpU4IsvvqBTp05Uq1Ytw91vDx48yIYNGzLM0967d28+/vhjevfuTYMGDdi7dy/nz5/P9X5Lly5NcHAws2bN4sGDB5kaSp1Ox7Jly2jTpg01atSgR48elC1blmvXrrF7926cnZ354Ycf8nr4QhS4unXr8sQTT5gnhKhXr16Gx9u1a0ezZs0YPXo0ly9fpnr16nzzzTe5GhdRtWpVKlSowIgRI7h27RrOzs5s3Lgxyz7gPXv2ZNasWbRu3ZpevXoRGRnJokWLqFGjRqZxdf/F2dmZ2bNn07t3bxo2bGi+Z82JEyeIj49/5B+TuTn3FETbOWrUKNasWcPzzz/PO++8Y55uNiAggD/++CPDur1796Z///507NiRVq1aceLECbZv326eNjzdyJEj+frrr3nttdfo2bMn9evX5969e3z//fcsWrSI2rVrU6FCBVxdXVm0aBFOTk44ODjQuHHjR4437NSpE/Pnz2f8+PHUrFkzw1Wb7KS3N2+//TatW7fOVDy88MILuLu7m8e3/fueW4/rueeew9/fn169epmLls8++wxPT08iIiIea5v5/bq2a9eO4OBg3nvvPS5fvkzt2rX56aef+O677xgyZEiGgdoWozCnoBIFb+vWrWrPnj3VqlWrqo6Ojqq1tbVasWJFdfDgweqtW7cyrGs0GtWJEyeq5cqVUw0Gg+rn56eOGTMmw1Suqvr4082mW7x4sQqoZcuWzfTY8ePHzVPE/TvfgQMH1CeffFK1s7NTfXx8zFPnAuru3bvN68XGxqqdO3dWXV1dVSDDVG7JycnqJ598otaoUUO1sbFR3dzc1Pr166sTJ05Uo6OjzesBakhISI6OR1XTXpOHp3N82J49ezJNCbhx40b1qaeeUh0cHFQHBwe1atWqakhIiHru3LlCOY5/T0Woqqr60UcfqWXLllV1Ol2GqfeyWvfixYvqq6++qrq6uqq2trZqo0aN1B9//DHDOunTzW7YsCHD8ty+X86fP6/26dNHDQwMVK2trVUnJye1WbNm6vz58zO8N+Pj49VevXqpLi4uqpOTk/r666+rkZGR2U43e/v27Wz3uXTpUhVQnZycMk1Vme73339XX3nlFdXd3V21sbFRAwIC1Ndff13duXNnjo5LiPySPl3m0aNHs3z8UeenadOmqYA6ZcqULB+/e/eu2qVLF9XZ2Vl1cXFRu3Tpov7+++9ZTjfr4OCQ5TZOnz6ttmzZUnV0dFQ9PDzUPn36mKfF/Pd5YO3atWr58uVVa2trtU6dOur27dsfa7rZdN9//73atGlT1c7OTnV2dlYbNWqkfvnll1nm/Lecnnty2nYGBARkmH48XVbT7P7xxx9qUFCQamtrq5YtW1b96KOP1OXLl2c6xtTUVPXdd99VPTw8VHt7e7V169bqhQsXsjxv3717Vx00aJBatmxZ1draWvX19VW7deum3rlzx7zOd999p1avXl21srLK8PvJ6negqmlTqvr5+WU5RaqqZn2+T0lJUQcPHqx6enqqiqJkOQXswIEDVUD94osvMj2Wnexe34cdO3ZMbdy4sWptba36+/urs2bNyna62Zz+rvL7dX3w4IE6dOhQ1cfHRzUYDGqlSpXU6dOnZ5puNzftu5YUVS1CIz6EEEIIUWDmzp3L0KFDuXz5cpYzzAihhaFDh7J8+XJu3rz5WDe3E0WHFBZCCCFECaCqKrVr18bd3T1H99ARojAkJibi5+fHiy++yIoVK7SOI/KoRIyxuHTpEj179uTWrVvo9Xp+/fXXLPuSCyGEEFC82o24uDi+//57du/ezcmTJ/nuu++0jiQEkZGR/Pzzz3z99dfcvXuXd955R+tIIh+UiMKie/fuTJo0iaeffpp79+5hY2OjdSQhhBBFWHFqN27fvk3nzp1xdXVl7NixvPTSS1pHEoLTp0/z1ltvUbp0aebNm5ftfYKEZSn2hcWff/6JwWAw36a9VKlSGicSQghRlBW3diMwMLBI3UBLCIAWLVrI+7IYKvL3sdi7dy/t2rXDx8cHRVHYtGlTpnVCQ0MJDAzE1taWxo0bZ5gL+q+//jJP21mvXj2mTJlSiOmFEEIUNmk3hBBCG0W+sIiLi6N27dqEhoZm+Xj6vP/jx4/n+PHj1K5dm9atWxMZGQlASkoK+/btY8GCBRw6dIgdO3ZkeQdQIYQQxYO0G0IIoQ2LmhVKURS+/fZbOnToYF7WuHFjGjZsaL5roclkws/Pj8GDBzN69GgOHTrEhAkT2L59OwDTp08H0m5ykpWkpCSSkpLMP5tMJu7du4e7u3uubtMuhBBFkaqqPHjwAB8fn3y7uWFRJu2GEELkTW7aDYseY5GcnMyxY8cYM2aMeZlOp6Nly5YcOnQIgIYNGxIZGcn9+/dxcXFh79699OvXL9ttTp06lYkTJxZ4diGE0NKVK1fw9fXVOkahk3ZDCCEeT07aDYsuLO7cuUNqaipeXl4Zlnt5eXH27FkArKysmDJlCs2bN0dVVZ577jlefPHFbLc5ZswYhg0bZv45Ojoaf39/zp8/bx7Ap4Tvx2pDF1SPqqR031oAR6ate2vWEBW6AOt6dfFdsEDrOIXGaDSye/dugoODMRgM5uXrzq3j0z8+xVpnzaJnF1HJtZKGKfNfdsdd3JXU47537x6VK1fGyclJ6yiaKMx24/ShQyR+MI6Uy5fRe3hQ5tP5WAcGFshx5RdL/1xYcn5Lzg6SX0sFnf3BgweUK1cuR+2GRRcWOdWmTRvatGmTo3VtbGyynFawVKlSuLu7p/0Q5Qw2CtgbIH1ZMWLXoQMpixbDHydxTk3FULq01pEKhdFoxN7eHnd39wwfzP5N+nM64TS/XP2FD098yLoX1+FkXXz+KMvuuIu7knrc6aSLzqPlR7tRulIlXL76kogePUk6f54Hb7+D/4rPsK1cOb/j5htL/1xYcn5Lzg6SX0sFnT19mzlpNyy6g62Hhwd6vZ5bt25lWH7r1i28vb3ztO3Q0FCqV69Ow4YN87QdS2QoW5YEPz9QVR5s26Z1HM3pFB2Tn5qMj4MPVx5cYdyBcTJFnhAWqrDbDSt3d/xXrcSmejVS794loms3Es+cydN+hBCiqLLowsLa2pr69euzc+dO8zKTycTOnTtp0qRJnrYdEhLC6dOnOXr0aF5jWqQHdWoDEL15s8ZJigYXGxdmBM3ASmfFzxE/s/bMWq0jCSEegxbthpWbGwErVmBbsyapUVGEd+9BwslTedqXEEIURUW+sIiNjSUsLIywsDAALl26RFhYGBEREQAMGzaMpUuXsmrVKs6cOcOAAQOIi4ujR48eGqa2fA9q1QKdjsQTf5B85YrWcYqEmp41GdkgbVaYWb/NIiwyTNtAQogsFcV2Q+/igv9ny7GrUwdTdDQRPXoQ//vvBbY/IYTQQpEfY/Hbb78RHBxs/jl9gFy3bt1YuXIlnTp14vbt24wbN46bN29Sp04dtm3blmlgXm6FhoYSGhpKampqnrZjqVKdnbFr2JCEw4eJ2bwFj/7Zz4hSkrxZ9U2ORx5n++XtjPhlBBvabcDN1k3rWEKIhxTVdkPv5ITfsmVc7d+f+N9+40qv3vgtWYx9gwZ52q8Qj5KamorRaCzw/RiNRqysrEhMTLTIv50sOX9esxsMBvR6fb5kKfKFRU5u+T5o0CAGDRqUr/sNCQkhJCSEmJgYXFxc8nXblsKpbZt/CovNUlj8Q1EUJjadyLl757gcc5kx+8awoOUCdEqRv/gnRIlRlNsNvaMDfksWc2VgCPG//kpEn774LVyIw5ON8zWLEKqqcvPmTaKiogptf97e3ly5csUiJ4ew5Pz5kd3V1RVvb+88H3uRLyyEdhyebQmTJpP0118knjuPbZWiO5NJYXIwODCzxUze2vwWB64fYMkfS+hfu7/WsYQQFkJnb4/fooVcDRlE3IEDXOnXD9/QUByfaqZ1NFGMpBcVpUuXxt7evsD/WDaZTMTGxuLo6GiRN9+05Px5ya6qKvHx8URGRgJQpkyZPGWRwiIbJb0rFIDexRnHp58mdtcuYjZvlsLiIZXdKvPek+/xwYEPWBC2gBruNXja92mtYwkhNJSbdkNna4vvglCuvf0Osb/8wtWBA/GdPw/HoKBCSCqKu9TUVHNR4V5I0+KbTCaSk5OxtbW1uD/MwbLz5zW7nZ0dAJGRkZQuXTpP3aIs65UrRCV9Vqh0Li++AEDMli0yxeq/dKjYgVcrv4qKyrv73iUiJkLrSEIIDeW23dDZ2OA7fx5OrVqiJidzZdBgHjw0W5UQjyt9TIW9vb3GSYSlSH+v5HU8jhQW4pEcg4NR7O0xXr1K4okTWscpcsY0GkNtz9o8SH7AO7vfId4Yr3UkIYQFUaytKTtrFk5tngejkavvDCFG7h8k8omljRUQ2smv94oUFuKRdHZ2OD3zDADRm7donKbosdZbM6vFLDzsPLgQdYEPDnwgV3aEELmiGAyUnT4d53btICWFa8OGE/3Dj1rHEkKIXJPCIhsl+c7b/+b8QlsAYrZuRU1J0ThN0VPavjSzWszCSmfFT+E/seLPFVpHEkJoIC/thmJlhc/HU3F5+WUwmbg+ahRR327K/5BCCFGApLDIhoyx+H+OzZqhd3Ul9c4d4g4d0jpOkVS3dF3GNBoDwNzjczl47aDGiYQQhS2v7Yai11Nm8iRcX38dVJUbY8dyf/36fE4pRNG1aNEinJycSHnoS8zY2FgMBgMtWrTIsO6ePXtQFIWLFy8+9v4uX76Moijmm2mKvJPCQvwnxdoa5xfSBnFHyzdo2Xqt8mt0rNQRk2pi5N6RXHkgdywXQuSOotPhPXECbm+9BarKzXHjuff551rHEqJQBAcHExsby2+//WZetm/fPry9vTl8+DCJiYnm5bt378bf358KFSpoEVVkQwoLkSMuHToA8GDnTlIfPNA2TBGlKApjG4+llkctYpJjZDC3EOKxKIqC1/vvUap7dwBufTSJuytXappJiMJQpUoVypQpw549e8zL9uzZQ/v27SlXrhy//vprhuXBwcEkJSXx9ttvU7p0aWxtbXnqqacyXDW8f/8+b731Fp6entjZ2VGpUiVWrEjrslyuXDkA6tati16v58UXXzQ/b9myZVSrVg1bW1uqVq3KggULzI+lX+n45ptvCA4Oxt7entq1a3NIenVIYZEdGWORke0TNbCuWAE1KUlmLHmE9MHc7rbu/HX/L97b/x4m1aR1LCFEIcjPdkNRFEq/Owr3Pn0AiPz4E+4uW5bn7YqSS1VV4pNTCvRfQnJqlstzM6lJcHAwu3fvNv+8e/duWrRoQVBQkHl5QkIChw8fJjg4mFGjRrFx40ZWrVrF8ePHqVixIq1bt+bevXsAfPDBB5w+fZqtW7dy5swZFi5ciIeHBwBHjhwB4Oeff+batWusWbMGgM8//5xx48YxefJkzpw5w5QpU/jggw9YtWpVhqzvvfceI0aMICwsjMqVK/Pmm29m6MZVEskN8rIREhJCSEgIMTExuLi4aB1Hc4qi4NK+PbdnziJ603e4vfaa1pGKLC8HL+YEz6Hn9p78HPEzn/7+KW/Xe1vrWEKIApbf7YaiKHgOG4pibc2d0FAiZ8zElJyM58CB+ZBWlDQJxlSqj9uuyb5Pf9gae+uc/ckZHBzMkCFDSElJISEhgd9//52goCCMRiOLFi0C4NChQyQlJdGiRQv69OnDypUradOmDQBLly5lx44dLF++nJEjRxIREUHdunVp0KABAIGBgeZ9eXp6AuDu7o63tzcxMTEAjB8/npkzZ/LKK68AaVc2Tp8+zeLFi+nWrZv5+SNGjOCFf7qKT5w4kRo1anDhwgWqVq2ah1fLsskVC5FjLi+9BDodCceOkRwhN4N7lDql6zCh6QQAlp5cyua/N2sbSAhhkRRFwXPwIDyHvAPAnXnziZw7V6a1FsVWixYtiIuL4+jRo+zbt4/KlSvj6elJUFCQeZzFnj17KF++PNHR0RiNRpo1a2Z+vsFgoFGjRpw5cwaAAQMG8NVXX1GnTh1GjRrFwYOPnlwlLi6Oixcv0qtXLxwdHc3/Jk2alGmgeK1atcz/X6ZMGSDt7tUlmVyxEDlm8PLCoUkT4g4cIPq77/EcPEjrSEXaSxVe4mLURT479RnjDozD18mX2p61tY4lhLBAHv37oxisiZw+nbsLF4HRiOfw4XIDNJFjdgY9pz9sXWDbN5lMPIh5gJOzEzpdxu+t7Qz6HG+nYsWK+Pr6snv3bu7fv09QUBAAPj4++Pn5cfDgQXbv3s0z/9xj67+0adOG8PBwtmzZwo4dO3j22WcJCQlhxowZWa4fGxsLpF35aNy4cYbH9PqMx2EwGMz/n/5ZNJlKdvdnuWIhcsWlQ3sAor/7Tr4xy4F36r1DC78WJJuSeWfXO9yIvaF1JCGEhXLv1ROvsWMBuLtsOZEffyznYZFjiqJgb21VoP/srPVZLs9tARwcHMyePXvYs2dPhmlmmzdvztatWzly5AjBwcFUqFABa2trDhw4YF7HaDRy9OhRqlevbl7m6elJt27dWLt2LXPmzGHJkiUAWFtbA5Cammpe18vLCx8fH/7++28qVqyY4V/6YG+RPSkssiGDt7Pm1LIlOgcHjFevknDsmNZxijydouPjpz+msltl7ibeZfCuwTJTlBDFVGG0G6W6dsF7wngA7q1aza2PPkIt4d+QiuInODiY/fv3ExYWZr5iARAUFMTixYtJTk4mODgYBwcHBgwYwMiRI9m2bRunT5+mT58+xMfH06tXLwDGjRvHd999x4ULF/jzzz/58ccfqVatGgClS5fGzs6Obdu2cevWLaKjo4G08RJTp05l3rx5nD9/npMnT7JixQpmzZpV+C+GhZHCIhtyg7ys6ezscHo+7VJq1KZN2oaxEA4GB+Y/M59StqU4d/8cY/aNkZmihCiGCqvdcHvjDcpMngSKwv0vvuTm+PFSXIhiJTg4mISEBCpWrIiXl5d5eVBQEA8ePDBPSwvw8ccf07FjR7p06UK9evW4cOEC27dvx83NDUi7KjFmzBhq1apF8+bN0ev1fPXVVwBYWVkxb948Fi9ejK+vL2+99RYAvXv3ZtmyZaxYsYKaNWsSFBTEypUr5YpFDsgYC5FrLu3bE73xGx5s3YZp7Fh09vZaRyryfBx9mBs8l57be7Lryi7mHZ/HkPpDtI4lhLBQrh07olhZcX3MWKI2fI1qTKHM5Eko+pz3ZReiqAoMDMyym19AQECm5ba2tsybN4958+Zlua3333+f999/P9t99e7dm969e2MymcyzQgF07tyZzp075zifq6urdE1ErliIx2DfoAEGf39McXHEbNNm6jpLVKd0HSY2nQjA8lPL+eavbzROJISwZC7t2+MzfRro9URv2sT1d0ejlvA59IUQ2pLCQuSaotPh+uqrAERt2KBxGsvSrkI7+tRMu+HVh4c+5MC1A//xDCGEyJ7LCy9QdtYssLIi5scfuTZ8BKrRqHUsIUQJJYWFeCwuHdqDXk/C77+TdOGC1nEsyuC6g3mh/AukqqkM2zOMc/fOaR1JCGHBnFs/h++8uSgGAw+2b+fqkKGYkpO1jiWEKIGksBCPxVC6NI7/TAEX9fVGbcNYGEVR+LDphzT0bkh8SjwDdw7kZtxNrWMJISyY0zPP4Bv6KYq1NbE7d3J18GBMSUlaxxJClDBSWGRDppv9b66vdgQgetMm+XYsl6z11sxuMZvyLuWJjI8kZGcIscmxWscSQuSB1u2GY/Pm+C1aiGJrS9wve7k6YCCmhARNsgghSiYpLLIh083+N8enn8bKy4vUqChid+7UOo7FcbFxYUHLBbjbunP+/nmG7RmG0SR9o4WwVEWh3XBo2hS/JYtR7O2JO3iQK/36Y4qL0yyPEKJkkcJCPDbFygqXV14GIGrD1xqnsUxlHcsS+mwodlZ2HLpxiA8PfSjT1Qkh8sShUSP8ly1F5+BA/JEjRPTtR2qsXBEVQhQ8KSxEnrh2TOsOFXfwIMlXr2qcxjLV8KjB9ObT0Sk6Nl3YxOI/FmsdSQhh4ezr1cP/s+XonJxIOHaMK716k/rQHP1CCFEQpLAQeWLt64tD06YARG2UQdyPK8gviDGNxgAQGhbKxvPyWgoh8saudm38V6xA5+JCwokTRPTsRWpUlNaxhBDFmBQWIs9cX0u7p0X0xm/k5kx58EbVN+j1RC8APvz1Q3ZF7NI4kRDC0tk9UYOAVSvRu7mReOoU4T16knL/vtaxhBAaCAwMZM6cOQW6DyksRJ45Pvssejc3UiIjif3lF63jWLR36r3DyxVfxqSaGLV3FMduHdM6khDCwtlWrUrA6lXoPTxIOnOGiK7dSLlzR+tYQmSyaNEinJycSHnoS8rY2FgMBgMt/pniPt2ePXtQFIWLFy/maZ+XL19GURTCwsLytJ2cOnHiBC+99BKlS5fG1taWwMBAOnXqRGRkZKHsv6BJYSHyTGdtbZ569v7nX2icxrIpisK4JuNo4duCpNQkBu8czPn757WOJYSwcDaVKhGwehVWnp4k/fUX4V27YbxVPP6QEcVHcHAwsbGx/Pbbb+Zl+/btw9vbm8OHD5OYmGhevnv3bvz9/alQoYIWUR/L7du3efbZZylVqhTbt2/nzJkzrFixAh8fH+KKyextUliIfOHaqRMoCnEHD5J06ZLWcSyalc6KaUHTqFu6Lg+MD+i/oz/XYq9pHUsIYeFsypcnYO0arMqUIfnvvwnv2gXjjRtaxxLCrEqVKpQpU4Y9e/aYl+3Zs4f27dtTrlw5fv311wzLg4ODAUhKSuLtt982XwV46qmnMkz7fP/+fd566y08PT2xs7OjUqVKrFixAoBy5coBUL9+fdzc3HjmmWfMz1u2bBnVqlXD1taWqlWrsmDBAvNj6Vc6vvnmG4KDg7G3t6d27docOnQo2+M7cOAA0dHRLFu2jLp161KuXDmCg4OZPXu2OUdqaiq9evWiXLly2NnZUaVKFebOnZthO927d6dDhw7MmDGDMmXK4OnpyYgRIzAa/3/K+sjISNq1a4ednR3lypXj888/z/HvIS+ksBD5wtrXF8fmzQGI+mqdxmksn52VHfOfmU9F14rcTrhN/x39uZd4T+tYQggLZx0QQMCa1RjKlsUYHkF4l64kX5UvLkoEVYXkuIL9Z4zPenkuplEPDg5m9+7d5p93795NixYtCAoKMi9PSEjg8OHD5sJi1KhRbNy4kVWrVnH8+HEqVqxI69atuXcvrd384IMPOH36NFu3buXMmTMsXLgQDw8PAI4cOQLATz/9xNmzZ/n667Tp8z///HPGjRvH5MmTOXPmDFOmTOGDDz5g1apVGfK+9957jBgxgrCwMCpXrsybb76ZoSvXw7y9vUlJSeHbb7/Ndmp5k8mEr68vGzZs4PTp04wbN46xY8eyfv36DOvt3r2bixcvsnv3blasWMGXX37JypUrzY93796dK1eusHv3br7++msWLFhQKN2trAp8DxYqNDSU0NBQUlNTtY5iMdze6kzsL78Q9e23eA55B52dndaRLJqLjQuLWi6iy9YuXI65TMjPISxvvRx7g73W0YQQWbCUdsPa15eANasJ794DY0QE4V27ELByJdb+/lpHEwXJGA9TfAps8zrANbsHx14Ha4ccbSc4OJghQ4aQkpJCQkICv//+O0FBQRiNRhYtWgTAoUOHSEpKIjg4mLi4OBYuXMjKlStp06YNAEuXLmXHjh0sX76ckSNHEhERQd26dWnQoAGQNog5naenJwDu7u54eXnh7OwMwPjx45k5cyavvPIKkHZl4/Tp0yxevJhu3bqZnz9ixAheeOEFACZOnEiNGjW4cOECVatWzXRsTz75JGPHjqVz587079+fRo0a8cwzz9C1a1e8vLwAMBgMTJw40fyccuXKcejQIdavX8/rr79uXu7m5sann36KXq+ncuXKPPfcc+zatYt+/fpx/vx5tm7dypEjR2jYsCEAy5cvp1q1ajn6HeSFXLHIRlG4g6qlcXjqKQy+vphiYojZvFnrOMWCl4MXi1otwtXGlVN3TzF0z1CMqXJ3biGKIktqNww+PgSsWY11uXKkXL9BeJeuJP0t3ViF9lq0aEFcXBxHjx5l3759VK5cGU9PT4KCgszjLPbs2UP58uXx9/fn4sWLGI1GmjVrZt6GwWCgUaNGnDlzBoABAwbw1VdfUadOHUaNGsXBgwcfmSEuLo6LFy/Sq1cvHB0dzf8mTZqUabB4rVq1zP9fpkwZgEdeGZg8eTI3b95k0aJF1KhRg0WLFlG1alVOnjxpXic0NJT69evj6emJo6MjS5YsISIiIsN2atSogV6vN//s5eXF7du3AThz5gxWVlbUr1/f/HjVqlVxdXV95HHnB7liIfKNotPh9uYbRE6fwb0vvsClY0cURdE6lsUr71KeBc8uoNdPvTh4/SDv7nuXac2nYaWTj68Q4vEZvLwIWL2K8B49SL5wkfBuXSm7dKnWsURBMdinXTkoICaTiZgHD3B2ckKn+9f31rm40l6xYkV8fX3ZvXs39+/fJygoCAAfHx/8/Pw4ePAgu3fvzjAW4r+0adOG8PBwtmzZwo4dO3j22WcJCQlhxowZWa4f+8+d6pcuXUrjxo0zPPbwH/OQVsSkS/+bx2QyPTKPu7s7r732Gq+99hpTpkyhbt26zJgxg1WrVvHVV18xYsQIZs6cSZMmTXBycmL69OkcPnw42/2m7/u/9lsY5IqFyFcur7yCYm1N0ukzJP7xh9Zxio2anjWZEzwHg87AjvAdTDg4AZOq/QlECGHZrDw9CVi9GpsqVUi9fYdrPXtifeOm1rFEQVCUtO5IBfnPYJ/18lx+yRgcHMyePXvYs2dPhmlmmzdvbu7ikz6+okKFClhbW3PgwAHzekajkaNHj1K9enXzMk9PT7p168batWuZM2cOS5YsAcDa2hogQxdGLy8vfHx8+Pvvv6lYsWKGf+mDrPOLtbU1FSpUMM8KdeDAAZo2bcrAgQOpW7cuFStWzPWUulWrViUlJYVjx/5/yvpz584RVQg3yJTCQuQrKzc3nNu2BeD+F19qnKZ4aerTlOlB09Erer67+B2fHPkk28FfQgiRU1alSuG/cgW21auTeu8+fkuWkPRPFxIhtBAcHMz+/fsJCwszX7EACAoKYvHixSQnJ5sLCwcHBwYMGMDIkSPZtm0bp0+fpk+fPsTHx9OrV9pNZ8eNG8d3333HhQsX+PPPP/nxxx/N4w1Kly6NnZ0d27dvJzIykujoaCBtvMTUqVOZN28e58+f5+TJk6xYsYJZs2Y99nH9+OOP/O9//+PHH3/k/PnznDt3jhkzZrBlyxbat28PQKVKlfjtt9/Yvn0758+f54MPPsh198oqVarw/PPP069fPw4fPsyxY8fo3bs3doUw9lUKC5Hv3Dq/CUDM1q1yh9d89qz/s3zU7CMUFL44+wXzf5+vdSQhRDFg5eaG/8oV2NR8An18PNd69SbhoT7fQhSm4OBgEhISqFixonlQM6QVFg8ePDBPS5vu448/pmPHjnTp0oV69epx4cIFtm/fjpubG5B2VWDMmDHUqlWL5s2bo9fr+eqrrwCwsrJi3rx5LFmyhGrVqvHyyy8D0Lt3b5YtW8aKFSuoWbMmQUFBrFy5Mk9XLKpXr469vT3Dhw+nTp06PPnkk6xfv55ly5bRpUsXAPr168crr7xCp06daNy4MXfv3mXgwIG53lf6/TGCgoJ45ZVX6Nu3L6VLl37s7DmlqPKV5yPFxMTg4uLCnTt3cHd3T1t4cTes6QBeT8CAA498viUyGo1s2bKFtm3bZurDl1OXXn2NxFOn8Bw+DI8+ffI5YcHIj+MuLOvPreejXz8C0u7W3btm78feliUdd34qqcd99+5dPDw8iI6ONs9+IvJXlu2GhUi6f58/33gTu/BwdI6O+C1Zgn29ulrHyjFL/lznZ/bExEQuXbpEuXLlsLW1zaeEj2YymYiJicHZ2TnzGAsLYMn58yP7o94z6ee0nLQblvXKCYvh1rkzkHYnbvWhG7aI/PF6ldcZVn8YAHOPz+Wrs19pnEgIURzoHB252qsntvXrY4qN5Urv3sRbwCxXQoiiQQoLUSCcX2iL3t2dlJs3ebBjh9ZxiqUeT/Sgb62+AEw+PJnvL36vcSIhRHGg2tjgsyAU+yZPYoqPJ6JvP+IecTdhIYRIJ4WFKBA6Gxvc3kwba3Fv1WqN0xRfg+oM4n/V/gfABwc+YEe4FHFCiLzT2dvjt3AhDk8/jZqQwJX+A4jdt1/rWEKIIk4KC1Fg3N7ohGIwkHDiBAlhYVrHKZYURWFkw5G8XPFlTKqJUXtHse/qPq1jCSGKAZ2tLb6hn+IYHIyalMTVgQN5sHu31rGEEEVYiSgsAgMDqVWrFnXq1DFPTyYKnpWHB84vvgjAvdVy1aKg6BQd45uMp3Vga1JMKQzZPYRD16XbghB5Ie1GGp21Nb5z5+DUqhWq0cjVt98hRrq3CiGyUSIKC4CDBw8SFhbGbvm2pVCV6tYVgJjtP2G8cUPjNMWXXqdn6lNTCfYLJtmUzOBdgzl84/B/P1EIkS1pN9Io1taUnTUT57ZtwGjk2pChxGzdqnUsIUQRVGIKC6EN26pVsW/cGFJTuf/FF1rHKdYMegMzg2YS5BtEUmoSg3cN5uhNmc1FCJF3isGAz7RpuLR/CVJTuTZ8BNE//KB1LCFEEVPkC4u9e/fSrl07fHx8UBSFTZs2ZVonNDSUwMBAbG1tady4MUeOHMnwuKIoBAUF0bBhQz7//PNCSi7SpV+1uL9+A6b4eI3TFG8GvYFZLWbxVNmnSEhJIGRnCMdvHdc6lhCFStqNgqFYWVFmyhRcOr4CJhPXR71L1Dffah1LCFGEFPnCIi4ujtq1axMaGprl4+vWrWPYsGGMHz+e48ePU7t2bVq3bk1kZKR5nf3793Ps2DG+//57pkyZwh9//FFY8QXg2KIFBn9/TNHRRH/3ndZxij1rvTVzgufQpEwTElISGPDzAMIiw7SOJUShkXaj4Ch6PWU++gjXNzqBqnJj7Fjur1uvdSwhRBFhpXWA/9KmTRvatGmT7eOzZs2iT58+9OjRA4BFixaxefNmPvvsM0aPHg1A2bJlAShTpgxt27bl+PHj1KpVK8vtJSUlkZSUZP45JiYGSLsjpvGfG70pqalYAaqqklIMb/6WfpzGfDw2l86dufPxx9xduQqHl19G0evzbdv5pSCOWys6dMx8eibv/PIOR28dpf+O/ix8ZiFPeDyRad3idNy5UdKPuzgriu2Gpcjp58J97FhUvZ7oz7/g5vjxpCQm4tr5zcKI+EiW/LnOz+xGoxFVVTGZTJhMpjxvLydUVTX/t7D2mZ+KUv49e/bw7LPPcvfuXVxdXf9z/fzIbjKZUFUVo9GI/l9/o+XmPVnkC4tHSU5O5tixY4wZM8a8TKfT0bJlSw79czOfuLg4TCYTTk5OxMbGsmvXLl5//fVstzl16lQmTpyYafnu3buxt7cHwDPmFE1Jazz2bNmSvwdVhOzIx5k/FHs7ytvZQXg4+2bOJPaJzH/gFhX5edxaa6O24bb+NpdTLtP3p770cOxBWauyWa5bnI47N0racceX8O6IWrUbliZHn4uaNfFo3pxSe/dyZ+pUTv/xB1HNny74cDlgyZ/r/MhuZWWFt7c3sbGxJCcn50OqnHvw4MFjP/ezzz5j/PjxXLp0CSurtD9RY2NjKVeuHI0bN+bHH380r7t//37atWvH8ePHKVeu3GPvMyIigtq1a7N3715q1qyZp/w59ccffzBr1iwOHjxITEwMZcuW5amnnmLw4MFUrFjRfJ5+8OABOl3OOxflJXtycjIJCQns3buXlJSUDI/lpt2w6MLizp07pKam4uXllWG5l5cXZ8+eBeDWrVu8/PLLAKSmptKnTx8aNmyY7TbHjBnDsGHDzD/HxMTg5+dHcHAw7u7uACiXHOAiODs707Zt2/w+LM0ZjUZ27NhBq1atMBgM+bbdu1eucn/pUsqdOIHvyJEoipJv284PBXXcWnvO+ByD9gwi7HYYnyd/zqKnFlG1VFXz48X1uP9LST3uu3fvah1BU1q1G5Yit58LtW1b7s2fz/2lyyi9eTPVKlbErXevQkiaNUv+XOdn9sTERK5cuYKjoyO2trb5lPDRVFXlwYMHODk5PXb73qZNG4YPH8758+d58sknAThw4ADe3t4cO3YMa2tr8/EcOXIEf39/ateunafcjo6OAOYvAfKSPyd+/PFHXnvtNZ577jnWrl1LhQoViIyM5Ouvv2batGl89dVXGbI4Ozv/5zbz47VPTEzEzs6O5s2bZ3rPpF+FzQmLLixyonz58pw4cSLH69vY2GBjY0NoaCihoaGkpqYCYDAY/v+D/s8lIkVRLO7ElRsZjjkfeHTrStSqVST9cZKUEyewf0RDraX8Pm6tuRhcWNRqEf129OPE7RMM2D2A5c8tp0qpKhnWK27HnVMl7bhL0rE+rgJpNyxMbrJ7DRuG3taWO/M/5e7cuSimVDxDQgo44aOVlNc+O6mpqSiKgk6ny9U33nmR3gUnfb+Po1q1apQpU4a9e/fStGlTIG0yhvbt27Nr1y6OHDlCixYtAPjll18IDg5Gp9ORlJTEyJEj+eqrr4iJiaFBgwbMnj3b/IXA/fv3GTRoED/99BOxsbH4+voyduxYevToQYUKFQBo0KABAEFBQezZsweAZcuWMXPmTC5dukRgYCBvv/02AwcOBODy5cuUK1eOjRs3Mn/+fA4fPkylSpVYtGgRTZo0yfL44uPj6dWrF23btuXbb/9/4oMKFSrQpEkToqKiMvzO0v//7t27DBo0iL1793L//n0qVKjA2LFjefPNtO6HK1euZNiwYVy7dg07Ozvzdjt06ICTkxNr1qz5z9dep9OZ/6799/svN+/HIj94+1E8PDzQ6/XcunUrw/Jbt27h7e2dp22HhIRw+vRpjh6V6Trzi5WHBy6vpH0LeHfZco3TlCwOBgcWtVxELY9aRCdF0+enPpy7d07rWEIUOmk38p+iKHiGhOA5dCgAd+Z/SuScOeZ+36JoUFWVeGN8gf5LSEnIcnlu3gvBwcEZ7h2ze/duWrRoQVBQkHl5QkIChw8fNt+8ctSoUWzcuJFVq1Zx/PhxKlasSOvWrbl37x4AH3zwAadPn2br1q2cOXOGhQsX4uHhAWCeEe6nn37i7NmzfP311wB8/vnnjBs3jsmTJ3PmzBmmTJnCBx98wKpVqzLkfe+99xgxYgRhYWFUrlyZN998M1NXonTbt2/nzp07jBo1KsvHsxtPkZiYSP369dm8eTOnTp2ib9++dOnSxZz9tddeIzU1le+//978nMjISDZv3kzPnj2zf7ELgEVfsbC2tqZ+/frs3LmTDh06AGkV886dOxk0aJC24USW3Hv0IGrdemJ/+YXE8+exrVxZ60glhqO1IwtbLaTvT3358+6f9P6pN0ufW0oFpwpaRxOi0Ei7UXA8+vVFMRiInDaNu4sWoxqNlB4xosh1ey2pElISaPxFY032fbjzYewNORtvFBwczJAhQ0hJSSEhIYHff/+doKAgjEYjixYtAuDQoUMkJSURHBxMXFwcCxcuZOXKleZJG5YuXcqOHTtYvnw5I0eOJCIigrp165qvSgQGBpr35+npCYC7uzteXl7mrkfjx49n5syZvPLKKwCUK1eO06dPs3jxYrp162Z+/ogRI3jhhRcAmDhxIjVq1ODChQtUrfr/XY7T/fXXXwBZPvYoZcuWZcSIEeafBw8ezPbt21m/fj2NGjXCzs6OV199lZUrV9KpUycA1q5di7+/v/kKT2Ep8lcsYmNjCQsLIywsDIBLly4RFhZGREQEAMOGDWPp0qWsWrWKM2fOMGDAAOLi4syzfTyu0NBQqlev/sh+tSL3rAMCcHruOQDuLf9M4zQlj7O1M0ueW0JNj5pEJUXRa3svTt87rXUsIfKVtBvace/ZA6/33gPSzvG3pk6VKxciV1q0aEFcXBxHjx5l3759VK5cGU9PT4KCgjh8+DCJiYns2bOH8uXL4+/vz8WLFzEajTRr1sy8DYPBQKNGjThz5gwAAwYM4KuvvqJOnTqMGjWKgwcPPjJDXFwcFy9epFevXjg6Opr/TZo0iYsXL2ZY9+HZ4sqUKQOQYerqhz3uZyE1NZWPPvqImjVrUqpUKRwdHdm+fbv5nAbQrVs3duzYwbVr14C07lHdu3cv9MK+yF+x+O2338yXugDzALlu3bqZK7Pbt28zbtw4bt68SZ06ddi2bVumgXm5FRISQkhICDExMbi4uORpWyIj9969eLB9O9GbN+P5ztsYfHy0jlSiOFs7s7jVYgb8PIATt0/Qf2d//mfzP61jCZFvpN3QVqku/0MxGLg5YQL3V69BNRrx/uADlELq6y+yZmdlx+HOhwts+yaTyTyA+N9jLOys7LJ5VmYVK1bE19eX3bt3c//+fYKCggDw8fHBz8+PgwcPsnv3bp555pkcb7NNmzaEh4ezZcsWduzYwbPPPktISAgzZszIcv3Y2Fgg7cpH48YZr/L8eyrWh8cfpP8Rn92Ur5X/6aVx9uzZbMdhZGX69OnMnTuXOXPmULNmTRwcHBgyZEiGGb9q1apF7dq1Wb16Nc899xx//vknmzdvzvE+8kuRLyxatGjxnxXeoEGD5BK2BbGrWRP7xo2JP3yYe6tW4zVmtNaRShwnaycWt1rMwJ8HcjzyOCuMK2h8uzENfBpoHU2IPJN2Q3tub3RCMRi48f77RH35FarRSJmJE4vkPYxKCkVRctwd6XGYTCZSrFKwN9jnecB4cHAwe/bs4f79+4wcOdK8vHnz5mzdupUjR44wYMAAIG3gs7W1NQcOHCAgIABIm2Hr6NGjDBkyxPxcT09PunXrRrdu3Xj66acZOXIkM2bMwNraGsA86QKkzRLn4+PD33//zVtvvZWnY3nYc889h4eHB9OmTcsweDtdVFRUluMsDhw4QPv27fnf/9K+BDSZTJw/f57q1atnWK9nz57MmzePa9eu0bJlS/z8/PIte07J1wfZkEvaBcv9n+kI72/YQGp0tMZpSiYHgwMLWy6kfun6JJFEyO4Qjt86rnUsISyWtBsZuXZ8BZ9PPgadjuivN3Jj7FjUh/54EyI7wcHB7N+/n7CwMPMVC0ibsWnx4sUkJyebr0o6ODgwYMAARo4cybZt2zh9+jR9+vQxz8AEMG7cOL777jsuXLjAn3/+yY8//ki1atUAKF26NHZ2dmzfvp3IyEii//mbZOLEiUydOpV58+Zx/vx5Tp48yYoVK5g1a9ZjH5eDgwPLli1j8+bNvPTSS/z8889cvnyZ3377jVGjRtG/f/8sn1epUiV27NjBwYMHOXPmDP369cs0AQVA586duXr1KkuXLi30QdvppLDIRkmd3aOwODz1FDZVqqDGx3Nv7Vqt45RY9gZ75rWYR3mr8sSnxNP/5/4cvSnveSEeh7Qbmbm89BJlZ0wHvZ7o777n+shRqBZ4V2xRuIKDg0lISKBixYoZuigGBQXx4MEDqlSpYh7PAPDxxx/TsWNHunTpQr169bhw4QLbt2/Hzc0NSJu0YcyYMdSqVYvmzZuj1+v56quvgLSbCc6bN48lS5ZQrVo18z1sevfuzbJly1ixYgU1a9YkKCiIlStX5ulmfADt27fn4MGDGAwGOnfuTNWqVXnzzTeJjo5m0qRJWT7n/fffp169erRu3ZoWLVrg7e1tnnziYS4uLnTs2BFHR8csHy8MRb4rlCieFEXBvW8frg8fwb3VayjVrRv6f25SIwqXnZUd/3P4Hz/Z/cSvN39l4M8Dmf/sfJ4s86TW0YQQxYBz27ZgMHBt2HBitmxBTUmh7IzpKP90QRHi3wIDA7PszhgQEJDlcltbW+bNm8e8efOy3N7777/P+++/n+3+evfuTc+ePYmJiclwQ7rOnTvTuXPnHGd0dXXN0QDtBg0asHHjxmwf/3d3zlKlSrFp06b/3C7AtWvXeOutt7CxscnR+vlNrlgIzTg//zzW5cphio7m/hdfah2nRLNWrJkdNJtmZZuRmJrIoJ2DOHjt0bNmCCFETjm3aoXv3LkoBgMPfvqJq0OGYnpo4KkQIm+ioqL49ttv2bNnDyEa3qBSCotsSF/Zgqfo9bj36wvAvRUrMMXHa5yoZLPR2zAveB5BvkEkpSYxeNdg9l7dq3UsISyGtBuP5vRMML4LQlFsbIjdtYurgwZhSkzUOpYQxULz5s3p2bMnn3zyCVWqVNEshxQW2ZC+soXD5cUXMfj5kXr/PvfXr9c6TolnrbdmdovZBPsFk2xKZsjuIey5skfrWEJYBGk3/pvj00/jt2ghiq0tcXv3cXXgQEwJCVrHEsLi/fHHH9y/fz/DjfS0IIWF0JRiZYV73z5A2s2UTElJGicSBr2BmS1m0iqgFUaTkaF7hrIzfKfWsYQQxYRDkyb4LVmMYm9P3MFDXOnXH1NcnNaxhBD5QAoLoTnX9u2x8ilDyu3bRH39tdZxBGDQGfik+Sc8H/g8KaYURvwygm2Xt2kdSwhRTDg0aoT/smXoHByIP3KEiD59Sf3npmRCCMslhYXQnGJtjXvv3gDcXbYcVQb0FQkGnYGpT0/lhfIvkKKm8O7ed/nh4g9axxJCFBP29eriv+IzdM7OJBw/TkSvXqTGxGgdSwiRB1JYZEMG4RUu144dsfL0JOXGDaJyOKWaKHhWOismN5vMyxVfxqSaeG//e3z7V+a7hQohpN14HHa1auG/4jP0Li4knviDiO49SI2K0jqWEOIxSWGRDRmEV7h0NjaU6pV2l8i7S5bKDZSKEL1Oz4SmE+hUpRMqKuMOjmPd2XVaxxKiyJF24/HY1aiB/+pV6EuVIvH0acK79yDl3j2tYwkhHoMUFqLIcOvUCb27O8arV4n+7jut44iH6BQd7zV+j/9V+x8Akw5PYvWfqzVOJYQoLmyrVCFg9Sr0Hh4knT1LRLdupNy+rXUsIUQuSWEhigydnR3ufdLGWtxesEBunlTEKIrCqIaj6PlE2pWl6b9NZ9nJZRqnEkIUFzYVKxKwejVWpUuT9NcFwrt2w3grUutYohhauXIlrq6uWscolqSwEEWK2xtvYFW6NCnXb8gMUUWQoigMqTeEAbUHADD3+FwWhC1AVVWNkwkhigOb8uUIWLMaqzJlSL50ifCuXTDeuKF1LKGBmzdvMnjwYMqXL4+NjQ1+fn60a9eOnTtl+vOiTAqLbMggPG3obG1x798PgLsLF8ldWYsgRVEYWGcg79R7B4CFJxYy9/hcKS5EiSftRv6wDgggYM0aDGXLYgyPIPx/XUi+ek3rWKIQXb58mfr167Nr1y6mT5/OyZMn2bZtG8HBwYSEhGgdTzyCFBbZkEF42nF99VUMPj6k3L7N/S+/0jqOyEbvmr0Z2WAkAMtPLWfa0WlSXIgSTdqN/GPtW5aAtWswBPhjvHaN8C5dSA4P1zqWKCQDBw5EURSOHDlCx44dqVy5MjVq1GDYsGH8+uuvAERERNC+fXscHR1xdnbm9ddf59atW+ZtnDhxguDgYJycnHB2dqZ+/fr89ttvGfazadMmKlWqhK2tLc8//zxXr14F0gobnU6Xaf05c+YQEBCAyWQq4FfAcklhIYocnbU1HgPTutrcXbpU7shahHWt0ZX3Gr8HwNoza5l8eDImVU64Qoi8M5QpQ8DqNViXK0fKjRuEd+lK0t+XtI5lsVRVxRQfX7D/EhKyXJ6bL53u3bvHtm3bCAkJwcHBIdPjrq6umEwm2rdvz7179/jll1/YsWMHf//9N506dTKv99Zbb+Hr68vRo0c5duwYo0ePxmAwmB+Pj49n8uTJrF69mgMHDhAdHU2vXr0ACAwMpGXLlqxYsSLDvlesWEH37t3R6eTP5+xYaR1AiKy4tG/PnaVLMYZHcG/t53j066t1JJGNN6q+gbXemgkHJ7Du3DqMJiPjnhyHXqfXOpoQwsIZvEoTsGY1ET16/DOguysBKz7DplIlraNZHDUhgXP16hf4fm5lsazK8WMo9vY5ev6FCxdQVZWqVatmu87OnTs5efIkly5dws/PD4DVq1dTo0YNjh49SsOGDYmIiGDkyJHm7VT613vGaDTy6aef0rhxYyCtaKhRowZHjhzhySefpHfv3vTv359Zs2ZhY2PD8ePHOXnyJN/JrJWPJCWXKJIUgwHPQYMAuLt8udyNtYh7pdIrTH5qMjpFxzd/fcP7B94nxZSidSwhRDFg5eGB/6pV2FStSuqdO4R37Ubi2bNaxxIFJCdXN86cOYOfn5+5qACoXr06rq6unDlzBoBhw4bRu3dvWrZsyccff8zFixczbMPKyirDeKiqVavi4uJifn6HDh3Q6/V8+23aTWFXrlxJcHAwgYGBeT3EYk2uWIgiy7ltW+4sXkzyhYvcW7kKz7cHax1JPEK7Cu0w6A2M3juaH//+keTUZD5u/jEGneG/nyyEEI9gVaoUAStXENGrN4l//klEt+74fbYcuxo1tI5mMRQ7O6ocP1Zg2zeZTMQ8eICzk1OmrkKKnV2Ot1OpUiUUReFsHovHCRMm0LlzZzZv3szWrVsZP348X331FS+//HKOnm9tbU3Xrl1ZsWIFr7zyCl988QVz587NU6aSQK5YiCJL0evxHJRWTNxbtYqU+/c1TiT+y/OBzzOzxUysdFb8FP4Tw/cMJzlV7kcihMg7vasr/is+w7Z2LVKjo4no0ZOEP/7QOpbFUBQFnb19wf6zs8tyuaIoOc5ZqlQpWrduTWhoKHFZjLGMioqiWrVqXLlyhStXrpiXnz59mqioKKpXr25eVrlyZYYOHcpPP/3EK6+8kmHMREpKSobB2efOnSM6Oppq1aqZl/Xu3Zuff/6ZBQsWkJKSwiuvvJLj4yippLDIhkwbWDQ4PdcKm+rVMMXFcXfRIq3jiBx41v9Z5gbPxVpnze4ru3ln9zskpsi0waL4k3aj4OmdnfFfvhy7evUwxcQQ0aMn8cePax1L5LPQ0FBSU1Np1KgRGzdu5K+//uLMmTPMmzePJk2a0LJlS2rWrMlbb73F8ePHOXLkCF27diUoKIgGDRqQkJDAoEGD2LNnD+Hh4Rw4cICjR49mKBoMBgODBw/m8OHDHDt2jJ49e9KwYUMaNWpkXqdatWo8+eSTvPvuu7z55pvY5eLKS0klhUU2ZNrAokHR6Sg9bDgA9774kuR/poITRVtz3+Z8+uyn2Opt2X9tP4N2DSLeGK91LCEKlLQbhUPv6Ij/0iXYN2qEKS6OiN59iDtyROtYIh+VL1+e48ePExwczPDhw3niiSdo1aoVO3fuZOHChSiKwnfffYebmxvNmzenZcuWlC9fnnXr1gGg1+u5e/cuXbt2pXLlyrz++uu0adOGiRMnmvdhb2/Pu+++S+fOnWnWrBkODg4sX748U5ZevXqRnJxMz549C+34LZmMsRBFnkOzptg3eZL4Q79ye+48yk6fpnUkkQNNfJqwsOVCQnaGcPjGYUJ2hhD6bCj2hpzNDCKEENnROTjgt3gRV0NCiDt4iCt9++G3cAHWDRpoHU3kkzJlyvDpp5/y6aefZvm4v79/tjM0WVtb8+WXX2a77e7du9O9e3cAc/cmk8lETBYTxVy7do2aNWvKlcgckisWoshTFIXSw0cAEPPDDySePq1xIpFTDbwbsLjVYhwMDvx26zdCdobIlQshRL7Q2dnhu3AhDs2fRk1M5Er/AcTt3691LFFMxMbGcurUKT799FMGD5bJY3JKCgthEeyeqIFz27YARM6arXEakRt1StdhcavFOBoc+e3WbwzcOVCKCyFEvtDZ2OD76ac4PvMMalISN95+Bwf58knkg0GDBlG/fn1atGgh3aByQQoLYTE8hw4Bg4G4/fuJO3RI6zgiF2p71jYXF8duHWPAzwOkuBBC5AudtTW+c2bj9NxzYDTis2YtsT//rHUsYeFWrlxJUlIS69atQ6+XG77mlBQWwmJY+/nh1qkTAJEzZqKaTBonErlRy7OWubg4HnlcigshRL5RrK0pO2smjm3aoJhM3BwxkpgtW7SOJUSJI4WFsCgeA/qjs7cn8c8/idm6Ves4IpdqedZiSaslOBmczMVFnDHzPOVCCJFbipUVXlOnEF2vHqSmcm3ESKK//17rWJrKyV2shYD8e69IYSEsipW7O6V69wLg9uw5mJLl5muWpqZnTZY8J8WFECL/KXo9t157FeeOr4DJxPV3RxO1caPWsQqdwWAAID5ergqLnEl/r6S/dx6XTDcrLI57t25EffkVxqtXub9mLe69ZFCVpXnC4wmWPLeEvj/15ffI3xnw8wAWtlyIg8FB62hCCEun0+E5bhw6a2uivvyKG++9j2pMwe2NTlonKzR6vR5XV1ciIyOBtHs25Obu14/DZDKRnJxMYmIiOp3lfW9tyfnzkl1VVeLj44mMjMTV1TXP40mksMhGaGio+c6PomjROTjgOWQIN957jzsLF+LycgesSpXSOpbIpSc8nmDpc0vps6MPv0f+zsCfB7Kw5UK5z4WwWNJuFB2KTof3uHEoBgP3V6/h5oQJqEYjpbr8T+tohcbb2xvAXFwUNFVVSUhIwM7OrsCLmIJgyfnzI7urq6v5PZMXUlhkIyQkhJCQEGJiYnBxcdE6jvgXl5c7cO/ztSSdPsPtefMoM2GC1pHEY6jhUYOlrZbS56c+HI88zju73+HTZz/FRm+jdTQhck3ajaJFURS8xoxBMRi4t/wzbk2ejGo04t6zh9bRCoWiKJQpU4bSpUtjNBoLfH9Go5G9e/fSvHnzPHen0YIl589rdoPBkG8zX0lhISySotPhNXo0EV27EbV+A26dO2NbubLWscRjqOFRgwUtF9B3R19+vfErw/YMY06LORj0lnViF0IUPYqiUHrECBRra+4uXETktGmoycl49O+ndbRCo9frC2W6VL1eT0pKCra2thb3hzlYdv6ilN2yOpEJ8RCHRo1watUKTCYiP5kms19YsDql6xD6bCg2ehv2Xt3Lu/veJcWUonUsIUQxoCgKpd95B4+30+6efHvOHG7P/1TaDCEKgBQWwqKVHjkCxWAg7sAB4vbu1TqOyIOG3g2ZGzwXg87AjvAdvH/gfVJN0lddCJE/PAcOxHP4MADuhIZye85cKS6EyGdSWAiLZu3vj1vXLgDc+vgT1ELoRyoKTrOyzZgZNBMrxYrNf2/mo18/wqTKjRCFEPnDo08fSo9+F4C7ixcTOW26FBdC5CMpLITF8+jfH32pUiRfusT9r9ZpHUfkUbB/MFOfnopO0bHxr41MPyoNvxAi/7h3747XB+8DcG/FCm5NniLnGCHyiRQWwuLpnZzw/Kfv7J1PPyXl/n2NE4m8er7c83zY9EMA1p5Zy/JTyzVOJIQoTkq99RbeEyeConB/7VpuTpiIapKro0LklRQWolhwffVVbCpXJjU6mttz5modR+SD9hXbM7LBSADmHp/LxvMl7+65QoiC49bpdcpMngyKQtS6ddx4/wNUuQeJEHkihYUoFhQrK7z/ubQdtX49CSdPaZxI5IeuNbrS64leAHz464fsjNipcSIhRHHi+srL+Ez7BHQ6or/5hutjxqCmyIx0QjyuElNYxMfHExAQwIgRI7SOIgqIfcOGOLdrB6rKzUkfyWXtYuKdeu/wcsWXMakmRv0yit9u/qZ1JFECSJtRcri0a0fZWTNBryfm+x+4PmqUTAQixGMqMYXF5MmTefLJJ7WOIQpY6REj0Nnbk3jiD6K//VbrOCIfKIrCuCbjaOHXgmRTMoN3DebcvXNaxxLFnLQZJYvz88/jO3cOGAzEbNnKtWHDUJOTtY4lhMUpEYXFX3/9xdmzZ2nTpo3WUUQBM3iVxmPQIAAiZ84iNTpa40QiP1jprJjefDr1Stcj1hjLoF2DuB1/W+tYopiSNqNkcmrZEt/581AMBh7s+Jmrb7+DSYoLIXKlyBcWe/fupV27dvj4+KAoCps2bcq0TmhoKIGBgdja2tK4cWOOHDmS4fERI0YwderUQkostFaqy/+wrlCB1Hv3uD1vvtZxRD6xtbJl3jPzCHQO5GbcTQbtGkS8MV7rWKKIkTZD5IVTixb4LlyIYmND7J49XA0ZhCkxUetYQliMIl9YxMXFUbt2bUJDQ7N8fN26dQwbNozx48dz/PhxateuTevWrYmMjATgu+++o3LlylSuXLkwYwsNKQYD3u+/B8D9L78k8exZjROJ/OJi48KCZxfgZuPG6bunGbNvjNydW2QgbYbIK8enmuG3eBGKnR1x+/ZxZcAATPHyJYYQOWGldYD/0qZNm0dejp41axZ9+vShR48eACxatIjNmzfz2WefMXr0aH799Ve++uorNmzYQGxsLEajEWdnZ8aNG5fl9pKSkkhKSjL/HBMTA4DRaMT4z2AuJTUVK0BVVVKK4QCv9OM0WvCxWTdogONzzxH700/c+PBDyq5ciaIoj3xOcTjux2Fpx+1t583M5jPpt7Mfu67sYubRmQytNzTX27G0484vxf14C7vNgJy1G5bC0j8X+ZXfun59fBYu4PrAEOIP/Up4n774hH6KzsEhP2JmSV57bVly/oLOnpvtKqoF3W5SURS+/fZbOnToAEBycjL29vZ8/fXX5mUA3bp1Iyoqiu+++y7D81euXMmpU6eYMWNGtvuYMGECEydOzLT8iy++wN7eHgDPmFM0vTiNaFs/9lSbnPcDEwXCKiqKwBkz0RmN3HztVWIaNNA6kshHJ5JPsCF+AwAv2b1EI5tGGieyDPHx8XTu3Jno6GicnZ21jlOgCqPNgJy1G8Iy2YaHU3b5Z+iTkkgICOBajx6Y7Gy1jiVEocpNu1Hkr1g8yp07d0hNTcXLyyvDci8vL84+ZveXMWPGMGzYMPPPMTEx+Pn5ERwcjLu7OwDKJQe4CM7OzrRt2/bxD6CIMhqN7Nixg1atWmEwGLSOkyf3ExK5O2cOPjt+psngwejd3LJdtzgdd25Y6nG3pS0eJz1YeHIhmxM3065pO+p71c/x8y31uPPq7t27WkfQTEG0GZCzdsNSWPrnoiDyJz79NNf79sMuPJwaG7/GZ+Ei9C75X5TLa68tS85f0NnTr8LmhEUXFrnVvXv3/1zHxsYGGxubTMsNBsP//7L0eiDt2zBLe/PlRoZjtlCevXoSu3kzSX/9xb3Zc/CZOuU/n1McjvtxWOJxD6g7gPDYcLZc2sK7B95l3Yvr8HbwztU2LPG486IkHWte5aTNgBy2GxbGkrND/uY31K1LwKqVRPTsRdLJU1zv2wf/5cuxesQXVXnan7z2mrLk/AWVPTfbLPKDtx/Fw8MDvV7PrVu3Miy/desW3t65++Pi30JDQ6levToNGzbM03aEthSDAe8P07ooRH/7LXGHj/zHM4QlURSFCU0nUMWtCvcS7zFszzCSU2V6SJG1gmwzQNqN4sy2enX8V61CX6oUSafPENGtOykl+OqfENmx6MLC2tqa+vXrs3PnTvMyk8nEzp07adKkSZ62HRISwunTpzl69GheYwqN2deti+sbnQC4OX68zEtezNhZ2TE7eDbO1s6cvHOSKYf/+6qUKJkKss0AaTeKO9sqlQlYvQq9pwdJ588T3q0bKbflfjpCPKzIFxaxsbGEhYURFhYGwKVLlwgLCyMiIgKAYcOGsXTpUlatWsWZM2cYMGAAcXFx5hk/hAAoPWwYeg8Pki9f5u6SpVrHEfnMz8mPac2noaCw8a+NbDy/UetIQiPSZoiCZFOxIgGrV2Pl5UXyhYuEd+mK8V9XwIQoyYp8YfHbb79Rt25d6tatC6Q1CnXr1jVP/depUydmzJjBuHHjqFOnDmFhYWzbti3T4LzckkvaxYve2RnvsWMAuLt4MUl/X9I4kchvzco24+16bwMw9chULty/oHEioQWt2gyQdqOksClXjoA1q7HyKUPy5ctpxcX161rHEqJIKPKFRYsWLVBVNdO/lStXmtcZNGgQ4eHhJCUlcfjwYRo3bpzn/col7eLHqU0bHJ5+GtVo5OaECVjQTMsih3o+0ZNmPs1ISk1i5N6RJKQkaB1JFDKt2gyQdqMksfb3J3DNGgy+vhgjIgjv0pXkq1e1jiWE5op8YSFEflEUBe/x41BsbYk/coToTd/995OERdEpOiY/NRkPOw8uRF1g+tHpWkcSQhRThrJlCVi7BuuAAIzXrhH+vy4kh4drHUsITUlhkQ25pF08Wfv64hEyEIDIjz8m5c4djROJ/OZu586Up6agoLDh/Aa2X96udSRRQki7UfIYvL3xX7Ma6/LlSbl5k/D/dSHp77+1jiWEZqSwyIZc0i6+3Lt3x6ZqVVKjo7k5Se6cXhw18WlCr5q9APjw0IfcjpeZW0TBk3ajZDKULk3A6lXYVKpEyu3bhHfpSuL581rHEkITUliIEkcxGCgzeRLo9TzYto2Y7T9pHUkUgIF1BlKtVDVikmP48NCHMqZGCFFgrDw88F+9Cptq1Ui9e5eIbt1JzMPd3IWwVFJYiBLJrkYN3Hv3BuDmRx+Rcv++xolEfjPoDEx6ahJWOiv2XN3Dj3//qHUkIUQxZuXmRsCKz7B94glS798nvFt3Ek79qXUsIQqVFBbZkL6yxZ/HwAFYV6hA6p07RH78sdZxRAGo7FaZAbUHAGlT0EbGR2qcSBRn0m4Ivasr/is+w652bUzR0UT06EHCiRNaxxKi0EhhkQ3pK1v86Wxs8Jk8CRSF6O++J27vPq0jiQLQ84meVHevzoPkB0z6dZLWcUQxJu2GANA7OeG3fDl29etjevCAiJ69iD92TOtYQhQKKSxEiWZXpw6lunUD4PaHH6JLSNQ4kchvVjorJjWbhJVixe4ru/nlyi9aRxJCFHN6Rwf8ly7BvnFjTHFxRPTpS9zhI1rHEqLASWEhSjzPd97G4O9Pyq1beGzZonUcUQAquVWiS/UuQFqXqMQUKSCFEAVLZ2+P36KFODRrhhofz5V+/Yg7eFDrWEIUKCkssiF9ZUsOnZ0dZSZ9BIDrkSPE//qrxolEQehfuz+l7UtzLfYaK06t0DqOKIak3RD/prOzw3dBKA5BzVETE7nSfwCxe/dqHUuIAiOFRTakr2zJ4tCoEc6dXgcgctx4UmNjNU4k8pu9wZ5RDUcBsOzkMq7GXtU4kShupN0QWdHZ2OA7fz6Ozz6LmpzM1ZBBPNi1S+tYQhQIKSyE+IfH0KEklypFyo0b3JoyVes4ogA8F/AcT5Z5kmRTMvPD5msdRwhRQuisrfGdMxun559HNRq5+vY7cg8lUSxJYSHEP3QODtx6/bW0WaK++YYHO3dqHUnkM0VRGNFgBAoKOyJ2cC3lmtaRhBAlhGIwUHbGdJxffBFSUrg2bBjRP27WOpYQ+UoKCyEeklCuHK7d02aJuvHBOFLu3tU4kchvVUpV4YXyLwDwU6J8YyiEKDyKlRU+n3yMS4cOkJrK9VGjiNq0SetYQuQbKSyyIYPwSq5SISHYVKpE6r173JwwAVVVtY4k8llInRCsdFZcTLnI4ZuHtY4jiglpN0ROKHo9ZaZMxvW118Bk4saYsUR9/bXWsYTIF1JYZEMG4ZVcOhsbfKZ9AgYDD3b8TPR332kdSeQzXydfXq34KgChJ0KleBT5QtoNkVOKTof3xAm4de4MqsqN9z8get06rWMJkWdSWAiRBdtq1fAcNAiAW5MmY7x+XeNEIr/1fqI3BgycuntKrloIIQqdotPh9cH7lOrWFYDbkybjun+/xqmEyBspLITIhnuvntjVqYMpNpbrY99DNZm0jiTyUSnbUtS3rg/A8pPLNU4jhCiJFEWh9OjRuPfpDUDpH37k/gq5z46wXFJYCJENxcoKn4+notjZEf/rr9xfu1brSCKfNbNphl7R8+uNX/nzzp9axxFClECKouA5bBhu/foBcHfWbO4sWqRxKiEejxQWQjyCdWAgXqNGAhA5YyaJ585rnEjkJze9G88HPA/A8lNy1UIIoQ1FUXAfFMKd51oBcHvOXG7Pmy/jv4TFkcJCiP/g+sYbOAYFoSYnc33EcEyJiVpHEvmoe/XuAOyM2MmN2BvahhFClGj3nn0W96FDALizYAG3Z82W4kJYFCkssiHTBop0iqJQZuoU9J4eJP11gchp07SOJPJRBdcKNPZujEk18fVfMuWjeHzSboj84NazJ15jRgNwd+lSIj+ZJsWFsBhSWGRDpg0UD7MqVQqfqR8DcP+LL+Wu3MXMa1VeA+Cbv77BaDJqnEZYKmk3RH4p1a0bXuM+AODeypXcmjRZJhARFkEKCyFyyPGpZpTq0QOAG2Pfw3jrlsaJRH55xv8ZPOw8uJNwh10Ru7SOI4QQlOrcGe+PPgRF4f7nn3NzwkQpLkSRJ4WFELlQeugQbKtXJzU6muvvjpaTfDFh0Bl4ueLLAHx9XrpDCSGKBrfXXqPM1Cmg0xG1fj033nsfNTVV61hCZEsKCyFyQbG2xmfGDPMUtHeXy0xCxcUrlV4B4MjNI9yOv61xGiGESOPaoQM+n3wCej3R336b9qVWSorWsYTIkhQWQuSSTflyeL83FoDbc+eR8McfGicS+cHXyZfanrUxqSa2Xd6mdRwhhDBzafciZWfOBCsrYn78kWsjRqIaZTyYKHqksBDiMbh07IjT889DSgrXhg0nNSZG60giH7Qt1xaALX9v0TiJEEJk5Px8a3znzgGDgQfbtnF16FDU5GStYwmRgRQWQjwGRVEo8+FEDL6+GK9e5cZ778l0gMVA68DW6BU9p+6eIjwmXOs4QgiRgdOzz+L36XwUa2tif97J1cFvY0pK0jqWEGZSWAjxmPTOzpSdPSvt26MdP3N/zVqtI4k8crdzp3GZxkDaDfOEEKKocQwKwnfhAhQbG2J/+YWrA0Pkxq2iyJDCQog8sKtZE69RowC4NX26jLcoBlr4tQDglyu/aBtECCGy4disGX6LF6PY2RF34ABX+g/AFB+vdSwhpLDIjtxBVeSU2//ewum558Bo5NqQoaRGR2sdSeRBkG8QAGG3w4hKjNI2jLAo0m6IwuTwZGP8ly1FZ29P/K+/EtG3L6mxcVrHEiWcFBbZkDuoipxSFIUykydh8PPDeP0618fKeAtL5uPoQ2W3yphUE/uu7dM6jrAg0m6IwmZfvz7+ny1H5+REwm/HuNK7N6kPHmgdS5RgUlgIkQ/0Tk6UnT0bxWAgdudO7q1apXUkkQfpVy32XZXCQghRtNnVqYP/Z5+hc3EhISyMiJ695Mq50IwUFkLkE7snalB69LsARM6YSUJYmLaBxGNr6tMUSLtZnlx9EkIUdXY1nyBg5Qr0rq4knjxJePcepNy/r3UsUQJJYSFEPnLr3Nl8f4urQ4aScveu1pHEY6jlWQsbvQ13E+/yd/TfWscRQoj/ZFutGv6rV6F3dyfpzBkiunWXNkgUOikshMhHiqJQZtJHWJcrR8rNm1wbNhw1JUXrWCKXrPXW1CldB0i7aiGEEJbAtnJlAtasxsrTk6Tz5wnv2g1jZKTWsUQJIoWFEPlM7+iI7/x5KPb2xB8+TOTs2VpHEo+hoVfazD5Hb8pAXCGE5bApXz6tuPD2JvniRSK6dMV486bWsUQJIYWFEAXApmJFfKZMBuDe8s+I2bZN40Qitxp4NwDgROQJjZMIIUTuWAcGErB2DQYfH5LDwwnv0hXjtWtaxxIlgBQWQhQQ5+efp1TPngBcH/seSRcuaJxI5Ea1UtXQK3oiEyK5FXdL6zhCCJEr1r6+BKxZnTYV+pUrhHfpSvKVK1rHEsWcFBZCFKDSw4Zi37gxanw8VwcNJjU2VutIIofsDfZUcK0AwKk7pzROI4QQuWcoW5aAtWuwDgzEeP16WnFx+bLWsUQxJoWFEAVIsbKi7KyZaX1dL1/mxpgxMn2pBanpUROAU3elsBBCWCaDlxf+q1dhXaECKTdvEt6lK0kXL2odSxRTxb6wiIqKokGDBtSpU4cnnniCpUuXah1JlDBW7u74zpuLYjDwYMfP3F26TOtIIoee8HgCgJN3TmqcRBQmaTdEcWMoXZqA1auwqVyZlNu3Ce/ajcTz57WOJYqhYl9YODk5sXfvXsLCwjh8+DBTpkzhrszrLAqZXa1aeL3/PgC3Z88m9pdfNE4kciK9sDh997RcaSpBpN0QxZGVuzv+q1ZiU70aqXfvEtG1G4lnzmgdSxQzxb6w0Ov12NvbA5CUlISqqvIHgtCE6+uv4fr666CqXBs+Qi5FW4DyLuXRKToeJD/gTsIdreOIQiLthiiurNzcCFixAtuaNUmNiiK8ew8STkpXT5F/inxhsXfvXtq1a4ePjw+KorBp06ZM64SGhhIYGIitrS2NGzfmyJGMN7SKioqidu3a+Pr6MnLkSDw8PAopvRD/T1EUvN9/D7sG9THFxnJl4EBSo6O1jiUewVpvjb+TPwAXomRWL0sh7YYQ2dO7uOD/2XLs6tTBFB1NRI8exP/+u9axRDFR5AuLuLg4ateuTWhoaJaPr1u3jmHDhjF+/HiOHz9O7dq1ad26NZEP3WnS1dWVEydOcOnSJb744gtu3ZKpI4U2FGtrfOfNw+DjgzE8gmtDh8mduYu48i7lAfg7+m+Nk4icknZDiEfTOznht2wZ9g0apH3R1as38ceOaR1LFANWWgf4L23atKFNmzbZPj5r1iz69OlDjx49AFi0aBGbN2/ms88+Y/To0RnW9fLyonbt2uzbt49XX301y+0lJSWRlJRk/jkmJgYAo9GI0WgEQElNxQpQVZWUf5YVJ+nHaSyGx/YohXbcTk54z5vL1S5diDt4kBsff4Lnu6MKdp+PIL/vRx93OedyAJy/d75YvEbF4Rj+S1FsNyyFpZ8PLDl/oWe3scY79FNuvP02CYePENG7N2U+/RT7Ro0ea3OW/NqDZecv6Oy52W6RLyweJTk5mWPHjjFmzBjzMp1OR8uWLTl06BAAt27dwt7eHicnJ6Kjo9m7dy8DBgzIdptTp05l4sSJmZbv3r3b3OfWM+YUTUlrPPZs2ZK/B1WE7NixQ+sImiis43bs2BGftZ8TvXYt5xITiGnYsFD2mx35fWctJjntj8Rjl46x5Y7lf97j4+O1jqAprdoNS2Pp5wNLzl/Y2ZV27fC5H4XD+fNc7def6926El+58mNvz5Jfe7Ds/AWVPTfthkUXFnfu3CE1NRUvL68My728vDh79iwA4eHh9O3b1zz4bvDgwdSsWTPbbY4ZM4Zhw4aZf46JicHPz4/g4GDc3d0BUC45wEVwdnambdu2BXBk2jIajezYsYNWrVphMBi0jlNoCv2427blnrMz9xYsxHvTd9R/6SXs6tYt+P3+i/y+H33cFe5XYMPWDUTpo4rF572kz26kVbthKSz9fGDJ+bXMbnr+eW4OH078L3vxW7MW79mzcWj+dK62YcmvPVh2/oLOnn4VNicsurDIiUaNGhEWFpbj9W1sbLCxsSE0NJTQ0FBSU1MBMBgM///L0uuBtMG4lvbmy40Mx1yCFOZxlx40COOFizz46SduDh1GuQ3rMfj4FMq+/01+31kr75Y2xiI6OZpENREna6fCilYgSuLvOLcKpN2wMJacHSw7vybZDQb858/n2vDhPNjxMzeGDMF3zmycnn32MTZlua89WHb+gsqem20W+cHbj+Lh4YFer880qO7WrVt4e3vnadshISGcPn2ao0eP5mk7QjyKotPh8/FUbKpWJfXuXa70H0BqbKzWscRD7A32uNm4AXA99rrGaUReSbshRNYUa2vKzpqFU5vnwWjk6jtDiNm2TetYwsJYdGFhbW1N/fr12blzp3mZyWRi586dNGnSRMNkQuSczt4evwWh6D09SDp/XmaKKoJ8HNOuIl2NvapxEpFX0m4IkT3FYKDs9Ok4t2sHKSlcGzac6B9+1DqWsCBFvrCIjY0lLCzMfFn60qVLhIWFERERAcCwYcNYunQpq1at4syZMwwYMIC4uDjzbB+PKzQ0lOrVq9NQ4wG1omQw+Pjgt2Ahiq0tcfv2cXPyZLkhVxFS1rEsIFcsLIW0G0I8PsXKCp+Pp+Ly8stgMnF91Ciivt2kdSxhIYr8GIvffvuN4OBg88/pA+S6devGypUr6dSpE7dv32bcuHHcvHmTOnXqsG3btkwD83IrJCSEkJAQYmJicHFxydO2hMgJu5pP4DN9GtfefoeoL7/COiAA9+7dtY4l+P/C4lrsNY2TiJyQdkOIvFH0espMnoRiMBC1fj03xo5FNSbj9vrrWkcTRVyRLyxatGjxn9/cDho0iEGDBhVSIiEKjnOrVhhHjiRy2jQiP5mGtZ/fYw2eE/nLXFg8kMLCEki7IUTeKTod3hMnoBgM3P/8c26OG4+akkKpzp21jiaKsCLfFUqIkqZUj+64duoEqsq1ESNJOPWn1pFKPG+HtEG9kQmR/7GmEEIUH4qi4PX+e5T65+r5rQ8/4t6qVdqGEkWaFBbZkL6yQiuKouD9/ns4NGuGmpDA1QEDMN64oXWsEs3DzgOAOwl3NE4iijJpN0RxpCgKpd8dhXvfvgDcmvoxd5ct0ziVKKqksMiGTBsotKQYDJSdMxubSpVIuX2bK/36yzS0GkovLO4l3MOkmjROI4oqaTdEcaUoCp5Dh+AREgJA5IyZ3F6wQONUoiiSwkKIIkrv5ITfooXoPdKmob06eDBqcrLWsUqkUnalAEhRU4hKitI2jBBCaEBRFDwHD8JzyDsA3Jk3n8i5c2UGQ5GBFBbZkEvaoigwlC2L36JFKPb2xB/6letj30M1yTfmhc2gM5hvkifdoUR2pN0QJYFH//6UHjkSgLsLF3F75kwpLoSZFBbZkEvaoqiwe6IGvnPngpUVMT/+SOSMmVpHKpE87GWchXg0aTdESeHeqydeY8cCcHfZciI//liKCwFIYSGERXB8+inKTPoIgHuffSazcmjAw1YKCyGESFeqaxe8J4wH4N6q1dyZPAXkinqJJ4WFEBbCtUMHPP+50detqR8Ts2WLxolKFjfbtK5Q9xPva5xECCGKBrc33qDM5EmgKESvW4fXN99Kd90STgoLISyIe5/euL31FgDX3x1N3K+HNU5UcjhbOwMQkxyjcRIhhCg6XDt2xOfjqaDT4XL0KJEfjENNTdU6ltCIFBbZkEF4oihSFAWvsWNwat0a1Wjk6qBBJJ47p3WsEsHZ5p/CIkkKC5E1aTdESeXSvj1eH09F1el48P33XH93NGpKitaxhAaksMiGDMITRZWi1+Mz7RPsGtTHFBvLlT59MV67pnWsYk+uWIj/Iu2GKMmc2rThRuc3zRONXBs+AtVo1DqWKGRSWAhhgXQ2NviFhmJTqSIpkZFE9OxFyh0ZVFyQ0guL6ORojZMIIUTRFFuzJmVmz0IxGHiwfTtXhwzFJPdfKlGksBDCQuldXPBbuhSDjw/J4eFE9O5Daox8m15Q0rtCPUh6oHESIYQouhxatMA39FMUa2tid+7k6uDBmJKStI4lCokUFkJYMIO3N/6fLU+7O/fZs1zpPwBTQoLWsYol6QolhBA549i8OX6LFqLY2hL3y16uDhgobVMJIYVFNmQQnrAU1oGB+C9fhs7ZmYTjx7n69juocuk530lhIf6LtBtC/D+Hpk3xW7IYxd6euIMHudKvP6a4OK1jiQImhUU2ZBCesCS2Vargt3gRip0dcfv2cW3UuzLdXz5zsXEB0maFkjvMiqxIuyFERg6NGuG/bCk6Bwfijxwhom8/UmOluCjOpLAQopiwr1sX30/ng8HAg23buDF+vPwBnI8cDA4ApKgpJJvkipAQQuSEfb16+H+2HJ2TEwnHjnGlVy8ZD1iMSWEhRDHi2KwZZWfMAJ2O6K83Ejl9hhQX+cTOys78/wlG6SsshBA5ZVe7Nv4rVqB3cSHhxAkievYiNSpK61iiAEhhIUQx49z6Ocp89BEA9z77jLuLF2ucqHiw0llh0BkASEiRwkIIIXLD7oka+K9aid7NjcRTpwjv0ZOU+/e1jiXymRQWQhRDrh1fofTodwG4PWcud1es1DZQMZF+1SIhVQoLIYTILduqVQlYvSptJsMzZ4jo2k3uwVTMSGEhRDHl3r07HoMHARD5ySfcW/u5xoksn62VLSBXLIQQ4nHZVKpEwOpVWHl6kvTXX4R37YbxVqTWsUQ+kcIiGzJtoCgOPAYOxL1/PwBuTZrE/XXrNU5k2eyt7AEZYyGyJu2GEDljU748AWvXYFWmDMl//0141y4Yb9zQOpbIB1JYZEOmDRTFgaIoeL7zDqV69gTg5vjxRG38RuNUlsvcFUquWIgsSLshRM5ZBwQQsGY1hrJlMYZHEN6lK8lXr2kdS+SRFBZCFHOKolB65AjcunQB4Mb77xP9ww8ap7JMUlgIIUT+sfb1TSsu/P0xXr1KeNcuJEdEaB1L5IEUFkKUAIqi4DV2DK5vvgGqyvV3RxOzbZvWsSxOemGRmJqocRIhhCgeDD4+BKxZjXW5cqRcv0F4l64kXbqkdSzxmKSwEKKEUBQF7w8+wOXVjmAycW34CGJ27NA6lkUxX7GQMRZCCJFvDF5eBKxehXXFCqTcukV4164kXbigdSzxGKSwEKIEUXQ6ykyciEv7lyA1lWvDhhP3yy9ax7IYMiuUEEIUDCtPTwJWr8amShVSb98hvGs3Es+d1zqWyCUpLIQoYRS9njJTpuDcti0YjdwYMhSHP//UOpZFkPtYCCFEwbEqVQr/lSuwrV6d1Hv3iOjWjcTTp7WOJXJBCgshSiBFr8dn2ic4tXkeUlLwWfs5sdIt6j+l33nbmGrUOIkQQhRPVm5uacVFrVqkRkUR3r0HCSdPah1L5JAUFkKUUIqVFWWnT8exbVsUk4mbI0cRs2WL1rGKtPTCIsWUonESIYQovvTOzvh/thy7unUxxcQQ0aMn8cd/1zqWyAEpLIQowRQrK7ymTCa6Xr20MRcjRhL9w49axyqyDPp/rliY5IqFEEIUJL2jI/7LlmLfoAGm2Fiu9O5NvNwjpsiTwiIbcgdVUVIoej23XnsVp5dfBpOJ6+++S9SmTVrHKpLMXaGksBBZkHZDiPylc3DAb8li7Js8iSk+noi+/Yj79VetY4lHkMIiG3IHVVGi6HSUnjAe19dfB5OJG2PGErVxo9apihzpCiUeRdoNIfKfzt4ev4ULcXj6adSEBK7060/svv1axxLZkMJCCAGkTUXrPWE8bp3fBFXlxnvvc/+rdVrHKlKsdFaAXLEQQojCpLO1xTf0UxyDg1GTkrg6cCAPdu/WOpbIghQWQggzRafD64MPcOvaBYCbEyZwb+3nGqcqOmRWKCGE0IbO2hrfuXNwatUK1Wjk6tvvyE1eiyApLIQQGSiKgteYMZTq2ROAW5MmcWfJUo1TFQ0yxkIIIbSjWFtTdtZM832Yrg0ZSszWrVrHEg+RwkIIkYmiKJQeOQL3/v0AuD1rFpEzZ6GqqsbJtJU+K5SMsRBCCG0oBgM+0z7Bpf1LabMZDh9B9A8/aB1L/EMKCyFElhRFofSQIZQeOQKAu0uXcuujj1BNJo2TaUeuWAghhPYUKyvKTJmCS8dX0mYzHPUuUd98q3UsgRQWQoj/4N6rF94TJoCicP+LL7k+ejRqSsn8xl4KCyGEKBoUvZ4yH32E6xud0iYcGTuW++vWax2rxJPCQgjxn9ze6ITPtGmg1xPz/Q9cHTIEU3Ky1rEKncwKJYQQRYei0+E9fjxuXf6ZcGT8eJlwRGNSWAghcsSl3Yv4zp+PYm1N7M87udq/P6b4eK1jFSqZFUoIIYoWRVHwGptxwpG7K1dqG6oEK/aFxZUrV2jRogXVq1enVq1abNiwQetIQlgsp2eC8VuyGMXenriDh4jo2YvU6GitYxUa8w3y1JLZFaykkHZDCMtinnCkX9qEI5EffyKzGWqk2BcWVlZWzJkzh9OnT/PTTz8xZMgQ4uLitI4lhMVyePJJAj5bjs7ZmYSwMML/1wXjrUitYxWK9FmhklNLXjewkkTaDSEsj6IoeA55B4/Bg4C02Qxvh4ZqnKrkKfaFRZkyZahTpw4A3t7eeHh4cO/ePW1DCWHh7OrUIWDNavSeHiT99Rfhb75J0t+XtI5V4HRK2inTpJbcmbFKAmk3hLBMiqLgGRKC59ChANyZ/ymRc+aU+KnSC1ORLyz27t1Lu3bt8PHxQVEUNm3alGmd0NBQAgMDsbW1pXHjxhw5ciTLbR07dozU1FT8/PwKOLUQxZ9tlSoEfvkl1gEBGK9fJ7xzZxL++EPrWAUqvbBQkUaqKJN2Q4iSzaNfX0q/+y4AdxctJnLGDCkuCkmRLyzi4uKoXbs2odlczlq3bh3Dhg1j/PjxHD9+nNq1a9O6dWsiIzN2zbh37x5du3ZlyZIlhRFbiBLB2teXgC+/wPaJJ0iNiiK8W3di9+3TOlaBUVAASDWlapxEPIq0G0II9x7d8Xr/fQDuLf+MW1OnSnFRCKy0DvBf2rRpQ5s2bbJ9fNasWfTp04cePXoAsGjRIjZv3sxnn33G6NGjAUhKSqJDhw6MHj2apk2bPnJ/SUlJJCUlmX+OiYkBwGg0YjSmzQSjpKZiBaiqSoqx+M0Ok36cxmJ4bI8ix/2Yx+3khM/yZdwYOoyEgwe5MmAgXh9+iFO7F/MxZf57nONWU9MaJZNqstj3iaXmzo2i2G5YCks/D1pyfkvODkUzv1On1zEpCrc/+oj7q9eQmpSE59ixKLrM36sXxfw5VdDZc7PdIl9YPEpycjLHjh1jzJgx5mU6nY6WLVty6NAhIO2P/+7du/PMM8/Q5Z95jh9l6tSpTJw4MdPy3bt3Y29vD4BnzCmaktZ47NmyJX8OpgjasWOH1hE0Icf9mF5oi3d8HM5hJ7g1diynDuznfvPm+ROuAOXmuK+lXAMgLj6OLRb62Y8vYVME/5tW7YalsfTzoCXnt+TsUATzOzrg/OqreG3cSMy69Vz5+29uvfIKZFFcQBHMnwsFlT037YZFFxZ37twhNTUVLy+vDMu9vLw4e/YsAAcOHGDdunXUqlXL3M92zZo11KxZM8ttjhkzhmHDhpl/jomJwc/Pj+DgYNzd3QFQLjnARXB2dqZt27YFcGTaMhqN7Nixg1atWmEwGLSOU2jkuPN+3OqLL3Jn+gyi167Fc/MWKnl64j50aJbfDmntcY777L2zLNy2EBtbG4v97N+9e1frCJrSqt2wFJZ+HrTk/JacHYp4/rZteVCvHrfefx+Xo7/h6+1N6Y8+QtHrzasU6fz/oaCzp1+FzQmLLixy4qmnnsJkyvkMLjY2NtjY2GRabjAY/v+X9c8bUVEUi3vz5UaGYy5B5Ljzpsx7Y7H2Ks3tmbOIWrkK0+07lJk6BZ21dT6kzH+5OW5rQ9oxqKgW+x6x1NyFqUDaDQtjydnBsvNbcnYouvlLvfIyVrY2XBs5igc//IiSasJn2icoVhn/FC6q+XOioLLnZptF72vEXPDw8ECv13Pr1q0My2/duoW3t3eeth0aGkr16tVp2LBhnrYjREmjKAoeffpQZupUsLIiZvNmrvTsRWpUlNbR8kxR/hm8rcrgbUsl7YYQJZdz27aUnTMbDAZitmzh2rDhqMlyX6L8ZNGFhbW1NfXr12fnzp3mZSaTiZ07d9KkSZM8bTskJITTp09z9OjRvMYUokRyfbkD/ksWo3NwIP6337jc+S2Sr17VOlae6JW0q5Uys4jlknZDiJLNuVUrfOfNRTEYePDTT1wdMhSTFBf5psgXFrGxsYSFhREWFgbApUuXCAsLIyIiAoBhw4axdOlSVq1axZkzZxgwYABxcXHm2T6EENpxaNqUgC8+x8rLi+S//+ZypzdIOHlS61iPTa5YWAZpN4QQj+IUHIzvggUoNjbE7trF1UGDMCUmah2rWCjyYyx+++03goODzT+nD5Dr1q0bK1eupFOnTty+fZtx48Zx8+ZN6tSpw7Zt2zINzMut0NBQQkNDSU2VPyCEyAvbKlUIXL+OK/36k3T2LOFdu1F25gycnnlG62i5Jlcscu6Px7hZYvXq1bGyynuz9H/t3XlYVOXfBvB7GHaRTRFEWVRQBBVMRc0UpkgjX3fNV01xo1LcIrXMhazMMjUzxyVN0DZtcelniiEvuOeGmAlmGO6CSyiyD8N5/zDm1wjoDDPDmWHuz3XNpfPMmXPuZ2Dm4TvnPOdw3CCiJ3Ho+Qy81q7B1UmTUXjgIG5OnQZJX9M8KYcx0egTfOXKlVqveNy4cWjYsKHWz3tUeHj4EwfxKVOmYMqUKTpv699iYmIQExOD/Px8ODk56XXdRObGyt0dPl99ieszXkfhoUO4NmUq3Oe+DddRo8SOphWLf3byco/Fk4WEhEAikWhchFlYWODChQto2bKlztvmuEFEmmjQvTu8Pl+Hq69NQvGvv6LZrVuo6N0b4Pu31jQqLGbMmIHmzZtD+q/Tcj3O1atX8T//8z96KSyIqH6QOjjAa81q3Fy4EPd/+BG5770PxbXraDJrplGejrY6lYdCCeAeC00cO3YMbm5uT1xOEAS0a9euDhIREalrEBoK7w0bcCU6GvZ//YUbr02C9/rPIXVwEDuaSdJ4n/PJkyfRpEkTjZatDwUFd2kT6Z/EygpN33sP1s2b4/aKT/F3fDwU167C86OPYGECFxKrPBSqQtD8VKTmKiwsDH5+fnB2dtZo+V69esHOzs6woQyM4waRabJ/qiOarf8clydMQMnp07gyYQK816+H1NFR7GgmR6OvCePi4uCgReX29ttvw9XVtdahjAHP7kFkGBKJBI1fe+3h+cOtrPAgaR8uvfwyFDk5Ykd7Ik7e1lxKSorGRQUA7N69G02bNjVcoDrAcYPIdNm2b49r0dGwcHJCyZnfcGXc+HpxmvS6pnFhYa/Ft4lz5szRakAhIvPj1L8/vDclQOrqitKMTFwa9pLRnzGKk7eJiOqv0mbN0OyLLyB1dUXJuXO4PHYcyv/+W+xYJsXozwpFRPWX/VNPwfe773Bt0mso/TMLl18eDc+PPoTjCy+IHa1a3GNRO4Ig4IcffkBKSgpu3bpV5arW27ZtEykZEZE6mzat4bN5Ey6PHYfS8+dxJSoK3hs3wlKD+WJUi+tY3L17FzExMQgMDETjxo3h6uqqdqsveAVVorph3bwZfL79Fg3CekEoLcX1Ga/jzpo1RrlXoHKPBcC9FtqYMWMGRo8ejezsbDg4OMDJyUntVl9w3CCqH2z8/OCzeTMsmzR5+KXXmCgocm+JHcskaL3HYvTo0cjKysKECRPg7u6u+gavvuFpA4nqjtTBAV6rV+PWkiX4e9Nm3P50JUov/oWmi96HhY2N2PFULCT//S6mQqhQKzSoZl9++SW2bduGF1+s3+eI57hBVH/YtGwBn6++xOWxY1GWnY3LY0bDJyEBViY+F8zQtC4sDh48iEOHDiE4ONgQeYjITEmkUrjPmQPrlq2Q8957yN+1C4qrV9FcvgqWjRuLHQ8A1L5IqRAqIAULC004OTnp5foURER1ydrbGz6bv8SVqCgoLl/B5ZdHw3vTJlg3byZ2NKOl9aFQAQEBKC4uNkQWIiK4DH8J3hvWw8LJCcVnziB72EsoPndO7FgA1A+FqgBPOaupd955BwsXLuTYQUQmx7p5M/h89SWsfLyhuH4dl0ePRtnly2LHMlpaFxarV6/G3LlzsX//fty9exf5+flqt/qCx8oSiadBt27w3fItrH19UX7zJi6PHIX7/9kldixI8N89FsoKTuDW1EsvvYS8vDw0adIE7du3x1NPPaV2qy84bhDVT1ZNm8Jn85ewbtHi4Zg0egxK/8oWO5ZR0vpQKGdnZ+Tn5+PZZ59VaxcEARKJpN5cGIjHyhKJy6ZFC/h+txXXZ81C4f4DuDFrFkoyM9HkjVhIpOIcgiS1+NfkbV59W2NRUVE4deoUXn75Zc7NIyKTZOXeBD5fbsaVceP+mdA9Bj4J8bDx8xM7mlHRurAYNWoUrKys8M0339TrAYKIxCd1dITX6tW4vfIz3F23Dn9v3IjSP/5As+XLIBXhDzeLf+3k5SlnNffzzz9j7969eOaZZ8SOQkRUa5aNG8N70yZcGT8BpefP4/KYKHjHb4RtmzZiRzMaWhcWv//+O06fPo02fBGJqA5IpFI0eX0GbAPa4Mbbc1F4+DCyh70EL/kq2Pj713GYut1cfeHl5QVHR0exYxAR6czS1RU+CfG4MmEiSs6dw5UxUfDa+AXsgoLEjmYUtJ5j0blzZ1y9etUQWYiIauQYGQnfb7+BVbNmUFy5gkvD/xcP9u0TOxZpYNmyZZg9ezYuXbokdhQiIp1JnZ0f7qkI7gDl/fu4Mm48in/7TexYRkHrwmLq1KmYPn06EhIScOrUKfz2229qNyIiQ7ENCIDvD9/Dvls3VBQV4dqUqbj92SoIFTxDkzF7+eWXkZKSglatWqFhw4b19sKqRGQ+pI6O8P7iC9h16oSK/HxcGTceRWlpYscSndaHQg0fPhwAMH78eFWbRCKpd5O35XI55HJ5vekPUX1h6eIC7w3rkbtkCfI2f4k7cjlKMjLg+dGHkPJwG6O0YsUKsSPUCY4bROZF6uAA78/X4eqkySg6fhxXJkbDa+0aNAgNFTuaaLQuLLKzzeP0Wjy7B5HxklhawuPtt2HbNhA5cXEoSElB9tBhaL7yU9gGBIgdjx4RFRUldoQ6wXGDyPxYNGgAr3VrcS0mBoVHjuLqK6/Ca81qNOjeXexootD6UCgfH5/H3oiI6orzoIHw+UZ93sW9HTvEjkWP2L17N/bu3Vul/ZdffsGePXtESEREpD8WdnZovmYNGvTqCaGkBFdfm4SCgwfFjiUKrQuLxYsXY+PGjVXaN27ciI8++kgvoYiINGXXLggtfvzh4Qd6aSluvjUHN995BxVlZWJHo3+89dZb1R4eVFFRgbfeekuERERE+mVhY4Pmq1bB4dlnIZSW4trkGDz4vxSxY9U5rQuLdevWIaCaQw2CgoKwdu1avYQiItKG1NkZXmvXovGUKYBEgntbtuLyqJehuHFD7GgE4M8//0RgYGCV9oCAAGRlZYmQiIhI/yysrdF8xSdo2Ls3BIUC16ZNQ/4vv4gdq05pXVjk5OSgadOmVdrd3Nxw8+ZNvYQiItKWxMICblNi4PX5OkidnFBy9iyyBw9BwaHDYkcze05OTvjrr7+qtGdlZaFBgwYiJCIiMgyJtTWaLV8Gx759gfJyXH89Fvm7d4sdq85oXVh4eXnh8OGqA/Xhw4fh6empl1DGQC6XIzAwEF26dBE7ChFpwaFnT/j++CNsg4KgvHcPV6OjcWfNGp6SVkQDBgzAjBkzcPHiRVVbVlYW3njjDfTv31/EZPrFcYOIgIcnGPFc8hGcBgwAlEpcnzkL93/6SexYdULrwiI6OhozZsxAfHw8Ll++jMuXL2Pjxo14/fXXER0dbYiMooiJiUFGRgZOnDghdhQi0pJ182bw+eZrOA8bBggCbn+6EtcmTUZ5Xp7etiEIgt7WVd8tWbIEDRo0QEBAAFq0aIEWLVqgbdu2aNSoEZYuXSp2PL3huEFElSRSKZou/gDOw4YCFRW48eZbuPfjj2LHMjitTzc7a9Ys3L17F5MnT0bZP5MjbW1t8eabb2LOnDl6D0hEVBsWNjZo+t67sAsJQc6776Jg/35kDx6CZsuWwf6pjmLHMytOTk44cuQIkpKScObMGdjZ2aFDhw7o1auX2NGIiAxGYmEBj4ULAUtL3Pt2C27OnQdBUQ6X/x0udjSD0bqwkEgk+OijjzB//nxkZmbCzs4O/v7+sLGxMUQ+IiKdOA8ZDNugQFyf8TrKLl3C5dGj0eT1GWg4erTW65JAYoCE5kEikaB3797o3bu32FGIiOqMxMICHgsWQGJlhbzNXyLnnXcgKBRwHf2y2NEMQutDoSo5ODigS5cuaNeuHYsKIjJqtgEB8P3hh4eT6ZRK3Fq6DDdjpsCisFDsaPXWypUrUVJSovHya9euxYMHDwyYiIhIHBKJBO5z5sB1wngAQO6iRbi7MV7kVIahUWExePBg5Ofna7zSUaNG4datW7UORUSkb1KHBvBc+jE83l0IiY0Nig4dgs+KT1GcliZ2tHrp9ddf16pQmD17Nm7fvm3ARERE4pFIJGgycyYaTXoNAHBryRLcWfe5yKn0T6NDoXbu3KnxB74gCPjPf/6D9957D02aNNEpHBGRPkkkEri89BLsgoNxbfoM4NIlXB8/AWXTp6PRxAmQWNR6Jy49QhAEPPfcc7C01OyI2+LiYgMnIiISl0QiQZPp0yGxssKdlZ/h9iefQFAo0DhmMiSS+nGorUaf+IIgoHXr1obOQkRUJ2zbtIHX1i1If20SHE+fxu3ly1F04gQ8P/oQlq6uYserF+Li4rRafsCAAXDla09EZsBt8mRIrKxwe9ly3Fm1CoJCAbcZ0+tFcaFRYZGSov0lyZs1a6b1c4iI6oqFvT1yhr8Ev0EDcXvRByg8eBDZAwfB8+OP0aBrqNjxTJ62hQURkTlpHB0NiZUVbn34Ee6uWwehrAxNZs8y+eJCo8IiLCzM0DmIiOqeRALHQYPQICTk4Vmj/voLV8aORaNXXoHblBhIrKzETkhERPVUo7FjIbGyQu577+Pv+HgICgXc575t0sUFDyiuAa+gSmQ+bFu3RosfvofT0CGAIODuunW4NOpllF25InY0MiEcN4hIW66jRsHj3YWARIK8r75CzjsLIVRUiB2r1lhY1IBXUCUyLxb29vB8/300W/EJLBwdUfLbb8geNBj3f/pJ7GhkIjhuEFFtuLz0EpouWgRIJLi3dStuzpsPQakUO1atsLAgIvoXxxdeQMsd22HXuRMqCgtxY/abuD5rNpQFBWJHIyKiesp58CB4LvkIsLDA/W3bcGPOHAjl5WLH0hoLCyKiR1h5esJn0yY0njYVkEqR/5//IHvgIBSfOSN2NJNy5coVXLlyBVevXsX9+/fFjkNEZNSc+vVDs+XLHo47P/0HN2bPhqBQiB1LK5qdYPxfNm/erHbfwsICbm5u6NmzJ+zt7fUWjIhITBKpFG6TJ6NBt+64MWsWFNeu4drLURjcQ8D27qY7sa4u+fr6qk1CbNasGcaPH4+3334b1tbWIiYjIjJOji+8AImlJa69Hov83XsgKMrRbNlSSEzkM1PrwmL69Olq95VKJQoKCuDm5ob/+7//Q1BQkN7CERGJzf6pjmixYzty3lmI/J9/xv8eANpfAir6FwI2TmLHM2qVpyoXBAE3btzAyZMnsXTpUiQlJWHfvn2ws7MTOSERkfFpGBGB5p+txPWp0/AgKQnXYmPR/LPPTOJsUVofCpWXl6d2y8/Px82bN/HMM89gxowZBohIRCQuacOG8Fz6MTw+/AAlVkDQFaD012NixzJ6YWFhCAsLQ3h4OEaOHInly5fj3LlzuHr1Kt59912x4xERGa2G4eFovmYNYGmJgn3JUFy+LHYkjWi9x+K3336rtn38+PEYNGgQjh8/DltbWwBAhw4ddEtHRGQkJBIJHPv3R9aauWh3WQDKTfOMHXUpPz+/SpuLiwveeOMNfPbZZ3j77bchCAIcHR1FSEdEZNwcnukBqZMTlHfvoqKsTOw4GtG6sAgJCYFEIoEgCFUek0gk6Natm+r/ShM9VRYREenO2dn5sbvunZycOFYQEdUjWhcW2dnZ1bZfunQJzz//PH777TceN0tERKo5Fo9KTEzEpk2b8O2339ZxIiIiMiStCwsXFxe1+xUVFbh06RLef/999OnTBwEBAXoLR0REpissLKxKW2FhIWbMmIG+fftW+zgREZkurSdvOzs7w8XFRXVr1KgRnnrqKeTn50Mulxsio84GDRoEFxcXDB06VOwoRERmo/I6FpcvX8avv/6K1atXIygoCA8ePMAHH3wgdrzH4rhBRKQ9rfdYPLprWyqVwtvbG97e3noLpW/Tp0/H+PHjsWnTJrGjEBGZjX9fx0IQBFhZWWHo0KH45JNP4ObmJnK6x+O4QUSkPa0LC1PcdR0eHo7U1FSxYxARmZXKL6IkEgkaNmyINm3amMyFVDluEBFpT+tDoeragQMH0K9fP3h6ekIikWDHjh1VlpHL5fD19YWtrS26du2K48eP131QIjIrVc+LR4+qvI5Fr1690LFjxzorKjhuEBGJw+gLi8LCQgQHB9c4f2Pr1q2IjY1FXFwc0tLSEBwcjD59+uDWrVt1nJSIiIwBxw0iInFofShUXYuMjERkZGSNjy9fvhzR0dEYN24cAGDt2rX4+eefsXHjRrz11ltab6+0tBSlpaWq+5UXeFIoFFAoFAAAiVIJSzw8Zrj8n7b6pLKfinrYt8dhv9nvJ6kQKlT/VyrLTfI1M8XM2jLGccNUmPrngSnnN+XsAPMbzD/XjSsvr3nMMXR2bdZr9IXF45SVleHUqVOYM2eOqs3CwgIRERE4evRorda5ePFiLFy4sEp7SkqKaje+W/7veBoPB4/U3btrtR1TkJSUJHYEUbDf5kWbfv+7sDh79neckpreNXuKiorEjiAqscYNU2PqnwemnN+UswPMr28ty8pgCeDgwYMo+/PPxy5rqOzajBsmXVjcuXMHSqUS7u7uau3u7u44f/686n5ERATOnDmDwsJCNG/eHN9//z26d+9e7TrnzJmD2NhY1f38/Hx4eXlBJpOhUaNGAABJdgPgIuDo6IgXX3zRAD0Tl0KhQFJSEp5//nlYWVmJHafOsN/s95NUCBX4ac1cAED79u3gboLv/7t374odQVRijRumwtQ/D0w5vylnB5jfULI/WgIlgJ49e8LG37/aZQydvXIvrCZMurDQ1L59+zRe1sbGBjY2NlXarays/vvDkkoBPDzTiTH98umbWp/NCPttXrTp97/3WEillib5epliZjHofdwwMaacHTDt/KacHWB+vfvnlN2Wlk8ecwyVXZt1Gv3k7cdp3LgxpFIpcnNz1dpzc3Ph4eGh07rlcjkCAwPRpUsXndZDRETGg+MGEZHhmHRhYW1tjU6dOiE5OVnVVlFRgeTk5Bp3WWsqJiYGGRkZOHHihK4xiYjISHDcICIyHKM/FKqgoABZWVmq+9nZ2UhPT4erqyu8vb0RGxuLqKgodO7cGaGhoVixYgUKCwtVZ/uoLblcDrlcDqVSqWsXiIioDnHcICISh9EXFidPnoRMJlPdr5wgFxUVhYSEBAwfPhy3b9/GggULkJOTg5CQECQmJlaZmKetmJgYxMTEID8/H05OTjqti4iI6g7HDSIicRh9YREeHg5BePw1bqdMmYIpU6bUUSIiIjJmHDeIiMRh0nMsiIjEIuDxf7gSERGZGxYWNeDZPYiISBscN4jI3LGwqAHP7kFERNrguEFE5o6FBRGRhiSQiB2BiIjIaLGwqAF3aRMRkTY4bhCRuWNhUQPu0iYiIm1w3CAic8fCgoiIiIiIdMbCgoiIiIiIdMbCgoiIiIiIdMbCogachEdERNrguEFE5o6FRQ04CY+IiLTBcYOIzB0LCyKiWhHEDkBERGRUWFgQEREREZHOWFgQEREREZHOWFjUgJPwiIhIGxw3iMjcsbCoASfhEdGjJBKJ2BHIiHHcICJzx8KCiIiIiIh0xsKCiIiIiIh0xsKCiIiIiIh0xsKCiIiIiIh0xsKCiIiIiIh0xsKiBjxtIBERaYPjBhGZOxYWNeBpA4nocQRB7ARkbDhuEJG5Y2FBREREREQ6Y2FBREREREQ6Y2FBREREREQ6Y2FBREREREQ6Y2FBREREREQ6Y2FBREREREQ6Y2FBREREREQ6Y2FBREREREQ6Y2FRA15BlYiItMFxg4jMHQuLGvAKqkREpA2OG0Rk7lhYEBERERGRzlhYEBHVggBB7AhERERGhYUFERERERHpjIUFERERERHpjIUFERERERHpjIUFERERERHpjIUFERERERHpjIUFERERERHpzCwKi127dqFNmzbw9/fHhg0bxI5DRERGjuMGEZH2LMUOYGjl5eWIjY1FSkoKnJyc0KlTJwwaNAiNGjUSOxoRERkhjhtERLVT7/dYHD9+HEFBQWjWrBkcHBwQGRmJX375RexYRERkpDhuEBHVjtEXFgcOHEC/fv3g6ekJiUSCHTt2VFlGLpfD19cXtra26Nq1K44fP6567MaNG2jWrJnqfrNmzXD9+vW6iE5ERCLguEFEJA6jLywKCwsRHBwMuVxe7eNbt25FbGws4uLikJaWhuDgYPTp0we3bt2q46RERGQMOG4QEYnD6AuLyMhIvP/++xg0aFC1jy9fvhzR0dEYN24cAgMDsXbtWtjb22Pjxo0AAE9PT7Vvmq5fvw5PT886yU5ERHWP4wYRkThMevJ2WVkZTp06hTlz5qjaLCwsEBERgaNHjwIAQkND8fvvv+P69etwcnLCnj17MH/+/BrXWVpaitLSUtX9/Px8AIBCoYBCoQAASJRKWAIQBAHl/7TVJ5X9VNTDvj0O+81+a0OpVJrka2aKmfVJrHHDVJj654Ep5zfl7ADzG4wgAHh4Uomashk6uzbrNenC4s6dO1AqlXB3d1drd3d3x/nz5wEAlpaWWLZsGWQyGSoqKjB79uzHntlj8eLFWLhwYZX2lJQU2NvbAwDc8n/H03g4eKTu3q2/DhmZpKQksSOIgv02L7Xt9++//450ywZ6TmN4RUVFYkcQlVjjhqkx9c8DU85vytkB5te3lmVlsARw8OBBlP3552OXNVR2bcYNky4sNNW/f3/0799fo2XnzJmD2NhY1f38/Hx4eXlBJpOpBhZJdgPgIuDo6IgXX3zRIJnFpFAokJSUhOeffx5WVlZix6kz7Df7rYkdqx9+092uXTt4muD7/+7du2JHMAn6HjdMhal/HphyflPODjC/oWR/tARKAD179oSNv3+1yxg6e+VeWE2YdGHRuHFjSKVS5ObmqrXn5ubCw8OjVuu0sbGBjY0N5HI55HI5lEolAMDKyuq/PyypFAAgkUiM6pdP39T6bEbYb/NS235LpVKTfL1MMbM+iTZumBhTzg6Ydn5Tzg4wv95JJAAe7kl9Ui5DZddmnUY/eftxrK2t0alTJyQnJ6vaKioqkJycjO7du+u07piYGGRkZODEiRO6xiQiIiPBcYOIyHCMfo9FQUEBsrKyVPezs7ORnp4OV1dXeHt7IzY2FlFRUejcuTNCQ0OxYsUKFBYWYty4cSKmJiIisXDcICISh9EXFidPnoRMJlPdrzyONSoqCgkJCRg+fDhu376NBQsWICcnByEhIUhMTKwyMU9bj+7SJiIi08Bxg4hIHEZfWISHh0P451RbNZkyZQqmTJmi1+3GxMQgJiYG+fn5cHJy0uu6iYjIcDhuEBGJw6TnWBARERERkXFgYVEDuVyOwMBAdOnSRewoRGSMnvCNOJkfjhtEZO5YWNSAZ/cgIiJtcNwgInPHwoKIiIiIiHTGwoKIiIiIiHTGwqIGPFaWiIi0wXGDiMwdC4sa8FhZIiLSBscNIjJ3LCyIiIiIiEhnLCyIiIiIiEhnLCxqwGNliYhIGxw3iMjcsbCoAY+VJSIibXDcICJzx8KCiIiIiIh0xsKCiKgWBAhiRyAiIjIqLCyIiIiIiEhnLCyIiIiIiEhnLCxqwLN7EBGRNjhuEJG5Y2FRA57dg4iItMFxg4jMHQsLIiIiIiLSGQsLIiIiIiLSGQsLIiKtSMQOQEREZJRYWBARERERkc5YWBARERERkc5YWNSApw0kIiJtcNwgInPHwqIGPG0gERFpg+MGEZk7FhZERLUgCILYEYiIiIwKCwsiIiIiItIZCwsiIiIiItIZCwsiIiIiItIZCwsiIiIiItIZCwsiIiIiItIZCwsiIm1IxA5ARERknFhY1IAXOiIiIm1w3CAic8fCoga80BEREWmD4wYRmTsWFkREREREpDMWFkREREREpDMWFkREREREpDMWFkREREREpDMWFkREREREpDMWFkREREREpDMWFkREREREpDMWFkREREREpDMWFkREREREpDOzKCwGDRoEFxcXDB06VOwoRERkAjhuEJFREcQOoBmzKCymT5+OzZs3ix2DiIhMBMcNIjIKEonYCbRiFoVFeHg4GjZsKHYMIiIyERw3iIi0J3phceDAAfTr1w+enp6QSCTYsWNHlWXkcjl8fX1ha2uLrl274vjx43UflIiIjALHDSIi4yR6YVFYWIjg4GDI5fJqH9+6dStiY2MRFxeHtLQ0BAcHo0+fPrh165ZqmZCQELRr167K7caNG3XVDSIiqiMcN4iIjJOl2AEiIyMRGRlZ4+PLly9HdHQ0xo0bBwBYu3Ytfv75Z2zcuBFvvfUWACA9PV1veUpLS1FaWqq6n5+fDwBQKBRQKBQAAIlSCUsAgiCg/J+2+qSyn4p62LfHYb/Zb22UK8tN8jUzxcyPMsVxw1SY+ueBKec35ewA8xuM8HDWdnl5zZ8nhs6uzXpFLywep6ysDKdOncKcOXNUbRYWFoiIiMDRo0cNss3Fixdj4cKFVdpTUlJgb28PAHDL/x1P4+Hgkbp7t0FyGIOkpCSxI4iC/TYvWvf7nw/5c+fO4ay16b3/i4qKxI5gUMY6bpgaU/88MOX8ppwdYH59a1laCksABw8eQllW1mOXNVR2bcYNoy4s7ty5A6VSCXd3d7V2d3d3nD9/XuP1RERE4MyZMygsLETz5s3x/fffo3v37tUuO2fOHMTGxqru5+fnw8vLCzKZDI0aNQIASLIbABcBR0dHvPjii7XomXFTKBRISkrC888/DysrK7Hj1Bn2m/3WxI41bwMQEBQUBC8TfP/fvXtX7AgGZazjhqkw9c8DU85vytkB5jeU7CUfQ1lQgJ49n4FN69bVLmPo7JV7YTVh1IWFvuzbt0/jZW1sbGBjY1Ol3crK6r8/LKkUACCRSIzql0/f1PpsRthv81LbfltKLU3y9TLFzGLQ+7hhYkw5O2Da+U05O8D8evfP6WYtLZ+cy1DZtVmn6JO3H6dx48aQSqXIzc1Va8/NzYWHh4dBty2XyxEYGIguXboYdDtERKQ/HDeIiMRj1IWFtbU1OnXqhOTkZFVbRUUFkpOTa9wlrS8xMTHIyMjAiRMnDLodIiLSH44bRETiEf1QqIKCAmT9azJKdnY20tPT4erqCm9vb8TGxiIqKgqdO3dGaGgoVqxYgcLCQtXZPgxFLpdDLpdDqVQadDtERKQdjhtERMZJ9MLi5MmTkMlkqvuVE+CioqKQkJCA4cOH4/bt21iwYAFycnIQEhKCxMTEKhPz9C0mJgYxMTHIz8+Hk5OTQbdFRKZDInYA4rhBRGSkRC8swsPDIfxz+saaTJkyBVOmTKmjREREZMw4bhARGSejnmNBRERERESmgYVFDXh2DyJ6nCd9Y07mh+MGEZk7FhY14Nk9iIhIGxw3iMjcsbAgIiIiIiKdsbCoAXdpExGRNjhuEJG5Y2FRA+7SJiIibXDcICJzx8KCiIiIiIh0Jvp1LOqDiooKlJWViR1DbxQKBSwtLVFSUmJWV5A1dL+tra1hYcFanoiIiOonFhY6KisrQ3Z2NioqKsSOojeCIMDDwwNXr16FRGI+1xk2dL8tLCzQokULWFtb633dRERERGJjYVEDuVwOuVz+2G+uBUhw8+ZNSKVSeHl51ZtvoysqKlBQUAAHB4d60ydNGLLfFRUVuHHjBm7evAlvb2+zKtiIzIUm4wYRUX3GwqIGMTExiImJQX5+PpycnKpdptyyAYqKiuDp6Ql7e/s6Tmg4lYd22draml1hYch+u7m54caNGygvL4eVlZXe109E4tJk3CAiqs/M569GA1Ba2gEAD20hjVT+nvDbTCIiIqqPWFjo5OHhLDyshTTB3xMiIiKqz1hYEBHVggBB7AhERERGhYVFDXgFVSIi0gbHDSIydywsalBfr6C6du1aNGzYEOXl5aq2goICWFlZITw8XG3Z1NRUSCQSXLx4sdbbu3TpEiQSCdLT02u9DiIiU1Bfxw0iIk2xsDAzMpkMBQUFOHnypKrt4MGD8PDwwLFjx1BSUqJqT01Nhbe3N1q1aiVGVCIiIiIyISwszEybNm3QtGlTpKamqtpSU1MxYMAAtGjRAr/++quqff/+/ZDJZCgtLcW0adPQpEkT2Nra4plnnlH7Ri4vLw+jRo2Cm5sb7Ozs4O/vj/j4eABAixYtAAAdO3aERCJR2yuyYcMGtG3bFra2tggICMDq1atVj1Xu6di2bRtkMhns7e0RHByMo0ePGuiVISIiIiJdsLDQI0EQUFRWLspNEDSfSCqTyZCSkqK6n5KSgvDwcISFhanai4uLcezYMchkMsyePRs//vgjNm3ahLS0NPj5+aFPnz74+++/AQDz589HRkYG9uzZg8zMTKxZswaNGzcGABw/fhwAsG/fPty8eRPbtm0DAHz99ddYsGABFi1ahMzMTHzwwQeYP38+Nm3apJZ17ty5mDlzJtLT09G6dWuMGDFC7TAuIiIiIjIOvECeHhUrlAhcsFeUbWe82wf21pr9OGUyGWbMmIHy8nIUFxfj9OnTCAsLg0KhwNq1axEXF4cTJ06gtLQU4eHhiI6ORkJCAiIjIwEA69evR1JSEr744gvMmjULV65cQceOHdG5c2cAgK+vr2pbbm5uAIBGjRrBw8ND1R4XF4dly5Zh8ODBAB7u2cjIyMC6desQFRWlWm7mzJno27cvAGDhwoUICgpCVlYWAgICav9iEREREZHesbAwQ+Hh4SgsLMSJEyeQl5eH1q1bw83NDWFhYRg3bhxKSkpw6NAhtGzZEvfv34dCoUCPHj1Uz7eyskJoaCgyMzMBAJMmTcKQIUOQlpaG3r17Y+DAgXj66adr3H5hYSEuXryICRMmIDo6WtVeXl5e5Wq1HTp0UP2/adOmAIBbt26xsCAiIiIyMiwsaiCXyyGXy7W6SrKdlRQZ7/YxYKrHb1tTfn5+aN68OVJSUpCXl4ewsDAAgKenJ7y8vHDkyBEcPHgQMplMo/VFRkbi8uXL2L17N5KSkvDcc88hJiYGS5curXb5goICAA/3fHTt2lXtMalUvR9WVlaq/1deYK6iokKzjhIZBC90SNWrzbhBRFSfcI5FDWpz2kCJRAJ7a0tRbtpe1VkmkyE1NRWpqalqE6p79eqFxMREpKWlITw8HK1atYK1tTUOHz6sWkahUODEiRMIDAxUtbm5uSEqKgpfffUVVqxYgc8//xwAYG1tDQBqA627uzs8PT3x119/wc/PT+1WOdmbiMjU8HSzRGTuuMfCTMlkMsTExEChUKj2WABAWFgYpkyZgrKyMshkMjRo0ACTJk3CrFmz4OrqCm9vbyxZsgRFRUWYMGECAGDBggXo1KkTgoKCUFpail27dqFt27YAgCZNmsDOzg6JiYlo3rw5bG1t4eTkhIULF2LatGlwcnLCCy+8gNLSUpw8eRJ5eXmIjY0V5TUhIiIiotrjHgszJZPJUFxcDD8/P7i7u6vaw8LC8ODBA/j7+6vmNHz44YcYMmQIRo8ejaeeegpZWVnYu3cvXFxcADzcKzFnzhx06NABvXr1glQqxZYtWwAAlpaWWLlyJdatWwdPT08MGDAAADBx4kRs2LAB8fHxaN++PcLCwpCQkMA9FkREREQminsszJSvr2+1p6j18fGBUqlEfn6+qs3W1hYrV67EypUrq13XvHnzMG/evBq3NXHiREycOLFK+8iRIzFy5EiN8zk7O2t1Wl0ig+LvIhERkRrusSAiIiIiIp2xsCAiIiIiIp2xsCAiIiIiIp2xsNAFD7EmIiIiIgLAwoKIiIiIiPSAhUUN5HI5AgMD0aVLF7GjEBGRCeC4QUTmjoVFDXgFVSIi0gbHDSIydywsiIi0IRE7ABERkXFiYUFERERERDpjYUGkR76+vlixYoXYMagOCDwtHBERkRoWFmZm7dq1aNiwIcrLy1VtBQUFsLKyQnh4uNqyqampkEgkuHjxok7bvHTpEiQSCdLT03Vaj6bOnDmD/v37o0mTJrC1tYWvry+GDx+OW7du1cn2iYiIiMwRCwszI5PJUFBQgJMnT6raDh48CA8PDxw7dgwlJSWq9tTUVHh7e6NVq1ZiRK2V27dv47nnnoOrqyv27t2LzMxMxMfHw9PTE4WFhWLHIyIiIqq3WFiYmTZt2qBp06ZITU1VtaWmpmLAgAFo0aIFfv31V1X7/v37IZPJAAClpaWYNm2aai/AM888o3bmk7y8PIwaNQpubm6ws7ODv78/4uPjAQAtWrQAAHTs2BESiURtz8iGDRvQtm1b2NraIiAgAKtXr1Y9VrmnY9u2bZDJZLC3t0dwcDCOHj1aY/8OHz6M+/fvY8OGDejYsSNatGgBmUyGTz75RJVDqVRiwoQJaNGiBezs7NCmTRt8+umnausZO3YsBg4ciKVLl6Jp06Zo1KgRYmJioFAoVMvcunUL/fr1g52dHVq0aIGvv/5a0x8DERERUb1jKXYAkySp4bQwggAoiuo2SyUr+5pzPUImkyElJQVvvfUWACAlJQWzZ8+GUqlESkoKevXqheLiYhw7dgzjx48HAMyePRs//vgjNm3aBB8fHyxZsgR9+vRBVlYWXF1dMX/+fGRkZGDPnj1o3LgxsrKyUFxcDAA4fvw4QkNDsW/fPgQFBcHa2hoA8PXXX2PBggVYtWoVOnbsiNOnTyM6OhoNGjRAVFSUKu/cuXOxdOlS+Pv7Y+7cuRgxYgSysrJgaVn119fDwwPl5eXYvn07hg4dCkk1r0lFRQWaN2+O77//Ho0aNcKRI0fwyiuvwN3dHS+88IJquZSUFDRt2hQpKSnIysrC8OHDERISgujoaAAPi48bN24gJSUFVlZWmDZtGg+3IiIiIrPFwkKfFEXAB57ibPvtG4B1A40WlclkmDFjBsrLy1FcXIzTp08jLCwMCoUCa9euRVxcHE6cOIHS0lLIZDIUFhZizZo1SEhIQGRkJABg/fr1SEpKwhdffIFZs2bhypUr6NixIzp37gzg4STmSm5ubgCARo0awcPDQ9UeFxeHZcuWYfDgwQAe7tnIyMjAunXr1AqLmTNnom/fvgCAhQsXIigoCFlZWQgICKjSt27duuHtt9/GyJEj8dprryE0NBTPPvssxowZA3d3dwCAlZUVFi5cqHpOixYtcPToUXz//fdqhYWLiwtWrVoFqVSKgIAA9O3bF8nJyYiOjsaFCxewZ88eHD9+XHUxrC+++AJt27bV6GdAREREVN/U+0Ohrl69ivDwcAQGBqJDhw74/vvvxY4kuvDwcBQWFuLEiRM4ePAgWrduDTc3N4SFhanmWRw6dAgtW7aEt7c3Ll68CIVCgR49eqjWYWVlhdDQUGRmZgIAJk2ahC1btiAkJASzZ8/GkSNHHpuhsLAQFy9exIQJE+Dg4KC6vf/++1Umi3fo0EH1/6ZNmwLAY/cMLFq0CDk5OVi7di2CgoKwdu1aBAQE4OzZs6pl5HI5OnXqBDc3Nzg4OODzzz/H1atX1dYTFBQEqVSqtu3K7WZmZsLS0hKdOnVSPR4QEABnZ+fH9puIjB/HDSKi2qn3eywsLS2xYsUKhISEICcnB506dcKLL76IBg00+3ZfK1b2D/cciMHKXuNF/fz80Lx5c6SkpCAvLw9hYWEAAE9PT3h5eeHIkSM4ePCgan6FJiIjI3H58mXs3r0bSUlJeO655xATE4OlS5dWu3xBQQGAh3s+unbtqvbYv/+YBx4WMZUqD22qqKh4bJ5GjRph2LBhGDZsGD744AN07NgRS5cuxaZNm7BlyxbMnDkTy5YtQ/fu3dGwYUN8/PHHOHbsWI3brdz2k7ZLRKavTscNIqJ6pN4XFk2bNlV9y+3h4YHGjRvj77//NswAIZFofDiS2GQyGVJTU5GXl4dZs2ap2nv16oXExESkpaUhJiYGANCqVStYW1vj8OHD8PHxAQAoFAqcOHECM2bMUD3Xzc0NUVFRiIqKQs+ePTFr1iwsXbpUNadCqVSqlnV3d4enpyf++usvjBo1yqB9tba2RqtWrVRnhTp8+DCefvppTJ48WbWMtqfUDQgIQHl5OU6dOqU6FOqPP/7AvXv39JabiMRRp+MGEVE9IvqhUAcOHEC/fv3g6ekJiUSCHTt2VFlGLpfD19cXtra26Nq1K44fP16rbZ06dQpKpRJeXl46pjZ9MpkMhw4dQnp6umqPBQCEhYXh888/R1lZmWqPRYMGDTBp0iTMmjULiYmJyMjIQHR0NIqKijBhwgQAwIIFC7Bz505kZWXh3Llz2LVrl2q+QZMmTWBnZ4fExETk5ubi/v37AB7Ol1i8eDFWrlyJCxcu4OzZs4iPj8fy5ctr3a9du3bh5Zdfxq5du3DhwgX88ccfWLp0KXbv3o0BAwYAAPz9/XHy5Ens3bsXFy5cwPz589XOcKWJNm3a4IUXXsCrr76KY8eO4dSpU5g4cSLs7OxqnZ2INMNxg4jIOIleWBQWFiI4OBhyubzax7du3YrY2FjExcUhLS0NwcHB6NOnj9ox9iEhIWjXrl2V240b/z0s6e+//8aYMWPw+eefG7xPpkAmk6G4uBh+fn6qSc3Aw8LiwYMH8Pf3V31jBwAffvghhgwZgtGjR+Opp55CVlYW9u7dCxcXFwAP9wrMmTMHHTp0QK9evSCVSrFlyxYADw8rWLlyJdatWwdPT0/VH/gTJ07Ehg0bEB8fj/bt2yMsLAwJCQmq08LWRmBgIOzt7fHGG28gJCQE3bp1w3fffYcNGzZg9OjRAIBXX30VgwcPxvDhw9G1a1fcvXtXbe+FpiqvjxEWFobBgwfjlVdeQZMmTWqdnYg0w3GDiMhICUYEgLB9+3a1ttDQUCEmJkZ1X6lUCp6ensLixYs1Xm9JSYnQs2dPYfPmzVpnun//vgBAuHPnzn8bL6YIQpyjUPzFQCEjI0MoLi7Wer3GTKlUCnl5eYJSqRQ7Sp0ydL+Li4uN8velrKxM2LFjh1BWViZ2lDpV235//0KQkNEmQLj4/SYDJTOsO3fuCACE+/fvix1FL0xm3DARpv55YMr5TTm7IDC/ofzR4xkho02AUHz+jxqXMXT2ys80TcYNo55jUVZWhlOnTmHOnDmqNgsLC0RERDz2Imn/JggCxo4di2effVb1jfXjlJaWorS0VHU/Pz8fwMM5BZUXR5OUK2EJQIAAQRBQUVFRryb1CoKg+rc+9etJDN3viooKCIIAhUJRZYK6mCp/r/998T9zoGu/K5RKk3zNTDGzNox13DAVpv55YMr5TTk7wPwG88/fJuXlNX+eGDq7Nus16sLizp07UCqVaofqAA8n/p4/f16jdRw+fBhbt25Fhw4dVMfhfvnll2jfvn21yy9evFjtGgeVUlJSYG//8MxLjR+cQw8ABQWFKC4uRkFBAcrKyjTvmIl48OCB2BFEYah+l5WVobi4GAcOHEB5eblBtqGLpKQksSOIQtt+VxagGRkZOGe72xCRDKqoSKSLeNYRYx03TI2pfx6Ycn5Tzg4wv761LC2FJYCDBw+hLCvrscsaKrs244ZRFxb68Mwzz2j17fOcOXMQGxurup+fnw8vLy/IZDI0atQIACDJdgCyAAeHBrCzs4ODgwNsbW31nl0sgiDgwYMHaNiwYbVXrq6vDN3vkpIS2NnZoVevXkb1+6JQKJCUlITnn3++yil267Pa9nvn2rkAHs7n8XnxRUPFM5i7d++KHcHoGWLcMBWm/nlgyvlNOTvA/IaSveRjKAsK0LPnM7Bp3braZQydvXIvrCaMurBo3LgxpFIpcnNz1dpzc3PVruCsTzY2NrCxsYFcLodcLledItXKyuq/PyzLh4exSCCBRCKBhYUFLCxEnwevN5UDamXfzIWh+21hYQGJRKL+u2REjDWXodW23xZSqUm+XqaYWRtGO26YGFPODph2flPODjC/3v3zRael5ZNzGSq7Nus06r8ara2t0alTJyQnJ6vaKioqkJycjO7duxt02zExMcjIyND6NKRERCQejhtEROIRfY9FQUEBsv51zFh2djbS09Ph6uoKb29vxMbGIioqCp07d0ZoaChWrFiBwsJCjBs3TsTUREQkFo4bRETGSfTC4uTJk6oLsQFQHacaFRWFhIQEDB8+HLdv38aCBQuQk5ODkJAQJCYmVpmYp2+P7tImIiLjwHGDiMg4iV5YhIeHq86yUpMpU6ZgypQpdZTooZiYGMTExCA/Px9OTk41LPX43EREpH+mPW4QEdVfRj3HgoiIiIiITAMLixrI5XIEBgaiS5cuYkchA0hNTYVEIsG9e/fEjkJE9QTHDSIydywsalBfz+6xdu1aNGzYUO0CbQUFBbCyskJ4eLjaspV/fF+8eFGnbV66dAkSiQTp6ek6rUcbp0+fxrBhw+Du7g5bW1v4+/sjOjoaFy5cqLMMRGRe6uu4QUSkKRYWZkYmk6GgoAAnT55UtR08eBAeHh44duwYSkpKVO2pqanw9vZGq1atxIhaa7t27UK3bt1QWlqKr7/+GpmZmfjqq6/g5OSE+fPnix2P6gtOsSIiIlLDwsLMtGnTBk2bNkVqaqqqLTU1FQMGDECLFi3w66+/qtr379+vOvNKaWkppk2bhiZNmsDW1hbPPPOM2rdyeXl5GDVqFNzc3GBnZwd/f3/Ex8cDAFq0aAEA6NixIyQSidqekQ0bNqBt27awtbVFQEAAVq9erXqsck/Htm3bIJPJYG9vj+DgYBw9erTG/hUVFWHcuHF48cUX8dNPPyEiIgItWrRA165dsXTpUqxbt67a5929excjR45EYGAgHBwc0L59e3z77beqxzdv3oxGjRqhtLRU7XkDBw7E6NGja8xDREREZC5YWNSgNsfKCoKAIkWRKLcnnSHl32QyGVJSUlT3U1JSEB4ejrCwMFV7cXExjh07piosZs+ejR9//BGbNm1CWloa/Pz80KdPH/z9998AgPnz5yMjIwN79uxBZmYm1qxZg8aNGwMAjh8/DgDYt28fbt68iW3btgEAvv76ayxYsACLFi1CZmYmPvjgA8yfPx+bNm1Syzt37lzMnDkT6enpaN26NUaMGKF2KNe/7d27F3fu3MHs2bOrfdzZ2bna9pKSEnTq1Albt27Fb7/9hldeeQWjR49WZR82bBiUSiV++ukn1XNu3bqFn3/+GePHj6/5xSYis8E5FkRk7kQ/3ayxqs1pA4vLi9H1m64GTla9YyOPwd7KXqNlZTIZZsyYgfLychQXF+P06dMICwuDQqHA2rVrERcXhxMnTqC0tBQymQyFhYVYs2YNEhISEBkZCQBYv349kpKS8MUXX2DWrFm4cuUKOnbsiM6dOwMAfH19Vdtzc3MDADRq1AgeHh6q9ri4OCxbtgyDBw8G8HDPRkZGBtatW4eoqCjVcjNnzkTfvn0BAAsXLkRQUBCysrIQEBBQpW9//vknAFT72OM0a9YMb7zxBvLz8+Ho6IipU6di7969+O677xAaGgo7OzuMHDkS8fHxGDZsGADgq6++gre3d5W5KURknni6WSIydywszFB4eDgKCwtx4sQJ5OXloXXr1nBzc0NYWBjGjRuHkpISHDp0CC1btoS3tzd+++03KBQK9OjRQ7UOKysrhIaGIjMzEwAwadIkDBkyBGlpaejduzcGDhyIp59+usYMhYWFuHjxIiZMmIDo6GhVe3l5eZUBuUOHDqr/N23aFMDDvQXVFQ/a7Ln5N6VSiUWLFmHLli3IyclBWVkZSktLYW//32ItOjoaXbp0wfXr19GsWTMkJCRg7NixkEgktdomERERUX3CwkKP7CztcGzkMdG2rSk/Pz80b94cKSkpyMvLQ1hYGADA09MTXl5eOHLkCA4ePKh2ZdsniYyMxOXLl7F7924kJSXhueeeQ0xMDJYuXVrt8gUFBQAe7vno2lV9L49UKlW7b2Vlpfp/5R/xFRUV1a63devWAIDz58+je/fuGuf/+OOPsXLlSixatAihoaFo2LAhZsyYgbKyMtUyHTt2RHBwMDZv3ozevXvj3Llz+PnnnzXeBhEREVF9xsKiBnK5HHK5HEqlUuPnSCQSjQ9HEptMJkNqairy8vIwa9YsVXuvXr2QmJiItLQ0xMTEAABatWoFa2trHD58GD4+PgAAhUKBEydOYMaMGarnurm5ISoqClFRUejZsydmzZqFpUuXwtraGgDUXkt3d3d4enrir7/+wqhRo/TWr969e6Nx48ZYsmQJtm/fXuXxe/fuVTvP4vDhw+jfvz+GDx8OR0dHAMCFCxcQGBiottzEiROxYsUKXL9+HREREfDy8tJbdiIybbUZN4iI6hNO3q5BfT8fuUwmw6FDh5Cenq7aYwEAYWFh+Pzzz1FWVqbaY9GgQQNMmjQJs2bNQmJiIjIyMhAdHY2ioiJMmDABALBgwQLs3LkTWVlZOHfuHHbt2oW2bdsCAJo0aQI7OzskJiYiNzcX9+/fB/BwvsTixYuxcuVKXLhwAWfPnkV8fDyWL19e6341aNAAGzZswM8//4z+/ftj3759uHTpEk6ePInZs2fjtddeq/Z5/v7+2LdvH44dO4bMzEy8+uqryM3NrbLcyJEjce3aNaxfv56TtolITX0fN4iInoSFhZmSyWQoLi6Gn58f3N3dVe1hYWF48OAB/P39VfMZAODDDz/EkCFDMHr0aDz11FPIysrC3r174eLiAgCwtrbGnDlz0KFDB/Tq1QtSqRRbtmwBAFhaWmLlypVYt24dPD09MWDAAAAPv/3fsGED4uPj0b59e4SFhSEhIUF1etraGjBgAI4cOQIrKyuMHDkSAQEBGDFiBO7fv4/333+/2ufMmzcPHTt2xNChQ/Hss8/Cw8MDAwcOrLKck5MThgwZAgcHh2ofJyIiIjJXPBTKTPn6+lY70dnHxwdKpRL5+flq7ba2tli5ciVWrlxZ7frmzZuHefPm1bi9iRMnYuLEiVXaR44ciZEjR2qc0dnZWaMJ2p07d8aPP/5Y4+Ph4eFq63F1dcX27dtVZ4WysKi55r5+/TpGjRoFGxubJ+YgIiIiMhcsLIg0lJeXh9TUVKSmpqpdyI+IiIiIWFgQaaxjx47Iy8vDRx99hDZt2ogdh0RXu1MbExER1VcsLGrAs3vQoy5duiR2BCIyYhw3iMjccfJ2DR5/dg9eEI2IiNTxrFBEZO5YWBARERERkc5YWBARERERkc5YWBARERERkc5YWBARERERkc5YWBARERERkc5YWNRALpcjMDAQXbp0ETuKSUpISICzs7PYMYiI6gzHDSIydywsaqDRaQMF075AVk5ODqZOnYqWLVvCxsYGXl5e6NevH5KTk8WORkRkcni6WSIyd7xAnpm6dOkSevToAWdnZ3z88cdo3749FAoF9u7di6lTp+LXX38VOyIRERERmRDusTBTkydPhkQiwfHjxzFkyBC0bt0aQUFBiI2NxZEjRwAAV65cwYABA+Dg4ABHR0e89NJLyM3NVa3jzJkzkMlkaNiwIRwdHdGpUyecPHlSbTs7duyAv78/bG1t0adPH1y9ehXAw8LGwsKiyvIrVqyAj48PKioqDPwKENWO5J8LZAow7T2WRERE+sY9FnokCAKE4mJRti2xs4NEotkVwf/++28kJiZi0aJFaNCgQZXHnZ2dce/ePQwaNAgODg7Yv38/ysvLERMTg+HDhyM1NRUAMGrUKHTs2BFr1qyBVCpFeno6rKysVOspKirCokWLsHnzZlhbW2Py5Mn43//9Xxw+fBi+vr6IiIhAfHw8OnfurHpOfHw8xo4dCwsL1rxEREREpoSFhR4JxcX446lOomy7TdopSOztNVo2KysLgiAgICCgxmX279+Ps2fPIjs7G15eXgCAzZs3IygoCCdOnECXLl1w5coVzJo1S7Uef39/tXUoFAqsWrUKXbt2BQBs2rQJbdu2xfHjxxEaGoqJEyfitddew/Lly2FjY4O0tDScPXsWO3furM1LQEREREQi4tfCZkjQYNL5hQsX4OXlpSoqACAwMBDOzs7IzMwEAMTGxmLixImIiIjAhx9+iIsXL6qtw9LSUu3sKAEBAWrPHzhwIKRSKbZv3w7g4ZmkZDIZfH19de0iEREREdUx7rHQI4mdHdqknRJt25ry9/eHRCLB+fPnddrmO++8g5EjR+Lnn3/Gnj17EBcXhy1btmDQoEEaPd/a2hpjxoxBfHw8Bg8ejG+++QaffvqpTpmIiIiISBzcY6FHEokEFvb2otw0nV8BAK6urujTpw/kcjkKCwurPH7v3j20bt0aV69eVU22BoCMjAzcu3cPgYGBqrbWrVvj9ddfxy+//ILBgwcjPj5e9Vh5ebna5Ow//vgD9+7dQ9u2bVVtEydOxL59+7B69WqUl5dj8ODBGveDiIiIiIwHC4sa1PcLHcnlciiVSoSGhuLHH3/En3/+iczMTKxcuRI9evRAeHg42rdvj1GjRiEtLQ3Hjx/HmDFjEBYWhs6dO6O4uBhTpkxBamoqLl++jMOHD+PEiRNqRYOVlRWmTp2KY8eO4dSpUxg7diy6deuG0NBQ1TJt27ZFt27d8Oabb2LEiBGw02LPCxGRManv4wYR0ZOwsKhBfb/QUcuWLZGWlgaZTIY33ngD7dq1w/PPP4/k5GTI5XJIJBJs374dLi4u6NWrFyIiItCyZUts3boVACCVSnH37l2MGTMGrVu3xksvvYTIyEgsXLhQtQ17e3u8+eabGDlyJHr06AEHBwfV8/9twoQJKCsrw/jx4+us/0RE+lbfxw0ioifhHAsz1rRpU6xatQqrVq1Sa6+oqEB+fj68vb1rPEOTtbU1vv322xrXPXbsWIwdOxYAnnh40/Xr19G+fXt+y0dERERkwrjHgkRTUFCA33//HatWrcLUqVPFjkNEREREOmBhQaKZMmUKOnXqhPDwcB4GRURERGTieCgUiSYhIQEJCQlixyCqFQ0uB0NERGRWuMeCiIiIiIh0xsJCJw+/stTkStZE/D0hIiKi+oyFhQ6k5UUAgLKyMpGTkCmo/D2RSqUiJyEiIiLSP86x0IFleSHs7e1x+/ZtWFlZwcKiftRpFRUVKCsrQ0lJSb3pkyYM2e+Kigrcvn0b9vb2sLTk246IiIjqH/6FowMJBDRt2hTZ2dm4fPmy2HH0RhAEFBcXw87ODhKJROw4dcbQ/bawsIC3t7dZvaZERERkPup9YXHv3j1ERESgvLwc5eXlmD59OqKjo/W2fmtra/j7+9erw6EUCgUOHDiAXr16wcrKSuw4dcbQ/ba2tjarPUBEpsrQ4wYRUX1V7wuLhg0b4sCBA7C3t0dhYSHatWuHwYMHo1GjRnrbhoWFBWxtbfW2PrFJpVKUl5fD1tbWrAoLc+03Eamri3GDiKg+qvdfn0qlUtjb2wMASktLIQgCz85DREQ14rhBRFQ7ohcWBw4cQL9+/eDp6QmJRIIdO3ZUWUYul8PX1xe2trbo2rUrjh8/rtU27t27h+DgYDRv3hyzZs1C48aN9ZSeiIjqGscNIiLjJHphUVhYiODgYMjl8mof37p1K2JjYxEXF4e0tDQEBwejT58+uHXrlmqZkJAQtGvXrsrtxo0bAABnZ2ecOXMG2dnZ+Oabb5Cbm1snfSMiIv3juEFEZJxEn2MRGRmJyMjIGh9fvnw5oqOjMW7cOADA2rVr8fPPP2Pjxo146623AADp6ekabcvd3R3BwcE4ePAghg4dWu0ypaWlKC0tVd2/f/8+AODvv/9WtUnu34dlqQChSIHyu3c12rYpUSgUKCoqwt27d81qrgH7zX5roqhciQKlEhYPHuCuCb7/Kz/LTPnQHlMcN0yFqX8emHJ+U84OML+hFCgUUCqV+DsvDzY1jDmGzv7gwQMAGo4bghEBIGzfvl11v7S0VJBKpWptgiAIY8aMEfr376/ROnNycoT8/HxBEATh3r17QlBQkPDbb7/VuHxcXJyAh5fU5o033nirt7eLFy9q/RltjACOG7zxxhtvdXG7evXqEz8/Rd9j8Th37tyBUqmEu7u7Wru7uzvOnz+v0TouX76MV155RTX5burUqWjfvn2Ny8+ZMwexsbGq+/fu3YOPjw+uXLkCJyen2nXExOTn58PLywtXr16Fo6Oj2HHqDPvNfpuD+/fvw9vbG66urmJHMQiOG7ox9feFKec35ewA84vJ0NkFQcCDBw/g6en5xGWNurDQh9DQUI13eQOAjY0NbGxsqrQ7OTmZ3C+arhwdHc2uzwD7bW7Mtd+8pkrNOG6Y/vvClPObcnaA+cVkyOyafkli1CNL48aNIZVKq0yay83NhYeHh0ipiIjIWHHcICISj1EXFtbW1ujUqROSk5NVbRUVFUhOTkb37t1FTEZERMaI4wYRkXhEPxSqoKAAWVlZqvvZ2dlIT0+Hq6srvL29ERsbi6ioKHTu3BmhoaFYsWIFCgsLVWf7MDQbGxvExcVVu5u7vjLHPgPsN/ttHupDvzluGI4pZwdMO78pZweYX0zGlF3yz1k1RJOamgqZTFalPSoqCgkJCQCAVatW4eOPP0ZOTg5CQkKwcuVKdO3atY6TEhGRMeC4QURknEQvLIiIiIiIyPQZ9RwLIiIiIiIyDSwsiIiIiIhIZywsiIiIiIhIZywsAMjlcvj6+sLW1hZdu3bF8ePHH7v8999/j4CAANja2qJ9+/bYvXt3HSXVH236fO7cOQwZMgS+vr6QSCRYsWJF3QXVM236vX79evTs2RMuLi5wcXFBRETEE383jJU2/d62bRs6d+4MZ2dnNGjQACEhIfjyyy/rMK3+aPverrRlyxZIJBIMHDjQsAENRJt+JyQkQCKRqN1sbW3rMK35GTRoEFxcXDB06NAqj+3atQtt2rSBv78/NmzYIEI6zX3yyScICgpCYGAgpk2bBlObspmdnQ2ZTIbAwEC0b98ehYWFYkfSWlFREXx8fDBz5kyxo2js6tWrCA8PR2BgIDp06IDvv/9e7EhPZErvy0fV+estmLktW7YI1tbWwsaNG4Vz584J0dHRgrOzs5Cbm1vt8ocPHxakUqmwZMkSISMjQ5g3b55gZWUlnD17to6T1562fT5+/Lgwc+ZM4dtvvxU8PDyETz75pG4D64m2/R45cqQgl8uF06dPC5mZmcLYsWMFJycn4dq1a3WcXDfa9jslJUXYtm2bkJGRIWRlZQkrVqwQpFKpkJiYWMfJdaNtvytlZ2cLzZo1E3r27CkMGDCgbsLqkbb9jo+PFxwdHYWbN2+qbjk5OXWc2rykpKQIP/30kzBkyBC1doVCIfj7+wvXrl0THjx4ILRu3Vq4c+eOSCkf79atW0LLli2F4uJioby8XHj66aeFI0eOiB1LK7169RIOHDggCIIg3L17V1AoFCIn0t7bb78tvPTSS8Ibb7whdhSN3bhxQzh9+rQgCIJw8+ZNwdPTUygoKBA31GOY0vuyOnX9ept9YREaGirExMSo7iuVSsHT01NYvHhxtcu/9NJLQt++fdXaunbtKrz66qsGzalP2vb533x8fEy2sNCl34IgCOXl5ULDhg2FTZs2GSqiQejab0EQhI4dOwrz5s0zRDyDqU2/K/9A2rBhgxAVFWWShYW2/Y6PjxecnJzqKB1VSklJqVJYHD58WBg4cKDq/vTp04VvvvmmrqNp5NatW4K3t7eQl5cnFBcXC126dBGysrLEjqWx33//XXjuuefEjqGTCxcuCIMHDxbi4+NNqrB4VIcOHYQrV66IHaNGpvS+1IShX2+zPhSqrKwMp06dQkREhKrNwsICEREROHr0aLXPOXr0qNryANCnT58alzc2telzfaCPfhcVFUGhUMDV1dVQMfVO134LgoDk5GT88ccf6NWrlyGj6lVt+/3uu++iSZMmmDBhQl3E1Lva9rugoAA+Pj7w8vLCgAEDcO7cubqIa5QOHDiAfv36wdPTExKJBDt27KiyTG0PsXuSGzduoFmzZqr7zZo1w/Xr12u1LkP3w83NDTNnzoS3tzc8PT0RERGBVq1a1SqrGPn//PNPODg4oF+/fnjqqafwwQcf6C07UDe/RzNnzsTixYv1lPi/6vI9cOrUKSiVSnh5eemYuma69kef78va0OfPoy5eb7MuLO7cuQOlUgl3d3e1dnd3d+Tk5FT7nJycHK2WNza16XN9oI9+v/nmm6oB1FTUtt/379+Hg4MDrK2t0bdvX3z22Wd4/vnnDR1Xb2rT70OHDuGLL77A+vXr6yKiQdSm323atMHGjRuxc+dOfPXVV6ioqMDTTz+Na9eu1UVko1NYWIjg4GDI5fJqH9+6dStiY2MRFxeHtLQ0BAcHo0+fPrh165ZqmZCQELRr167K7caNG3XVDYP3Iy8vD7t27cKlS5dw/fp1HDlyBAcOHDCZ/OXl5Th48CBWr16No0ePIikpCUlJSSaTf+fOnWjdujVat26tt8x1lb3S33//jTFjxuDzzz/Xex/03R8x6St/Xb3eZn0o1PXr1wUAVY4LnTVrlhAaGlrtc6ysrKrsApPL5UKTJk0MllOfatPnfzPVQ6F07ffixYsFFxcX4cyZM4aKaBC17bdSqRT+/PNP4fTp08LSpUsFJycnISUlxcBp9Ufbfufn5wu+vr7C7t27VW2meCiUrr/ngiAIZWVlQqtWrUzu0DdDACBs375drU0fhxYKguaHQn399dfaB3+EIfrx3XffCZMnT1bdX7JkifDRRx/pnLU6hsh/5MgRoXfv3qr7S5YsEZYsWaKXvI8yRP633npLaN68ueDj4yM0atRIcHR0FBYuXKjP2IIgGO49UFJSIvTs2VPYvHmzvqJqpDb9MdT7sjZq+/Ooy9fbrPdYNG7cGFKpFLm5uWrtubm58PDwqPY5Hh4eWi1vbGrT5/pAl34vXboUH374IX755Rd06NDBkDH1rrb9trCwgJ+fH0JCQvDGG29g6NChBtnlbija9vvixYu4dOkS+vXrB0tLS1haWmLz5s346aefYGlpiYsXL9ZVdJ3o4/1tZWWFjh07IisryxARTZqhDyUNDQ3F77//juvXr6OgoAB79uxBnz59dF7vo/TRDy8vLxw5cgQlJSVQKpVITU1FmzZt9J61OvrI36VLF9y6dQt5eXmoqKjAgQMH0LZtW0NFVqOP/IsXL8bVq1dx6dIlLF26FNHR0ViwYIGhIqvoI7sgCBg7diyeffZZjB492lBRNaJJf+rqfVkbmuSv69fbrAsLa2trdOrUCcnJyaq2iooKJCcno3v37tU+p3v37mrLA0BSUlKNyxub2vS5Pqhtv5csWYL33nsPiYmJ6Ny5c11E1St9/bwrKipQWlpqiIgGoW2/AwICcPbsWaSnp6tu/fv3h0wmQ3p6ukGPR9Unffy8lUolzp49i6ZNmxoqpsnS16GkERERGDZsGHbv3o3mzZur/gCwtLTEsmXLIJPJVEV9o0aN9NoHQD/96NatG1588UV07NgRHTp0QKtWrdC/f3+9Z62OPvJbWlrigw8+QK9evdChQwf4+/vjf/7nfwwRtwpTPiRZH9kPHz6MrVu3YseOHQgJCUFISAjOnj1riLhPpEl/6up9WRua5K/r19vSYGs2EbGxsYiKikLnzp0RGhqKFStWoLCwEOPGjQMAjBkzBs2aNVN9Wzt9+nSEhYVh2bJl6Nu3L7Zs2YKTJ08a/pg1PdK2z2VlZcjIyFD9//r160hPT4eDgwP8/PxE64e2tO33Rx99hAULFuCbb76Br6+v6k3q4OAABwcH0fqhLW37vXjxYnTu3BmtWrVCaWkpdu/ejS+//BJr1qwRsxta06bftra2aNeundrznZ2dAaBKu7HT9uf97rvvolu3bvDz88O9e/fw8ccf4/Lly5g4caKY3ajX9u3bV+Nj/fv3r7M/0HW1aNEiLFq0SOwYtRYZGYnIyEixY+hs7NixYkfQyjPPPIOKigqxY2jFlN6Xj6rr19vsC4vhw4fj9u3bWLBgAXJychASEoLExERV9XflyhVYWPx3x87TTz+Nb775BvPmzcPbb78Nf39/7Nixw6T++NC2zzdu3EDHjh1V95cuXYqlS5ciLCwMqampdR2/1rTt95o1a1BWVlblIlZxcXF455136jK6TrTtd2FhISZPnoxr167Bzs4OAQEB+OqrrzB8+HCxulAr2va7vtC233l5eYiOjkZOTg5cXFzQqVMnHDlyBIGBgWJ1wWjVl0NJTb0fzC8eU85eHVPvj1HmN/gsDiIiIhOEGiZKTpkyRXVfqVQKzZo103rydl0y9X4wv3hMOXt1TL0/ppDf7PdYEBERVSooKFCbuJ6dnY309HS4urrC29v7iYeaGQtT7wfzi8eUs1fH1PtjcvlFKWeIiIiMUEpKigCgyi0qKkq1zGeffSZ4e3sL1tbWQmhoqPDrr7+KF7gGpt4P5hePKWevjqn3x9TySwRBEAxcuxARERERUT1X/2YuEhERERFRnWNhQUREREREOmNhQUREREREOmNhQUREREREOmNhQUREREREOmNhQWZlzZo18Pb2RoMGDTB48GDcvn37scv7+vpCIpFAIpHg3r17dRPSSFy6dEnV95CQELHjEBERkZFjYUFmY9u2bZg1axY+++wznDx5Eg8ePMDQoUOf+Lx3330XN2/ehJOTk8Gyffvttxg4cCD69OmD4cOHo6ioSO3xhQsX4uWXXzbItq9evYoRI0bghRdewPPPP4+DBw8CALy8vHDz5k288cYbBtkuERER1S8sLMhsLFq0CFOmTMGAAQPQtm1bbNq0CYcOHcKhQ4ce+7yGDRvCw8MDEonEYNlGjBiBLl264ObNm9i+fTuuXbum9vjOnTvRv39/g2zby8sLr7/+OoqLi3H06FH88ssvAACpVAoPDw84ODgYZLtERERUv7CwILOQl5eHtLQ09O3bV9Xm6emJdu3aYd++fVqv7/DhwwgPD4e9vT1cXFzQp08f5OXlAQDCw8MxdepUzJgxAy4uLnB3d8f69etRWFiIcePGoWHDhvDz88OePXvU1jl37lycOHECb775Jry8vFTtV69exblz5/DCCy8AAO7du4dXX30V7u7usLW1Rbt27bBr1y4AQEJCApydnbFr1y60adMG9vb2GDp0KIqKirBp0yb4+vrCxcUF06ZNg1KpVG0jNDQU+/fvx+rVqw1WwBAREVH9xsKCzMJff/0FAPDz81Nr9/f3Vz2mqfT0dDz33HMIDAzE0aNHcejQIfTr10/tD/VNmzahcePGOH78OKZOnYpJkyZh2LBhePrpp5GWlobevXtj9OjRqkOeiouLAQDW1tb4v//7P+zdu1e1rp9++gnh4eFwdHRERUUFIiMjcfjwYXz11VfIyMjAhx9+CKlUqlq+qKgIK1euxJYtW5CYmIjU1FQMGjQIu3fvxu7du/Hll19i3bp1+OGHHwAAJSUlqueWlJRg0aJFWr0eRESkH6mpqaq5bQMHDhQ7DgBAIpFgx44davclEgmcnZ1Fy0TGy1LsAER1ofIPeH9/f7X20tJSDBgwQKt1LVmyBJ07d8bq1atVbUFBQWrLBAcHY968eQCAOXPm4MMPP0Tjxo0RHR0NAFiwYAHWrFmD3377Dd26dcPUqVNx4cIF3L9/H35+fnjuuedU69q5c6cq4759+3D8+HFkZmaidevWAICWLVuqbVuhUGDNmjVo1aoVAGDo0KH48ssvkZubCwcHBwQGBkImkyElJQXDhw9HYmIilixZAgsLCxQUFGDFihVavR5EROZq7NixuHfvntof3j/88ANefvllLFq0qNZz1P744w80adJETykfb+HChfjzzz/x1VdfabT8zZs3sXXrVsTFxRk4GZkiFhZkFuzt7QE8/Dbo39+yTJ8+XfWYptLT0zFs2LDHLtOhQwfV/6VSKRo1aoT27dur2tzd3QEAt27dAgBs2LCh2vXk5+dj//79+OKLL1Tbbt68uaqoqI69vb2qqKjclq+vr9pcCXd3d9W2Bw4caDTfjBERmbINGzYgJiYGa9euxbhx42q9niZNmtTZHoGdO3firbfe0nh5Dw8Pg57MhEwbD4Uis1D5rb6joyP8/PxUt5KSkirf+D+JnZ3dE5exsrJSuy+RSNTaKieCV1RUPHY9e/bsQWBgoGrOhT62Xdn2pG0TEZHmlixZgqlTp2LLli1qRcUPP/yA9u3bw87ODo0aNUJERAQKCwu1WndFRQWWLFkCPz8/2NjYwNvbW3XYauWpwb/77jv07NkTdnZ26NKlCy5cuIATJ06gc+fOcHBwQGRkZJVTrD86h+/PP/9Er169YGtri8DAQCQlJen4qpC5YWFBZsHFxQWdOnVSnUoVAAoKCnD06FE8//zzWq2rQ4cOSE5O1nfEav37MKjKbV+7dg0XLlyok+0TEdGTvfnmm3jvvfewa9cuDBo0SNV+8+ZNjBgxAuPHj0dmZiZSU1MxePBgCIKg1forD6mdP38+MjIy8M0336j2fFeKi4vDvHnzkJaWBktLS4wcORKzZ8/Gp59+ioMHDyIrKwsLFixQe86jc/gGDx4Ma2trHDt2DGvXrsWbb75Z+xeFzBIPhSKzMXfuXEyaNAleXl5o0aIF5s2bh65du6JHjx5arWfOnDlo3749Jk+ejNdeew3W1tZISUnBsGHD0LhxY73lLS8vx549ezBz5kxVW1hYGHr16oUhQ4Zg+fLl8PPzw/nz5yGRSFTfOBERUd3Zs2cPdu7cieTkZDz77LNqj928eRPl5eUYPHgwfHx8AEDtsFhNPHjwAJ9++ilWrVqFqKgoAECrVq3wzDPPqC03c+ZM9OnTB8DDw3xHjBiB5ORk1Rg3YcIEJCQkqD3n0Tl858+fx969e+Hp6QkA+OCDDxAZGalVXjJv3GNBZmPQoEF45513MGHCBAQHB0OhUOC7777Tej2tW7fGL7/8gjNnziA0NBTdu3fHzp07YWmp3zp9//79cHBwwFNPPaXW/uOPP6JLly4YMWIEAgMDMXv2bLUzUhERUd3p0KEDfH19ERcXh4KCArXHgoOD8dxzz6F9+/YYNmwY1q9frzo1uaYyMzNRWlqqdlKPmnJUqtyb8ejcvsq5dcB/5/BVnmI8MzMTXl5eqqICALp3765VViLusSCz8tprr+G1117TeT1hYWE4fPhwtY+lpqZWabt06VKVtiftCt+5cyf69etXpd3V1RUbN26s9jljx47F2LFj1dreeecdvPPOO2ptj35rRUREtdOsWTP88MMPkMlkeOGFF7Bnzx40bNgQwMOTdyQlJeHIkSP45Zdf8Nlnn2Hu3Lk4duwYWrRoodH6NZlbB6DaeXyPtv17bt2jc/iI9IF7LIie4M0334SDgwPu379fp9tt164dJk2aVKfb/LcrV67AwcEBH3zwgWgZiIhMgY+PD/bv34+cnBy88MILePDggeoxiUSCHj16YOHChTh9+jSsra2xfft2jdft7+8POzs7vc/te3QOX9u2bXH16lXcvHlT1fbrr7/qdZtU/3GPBdFj7N+/HwqFAgBU30DVlVdeeaVOt/coT09PpKenAwBsbGxEzUJEZOy8vLyQmpoKmUyGPn36IDExEZmZmUhOTkbv3r3RpEkTHDt2DLdv30bbtm01Xq+trS3efPNNzJ49G9bW1ujRowdu376Nc+fOYcKECbXKWt0cvoiICLRu3RpRUVH4+OOPkZ+fj7lz59Zq/WS+WFgQPUblZDtzZGlpWeVK5UREVLPmzZurFRdr167FgQMHsGLFCuTn58PHxwfLli3TekL0/PnzYWlpiQULFuDGjRto2rSpTof1VjeHz8LCAtu3b8eECRMQGhoKX19frFy5kicGIa1IBG3PeUZEREREeldZlOTl5Rn0AnnTpk1DeXk5Vq9eXavnJyQkYMaMGbh3755+g5HJ4x4LIiIiIiPSvHlz9OvXD99++61B1t+uXbtan/HJwcEB5eXlsLW11XMqqg+4x4KIiIjICBQXF+P69esAHv4B7+HhIXKiqrKysgA8POOVpme2IvPBwoKIiIiIiHTG080SEREREZHOWFgQEREREZHOWFgQEREREZHOWFgQEREREZHOWFgQEREREZHOWFgQEREREZHOWFgQEREREZHOWFgQEREREZHOWFgQEREREZHO/h/+fnEiZy8EygAAAABJRU5ErkJggg==", + "text/plain": [ + "Genuchten(k_s=2.3092153354485525, theta_r=0.01, theta_s=0.37463915256887226, alpha=0.026393025283215923, n=0.05097405111222048, l=0.41079593038489876)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "wos" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAJOCAYAAAAqFJGJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADeDklEQVR4nOzdd3QU5dvG8e/sZtN7gSSQQm/SRIqChCCIoAiKigTpoRcBAUGUogIWpAfpvYgIgj9pIoJIERBEUTpCQk2D9LZJ5v0jZl9iCCQhyaTcn3NyTnZ2duaa2d1n996Z5xlFVVUVIYQQQgghhHgMOq0DCCGEEEIIIUo+KSyEEEIIIYQQj00KCyGEEEIIIcRjk8JCCCGEEEII8diksBBCCCGEEEI8NikshBBCCCGEEI9NCgshhBBCCCHEY5PCQgghhBBCCPHYpLAQQgghhBBCPDYpLESBatWqFa1atTLdvnbtGoqisGrVKs0yicLj6+tL7969tY4hhMiH4tA+K4rClClTTLdXrVqFoihcu3ZNs0yFTctt7N27N76+vnl+XHF4rRRn+d2vpZEUFmXcmTNneO211/Dx8cHS0pIKFSrQtm1b5s+fX2QZjh8/jqIozJ49O9t9nTp1QlEUVq5cme2+li1bUqFChTyta8OGDcyZMye/UfOlVatWKIpi+rOysqJevXrMmTOH9PT0fC2zKLfjyJEjTJkyhaioqCJZX15cuXKFgQMHUrlyZSwtLbG3t6d58+bMnTuXxMREreMJkSeZXzh/++23B97fqlUrnnjiiSJOVfKVtXbi1q1bTJkyhdOnTxfqenbu3JmlKCwovr6+WT4z7/9LSkoq8PXlVlHt15LOTOsAQjtHjhzB398fb29v+vfvj7u7O9evX+fXX39l7ty5DB8+PM/L/OGHH/L8mCeffBJra2sOHTrEqFGjsmU0MzPj8OHD9OnTxzQ9JSWFEydO0LFjxzyta8OGDfz111+MHDkyzzkfR8WKFZkxYwYAERERbNiwgVGjRhEeHs60adPyvLyi3I4jR44wdepUevfujaOjY5b7Lly4gE6nze8TO3bs4PXXX8fCwoKePXvyxBNPkJKSwqFDhxg7dix///03S5Ys0SSbECJ/evTowZtvvomFhUWBLK8sthO3bt1i6tSp+Pr60qBBgyz3LV26NF8/aPn4+JCYmIjBYDBN27lzJ0FBQYVSXDRo0IB33nkn23Rzc/MCX1duFcZ+LY2ksCjDpk2bhoODAydOnMj2hTEsLCxfy8zPm97MzIymTZty+PDhLNMvXLhAREQEAQEBHDp0KMt9J0+eJCkpiRYtWuQrZ0FKT08nJSUFS0vLHOdxcHDgrbfeMt0eNGgQNWvWZP78+Xz44Yfo9fqiiFrgCurDP6+uXr3Km2++iY+PDz/99BMeHh6m+4YOHcrly5fZsWNHgawrPj4eGxubAlmWECVRUb4H9Hp9gbWHRdlOlBT3FwZ5oSjKQz/jClqFChWyfGYWd/ndr6WRnApVhl25coU6depkKyoAypUrl+V2amoqH330EVWqVMHCwgJfX1/ee+89kpOTs8z33z4WudWiRQtCQ0O5fPmyadrhw4ext7dnwIABpiLj/vsyHwewfft2XnzxRTw9PbGwsKBKlSp89NFHpKWlZcm2Y8cOgoODTYdV7z8nMjk5mcmTJ1O1alUsLCzw8vJi3Lhx2bZRURSGDRvG+vXrqVOnDhYWFuzevTtP22tpaUnjxo2JjY3NVsStW7eORo0aYWVlhbOzM2+++SbXr18vtO3Ytm0bTzzxBBYWFtSpUyfLtkyZMoWxY8cCUKlSJdP6Ms8NflAfi3/++YfXX38dZ2dnrK2tadasWbYP7wMHDqAoCl9//TXTpk2jYsWKWFpa8txzz2V5DeTks88+Iy4ujuXLl2f5spCpatWqvP3228DDzw3+7/ndU6ZMQVEUzp49S0BAAE5OTrRo0YKZM2eiKArBwcHZljFhwgTMzc25d++eadqxY8d44YUXcHBwwNraGj8/v2yFsxCPy8/Pj/r16z/wvho1atCuXTvT7aioKHr37o2DgwOOjo706tXrgac39u7dG1tbW65cuUKHDh2ws7Oje/fuAPzyyy+8/vrreHt7m9qWUaNGZTudKKfPgdych55T/4Ndu3bh5+eHnZ0d9vb2NG7cmA0bNjx0WXlpJyD3n3O+vr689NJLHDp0iCZNmmBpaUnlypVZs2ZNtnX8/ffftG7dGisrKypWrMjHH3/8wF+2/9sW3b+u/7axUVFRjBo1Cl9fXywsLKhYsSI9e/YkIiKCAwcO0LhxYwD69OljarMz27/7nwOj0Yizs3OWswEyxcTEYGlpyZgxY4Ds7Wjv3r0JCgoyZc/8U1UVX19fOnXqlG2ZSUlJODg4MHDgwGz35UVmO/1fD3rt5OW5Kqj9mik+Pp533nkHLy8vLCwsqFGjBjNnzkRV1Szz5eazuCSRIxZlmI+PD0ePHuWvv/565Hm7gYGBrF69mtdee4133nmHY8eOMWPGDM6dO8e333772FkyC4RDhw5RtWpVIKN4aNasGU2bNsVgMHDkyBFefvll0312dnamD9VVq1Zha2vL6NGjsbW15aeffmLSpEnExMTw+eefAzBx4kSio6O5ceOGqT+Hra0tkHHU4eWXX+bQoUMMGDCAWrVqcebMGWbPns3FixfZtm1blrw//fQTX3/9NcOGDcPV1fWxOsPdX9hNmzaNDz74gDfeeIPAwEDCw8OZP38+LVu25Pfff8fR0bFAt+PQoUNs3bqVIUOGYGdnx7x58+jSpQshISG4uLjw6quvcvHiRTZu3Mjs2bNxdXUFwM3N7YHbFBoayjPPPENCQgIjRozAxcWF1atX8/LLL/PNN9/wyiuvZJn/k08+QafTMWbMGKKjo/nss8/o3r07x44de+i++9///kflypV55pln8rLLc+3111+nWrVqTJ8+HVVVeemllxg3bhxff/21qdDK9PXXX/P888/j5OQEZLw22rdvT6NGjZg8eTI6nY6VK1fSunVrfvnlF5o0aVIomUXpER0dneWHlExGozHL7R49etC/f/9sbfiJEye4ePEi77//PgCqqtKpUycOHTrEoEGDqFWrFt9++y29evV64PpTU1Np166dqai2trYGYPPmzSQkJDB48GBcXFw4fvw48+fP58aNG2zevLmgNj+bVatW0bdvX+rUqcOECRNwdHTk999/Z/fu3QQEBOT4uLy2E3n5nLt8+TKvvfYa/fr1o1evXqxYsYLevXvTqFEj6tSpA8CdO3fw9/cnNTWV8ePHY2Njw5IlS7Cyssr3voiLi+PZZ5/l3Llz9O3blyeffJKIiAi+++47bty4Qa1atfjwww+ZNGkSAwYM4NlnnwV44D4wGAy88sorbN26lcWLF2c542Dbtm0kJyfz5ptvPjDHwIEDuXXrFnv37mXt2rWm6Yqi8NZbb/HZZ59x9+5dnJ2dTff973//IyYmJldHIoxGY7b3gLW1tem1mBe5ea4Kcr9Cxnvu5ZdfZv/+/fTr148GDRqwZ88exo4dy82bN7P1KX3UZ3GJoooy64cfflD1er2q1+vVp59+Wh03bpy6Z88eNSUlJct8p0+fVgE1MDAwy/QxY8aogPrTTz+Zpvn5+al+fn6m21evXlUBdeXKlQ/NEhMTo+r1erVfv36maTVq1FCnTp2qqqqqNmnSRB07dqzpPjc3N7Vt27am2wkJCdmWOXDgQNXa2lpNSkoyTXvxxRdVHx+fbPOuXbtW1el06i+//JJl+qJFi1RAPXz4sGkaoOp0OvXvv/9+6DZl8vPzU2vWrKmGh4er4eHh6vnz59WxY8eqgPriiy+a5rt27Zqq1+vVadOmZXn8mTNnVDMzsyzTC2o7zM3N1cuXL5um/fHHHyqgzp8/3zTt888/VwH16tWr2dbn4+Oj9urVy3R75MiRKpBl/bGxsWqlSpVUX19fNS0tTVVVVd2/f78KqLVq1VKTk5NN886dO1cF1DNnzmRbV6bo6GgVUDt16pTjPPd72GsQUCdPnmy6PXnyZBVQu3Xrlm3ep59+Wm3UqFGWacePH1cBdc2aNaqqqmp6erparVo1tV27dmp6erppvoSEBLVSpUpZXrNC/NfKlStV4KF/derUMc0fFRWlWlpaqu+++26W5YwYMUK1sbFR4+LiVFVV1W3btqmA+tlnn5nmSU1NVZ999tls741evXqpgDp+/Phs+R7Uzs6YMUNVFEUNDg42Tfvv58D9y/5vu/Xf92DmPshsb6KiolQ7Ozu1adOmamJiYpbH3v8e+6+8thN5+Zzz8fFRAfXgwYOmaWFhYaqFhYX6zjvvmKZltofHjh3LMp+Dg0O2NvW/++H+dd3fxk6aNEkF1K1bt2abN3N/nDhxIsc277/PwZ49e1RA/d///pdlvg4dOqiVK1c23X5QOzp06FD1QV8jL1y4oALql19+mWX6yy+/rPr6+j70eVPV/9+///3L3D+Z7fR//fe1c/+yHvVcFfR+zXzPffzxx1nme+2111RFUbJ87ub2s7ikkFOhyrC2bdty9OhRXn75Zf744w8+++wz2rVrR4UKFfjuu+9M8+3cuROA0aNHZ3l8ZseqgjhH1c7Ojnr16pn6UkRERHDhwgXTrwHNmzc3nUpy8eJFwsPDs/SvuP8XoNjYWCIiInj22WdJSEjg/Pnzj1z/5s2bqVWrFjVr1iQiIsL017p1awD279+fZX4/Pz9q166d6+07f/48bm5uuLm5UbNmTT7//HNefvnlLKfnbN26lfT0dN54440sGdzd3alWrVq2DAWxHW3atKFKlSqm2/Xq1cPe3p5//vkn19t2v507d9KkSZMsz42trS0DBgzg2rVrnD17Nsv8ffr0yfIrWeavQA9bf0xMDJDxmiksgwYNyjata9eunDx5kitXrpimbdq0CQsLC9Nh/9OnT3Pp0iUCAgKIjIw07f/4+Hiee+45Dh48KB38xCMFBQWxd+/ebH/16tXLMp+DgwOdOnVi48aNptMr0tLS2LRpE507dzb1i9i5cydmZmYMHjzY9Fi9Xv/QATrunzfT/e1sfHw8ERERPPPMM6iqyu+///5Y25yTvXv3Ehsby/jx47Od4/+g02Ey5bWdyOvnXO3atU3tFWQcxa1Ro0aWtmvnzp00a9Ysy1FKNzc306ll+bFlyxbq16+f7egvPHx/5KR169a4urqyadMm07R79+6xd+9eunbtmq+M1atXp2nTpqxfv9407e7du+zatYvu3bvnKmfTpk2zvf579uyZrzy5ea4Ker/u3LkTvV7PiBEjskx/5513UFWVXbt2ZZle0J/FWpJTocq4xo0bs3XrVlJSUvjjjz/49ttvmT17Nq+99hqnT5+mdu3aBAcHo9PpTKcoZXJ3d8fR0fGB553nR4sWLZg/fz4REREcOXIEvV5Ps2bNgIzDjQsXLiQ5OTlb/wrIOI/1/fff56effjJ9oGSKjo5+5LovXbrEuXPncjzF57/9ICpVqpSnbfP19TWNGnHlyhWmTZtGeHh4lg/KS5cuoaoq1apVe+AyctM5LK/b4e3tnW0eJyenLP0F8iI4OJimTZtmm16rVi3T/fefsvHf9WeeTvSw9dvb2wMZBWRhedDz+/rrrzN69Gg2bdrEe++9h6qqbN68mfbt25syXbp0CSDHU0wg4/WYuZ1CPEiTJk146qmnsk13cnLKdnpIz5492bRpE7/88gstW7bkxx9/JDQ0lB49epjmCQ4OxsPDw3TKZKYaNWo8cP1mZmZUrFgx2/SQkBAmTZrEd999l+09mpt2Nj8yC/m8DrOb13Yir59zuWk7c2oPc9rvuXHlyhW6dOmS78f/l5mZGV26dGHDhg0kJydjYWHB1q1bMRqN+S4sION1OWzYMIKDg/Hx8WHz5s0YjcYsr8uHcXV1pU2bNvle//1y81wV9H4NDg7G09MzW2F7/2dhXjOWFFJYCCBjNKfGjRvTuHFjqlevTp8+fdi8eTOTJ082zZOfqj0vMguLw4cPc+TIEerWrWv6IHzmmWdITk7mxIkTHDp0CDMzM1PRERUVhZ+fH/b29nz44YdUqVIFS0tLTp06xbvvvpurX4jT09OpW7cus2bNeuD9Xl5eWW7n9RxZGxubLI1k8+bNefLJJ3nvvfeYN2+eKYOiKOzateuBo6L890vBg+R1O3IafUX9T+eywpKf9dvb2+Pp6clff/2Vq3Xk9Lq9v2P/fz3o+fX09OTZZ5/l66+/5r333uPXX38lJCSETz/91DRP5mvt888/zzYcYabcPI9C5Fa7du0oX74869ato2XLlqxbtw53d/fH+lJmYWGRbRjptLQ02rZty927d3n33XepWbMmNjY23Lx5k969e2dpZzM78f7Xw95zBS2v7USm3H7OFVXbWRT77M0332Tx4sXs2rWLzp078/XXX1OzZs0cBwbI7TJHjRrF+vXree+991i3bh1PPfXUYxVVmfLapmv9OZcbJSFjbklhIbLJ/KXs9u3bQEYn7/T0dC5dumSqtiGjo25UVBQ+Pj4Fst77O3AfPXqU5s2bm+7z9PTEx8eHw4cPc/jwYRo2bGjqxHXgwAEiIyPZunUrLVu2ND3m6tWr2daRU4NUpUoV/vjjD5577rlCL6Ag4zDnW2+9xeLFixkzZgze3t5UqVIFVVWpVKkS1atXf+jji3I78rIcHx8fLly4kG165uloBfVaeemll1iyZAlHjx7l6aeffui8mUcH/jsCTn6OtHXt2pUhQ4Zw4cIFNm3ahLW1dZZrqWQeyra3ty+wX9uEeBi9Xk9AQACrVq3i008/Zdu2bfTv3z/LFxUfHx/27dtHXFxclsL2Qe/VnJw5c4aLFy+yevXqLKek7N27N9u8Tk5ODzyFIz/vucz31F9//ZXtaMKj5KWdKIzPOR8fH9NRzPs9aL87OTlla6NSUlJMn8OZqlSp8shiKa9tf8uWLfHw8GDTpk20aNGCn376iYkTJz7ycQ9bj7OzMy+++CLr16+ne/fuHD58uMAu6np/m37/4CePc/ZEQe9XHx8ffvzxR2JjY7MctSjoz8LiSPpYlGH79+9/YDWcea5p5i8LHTp0AMjWKGT+Kv7iiy8WSB5PT08qVarEvn37+O2337KNtvDMM8+wbds2Lly4kOU0qMwP0Pu3JSUlhYULF2Zbh42NzQMP2b/xxhvcvHmTpUuXZrsvMTGR+Pj4fG9XTsaNG4fRaDTtx1dffRW9Xs/UqVOzPS+qqhIZGWm6XZTbkXmedm6uvN2hQweOHz/O0aNHTdPi4+NZsmQJvr6+eeqX8jDjxo3DxsaGwMBAQkNDs91/5coV5s6dC2R8yXd1deXgwYNZ5nnQ6+NRunTpgl6vZ+PGjWzevJmXXnopy/j+jRo1okqVKsycOZO4uLhsjw8PD8/zOoV4lB49enDv3j0GDhxIXFxctlF3OnToQGpqKl9++aVpWlpaGvPnz8/1Oh7Uzqqqanqf3a9KlSqcP38+y+v9jz/+yNeQy88//zx2dnbMmDEj21WXH/Vrbl7aicL4nOvQoQO//vorx48fN00LDw/P0vcgU5UqVbK1UUuWLMn2K3yXLl1Mpy3/V+b+yEubDaDT6Xjttdf43//+x9q1a0lNTc3VaVCPWk+PHj04e/YsY8eORa/X5zjCVF5lFpv376/4+HhWr16d72UW9H7t0KEDaWlpLFiwIMv02bNnoygK7du3z3fW4k6OWJRhw4cPJyEhgVdeeYWaNWuSkpLCkSNH2LRpE76+vqaxrevXr0+vXr1YsmSJ6bSj48ePs3r1ajp37oy/v3+BZWrRooVp6Lr7j1hARmGxceNG03z3T3dycqJXr16MGDECRVFYu3btAz90GjVqxKZNmxg9ejSNGzfG1taWjh070qNHD77++msGDRrE/v37ad68OWlpaZw/f56vv/6aPXv2PPCc58dRu3ZtOnTowLJly/jggw+oUqUKH3/8MRMmTODatWt07twZOzs7rl69yrfffsuAAQNMY4oX5XY0atQIyBiu980338RgMNCxY8cHXjBr/PjxbNy4kfbt2zNixAicnZ1ZvXo1V69eZcuWLQV2le4qVaqwYcMGunbtSq1atbJcUffIkSNs3rw5y9jvgYGBfPLJJwQGBvLUU09x8OBBLl68mOf1litXDn9/f2bNmkVsbGy2D1+dTseyZcto3749derUoU+fPlSoUIGbN2+yf/9+7O3t+d///ve4my9EFg0bNuSJJ54wDd7w5JNPZrm/Y8eONG/enPHjx3Pt2jVq167N1q1b89QvombNmlSpUoUxY8Zw8+ZN7O3t2bJlywPPAe/bty+zZs2iXbt29OvXj7CwMBYtWkSdOnWy9YF7FHt7e2bPnk1gYCCNGzc2XV/mjz/+ICEh4aFfJvPSThTG59y4ceNYu3YtL7zwAm+//bZpuFkfHx/+/PPPLPMGBgYyaNAgunTpQtu2bfnjjz/Ys2ePaYjvTGPHjuWbb77h9ddfp2/fvjRq1Ii7d+/y3XffsWjRIurXr0+VKlVwdHRk0aJF2NnZYWNjQ9OmTR/aN7Br167Mnz+fyZMnU7du3SxHbXKS+dkwYsQI2rVrl614ePHFF3FxcTH1Rfvv9bHy6/nnn8fb25t+/fqZipYVK1bg5uZGSEhIvpZZ0Pu1Y8eO+Pv7M3HiRK5du0b9+vX54Ycf2L59OyNHjszSUbvUKcohqETxsmvXLrVv375qzZo1VVtbW9Xc3FytWrWqOnz4cDU0NDTLvEajUZ06dapaqVIl1WAwqF5eXuqECROyDOWqqvkfbjbT4sWLVUCtUKFCtvtOnTplGnbuv/kOHz6sNmvWTLWyslI9PT1NQ+cC6v79+03zxcXFqQEBAaqjo6MKZBkeLiUlRf3000/VOnXqqBYWFqqTk5PaqFEjderUqWp0dLRpPkAdOnRorrZHVTP2yf1DRN7vwIED2YYZ3LJli9qiRQvVxsZGtbGxUWvWrKkOHTpUvXDhQpFsx3+HN1RVVf3oo4/UChUqqDqdLstwfg+a98qVK+prr72mOjo6qpaWlmqTJk3U77//Pss8mcPNbt68Ocv0vL5eLl68qPbv31/19fVVzc3NVTs7O7V58+bq/Pnzs7w2ExIS1H79+qkODg6qnZ2d+sYbb6hhYWE5DjcbHh6e4zqXLl2qAqqdnV224S8z/f777+qrr76quri4qBYWFqqPj4/6xhtvqPv27cvVdomyKXO4zBMnTjzw/oe1JZ999pkKqNOnT3/g/ZGRkWqPHj1Ue3t71cHBQe3Ro4f6+++/P3C4WRsbmwcu4+zZs2qbNm1UW1tb1dXVVe3fv79pWMz/vmfXrVunVq5cWTU3N1cbNGig7tmzJ1/DzWb67rvv1GeeeUa1srJS7e3t1SZNmqgbN258YM7/ym07kdvPOR8fnyxDhWd60DC7f/75p+rn56daWlqqFSpUUD/66CN1+fLl2bYxLS1Nfffdd1VXV1fV2tpabdeunXr58uUHtrGRkZHqsGHD1AoVKqjm5uZqxYoV1V69eqkRERGmebZv367Wrl1bNTMzy/L8POg5UNWMIVW9vLweOESqqj64bU5NTVWHDx+uurm5qYqiPHAI2CFDhqiAumHDhmz35SSn/Xu/kydPqk2bNlXNzc1Vb29vddasWTkON5vb56qg92tsbKw6atQo1dPTUzUYDGq1atXUzz//PNtwu3n5LC4JFFUtgT1DhBBCCGEyd+5cRo0axbVr1x44wowQWhg1ahTLly/nzp07+bq4nSh5pLAQQgghSjBVValfvz4uLi65ut6NEEUhKSkJLy8vXnrpJVauXKl1HFFEykQfi6tXr9K3b19CQ0PR6/X8+uuvDzw/XAghhCgp4uPj+e6779i/fz9nzpxh+/btWkcSgrCwMH788Ue++eYbIiMjefvtt7WOJIpQmSgsevfuzccff8yzzz7L3bt3sbCw0DqSEEII8VjCw8MJCAjA0dGR9957j5dfflnrSEJw9uxZunfvTrly5Zg3b16O1/QRpVOpPxXq77//5u233+bHH3/UOooQQgghhBClVrG/jsXBgwfp2LEjnp6eKIrCtm3bss0TFBSEr68vlpaWNG3aNMuY0ZcuXTINxfnkk08yffr0IkwvhBBCCCFE2VDsC4v4+Hjq169PUFDQA+/PHMt/8uTJnDp1ivr169OuXTvCwsIASE1N5ZdffmHhwoUcPXqUvXv3PvBKoUIIIYQQQoj8K1GnQimKwrfffkvnzp1N05o2bUrjxo1NVzdMT0/Hy8uL4cOHM378eI4ePcqUKVPYs2cPAJ9//jmQcTGUB0lOTiY5Odl0Oz09nbt37+Li4pKny7kLIURZoaoqsbGxeHp6FthFEAuDtO9CCJF3eWnjS3Tn7ZSUFE6ePMmECRNM03Q6HW3atOHo0aMANG7cmLCwMO7du4eDgwMHDx5k4MCBOS5zxowZTJ06tdCzCyFEaXP9+nUqVqyodYwcSfsuhBD5l5s2vkQXFhEREaSlpVG+fPks08uXL8/58+cBMDMzY/r06bRs2RJVVXn++ed56aWXclzmhAkTGD16tOl2dHQ03t7eXLx4EWdnZ9N0s+VtUO5dIfWNjajezQp4y4qXlGvB3HjzTVSdjgrbt2Hp5qZ1JM0YjUb279+Pv78/BoPBNH3jhY0s/HMhZjoz5vnNo65rXQ1TFr6c9kNZI/shw927d6levTp2dnZaR3moh7XvNuHh3Bk1mrS7dzGrUAGPuXMwFOMi6b9K02tRtqV4km0pnopiW2JjY6lUqVKu2vgSXVjkVvv27Wnfvn2u5rWwsHjgcLTOzs64uLj8/wRrM0hQwMkB7p9eGrm4kFivHsl//435r8dw6d1L60SaMRqNWFtb4+LikuUNPPTpoVxNucoPwT/w0R8fsanjJlytXDVMWrhy2g9ljeyHrIr76UQPbd+rVcN189eE9AvEeP06MUOH4b10CZa1ammQNO9K02tRtqV4km0pnopiWzKXm5s2vvieDJsLrq6u6PV6QkNDs0wPDQ3F3d39sZYdFBRE7dq1ady48WMtp7Sw65hxlCf2++81TlI8KYrCh80/pLJDZcISw3h7/9skpyU/+oFCiCKXU/tu7u2N74b1WNSsSVpEBME9ehJ/7HgOSxFCCPFfJbqwMDc3p1GjRuzbt880LT09nX379vH0008/1rKHDh3K2bNnOXHixOPGLBVsX3gBVacj+a+/SP7nqtZxiiUbgw3zWs/DztyOP8P/5MOjH1KCxkYQosx4WPtu5uaGz9o1WD/1FOlxcVzv358YGUlQCCFypdgXFnFxcZw+fZrTp08DcPXqVU6fPk1ISAgAo0ePZunSpaxevZpz584xePBg4uPj6dOnj4apSx8zFxfiq1cDIPq77RqnKb587H2Y6TcTvaLnuyvfsebsGq0jCSHySG9nh9fyZdi2eQ41JYWbb4/k3ubNWscSQohir9j3sfjtt9/w9/c33c7seNerVy9WrVpF165dCQ8PZ9KkSdy5c4cGDRqwe/fubB268yooKIigoCDS0tIeazmlSWzDJ7E9f4GY7/6H24gRKMV4WEktPeP5DGMbj+WT458w6+QsKjtU5tmKz2odSwjxr9y07zoLCyrOmcOdqVOJ2vwNdz6YRFpkJC4DBxb7viRC3C8tLQ2j0fjYyzEajZiZmZGUlFTivxvJtmRlMBjQ6/UFkqfYFxatWrV65Okkw4YNY9iwYQW63qFDhzJ06FBiYmJwcHAo0GWXVHF1aqPY2GC8dYvEU6ewfuoprSMVWwE1A7h07xJbLm1h3MFxrH9xPZUdKmsdSwhB7tt3xcwM9w8/RO/iQuSixYTPmUtq5F3KTxgvP6yIYk9VVe7cuUNUVFSBLc/d3Z3r16+X+OJatiU7R0dH3N3dH3t/FPvCQhQfqsGAbdu2xG7bRtS2bVJYPISiKExsOpGr0Vc5FXaKET+NYH2H9ThYSJEqREmiKArlRo7EzNmF0OnTubd2LWl37+I5YzqKubnW8YTIUWZRUa5cOaytrR/7C2N6ejpxcXHY2toW6wth5oZsy/9TVZWEhATCwsIA8PDweKw8UljkQE6FejD7Ti8Tu20bsTt3kT5hAjobG60jFVsGvYFZrWbRbUc3gmOCGfvzWBa2ybjWhRBCO/lp35179kDv5MStCROI2bGDtKgoKs6bK22gKJbS0tJMRYVLAQ2Jn56eTkpKCpaWlqXiy7hsy/+zsrICICwsjHLlyj3WaVEle28WIhkV6sEsGzXC4ONNekICMXt+0DpOsedi5cL81vOxMrPi6O2jzPxtptaRhCjz8tu+O3R8Ca8vF6JYWRF/+DDBffqSeu9eIaUUIv8y+1RYW1trnESUFJmvlcftjyOFhcgTRVFwfLULAFFbt2icpmSo4VyD6S2mA7D+3Ho2nNugcSIhRH7ZPvssPqtWondwIOnPPwkO6I7x1i2tYwnxQCW9/4AoOgX1WpHCQuSZQ+dOoNOR+NtJkq/KNS1yo41PG95+8m0APj3xKT9f/1njREKI/LKqXx+fDesx8/Ag5epVrnULIPnyZa1jCSGE5qSwyIFceTtnhvLlsXm2BQDRW7/VOE3J0e+JfnSp1oV0NZ2xB8dyNvKs1pGEKJMKon23qFIF3w3rMa9ShdTQUK51f4uE338vwJRCCFHySGGRA+lj8XCOXTJOh4retg01NVXjNCWDoihMbDaRpz2eJjE1kWH7hnEn/o7WsYQocwqqfTd4eOCzbi1W9euTHh1NSJ++xB08WEAphSh7Fi1ahJ2dHan3fa+Ii4vDYDDQqlWrLPMeOHAARVG4cuVKvtd37do1FEUxXYRZPD4pLES+2LVqhd7ZmdTwcOIOHdI6Tolh0Bn4otUXVHWsSnhiOEP2DSEuJU7rWEKIfDJzcsJ75QpsWj6LmpTE9SFDif7uO61jCVEi+fv7ExcXx2+//Waa9ssvv+Du7s6xY8dISkoyTd+/fz/e3t5UqVJFi6giB1JYiHxRzM1xePllAKK3SCfuvLAztyPouSBcrVy5dO8SYw6OITVdjvoIUVLprK3xCgrC/uWOkJrKrXHvErlqldaxhChxatSogYeHBwcOHDBNO3DgAJ06daJSpUr8+uuvWab7+/uTnJzMiBEjKFeuHJaWlrRo0SLL0ch79+7RvXt33NzcsLKyolq1aqxcuRLAVJQ0bNgQRVGyHBVZtmwZtWrVwtLSkpo1a7Jw4ULTfZlHOrZu3Yq/vz/W1tbUr1+fo0ePFtKeKTmksMiB9LF4NIdXXwEgdv8BUiMjNU5TsnjaerKg9QKszKw4fPMw049Nf+QV5oUQBaMw2nfFYMDzk09w7tULgLBPPiXsiy/kfS2KDVVVSUhJfay/xJS0fD0uL+8Df39/9u/fb7q9f/9+WrVqhZ+fn2l6YmIix44dw9/fn3HjxrFlyxZWr17NqVOnqFq1Ku3atePu3bsAfPDBB5w9e5Zdu3Zx7tw5vvzyS1xdXQFMhcqPP/7I7du32bp1KwDr169n0qRJTJs2jXPnzjF9+nQ++OADVq9enSXrxIkTGTNmDKdPn6Z69ep069Yty2lcZZFcqSsHQ4cOZejQocTExODgIFdLfhDL6tWxrFePpD//JHr7d7j07aN1pBKljmsdPnn2E0buH8nmi5upaFeRvk/01TqWEKVeYbXvik5HufHvond1IfyLWUQuXUbq3bt4TJ2KYiYft0JbicY0ak/ao8m6z37YDmvz3L0H/P39GTlyJKmpqSQmJvL777/j5+eH0Whk0aJFABw9epTk5GRatWpF//79WbVqFe3btwdg6dKl7N27l+XLlzN27FhCQkJo2LAhTz31FAC+vr6kp6cTExODm5sbAC4uLri7u5syTJ48mS+++IJXX30VgEqVKnH27FkWL15Mr39/PAAYM2YML774IgBTp06lTp06XL58mZo1az7mHiu55IiFeCyZnbijNm+WX+byobV3a8Y2HgvA7JOz+d+V/2mcSAjxOBRFwbV/fzymfQw6HdFbtnJjxNuk33duuBAiZ61atSI+Pp4TJ07wyy+/UL16ddzc3PDz8zP1szhw4ACVK1cmOjoao9FI8+bNTY83GAw0adKEc+fOATB48GC++uorGjRowLhx4zhy5MhD1x8fH8+VK1fo168ftra2pr+PP/44W0fxevXqmf738PAAMq5eXZbJTyjisdi/+CJhn35KytWrJBw/gU3TJlpHKnF61O7Bnfg7rDm7hkmHJ+Fs6UzzCs0f/UAhRLHl2KULekdHbo5+h7iffiIkMBCvhQvR29trHU2UUVYGPWc/bJfvx6enpxMbE4udvR06Xd5+l7Yy6HM9b9WqValYsSL79+/n3r17+Pn5AeDp6YmXlxdHjhxh//79tG7dOlfLa9++PcHBwezcuZO9e/fy3HPPMWTIED744IMHzh8XlzGgytKlS2natGmW+/T6rNthMBhM/2deYC49PT13G1pKyREL8Vj0tjYZHRaBe19t1DhNyfXOU+/QoVIHUtVURh0YxV8Rf2kdSQjxmOyeew7vZUvR2dmR+NtJgt/qgbGM/5optKMoCtbmZo/1Z2Wuz9fj8npVZ39/fw4cOMCBAweydKhu2bIlu3bt4vjx4/j7+1OlShXMzc05fPiwaR6j0ciJEyeoXbu2aZqbmxu9evVi3bp1zJkzh6VLlwJgbm4OQFpammne8uXL4+npyT///EPVqlWz/FWqVCk/u75MkcIiB9J5O/ec3nwTgNi9P5IaEaFxmpJJp+j4uPnHNPNoRmJqIkP3DSU4JljrWEKUSkXZvls3bozPurXo3VxJvniR4G4BpFy7VujrFaIk8/f359ChQ5w+fdp0xALAz8+PxYsXk5KSgr+/PzY2NgwePJixY8eye/duzp49S//+/UlISKBfv34ATJo0ie3bt3P58mX+/vtvvv/+e2rVqgVAuXLlsLKyYvfu3YSGhhIdHQ1k9JeYMWMG8+bN4+LFi5w5c4aVK1cya9asot8ZJYwUFjmQC+TlnmXNmlg1aACpqURt2ap1nBLLoDcwx38OtZxrcTfpLgP3DiQiUQo1IQpaUbfvljVq4LtxIwYfb4w3b3ItoDuJf/1dJOsWoiTy9/cnMTGRqlWrUr58edN0Pz8/YmNjTcPSAnzyySd06dKFHj168OSTT3L58mX27NmDk5MTkHFUYsKECdSrV4+WLVui1+vZsGEDAGZmZsybN4/Fixfj6elJp06dAAgMDGTZsmWsXLmSunXr4ufnx6pVq+SIRS5IYSEKhOObXQGI+vpr1PsOKYq8sTHYsLDNQiraVuRm3E2G/CgX0BOiNDCvWBHf9euxqF2LtLt3CenZk/j7xuQXQvw/X19fVFU1dcDO5OPjg6qqnD9/3jTN0tKSefPmER4eTlJSEocOHcpyNPL999/n7NmzJCQkEBkZybZt27IUCIGBgYSEhJCWlpbl+hkBAQH8/vvvJCcnc/fuXX7++WdeeeWVLPkaNGhgmt/R0RFVVbNdIbyskcJCFAj7F15A5+CA8eZN4u8711HknauVK4vbLsbZ0plzd88x8sBIUtJStI4lhHhMZq6u+KxZg3WzZqQnJHC9/wBidmsz/KcQQhQGKSxEgdBZWuLYuTMA9zZ+pW2YUsDb3puFbRZibWbNsdvHmHhoImnpciRIiJJOb2uL15LF2LVrh2o0cnPUKO5tlIEvhBClgxQWosA4ds04HSru558x3rqlcZqSr45LHWb7z8ZMZ8bua7v5+NjHcq0QIUoBnbk5FWZ9kXEKqapyZ+qHhC8Ikve3EKLEk8JCFBiLypWwbtoU0tOJ+uYbreOUCs94PsOMZ2egU3R8c/EbZp+cLV8+hCgFFL0e98mTcR06FICIBQsI/egj6aMmhCjRpLDIgQw3mz9O/3bivrd5M2qK9AsoCC/4vsDkpycDsPLvlSw9s1TjREKUbMWlfVcUBbfhwyj/wfugKNzbsJGbY8aQLm2nEKKEksIiBzLcbP7YPfccejdX0sIjiNm7V+s4pcar1V5lzFNjAJj/+3zWn1uvcSIhSq7i1r47d+9OhVlfgMFA7K7dXB84kLS4eK1jCSFEnklhIQqUYm5uumDevTVrNU5TuvSq04tB9QcB8MnxT9h+ebvGiYQQBcW+fXu8Fy9CsbYm4eivhPTqRerdu1rHEkKIPJHCQhQ4p65dwWAg8Y8/SPzzT63jlCpD6g/hrVpvATDpyCR+DP5R40RCiIJi88wz+Kxejd7JiaS//864SveNm1rHEkKIXJPCQhQ4M1dXHDq0B+DuunUapyldFEVhbOOxdK7amXQ1nbEHx3Lk5hGtYwkhCohV3Sfw2bAeg6cnKcHBBHfrRtKFi1rHEkKIXJHCQhQKp7cyflWP2bWb1PBwjdOULjpFx5Snp9DWpy2p6amMPDCSU6GntI4lhCggFpUq4bNxAxbVqpEaHk5wjx4knDypdSwhRAnn6+vLnDlzCnUdUliIQmFVty5WDRqA0ci9TV9rHafU0ev0fPrspzSv0JzE1EQG/ziYP8L/0DqWEKKAGMqXx2fdWqyefJL0mBhC+vYj9qf9WscSolAtWrQIOzs7UlNTTdPi4uIwGAy0atUqy7wHDhxAURSuXLnyWOu8du0aiqJw+vTpx1pObv3xxx+8/PLLlCtXDktLS3x9fenatSthYWFFsv7CJoWFKDTOPXsAcO+rr2To2UJg0BuY3Wo2TdybkJCawKC9g/gr4i+tYwkhCojewQHv5cuwbdUKNTmZG8OHE7X1W61jCVFo/P39iYuL47fffjNN++WXX3B3d+fYsWMkJSWZpu/fvx9vb2+qVKmiRdR8CQ8P57nnnsPZ2Zk9e/Zw7tw5Vq5ciaenJ/HxpWMkOCksRKGxa9sWs3LlSIuIIGb3bq3jlEpWZlbMbz2fRuUbEWeMY8DeAZyNPKt1LCFEAdFZWVFx/jwcOneGtDRuv/cekcuXax1LiEJRo0YNPDw8OHDggGnagQMH6NSpE5UqVeLXX3/NMt3f3x+A5ORkRowYYToK0KJFiyzDSd+7d4/u3bvj5uaGlZUVNWrUYP36jGHbK1WqBEDDhg1RFCXLkZFly5ZRq1YtLC0tqVmzJgsXLjTdl3mkY+vWrfj7+2NtbU39+vU5evRojtt3+PBhoqOjWbZsGQ0bNqRSpUr4+/sze/ZsU460tDT69etHpUqVTFnnzp2bZTm9e/emc+fOzJw5kwoVKlC5cmWGDRuG0Wg0zRMWFkbHjh2xsrKiUqVKpu0tbFJYiEKjGAw4BXQD4O6atXLF6EJibbAm6LkgGrg1IDYllgF7B3Dh7gWtYwkhCohiMOAxYzrO/foCEPb5TEI/+xw1PV3jZKJEUVVIiX+8P2NC/h6Xh89/f39/9u///9P+9u/fT6tWrfDz8zNNT0xM5NixY6bCYty4cWzZsoXVq1dz6tQpqlatSrt27bj775DNH3zwAWfPnmXXrl2cO3eOoKAgnJ2dATh+/DgAP/74I7dv32br1q0ArF+/nkmTJjFt2jTOnTvH9OnT+eCDD1i9enWWvBMnTmTMmDGcPn2a6tWr061btyynct3P3d2d1NRUvv322xy/E6Wnp1OxYkU2b97M2bNnmTRpEu+99x5ff531tPL9+/dz5coV9u3bx8KFC1m9ejWrVq0y3d+7d2+uX7/O/v37+eabb1i4cGGRnG5lVuhrKKGCgoIICgoiLS1N6yglmuMbbxCx8EuS/vqLxN9PY/1kQ60jlUo2Bhu+bPMlA/cO5M+IP+n/Q39WtFtBVaeqWkcTotgpie27oiiUHzsWM2cXwj7/nLsrVpAWGYnHxx+hGAxaxxMlgTEBpnvm++E6wDG/D37vFpjb5GpWf39/Ro4cSWpqKomJifz+++/4+flhNBpZtGgRAEePHiU5ORl/f3/i4+P58ssvWbVqFe3bZ4xIuXTpUvbu3cvy5csZO3YsISEhNGzYkKeeegoAb29vYmJiAHBzcwPAxcUFd3d3U47JkyfzxRdf8OqrrwIZRzbOnj3L4sWL6dWrl2m+MWPG8OKLLwIwdepU6tSpw+XLl6lZs2a2bWvWrBnvvfceAQEBDBo0iCZNmtC6dWt69uxJ+fLlATAYDEydOtX0mEqVKnH06FG+/vpr3njjDdN0JycnFixYgKIoeHp60qFDB/bt20f//v25ePEiu3bt4vjx4zRu3BiA5cuXU6tWrVw9B49DjljkoLhdmbWkMnN2xv7ljgDcXblS4zSlm625LV+2/ZI6LnW4l3yPwB8C+Sf6H61jCVHslOT23aVfXzxmzAC9nujt27kxbDjpiYlaxxKiwLRq1Yr4+HhOnDjBL7/8QvXq1XFzc8PPz8/Uz+LAgQNUrlwZb29vrly5gtFopHnz5qZlGAwGmjRpwrlz5wAYPHgwX331FQ0aNGDcuHEcOfLwYdrj4+O5cuUK/fr1w9bW1vT38ccfZ+ssXq9ePdP/Hh4eAA89MjBt2jTu3LnDokWLqFOnDosWLaJmzZqcOXPGNE9QUBCNGjXCzc0NW1tblixZQkhISJbl1KlTB71en2Xdmes9d+4cZmZmNGrUyHR/zZo1cXR0fOh2FwQ5YiEKnUvv3kR/s4XYH38kJTgYcx8frSOVWvbm9ixuu5jAHwI5f/c8gXsCWfnCSnzsZZ8LUVo4vtIZvaMDN0eNJu7nnwnp2w/3+fO0jiWKO4N1xpGDfEpPTycmNhZ7Ozt0ujz+Lm2wzvWsVatWpWLFiuzfv5979+7h5+cHgKenJ15eXhw5coT9+/fTunXrXC+zffv2BAcHs3PnTvbu3Uvbtm0JDAzM1nchU1xcHJBx5KNp06ZZ7rv/yzxkFDGZFEUBMvbVw7i4uPD666/z+uuvM336dBo2bMjMmTNZvXo1X331FWPGjOGLL77g6aefxs7Ojs8//5xjx47luN7MdT9qvUVBjliIQmdRtSq2fn6gqtz9z7mJouA5WDiwtO1SqjlVIzwxnL57+hISE/LoBwohSgw7f3+8V6xAZ29P4u+/c7N3b8yiorWOJYozRck4Helx/gzW+Xvcv1+4c8vf358DBw5w4MCBLJ2pW7ZsaTrFJ7N/RZUqVTA3N+fw4cOm+YxGIydOnKB27dqmaW5ubvTq1Yt169Yxa9YsU18Jc3NzgCynRpYvXx5PT0/++ecfqlatmuUvs5N1QTE3N6dKlSqmUaEOHz7MM888w5AhQ2jYsCFVq1bN85C6NWvWJDU1lZP3Xf/mwoULREVFFWT0B5LCQhQJ574ZnQ6jtn5L6r17Gqcp/RwtHVnadilVHKoQlhBGn919uBp9VetYQogCZP1kQ3zWrcWsXDlSLl/B68svSbkq73NR8vn7+3Po0CFOnz5tOmIB4Ofnx+LFi0lJSTEVFjY2NgwePJixY8eye/duzp49S//+/UlISKBfv34ATJo0ie3bt3P58mX+/vtvduzYQfXq1QEoV64cVlZW7N69m9DQUKKjMwr0qVOnMmPGDObNm8fFixc5c+YMK1euZNasWfneru+//5633nqL77//nosXL3LhwgVmzpzJzp076dSpEwDVqlXjt99+Y8+ePVy8eJEPPvggz6dt1qhRgxdeeIGBAwdy7NgxTp48SWBgIFZWVvnOnltSWIgiYd2kMZZ16qAmJXFvwwat45QJLlYuLGu3jKqOVQlLDKPvnr5ciXq8CwkJIYoXy+rV8d24AYOvD4aoKG706k3ifedqC1ES+fv7k5iYSNWqVU2dmiGjsIiNjTUNS5vpk08+oUuXLvTo0YMnn3ySy5cvs2fPHpycnICMowITJkygXr16tGzZEr1ez/J/h202MzNj3rx5LF68GE9PT9MX/MDAQJYtW8bKlSupW7cufn5+rFq16rGOWNSuXRtra2veeecdGjRoQLNmzfj6669ZtmwZPXpkXPtr4MCBvPrqq3Tt2pWmTZsSGRnJkCFD8ryuzOtj+Pn58eqrrzJgwADKlSuX7+y5pagyBuhDxcTE4ODgQEREBC4uLv9/x4LGEHEReu8A3xbaBSwiRqORnTt30qFDh2zn9eVW9I4d3HpnDHpnZ6r+tA+dpWUBpyx8BbEfitrdpLv0/6E/F+9dxNnSmaXPL6W6U/XHWmZJ3A+FQfZDhsjISFxdXYmOjsbe3l7rOLmWY/teAiWFhnKu+1tY3riBYm1NxfnzsL2vM2tJUpreV1ptS1JSElevXqVSpUpYFtBnbXp6OjExMdjb2+e9j0UxI9uS3cNeM5ltZW7a+JK9N0WJYt+uHWaeHqTdvUv09u+0jlNmOFs6s/z55dRyrsXdpLv029OP83fPax1LCFGA9M7OXB/QH6tmzVATErg+aDDRO3ZoHUsIUcZIYSGKjGJmhsu/Yz/fXblSLu5UhBwtHVn6/FKecHmCqOQo+u3px9+Rf2sdSwhRgFQLCzyDFmDfoT0YjdwaM5a7a9dpHUsIUYZIYSGKlEOX19DZ2ZFy7RpxBw5oHadMcbBwYMnzS6jnVo+YlBj67+nPmXA5F1uI0kQxN8dz5kycuncHVSV02jTC583L8Sq/QghRkKSwEEVKb2uD05tdAYhcslQ+7IqYnbkdi9ss5slyTxJrjGXA3gGcDjutdSwhRAFSdDrKvz8R1xHDAYhY+CV3Jk9BLUFXGhdClExlorDw9fWlXr16NGjQwDQ8mdCOU48eKObmJJ4+TUIJvPJtSWdrbsuXbb6ksXtj4oxxDNw7kJOhJx/9QCFEiaEoCm5DhuA+ZQooClFff83NkaNIT07WOpoQohQrE4UFwJEjRzh9+jT79+/XOkqZZyhXDocurwIQuWixxmnKJmuDNUHPBdHUoykJqQkM/nEwx24fe/QDhRAlitObXakwZw6KwUDs3r1c7z+AtH+vKiyEEAWtzBQWonhx6RcIej3xR47ImOsasTKzYkHrBTT3bE5iaiJDfhzCgesHtI4lhChg9u2ex2vpUnQ2NiQcP05wz56kRkRoHUsIUQoV+8Li4MGDdOzYEU9PTxRFYdu2bdnmCQoKwtfXF0tLS5o2bcrx48ez3K8oCn5+fjRu3Jj169cXUXLxMOYVK+Dw0ksARCyWoxZasTSzZF7rebT2ak1Kegqj9o9i19VdWscSQhQwm2ZN8V6zGr2LC8lnz3EtoDsp169rHUsIUcoU+8IiPj6e+vXrExQU9MD7N23axOjRo5k8eTKnTp2ifv36tGvXjrCwMNM8hw4d4uTJk3z33XdMnz6dP//8s6jii4dwGdAfFIW4H/eRfOmS1nHKLHO9OV+0+oKXKr9EqprKuwff5ZuL32gdSwhRwKzq1MF3w3oMFStiDAnhWkAASeflmjZCiIJjpnWAR2nfvj3t27fP8f5Zs2bRv39/+vTpA8CiRYvYsWMHK1asYPz48QBUqFABAA8PDzp06MCpU6eoV6/eA5eXnJxM8n2d22JiYoCMq2cajUbTdDNVRQFSU1NR75teWmVuu7EAt1Xn7Y1Nm+eI3/sj4YuXUH7G9AJbdmEpjP1QXExpOgUrvRWbL21m6tGpxCbF8lattx44b2neD3kh+yFDSdn+3LbvJVFuX4uKpycV1qzm1qDBpFy8SPBbPfCYNw+rxk8VRcxcKU3vK622xWg0oqoq6enppBfQNaMyR3HMXG5JVty35cCBAzz33HNERkbi6Oj40HkLalvS09NRVRWj0Yher89yX15ev8W+sHiYlJQUTp48yYQJE0zTdDodbdq04ejRo0DGEY/09HTs7OyIi4vjp59+4o033shxmTNmzGDq1KnZpu/fvx9ra2vT7dZxcdgBv/56jMi/owtuo4q5vXv3FujyLGrVwmfvj8Ts3MmftWthdHEp0OUXloLeD8VFPbUedyzu8EvyL8z6fRanz53G38IfRVEeOH9p3Q95Vdb3Q0JCgtYRciW37XtJltvXoi6gG56r12B99SrXBwzgdkA34uvUKeR0eVOa3ldFvS1mZma4u7sTFxdHSkpKgS47Nja2QJd3vxUrVjB58mSuXr2KmVnGV9S4uDgqVapE06ZN+f77703zHjp0iI4dO3Lq1CkqVaqUr/XFxsYSEhJC/fr1OXjwIHXr1i2Q7XiUP//8k1mzZnHkyBFiYmKoUKECLVq0YPjw4VStWtXUpsbGxqLT5e7kosd9XlJSUkhMTOTgwYOkpqZmuS8vbXyJLiwiIiJIS0ujfPnyWaaXL1+e8/8e3g0NDeWVV14BIC0tjf79+9O4ceMclzlhwgRGjx5tuh0TE4OXlxf+/v643Pel1yzkI0iGZs2aovo0L8jNKpaMRiN79+6lbdu2GAyGAl32rZOnSDh8mPpXr1GuR48CXXZBK8z9UFx0UDuw4uwKgv4I4qekn/D09WRUw1FZiouysB9yQ/ZDhsjISK0j5Epu2/eSKD+vxfQXXyR03LvE799PhXXrcZv0AQ5duhRy0kcrTe8rrbYlKSmJ69evY2tri6WlZYEsU1VVYmNjsbOzy/HHpsfVvn173nnnHS5evEizZs0AOHz4MO7u7pw8eRJzc3PT9hw/fhxvb2/q16+f5/Xcvy22trYA2NjYYG9vX3Abk4Pvv/+e119/neeff55169ZRpUoVwsLC+Oabb/jss8/46quvTD902NnZPTJTQT0vSUlJWFlZ0bJly2yvmcyju7lRoguL3KhcuTJ//PFHrue3sLDAwsKCoKAggoKCSPv3gkIGgyFro/Dvk2dmZgYlvOHLi2z7oQC4DRlM8OHDxG7bRrlhQzH8p1AsjgpjPxQngxoMws7Cjk+Of8K68+tITEvkg2YfoNdlPTxa2vdDbpX1/VBStj3X7XsJlqdtMRjwmj+P25MnE71lK+FTpkJ0DC4D+hfaF8e8KLPPSwFIS0tDURR0Ol2uf/F+lMzTbDKXWxhq1aqFh4cHBw8e5JlnngEyBvHp1KkTP/30E8ePH6dVq1YA/Pzzz/j7+6PT6UhOTmbs2LF89dVXxMTE8NRTTzF79mzTD8n37t1j2LBh/PDDD8TFxVGxYkVGjhzJ4MGDqVKlCgCNGjUCwM/PjwMHDgCwbNkyvvjiC65evYqvry8jRoxgyJAhAFy7do1KlSqxZcsW5s+fz7Fjx6hWrRqLFi3i6aeffuD2JSQk0K9fPzp06MC3335rml6lShWefvppoqKisjxnmf9HRkYybNgwDh48yL1796hSpQrvvfce3bp1Iz09na+++oqJEydy69YtLCwsTMvt3LkzdnZ2rF279pH7XqfToSjKA1+reXntFvvO2w/j6uqKXq8nNDQ0y/TQ0FDc3d0fa9lDhw7l7NmznJALuBU660aNsHqqEarRSOTSZVrHEf/qXqs7HzX/CJ2iY8ulLUz4ZQLG9JJ/zrMQ0r7/P8XMDI+PP8ZlwAAAwmfPJnTGDNRieN65eDyqqpJgTHisv8TUxHw9LrMfQG74+/tnuebY/v37adWqFX5+fqbpiYmJHDt2zHTR43HjxrFlyxZWr17NqVOnqFq1Ku3atePu3bsAfPDBB5w9e5Zdu3Zx7tw5goKCcHZ2BjCNJPrjjz9y+/Zttm7dCsD69euZNGkS06ZN49y5c0yfPp0PPviA1atXZ8k7ceJExowZw+nTp6levTrdunXLdipRpj179hAREcG4ceMeeH9O/SmSkpJo1KgRO3bs4K+//mLAgAH06NHDlL1Tp06kpaXx3XffmR4TFhbGjh076Nu3b847uxCU6CMW5ubmNGrUiH379tG5c2cgo6Let28fw4YN0zacyBO3oUMJ6dOXqK+/xqV/YIk4alEWdK7aGWsza9795V12XdtFfGo8M/1mYlaymw4hxH0URaHc6FGYuTgTOuMT7q1ZS9rde3hOn4Zibq51PFFAElMTabqhqSbrPhZwDGtD7vox+fv7M3LkSFJTU0lMTOT333/Hz88Po9HIokWLADh69CjJycn4+/sTHx/Pl19+yapVq0yD/SxdupS9e/eyfPlyxo4dS0hICA0bNuSppzIGKfD29jad3uPm5gaAi4tLlh+lJ0+ezBdffMGrr2Zc0LdSpUqcPXuWxYsX06tXL9N8Y8aM4cUXXwRg6tSp1KlTh8uXL1OzZs1s23bp3xEwH3Tfw1SoUIExY8aYbg8fPpw9e/bw9ddf89RTT2FlZUW3bt1YuXIlr7/+OgDr1q3D29vbdISnqBT7IxZxcXGcPn2a06dPA3D16lVOnz5NSEgIAKNHj2bp0qWsXr2ac+fOMXjwYOLj402jROVXUFAQtWvXfmh/DFFwrJs1yzhqkZJC5OIlWscR93ne93nm+c/DUm/JwRsHGbh3IDEpuT/fUojiRtr3B3Pu1QvPzz8DMzNivv+e60OGkl5COuaL0qNVq1bEx8dz4sQJfvnlF6pXr46bmxt+fn4cO3aMpKQkDhw4QOXKlfH29ubKlSsYjUaaN////q4Gg4EmTZpw7tw5AAYPHsxXX31FgwYNGDduHEeOHHlohvj4eK5cuUK/fv2wtbU1/X388cdcuXIly7z3jzLq4eEBkOWSB/fLy5Gb+6WlpfHRRx9Rt25dnJ2dsbW1Zc+ePabvwgCBgYH88MMP3Lx5E4BVq1bRu3fvIj+tsdj/7Pjbb7+ZDnUBpo53vXr1YtWqVXTt2pXw8HAmTZrEnTt3aNCgAbt3787WoTuvhg4dytChQ4mJicHBweGxliUeTVEU3IYNJ6R3b6I2b844avHvG1Ro79mKz7Lk+SUM3TeU38N+p9/efnRRte/kKUR+SPueM4eOHdE7OnJjxNvEHzpEcJ8+eC1ahJmTk9bRxGOyMrPiWMCxfD8+PT3d1Ek4r30srMyscj1v1apVqVixIvv37+fevXv4+fkB4OnpiZeXF0eOHGH//v20bt0618ts3749wcHB7Ny509SZPjAwkLlz5z5w/ri4OCDjyEfTplmP8vx3KNb7+x9kfonPadjX6tWrA3D+/Pkc+2E8yOeff87cuXOZM2cOdevWxcbGhpEjR2YZ8athw4bUr1+fNWvW8Pzzz/P333+zY8eOXK+joBT7IxatWrVCVdVsf6tWrTLNM2zYMIKDg0lOTubYsWPZXgSiZLBp1hTrxo1RjUYilshRi+KmYbmGrH5hNeWsynEl+gqLYxdzLeaa1rGEEAXM9tln8Vm5Ar2DA0l//EnwWz0w3r6tdSzxmBRFwdpg/Vh/VmZW+XpcXn819/f358CBAxw4cCDLqTwtW7Zk165dHD9+3PSjc5UqVTA3N+fw4cOm+YxGIydOnKB27dqmaW5ubvTq1Yt169Yxa9YsU18J839P98sczAEyRhf19PTkn3/+oWrVqln+8ju0LcDzzz+Pq6srn3322QPvj4qKeuD0w4cP06lTJ9566y3q169P5cqVuXjxYrb5AgMDWbVqFStXrqRNmzZ4eXnlO2t+FfvCQityqFwbrsMz+sZEfbMF461bGqcR/1XNqRprO6zFx86HaDWavnv78lfEX1rHEiJPpH1/NKsGDfDZsB4zd3dSrlzhWrcAki9f1jqWKCP8/f05dOgQp0+fNh2xgIwRmxYvXkxKSoqpsLCxsWHw4MGMHTuW3bt3c/bsWfr3728agQlg0qRJbN++ncuXL5t+yc88elCuXDmsrKzYvXs3oaGhREdnXJts6tSpzJgxg3nz5nHx4kXOnDnDypUrmTVrVr63y8bGhmXLlrFjxw5efvllfvzxR65du8Zvv/3GuHHjGDRo0AMfV61aNfbu3cuRI0c4d+4cAwcOzDZwEUBAQAA3btxg6dKlRd5pO5MUFjmQUUO0YdOkCdZNm4LRSIT0tSiWPG09WdF2BRX0FYhKjqLvnr4cufXw81WFKE6kfc8diypV8N24AfPKlUm9c4fg7m+R+G9/RyEKk7+/P4mJiVStWjXLqe1+fn7ExsZSo0YNU38GgE8++YQuXbrQo0cPnnzySS5fvsyePXtw+vcUPnNzcyZMmEC9evVo2bIler2e5cuXAxmXDZg3bx6LFy/G09OTTp06ARm//i9btoyVK1dSt25d/Pz8WLVq1WMdsYCMEZyOHDmCwWAgICCAmjVr0q1bN6Kjo/n4448f+Jj333+fJ598knbt2tGqVSvc3d1Ngxbdz8HBgS5dumBra/vA+4tCse9jIcoet+HDCD52jKgtW3Dp3x/zihW0jiT+w8nSib62ffnB6geO3TnG0H1Dmd5iOu0rtdc6mhCiABk8PPBZv47rgwZlnBbVpy8V587BtmVLraOJUszX1/eBHZ19fHweON3S0pJ58+Yxb968By7v/fff5/333zfdTk9Pz3LRt8DAQAIDA7M9LiAggICAgFxndHR0zFUH7aeeeootW7bkeH9mN4BMzs7ObNu27YHz/rc/x82bN+nevXuW61kUJTliIYod66eewvrpZpCaSuTiRVrHETmwUCyY5zePF3xfIDU9lXcPvsv6c+u1jiWEKGBmTk74rFyJTYsWqImJXB8ylOj//U/rWEKI+9y7d49vv/2WAwcOMHToUM1ySGGRAzkHV1tuw4cDEPXtNlKuX9c4jciJQW/g05af0q1mN1RUPjn+CQt+X5DvIfWEKArSvuedztoar4VB2L/0EqSmcmvsOO7+50JhQgjtNGrUiN69e/Ppp59So0YNzXJIYZEDOQdXW9ZPPolN8+aQmkr4/PlaxxEPoVN0TGgygWENMjreL/5zMR/++iFp6WmPeKQQ2pD2PX8Uc3M8P/sUp549AAid8QlhX8ySHxKEKAb++ecfoqOjs1xITwtSWIhiy23UKABi/vc9SRcuaJxGPIyiKAysP5APmn2ATtHxzcVvGPPzGJLTkrWOJoQoQIpOR/kJE0ztc+TSpdx+/33U1FSNkwkhigMpLESxZfVEHezavwCqSvjsOVrHEbnwRo03+MLvCww6Az+G/MjgHwcTmxKrdSwhRAFSFAXXgQNw/+hD0OmI3rKVG2+PJD0pSetoQgiNSWEhijW3ESNAryfuwAESTp7UOo7IhTY+bVjUZhE2BhtO3DlB3z19iUiM0DqWEKKAOb3+OhXnzUUxNydu3z5CAgNJu2+kHSFE2SOFRQ6kc1/xYFGpEo5dugDIubwlSBOPJqxstxJnS2fO3z1Pz109uR4rnfBF8SDte8Gxa9MGr2VL0dnakvjbSYJ79MQYFqZ1LCGERqSwyIF07is+XIcOQbGwIPHUKeJ+/lnrOCKXarnUYm37tVS0rcj12Ov02NmD83fPax1LCGnfC5hNkyb4rFuL3tWV5AsXCA7oTsq1a1rHEkJoQAoLUewZypfHucdbAITPmo36n4vBiOLL296btR3WUsOpBpFJkfTZ3YcTd+TLnBCljWXNmvhu3IDB2xvjjRtc6/4WiX//rXUsIUQRk8JClAgu/fujs7cn+eJFYnbs0DqOyANXK1dWvrCSRuUbEWeMY9DeQewL3qd1LCFEATP38sJ3w3osatUiLTKSkJ69iP/1V61jCZHNqlWr8PHx0TpGqSSFhSgR9A4OuAQGAhA+dx5qSorGiURe2JnbsbjtYlp7tSYlPYXRP49my8UtWscSQhQwM1dXfNasxrpJE9Lj47nefwAxe37QOpYoge7cucPw4cOpXLkyFhYWeHl50bFjR/btkx+mijMpLHIgnfuKH+ceb2Hm5obxxg3ufbVJ6zgijyz0FnzR6gu6VOtCuprOlKNTWPLnEumQL4qctO+FS29nh9fSJdi1bYtqNHJz5Ehps0WeXLt2jUaNGvHTTz/x+eefc+bMGXbv3o2/vz9Dhw7VOp54CCksciCd+4ofnZUVrv82KBELF8qwhiWQmc6MyU9Ppn/d/gDM/30+nxz/hHRV+s2IoiPte+HTWVhQYc5sHN94A1SVO1OmEL5wofyQIHJlyJAhKIrC8ePH6dKlC9WrV6dOnTqMHj2aX/89vS4kJIROnTpha2uLvb09b7zxBqGhoaZl/PHHH/j7+2NnZ4e9vT2NGjXit99+y7Kebdu2Ua1aNSwtLWnXrh3Xr2eMXnjt2jV0Ol22+efMmYOPjw/p0tczR1JYiBLF8bUumFetQlpUFBGLFmsdR+SDoiiMeHIE45uMB2DD+Q2M/2U8xjSjxsmEEAVJ0etxnzoF1yGDAYiYN5/Qjz6WATg0oqoq6QkJj/eXmJivx+WloLx79y67d+9m6NCh2NjYZLvf0dGR9PR0OnXqxN27d/n555/Zu3cv//zzD127djXN1717dypWrMiJEyc4efIk48ePx2AwmO5PTExkxowZrFmzhsOHDxMVFcWbb74JgK+vL23atGHlypVZ1r1y5Up69+6NTidfn3NipnUAIfJCMTOj/LhxXB8wkHtr1+LU7U3Mvby0jiXyoXut7jhaOPL+offZdXUX0cnRzG41G2uDtdbRhBAFRFEU3EaMQO/sQui0adzbsIG0qHt4fPIJOnNzreOVKWpiIheebPTYywl99CzZ1Dh1EsU6d2375cuXUVWVmjVr5jjPvn37OHPmDFevXsXr3+8Aa9asoU6dOpw4cYLGjRsTEhLC2LFjTcupVq1almUYjUbmzZvH008/DcDq1aupVasWx48fp0mTJgQGBjJo0CBmzZqFhYUFp06d4syZM2zfvj0fe6DskJJLlDg2zz6LzTPPoBqNhH0xS+s44jG8WPlFFjy3ACszK47cOkLgD4HcS7qndSwhRAFzfqs7njM/B4OBmJ27uDFoEGlx8VrHEsVQbo5unDt3Di8vL1NRAVC7dm0cHR05d+4cAKNHjyYwMJA2bdrwySefcOXKlSzLMDMzy9LPqmbNmlke37lzZ/R6Pd9++y2QMZKUv78/vr6+j7uJpZocsRAljqIolHt3HFc7v0Ls7t0knOqJ9ZMNtY4l8ql5heYsf345g/cN5kzEGXrt7sWStktwt3HXOpoQogA5vPgiegdHbowYQfyRo4T07o3XksWYOTtrHa1MUKysqHHqZL4fn56eTkxsLPZ2dnk+FUixssr1vNWqVUNRFM6ff7wLqk6ZMoWAgAB27NjBrl27mDx5Ml999RWvvPJKrh5vbm5Oz549WblyJa+++iobNmxg7ty5j5WpLJAjFqJEsqxRA8fXugAQ+ukn0iGwhKvrVpc1L6yhvHV5rkZfpceuHvwT/Y/WsYQQBcy2RXN8Vq1E7+hI0l9/ERzQHePNm1rHKhMURUFnbf14f1ZW+Xqcoii5zuns7Ey7du0ICgoiPj77Ua2oqChq1arF9evXTZ2tAc6ePUtUVBS1a9c2TatevTqjRo3ihx9+4NVXX83SZyI1NTVL5+wLFy6Ylp0pMDCQH3/8kYULF5Kamsqrr76a6+0oq6SwyIEMR1j8uY0YgWJtTdIffxKzc6fWccRjquxYmbXt1+Jr78ud+Dv02tWLM+FntI4lSiFp37VlVa8ePhs2YObpQcq1a1zrFkDSxYtaxxLFSFBQEGlpaTRp0oQtW7Zw6dIlzp07Z+oT0aZNG+rWrUv37t05deoUx48fp2fPnvj5+fHUU0+RmJjIsGHDOHDgAMHBwRw+fJgTJ05kKRoMBgNvv/02x44d4+TJk/Tu3ZtmzZrRpEkT0zy1atWiWbNmvPvuu3Tr1g2rPBx5KauksMiBDEdY/Jm5ueES2A+A8C9mkZ6crHEi8bg8bD1Y034NT7g8QVRyFP1+6MeRW0e0jiVKGWnftWdRuRK+GzdiUa0qqWFhBL/Vg4RTp7SOJYqJypUrc+rUKfz9/XnnnXd44oknaNu2Lfv27ePLL79EURS2b9+Ok5MTLVu2pE2bNlSuXJlNmzKul6LX64mMjKRnz55Ur16dN954g/bt2zN16lTTOqysrBg7diwBAQE0b94cW1tb0+Pv169fP1JSUujbt2+RbX9JJn0sRInm0qcPUZu+xnjrFndXrcZ14ACtI4nH5GTpxPJ2yxm5fyRHbx9l6L6hzHh2Bi/4vqB1NCFEATKUL4/P2rVcHzyExN9/J6RPXyrMmY1lixZaRxPFgIeHBwsWLGDBggUPvN/b2zvHEZrMzc3ZuHFjjsvu3bs3r776Kvb29rz22msPzXHz5k3q1q0rRzhzSY5YiBJNZ2VFuXdGAxCxeDHG0PwMhCeKG2uDNQueW0A733akpqcy7udxfHX+K61jCSEKmN7REe8Vy7H180NNTubGsOHEyHCeohiIi4vjr7/+YsGCBQwfPlzrOCWGFBaixLPv2BGrBg1QExIIm/mF1nFEATHXm/Pps5/StUZXVFSmHZvGl6e/lI76QpQyOisrKi6Yj0OnTpCWRtj7H+D080GtY4kybtiwYTRq1IhWrVrJaVB5IIWFKPEURaH8+++DohDzv//JebqliF6nZ2LTiQyun3Hl3oV/LGTG8Rmkq3LlXiFKE8VgwGPGdJz79AHAbedOImbNkh8ShGZWrVpFcnIymzZtQq/Xax2nxJDCQpQKVk/UwfHf8yTvfPQxalqaxolEQVEUhSENhjChyQQUFDae38j4X8ZjTDdqHU0IUYAUnY7y747DZfQoAKJWruL2hPdQU1M1TiaEyC0pLESp4TZqJDo7O5LPnSNq8zdaxxEFLKBWAJ88+wlmihm7ru5i9IHRJKfJSGBClDZOffpw5/XXQK8nets2bgwbTnpiotaxSiQ54iNyq6BeK1JYiFLDzNkZt387WIXPmUNaVJS2gUSB61C5A3Nbz8VcZ86B6wcYtm8YCcYErWMJIQpYzFNP4TFnNoqFBXEHDhDSL5C06GitY5UYBoMBgIQEaR9F7mS+VjJfO/klw82KUsUpoBtRm78m+dJlwucvwP2D97WOJApYy4ot+bLNlwz7aRi/3v6VQT8OIui5IOzM7bSOJoQoQDatWuG9YnnGcLSnThH8Vg+8li3FUL681tGKPb1ej6OjI2FhYQBY5/Hq1w+Snp5OSkoKSUlJ6HQl+3dp2Zb/p6oqCQkJhIWF4ejo+Nj9SaSwyEFQUJDpyo+i5FDMzCg/cSIhvftwb+NGHN94A8sa1bWOJQpYE48mLGm7hCE/DuH3sN8J/CGQRW0W4WTppHU0UQJI+15yWDdqlHGti8BAki9dIrhbAF7LlmFRuZLW0Yo9d3d3AFNx8bhUVSUxMRErK6vHLlK0JtuSnaOjo+k18ziksMjB0KFDGTp0KDExMTg4OGgdR+SBTbNm2LVrR+yePdz56EN81q4t8Q2HyK5BuQYsb7ecgXsHcjbyLH339GVJ2yW4WbtpHU0Uc9K+lyyWNarjs3Ej1/v1IyU4mODu3fFasgSruk9oHa1YUxQFDw8PypUrh9H4+INdGI1GDh48SMuWLR/7dBmtybZkZTAYCmzkKyksRKlU/t1xxB08SOJvJ4n+dhuOr76idSRRCGq51GLVC6vo/0N/Lkddpvfu3ix9fimetp5aRxNCFCDzihXw2bCe6wMGkvT334T06kXFBfOxeeYZraMVe3q9vkC+NOr1elJTU7G0tCzxX8ZlWwpPyT6xTIgcGDw9cRs2FICwzz4j9d49jROJwlLZsTKr2q+igm0FQmJD6LW7FyExIVrHEkIUMDMXF7xXr8b66WakJyQQMnAQMTt3ah1LCHEfKSxEqeXcsycW1aqRFhVF2BdyRe7SzMvOi1UvrMLX3pc78Xfou6evFBdClEJ6Wxu8Fi/Grv0LYDRy850x3F2/XutYQoh/SWEhSi3FYMB96hQAor/ZIlfkLuXcbdxZ+cJKKjtUJjQhVIoLIUopnbk5FWbOxCmgG6gqoR99TPi8+XLNBiGKASksRKlm/eSTOLzWBYA7k6egFkAHNlF8uVq5srzdclNx0WdPHykuhCiFFL2e8h98gOuwYQBELFzInalTUWWkLyE0JYWFKPXKvfMOekdHki9d4u6aNVrHEYUss7io4lCFsIQwKS6EKKUURcFt2FDcJ08CRSHqq03cHP0O6SkpWkcTosySwkKUemZOTpQbOxaA8AVBGG/d0jiRKGyuVq4sa7csS3ERHBOsdSwhRCFw6taNCrNnoRgMxO7Zw/X+A0iLi9M6lhBlkhQWokxweKUzVk81Qk1M5M7H07SOI4rAf4uLwB8CuR13W+tYQohCYP/CC3gtXYLO2pqEY8cI7tmT1IgIrWMJUeaUmcIiISEBHx8fxowZo3UUoQFFp8Nj8mQwMyPup5+I+eEHrSOJIpBZXGSOFhX4QyARifJlQ4jSyKZZM7zXrEHv7Ezy2XNc696dlBs3tI4lRJlSZgqLadOm0axZM61jCA1ZVKuGS2A/AO589BFp0dEaJxJFwdXKlaXPLzVd56L/D/2JTpbnXojSyOqJOvhuWI+hQgWMwSFc69aNpAsXtI4lRJlRJgqLS5cucf78edq3b691FKEx18GDMa9UibTwCEI//1zrOKKIuNu4s7TtUtys3LgcdZlBewcRlyLnYAtRGpn7+uKzYQMW1auTFh5B8Fs9SDhxQutYQpQJxb6wOHjwIB07dsTT0xNFUdi2bVu2eYKCgvD19cXS0pKmTZty/PjxLPePGTOGGTNmFFFiUZzpLCzw+PgjIOPaFvFHj2qcSBQVL3svlrRdgqOFI39F/sWwn4aRmJqodSwhRCEwlC+Hz7q1WDVqRHpsLCH9Aondt0/rWEKUesW+sIiPj6d+/foEBQU98P5NmzYxevRoJk+ezKlTp6hfvz7t2rUjLCwMgO3bt1O9enWqV69elLFFMWbdqBFOAQEA3J40mfRE+XJZVlR1qsqitouwNdhyMvQkY34eQ2p6qtaxhBCFQG9vj/fyZdi2bo2aksKN4SOI2rJF61hClGpmWgd4lPbt2z/0FKZZs2bRv39/+vTpA8CiRYvYsWMHK1asYPz48fz666989dVXbN68mbi4OIxGI/b29kyaNOmBy0tOTiY5Odl0OyYmBgCj0YjxvourmakqCpCamlomLrqWue3GUrKtTiOGE/vTTxivXyd0zhxcc9mpv7Tth/wqyfuhun115vrNZcj+IRy8cZAPj3zI+03eR1GUPC+rJO+HglRStj+37XtJVJpeiwW6LXo95b+YiTL1Q2K3beP2xPdJCQvHsV/ffL3n80qel+JJtiV/68gNRVVVtdCSFDBFUfj222/p3LkzACkpKVhbW/PNN9+YpgH06tWLqKgotm/fnuXxq1at4q+//mLmzJk5rmPKlClMnTo12/QNGzZgbW1tut367LvYJd/mUNX3iLSr+XgbJjRhc/48FVauQlUUQoYOIdnLS+tIogidM55jQ/wGVFSes3wOf0t/rSOVWAkJCQQEBBAdHY29vb3WcXKU2/ZdlEKqiuvu3Tgf+BmAey1aEP5iB9AV+xM3hNBcXtr4Yn/E4mEiIiJIS0ujfPnyWaaXL1+e8+fP52uZEyZMYPTo0abbMTExeHl54e/vj4uLi2m6WchHkAzNmjVF9Wmevw0oQYxGI3v37qVt27YYDAat4xSMDh24ExZO3I4dVNvzA16bvkJ5xLaVyv2QD6VhP3SgA96XvJlxYgb7kvbRon4LOlXplKdllIb9UBAiIyO1jpAruW3fS6LS9FostG158UXurV5D5MyZOB06hLejI+U+nPrIdv9xyPNSPMm25E3m0d3cKNGFRV717t37kfNYWFhgYWGRbbrBYMj6hP17CNXMzAxK+IsyL7LthxLO4/2J/HPkCCmXLhG9ahVuQ4bk6nGlbT/kV0nfDwG1AwhPCmfZmWV8fPxjPOw8aF4h7z8UlPT98LhKyrbnun0vwWRbHq5cYD8s3Fy5NfF9Yr//nvSYaCrOmYOukI9YyfNSPMm25H7ZuVWijwG6urqi1+sJDQ3NMj00NBR3d/fHWnZQUBC1a9emcePGj7UcUbyZOTlRfuJEACK+XCTjnZdBIxqOoGPljqSpaYz5eQz/RP2jdSRRyKR9L9scOnXCK2gBiqUl8Qd/IaRPX1Lv3dM6lhClQokuLMzNzWnUqBH77htCLj09nX379vH0008/1rKHDh3K2bNnOSFjX5d69i92wLbNc2A0cuvd8agpKVpHEkVIURSmPjOVRuUbEWeMY/hPw+UCeqWctO/C1s8P75Ur0Dk4kPjHHwS/1QPj7dtaxxKixCv2hUVcXBynT5/m9OnTAFy9epXTp08TEhICwOjRo1m6dCmrV6/m3LlzDB48mPj4eNMoUUI8iqIoeEyZgt7RkeTz54lYtEjrSKKIGfQGZrWahaeNJyGxITIMrRBlgHXDhviuW4tZ+fKkXLnCtW4BJF+5onUsIUq0Yl9Y/PbbbzRs2JCGDRsCGYVEw4YNTcPFdu3alZkzZzJp0iQaNGjA6dOn2b17d7YO3Xklh8rLFjNXV9ynTAEgYvESEs+c0TaQKHLOls7Maz0PKzMrfr39K5+fkCuzl1bSvotMFtWq4btxA+aVKpF65w7BAd1J/OMPrWMJUWIV+8KiVatWqKqa7W/VqlWmeYYNG0ZwcDDJyckcO3aMpk2bPvZ65VB52WP/QjvsO3SAtDRujZ9A+n3j3YuyoYZzDWa0mAHAhvMb2HZ5m7aBRKGQ9l3cz+Dpic+G9VjWq0dadDTBvfsQ98shrWMJUSIV+8JCiKJU/oP30bu5knLlCuFz52kdR2jgOZ/nGNIgY3Swab9O49K9SxonEkIUNjMnJ3xWrsCmeXPUxESuDx5M9P++1zqWECWOFBY5kEPlZZOZkxMeUz8E4O7KlSScPKlxIqGFgfUG8oznMySlJTH6wGgSjAlaRxIFSNp38SA6Gxu8vlyI/YsvQmoqt8aO5e6aNVrHEqJEkcIiB3KovOyya+2PwyuvgKpya8J7pCfIl8qyRqfomPHsDMpZl+NazDWmHp2KqqpaxxIFRNp3kRPF3BzPzz/DqUcPAEKnzyBs9hx5/wuRS1JYCPEA5d+bgJmHB8aQEMJmztQ6jtCAs6Uzn7f8HL2iZ+fVnXxz6RutIwkhioCi01H+vQm4jRwJQOTixdyZNAk1VUaKE+JRpLAQ4gH0dnZ4fPwRAPc2bCTu5581TiS08GT5Jxnx5AgAPj/xOcExwRonEkIUBUVRcB00EPcPp4JOR9Tmb7gxcqQM6iHEI0hhkQM5B1fYNm9uOhx+672JpEZGapxIaKF3nd40cW9CYmoiEw9NJC09TetI4jFJ+y5yy+mNN6gwdw6KuTlxP+7jemB/0mJjtY4lRLElhUUO5BxcAVBuzDtYVKtGWmQktye+L+fZlkE6RcfHzT/G1mDLH+F/sPLvlVpHEo9J2neRF/Zt2+K1dCk6W1sSTpwguEdPUsPDtY4lRLEkhYUQD6GzsMBz5ucoBgNxBw4Q8/XXWkcSGvCw9WB8k/EABJ0O4sLdCxonEkIUJZumTfBZuwa9qyvJ589zLaA7KSEhWscSotiRwkKIR7CsUYNyY94BIOLzmZiHhmmcSGjh5Sov4+/lT2p6Ku8ffp/UdOnIKURZYlmrFr4b1mPw8sJ4/TrXugWQdPas1rGEKFaksMiBnIMr7ufUo0fGhZOSk3H/aiNqSorWkUQRUxSFSU9Pwt7cnvN3z/PV+a+0jiTySdp3kV/m3t74bliPRa1apEVGEtyjJ/HHjmsdS4hiQwqLHMg5uOJ+ik6Hx4zp6Bwdsbx1m8gFC7SOJDTgauXK20++DcCC0wsIS5CjVyWRtO/icZi5ueGzZjXWjRuTHh/P9cBAYn74QetYQhQLUlgIkUuGcuUoN2UKAFGrVhN/9Ki2gYQmXqv+GvXc6hFvjOeLU19oHUcIoQG9nR1ey5Zi17YNqtHIzZGjuLdJ+uAJIYWFEHlg+1xropo0AVXl5rhxMgRtGaRTdHzQ7AN0io69IXu5ZLykdSQhhAZ0FhZUmDMHx9dfh/R07kyeTMSXX8rogaJMk8JCiDwK7/gS5lWqkBYewa1x76Kmp2sdSRSxms41CagZAMDuxN1ybQshyihFr8f9w6m4DBoIQPjceYR+PE0+F0SZJYVFDqRzn8iJam5O+Zmfo1haEn/4MJHLl2sdSWhgUP1B2BnsCE0P5fur32sdR+SBtO+iICmKQrmRIyk/cSIA99av59aYsTLIhyiTpLDIgXTuEw9jUbUq7u9nfIiEz5lLwqnfNU4kipqDhQP9nugHwKIzi0hKTdI4kcgtad9FYXDu8RaeM2eCmRkxO3dyffAQ0hMStI4lRJGSwkKIfHLo0gX7l16CtDRuvvMOaVFRWkcSRaxr9a44KA6EJoSy/tx6reMIITTm8NKLeH35JYq1NfGHD3OzXyC6+HitYwlRZKSwECKfFEXBfcoUDD7epN6+za33JkqnvTLGQm9BG6s2ACz/azlxKXEaJxJCaM322Rb4rFyB3tGR5L/+wvvLRRhv3dI6lhBFQgoLIR6D3taGCrNmoRgMxP30E/fWrtM6kihi9Q31qWRfidiUWL6+KMNNCiHAqn59fDasx8zdHfPwcG706EnyJRlBTpR+UlgI8Zis6tSh3LvvAhD6+ecknvlL40SiKOkUHb1r9wZgzd9rpK+FEAIAi8qVqbh2DcnlypEWFsa1t3pIfzxR6klhIUQBcOoegF3bNmA0cnPkSOlvUca84PsCHjYeRCZFsv3ydq3jCCGKCTN3d64PGohFvXqkR0cT0rcvsQcOaB1LiEIjhUUOZDhCkReKouAxbRoGLy+MN29yc9w4Gce8DDHoDPR5og8AK/9eSWp6qsaJxMNI+y6KUrqNDRWWLsGm5bOoSUncGDqMqG3btI4lRKGQwiIHMhyhyCu9vT0V581FsbAg/uAvRCxapHUkUYReqfoKThZO3Iy7ycEbB7WOIx5C2ndR1HTW1ngFBWH/ckdIS+P2+AlErlipdSwhCpwUFkIUIMtatXCfMgWAiPkLiDt0WNtAoshYmlnySrVXANh0YZPGaYQQxY1iMOD5ySc49+4NQNhnnxE2c6aMJihKFSkshChgjq90xvGNN0BVuTVmjAwzWIa8Xv11FBSO3DpCcEyw1nGEEMWMotNR7t1xlBvzDgCRy5Zze+L7qKly+qQoHaSwEKIQlJ/4HpZ16pAWFcWNkaNIT0nROpIoAhXtKtKiQgsANl/YrHEaIURxpCgKLoGBeEz7GHQ6ordu5cbwEaQnJmodTYjHJoWFEIVAZ2FBhblz0Tk4kPTnn4R98onWkUQR6VqjKwDbr2zHmGbUOI0Qorhy7NKFigvmo1hYELd/PyGB/UmLjtY6lhCPRQoLIQqJecUKVPj8M1AU7m3YSPR332kdSRSB5hWa42zpTFRyFEdvH9U6jhCiGLNr3Rrv5cvQ2dmRePIkwW/1wBgapnUsIfJNCgshCpFty5a4Dh4MwO0PJpH4198aJxKFzUxnRvtK7QH4/p/vNU4jhCjurJ96Cp91azFzcyP50iWCu3Uj+epVrWMJkS9SWAhRyFyHDsHGryVqcjI3hg8nNTJS60iikHWo1AGAA9cPkGBM0DaMEKLYs6xRA5+NGzD4eGO8dYvg7m/JD1GiRJLCQohCpuj1VJg5E3NfX1Jv3+bG22+jSmfuUq2ua1287LxITE1k//X9WscRQpQA5hUr4rthA5a1a5N29y4hPXsSf+SI1rGEyBMpLHIgV2YVBUlvZ0fFhUHobG1J/O0kd2bM0DqSKESKovCC7wsA/BTyk8ZpxH9J+y6KKzMXF7zXrMa6WTPSExIIGTiImF27tI4lRK5JYZEDuTKrKGgWlSvj+W9n7qiNX3Hv66+1jiQKkZ+XHwCHbx2W0aGKGWnfRXGmt7XFa8li7Nq1A6ORm6Pf4e6GDVrHEiJXpLAQogjZ+fvjNmI4AHc++piEU79rnEgUlrqudXG2dCbeGM9vob9pHUcIUYLozM2pMOsLHLu9CapK6IcfET5/gVylWxR7UlgIUcRcBg3C7vnnwWjkxtsjMIaGah1JFAKdosOvYsZRi4M3DmqcRghR0ih6Pe6TJuE6dCgAEUFB3PnwQ9S0NI2TCZEzKSyEKGKKouA5YzoW1auTFh7BjWHDSU9K0jqWKASZhcWhm4c0TiKEKIkURcFt+DDKT/rAdBrtzXfGkC4DgIhiSgoLITSgs7GhYtAC9A4OJJ05w+33Jsoh7lKosUdjdIqOazHXCEuQi14JIfLHOSCACrO+AIOB2N27uT5wIGlx8VrHEiIbKSyE0Ii5lxcV5s4FMzNidu4kImih1pFEAbM3t6emc00ATtyRjsJCiPyzb98e78WL0Flbk3D0V0J69pTrIoliRwoLITRk06wp7pMnARCxYAHR3+/QOJEoaE3cmwBSWAghHp/NM8/gvXo1eicnks6e5VpAACk3bmgdSwgTKSyE0JjT66/j3LcvALffe4/E06e1DSQKVGP3jGslHL9zXOMkQojSwKruE/hsWI/B0xNjcAjB3QJIunBB61hCAFJYCFEslHtnNLatW6OmpHB96DCMN29qHUkUkIblGgJwPfY695LuaZxGCFEaWFSqhM/GjVhUq0ZqeDjBb/Ug4TcZ1lpoTwoLIYoBRa+nwuefYVGzJmmRkVwfNJi0uDitY4kCYGduh6+9LwB/R/6tbRghRKlhKF8On3VrsXrySdJjYwnpF0jsTz9pHUuUcaW+sIiKiuKpp56iQYMGPPHEEyxdulTrSEI8kM7GBq8vF6J3cyX50iVuvvOOjFdeSjzh+gQAZyLOaJxECFGa6B0c8F6+DNtWrVCTk7kxfARRW7ZqHUuUYaW+sLCzs+PgwYOcPn2aY8eOMX36dCJlFAVRTBk8PPBauBDFwoL4nw8S+umnWkcSBSCzsPgr4i+NkwghShudlRUVF8zH4ZVXIC2N2xMnErlsmQxhLjRR6gsLvV6PtbU1AMnJyaiqKm82UaxZ1a2L578Fxb01a7m7erXGicTjur+wkPZHCFHQFDMzPKZPwyWwHwBhM78g7NPPUNPTNU4myppiX1gcPHiQjh074unpiaIobNu2Lds8QUFB+Pr6YmlpSdOmTTl+POvoK1FRUdSvX5+KFSsyduxYXF1diyi9EPlj/0I7yo15B4DQTz4lZvcejROJx1HTuSY6RcfdpLuEJ4ZrHUcIUQopikK5MWMoN24cAHdXreL2hAmoRqPGyURZUuwLi/j4eOrXr09QUNAD79+0aROjR49m8uTJnDp1ivr169OuXTvCwv7/KreOjo788ccfXL16lQ0bNhAaGlpU8YXIN+d+/XAKCABV5da4cSScPKl1JJFPFnoLvO28Afgn+h+N0wghSjOXvn3w+GQG6PVEb/+O68OGkZ6QoHUsUUaYaR3gUdq3b0/79u1zvH/WrFn079+fPn36ALBo0SJ27NjBihUrGD9+fJZ5y5cvT/369fnll1947bXXHri85ORkkpOTTbdjYmIAMBqNGO+r+s1UFQVITU0tE78GZG67sQxs68MU9X5wHjeWlNu3id+/n+tDhlJxzRrMK1cqknU/jLweMuRlP1Syr8S1mGtcirxEI9dGhR2tSJWU10Fu2/eSqDS9J2VbHp/Niy/iYWfHnXfGEP/zQa717oPnwiD0Dg75XqY8L8VTUWxLXpatqCXohF9FUfj222/p3LkzACkpKVhbW/PNN9+YpgH06tWLqKgotm/fTmhoKNbW1tjZ2REdHU3z5s3ZuHEjdevWfeA6pkyZwtSpU7NN37Bhg6mvBkDrs+9il3ybQ1XfI9KuZoFupxD3U1JSqLhkKVbXr2N0ciJk6BDS7Oy0jiXyaG/iXn5O/pkm5k142fplreMUqISEBAICAoiOjsbe3l7rODnKbfsuRGlheS2YCqtWok9MIrlcOW7260eqY/6LC1E25aWNL/ZHLB4mIiKCtLQ0ypcvn2V6+fLlOX/+PADBwcEMGDDA1Gl7+PDhORYVABMmTGD06NGm2zExMXh5eeHv74+Li4tpulnIR5AMzZo1RfVpXsBbVvwYjUb27t1L27ZtMRgMWsfRjFb7Ia1lS2706AkhIdTe+i0VVq5Ap+EXIXk9ZMjTfrgKPx/9GaODkQ5tOxRNwCJSUkbay237XhKVpvekbEvBSm7bhluDBmMRFkb1lSvxXLw4X0e+i8O2FBTZlrzJPLqbGyW6sMiNJk2acPr06VzPb2FhgYWFBUFBQQQFBZH273UEDAZD1idMUQAwMzODEv6izIts+6GMKur9YChfHu+lS7j2ZjeSz54ldOzYjGFpzbR9C8vrIUNu9kN1l+oA/BPzD2ZmZij/tiGlQUl5DeS6fS/BZFuKJy23xVC7NpU2biCkXyAp165xs1cvvJYsxqpevfwtT56XYqkwtyUvyy32nbcfxtXVFb1en60zdmhoKO7u7o+17KFDh3L27FlOnDjxWMsRoqCY+/jgtehLFEtL4g/+wu0pU2To0hLE18EXgOjkaKKSozTNUtZJ+y7KGkOFCvhsWI9l3bqkRUUR3LsPcYcOax1LlEIlurAwNzenUaNG7Nu3zzQtPT2dffv28fTTT2uYTIjCYVW/PhVmfQE6HdHfbCF8zlytI4lcsjKzws3KDYBbcbc0TiOEKGvMnJ3xWbUSm2eeQU1I4PrgwUR/v0PrWKKUKfaFRVxcHKdPnzadznT16lVOnz5NSEgIAKNHj2bp0qWsXr2ac+fOMXjwYOLj402jROVXUFAQtWvXpnHjxo+7CUIUKLvWrXGfMhmAyMWLiVy1SttAItc8bT0BuBl3U+MkZZu076Ks0tnY4LXoS+w7tAejkVtjxnB3zVqtY4lSpNgXFr/99hsNGzakYcOGQEYh0bBhQyZNmgRA165dmTlzJpMmTaJBgwacPn2a3bt3Z+vQnVdyqFwUZ05vvIHbqFEAhH3yKVEPuHCkKH4q2FYA5IiF1qR9F2WZYm6O58yZOHXvDkDo9OmEzZkjp9aKAlHsO2+3atXqkS/2YcOGMWzYsCJKJETx4DKgP2n37mVcXXXi++jtHbBr7a91LPEQmYXFjbgbGicRQpRlik5H+fcnYubqQvjceUQuWkxa5F3cp0xG0eu1jidKsGJ/xEII8WCKolBu3FgcOneGtDRujhpFwm+/aR1LPETmqVByxEIIoTVFUXAdPBj3KVNApyNq82ZujhxJ+n0XkRQir6SwyIGcgytKAkWnw+Pjj7D190dNTub6oMEk/XsNF1H8SGFRPEj7LsT/c3qzKxXmzEYxGIjd+yPXA/uTFhurdSxRQklhkQM5B1eUFIqZGRVmz8LqqUakx8UREtiflH8HNxDFS3nrjL5f4YnhGicp26R9FyIr++efx2vpUnQ2NiScOEFwz16khks7JfJOCgshSgGdpSVeX36JRc2apEVEENK3H8bQMK1jif9wtXIFICYlhpS0FI3TCCHE/7Np1hSftWvQu7iQfO4c1wK6y49UIs+ksMiBHCoXJY3ezg7vZUsxeHtjvHGDkD59SI2M1DqWuI+9uT1muowxMyIT5bnRirTvQjyYZe3a+G5Yj6FiRYzXr3MtoDtJ585pHUuUIFJY5EAOlYuSyMzVFe8VKzDz8CDln38I6RdIWlSU1rHEvxRFMR21iEiM0DhN2SXtuxA5M/fxwWfDetMR8OAePYk/dlzrWKKEkMJCiFLGvGIFfFauQO/mSvL584T0H0BaXJzWscS/Mq++LYWFEKK4MpQrh8+a1Vg/9RTpcXFc79+fuH37tI4lSgApLIQohcx9ffFZsQK9oyNJZ85wfeAg0hMStI4lABcrFwAikqSwEEIUX3p7e7yWLcW2zXOoKSncGf0O9sflyIV4OCkshCilLKpVw3vFcnR2diSePMn1oUNlfPJiQE6FEkKUFDpLSyrOmYPDa10gPR33LVu5u3SpXKVb5EgKixxI5z5RGljWro330iXorK1JOPorN0e8jZoioxFpydHCEYDo5Ghtg5Rh0r4LkXuKmRkeH32EU/9AAO7Om0/o9Bmo6ekaJxPFkRQWOZDOfaK0sGrQgIqLvkSxtCTu55+5OWYsamqq1rHKLHtzewBikmM0TlJ2SfsuRN4oioLLiBGEdXwJgHtr13Jr7Dj5oUpkI4WFEGWATZMmVFywIOPKqj/8wK0J76GmpWkdq0wyFRYpUlgIIUqWqBYtKD9jBpiZEbNjB9cHDyE9Pl7rWKIYkcJCiDLCtkVzKsydm/GB8L//cWvCBCkuNGBnbgdAbEqsxkmEECLv7F56Ea8vF6JYWRF/+DDBffqSeu+e1rFEMSGFhRBliF1rfyp88UVGcfHd/7g1XoqLomZvIUcshBAlm+2zz+KzaiV6BweS/vyT4IDuGG/d0jqWKAaksMiBdO4TpZV9u+epMOuL/z9y8e54KS6KkPSx0J6070I8Pqv69fHZsB4zd3dSrl7lWkB3ki9f1jqW0JgUFjmQzn2iNLN//nkqzJ6VUVx8/31GcSEduouE9LHQnrTvQhQMiypV8N24AfMqVUi9c4dr3d8i4ffftY4lNCSFhRBllH3btlJcaCDzVKiktCRS0mREFSFEyWbw8MBn3Vos69cjPTqakD59iTt4UOtYQiNSWAhRhtm3bUvFObNNI3zcGveuFBeFzNZgi4ICyFELIUTpYObkhM/Kldg8+yxqUhLXhwwl+rvvtI4lNCCFhRBlnF2bNlScOwcMBmJ27pTiopDpFB2WZpYAJBoTNU4jhBAFQ2dtjdfCIOw7doTUVG6Ne5fIVau0jiWKmBQWQgjsnnsuS3Fxc+xYVKNR61illpWZFQAJqQkaJxFCiIKjGAx4fvoJzr16AhD2yaeEffEFqqpqnEwUFSkshBAA2LVubSouYnft5sbbI0lPTtY6VqmUWVgkpsoRCyFE6aLodJQbPx630aMBiFy6jNvvvy9HwssIKSxyIMMRirLIrnVrvBbMRzE3J+6nn7gxeAjpifLlt6BJYaEtad+FKFyKouA6oD8eH38EOh3RW7ZyY8TbpCclaR1NFDIpLHIgwxGKssrWzw+vJYtRrK2JP3KEkP79SYuL0zpWqWJtZg1AUqp8yGpB2nchiobja69Rcd5c049VIYGBpMXIoBWlmRQWQohsbJo1w3v5MnR2diT+dpKQ3n1Ii4rSOlapYeq8LUcshBClnF2bNhmfJ7a2JP52kuC3emAMC9M6ligkUlgIIR7IumFDfFavQu/kRNJffxHcsxepERFaxyoV5FQoIURZYt24MT7r1qJ3cyX54kWCuwWQcu2a1rFEIZDCQgiRI8vatfFZuwYzN7eMD4O3emC8fVvrWCWeFBZCiLLGsmZNfDdswODjjfHmTa4FdCfx77+1jiUKmBQWQoiHsqhaFZ91azHz9CDl2jWCu7+F8fp1rWOVaJmFRVKa9LEQQpQd5l5e+K5fj0XtWqTdvUtIz17E//qr1rFEAZLCQgjxSOY+PviuW4e5jw/GW7e40as35qGhWscqsUzXsTDKdSyEEGWLmasrPmvWYN20Kenx8VzvP4CY3Xu0jiUKiBQWQohcMXh64rNuLRbVqpEWHo7XosUk/fGH1rFKpMzO23LEQghRFultbfFashi7559HNRq5OWoU9zZu1DqWKABSWAghcs3MzQ3vNauxqFcPfUICN/v3J+6XX7SOVeIYdAYAjGlydXMhRNmks7CgwuxZOHbtCqrKnakfEr4gSK7SXcJJYSGEyBMzJycqLF1CfPXqqIlJXB88hOjvd2gdq0QxFRbpUlgIIcouRa/HfcpkXIcMASBiwQJCP/oINS1N42Qiv6SwyIFcmVWInOmsrbnZqye27dtDaiq3xozh7tp1WscqMQx6KSy0JO27EMWHoii4jRhO+fffB0Xh3oaN3BwzhvSUFK2jiXyQwiIHcmVWIR7BzIzyn8zAqXt3AEKnTSN83jw5jJ0LcsRCW9K+C1H8OL/VnQpfzASDgdhdu7k+cCBpcfFaxxJ5JIWFECLfFJ2O8u9PxHXEcAAiFn7JnSlT5TD2I2QWFqnpqRonEUKI4sO+Qwe8Fn2JYm1NwtFfCenVi9S7d7WOJfJACgshxGNRFAW3IUNwnzIZFIWoTZu4OWo06cnJWkcrtqTzthBCPJht8+b4rF6F3smJpL//zrhK942bWscSuSSFhRCiQDi9+SYVZs/KOIz9ww+E9OtHWlSU1rGKJeljIYQQObOqWxef9eszLswaHExwt24kXbiodSyRC1JYCCEKjP0LL+C9dAk6W1sSfzvJte5vYbwpvzT9l/SxEEKIh7OoXAnfjRuxqFaV1PBwgnv0IOHkSa1jiUeQwkIIUaBsmjXL+KWpfHlSrlzh6ptvknT2rNaxihUpLIQQ4tEM5cvjs3YtVg0bkh4TQ0jffsT+tF/rWOIhpLAQQhQ4yxrV8d301b9X6Y4g+K0exP1ySOtYxYb0sRBCiNzROzrivWI5tn5+qMnJ3Bg+nKit32odS+RACgshRKEwuLvjs2E91s2akZ6QwPVBg4jaskXrWMWC9LEQQojc01lZUXHBfBw6d4a0NG6/9x6Ry5drHUs8gBQWQohCo7ezw3vJYuw7dsz4MJj4PuHzF5T5a13IqVBCCJE3isGAx4zpOPftC0DY5zMJ/exz1PR0jZOJ+5X6wuL69eu0atWK2rVrU69ePTZv3qx1JCHKFMXcHM/PPsVlwAAAIoKCuP3++6jGsvulWgoLIYTIO0VRKD9uLOXGjgHg7ooV3J7wXpn+PCluSn1hYWZmxpw5czh79iw//PADI0eOJD5eruQoRFFSFIVyo0dlXOtCpyN6y1ZCBgwgLTpa62iakFOhhBAi/1z69cNj+nTQ64nevp0bw4aTnpiodSxBGSgsPDw8aNCgAQDu7u64urpyV67iKIQmnN58k4pBC0xXVb3WLYCUkBCtYxU5M8UMkM7bQgiRX46vvkLF+fNRLCyI+/lnQvrKtZOKg2JfWBw8eJCOHTvi6emJoihs27Yt2zxBQUH4+vpiaWlJ06ZNOX78+AOXdfLkSdLS0vDy8irk1EKInNj5++O7fh1m7u6k/PMP197oSsJvv2kdq0jpFT0AKmW7r4kQQjwOu9b+eK9cgc7ensTffye4Rw+Md+5oHatMK/aFRXx8PPXr1ycoKOiB92/atInRo0czefJkTp06Rf369WnXrh1hYWFZ5rt79y49e/ZkyZIlRRFbCPEQlrVq4fv1JiyfeIK0qChC+vQlevt2rWMVGZ2S0fSmqWkaJxFCiJLN+skn8Vm3FrNy5Ui+dJlrAQEk/3NV61hllpnWAR6lffv2tG/fPsf7Z82aRf/+/enTpw8AixYtYseOHaxYsYLx48cDkJycTOfOnRk/fjzPPPPMQ9eXnJxMcnKy6XZMTAwARqMR432dg8xUFQVITU0tE52GMrfdWAa29WFkP2QokP3g5ITniuWEvvce8T/u49a740m8fAXnYUNRdMX+Nw8g//shPS1jFJP09PRS8VoqKduQ2/a9JCpNbZNsS/FUnLdFX6kSFdas5tagQRivBXOte3c8FwZh+cQTD5y/OG9LXhXFtuRl2YpagsZ9VBSFb7/9ls6dOwOQkpKCtbU133zzjWkaQK9evYiKimL79u2oqkpAQAA1atRgypQpj1zHlClTmDp1arbpGzZswNra2nS79dl3sUu+zaGq7xFpV/NxN02Isis9Hdc9P+B84AAAsfXqceeN11ENBm1zFaLItEhmx87GAgs+cPxA6ziPLSEhgYCAAKKjo7G3t9c6To5y274LIUomfVwcFVauwvLGDdLNzbnVowcJ1atpHavEy0sbX6ILi1u3blGhQgWOHDnC008/bZpv3Lhx/Pzzzxw7doxDhw7RsmVL6tWrZ7p/7dq11K1b94HreNAvWl5eXty+fRsXFxfTdLNFT6NEXiL1re2oPs0LeEuLH6PRyN69e2nbti2GUvyF71FkP2QojP0Q8+02wj78EFJTsaj7BB7z5mHm6logyy4s+d0PN+Nu0vG7jliZWXH4jcOFmLBoREZG4uHhUewLi9y27yVRaWqbZFuKp5KyLenx8dweOYrEX38FMzPKT5+G3X/OfCkp25IbRbEtMTExuLq65qqNL/anQj2uFi1akJ6Hi6dYWFhgYWGRbbrBYMj6hCkKkDGcLSX8RZkX2fZDGSX7IUNB7geXN17H0teHm8NHkHzmL250C6DiggVYPVGnQJZfmPK6H8wN5gCkq+ml4nVUUrYh1+17CSbbUjzJthQhR0e8lyzm1rvvErtrN6HvjofoGJx7vJVt1mK/LXlQmNuSl+WWjBOZc+Dq6operyc0NDTL9NDQUP6vvTsPa+pK/wD+DYGwCLIogigIKoq4gFVRWxVisYx1XGvrqFNxo6Oi1aFaa6tSO7VOrbZojUu1grY62s64tK6DDFTrhhutFdRicWVxQxFECMn9/UHNTwpoQpabhO/nefLoPbm59z2H5MCbc8+53t7eeh1boVAgODgY3bp10+s4RKS9BmFh8N+6BbKAAFTk5+PK6NG4v3u32GEZ3OPJ22qBd4wVA/t3IutmI5Oh2ZIlcB81ChAEFCxciFvLl8OCLtKxWBadWMhkMnTp0gUpKSmaMrVajZSUlCqXRtVFbGwsMjMzceLECX3DJCIdyPz94f/NVjQI7wOhrAy5b83EzaWfQlBZzwpKTCzExf6dyPpJpFJ4zZuLxtOmAgBur1yF/Pj3rep3iTky+8SiuLgYGRkZyMjIAADk5OQgIyMDV3+/qVZcXBzWrl2LDRs2ICsrC5MnT0ZJSYlmlSgisjxSFxf4rlyJRjETAQB31q7F9SmxUBUXixyZYTCxICIyPolEAs/YWHi/Hw9IJLj3zTe4MePvUD8x14oMy+znWJw8eRJyuVyzHRcXB6By5aekpCSMGDECt27dwvz585Gfn4/Q0FDs27cPXl5eep1XoVBAoVBAxcyWSBQSqRRN3noL9m3aIm/uXBT/8AMuj/gLfBUrIPP3Fzs8vTxOLAQIEAQBkt/nbJFpsH8nql/c//IXSN3ckTtrFh4kJ6Pi3j3Y/HmA2GFZJa0Si+XLl+t84HHjxsHFxUXn1/1RRETEM6+Jmzp1KqZOnar3uZ4UGxuL2NhYFBUVwdXV1aDHJiLtuQ78M2T+/rg+dSrKL11Czmsj0OzTT+Hcy3JXY7N5YrBYLag1d+Im02D/TlT/NPxTFKRurrg+JRalJ06g+Y0bqOgTDrum+s3Jpaq0SixmzJiB5s2bQyrV7pfftWvX8Oc//9kgiQURkWPHDgj497e4Pu1NlGZk4Nobb6DJrFnwGBttkd/229j8IbEAEwsiImNr0KMH/DZuxLU3YuCQm4sbY8bAb/2XkPn6ih2a1dD6UqiTJ0+iSZMmWu1rDQkFh8qJzIutpyf8Nm5A/oIFuP+fbbj58cd4lJmJph8sgI2jo9jh6aTKiAU4z8LU2L8T1V+OHdqj2caNuPT6GODaNVweNQp+a9fCIYg3OzYErSZvx8fHw9nZWeuDvvvuu/Dw8KhzUOaAq4YQmR8bmQxNP/wQXu++C0ilKPr+e1z+y0iUX7kidmg6eTzHAgBUav5xa2rs34nqN1mLFrg6ZTJkbdpAdes2rvz1dZSkp4sdllXQOrFwcnLS+qBz5syBm5tbXWMiIqqVRCKBx5jX0SIpEdLGjVF24QJyhr+KB6mpYoemtScTCwFcV52IyNRUDRuiWeJ6OHbtAnVxMa5NjMGDAwfEDsvimf1ys0RENXHq1g0B//kPHENDoX7wANcnT8Gt5Z9DUJv/pUVPTtZWCRyxICISg7RhQ/itWwfnvn0hlJfj+pvTce/f/xY7LIumc2Jx584dxMbGIjg4GI0bN4aHh0eVh7XgnVmJzJ+dVxO02Lih8u6qAG6vXIlrkyZBde+euIE9w5MTznknWNNj/05Ej9k4OKD58mVwfWUYoFYjb+483F7zBfvmOtL5Phavv/46srOzMWHCBHh5eVnkiiza4HKERJZBIpPBe/48OIZ0Qt78eJQcPISc4a+i+efL4dCundjh1YgjFuJi/05ET5LY2qLphx/C1qMR7qxdi1uffYaKO7fh9c47kNjw4h5d6JxYHDp0CD/++CNCQkKMEQ8RUZ24Dh4M+zZtcH3am1Bev47LfxmJph8sgOvgwWKHVs2TX8jw7ttEROKTSCRo8lYcpI08cPOfH6Nw41dQ3S2Ez0cLIZHJxA7PYuichgUFBaG0tNQYsRAR6cWhXTsE/PtbNOjTG0JZGXJnv4O899+HuqxM7NCqeTyBm4kFEZH5aDR2LHwWfwzY2qJo1y5cmxIL9cOHYodlMXROLFauXIn33nsPP/zwA+7cuYOioqIqD2vBa3CJLJPUzQ2+q1ej8ZQpgESCe1u24vJI81uSlomFeNi/E9HTuA4aBN+VCkgcHFDy44+4Mm4cKgoLxQ7LIuicWLi5uaGoqAh9+/ZFkyZN4O7uDnd3d7i5ucHd3d0YMYqC65wTWS6JjQ0835wG3y++gNTdHWWZWch5ZTiK9v9X7NA0Ht8kj4mF6bF/J6Jnce7TB36J62Hj6opHP/2MK399Hcq8PLHDMns6z7EYPXo07OzssHnzZquevE1Els+5dy8EbN+GG2/NROmpU7gxfToevv46vGbNFP2aWamNFFAzsSAiMldOnTvDf9PXuDoxBuWXLuHyyFHwW7cW9q1bix2a2dI5sfjll19w5swZtG3b1hjxEBEZlJ23N1okJeLWsmW4s+5LFH71FUozMtDss88ga95MtLgkqPxShokFEZH5sm/dGv6bN1UmF7/9hiuj/wrfNavhGBoqdmhmSedLobp27Ypr164ZIxYiIqOQ2NmhycyZaL5qZeWw9tmzyBk2DA/+9z/xYuJoLxGRRbDz8UGLTV/DIaQTVPfv48q48Sg+eFDssMySzonFtGnTMH36dCQlJeHUqVP4+eefqzyIiMyVi1yOltu3wTEkBOqiIlyfEouCxZ9AUCrFDo2IiMyYrbs7Wqxfjwa9ekEoLcW1KbG4//33YodldnS+FGrEiBEAgPHjx2vKJBIJBEGARCKBSmUdN3tSKBRQKBRWUx8iqmTn44MWX23EzaWf4u6GDbi7fj1KT5+Gz5Ilol4aRabD/p2I6sKmQQP4rlQgd867KNq9G7mz3obq7l14REeLHZrZ0HnEIicnp9rjt99+0/xrLbhqCJH1kshk8JrzDpqv+Bw2Li4ozchAztChKNq7V+zQyATYvxNRXUlkMvh8shjur78OAChY9E/c/PQzCIIgcmTmQecRixYtWhgjDiIik3OJjERAUDvkzpyJ0owM3Ph7HIoPH4b3u+/CxslJ7PCIiMgMSWxs4PXuHNg2aoRbCQm488UXqLh7B03ffx8SW53/tLYqOo9YLFq0COvXr69Wvn79enz88ccGCYqIyFRkzZuhxddfodHkSYBEgvv//g9yXhmOR1lZYodGRERmSiKRoPGkv8H7Hx8ANja4/+//4Pr0GVA/eiR2aKLSObFYs2YNgoKCqpW3b98eq1evNkhQRESmJLG1RZPp0+GXmAjbJk1QnpODy6+NwN2NX3F4m4iIauX+6qtotiwBEpkMxSkpuDpxIlRFRWKHJRqdE4v8/Hw0bdq0WrmnpyfyeEdCIrJgDXp0R8DOHXDu2xeCUomCjz7C9clTUHH3rtihERGRmWrYrx98162FjbMzSk+ewpXXx0B586bYYYlC58TC19cXhw8frlZ++PBh+Pj4GCQoc6BQKBAcHIxu3bqJHQoRmZCtuzuaK1bAa97cym+g0tKQM3gISo4dEzs0MhD270RkaA3CwtDiq42QNm6MsgsXcGXUaJRfuSJ2WCanc2IRExODGTNmIDExEVeuXMGVK1ewfv16/P3vf0dMTIwxYhQFVw0hqr8kEgk8Ro+G/7ffQNaqFSpu3cLVceNxc+lSCOXlYodHemL/TkTG4NCuHfw3b4Kdnx+U16/j8qjRKD13TuywTErnxGLWrFmYMGECpkyZgpYtW6Jly5aYNm0a3nzzTcyZM8cYMRIRicKhbVsEfPsN3F59FRAE3Fm7Djkj/oKyX3812DkEcA4HEZG1kPn5wX/T17Bv1w6qO3dwdUx0vRrx1jmxkEgk+Pjjj3Hr1i0cO3YMP/30E+7evYv58+cbIz4iIlHZODmh6T8+QLPlyyB1c0NZVhZyXhmOuxs3QlCr63xcCSQGjJKIiMyFracnWmzcAKewMKhLSnAt5g0U7f+v2GGZhM6JxWPOzs7o1q0bOnToAHt7e0PGRERkdhq+9BICvtuJBr17QygvR8FHi5A7aTJs798XOzQiIjIzUhcX+K79Ai79+kFQKnFjxgwUbtkqdlhGp1ViMWzYMBTpsHTW6NGjcbOezoYnIutl16QJfL9YA6/58yBxcEDp0aNo8VkCiuvJN1FERKQ9G3t7NEv4DG6vvQYIAvLffx+3Vq606mXMtUosdu7ciVu3bqGoqOiZj/v37+P7779HcXGxsWMnIjI5iUQCj1GjELDtP7APDoa0tBT5M2cid/ZsqB48EDs8IiIyIxKpFN4L3q+8CSuA28s/R8E/PtTrUlpzplViIQgC2rRpA3d392c+PDw8UFJSYuy4iYhEZd+yJZp//RXu9O1bedfVnd8hZ/AQPORKQ0RE9ASJRIIm06fD6733AACFmzcjd+ZMqK1wlUFbbXZKTU3V+cDNmjXT+TVERJZEYmeHO1EvodO4sbj57ntQXruGK2Oi4TF+HDzffBM2nH9GRES/83j9r5C6uyN3zhwU7dkL1b17aLb8c0idG4gdmsFolViEh4cbOw4iIovlGBqKgO3bUbDoI9z/zzbc/XI9itN+gM8/F8GxY0exwyMiIjPh+ucBkLq54fqbb6LkyFFcHTsWvl+sga2Hh9ihGUSdV4WydrwzKxHpQurcAD4LF6L5SgWkjRuj/NIlXP7LSNxMSLDK4W5Lxv6diMTk3OsFtEhKhNTNDY9++QVXRo2G8sYNscMyCCYWteCdWYmoLlz69kXL779DwwEDAJUKd1avweXhr+JRZqbYodHv2L8TkdgcO3VCi82bYOvTFOWXL+PyyFF4dPGi2GHpjYkFEZGB2bq7o9nSJWi2bBmkHh4ou3gROa+NwK0VCghKpdjhERGRGbBv2RL+mzdD1roVKm7exJW/vo6Hp0+LHZZemFgQERlJw6iX0HLX93CJigIqKnB7xQrkvDYCjy5c0OxjzeuZExHR09l5e8P/66/hGBoKdVERro6fgAdpaWKHVWdaTd5+0saNG6ts29jYwNPTE71794aTk5PBAiMisga2Hh5olvAZHuzdi/wFH6AsKws5w1/Fn3tJ8U0YkwoiovpO6uYGv8T1uD5jBkp+OIjrsVPR9MMP4TZ0iNih6UznxGL69OlVtlUqFYqLi+Hp6Yn//e9/aN++vcGCIyKyBhKJBA1ffhlO3boh7/0FKE5JwbBUJTplAUL4XcDVX+wQiYhIRDaOjvBdsQJ5c+fi/s7vkDdnDoSyMrj/ZYTYoelE50uhCgsLqzyKioqQl5eHXr16YcaMGUYIkYjIOth6eqL5is/hs/hjPLSXoHU+oPrfYbHDIiIiMyCxs0PTRYvgPuZ1AMCdtWtFjkh3Oo9Y/PzzzzWWjx8/HkOHDkV6ejocHBwAAJ06ddIvOiIiKyORSOA6aBDObpiL7ueUgEoldkhERGQmJDY2cBs2DIUbv4K6vEzscHSmc2IRGhoKiURS44RDiUSCHj16aP6v4i9MIiIiIqJ6QefEIicnp8byy5cvo1+/fvj555/h6Oiod2BERERERGQ5dE4s3N3dq2yr1WpcvnwZH374IaKiohAUFGSw4IiIiIiIyDLoPHnbzc0N7u7umkejRo3w3HPPoaioCAqFwhgx6m3o0KFwd3fH8OHDxQ6FiIiIiMgq6TxikZqaWmVbKpXCz88Pfn5+BgvK0KZPn47x48djw4YNYodCRERERGSVdE4swsPDjRGHUUVERCDNgu9iSERERERk7nS+FMrUDh48iIEDB8LHxwcSiQQ7duyoto9CoYC/vz8cHBzQvXt3pKenmz5QIiIiIqJ6zOwTi5KSEoSEhNQ6f2Pr1q2Ii4tDfHw8Tp8+jZCQEERFReHmzZsmjpSISHcCqi/dTUREZIl0vhTK1Pr374/+/fvX+vynn36KmJgYjBs3DgCwevVq7N69G+vXr8c777yj8/nKyspQVvb/NyQpKioCACiVSiiVSk25rSBAAqCiogLCE+XW6nHdlfWgrk/DdqjEdqhkiHZQq9UW346WEr+2/bslsqbPJOtinlgX06moqKj8j/DsGE1RF12ObfaJxdOUl5fj1KlTmDNnjqbMxsYGkZGROHr0aJ2OuWjRIixYsKBaeWpqKpycnDTbfYuL4QLg2LHjuHPufp3OZYmSk5PFDsEssB0qsR0q1aUd1L/fZDQ7+xLO79lj6JBM6uHDh2KHoBVt+3dLZk2fSdbFPLEuxifLzYU/Kr8M2aPl7wdj1kWXPt6iE4vbt29DpVLBy8urSrmXlxfOnz+v2Y6MjMRPP/2EkpISNG/eHN9++y169uxZ4zHnzJmDuLg4zXZRURF8fX0hl8vRqFEjTbnt1X8AZUCPHt0htHjBwDUzP0qlEsnJyejXrx/s7OzEDkc0bIdKbIdK+rTDpo3zAACtW7dCy5dfNkZ4JnPnzh2xQ9CKtv27JbKmzyTrYp5YF9Mpu3AB15Yth729PV5+xu8HU9Tl8eiuNiw6sdDWgQMHtN7X3t4e9vb21crt7Oyq/sAkEgCAra0tYIZvSmOp1g71FNuhEtuhUp3aobILgY2NjcW3oaXEr3X/bsFYF/PEupgnc62Lyvb3P88l2vevxqyLLsc1+8nbT9O4cWNIpVIUFBRUKS8oKIC3t7dex1YoFAgODka3bt30Og4REZkX9u9ERMZh0YmFTCZDly5dkJKSoilTq9VISUmp9VInbcXGxiIzMxMnTpzQN0wiIjIj7N+JiIzD7C+FKi4uRnZ2tmY7JycHGRkZ8PDwgJ+fH+Li4hAdHY2uXbsiLCwMCQkJKCkp0awSVVcKhQIKhQIqlUrfKhARkRlh/05EZBxmn1icPHkScrlcs/144l10dDSSkpIwYsQI3Lp1C/Pnz0d+fj5CQ0Oxb9++ahO6dRUbG4vY2FgUFRXB1dVVr2MREZH5YP9ORGQcZp9YREREQBCefgOpqVOnYurUqSaKiIiIiIiI/sii51gQEREREZF5YGJRC64aQkSm8PTxWDIG9u9ERMbBxKIWXDWEiIxLInYA9Rb7dyIi42BiQUREREREemNiUQsOlRMRWSf270RExsHEohYcKicisk7s34mIjIOJBRERERER6Y2JBRERERER6Y2JBRERERER6Y2JRS04uY+IyDqxfyciMg4mFrXg5D4iIuvE/p2IyDiYWBARERERkd6YWBARERERkd6YWBARiUAidgBEREQGxsSiFpzcR0Rkndi/ExEZBxOLWnByHxGRdWL/TkRkHEwsiIiIiIhIb0wsiIiIiIhIb0wsiIiIiIhIb0wsiIiIiIhIb0wsiIiIiIhIb0wsasHlCImIrBP7dyIi42BiUQsuR0hEZJ3YvxMRGQcTCyIiUQliB0BERGQQTCyIiIiIiEhvTCyIiIiIiEhvTCyIiIiIiEhvTCyIiIiIiEhvTCyIiIiIiEhvTCyIiIiIiEhvTCyIiIiIiEhvTCxqwTuzEhFZJ/bvRETGwcSiFrwzKxGRdWL/TkRkHEwsiIiIiIhIb0wsiIhEJAhiR0BERGQYTCyIiEQhETsAIiIig2JiQUREREREemNiQUREREREemNiQUREREREemNiQUREREREemNiQUREREREeqsXicWuXbvQtm1bBAYGYt26dWKHQ0RERERkdWzFDsDYKioqEBcXh9TUVLi6uqJLly4YOnQoGjVqJHZoRERERERWw+pHLNLT09G+fXs0a9YMzs7O6N+/P/773/+KHRYRERERkVUx+8Ti4MGDGDhwIHx8fCCRSLBjx45q+ygUCvj7+8PBwQHdu3dHenq65rnc3Fw0a9ZMs92sWTPcuHHDFKETEREREdUbZp9YlJSUICQkBAqFosbnt27diri4OMTHx+P06dMICQlBVFQUbt68aeJIiYiIiIjqL7NPLPr3748PP/wQQ4cOrfH5Tz/9FDExMRg3bhyCg4OxevVqODk5Yf369QAAHx+fKiMUN27cgI+Pj0liJyJ6NkHsAIiIiAzCoidvl5eX49SpU5gzZ46mzMbGBpGRkTh69CgAICwsDL/88gtu3LgBV1dX7N27F/Pmzav1mGVlZSgrK9NsFxUVAQCUSiWUSqWm3FYQIEHl5HDhiXJr9bjuynpQ16dhO1RiO1QyRDuo1WqLb0dLiV/b/t0SWdNnknUxT6yL6VRUVFT+R3h2jKaoiy7HtujE4vbt21CpVPDy8qpS7uXlhfPnzwMAbG1tsXTpUsjlcqjVarz99ttPXRFq0aJFWLBgQbXy1NRUODk5abb7FhfDBcCxY8dx59x9w1TIAiQnJ4sdgllgO1RiO1SqSzuo1WoAwKVLl3Bxzx5Dh2RSDx8+FDsErWjbv1sya/pMsi7miXUxPlluLvxR+WXIHi1/PxizLrr08RadWGhr0KBBGDRokFb7zpkzB3FxcZrtoqIi+Pr6Qi6XV0lIbK/+AygDevToDqHFCwaP2dwolUokJyejX79+sLOzEzsc0bAdKrEdKunTDpu/igcAtGrVCq1fftkY4ZnMnTt3xA5BK9r275bImj6TrIt5Yl1Mp+zCBVxbthz29vZ4+Rm/H0xRl8eju9qw6MSicePGkEqlKCgoqFJeUFAAb2/vOh3T3t4e9vb2UCgUUCgUUKlUAAA7O7uqPzCJBEDliAjM8E1pLNXaoZ5iO1RiO1SqUztUdiGwsbGx+Da0lPi17t8tGOtinlgX82SudVHZ/v7nuUT7/tWYddHluGY/eftpZDIZunTpgpSUFE2ZWq1GSkoKevbsqdexY2NjkZmZiRMnTugbJhERmRH270RExmH2IxbFxcXIzs7WbOfk5CAjIwMeHh7w8/NDXFwcoqOj0bVrV4SFhSEhIQElJSUYN26ciFETEREREdUvZp9YnDx5EnK5XLP9+PrY6OhoJCUlYcSIEbh16xbmz5+P/Px8hIaGYt++fdUmdOvqj0PlRERkHdi/ExEZh9knFhERERCEp6/zPnXqVEydOtWg542NjUVsbCyKiorg6upq0GMTEZF42L8TERmHRc+xICIiIiIi88DEohYKhQLBwcHo1q2b2KEQEZEBsX8nIjIOJha14KohRGQKT7/Qk4yB/TsRkXEwsSAiEtMz5pARERFZCiYWRERERESkNyYWteA1uERE1on9OxGZNYlE7AjqjIlFLXgNLhGRdWL/TkRkHEwsiIiIiIhIb0wsiIiIiIhIb0wsasFrcImIrBP7dyIi42BiUQteg0tEZJ3YvxMRGQcTCyIiIiIi0hsTCyIiIiIi0hsTCyIiUfHO20REZB2YWBARiUACy70BEhERUU2YWNSCq4YQEVkn9u9ERMbBxKIWXDWEiMg6sX8nIjIOJhZERERERKQ3JhZERERERKQ3JhZERERERKQ3JhZERERERKQ3JhZERERERKQ3Jha14HKERETWif07EZFxMLGoBZcjJCKyTuzfiYiMg4kFERERERHpjYkFERERERHpjYkFERERERHpjYkFERERERHpjYkFERERERHpjYkFERERERHpjYkFERERERHpjYlFLXgDJSIi68T+nYjIOJhY1II3UCIisk7s34mIjIOJBRERERER6Y2JBRERERER6Y2JBRGRiASxAyAiIjIQJhZERERERKQ3JhZERERERKQ3JhZERERERKQ3JhZERERERKQ3JhZERERERKQ3JhZERERERKS3epFYDB06FO7u7hg+fLjYoRARERERPZsFrkdeLxKL6dOnY+PGjWKHQUT0/yRiB0BERGRY9SKxiIiIgIuLi9hhEBERERFZLdETi4MHD2LgwIHw8fGBRCLBjh07qu2jUCjg7+8PBwcHdO/eHenp6aYPlIiIiIiIaiV6YlFSUoKQkBAoFIoan9+6dSvi4uIQHx+P06dPIyQkBFFRUbh586Zmn9DQUHTo0KHaIzc311TVICIiIiKq12zFDqB///7o379/rc9/+umniImJwbhx4wAAq1evxu7du7F+/Xq88847AICMjAyDxVNWVoaysjLNdlFREQBAqVRCqVRqym0FARIAFRUVEJ4ot1aP666sB3V9GrZDJbZDJX3a4fGcPJVKZfHtaCnxa9u/WyJr+kyyLuaJdTGdCmVF5X8E4ZkxmqIuuhxb9MTiacrLy3Hq1CnMmTNHU2ZjY4PIyEgcPXrUKOdctGgRFixYUK08NTUVTk5Omu2+xcVwAXDs2HHcOXffKLGYo+TkZLFDMAtsh0psh0p1aQe1Sg0AyPntN1zas8fQIZnUw4cPxQ5BK9r275bMmj6TrIt5Yl2MT5aXB39UfhmyR8vfD8asiy59vFknFrdv34ZKpYKXl1eVci8vL5w/f17r40RGRuKnn35CSUkJmjdvjm+//RY9e/ascd85c+YgLi5Os11UVARfX1/I5XI0atRIU2579R9AGdCjR3cILV7QsWaWR6lUIjk5Gf369YOdnZ3Y4YiG7VCJ7VBJn3b416b3AQABLVui7csvGyE607lz547YIWhF2/7dElnTZ5J1MU+si+mUXbiIawnLYG9vj5ef8fvBFHV5PLqrDbNOLAzlwIEDWu9rb28Pe3v7auV2dnZVf2CSyrUibW1tATN8UxpLtXaop9gOldgOlerWDpV9iNTGxuLb0FLi17p/t2Csi3liXcyTudZFZff7n+cSidbxGbMuuhxX9MnbT9O4cWNIpVIUFBRUKS8oKIC3t7dRz61QKBAcHIxu3boZ9TxERGRa7N+JiIzDrBMLmUyGLl26ICUlRVOmVquRkpJS66VMhhIbG4vMzEycOHHCqOchIiLTYv9ORGQcol8KVVxcjOzsbM12Tk4OMjIy4OHhAT8/P8TFxSE6Ohpdu3ZFWFgYEhISUFJSolklylgUCgUUCgVUKpVRz0NERKbF/p2IyDhETyxOnjwJuVyu2X48sS46OhpJSUkYMWIEbt26hfnz5yM/Px+hoaHYt29ftQndhhYbG4vY2FgUFRXB1dXVqOciIiLTYf9ORGQcoicWEREREAThqftMnToVU6dONVFERERERESkK7OeY0FERERERJaBiUUtuGoIEZF1Yv9ORGQcTCxqwVVDiMgUnn4hKBkD+3ciIuNgYkFERERERHpjYlELDpUTEVkn9u9ERMbBxKIWHConIrJO7N+JiIyDiQUREREREelN9PtYWAO1Wo3y8nKxwzAqpVIJW1tbPHr0qF7frVafdpDJZLCxYS5PRERE1omJhZ7KVUDOr79CrVaLHYpRCYIAb29vXLt2DRKJROxwRKNPO9jY2CAgIAAymcxI0RERERGJh4lFLRQKBRQKxVO/lRYgQV6pDFIHKXx9fa3622i1Wo3i4mI4OztbdT2fpa7toFarkZubi7y8PPj5+dXr5IxIbNr070REpDsmFrWIjY1FbGwsioqK4OrqWuM+FTJXPFTbwcfTE05OTiaO0LQeX+7l4OBQ7xOLuraDp6cncnNzUVFRATs7OyNFSETPok3/TkREuqu/fyEagMrOGZCAl7aQVh6/T/gtKREREVkjJhb6+P1yFl7WQtrg+4SIiIisGRMLIiIRCRDEDoGIiMggmFjUgndmJSKyTuzfiYiMg4lFLaz1zqyrV6+Gi4sLKioqNGXFxcWws7NDRERElX3T0tIgkUhw6dKlOp/v8uXLkEgkyMjIqPMxiIgMyVr7dyIisTGxqGfkcjmKi4tx8uRJTdmhQ4fg7e2N48eP49GjR5ry1NRU+Pn5oVWrVmKESkREREQWhIlFPdO2bVs0bdoUaWlpmrK0tDQMHjwYAQEBOHbsWJVyuVyOsrIyTJ8+HYGBgXByckKvXr2qfNNXWFiI0aNHw9PTE46OjggMDERiYiIAICAgAADQuXNnSCSSKqMi69atQ7t27eDg4ICgoCCsXLlS89zjkY5t27ZBLpfDyckJISEhOHr0qJFahoiIiIj0wcTCgARBwMPyClEegqD9BFC5XI7U1FTNdmpqKiIiIhAeHq4pLy0txfHjxyGXy/H2229j27ZtWLlyJU6ePInWrVsjKioKd+/eBQDMmzcPmZmZ2Lt3L7KysrBq1So0btwYAJCeng4AOHDgAPLy8rBt2zYAwKZNmzB//nwsXLgQWVlZ+OijjzBv3jxs2LChSqzvvfceZs6ciYyMDLRp0wYjR46schkXEREREZkH3iDPgEqVKgTP3y/KuTM/iIKTTLsfp1wux4wZM1BRUYHS0lKcOXMG4eHhUCqVWL16NQDg6NGjKCsrQ0REBGJiYrB+/Xr069cPDRs2xNq1a5GcnIwvv/wSs2bNwtWrV9G5c2d07doVAODv7685l6enJwCgUaNG8Pb21pTHx8dj6dKlGDZsGIDKkY3MzEysWbMG0dHRmv1mzpyJAQMGAAAWLFiA9u3bIzs7G0FBQXVvLCIiIiIyOCYW9VBERARKSkpw4sQJFBYWok2bNvD09ER4eDjGjRuHR48eIS0tDS1btsT9+/ehVCrxwgsvaF5vZ2eHsLAwZGVlAQAmT56MV155BadPn8ZLL72EIUOG4Pnnn6/1/CUlJbh06RImTJiAmJgYTXlFRUW1u+B26tRJ8/+mTZsCAG7evMnEgoiIiMjMMLGohUKhgEKh0OkuyY52UmR+EGXEqJ5+bm21bt0azZs3R2pqKgoLCxEeHg4A8PHxga+vL44cOYLU1FT07dtXq+P1798fV65cwZ49e5CcnIwXX3wRsbGxWLJkSY37FxcXAwDWrl2L7t27V3lOKq1aDzs7O83/H99gTq1Wa1dRIqIa1KV/JyKiZ+Mci1rUZTlCiUQCJ5mtKA9d7+osl8uRlpaGtLS0KhOq+/Tpg7179yI9PR1yuRytWrWCTCbD4cOHNfsolUqcOHECwcHBmjJPT09ER0fj66+/RkJCAr744gsAgEwmA4Aqv8C9vLzg4+OD3377Da1bt67yeDzZm4jIWLjcLBGRcXDEop6Sy+WIjY2FUqnUjFgAQHh4OKZOnYry8nLI5XI0aNAAkydPxuzZszWrNy1ZsgQPHz7EhAkTAADz589Hly5d0L59e5SVlWHXrl1o164dAKBJkyZwdHTEvn370Lx5czg4OMDV1RULFizAm2++CVdXV/zpT39CWVkZTp48icLCQsTFxYnSJkRERERUdxyxqKfkcjlKS0vRunVreHl5acrDw8Px4MEDzbK0APDPf/4Tw4YNw6RJk9C1a1dkZ2dj//79cHd3B1A5KjFnzhx06tQJffr0gVQqxZYtWwAAtra2WL58OdasWQMfHx8MHjwYADBx4kSsW7cOiYmJ6NixI8LDw5GUlMQRCyIiIiILxRGLesrf37/GJWpbtGhRrdzBwQHLli3DP/7xDzRs2BA2NlXz0blz52Lu3Lm1nmvixImYOHFitfJRo0Zh1KhRWsfn5uam07K6ROZMc/Ei39NERGQlOGJBRERERGQ2dJs3a06YWBARERERkd6YWBARERERkd6YWBARERERkd6YWBARERERkd6YWNRCoVAgODgY3bp1EzsUIiIyIPbvRETGwcSiFrwzKxGRdWL/TkRkHEwsiIiIiIhIb0wsiIiIiIhIb0wsiAzI398fCQkJYodBREREZHJMLOqZ1atXw8XFBRUVFZqy4uJi2NnZISIiosq+aWlpkEgkuHTpkl7nvHz5MiQSCTIyMvQ6jrZ++uknDBo0CE2aNIGDgwP8/f0xYsQI3Lx50yTnJ9KO5d5ZlYiIqCZMLOrMMv8okMvlKC4uxsmTJzVlhw4dgre3N44fP45Hjx5pylNTU+Hn54dWrVqJEWqd3Lp1Cy+++CI8PDywf/9+ZGVlITExET4+PigpKRE7PCIiIiKrxcSinmnbti2aNm2KtLQ0TVlaWhoGDx6MgIAAHDt2rEq5XC4HAJSVlWH27Nnw9vaGg4MDevXqVWVFlcLCQowePRqenp5wdHREYGAgEhMTAQABAQEAgM6dO0MikVQZGVm3bh3atWsHBwcHBAUFYeXKlZrnHo90bNu2DXK5HE5OTggJCcHRo0drrd/hw4dx//59rFu3Dp07d0ZAQADkcjk+++wzTRwqlQoTJkxAQEAAHB0d0bZtWyxbtqzKccaOHYshQ4ZgyZIlaNq0KRo1aoTY2FgolUrNPjdv3sTAgQPh6OiIgIAAbNq0SdsfAxEREZHVsRU7AKsiCIDyoTjntnMCJNqNosjlcqSmpuKdd94BUDky8fbbb0OlUiE1NRUREREoLS3F8ePHMX78eADA7Nmz8f333yMxMREBAQFYvHgxoqKikJ2dDQ8PD8ybNw+ZmZnYu3cvGjdujOzsbJSWlgIA0tPTERYWhgMHDqB9+/aQyWQAgE2bNmH+/PlYsWIFOnfujDNnziAmJgYNGjRAdHS0Jt733nsPS5YsQWBgIN577z2MHDkS2dnZsLWt/vb19vZGRUUFtm/fjuHDh0NSQ5uo1Wo0b94c3377LRo1aoQjR47gjTfeQNOmTfHaa69p9ktNTUXTpk2RmpqK7OxsjBgxAp06dcKIESMAVCYfubm5SE1NhZ2dHd58801ebkVERET1FhMLQ1I+BD7yEefc7+YCsgZa7SqXyzFjxgxUVFSgtLQUZ86cQXh4OJRKJVavXg0AOHr0KMrKyiCXy1FSUoLVq1dDoVCgf//+sLGxwdq1a5GcnIwvv/wSs2bNwtWrV9G5c2d07doVQOUk5sc8PT0BAI0aNYK3t7emPD4+HkuXLsWwYcMAVI5sZGZmYs2aNVUSi5kzZ2LAgAEAgAULFqB9+/bIzs5GUFBQtbr16NED7777LkaNGoVJkyYhLCwMffv2xZgxY+Dl5QUAsLOzw4IFCzSvCQgIwNGjR/HNN99USSzc3d2xYsUKSKVSBAUFYcCAAfjf//6HESNG4OLFi9i7dy/S09M1N9n68ssv0a5dO61+BkRERETWxuovhbp27RoiIiIQHByMTp064dtvvxU7JNFFRESgpKQEJ06cwKFDh9CmTRt4enoiPDxcM88iLS0NLVu2hJ+fHy5dugSlUonu3btrjmFnZ4ewsDBkZWUBACZPnowtW7YgNDQUb7/9No4cOfLUGEpKSnDp0iVMmDABzs7OmseHH35YbbJ4p06dNP9v2rQpADx1ZGDhwoXIz8/H6tWr0b59e6xevRpBQUE4e/asZh+FQoEuXbrA09MTzs7O+OKLL3D16tUqx2nfvj2kUmmVc9+6dQsAkJWVBVtbW3Tp0kXzfFBQENzc3J5abyIiIiJrZfUjFra2tkhISEBoaCjy8/PRpUsXvPzyy2jQQLtv93Vi51Q5ciAGOyetd23dujWaN2+O1NRUFBYWIjw8HADg4+MDX19fHDlyBKmpqejbt6/Wx+zfvz+uXLmCPXv2IDk5GS+++CJiY2OxZMmSGvcvLi4GAKxdu7ZKwgKgyh/zQGUS89jjS5vUavVT42nUqBFeffVVvPrqq/joo4/QuXNnLFmyBBs2bMCWLVswc+ZMLF26FD179oSLiws++eQTHD9+vNbzPj73s85LREREVF9ZfWLRtGlTzbfc3t7eaNy4Me7evWucxEIi0fpyJLHJ5XKkpaWhsLAQs2bN0pT36dNHc4nP5MmTAQCtWrWCTCbD8ePH0aFDBwCAUqnEiRMnMGPGDM1rPT09ER0djejoaPTu3RuzZs3CkiVLNHMqVCqVZl8vLy/4+Pjgt99+w+jRo41aV5lMhlatWmlWhTp8+DCef/55TJkyRbOPrkvqBgUFoaKiAqdOndJcCnXhwgXcu3fPYHETERERWRLRL4U6ePAgBg4cCB8fH0gkEuzYsaPaPgqFAv7+/nBwcED37t2Rnp5ep3OdOnUKKpUKvr6+ekZt+eRyOX788UdkZGRoRiwAIDw8HGvWrEF5eblmRagGDRpg0qRJiI+Px759+5CZmYmYmBg8fPgQEyZMAADMnz8fO3fuRHZ2Ns6dO4ddu3Zp5hs0adIEjo6O2LdvHwoKCnD//n0AlfMlFi1ahOXLl+PixYs4e/YsEhMT8emnn9a5Xrt27cJf//pX7Nq1CxcvXsSFCxewZMkS7NmzB4MHDwYABAYG4uTJk9i/fz8uXryIefPmVVnhShtt27bFn/70J/ztb3/D8ePHcerUKUycOBGOjo51jp2IiIjIkomeWJSUlCAkJAQKhaLG57du3Yq4uDjEx8fj9OnTCAkJQVRUVJVr7ENDQ9GhQ4dqj9zc/78s6e7duxgzZgy++OILo9fJEsjlcpSWlqJ169aaSc1AZWLx4MEDzbK0jy1atAgDBw5EdHQ0nnvuOWRnZ2P//v1wd3cHUDkqMGfOHHTq1Al9+vSBVCrFli1bAFRejrZ8+XKsWbMGPj4+mj/wJ06ciHXr1iExMREdO3ZEeHg4kpKSNMvC1kVwcDCcnJzw1ltvITQ0FD169MA333yDdevW4fXXXwcA/O1vf8OwYcMwYsQIdO/eHXfu3KkyeqGtx/fHCA8Px7Bhw/DGG2+gSZMmdY6d6hnLvBUOERFR7QQzAkDYvn17lbKwsDAhNjZWs61SqQQfHx9h0aJFWh/30aNHQu/evYWNGzfqHNP9+/cFAMLt27erPvF5N6H0k/ZC5s+nhdLSUp2Pa2lUKpVQWFgoqFQqsUMRlT7tUFpaKmRmZlrF+6W8vFzYsWOHUF5eLnYootKnHTa+9pyQ2TZI+GWF9n2Zubp9+7YAQLh//77Yoeik1v7dAlnTZ5J1MU+si+mUnr8gZLYNEi680OuZ+5qiLo/7Sm36eLOeY1FeXo5Tp05hzpw5mjIbGxtERkY+9SZpTxIEAWPHjkXfvn0131g/TVlZGcrKyjTbRUVFACrnFDx5czRbCL8fv3IisbVP6hUEQfOvtdf1afRpB7VaDUEQoFQqq01QtzSPPwtPfibqI33a4fe3ElQqlcW3o6XEr23/boms6TPJupgn1sV0Kip+j+v3vxmexhR10eXYZp1Y3L59GyqVqsqlOkDlxN/z589rdYzDhw9j69at6NSpk2b+xldffYWOHTvWuP+iRYuq3OPgsdTUVDg5/f/KS32Li2FnK0VZWRmKi4tRXl6uZa0s24MHD8QOwSzUpR3Ky8tRWlqKgwcPoqKiwghRmV5ycrLYIZiFurTD48UMLl++jJw9ewwdkkk9fCjSjUF1pG3/bsms6TPJupgn1sX4ZHn58EfllyF7tPz9YMy66NLHm3ViYQi9evXS6ZvlOXPmIC4uTrNdVFQEX19fyOVyNGrUSFNue+1DlD0qhb29PZydneHg4GDQuM2NIAh48OABXFxcarybdX2hTzs8evQIjo6O6NOnj8W/X5RKJZKTk9GvX79qy/LWJ/q0w5bNHwCovJlku5dfNkZ4JnPnzh2xQ9CKtv27JbKmzyTrYp5YF9Mpu3gR1xISYG9vj5ef8fvBFHV5PLqrDbNOLBo3bgypVIqCgoIq5QUFBVXu4GxI9vb2sLe3h0KhgEKh0HyraGdn94cfWOUflRJJ5eVZNjaiz4M3qsfJmUQisfq6Po0+7WBjYwOJRFLDe8lyWVNd9KFPO9jY2Fh8G1pK/Nr375aLdTFPrIt5Mte6qGx/j+n3vxm0Ycy66HJcs/4LUSaToUuXLkhJSdGUqdVqpKSkoGfPnkY9d2xsLDIzM3VehpSIiMwb+3ciIuMQfcSiuLgY2dnZmu2cnBxkZGTAw8MDfn5+iIuLQ3R0NLp27YqwsDAkJCSgpKQE48aNEzFqIiIiIiJ6kuiJxcmTJzU3YgOguf41OjoaSUlJGDFiBG7duoX58+cjPz8foaGh2LdvX7UJ3Yb2x6FyIiKyDuzfiYiMQ/TEIiIiQrOEZ22mTp2KqVOnmiiiSrGxsYiNjUVRURFcXV1Nem4iIjIe9u9ERMZh1nMsiIiIiIjIMjCxqIVCoUBwcDC6desmdihkBGlpaZBIJLh3757YoRCRibF/JyIyDiYWtbDWVUNWr14NFxeXKjdoKy4uhp2dHSIiIqrs+/iP70uXLul1zsuXL0MikSAjI0Ov4+jizJkzePXVV+Hl5QUHBwcEBgYiJiYGFy9eNFkMRGSerLV/JyISGxOLekYul6O4uBgnT57UlB06dAje3t44fvw4Hj16pClPTU2Fn58fWrVqJUaodbZr1y706NEDZWVl2LRpE7KysvD111/D1dUV8+bNEzs8IiIiIqvExKKuLPTu023btkXTpk2RlpamKUtLS8PgwYMREBCAY8eOVSl/vGJXWVkZZs+eDW9vbzg4OKBXr15Vvu0rLCzE6NGj4enpCUdHRwQGBiIxMREAEBAQAADo3LkzJBJJlZGRdevWoV27dnBwcEBQUBBWrlypee7xSMe2bdsgl8vh5OSEkJAQHD16tNb6PXz4EOPGjcPLL7+M7777DpGRkQgICED37t2xZMkSrFmzpsbX3blzByNHjkSzZs3g5OSEjh074l//+pfm+Y0bN6JRo0YoKyur8rohQ4bg9ddfrzUeotpZZh9CRERUGyYWtajLNbiCIOCh8qEoj2etrPUkuVyO1NRUzXZqaioiIiIQHh6uKS8tLcXx48c1icXs2bPx/fffIzExEadPn0br1q0RFRWFu3fvAgDmzZuHzMxM7N27F1lZWVi1ahUaN24MAEhPTwcAHDhwAHl5edi2bRsAYNOmTZg/fz4WLlyIrKwsfPTRR5g3bx42bNhQJd733nsPM2fOREZGBtq0aYORI0dWuZTrSfv378ft27fx9ttv1/i8m5tbjeWPHj1Cly5dsHv3bvzyyy9444038Prrr2tif/XVV6FSqfDdd99pXnPz5k3s3r0b48ePr72xicjscI4FEZFxiL7crLmqy3KEpRWl6L65u5Ejq9nxUcfhZOek1b5yuRwzZsxARUUFSktLcebMGYSHh0OpVGL16tUAgKNHj6KsrAxyuRwlJSVYvXo1FAoF+vfvDxsbG6xduxbJycn48ssvMWvWLFy9ehWdO3dG165dAQD+/v6a83l6egIAGjVqBG9vb015fHw8li5dimHDhgGoHNnIzMzEmjVrEB0drdlv5syZGDBgAABgwYIFaN++PbKzsxEUFFStbr/++isA1Pjc0zRr1gwzZ87UbE+bNg379+/HN998g7CwMDg6OmLUqFFISkpCVFQUAODrr7+Gn59ftbkpRGTeuNwsEZFxMLGohyIiIlBSUoITJ06gsLAQbdq0gaenJ8LDwzFu3Dg8evQIaWlpaNmyJfz8/PDzzz9DqVSie/f/T5rs7OwQFhaGrKwsAMDkyZPxyiuv4PTp03jppZcwZMgQPP/887XGUFJSgkuXLmHChAmIiYnRlFdUVFT7Rd+pUyfN/5s2bQqgcrSgpuRBl5GbJ6lUKnz00Uf45ptvcOPGDZSXl6OsrAxOTv+frMXExKBbt27Izc1Fw4YNkZSUhLFjx0JioZfFERERERkSEwsDcrR1xPFRx0U7t7Zat26N5s2bIzU1FYWFhQgPDwcA+Pj4wNfXF0eOHEFqair69u2r9TH79++PK1euYM+ePUhOTsaLL76I2NhYLFmypMb9i4uLAQBr166tkrAAgFQqrbJtZ2en+f/jP+LVanWNx23Tpg0A4Pz58+jZs6fW8X/yySdYtmwZEhIS0LFjRzRo0AAzZsxAeXm5Zp/OnTsjJCQEW7ZswcCBA3Hu3Dns3r1b63MQERERWTMmFrVQKBRQKBRQqVRav0YikWh9OZLY5HI50tLSUFhYiFmzZmnK+/Tpg7179yI9PR2TJ08GALRq1QoymQzHjx9Hhw4dAABKpRInTpzAjBkzNK/19PREdHQ0oqOj0bt3b8yaNQtLliyBTCYDgCpt6eXlBR8fH/z2228YPXq0wer10ksvoXHjxli8eDG2b99e7fl79+7VOM/i8OHDGDx4MP76178CqExcLl68iODg4Cr7jR8/HgkJCbhz5w4iIyPh6+trsNiJyDTq0r8TEdGzcfJ2Lax9nXO5XI4ff/wRGRkZmhELAAgPD8eaNWtQXl6umbjdoEEDTJo0CfHx8di3bx8yMzMRExODhw8fYsKECQCA+fPnY+fOncjOzsa5c+ewa9cutGvXDgDQpEkTODo6Yt++fSgoKMD9+/cBVM6XWLRoEZYvX46LFy/i7NmzSExMxKefflrnejVo0ADr1q3D7t27MWjQIBw4cACXL1/GyZMn8fbbb2PSpEk1vi4wMBDJyck4cuQIsrKy8Le//Q0FBQXV9hs1ahRyc3Oxbt06TtomslDW3r8TEYmFiUU9JZfLUVpaitatW8PLy0tTHh4ejgcPHmiWpX1s0aJFGDhwIKKjo/Hcc88hOzsb+/fvh7u7OwBAJpNhzpw56NSpE/r06QOpVIotW7YAAGxtbbF8+XKsWbMGPj4+GDx4MABg4sSJWLduHRITE9GxY0eEh4cjKSlJszxtXQ0ePBhHjhyBnZ0dRo0ahaCgIIwcORL379/Hhx9+WONr5s6di+eeew5RUVGIiIiAt7c3hgwZUm0/V1dXDBw4EM7OzjU+T0RERFRf8VKoesrf37/Gic4tWrSosdzBwQEff/wxVq1aBRub6vno3LlzMXfu3FrPN3HiREycOLFa+ahRozBq1CitY3Rzc9NqgnbXrl3xn//8p9bnIyIiqhzHw8MDO3bseOZxASAvLw+jRo2Cvb29VvsTERER1QdMLIi0VFhYiP/973/48ccfNcvyEhEREVElJhZEWurcuTMKCwvx/vvvo23btmKHQ1ZCQN2WSCYiIjI3TCxqwVVD6I8uX74MtVqNoqIisUMhIj2wfyciMg5O3q4FVw0hIrJO7N+JiIyDiQUREREREemNiQUREREREemNiQUREREREemNiQUREREREemNiQUREREREemNiUUtFAoFgoOD0a1bN7FDsUhJSUlwc3MTOwwiomrYvxMRGQcTi1rUh+UI8/PzMW3aNLRs2RL29vbw9fXFwIEDkZKSInZoRERGUx/6dyIiMfAGefXU5cuX8cILL8DNzQ2ffPIJOnbsCKVSif379yM2Nhbnz58XO0QiIiIisiAcsainpkyZAolEgvT0dLzyyito06YN2rdvj7i4OBw7dgwAcPXqVQwePBjOzs5wc3PDuHHjUFBQoDnGTz/9BLlcDhcXFzRs2BBdunTByZMnq5xnx44dCAwMhIODA6KionDt2jUAlYmNjY1Ntf0TEhLQokULqNVqI7cAERERERkSRyzqTFKtRBAECKWlIsQCSBwdIZFUj6kmd+/exb59+7Bw4UI0aNCg2vNubm5Qq9WapOKHH35AeXk5pkyZgpEjRyItLQ0AMHr0aHTu3BmrVq2CVCpFRkYG7OzsNMd5+PAhFi5ciI0bN0Imk2HKlCn4y1/+gsOHD8Pf3x+RkZFITExE165dNa9JTEzE2LFjYWPDnJesm3afViIiIsvBxMKAhNJSXHiuiyjnbnv6FCROTlrtm52dDUEQEBQUVOs+KSkpOHv2LHJycuDr6wu1Wo1Vq1ahZ8+eOHHiBLp164arV69i1qxZmuMEBgZWOYZSqcSKFSvQvXt3AMCGDRvQrl07pKenIywsDBMnTsSkSZPw6aefwt7eHqdPn8bZs2exc+fOOrYCEREREYmFXwvXQ4IgPHOfrKws+Pr6wtfXV1MWFBQENzc3ZGVlAQDi4uIwceJEREZG4p///CcuXbpU5Ri2trZVVl354+uHDBkCqVSK7du3A6hcSUoul8Pf31/fKhIRERGRiXHEwoAkjo5oe/qUaOfWVmBgICQSid4TtN9//32MGjUKu3fvxt69exEfH48tW7Zg6NChWr1eJpNhzJgxSExMxLBhw7B582YsW7ZMr5iIiIiISBwcsTAgiUQCGycnUR7azq8AAA8PD0RFRUGhUKCkpKTa8/fu3UO7du1w7do1zWRrADh//jzu3buH4OBgTVmbNm3w97//Hf/9738xbNgwJCYmap6rqKioMjn7woULmmM/NnHiRBw4cAArV65ERUUFhg0bpnU9iIiIiMh8MLGohbXfQEmhUEClUiEsLAz/+c9/8OuvvyIrKwvLly9Hz549ERkZiY4dO2L06NE4ffo00tPTMXnyZISHh6Nr164oLS3F1KlTkZaWhitXruDw4cM4ceJElaTBzs4O06ZNw/Hjx3Hq1CmMHTsWPXr0QFhYmGafdu3aoUePHpg9ezZGjhwJRx1GXoiI6sLa+3ciIrEwsaiFtd9AqWXLljh9+jTkcjneeustdOjQAf369UNKSgpWrVoFiUSCnTt3wt3dHX369MFLL70Ef39//Otf/wIASKVS3LlzB2PGjEGbNm3w2muvoX///liwYIHmHE5OTpg9ezZGjRqFF154Ac7Ozti6dWu1WCZMmIDy8nKMHz/eZPUnovrL2vt3IiKxcI5FPda0aVOsWLECK1asqPF5Pz8/zQpNarUaRUVFaNiwIYDK+RGPk4yajB07FmPHjgWAZ17edOPGDXTs2JHfHhIRERFZMI5YkGiKi4vxyy+/YMWKFZg2bZrY4RARERGRHphYkGimTp2KLl26ICIigpdBEREREVk4XgpFoklKSkJSUpLYYRARERGRAXDEgohIDNqvEE1ERGQRmFjo4/c7WGtzJ2sivk+IiIjImjGx0INUWQwIAsrLy8UOhSzA4/eJVCoVORIiIiIiw+McCz3Ylt+Hk40St27dgp2dHWxsrDdPU6vVKC8vx6NHj6y6ns9S13ZQq9W4desWnJycYGvLjx0RERFZH/6FowcJBDR1LEdOhQpXrlwROxyjEgQBpaWlcHR0hERSfy8O16cdbGxs4OfnV6/bj4iIiKyX1ScW9+7dQ2RkJCoqKlBRUYHp06cjJibGYMeX2QgIDAy0+suhlEolDh48iD59+sDOzk7scESjTzvIZLJ6PdpDRERE1s3qEwsXFxccPHgQTk5OKCkpQYcOHTBs2DA0atTIYOewsbGBg4ODwY5njqRSKSoqKuDg4FCvEwu2AxEREVHNrP7rU6lUCicnJwBAWVkZBEHg6jxERERERAYmemJx8OBBDBw4ED4+PpBIJNixY0e1fRQKBfz9/eHg4IDu3bsjPT1dp3Pcu3cPISEhaN68OWbNmoXGjRsbKHoiIiIiIgLMILEoKSlBSEgIFApFjc9v3boVcXFxiI+Px+nTpxESEoKoqCjcvHlTs09oaCg6dOhQ7ZGbmwsAcHNzw08//YScnBxs3rwZBQUFJqkbEREREVF9Ifoci/79+6N///61Pv/pp58iJiYG48aNAwCsXr0au3fvxvr16/HOO+8AADIyMrQ6l5eXF0JCQnDo0CEMHz68xn3KyspQVlam2b5//z4A4O7du1X2sy2tgKRMQMW9exDu3NHq/JZMqVTi4cOHuHPnTr2eW8B2qMR2qKRPO5SWq1CsUqGspBh3LLwPedw/mvtlptr275bImj6TrIt5Yl1Mp+xeIYpVKkjLy5/5+8EUdXnw4AEALft4wYwAELZv367ZLisrE6RSaZUyQRCEMWPGCIMGDdLqmPn5+UJRUZEgCIJw7949oX379sLPP/9c6/7x8fECAD744IMPPnR8XLp0Sed+35TYv/PBBx981P1x7dq1Z/azoo9YPM3t27ehUqng5eVVpdzLywvnz5/X6hhXrlzBG2+8oZm0PW3aNHTs2LHW/efMmYO4uDjN9r1799CiRQtcvXoVrq6udauIFSgqKoKvry+uXbuGhg0bih2OaNgOldgOldgOle7fvw8/Pz94eHiIHcpTWXP/bk3vRdbFPLEu5skUdREEAQ8ePICPj88z9zXrxMIQwsLCtL5UCgDs7e1hb29frdzV1dXi33yG0LBhQ7YD2A6PsR0qsR0qmft9WupD/25N70XWxTyxLubJ2HXR9ssXs/4t0LhxY0il0mqTrQsKCuDt7S1SVERERERE9EdmnVjIZDJ06dIFKSkpmjK1Wo2UlBT07NlTxMiIiIiIiOhJol8KVVxcjOzsbM12Tk4OMjIy4OHhAT8/P8TFxSE6Ohpdu3ZFWFgYEhISUFJSolklytjs7e0RHx9f4/B5fcJ2qMR2qMR2qMR2qGSp7WCpcdeEdTFPrIt5Yl2MRyII4q4PmJaWBrlcXq08OjoaSUlJAIAVK1bgk08+QX5+PkJDQ7F8+XJ0797dxJESEREREVFtRE8siIiIiIjI8pn1HAsiIiIiIrIMTCyIiIiIiEhvTCyIiIiIiEhvTCwAKBQK+Pv7w8HBAd27d0d6evpT9//2228RFBQEBwcHdOzYEXv27DFRpMalSzucO3cOr7zyCvz9/SGRSJCQkGC6QI1Ml3ZYu3YtevfuDXd3d7i7uyMyMvKZ7x9LoUs7bNu2DV27doWbmxsaNGiA0NBQfPXVVyaM1nh07R8e27JlCyQSCYYMGWLcAE1El3ZISkqCRCKp8nBwcDBhtIYxdOhQuLu7Y/jw4dWe27VrF9q2bYvAwECsW7dOhOjq7rPPPkP79u0RHByMN998E5Y81TInJwdyuRzBwcHo2LEjSkpKxA5JLw8fPkSLFi0wc+ZMsUOps2vXriEiIgLBwcHo1KkTvv32W7FD0oklf7afJNrPQajntmzZIshkMmH9+vXCuXPnhJiYGMHNzU0oKCiocf/Dhw8LUqlUWLx4sZCZmSnMnTtXsLOzE86ePWviyA1L13ZIT08XZs6cKfzrX/8SvL29hc8++8y0ARuJru0watQoQaFQCGfOnBGysrKEsWPHCq6ursL169dNHLlh6doOqampwrZt24TMzEwhOztbSEhIEKRSqbBv3z4TR25YurbDYzk5OUKzZs2E3r17C4MHDzZNsEakazskJiYKDRs2FPLy8jSP/Px8E0etv9TUVOG7774TXnnllSrlSqVSCAwMFK5fvy48ePBAaNOmjXD79m2RotTNzZs3hZYtWwqlpaVCRUWF8PzzzwtHjhwRO6w669Onj3Dw4EFBEAThzp07glKpFDki/bz77rvCa6+9Jrz11ltih1Jnubm5wpkzZwRBEIS8vDzBx8dHKC4uFjcoLVnyZ/uPxPo51PvEIiwsTIiNjdVsq1QqwcfHR1i0aFGN+7/22mvCgAEDqpR1795d+Nvf/mbUOI1N13Z4UosWLawmsdCnHQRBECoqKgQXFxdhw4YNxgrRJPRtB0EQhM6dOwtz5841RngmU5d2ePzH2rp164To6GirSCx0bYfExETB1dXVRNEZV2pqarXE4vDhw8KQIUM029OnTxc2b95s6tDq5ObNm4Kfn59QWFgolJaWCt26dROys7PFDqtOfvnlF+HFF18UOwyDuXjxojBs2DAhMTHRohOLP+rUqZNw9epVscPQiiV/tp/FVD+Hen0pVHl5OU6dOoXIyEhNmY2NDSIjI3H06NEaX3P06NEq+wNAVFRUrftbgrq0gzUyRDs8fPgQSqUSHh4exgrT6PRtB0EQkJKSggsXLqBPnz7GDNWo6toOH3zwAZo0aYIJEyaYIkyjq2s7FBcXo0WLFvD19cXgwYNx7tw5g8Z18OBBDBw4ED4+PpBIJNixY0e1fep6Gduz5ObmolmzZprtZs2a4caNGwY5trHr5enpiZkzZ8LPzw8+Pj6IjIxEq1atDBL7Hxm7Lr/++iucnZ0xcOBAPPfcc/joo48MGH1Vpni/zZw5E4sWLTJQxLUz5Wfn1KlTUKlU8PX11TNq7ehbN2N+tnVlyJ+TKX8O9TqxuH37NlQqFby8vKqUe3l5IT8/v8bX5Ofn67S/JahLO1gjQ7TD7NmzNb+sLVVd2+H+/ftwdnaGTCbDgAED8Pnnn6Nfv37GDtdo6tIOP/74I7788kusXbvWFCGaRF3aoW3btli/fj127tyJr7/+Gmq1Gs8//zyuX79usLhKSkoQEhIChUJR4/Nbt25FXFwc4uPjcfr0aYSEhCAqKgo3b97U7BMaGooOHTpUe+Tm5hosTl0Zu16FhYXYtWsXLl++jBs3buDIkSM4ePCgRdaloqIChw4dwsqVK3H06FEkJycjOTnZIuuyc+dOtGnTBm3atDFK/Kasy2N3797FmDFj8MUXXxi9To8Zom7mwlB1MfnPwehjImbsxo0bAoBq15fOmjVLCAsLq/E1dnZ21YbFFAqF0KRJE6PFaWx1aYcnWculUPq2w6JFiwR3d3fhp59+MlaIJlHXdlCpVMKvv/4qnDlzRliyZIng6uoqpKamGjla49G1HYqKigR/f39hz549mjJruBRK38+FIAhCeXm50KpVK6NdGgdA2L59e5UyQ1zOJwjaXwq1adMm3QN/BmPU65tvvhGmTJmi2V68eLHw8ccfGyTepzFGXY4cOSK89NJLmu3FixcLixcvNki8T2OMurzzzjtC8+bNhRYtWgiNGjUSGjZsKCxYsMCQYdfIWJ+dR48eCb179xY2btxoqFB1Vpe6meqzrau6/pzE+DnU6xGLxo0bQyqVoqCgoEp5QUEBvL29a3yNt7e3Tvtbgrq0gzXSpx2WLFmCf/7zn/jvf/+LTp06GTNMo6trO9jY2KB169YIDQ3FW2+9heHDh5tkWN9YdG2HS5cu4fLlyxg4cCBsbW1ha2uLjRs34rvvvoOtrS0uXbpkqtANyhD9g52dHTp37ozs7GxjhFiNsS/vDAsLwy+//IIbN26guLgYe/fuRVRUlN7HfRZD1MvX1xdHjhzBo0ePoFKpkJaWhrZt2xor5FoZoi7dunXDzZs3UVhYCLVajYMHD6Jdu3bGCrlWhqjLokWLcO3aNVy+fBlLlixBTEwM5s+fb6yQa2WIugiCgLFjx6Jv3754/fXXjRWqzrSpm1ifbV1pUxexfg71OrGQyWTo0qULUlJSNGVqtRopKSno2bNnja/p2bNnlf0BIDk5udb9LUFd2sEa1bUdFi9ejH/84x/Yt28funbtaopQjcpQ7we1Wo2ysjJjhGgSurZDUFAQzp49i4yMDM1j0KBBkMvlyMjIMNk1xoZmiPeDSqXC2bNn0bRpU2OFWYWhLu+MjIzEq6++ij179qB58+aaX9i2trZYunQp5HK5JpFu1KiRQetQE0PUq0ePHnj55ZfRuXNndOrUCa1atcKgQYOMEe5TGaIutra2+Oijj9CnTx906tQJgYGB+POf/2yMcJ/Kmi4nNkRdDh8+jK1bt2LHjh0IDQ1FaGgozp49a4xwdaJN3cT6bOtKm7qI9XOwNfoZzFxcXByio6PRtWtXhIWFISEhASUlJRg3bhwAYMyYMWjWrJnmm9fp06cjPDwcS5cuxYABA7BlyxacPHnSpNcQGoOu7VBeXo7MzEzN/2/cuIGMjAw4OzujdevWotVDX7q2w8cff4z58+dj8+bN8Pf313ygnZ2d4ezsLFo99KVrOyxatAhdu3ZFq1atUFZWhj179uCrr77CqlWrxKyG3nRpBwcHB3To0KHK693c3ACgWrml0fX98MEHH6BHjx5o3bo17t27h08++QRXrlzBxIkTxayGzg4cOFDrc4MGDRLlD3JDWLhwIRYuXCh2GAbRv39/9O/fX+wwDGrs2LFih6CXXr16Qa1Wix1GnVnyZ/tJYv0c6n1iMWLECNy6dQvz589Hfn4+QkNDsW/fPk0WePXqVdjY/P/AzvPPP4/Nmzdj7ty5ePfddxEYGIgdO3ZY/B8OurZDbm4uOnfurNlesmQJlixZgvDwcKSlpZk6fIPRtR1WrVqF8vLyajfQio+Px/vvv2/K0A1K13YoKSnBlClTcP36dTg6OiIoKAhff/01RowYIVYVDELXdrBWurZDYWEhYmJikJ+fD3d3d3Tp0gVHjhxBcHCwSeK11ss7ralerIt5sqa6/JE11c2s62Ky2RxERERGgFomNk6dOlWzrVKphGbNmuk8eVtM1lQv1sU8WVNd/sia6mZJdan3IxZERGR5iouLq0wGz8nJQUZGBjw8PODn5/fMy7fMlTXVi3VhXUzNmupmsXURNa0hIiKqg9TUVAFAtUd0dLRmn88//1zw8/MTZDKZEBYWJhw7dky8gLVkTfViXVgXU7OmullqXSSCIAhGzl2IiIiIiMjKWf+sQyIiIiIiMjomFkREREREpDcmFkREREREpDcmFkREREREpDcmFkREREREpDcmFkRmYNWqVfDz80ODBg0wbNgw3Lp166n7+/v7QyKRQCKR4N69e7Xul5SUpNlvxowZhg2aiIiI6AlMLIhEtm3bNsyaNQuff/45Tp48iQcPHmD48OHPfN0HH3yAvLw8uLq61rrPiBEjkJeXh549exoyZCIiIqJqeOdtIpEtXLgQU6dOxeDBgwEAGzZsgK+vL3788Uf06tWr1te5uLjA29v7qcd2dHSEo6MjZDKZQWMmIiIi+iOOWBCJqLCwEKdPn8aAAQM0ZT4+PujQoQMOHDggYmREREREumFiQSSi3377DQDQunXrKuWBgYGa54iIyLKlpaVp5rsNGTJE7HAAABKJBDt27KiyLZFI4ObmJlpMZPmYWBCJ6OHDhwAqEwlnZ2fNY+fOnZrniIjItMaOHVstAfj3v/8NBwcHLF26tM7HvXDhApKSkvQLTksLFizAX//6V633z8vLQ0JCgvEConqBiQWRiJycnABUfpuVkZGhebz00kua57T1ZGIyadIkY4RLRFQvrVu3DqNHj8aqVavw1ltv1fk4TZo0MdmIwM6dOzFo0CCt9/f29n7qYiBE2mBiQSSili1bAgAaNmyI1q1bax6PHj3SPKetJxOTDz74wBjhEhHVO4sXL8a0adOwZcsWjBs3TlP+73//Gx07doSjoyMaNWqEyMhIlJSU6HRstVqNxYsXo3Xr1rC3t4efnx8WLlwIALh8+TIkEgm++eYb9O7dG46OjujWrRsuXryIEydOoGvXrnB2dkb//v2rLVF+7do1nDt3Dn/6058AAL/++iv69OkDBwcHBAcHIzk5Wc9WIaoZV4UiEpG7uzu6dOmCQ4cOoU2bNgCA4uJiHD16VOfk4I/zNIiISD+zZ8/GypUrsWvXLrz44oua8ry8PIwcORKLFy/G0KFD8eDBAxw6dAiCIOh0/Dlz5mDt2rX47LPP0KtXL+Tl5eH8+fNV9omPj0dCQgL8/Pwwfvx4jBo1Ci4uLli2bBmcnJzw2muvYf78+Vi1apXmNd999x0iIiLQsGFDqNVqDBs2DF5eXjh+/Dju37/P+xqR0TCxIBLZe++9h8mTJ8PX1xcBAQGYO3cuunfvjhdeeEHs0IiI6q29e/di586dSElJQd++fas8l5eXh4qKCgwbNgwtWrQAAHTs2FGn4z948ADLli3DihUrEB0dDQBo1apVtWXGZ86ciaioKADA9OnTMXLkSKSkpGh+R0yYMKHavI2dO3dqljA/cOAAzp8/j/3798PHxwcA8NFHH6F///46xUukDV4KRSSyoUOH4v3338eECRMQEhICpVKJb775RuywiIjqtU6dOsHf3x/x8fEoLi6u8lxISAhefPFFdOzYEa+++irWrl2LwsJCnY6flZWFsrKyKiMhtcXxmJeXF4CqSYyXlxdu3ryp2S4qKsIPP/ygmV+RlZUFX19fTVIBgDdNJaNhYkFkBiZNmoRr167h4cOH2LZtGzw9PcUOiYioXmvWrBnS0tJw48YN/OlPf8KDBw80z0mlUiQnJ2Pv3r0IDg7G559/jrZt2yInJ0fr4zs6Omq1n52dneb/EomkxjK1Wq3ZfhyTr6+v1rEQGQoTCyILNXv2bDg7O+P+/fu17rNp0yY4Ozvj0KFDJoyMiMg6tGjRAj/88APy8/OrJRcSiQQvvPACFixYgDNnzkAmk2H79u1aHzswMBCOjo5ISUkxaMxPXgYFAO3atcO1a9eQl5enKTt27JhBz0n0GOdYEFmgH374AUqlEgDg4uJS636DBg1C9+7dAYA3PSIiqgNfX1+kpaVBLpcjKioK+/btQ1ZWFlJSUvDSSy+hSZMmOH78OG7duoV27dppfVwHBwfMnj0bb7/9NmQyGV544QXcunUL586dw4QJE+oUa0VFBfbu3YuZM2dqyiIjI9GmTRtER0fjk08+QVFREd577706HZ/oWZhYEFmgx5MFn8XFxeWpiQcRET1b8+bNqyQXq1evxsGDB5GQkICioiK0aNECS5cu1XlC9Lx582Bra4v58+cjNzcXTZs21es+RD/88AOcnZ3x3HPPacpsbGywfft2TJgwAWFhYfD398fy5cs1S9ESGZJE0HVtNCIiIiLS2uOkpLCw0Kijx2+++SYqKiqwcuXKOr0+KSkJM2bMwL179wwbGNUbHLEgIiIiMoHmzZtj4MCB+Ne//mWU43fo0KHOKz45OzujoqICDg4OBo6K6hOOWBAREREZUWlpKW7cuAGg8g94b29vkSOqLjs7G0DlilcBAQEiR0OWiokFERERERHpjcvNEhERERGR3phYEBERERGR3phYEBERERGR3phYEBERERGR3phYEBERERGR3phYEBERERGR3phYEBERERGR3phYEBERERGR3phYEBERERGR3v4PAdtma3DXa6kAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -72,7 +94,7 @@ ], "source": [ "# More extensive plot method\n", - "f, axs = plt.subplots(1, 2, figsize=(8,6))\n", + "f, axs = plt.subplots(1, 2, figsize=(8, 6), sharey=True)\n", "\n", "pe.plot_swrc(wos, ax=axs[0], label=\"Wosten\")\n", "pe.plot_swrc(woss, ax=axs[0], label=\"Wosten Sand\")\n", @@ -83,8 +105,8 @@ "axs[0].set_yscale(\"log\")\n", "axs[0].set_ylabel(\"\\N{GREEK SMALL LETTER PSI} [cm]\")\n", "axs[0].set_title(\"Soil Water Retention Curve\")\n", - "axs[0].set_xlabel(\"\\N{GREEK SMALL LETTER THETA} [cm\\N{SUPERSCRIPT THREE}/cm\\N{SUPERSCRIPT THREE}]\")\n", - "axs[0].set_xlim(0,0.5)\n", + "axs[0].set_xlabel(\"\\N{GREEK SMALL LETTER THETA} [-]\")\n", + "axs[0].set_xlim(0, 0.5)\n", "\n", "\n", "pe.plot_hcf(wos, ax=axs[1], label=\"Wosten\")\n", @@ -94,7 +116,6 @@ "\n", "axs[1].legend()\n", "axs[1].set_yscale(\"log\")\n", - "axs[1].set_ylabel(\"\\N{GREEK CAPITAL LETTER PSI} [cm]\")\n", "axs[1].set_title(\"Hydraulic Conductivity Function\")\n", "axs[1].set_xlabel(\"Ks [cm/d]\")\n", "axs[1].set_xscale(\"log\")\n", @@ -102,6 +123,13 @@ "\n", "f.tight_layout()" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -120,7 +148,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.9" + "version": "3.10.12" }, "orig_nbformat": 4 }, From 65e2a4a796e4f9da8881854e8d9d23038ad161a0 Mon Sep 17 00:00:00 2001 From: martinvonk Date: Wed, 27 Dec 2023 17:07:28 +0100 Subject: [PATCH 05/16] create poetry lock file --- poetry.lock | 1877 +++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1877 insertions(+) create mode 100644 poetry.lock diff --git a/poetry.lock b/poetry.lock new file mode 100644 index 0000000..6f094ac --- /dev/null +++ b/poetry.lock @@ -0,0 +1,1877 @@ +# This file is automatically @generated by Poetry 1.7.1 and should not be changed by hand. + +[[package]] +name = "appnope" +version = "0.1.3" +description = "Disable App Nap on macOS >= 10.9" +optional = false +python-versions = "*" +files = [ + {file = "appnope-0.1.3-py2.py3-none-any.whl", hash = "sha256:265a455292d0bd8a72453494fa24df5a11eb18373a60c7c0430889f22548605e"}, + {file = "appnope-0.1.3.tar.gz", hash = "sha256:02bd91c4de869fbb1e1c50aafc4098827a7a54ab2f39d9dcba6c9547ed920e24"}, +] + +[[package]] +name = "asttokens" +version = "2.4.1" +description = "Annotate AST trees with source code positions" +optional = false +python-versions = "*" +files = [ + {file = "asttokens-2.4.1-py2.py3-none-any.whl", hash = "sha256:051ed49c3dcae8913ea7cd08e46a606dba30b79993209636c4875bc1d637bc24"}, + {file = "asttokens-2.4.1.tar.gz", hash = "sha256:b03869718ba9a6eb027e134bfdf69f38a236d681c83c160d510768af11254ba0"}, +] + +[package.dependencies] +six = ">=1.12.0" + +[package.extras] +astroid = ["astroid (>=1,<2)", "astroid (>=2,<4)"] +test = ["astroid (>=1,<2)", "astroid (>=2,<4)", "pytest"] + +[[package]] +name = "black" +version = "23.12.1" +description = "The uncompromising code formatter." +optional = false +python-versions = ">=3.8" +files = [ + {file = "black-23.12.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e0aaf6041986767a5e0ce663c7a2f0e9eaf21e6ff87a5f95cbf3675bfd4c41d2"}, + {file = "black-23.12.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c88b3711d12905b74206227109272673edce0cb29f27e1385f33b0163c414bba"}, + {file = "black-23.12.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a920b569dc6b3472513ba6ddea21f440d4b4c699494d2e972a1753cdc25df7b0"}, + {file = "black-23.12.1-cp310-cp310-win_amd64.whl", hash = "sha256:3fa4be75ef2a6b96ea8d92b1587dd8cb3a35c7e3d51f0738ced0781c3aa3a5a3"}, + {file = "black-23.12.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8d4df77958a622f9b5a4c96edb4b8c0034f8434032ab11077ec6c56ae9f384ba"}, + {file = "black-23.12.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:602cfb1196dc692424c70b6507593a2b29aac0547c1be9a1d1365f0d964c353b"}, + {file = "black-23.12.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9c4352800f14be5b4864016882cdba10755bd50805c95f728011bcb47a4afd59"}, + {file = "black-23.12.1-cp311-cp311-win_amd64.whl", hash = "sha256:0808494f2b2df923ffc5723ed3c7b096bd76341f6213989759287611e9837d50"}, + {file = "black-23.12.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:25e57fd232a6d6ff3f4478a6fd0580838e47c93c83eaf1ccc92d4faf27112c4e"}, + {file = "black-23.12.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2d9e13db441c509a3763a7a3d9a49ccc1b4e974a47be4e08ade2a228876500ec"}, + {file = "black-23.12.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6d1bd9c210f8b109b1762ec9fd36592fdd528485aadb3f5849b2740ef17e674e"}, + {file = "black-23.12.1-cp312-cp312-win_amd64.whl", hash = "sha256:ae76c22bde5cbb6bfd211ec343ded2163bba7883c7bc77f6b756a1049436fbb9"}, + {file = "black-23.12.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1fa88a0f74e50e4487477bc0bb900c6781dbddfdfa32691e780bf854c3b4a47f"}, + {file = "black-23.12.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a4d6a9668e45ad99d2f8ec70d5c8c04ef4f32f648ef39048d010b0689832ec6d"}, + {file = "black-23.12.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b18fb2ae6c4bb63eebe5be6bd869ba2f14fd0259bda7d18a46b764d8fb86298a"}, + {file = "black-23.12.1-cp38-cp38-win_amd64.whl", hash = "sha256:c04b6d9d20e9c13f43eee8ea87d44156b8505ca8a3c878773f68b4e4812a421e"}, + {file = "black-23.12.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3e1b38b3135fd4c025c28c55ddfc236b05af657828a8a6abe5deec419a0b7055"}, + {file = "black-23.12.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4f0031eaa7b921db76decd73636ef3a12c942ed367d8c3841a0739412b260a54"}, + {file = "black-23.12.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:97e56155c6b737854e60a9ab1c598ff2533d57e7506d97af5481141671abf3ea"}, + {file = "black-23.12.1-cp39-cp39-win_amd64.whl", hash = "sha256:dd15245c8b68fe2b6bd0f32c1556509d11bb33aec9b5d0866dd8e2ed3dba09c2"}, + {file = "black-23.12.1-py3-none-any.whl", hash = "sha256:78baad24af0f033958cad29731e27363183e140962595def56423e626f4bee3e"}, + {file = "black-23.12.1.tar.gz", hash = "sha256:4ce3ef14ebe8d9509188014d96af1c456a910d5b5cbf434a09fef7e024b3d0d5"}, +] + +[package.dependencies] +click = ">=8.0.0" +ipython = {version = ">=7.8.0", optional = true, markers = "extra == \"jupyter\""} +mypy-extensions = ">=0.4.3" +packaging = ">=22.0" +pathspec = ">=0.9.0" +platformdirs = ">=2" +tokenize-rt = {version = ">=3.2.0", optional = true, markers = "extra == \"jupyter\""} +tomli = {version = ">=1.1.0", markers = "python_version < \"3.11\""} +typing-extensions = {version = ">=4.0.1", markers = "python_version < \"3.11\""} + +[package.extras] +colorama = ["colorama (>=0.4.3)"] +d = ["aiohttp (>=3.7.4)", "aiohttp (>=3.7.4,!=3.9.0)"] +jupyter = ["ipython (>=7.8.0)", "tokenize-rt (>=3.2.0)"] +uvloop = ["uvloop (>=0.15.2)"] + +[[package]] +name = "cachetools" +version = "5.3.2" +description = "Extensible memoizing collections and decorators" +optional = false +python-versions = ">=3.7" +files = [ + {file = "cachetools-5.3.2-py3-none-any.whl", hash = "sha256:861f35a13a451f94e301ce2bec7cac63e881232ccce7ed67fab9b5df4d3beaa1"}, + {file = "cachetools-5.3.2.tar.gz", hash = "sha256:086ee420196f7b2ab9ca2db2520aca326318b68fe5ba8bc4d49cca91add450f2"}, +] + +[[package]] +name = "cffi" +version = "1.16.0" +description = "Foreign Function Interface for Python calling C code." +optional = false +python-versions = ">=3.8" +files = [ + {file = "cffi-1.16.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:6b3d6606d369fc1da4fd8c357d026317fbb9c9b75d36dc16e90e84c26854b088"}, + {file = "cffi-1.16.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ac0f5edd2360eea2f1daa9e26a41db02dd4b0451b48f7c318e217ee092a213e9"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7e61e3e4fa664a8588aa25c883eab612a188c725755afff6289454d6362b9673"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a72e8961a86d19bdb45851d8f1f08b041ea37d2bd8d4fd19903bc3083d80c896"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5b50bf3f55561dac5438f8e70bfcdfd74543fd60df5fa5f62d94e5867deca684"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7651c50c8c5ef7bdb41108b7b8c5a83013bfaa8a935590c5d74627c047a583c7"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4108df7fe9b707191e55f33efbcb2d81928e10cea45527879a4749cbe472614"}, + {file = "cffi-1.16.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:32c68ef735dbe5857c810328cb2481e24722a59a2003018885514d4c09af9743"}, + {file = "cffi-1.16.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:673739cb539f8cdaa07d92d02efa93c9ccf87e345b9a0b556e3ecc666718468d"}, + {file = "cffi-1.16.0-cp310-cp310-win32.whl", hash = "sha256:9f90389693731ff1f659e55c7d1640e2ec43ff725cc61b04b2f9c6d8d017df6a"}, + {file = "cffi-1.16.0-cp310-cp310-win_amd64.whl", hash = "sha256:e6024675e67af929088fda399b2094574609396b1decb609c55fa58b028a32a1"}, + {file = "cffi-1.16.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b84834d0cf97e7d27dd5b7f3aca7b6e9263c56308ab9dc8aae9784abb774d404"}, + {file = "cffi-1.16.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1b8ebc27c014c59692bb2664c7d13ce7a6e9a629be20e54e7271fa696ff2b417"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ee07e47c12890ef248766a6e55bd38ebfb2bb8edd4142d56db91b21ea68b7627"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8a9d3ebe49f084ad71f9269834ceccbf398253c9fac910c4fd7053ff1386936"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e70f54f1796669ef691ca07d046cd81a29cb4deb1e5f942003f401c0c4a2695d"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5bf44d66cdf9e893637896c7faa22298baebcd18d1ddb6d2626a6e39793a1d56"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7b78010e7b97fef4bee1e896df8a4bbb6712b7f05b7ef630f9d1da00f6444d2e"}, + {file = "cffi-1.16.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:c6a164aa47843fb1b01e941d385aab7215563bb8816d80ff3a363a9f8448a8dc"}, + {file = "cffi-1.16.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e09f3ff613345df5e8c3667da1d918f9149bd623cd9070c983c013792a9a62eb"}, + {file = "cffi-1.16.0-cp311-cp311-win32.whl", hash = "sha256:2c56b361916f390cd758a57f2e16233eb4f64bcbeee88a4881ea90fca14dc6ab"}, + {file = "cffi-1.16.0-cp311-cp311-win_amd64.whl", hash = "sha256:db8e577c19c0fda0beb7e0d4e09e0ba74b1e4c092e0e40bfa12fe05b6f6d75ba"}, + {file = "cffi-1.16.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:fa3a0128b152627161ce47201262d3140edb5a5c3da88d73a1b790a959126956"}, + {file = "cffi-1.16.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:68e7c44931cc171c54ccb702482e9fc723192e88d25a0e133edd7aff8fcd1f6e"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:abd808f9c129ba2beda4cfc53bde801e5bcf9d6e0f22f095e45327c038bfe68e"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88e2b3c14bdb32e440be531ade29d3c50a1a59cd4e51b1dd8b0865c54ea5d2e2"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fcc8eb6d5902bb1cf6dc4f187ee3ea80a1eba0a89aba40a5cb20a5087d961357"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b7be2d771cdba2942e13215c4e340bfd76398e9227ad10402a8767ab1865d2e6"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e715596e683d2ce000574bae5d07bd522c781a822866c20495e52520564f0969"}, + {file = "cffi-1.16.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2d92b25dbf6cae33f65005baf472d2c245c050b1ce709cc4588cdcdd5495b520"}, + {file = "cffi-1.16.0-cp312-cp312-win32.whl", hash = "sha256:b2ca4e77f9f47c55c194982e10f058db063937845bb2b7a86c84a6cfe0aefa8b"}, + {file = "cffi-1.16.0-cp312-cp312-win_amd64.whl", hash = "sha256:68678abf380b42ce21a5f2abde8efee05c114c2fdb2e9eef2efdb0257fba1235"}, + {file = "cffi-1.16.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0c9ef6ff37e974b73c25eecc13952c55bceed9112be2d9d938ded8e856138bcc"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a09582f178759ee8128d9270cd1344154fd473bb77d94ce0aeb2a93ebf0feaf0"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e760191dd42581e023a68b758769e2da259b5d52e3103c6060ddc02c9edb8d7b"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:80876338e19c951fdfed6198e70bc88f1c9758b94578d5a7c4c91a87af3cf31c"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a6a14b17d7e17fa0d207ac08642c8820f84f25ce17a442fd15e27ea18d67c59b"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6602bc8dc6f3a9e02b6c22c4fc1e47aa50f8f8e6d3f78a5e16ac33ef5fefa324"}, + {file = "cffi-1.16.0-cp38-cp38-win32.whl", hash = "sha256:131fd094d1065b19540c3d72594260f118b231090295d8c34e19a7bbcf2e860a"}, + {file = "cffi-1.16.0-cp38-cp38-win_amd64.whl", hash = "sha256:31d13b0f99e0836b7ff893d37af07366ebc90b678b6664c955b54561fc36ef36"}, + {file = "cffi-1.16.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:582215a0e9adbe0e379761260553ba11c58943e4bbe9c36430c4ca6ac74b15ed"}, + {file = "cffi-1.16.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b29ebffcf550f9da55bec9e02ad430c992a87e5f512cd63388abb76f1036d8d2"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dc9b18bf40cc75f66f40a7379f6a9513244fe33c0e8aa72e2d56b0196a7ef872"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9cb4a35b3642fc5c005a6755a5d17c6c8b6bcb6981baf81cea8bfbc8903e8ba8"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b86851a328eedc692acf81fb05444bdf1891747c25af7529e39ddafaf68a4f3f"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c0f31130ebc2d37cdd8e44605fb5fa7ad59049298b3f745c74fa74c62fbfcfc4"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f8e709127c6c77446a8c0a8c8bf3c8ee706a06cd44b1e827c3e6a2ee6b8c098"}, + {file = "cffi-1.16.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:748dcd1e3d3d7cd5443ef03ce8685043294ad6bd7c02a38d1bd367cfd968e000"}, + {file = "cffi-1.16.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8895613bcc094d4a1b2dbe179d88d7fb4a15cee43c052e8885783fac397d91fe"}, + {file = "cffi-1.16.0-cp39-cp39-win32.whl", hash = "sha256:ed86a35631f7bfbb28e108dd96773b9d5a6ce4811cf6ea468bb6a359b256b1e4"}, + {file = "cffi-1.16.0-cp39-cp39-win_amd64.whl", hash = "sha256:3686dffb02459559c74dd3d81748269ffb0eb027c39a6fc99502de37d501faa8"}, + {file = "cffi-1.16.0.tar.gz", hash = "sha256:bcb3ef43e58665bbda2fb198698fcae6776483e0c4a631aa5647806c25e02cc0"}, +] + +[package.dependencies] +pycparser = "*" + +[[package]] +name = "chardet" +version = "5.2.0" +description = "Universal encoding detector for Python 3" +optional = false +python-versions = ">=3.7" +files = [ + {file = "chardet-5.2.0-py3-none-any.whl", hash = "sha256:e1cf59446890a00105fe7b7912492ea04b6e6f06d4b742b2c788469e34c82970"}, + {file = "chardet-5.2.0.tar.gz", hash = "sha256:1b3b6ff479a8c414bc3fa2c0852995695c4a026dcd6d0633b2dd092ca39c1cf7"}, +] + +[[package]] +name = "click" +version = "8.1.7" +description = "Composable command line interface toolkit" +optional = false +python-versions = ">=3.7" +files = [ + {file = "click-8.1.7-py3-none-any.whl", hash = "sha256:ae74fb96c20a0277a1d615f1e4d73c8414f5a98db8b799a7931d1582f3390c28"}, + {file = "click-8.1.7.tar.gz", hash = "sha256:ca9853ad459e787e2192211578cc907e7594e294c7ccc834310722b41b9ca6de"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "platform_system == \"Windows\""} + +[[package]] +name = "colorama" +version = "0.4.6" +description = "Cross-platform colored terminal text." +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" +files = [ + {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"}, + {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, +] + +[[package]] +name = "comm" +version = "0.2.0" +description = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc." +optional = false +python-versions = ">=3.8" +files = [ + {file = "comm-0.2.0-py3-none-any.whl", hash = "sha256:2da8d9ebb8dd7bfc247adaff99f24dce705638a8042b85cb995066793e391001"}, + {file = "comm-0.2.0.tar.gz", hash = "sha256:a517ea2ca28931c7007a7a99c562a0fa5883cfb48963140cf642c41c948498be"}, +] + +[package.dependencies] +traitlets = ">=4" + +[package.extras] +test = ["pytest"] + +[[package]] +name = "contourpy" +version = "1.2.0" +description = "Python library for calculating contours of 2D quadrilateral grids" +optional = false +python-versions = ">=3.9" +files = [ + {file = "contourpy-1.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0274c1cb63625972c0c007ab14dd9ba9e199c36ae1a231ce45d725cbcbfd10a8"}, + {file = "contourpy-1.2.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ab459a1cbbf18e8698399c595a01f6dcc5c138220ca3ea9e7e6126232d102bb4"}, + {file = "contourpy-1.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6fdd887f17c2f4572ce548461e4f96396681212d858cae7bd52ba3310bc6f00f"}, + {file = "contourpy-1.2.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5d16edfc3fc09968e09ddffada434b3bf989bf4911535e04eada58469873e28e"}, + {file = "contourpy-1.2.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1c203f617abc0dde5792beb586f827021069fb6d403d7f4d5c2b543d87edceb9"}, + {file = "contourpy-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b69303ceb2e4d4f146bf82fda78891ef7bcd80c41bf16bfca3d0d7eb545448aa"}, + {file = "contourpy-1.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:884c3f9d42d7218304bc74a8a7693d172685c84bd7ab2bab1ee567b769696df9"}, + {file = "contourpy-1.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4a1b1208102be6e851f20066bf0e7a96b7d48a07c9b0cfe6d0d4545c2f6cadab"}, + {file = "contourpy-1.2.0-cp310-cp310-win32.whl", hash = "sha256:34b9071c040d6fe45d9826cbbe3727d20d83f1b6110d219b83eb0e2a01d79488"}, + {file = "contourpy-1.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:bd2f1ae63998da104f16a8b788f685e55d65760cd1929518fd94cd682bf03e41"}, + {file = "contourpy-1.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:dd10c26b4eadae44783c45ad6655220426f971c61d9b239e6f7b16d5cdaaa727"}, + {file = "contourpy-1.2.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5c6b28956b7b232ae801406e529ad7b350d3f09a4fde958dfdf3c0520cdde0dd"}, + {file = "contourpy-1.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ebeac59e9e1eb4b84940d076d9f9a6cec0064e241818bcb6e32124cc5c3e377a"}, + {file = "contourpy-1.2.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:139d8d2e1c1dd52d78682f505e980f592ba53c9f73bd6be102233e358b401063"}, + {file = "contourpy-1.2.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1e9dc350fb4c58adc64df3e0703ab076f60aac06e67d48b3848c23647ae4310e"}, + {file = "contourpy-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18fc2b4ed8e4a8fe849d18dce4bd3c7ea637758c6343a1f2bae1e9bd4c9f4686"}, + {file = "contourpy-1.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:16a7380e943a6d52472096cb7ad5264ecee36ed60888e2a3d3814991a0107286"}, + {file = "contourpy-1.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:8d8faf05be5ec8e02a4d86f616fc2a0322ff4a4ce26c0f09d9f7fb5330a35c95"}, + {file = "contourpy-1.2.0-cp311-cp311-win32.whl", hash = "sha256:67b7f17679fa62ec82b7e3e611c43a016b887bd64fb933b3ae8638583006c6d6"}, + {file = "contourpy-1.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:99ad97258985328b4f207a5e777c1b44a83bfe7cf1f87b99f9c11d4ee477c4de"}, + {file = "contourpy-1.2.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:575bcaf957a25d1194903a10bc9f316c136c19f24e0985a2b9b5608bdf5dbfe0"}, + {file = "contourpy-1.2.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:9e6c93b5b2dbcedad20a2f18ec22cae47da0d705d454308063421a3b290d9ea4"}, + {file = "contourpy-1.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:464b423bc2a009088f19bdf1f232299e8b6917963e2b7e1d277da5041f33a779"}, + {file = "contourpy-1.2.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:68ce4788b7d93e47f84edd3f1f95acdcd142ae60bc0e5493bfd120683d2d4316"}, + {file = "contourpy-1.2.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3d7d1f8871998cdff5d2ff6a087e5e1780139abe2838e85b0b46b7ae6cc25399"}, + {file = "contourpy-1.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6e739530c662a8d6d42c37c2ed52a6f0932c2d4a3e8c1f90692ad0ce1274abe0"}, + {file = "contourpy-1.2.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:247b9d16535acaa766d03037d8e8fb20866d054d3c7fbf6fd1f993f11fc60ca0"}, + {file = "contourpy-1.2.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:461e3ae84cd90b30f8d533f07d87c00379644205b1d33a5ea03381edc4b69431"}, + {file = "contourpy-1.2.0-cp312-cp312-win32.whl", hash = "sha256:1c2559d6cffc94890b0529ea7eeecc20d6fadc1539273aa27faf503eb4656d8f"}, + {file = "contourpy-1.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:491b1917afdd8638a05b611a56d46587d5a632cabead889a5440f7c638bc6ed9"}, + {file = "contourpy-1.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5fd1810973a375ca0e097dee059c407913ba35723b111df75671a1976efa04bc"}, + {file = "contourpy-1.2.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:999c71939aad2780f003979b25ac5b8f2df651dac7b38fb8ce6c46ba5abe6ae9"}, + {file = "contourpy-1.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b7caf9b241464c404613512d5594a6e2ff0cc9cb5615c9475cc1d9b514218ae8"}, + {file = "contourpy-1.2.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:266270c6f6608340f6c9836a0fb9b367be61dde0c9a9a18d5ece97774105ff3e"}, + {file = "contourpy-1.2.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dbd50d0a0539ae2e96e537553aff6d02c10ed165ef40c65b0e27e744a0f10af8"}, + {file = "contourpy-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:11f8d2554e52f459918f7b8e6aa20ec2a3bce35ce95c1f0ef4ba36fbda306df5"}, + {file = "contourpy-1.2.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ce96dd400486e80ac7d195b2d800b03e3e6a787e2a522bfb83755938465a819e"}, + {file = "contourpy-1.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6d3364b999c62f539cd403f8123ae426da946e142312a514162adb2addd8d808"}, + {file = "contourpy-1.2.0-cp39-cp39-win32.whl", hash = "sha256:1c88dfb9e0c77612febebb6ac69d44a8d81e3dc60f993215425b62c1161353f4"}, + {file = "contourpy-1.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:78e6ad33cf2e2e80c5dfaaa0beec3d61face0fb650557100ee36db808bfa6843"}, + {file = "contourpy-1.2.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:be16975d94c320432657ad2402f6760990cb640c161ae6da1363051805fa8108"}, + {file = "contourpy-1.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b95a225d4948b26a28c08307a60ac00fb8671b14f2047fc5476613252a129776"}, + {file = "contourpy-1.2.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:0d7e03c0f9a4f90dc18d4e77e9ef4ec7b7bbb437f7f675be8e530d65ae6ef956"}, + {file = "contourpy-1.2.0.tar.gz", hash = "sha256:171f311cb758de7da13fc53af221ae47a5877be5a0843a9fe150818c51ed276a"}, +] + +[package.dependencies] +numpy = ">=1.20,<2.0" + +[package.extras] +bokeh = ["bokeh", "selenium"] +docs = ["furo", "sphinx (>=7.2)", "sphinx-copybutton"] +mypy = ["contourpy[bokeh,docs]", "docutils-stubs", "mypy (==1.6.1)", "types-Pillow"] +test = ["Pillow", "contourpy[test-no-images]", "matplotlib"] +test-no-images = ["pytest", "pytest-cov", "pytest-xdist", "wurlitzer"] + +[[package]] +name = "coverage" +version = "7.3.4" +description = "Code coverage measurement for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "coverage-7.3.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:aff2bd3d585969cc4486bfc69655e862028b689404563e6b549e6a8244f226df"}, + {file = "coverage-7.3.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e4353923f38d752ecfbd3f1f20bf7a3546993ae5ecd7c07fd2f25d40b4e54571"}, + {file = "coverage-7.3.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ea473c37872f0159294f7073f3fa72f68b03a129799f3533b2bb44d5e9fa4f82"}, + {file = "coverage-7.3.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5214362abf26e254d749fc0c18af4c57b532a4bfde1a057565616dd3b8d7cc94"}, + {file = "coverage-7.3.4-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f99b7d3f7a7adfa3d11e3a48d1a91bb65739555dd6a0d3fa68aa5852d962e5b1"}, + {file = "coverage-7.3.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:74397a1263275bea9d736572d4cf338efaade2de9ff759f9c26bcdceb383bb49"}, + {file = "coverage-7.3.4-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:f154bd866318185ef5865ace5be3ac047b6d1cc0aeecf53bf83fe846f4384d5d"}, + {file = "coverage-7.3.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:e0d84099ea7cba9ff467f9c6f747e3fc3906e2aadac1ce7b41add72e8d0a3712"}, + {file = "coverage-7.3.4-cp310-cp310-win32.whl", hash = "sha256:3f477fb8a56e0c603587b8278d9dbd32e54bcc2922d62405f65574bd76eba78a"}, + {file = "coverage-7.3.4-cp310-cp310-win_amd64.whl", hash = "sha256:c75738ce13d257efbb6633a049fb2ed8e87e2e6c2e906c52d1093a4d08d67c6b"}, + {file = "coverage-7.3.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:997aa14b3e014339d8101b9886063c5d06238848905d9ad6c6eabe533440a9a7"}, + {file = "coverage-7.3.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8a9c5bc5db3eb4cd55ecb8397d8e9b70247904f8eca718cc53c12dcc98e59fc8"}, + {file = "coverage-7.3.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:27ee94f088397d1feea3cb524e4313ff0410ead7d968029ecc4bc5a7e1d34fbf"}, + {file = "coverage-7.3.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8ce03e25e18dd9bf44723e83bc202114817f3367789052dc9e5b5c79f40cf59d"}, + {file = "coverage-7.3.4-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85072e99474d894e5df582faec04abe137b28972d5e466999bc64fc37f564a03"}, + {file = "coverage-7.3.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a877810ef918d0d345b783fc569608804f3ed2507bf32f14f652e4eaf5d8f8d0"}, + {file = "coverage-7.3.4-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:9ac17b94ab4ca66cf803f2b22d47e392f0977f9da838bf71d1f0db6c32893cb9"}, + {file = "coverage-7.3.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:36d75ef2acab74dc948d0b537ef021306796da551e8ac8b467810911000af66a"}, + {file = "coverage-7.3.4-cp311-cp311-win32.whl", hash = "sha256:47ee56c2cd445ea35a8cc3ad5c8134cb9bece3a5cb50bb8265514208d0a65928"}, + {file = "coverage-7.3.4-cp311-cp311-win_amd64.whl", hash = "sha256:11ab62d0ce5d9324915726f611f511a761efcca970bd49d876cf831b4de65be5"}, + {file = "coverage-7.3.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:33e63c578f4acce1b6cd292a66bc30164495010f1091d4b7529d014845cd9bee"}, + {file = "coverage-7.3.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:782693b817218169bfeb9b9ba7f4a9f242764e180ac9589b45112571f32a0ba6"}, + {file = "coverage-7.3.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7c4277ddaad9293454da19121c59f2d850f16bcb27f71f89a5c4836906eb35ef"}, + {file = "coverage-7.3.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3d892a19ae24b9801771a5a989fb3e850bd1ad2e2b6e83e949c65e8f37bc67a1"}, + {file = "coverage-7.3.4-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3024ec1b3a221bd10b5d87337d0373c2bcaf7afd86d42081afe39b3e1820323b"}, + {file = "coverage-7.3.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:a1c3e9d2bbd6f3f79cfecd6f20854f4dc0c6e0ec317df2b265266d0dc06535f1"}, + {file = "coverage-7.3.4-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:e91029d7f151d8bf5ab7d8bfe2c3dbefd239759d642b211a677bc0709c9fdb96"}, + {file = "coverage-7.3.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:6879fe41c60080aa4bb59703a526c54e0412b77e649a0d06a61782ecf0853ee1"}, + {file = "coverage-7.3.4-cp312-cp312-win32.whl", hash = "sha256:fd2f8a641f8f193968afdc8fd1697e602e199931012b574194052d132a79be13"}, + {file = "coverage-7.3.4-cp312-cp312-win_amd64.whl", hash = "sha256:d1d0ce6c6947a3a4aa5479bebceff2c807b9f3b529b637e2b33dea4468d75fc7"}, + {file = "coverage-7.3.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:36797b3625d1da885b369bdaaa3b0d9fb8865caed3c2b8230afaa6005434aa2f"}, + {file = "coverage-7.3.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:bfed0ec4b419fbc807dec417c401499ea869436910e1ca524cfb4f81cf3f60e7"}, + {file = "coverage-7.3.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f97ff5a9fc2ca47f3383482858dd2cb8ddbf7514427eecf5aa5f7992d0571429"}, + {file = "coverage-7.3.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:607b6c6b35aa49defaebf4526729bd5238bc36fe3ef1a417d9839e1d96ee1e4c"}, + {file = "coverage-7.3.4-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a8e258dcc335055ab59fe79f1dec217d9fb0cdace103d6b5c6df6b75915e7959"}, + {file = "coverage-7.3.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:a02ac7c51819702b384fea5ee033a7c202f732a2a2f1fe6c41e3d4019828c8d3"}, + {file = "coverage-7.3.4-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:b710869a15b8caf02e31d16487a931dbe78335462a122c8603bb9bd401ff6fb2"}, + {file = "coverage-7.3.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:c6a23ae9348a7a92e7f750f9b7e828448e428e99c24616dec93a0720342f241d"}, + {file = "coverage-7.3.4-cp38-cp38-win32.whl", hash = "sha256:758ebaf74578b73f727acc4e8ab4b16ab6f22a5ffd7dd254e5946aba42a4ce76"}, + {file = "coverage-7.3.4-cp38-cp38-win_amd64.whl", hash = "sha256:309ed6a559bc942b7cc721f2976326efbfe81fc2b8f601c722bff927328507dc"}, + {file = "coverage-7.3.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:aefbb29dc56317a4fcb2f3857d5bce9b881038ed7e5aa5d3bcab25bd23f57328"}, + {file = "coverage-7.3.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:183c16173a70caf92e2dfcfe7c7a576de6fa9edc4119b8e13f91db7ca33a7923"}, + {file = "coverage-7.3.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a4184dcbe4f98d86470273e758f1d24191ca095412e4335ff27b417291f5964"}, + {file = "coverage-7.3.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:93698ac0995516ccdca55342599a1463ed2e2d8942316da31686d4d614597ef9"}, + {file = "coverage-7.3.4-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fb220b3596358a86361139edce40d97da7458412d412e1e10c8e1970ee8c09ab"}, + {file = "coverage-7.3.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d5b14abde6f8d969e6b9dd8c7a013d9a2b52af1235fe7bebef25ad5c8f47fa18"}, + {file = "coverage-7.3.4-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:610afaf929dc0e09a5eef6981edb6a57a46b7eceff151947b836d869d6d567c1"}, + {file = "coverage-7.3.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:d6ed790728fb71e6b8247bd28e77e99d0c276dff952389b5388169b8ca7b1c28"}, + {file = "coverage-7.3.4-cp39-cp39-win32.whl", hash = "sha256:c15fdfb141fcf6a900e68bfa35689e1256a670db32b96e7a931cab4a0e1600e5"}, + {file = "coverage-7.3.4-cp39-cp39-win_amd64.whl", hash = "sha256:38d0b307c4d99a7aca4e00cad4311b7c51b7ac38fb7dea2abe0d182dd4008e05"}, + {file = "coverage-7.3.4-pp38.pp39.pp310-none-any.whl", hash = "sha256:b1e0f25ae99cf247abfb3f0fac7ae25739e4cd96bf1afa3537827c576b4847e5"}, + {file = "coverage-7.3.4.tar.gz", hash = "sha256:020d56d2da5bc22a0e00a5b0d54597ee91ad72446fa4cf1b97c35022f6b6dbf0"}, +] + +[package.dependencies] +tomli = {version = "*", optional = true, markers = "python_full_version <= \"3.11.0a6\" and extra == \"toml\""} + +[package.extras] +toml = ["tomli"] + +[[package]] +name = "cycler" +version = "0.12.1" +description = "Composable style cycles" +optional = false +python-versions = ">=3.8" +files = [ + {file = "cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30"}, + {file = "cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c"}, +] + +[package.extras] +docs = ["ipython", "matplotlib", "numpydoc", "sphinx"] +tests = ["pytest", "pytest-cov", "pytest-xdist"] + +[[package]] +name = "debugpy" +version = "1.8.0" +description = "An implementation of the Debug Adapter Protocol for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "debugpy-1.8.0-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:7fb95ca78f7ac43393cd0e0f2b6deda438ec7c5e47fa5d38553340897d2fbdfb"}, + {file = "debugpy-1.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ef9ab7df0b9a42ed9c878afd3eaaff471fce3fa73df96022e1f5c9f8f8c87ada"}, + {file = "debugpy-1.8.0-cp310-cp310-win32.whl", hash = "sha256:a8b7a2fd27cd9f3553ac112f356ad4ca93338feadd8910277aff71ab24d8775f"}, + {file = "debugpy-1.8.0-cp310-cp310-win_amd64.whl", hash = "sha256:5d9de202f5d42e62f932507ee8b21e30d49aae7e46d5b1dd5c908db1d7068637"}, + {file = "debugpy-1.8.0-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:ef54404365fae8d45cf450d0544ee40cefbcb9cb85ea7afe89a963c27028261e"}, + {file = "debugpy-1.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:60009b132c91951354f54363f8ebdf7457aeb150e84abba5ae251b8e9f29a8a6"}, + {file = "debugpy-1.8.0-cp311-cp311-win32.whl", hash = "sha256:8cd0197141eb9e8a4566794550cfdcdb8b3db0818bdf8c49a8e8f8053e56e38b"}, + {file = "debugpy-1.8.0-cp311-cp311-win_amd64.whl", hash = "sha256:a64093656c4c64dc6a438e11d59369875d200bd5abb8f9b26c1f5f723622e153"}, + {file = "debugpy-1.8.0-cp38-cp38-macosx_11_0_x86_64.whl", hash = "sha256:b05a6b503ed520ad58c8dc682749113d2fd9f41ffd45daec16e558ca884008cd"}, + {file = "debugpy-1.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c6fb41c98ec51dd010d7ed650accfd07a87fe5e93eca9d5f584d0578f28f35f"}, + {file = "debugpy-1.8.0-cp38-cp38-win32.whl", hash = "sha256:46ab6780159eeabb43c1495d9c84cf85d62975e48b6ec21ee10c95767c0590aa"}, + {file = "debugpy-1.8.0-cp38-cp38-win_amd64.whl", hash = "sha256:bdc5ef99d14b9c0fcb35351b4fbfc06ac0ee576aeab6b2511702e5a648a2e595"}, + {file = "debugpy-1.8.0-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:61eab4a4c8b6125d41a34bad4e5fe3d2cc145caecd63c3fe953be4cc53e65bf8"}, + {file = "debugpy-1.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:125b9a637e013f9faac0a3d6a82bd17c8b5d2c875fb6b7e2772c5aba6d082332"}, + {file = "debugpy-1.8.0-cp39-cp39-win32.whl", hash = "sha256:57161629133113c97b387382045649a2b985a348f0c9366e22217c87b68b73c6"}, + {file = "debugpy-1.8.0-cp39-cp39-win_amd64.whl", hash = "sha256:e3412f9faa9ade82aa64a50b602544efcba848c91384e9f93497a458767e6926"}, + {file = "debugpy-1.8.0-py2.py3-none-any.whl", hash = "sha256:9c9b0ac1ce2a42888199df1a1906e45e6f3c9555497643a85e0bf2406e3ffbc4"}, + {file = "debugpy-1.8.0.zip", hash = "sha256:12af2c55b419521e33d5fb21bd022df0b5eb267c3e178f1d374a63a2a6bdccd0"}, +] + +[[package]] +name = "decorator" +version = "5.1.1" +description = "Decorators for Humans" +optional = false +python-versions = ">=3.5" +files = [ + {file = "decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186"}, + {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, +] + +[[package]] +name = "distlib" +version = "0.3.8" +description = "Distribution utilities" +optional = false +python-versions = "*" +files = [ + {file = "distlib-0.3.8-py2.py3-none-any.whl", hash = "sha256:034db59a0b96f8ca18035f36290806a9a6e6bd9d1ff91e45a7f172eb17e51784"}, + {file = "distlib-0.3.8.tar.gz", hash = "sha256:1530ea13e350031b6312d8580ddb6b27a104275a31106523b8f123787f494f64"}, +] + +[[package]] +name = "et-xmlfile" +version = "1.1.0" +description = "An implementation of lxml.xmlfile for the standard library" +optional = false +python-versions = ">=3.6" +files = [ + {file = "et_xmlfile-1.1.0-py3-none-any.whl", hash = "sha256:a2ba85d1d6a74ef63837eed693bcb89c3f752169b0e3e7ae5b16ca5e1b3deada"}, + {file = "et_xmlfile-1.1.0.tar.gz", hash = "sha256:8eb9e2bc2f8c97e37a2dc85a09ecdcdec9d8a396530a6d5a33b30b9a92da0c5c"}, +] + +[[package]] +name = "exceptiongroup" +version = "1.2.0" +description = "Backport of PEP 654 (exception groups)" +optional = false +python-versions = ">=3.7" +files = [ + {file = "exceptiongroup-1.2.0-py3-none-any.whl", hash = "sha256:4bfd3996ac73b41e9b9628b04e079f193850720ea5945fc96a08633c66912f14"}, + {file = "exceptiongroup-1.2.0.tar.gz", hash = "sha256:91f5c769735f051a4290d52edd0858999b57e5876e9f85937691bd4c9fa3ed68"}, +] + +[package.extras] +test = ["pytest (>=6)"] + +[[package]] +name = "executing" +version = "2.0.1" +description = "Get the currently executing AST node of a frame, and other information" +optional = false +python-versions = ">=3.5" +files = [ + {file = "executing-2.0.1-py2.py3-none-any.whl", hash = "sha256:eac49ca94516ccc753f9fb5ce82603156e590b27525a8bc32cce8ae302eb61bc"}, + {file = "executing-2.0.1.tar.gz", hash = "sha256:35afe2ce3affba8ee97f2d69927fa823b08b472b7b994e36a52a964b93d16147"}, +] + +[package.extras] +tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"] + +[[package]] +name = "filelock" +version = "3.13.1" +description = "A platform independent file lock." +optional = false +python-versions = ">=3.8" +files = [ + {file = "filelock-3.13.1-py3-none-any.whl", hash = "sha256:57dbda9b35157b05fb3e58ee91448612eb674172fab98ee235ccb0b5bee19a1c"}, + {file = "filelock-3.13.1.tar.gz", hash = "sha256:521f5f56c50f8426f5e03ad3b281b490a87ef15bc6c526f168290f0c7148d44e"}, +] + +[package.extras] +docs = ["furo (>=2023.9.10)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.24)"] +testing = ["covdefaults (>=2.3)", "coverage (>=7.3.2)", "diff-cover (>=8)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)", "pytest-timeout (>=2.2)"] +typing = ["typing-extensions (>=4.8)"] + +[[package]] +name = "flake8" +version = "6.1.0" +description = "the modular source code checker: pep8 pyflakes and co" +optional = false +python-versions = ">=3.8.1" +files = [ + {file = "flake8-6.1.0-py2.py3-none-any.whl", hash = "sha256:ffdfce58ea94c6580c77888a86506937f9a1a227dfcd15f245d694ae20a6b6e5"}, + {file = "flake8-6.1.0.tar.gz", hash = "sha256:d5b3857f07c030bdb5bf41c7f53799571d75c4491748a3adcd47de929e34cd23"}, +] + +[package.dependencies] +mccabe = ">=0.7.0,<0.8.0" +pycodestyle = ">=2.11.0,<2.12.0" +pyflakes = ">=3.1.0,<3.2.0" + +[[package]] +name = "fonttools" +version = "4.47.0" +description = "Tools to manipulate font files" +optional = false +python-versions = ">=3.8" +files = [ + {file = "fonttools-4.47.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:2d2404107626f97a221dc1a65b05396d2bb2ce38e435f64f26ed2369f68675d9"}, + {file = "fonttools-4.47.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c01f409be619a9a0f5590389e37ccb58b47264939f0e8d58bfa1f3ba07d22671"}, + {file = "fonttools-4.47.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d986b66ff722ef675b7ee22fbe5947a41f60a61a4da15579d5e276d897fbc7fa"}, + {file = "fonttools-4.47.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e8acf6dd0434b211b3bd30d572d9e019831aae17a54016629fa8224783b22df8"}, + {file = "fonttools-4.47.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:495369c660e0c27233e3c572269cbe520f7f4978be675f990f4005937337d391"}, + {file = "fonttools-4.47.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c59227d7ba5b232281c26ae04fac2c73a79ad0e236bca5c44aae904a18f14faf"}, + {file = "fonttools-4.47.0-cp310-cp310-win32.whl", hash = "sha256:59a6c8b71a245800e923cb684a2dc0eac19c56493e2f896218fcf2571ed28984"}, + {file = "fonttools-4.47.0-cp310-cp310-win_amd64.whl", hash = "sha256:52c82df66201f3a90db438d9d7b337c7c98139de598d0728fb99dab9fd0495ca"}, + {file = "fonttools-4.47.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:854421e328d47d70aa5abceacbe8eef231961b162c71cbe7ff3f47e235e2e5c5"}, + {file = "fonttools-4.47.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:511482df31cfea9f697930f61520f6541185fa5eeba2fa760fe72e8eee5af88b"}, + {file = "fonttools-4.47.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ce0e2c88c8c985b7b9a7efcd06511fb0a1fe3ddd9a6cd2895ef1dbf9059719d7"}, + {file = "fonttools-4.47.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e7a0a8848726956e9d9fb18c977a279013daadf0cbb6725d2015a6dd57527992"}, + {file = "fonttools-4.47.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e869da810ae35afb3019baa0d0306cdbab4760a54909c89ad8904fa629991812"}, + {file = "fonttools-4.47.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:dd23848f877c3754f53a4903fb7a593ed100924f9b4bff7d5a4e2e8a7001ae11"}, + {file = "fonttools-4.47.0-cp311-cp311-win32.whl", hash = "sha256:bf1810635c00f7c45d93085611c995fc130009cec5abdc35b327156aa191f982"}, + {file = "fonttools-4.47.0-cp311-cp311-win_amd64.whl", hash = "sha256:61df4dee5d38ab65b26da8efd62d859a1eef7a34dcbc331299a28e24d04c59a7"}, + {file = "fonttools-4.47.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:e3f4d61f3a8195eac784f1d0c16c0a3105382c1b9a74d99ac4ba421da39a8826"}, + {file = "fonttools-4.47.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:174995f7b057e799355b393e97f4f93ef1f2197cbfa945e988d49b2a09ecbce8"}, + {file = "fonttools-4.47.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ea592e6a09b71cb7a7661dd93ac0b877a6228e2d677ebacbad0a4d118494c86d"}, + {file = "fonttools-4.47.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:40bdbe90b33897d9cc4a39f8e415b0fcdeae4c40a99374b8a4982f127ff5c767"}, + {file = "fonttools-4.47.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:843509ae9b93db5aaf1a6302085e30bddc1111d31e11d724584818f5b698f500"}, + {file = "fonttools-4.47.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:9acfa1cdc479e0dde528b61423855913d949a7f7fe09e276228298fef4589540"}, + {file = "fonttools-4.47.0-cp312-cp312-win32.whl", hash = "sha256:66c92ec7f95fd9732550ebedefcd190a8d81beaa97e89d523a0d17198a8bda4d"}, + {file = "fonttools-4.47.0-cp312-cp312-win_amd64.whl", hash = "sha256:e8fa20748de55d0021f83754b371432dca0439e02847962fc4c42a0e444c2d78"}, + {file = "fonttools-4.47.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:c75e19971209fbbce891ebfd1b10c37320a5a28e8d438861c21d35305aedb81c"}, + {file = "fonttools-4.47.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e79f1a3970d25f692bbb8c8c2637e621a66c0d60c109ab48d4a160f50856deff"}, + {file = "fonttools-4.47.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:562681188c62c024fe2c611b32e08b8de2afa00c0c4e72bed47c47c318e16d5c"}, + {file = "fonttools-4.47.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a77a60315c33393b2bd29d538d1ef026060a63d3a49a9233b779261bad9c3f71"}, + {file = "fonttools-4.47.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:b4fabb8cc9422efae1a925160083fdcbab8fdc96a8483441eb7457235df625bd"}, + {file = "fonttools-4.47.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:2a78dba8c2a1e9d53a0fb5382979f024200dc86adc46a56cbb668a2249862fda"}, + {file = "fonttools-4.47.0-cp38-cp38-win32.whl", hash = "sha256:e6b968543fde4119231c12c2a953dcf83349590ca631ba8216a8edf9cd4d36a9"}, + {file = "fonttools-4.47.0-cp38-cp38-win_amd64.whl", hash = "sha256:4a9a51745c0439516d947480d4d884fa18bd1458e05b829e482b9269afa655bc"}, + {file = "fonttools-4.47.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:62d8ddb058b8e87018e5dc26f3258e2c30daad4c87262dfeb0e2617dd84750e6"}, + {file = "fonttools-4.47.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5dde0eab40faaa5476133123f6a622a1cc3ac9b7af45d65690870620323308b4"}, + {file = "fonttools-4.47.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f4da089f6dfdb822293bde576916492cd708c37c2501c3651adde39804630538"}, + {file = "fonttools-4.47.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:253bb46bab970e8aae254cebf2ae3db98a4ef6bd034707aa68a239027d2b198d"}, + {file = "fonttools-4.47.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:1193fb090061efa2f9e2d8d743ae9850c77b66746a3b32792324cdce65784154"}, + {file = "fonttools-4.47.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:084511482dd265bce6dca24c509894062f0117e4e6869384d853f46c0e6d43be"}, + {file = "fonttools-4.47.0-cp39-cp39-win32.whl", hash = "sha256:97620c4af36e4c849e52661492e31dc36916df12571cb900d16960ab8e92a980"}, + {file = "fonttools-4.47.0-cp39-cp39-win_amd64.whl", hash = "sha256:e77bdf52185bdaf63d39f3e1ac3212e6cfa3ab07d509b94557a8902ce9c13c82"}, + {file = "fonttools-4.47.0-py3-none-any.whl", hash = "sha256:d6477ba902dd2d7adda7f0fd3bfaeb92885d45993c9e1928c9f28fc3961415f7"}, + {file = "fonttools-4.47.0.tar.gz", hash = "sha256:ec13a10715eef0e031858c1c23bfaee6cba02b97558e4a7bfa089dba4a8c2ebf"}, +] + +[package.extras] +all = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "fs (>=2.2.0,<3)", "lxml (>=4.0,<5)", "lz4 (>=1.7.4.2)", "matplotlib", "munkres", "pycairo", "scipy", "skia-pathops (>=0.5.0)", "sympy", "uharfbuzz (>=0.23.0)", "unicodedata2 (>=15.1.0)", "xattr", "zopfli (>=0.1.4)"] +graphite = ["lz4 (>=1.7.4.2)"] +interpolatable = ["munkres", "pycairo", "scipy"] +lxml = ["lxml (>=4.0,<5)"] +pathops = ["skia-pathops (>=0.5.0)"] +plot = ["matplotlib"] +repacker = ["uharfbuzz (>=0.23.0)"] +symfont = ["sympy"] +type1 = ["xattr"] +ufo = ["fs (>=2.2.0,<3)"] +unicode = ["unicodedata2 (>=15.1.0)"] +woff = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "zopfli (>=0.1.4)"] + +[[package]] +name = "iniconfig" +version = "2.0.0" +description = "brain-dead simple config-ini parsing" +optional = false +python-versions = ">=3.7" +files = [ + {file = "iniconfig-2.0.0-py3-none-any.whl", hash = "sha256:b6a85871a79d2e3b22d2d1b94ac2824226a63c6b741c88f7ae975f18b6778374"}, + {file = "iniconfig-2.0.0.tar.gz", hash = "sha256:2d91e135bf72d31a410b17c16da610a82cb55f6b0477d1a902134b24a455b8b3"}, +] + +[[package]] +name = "ipykernel" +version = "6.28.0" +description = "IPython Kernel for Jupyter" +optional = false +python-versions = ">=3.8" +files = [ + {file = "ipykernel-6.28.0-py3-none-any.whl", hash = "sha256:c6e9a9c63a7f4095c0a22a79f765f079f9ec7be4f2430a898ddea889e8665661"}, + {file = "ipykernel-6.28.0.tar.gz", hash = "sha256:69c11403d26de69df02225916f916b37ea4b9af417da0a8c827f84328d88e5f3"}, +] + +[package.dependencies] +appnope = {version = "*", markers = "platform_system == \"Darwin\""} +comm = ">=0.1.1" +debugpy = ">=1.6.5" +ipython = ">=7.23.1" +jupyter-client = ">=6.1.12" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +matplotlib-inline = ">=0.1" +nest-asyncio = "*" +packaging = "*" +psutil = "*" +pyzmq = ">=24" +tornado = ">=6.1" +traitlets = ">=5.4.0" + +[package.extras] +cov = ["coverage[toml]", "curio", "matplotlib", "pytest-cov", "trio"] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "trio"] +pyqt5 = ["pyqt5"] +pyside6 = ["pyside6"] +test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "ipython" +version = "8.19.0" +description = "IPython: Productive Interactive Computing" +optional = false +python-versions = ">=3.10" +files = [ + {file = "ipython-8.19.0-py3-none-any.whl", hash = "sha256:2f55d59370f59d0d2b2212109fe0e6035cfea436b1c0e6150ad2244746272ec5"}, + {file = "ipython-8.19.0.tar.gz", hash = "sha256:ac4da4ecf0042fb4e0ce57c60430c2db3c719fa8bdf92f8631d6bd8a5785d1f0"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "sys_platform == \"win32\""} +decorator = "*" +exceptiongroup = {version = "*", markers = "python_version < \"3.11\""} +jedi = ">=0.16" +matplotlib-inline = "*" +pexpect = {version = ">4.3", markers = "sys_platform != \"win32\""} +prompt-toolkit = ">=3.0.41,<3.1.0" +pygments = ">=2.4.0" +stack-data = "*" +traitlets = ">=5" + +[package.extras] +all = ["black", "curio", "docrepr", "exceptiongroup", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.23)", "pandas", "pickleshare", "pytest", "pytest-asyncio (<0.22)", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"] +black = ["black"] +doc = ["docrepr", "exceptiongroup", "ipykernel", "matplotlib", "pickleshare", "pytest", "pytest-asyncio (<0.22)", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"] +kernel = ["ipykernel"] +nbconvert = ["nbconvert"] +nbformat = ["nbformat"] +notebook = ["ipywidgets", "notebook"] +parallel = ["ipyparallel"] +qtconsole = ["qtconsole"] +test = ["pickleshare", "pytest", "pytest-asyncio (<0.22)", "testpath"] +test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.23)", "pandas", "pickleshare", "pytest", "pytest-asyncio (<0.22)", "testpath", "trio"] + +[[package]] +name = "isort" +version = "5.13.2" +description = "A Python utility / library to sort Python imports." +optional = false +python-versions = ">=3.8.0" +files = [ + {file = "isort-5.13.2-py3-none-any.whl", hash = "sha256:8ca5e72a8d85860d5a3fa69b8745237f2939afe12dbf656afbcb47fe72d947a6"}, + {file = "isort-5.13.2.tar.gz", hash = "sha256:48fdfcb9face5d58a4f6dde2e72a1fb8dcaf8ab26f95ab49fab84c2ddefb0109"}, +] + +[package.extras] +colors = ["colorama (>=0.4.6)"] + +[[package]] +name = "jedi" +version = "0.19.1" +description = "An autocompletion tool for Python that can be used for text editors." +optional = false +python-versions = ">=3.6" +files = [ + {file = "jedi-0.19.1-py2.py3-none-any.whl", hash = "sha256:e983c654fe5c02867aef4cdfce5a2fbb4a50adc0af145f70504238f18ef5e7e0"}, + {file = "jedi-0.19.1.tar.gz", hash = "sha256:cf0496f3651bc65d7174ac1b7d043eff454892c708a87d1b683e57b569927ffd"}, +] + +[package.dependencies] +parso = ">=0.8.3,<0.9.0" + +[package.extras] +docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alabaster (==0.7.12)", "babel (==2.9.1)", "chardet (==4.0.0)", "commonmark (==0.8.1)", "docutils (==0.17.1)", "future (==0.18.2)", "idna (==2.10)", "imagesize (==1.2.0)", "mock (==1.0.1)", "packaging (==20.9)", "pyparsing (==2.4.7)", "pytz (==2021.1)", "readthedocs-sphinx-ext (==2.1.4)", "recommonmark (==0.5.0)", "requests (==2.25.1)", "six (==1.15.0)", "snowballstemmer (==2.1.0)", "sphinx (==1.8.5)", "sphinx-rtd-theme (==0.4.3)", "sphinxcontrib-serializinghtml (==1.1.4)", "sphinxcontrib-websupport (==1.2.4)", "urllib3 (==1.26.4)"] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["Django", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] + +[[package]] +name = "jupyter-client" +version = "8.6.0" +description = "Jupyter protocol implementation and client libraries" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_client-8.6.0-py3-none-any.whl", hash = "sha256:909c474dbe62582ae62b758bca86d6518c85234bdee2d908c778db6d72f39d99"}, + {file = "jupyter_client-8.6.0.tar.gz", hash = "sha256:0642244bb83b4764ae60d07e010e15f0e2d275ec4e918a8f7b80fbbef3ca60c7"}, +] + +[package.dependencies] +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +python-dateutil = ">=2.8.2" +pyzmq = ">=23.0" +tornado = ">=6.2" +traitlets = ">=5.3" + +[package.extras] +docs = ["ipykernel", "myst-parser", "pydata-sphinx-theme", "sphinx (>=4)", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] +test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] + +[[package]] +name = "jupyter-core" +version = "5.6.0" +description = "Jupyter core package. A base package on which Jupyter projects rely." +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_core-5.6.0-py3-none-any.whl", hash = "sha256:7613ee3c01f1b0632b927d368bf4e2f5d38503320b2179eec46eea91d026b0ce"}, + {file = "jupyter_core-5.6.0.tar.gz", hash = "sha256:2970f1554685c89ebfedd784e44eea62d17a935e817f7bb704329a6129e178ca"}, +] + +[package.dependencies] +platformdirs = ">=2.5" +pywin32 = {version = ">=300", markers = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\""} +traitlets = ">=5.3" + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"] +test = ["ipykernel", "pre-commit", "pytest", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "kiwisolver" +version = "1.4.5" +description = "A fast implementation of the Cassowary constraint solver" +optional = false +python-versions = ">=3.7" +files = [ + {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:05703cf211d585109fcd72207a31bb170a0f22144d68298dc5e61b3c946518af"}, + {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:146d14bebb7f1dc4d5fbf74f8a6cb15ac42baadee8912eb84ac0b3b2a3dc6ac3"}, + {file = "kiwisolver-1.4.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6ef7afcd2d281494c0a9101d5c571970708ad911d028137cd558f02b851c08b4"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9eaa8b117dc8337728e834b9c6e2611f10c79e38f65157c4c38e9400286f5cb1"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ec20916e7b4cbfb1f12380e46486ec4bcbaa91a9c448b97023fde0d5bbf9e4ff"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:39b42c68602539407884cf70d6a480a469b93b81b7701378ba5e2328660c847a"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aa12042de0171fad672b6c59df69106d20d5596e4f87b5e8f76df757a7c399aa"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a40773c71d7ccdd3798f6489aaac9eee213d566850a9533f8d26332d626b82c"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:19df6e621f6d8b4b9c4d45f40a66839294ff2bb235e64d2178f7522d9170ac5b"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:83d78376d0d4fd884e2c114d0621624b73d2aba4e2788182d286309ebdeed770"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:e391b1f0a8a5a10ab3b9bb6afcfd74f2175f24f8975fb87ecae700d1503cdee0"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:852542f9481f4a62dbb5dd99e8ab7aedfeb8fb6342349a181d4036877410f525"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:59edc41b24031bc25108e210c0def6f6c2191210492a972d585a06ff246bb79b"}, + {file = "kiwisolver-1.4.5-cp310-cp310-win32.whl", hash = "sha256:a6aa6315319a052b4ee378aa171959c898a6183f15c1e541821c5c59beaa0238"}, + {file = "kiwisolver-1.4.5-cp310-cp310-win_amd64.whl", hash = "sha256:d0ef46024e6a3d79c01ff13801cb19d0cad7fd859b15037aec74315540acc276"}, + {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:11863aa14a51fd6ec28688d76f1735f8f69ab1fabf388851a595d0721af042f5"}, + {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8ab3919a9997ab7ef2fbbed0cc99bb28d3c13e6d4b1ad36e97e482558a91be90"}, + {file = "kiwisolver-1.4.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fcc700eadbbccbf6bc1bcb9dbe0786b4b1cb91ca0dcda336eef5c2beed37b797"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dfdd7c0b105af050eb3d64997809dc21da247cf44e63dc73ff0fd20b96be55a9"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76c6a5964640638cdeaa0c359382e5703e9293030fe730018ca06bc2010c4437"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bbea0db94288e29afcc4c28afbf3a7ccaf2d7e027489c449cf7e8f83c6346eb9"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ceec1a6bc6cab1d6ff5d06592a91a692f90ec7505d6463a88a52cc0eb58545da"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:040c1aebeda72197ef477a906782b5ab0d387642e93bda547336b8957c61022e"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f91de7223d4c7b793867797bacd1ee53bfe7359bd70d27b7b58a04efbb9436c8"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:faae4860798c31530dd184046a900e652c95513796ef51a12bc086710c2eec4d"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:b0157420efcb803e71d1b28e2c287518b8808b7cf1ab8af36718fd0a2c453eb0"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:06f54715b7737c2fecdbf140d1afb11a33d59508a47bf11bb38ecf21dc9ab79f"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fdb7adb641a0d13bdcd4ef48e062363d8a9ad4a182ac7647ec88f695e719ae9f"}, + {file = "kiwisolver-1.4.5-cp311-cp311-win32.whl", hash = "sha256:bb86433b1cfe686da83ce32a9d3a8dd308e85c76b60896d58f082136f10bffac"}, + {file = "kiwisolver-1.4.5-cp311-cp311-win_amd64.whl", hash = "sha256:6c08e1312a9cf1074d17b17728d3dfce2a5125b2d791527f33ffbe805200a355"}, + {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:32d5cf40c4f7c7b3ca500f8985eb3fb3a7dfc023215e876f207956b5ea26632a"}, + {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f846c260f483d1fd217fe5ed7c173fb109efa6b1fc8381c8b7552c5781756192"}, + {file = "kiwisolver-1.4.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5ff5cf3571589b6d13bfbfd6bcd7a3f659e42f96b5fd1c4830c4cf21d4f5ef45"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7269d9e5f1084a653d575c7ec012ff57f0c042258bf5db0954bf551c158466e7"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da802a19d6e15dffe4b0c24b38b3af68e6c1a68e6e1d8f30148c83864f3881db"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3aba7311af82e335dd1e36ffff68aaca609ca6290c2cb6d821a39aa075d8e3ff"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:763773d53f07244148ccac5b084da5adb90bfaee39c197554f01b286cf869228"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2270953c0d8cdab5d422bee7d2007f043473f9d2999631c86a223c9db56cbd16"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d099e745a512f7e3bbe7249ca835f4d357c586d78d79ae8f1dcd4d8adeb9bda9"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:74db36e14a7d1ce0986fa104f7d5637aea5c82ca6326ed0ec5694280942d1162"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:7e5bab140c309cb3a6ce373a9e71eb7e4873c70c2dda01df6820474f9889d6d4"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:0f114aa76dc1b8f636d077979c0ac22e7cd8f3493abbab152f20eb8d3cda71f3"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:88a2df29d4724b9237fc0c6eaf2a1adae0cdc0b3e9f4d8e7dc54b16812d2d81a"}, + {file = "kiwisolver-1.4.5-cp312-cp312-win32.whl", hash = "sha256:72d40b33e834371fd330fb1472ca19d9b8327acb79a5821d4008391db8e29f20"}, + {file = "kiwisolver-1.4.5-cp312-cp312-win_amd64.whl", hash = "sha256:2c5674c4e74d939b9d91dda0fae10597ac7521768fec9e399c70a1f27e2ea2d9"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3a2b053a0ab7a3960c98725cfb0bf5b48ba82f64ec95fe06f1d06c99b552e130"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3cd32d6c13807e5c66a7cbb79f90b553642f296ae4518a60d8d76243b0ad2898"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:59ec7b7c7e1a61061850d53aaf8e93db63dce0c936db1fda2658b70e4a1be709"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:da4cfb373035def307905d05041c1d06d8936452fe89d464743ae7fb8371078b"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2400873bccc260b6ae184b2b8a4fec0e4082d30648eadb7c3d9a13405d861e89"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:1b04139c4236a0f3aff534479b58f6f849a8b351e1314826c2d230849ed48985"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:4e66e81a5779b65ac21764c295087de82235597a2293d18d943f8e9e32746265"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:7931d8f1f67c4be9ba1dd9c451fb0eeca1a25b89e4d3f89e828fe12a519b782a"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:b3f7e75f3015df442238cca659f8baa5f42ce2a8582727981cbfa15fee0ee205"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:bbf1d63eef84b2e8c89011b7f2235b1e0bf7dacc11cac9431fc6468e99ac77fb"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:4c380469bd3f970ef677bf2bcba2b6b0b4d5c75e7a020fb863ef75084efad66f"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-win32.whl", hash = "sha256:9408acf3270c4b6baad483865191e3e582b638b1654a007c62e3efe96f09a9a3"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-win_amd64.whl", hash = "sha256:5b94529f9b2591b7af5f3e0e730a4e0a41ea174af35a4fd067775f9bdfeee01a"}, + {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:11c7de8f692fc99816e8ac50d1d1aef4f75126eefc33ac79aac02c099fd3db71"}, + {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:53abb58632235cd154176ced1ae8f0d29a6657aa1aa9decf50b899b755bc2b93"}, + {file = "kiwisolver-1.4.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:88b9f257ca61b838b6f8094a62418421f87ac2a1069f7e896c36a7d86b5d4c29"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3195782b26fc03aa9c6913d5bad5aeb864bdc372924c093b0f1cebad603dd712"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc579bf0f502e54926519451b920e875f433aceb4624a3646b3252b5caa9e0b6"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a580c91d686376f0f7c295357595c5a026e6cbc3d77b7c36e290201e7c11ecb"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:cfe6ab8da05c01ba6fbea630377b5da2cd9bcbc6338510116b01c1bc939a2c18"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:d2e5a98f0ec99beb3c10e13b387f8db39106d53993f498b295f0c914328b1333"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:a51a263952b1429e429ff236d2f5a21c5125437861baeed77f5e1cc2d2c7c6da"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:3edd2fa14e68c9be82c5b16689e8d63d89fe927e56debd6e1dbce7a26a17f81b"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:74d1b44c6cfc897df648cc9fdaa09bc3e7679926e6f96df05775d4fb3946571c"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:76d9289ed3f7501012e05abb8358bbb129149dbd173f1f57a1bf1c22d19ab7cc"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:92dea1ffe3714fa8eb6a314d2b3c773208d865a0e0d35e713ec54eea08a66250"}, + {file = "kiwisolver-1.4.5-cp38-cp38-win32.whl", hash = "sha256:5c90ae8c8d32e472be041e76f9d2f2dbff4d0b0be8bd4041770eddb18cf49a4e"}, + {file = "kiwisolver-1.4.5-cp38-cp38-win_amd64.whl", hash = "sha256:c7940c1dc63eb37a67721b10d703247552416f719c4188c54e04334321351ced"}, + {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:9407b6a5f0d675e8a827ad8742e1d6b49d9c1a1da5d952a67d50ef5f4170b18d"}, + {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:15568384086b6df3c65353820a4473575dbad192e35010f622c6ce3eebd57af9"}, + {file = "kiwisolver-1.4.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0dc9db8e79f0036e8173c466d21ef18e1befc02de8bf8aa8dc0813a6dc8a7046"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:cdc8a402aaee9a798b50d8b827d7ecf75edc5fb35ea0f91f213ff927c15f4ff0"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:6c3bd3cde54cafb87d74d8db50b909705c62b17c2099b8f2e25b461882e544ff"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:955e8513d07a283056b1396e9a57ceddbd272d9252c14f154d450d227606eb54"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:346f5343b9e3f00b8db8ba359350eb124b98c99efd0b408728ac6ebf38173958"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b9098e0049e88c6a24ff64545cdfc50807818ba6c1b739cae221bbbcbc58aad3"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:00bd361b903dc4bbf4eb165f24d1acbee754fce22ded24c3d56eec268658a5cf"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7b8b454bac16428b22560d0a1cf0a09875339cab69df61d7805bf48919415901"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:f1d072c2eb0ad60d4c183f3fb44ac6f73fb7a8f16a2694a91f988275cbf352f9"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:31a82d498054cac9f6d0b53d02bb85811185bcb477d4b60144f915f3b3126342"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6512cb89e334e4700febbffaaa52761b65b4f5a3cf33f960213d5656cea36a77"}, + {file = "kiwisolver-1.4.5-cp39-cp39-win32.whl", hash = "sha256:9db8ea4c388fdb0f780fe91346fd438657ea602d58348753d9fb265ce1bca67f"}, + {file = "kiwisolver-1.4.5-cp39-cp39-win_amd64.whl", hash = "sha256:59415f46a37f7f2efeec758353dd2eae1b07640d8ca0f0c42548ec4125492635"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:5c7b3b3a728dc6faf3fc372ef24f21d1e3cee2ac3e9596691d746e5a536de920"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:620ced262a86244e2be10a676b646f29c34537d0d9cc8eb26c08f53d98013390"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:378a214a1e3bbf5ac4a8708304318b4f890da88c9e6a07699c4ae7174c09a68d"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaf7be1207676ac608a50cd08f102f6742dbfc70e8d60c4db1c6897f62f71523"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:ba55dce0a9b8ff59495ddd050a0225d58bd0983d09f87cfe2b6aec4f2c1234e4"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:fd32ea360bcbb92d28933fc05ed09bffcb1704ba3fc7942e81db0fd4f81a7892"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:5e7139af55d1688f8b960ee9ad5adafc4ac17c1c473fe07133ac092310d76544"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dced8146011d2bc2e883f9bd68618b8247387f4bbec46d7392b3c3b032640126"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c9bf3325c47b11b2e51bca0824ea217c7cd84491d8ac4eefd1e409705ef092bd"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5794cf59533bc3f1b1c821f7206a3617999db9fbefc345360aafe2e067514929"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e368f200bbc2e4f905b8e71eb38b3c04333bddaa6a2464a6355487b02bb7fb09"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e5d706eba36b4c4d5bc6c6377bb6568098765e990cfc21ee16d13963fab7b3e7"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:85267bd1aa8880a9c88a8cb71e18d3d64d2751a790e6ca6c27b8ccc724bcd5ad"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:210ef2c3a1f03272649aff1ef992df2e724748918c4bc2d5a90352849eb40bea"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:11d011a7574eb3b82bcc9c1a1d35c1d7075677fdd15de527d91b46bd35e935ee"}, + {file = "kiwisolver-1.4.5.tar.gz", hash = "sha256:e57e563a57fb22a142da34f38acc2fc1a5c864bc29ca1517a88abc963e60d6ec"}, +] + +[[package]] +name = "matplotlib" +version = "3.8.2" +description = "Python plotting package" +optional = false +python-versions = ">=3.9" +files = [ + {file = "matplotlib-3.8.2-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:09796f89fb71a0c0e1e2f4bdaf63fb2cefc84446bb963ecdeb40dfee7dfa98c7"}, + {file = "matplotlib-3.8.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6f9c6976748a25e8b9be51ea028df49b8e561eed7809146da7a47dbecebab367"}, + {file = "matplotlib-3.8.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b78e4f2cedf303869b782071b55fdde5987fda3038e9d09e58c91cc261b5ad18"}, + {file = "matplotlib-3.8.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4e208f46cf6576a7624195aa047cb344a7f802e113bb1a06cfd4bee431de5e31"}, + {file = "matplotlib-3.8.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:46a569130ff53798ea5f50afce7406e91fdc471ca1e0e26ba976a8c734c9427a"}, + {file = "matplotlib-3.8.2-cp310-cp310-win_amd64.whl", hash = "sha256:830f00640c965c5b7f6bc32f0d4ce0c36dfe0379f7dd65b07a00c801713ec40a"}, + {file = "matplotlib-3.8.2-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d86593ccf546223eb75a39b44c32788e6f6440d13cfc4750c1c15d0fcb850b63"}, + {file = "matplotlib-3.8.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:9a5430836811b7652991939012f43d2808a2db9b64ee240387e8c43e2e5578c8"}, + {file = "matplotlib-3.8.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b9576723858a78751d5aacd2497b8aef29ffea6d1c95981505877f7ac28215c6"}, + {file = "matplotlib-3.8.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ba9cbd8ac6cf422f3102622b20f8552d601bf8837e49a3afed188d560152788"}, + {file = "matplotlib-3.8.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:03f9d160a29e0b65c0790bb07f4f45d6a181b1ac33eb1bb0dd225986450148f0"}, + {file = "matplotlib-3.8.2-cp311-cp311-win_amd64.whl", hash = "sha256:3773002da767f0a9323ba1a9b9b5d00d6257dbd2a93107233167cfb581f64717"}, + {file = "matplotlib-3.8.2-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:4c318c1e95e2f5926fba326f68177dee364aa791d6df022ceb91b8221bd0a627"}, + {file = "matplotlib-3.8.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:091275d18d942cf1ee9609c830a1bc36610607d8223b1b981c37d5c9fc3e46a4"}, + {file = "matplotlib-3.8.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1b0f3b8ea0e99e233a4bcc44590f01604840d833c280ebb8fe5554fd3e6cfe8d"}, + {file = "matplotlib-3.8.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d7b1704a530395aaf73912be741c04d181f82ca78084fbd80bc737be04848331"}, + {file = "matplotlib-3.8.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:533b0e3b0c6768eef8cbe4b583731ce25a91ab54a22f830db2b031e83cca9213"}, + {file = "matplotlib-3.8.2-cp312-cp312-win_amd64.whl", hash = "sha256:0f4fc5d72b75e2c18e55eb32292659cf731d9d5b312a6eb036506304f4675630"}, + {file = "matplotlib-3.8.2-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:deaed9ad4da0b1aea77fe0aa0cebb9ef611c70b3177be936a95e5d01fa05094f"}, + {file = "matplotlib-3.8.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:172f4d0fbac3383d39164c6caafd3255ce6fa58f08fc392513a0b1d3b89c4f89"}, + {file = "matplotlib-3.8.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c7d36c2209d9136cd8e02fab1c0ddc185ce79bc914c45054a9f514e44c787917"}, + {file = "matplotlib-3.8.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5864bdd7da445e4e5e011b199bb67168cdad10b501750367c496420f2ad00843"}, + {file = "matplotlib-3.8.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ef8345b48e95cee45ff25192ed1f4857273117917a4dcd48e3905619bcd9c9b8"}, + {file = "matplotlib-3.8.2-cp39-cp39-win_amd64.whl", hash = "sha256:7c48d9e221b637c017232e3760ed30b4e8d5dfd081daf327e829bf2a72c731b4"}, + {file = "matplotlib-3.8.2-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:aa11b3c6928a1e496c1a79917d51d4cd5d04f8a2e75f21df4949eeefdf697f4b"}, + {file = "matplotlib-3.8.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d1095fecf99eeb7384dabad4bf44b965f929a5f6079654b681193edf7169ec20"}, + {file = "matplotlib-3.8.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:bddfb1db89bfaa855912261c805bd0e10218923cc262b9159a49c29a7a1c1afa"}, + {file = "matplotlib-3.8.2.tar.gz", hash = "sha256:01a978b871b881ee76017152f1f1a0cbf6bd5f7b8ff8c96df0df1bd57d8755a1"}, +] + +[package.dependencies] +contourpy = ">=1.0.1" +cycler = ">=0.10" +fonttools = ">=4.22.0" +kiwisolver = ">=1.3.1" +numpy = ">=1.21,<2" +packaging = ">=20.0" +pillow = ">=8" +pyparsing = ">=2.3.1" +python-dateutil = ">=2.7" + +[[package]] +name = "matplotlib-inline" +version = "0.1.6" +description = "Inline Matplotlib backend for Jupyter" +optional = false +python-versions = ">=3.5" +files = [ + {file = "matplotlib-inline-0.1.6.tar.gz", hash = "sha256:f887e5f10ba98e8d2b150ddcf4702c1e5f8b3a20005eb0f74bfdbd360ee6f304"}, + {file = "matplotlib_inline-0.1.6-py3-none-any.whl", hash = "sha256:f1f41aab5328aa5aaea9b16d083b128102f8712542f819fe7e6a420ff581b311"}, +] + +[package.dependencies] +traitlets = "*" + +[[package]] +name = "mccabe" +version = "0.7.0" +description = "McCabe checker, plugin for flake8" +optional = false +python-versions = ">=3.6" +files = [ + {file = "mccabe-0.7.0-py2.py3-none-any.whl", hash = "sha256:6c2d30ab6be0e4a46919781807b4f0d834ebdd6c6e3dca0bda5a15f863427b6e"}, + {file = "mccabe-0.7.0.tar.gz", hash = "sha256:348e0240c33b60bbdf4e523192ef919f28cb2c3d7d5c7794f74009290f236325"}, +] + +[[package]] +name = "mypy" +version = "1.8.0" +description = "Optional static typing for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "mypy-1.8.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:485a8942f671120f76afffff70f259e1cd0f0cfe08f81c05d8816d958d4577d3"}, + {file = "mypy-1.8.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:df9824ac11deaf007443e7ed2a4a26bebff98d2bc43c6da21b2b64185da011c4"}, + {file = "mypy-1.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2afecd6354bbfb6e0160f4e4ad9ba6e4e003b767dd80d85516e71f2e955ab50d"}, + {file = "mypy-1.8.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8963b83d53ee733a6e4196954502b33567ad07dfd74851f32be18eb932fb1cb9"}, + {file = "mypy-1.8.0-cp310-cp310-win_amd64.whl", hash = "sha256:e46f44b54ebddbeedbd3d5b289a893219065ef805d95094d16a0af6630f5d410"}, + {file = "mypy-1.8.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:855fe27b80375e5c5878492f0729540db47b186509c98dae341254c8f45f42ae"}, + {file = "mypy-1.8.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4c886c6cce2d070bd7df4ec4a05a13ee20c0aa60cb587e8d1265b6c03cf91da3"}, + {file = "mypy-1.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d19c413b3c07cbecf1f991e2221746b0d2a9410b59cb3f4fb9557f0365a1a817"}, + {file = "mypy-1.8.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9261ed810972061388918c83c3f5cd46079d875026ba97380f3e3978a72f503d"}, + {file = "mypy-1.8.0-cp311-cp311-win_amd64.whl", hash = "sha256:51720c776d148bad2372ca21ca29256ed483aa9a4cdefefcef49006dff2a6835"}, + {file = "mypy-1.8.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:52825b01f5c4c1c4eb0db253ec09c7aa17e1a7304d247c48b6f3599ef40db8bd"}, + {file = "mypy-1.8.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f5ac9a4eeb1ec0f1ccdc6f326bcdb464de5f80eb07fb38b5ddd7b0de6bc61e55"}, + {file = "mypy-1.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:afe3fe972c645b4632c563d3f3eff1cdca2fa058f730df2b93a35e3b0c538218"}, + {file = "mypy-1.8.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:42c6680d256ab35637ef88891c6bd02514ccb7e1122133ac96055ff458f93fc3"}, + {file = "mypy-1.8.0-cp312-cp312-win_amd64.whl", hash = "sha256:720a5ca70e136b675af3af63db533c1c8c9181314d207568bbe79051f122669e"}, + {file = "mypy-1.8.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:028cf9f2cae89e202d7b6593cd98db6759379f17a319b5faf4f9978d7084cdc6"}, + {file = "mypy-1.8.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4e6d97288757e1ddba10dd9549ac27982e3e74a49d8d0179fc14d4365c7add66"}, + {file = "mypy-1.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f1478736fcebb90f97e40aff11a5f253af890c845ee0c850fe80aa060a267c6"}, + {file = "mypy-1.8.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:42419861b43e6962a649068a61f4a4839205a3ef525b858377a960b9e2de6e0d"}, + {file = "mypy-1.8.0-cp38-cp38-win_amd64.whl", hash = "sha256:2b5b6c721bd4aabaadead3a5e6fa85c11c6c795e0c81a7215776ef8afc66de02"}, + {file = "mypy-1.8.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5c1538c38584029352878a0466f03a8ee7547d7bd9f641f57a0f3017a7c905b8"}, + {file = "mypy-1.8.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4ef4be7baf08a203170f29e89d79064463b7fc7a0908b9d0d5114e8009c3a259"}, + {file = "mypy-1.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7178def594014aa6c35a8ff411cf37d682f428b3b5617ca79029d8ae72f5402b"}, + {file = "mypy-1.8.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ab3c84fa13c04aeeeabb2a7f67a25ef5d77ac9d6486ff33ded762ef353aa5592"}, + {file = "mypy-1.8.0-cp39-cp39-win_amd64.whl", hash = "sha256:99b00bc72855812a60d253420d8a2eae839b0afa4938f09f4d2aa9bb4654263a"}, + {file = "mypy-1.8.0-py3-none-any.whl", hash = "sha256:538fd81bb5e430cc1381a443971c0475582ff9f434c16cd46d2c66763ce85d9d"}, + {file = "mypy-1.8.0.tar.gz", hash = "sha256:6ff8b244d7085a0b425b56d327b480c3b29cafbd2eff27316a004f9a7391ae07"}, +] + +[package.dependencies] +mypy-extensions = ">=1.0.0" +tomli = {version = ">=1.1.0", markers = "python_version < \"3.11\""} +typing-extensions = ">=4.1.0" + +[package.extras] +dmypy = ["psutil (>=4.0)"] +install-types = ["pip"] +mypyc = ["setuptools (>=50)"] +reports = ["lxml"] + +[[package]] +name = "mypy-extensions" +version = "1.0.0" +description = "Type system extensions for programs checked with the mypy type checker." +optional = false +python-versions = ">=3.5" +files = [ + {file = "mypy_extensions-1.0.0-py3-none-any.whl", hash = "sha256:4392f6c0eb8a5668a69e23d168ffa70f0be9ccfd32b5cc2d26a34ae5b844552d"}, + {file = "mypy_extensions-1.0.0.tar.gz", hash = "sha256:75dbf8955dc00442a438fc4d0666508a9a97b6bd41aa2f0ffe9d2f2725af0782"}, +] + +[[package]] +name = "nest-asyncio" +version = "1.5.8" +description = "Patch asyncio to allow nested event loops" +optional = false +python-versions = ">=3.5" +files = [ + {file = "nest_asyncio-1.5.8-py3-none-any.whl", hash = "sha256:accda7a339a70599cb08f9dd09a67e0c2ef8d8d6f4c07f96ab203f2ae254e48d"}, + {file = "nest_asyncio-1.5.8.tar.gz", hash = "sha256:25aa2ca0d2a5b5531956b9e273b45cf664cae2b145101d73b86b199978d48fdb"}, +] + +[[package]] +name = "numpy" +version = "1.26.2" +description = "Fundamental package for array computing in Python" +optional = false +python-versions = ">=3.9" +files = [ + {file = "numpy-1.26.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:3703fc9258a4a122d17043e57b35e5ef1c5a5837c3db8be396c82e04c1cf9b0f"}, + {file = "numpy-1.26.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:cc392fdcbd21d4be6ae1bb4475a03ce3b025cd49a9be5345d76d7585aea69440"}, + {file = "numpy-1.26.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:36340109af8da8805d8851ef1d74761b3b88e81a9bd80b290bbfed61bd2b4f75"}, + {file = "numpy-1.26.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bcc008217145b3d77abd3e4d5ef586e3bdfba8fe17940769f8aa09b99e856c00"}, + {file = "numpy-1.26.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:3ced40d4e9e18242f70dd02d739e44698df3dcb010d31f495ff00a31ef6014fe"}, + {file = "numpy-1.26.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b272d4cecc32c9e19911891446b72e986157e6a1809b7b56518b4f3755267523"}, + {file = "numpy-1.26.2-cp310-cp310-win32.whl", hash = "sha256:22f8fc02fdbc829e7a8c578dd8d2e15a9074b630d4da29cda483337e300e3ee9"}, + {file = "numpy-1.26.2-cp310-cp310-win_amd64.whl", hash = "sha256:26c9d33f8e8b846d5a65dd068c14e04018d05533b348d9eaeef6c1bd787f9919"}, + {file = "numpy-1.26.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b96e7b9c624ef3ae2ae0e04fa9b460f6b9f17ad8b4bec6d7756510f1f6c0c841"}, + {file = "numpy-1.26.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:aa18428111fb9a591d7a9cc1b48150097ba6a7e8299fb56bdf574df650e7d1f1"}, + {file = "numpy-1.26.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:06fa1ed84aa60ea6ef9f91ba57b5ed963c3729534e6e54055fc151fad0423f0a"}, + {file = "numpy-1.26.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:96ca5482c3dbdd051bcd1fce8034603d6ebfc125a7bd59f55b40d8f5d246832b"}, + {file = "numpy-1.26.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:854ab91a2906ef29dc3925a064fcd365c7b4da743f84b123002f6139bcb3f8a7"}, + {file = "numpy-1.26.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:f43740ab089277d403aa07567be138fc2a89d4d9892d113b76153e0e412409f8"}, + {file = "numpy-1.26.2-cp311-cp311-win32.whl", hash = "sha256:a2bbc29fcb1771cd7b7425f98b05307776a6baf43035d3b80c4b0f29e9545186"}, + {file = "numpy-1.26.2-cp311-cp311-win_amd64.whl", hash = "sha256:2b3fca8a5b00184828d12b073af4d0fc5fdd94b1632c2477526f6bd7842d700d"}, + {file = "numpy-1.26.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:a4cd6ed4a339c21f1d1b0fdf13426cb3b284555c27ac2f156dfdaaa7e16bfab0"}, + {file = "numpy-1.26.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5d5244aabd6ed7f312268b9247be47343a654ebea52a60f002dc70c769048e75"}, + {file = "numpy-1.26.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6a3cdb4d9c70e6b8c0814239ead47da00934666f668426fc6e94cce869e13fd7"}, + {file = "numpy-1.26.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa317b2325f7aa0a9471663e6093c210cb2ae9c0ad824732b307d2c51983d5b6"}, + {file = "numpy-1.26.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:174a8880739c16c925799c018f3f55b8130c1f7c8e75ab0a6fa9d41cab092fd6"}, + {file = "numpy-1.26.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:f79b231bf5c16b1f39c7f4875e1ded36abee1591e98742b05d8a0fb55d8a3eec"}, + {file = "numpy-1.26.2-cp312-cp312-win32.whl", hash = "sha256:4a06263321dfd3598cacb252f51e521a8cb4b6df471bb12a7ee5cbab20ea9167"}, + {file = "numpy-1.26.2-cp312-cp312-win_amd64.whl", hash = "sha256:b04f5dc6b3efdaab541f7857351aac359e6ae3c126e2edb376929bd3b7f92d7e"}, + {file = "numpy-1.26.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4eb8df4bf8d3d90d091e0146f6c28492b0be84da3e409ebef54349f71ed271ef"}, + {file = "numpy-1.26.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1a13860fdcd95de7cf58bd6f8bc5a5ef81c0b0625eb2c9a783948847abbef2c2"}, + {file = "numpy-1.26.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:64308ebc366a8ed63fd0bf426b6a9468060962f1a4339ab1074c228fa6ade8e3"}, + {file = "numpy-1.26.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:baf8aab04a2c0e859da118f0b38617e5ee65d75b83795055fb66c0d5e9e9b818"}, + {file = "numpy-1.26.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d73a3abcac238250091b11caef9ad12413dab01669511779bc9b29261dd50210"}, + {file = "numpy-1.26.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:b361d369fc7e5e1714cf827b731ca32bff8d411212fccd29ad98ad622449cc36"}, + {file = "numpy-1.26.2-cp39-cp39-win32.whl", hash = "sha256:bd3f0091e845164a20bd5a326860c840fe2af79fa12e0469a12768a3ec578d80"}, + {file = "numpy-1.26.2-cp39-cp39-win_amd64.whl", hash = "sha256:2beef57fb031dcc0dc8fa4fe297a742027b954949cabb52a2a376c144e5e6060"}, + {file = "numpy-1.26.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:1cc3d5029a30fb5f06704ad6b23b35e11309491c999838c31f124fee32107c79"}, + {file = "numpy-1.26.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:94cc3c222bb9fb5a12e334d0479b97bb2df446fbe622b470928f5284ffca3f8d"}, + {file = "numpy-1.26.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:fe6b44fb8fcdf7eda4ef4461b97b3f63c466b27ab151bec2366db8b197387841"}, + {file = "numpy-1.26.2.tar.gz", hash = "sha256:f65738447676ab5777f11e6bbbdb8ce11b785e105f690bc45966574816b6d3ea"}, +] + +[[package]] +name = "openpyxl" +version = "3.1.2" +description = "A Python library to read/write Excel 2010 xlsx/xlsm files" +optional = false +python-versions = ">=3.6" +files = [ + {file = "openpyxl-3.1.2-py2.py3-none-any.whl", hash = "sha256:f91456ead12ab3c6c2e9491cf33ba6d08357d802192379bb482f1033ade496f5"}, + {file = "openpyxl-3.1.2.tar.gz", hash = "sha256:a6f5977418eff3b2d5500d54d9db50c8277a368436f4e4f8ddb1be3422870184"}, +] + +[package.dependencies] +et-xmlfile = "*" + +[[package]] +name = "packaging" +version = "23.2" +description = "Core utilities for Python packages" +optional = false +python-versions = ">=3.7" +files = [ + {file = "packaging-23.2-py3-none-any.whl", hash = "sha256:8c491190033a9af7e1d931d0b5dacc2ef47509b34dd0de67ed209b5203fc88c7"}, + {file = "packaging-23.2.tar.gz", hash = "sha256:048fb0e9405036518eaaf48a55953c750c11e1a1b68e0dd1a9d62ed0c092cfc5"}, +] + +[[package]] +name = "pandas" +version = "2.1.4" +description = "Powerful data structures for data analysis, time series, and statistics" +optional = false +python-versions = ">=3.9" +files = [ + {file = "pandas-2.1.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:bdec823dc6ec53f7a6339a0e34c68b144a7a1fd28d80c260534c39c62c5bf8c9"}, + {file = "pandas-2.1.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:294d96cfaf28d688f30c918a765ea2ae2e0e71d3536754f4b6de0ea4a496d034"}, + {file = "pandas-2.1.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b728fb8deba8905b319f96447a27033969f3ea1fea09d07d296c9030ab2ed1d"}, + {file = "pandas-2.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:00028e6737c594feac3c2df15636d73ace46b8314d236100b57ed7e4b9ebe8d9"}, + {file = "pandas-2.1.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:426dc0f1b187523c4db06f96fb5c8d1a845e259c99bda74f7de97bd8a3bb3139"}, + {file = "pandas-2.1.4-cp310-cp310-win_amd64.whl", hash = "sha256:f237e6ca6421265643608813ce9793610ad09b40154a3344a088159590469e46"}, + {file = "pandas-2.1.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b7d852d16c270e4331f6f59b3e9aa23f935f5c4b0ed2d0bc77637a8890a5d092"}, + {file = "pandas-2.1.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:bd7d5f2f54f78164b3d7a40f33bf79a74cdee72c31affec86bfcabe7e0789821"}, + {file = "pandas-2.1.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0aa6e92e639da0d6e2017d9ccff563222f4eb31e4b2c3cf32a2a392fc3103c0d"}, + {file = "pandas-2.1.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d797591b6846b9db79e65dc2d0d48e61f7db8d10b2a9480b4e3faaddc421a171"}, + {file = "pandas-2.1.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d2d3e7b00f703aea3945995ee63375c61b2e6aa5aa7871c5d622870e5e137623"}, + {file = "pandas-2.1.4-cp311-cp311-win_amd64.whl", hash = "sha256:dc9bf7ade01143cddc0074aa6995edd05323974e6e40d9dbde081021ded8510e"}, + {file = "pandas-2.1.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:482d5076e1791777e1571f2e2d789e940dedd927325cc3cb6d0800c6304082f6"}, + {file = "pandas-2.1.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8a706cfe7955c4ca59af8c7a0517370eafbd98593155b48f10f9811da440248b"}, + {file = "pandas-2.1.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b0513a132a15977b4a5b89aabd304647919bc2169eac4c8536afb29c07c23540"}, + {file = "pandas-2.1.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9f17f2b6fc076b2a0078862547595d66244db0f41bf79fc5f64a5c4d635bead"}, + {file = "pandas-2.1.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:45d63d2a9b1b37fa6c84a68ba2422dc9ed018bdaa668c7f47566a01188ceeec1"}, + {file = "pandas-2.1.4-cp312-cp312-win_amd64.whl", hash = "sha256:f69b0c9bb174a2342818d3e2778584e18c740d56857fc5cdb944ec8bbe4082cf"}, + {file = "pandas-2.1.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3f06bda01a143020bad20f7a85dd5f4a1600112145f126bc9e3e42077c24ef34"}, + {file = "pandas-2.1.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ab5796839eb1fd62a39eec2916d3e979ec3130509930fea17fe6f81e18108f6a"}, + {file = "pandas-2.1.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:edbaf9e8d3a63a9276d707b4d25930a262341bca9874fcb22eff5e3da5394732"}, + {file = "pandas-2.1.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ebfd771110b50055712b3b711b51bee5d50135429364d0498e1213a7adc2be8"}, + {file = "pandas-2.1.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8ea107e0be2aba1da619cc6ba3f999b2bfc9669a83554b1904ce3dd9507f0860"}, + {file = "pandas-2.1.4-cp39-cp39-win_amd64.whl", hash = "sha256:d65148b14788b3758daf57bf42725caa536575da2b64df9964c563b015230984"}, + {file = "pandas-2.1.4.tar.gz", hash = "sha256:fcb68203c833cc735321512e13861358079a96c174a61f5116a1de89c58c0ef7"}, +] + +[package.dependencies] +numpy = [ + {version = ">=1.22.4,<2", markers = "python_version < \"3.11\""}, + {version = ">=1.23.2,<2", markers = "python_version == \"3.11\""}, + {version = ">=1.26.0,<2", markers = "python_version >= \"3.12\""}, +] +python-dateutil = ">=2.8.2" +pytz = ">=2020.1" +tzdata = ">=2022.1" + +[package.extras] +all = ["PyQt5 (>=5.15.6)", "SQLAlchemy (>=1.4.36)", "beautifulsoup4 (>=4.11.1)", "bottleneck (>=1.3.4)", "dataframe-api-compat (>=0.1.7)", "fastparquet (>=0.8.1)", "fsspec (>=2022.05.0)", "gcsfs (>=2022.05.0)", "html5lib (>=1.1)", "hypothesis (>=6.46.1)", "jinja2 (>=3.1.2)", "lxml (>=4.8.0)", "matplotlib (>=3.6.1)", "numba (>=0.55.2)", "numexpr (>=2.8.0)", "odfpy (>=1.4.1)", "openpyxl (>=3.0.10)", "pandas-gbq (>=0.17.5)", "psycopg2 (>=2.9.3)", "pyarrow (>=7.0.0)", "pymysql (>=1.0.2)", "pyreadstat (>=1.1.5)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)", "pyxlsb (>=1.0.9)", "qtpy (>=2.2.0)", "s3fs (>=2022.05.0)", "scipy (>=1.8.1)", "tables (>=3.7.0)", "tabulate (>=0.8.10)", "xarray (>=2022.03.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.3)", "zstandard (>=0.17.0)"] +aws = ["s3fs (>=2022.05.0)"] +clipboard = ["PyQt5 (>=5.15.6)", "qtpy (>=2.2.0)"] +compression = ["zstandard (>=0.17.0)"] +computation = ["scipy (>=1.8.1)", "xarray (>=2022.03.0)"] +consortium-standard = ["dataframe-api-compat (>=0.1.7)"] +excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.0.10)", "pyxlsb (>=1.0.9)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.3)"] +feather = ["pyarrow (>=7.0.0)"] +fss = ["fsspec (>=2022.05.0)"] +gcp = ["gcsfs (>=2022.05.0)", "pandas-gbq (>=0.17.5)"] +hdf5 = ["tables (>=3.7.0)"] +html = ["beautifulsoup4 (>=4.11.1)", "html5lib (>=1.1)", "lxml (>=4.8.0)"] +mysql = ["SQLAlchemy (>=1.4.36)", "pymysql (>=1.0.2)"] +output-formatting = ["jinja2 (>=3.1.2)", "tabulate (>=0.8.10)"] +parquet = ["pyarrow (>=7.0.0)"] +performance = ["bottleneck (>=1.3.4)", "numba (>=0.55.2)", "numexpr (>=2.8.0)"] +plot = ["matplotlib (>=3.6.1)"] +postgresql = ["SQLAlchemy (>=1.4.36)", "psycopg2 (>=2.9.3)"] +spss = ["pyreadstat (>=1.1.5)"] +sql-other = ["SQLAlchemy (>=1.4.36)"] +test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)"] +xml = ["lxml (>=4.8.0)"] + +[[package]] +name = "pandas-stubs" +version = "2.1.4.231218" +description = "Type annotations for pandas" +optional = false +python-versions = ">=3.9" +files = [ + {file = "pandas_stubs-2.1.4.231218-py3-none-any.whl", hash = "sha256:9c9a8db37b83ff4ff9f672644099abc624ed407aa46d9dcb5f305de9925b3d29"}, + {file = "pandas_stubs-2.1.4.231218.tar.gz", hash = "sha256:f0dd07b3bb2935ddcff9c7b7ba9076cf3529b968a0dee96fab53f5f8747974f7"}, +] + +[package.dependencies] +numpy = {version = ">=1.26.0", markers = "python_version < \"3.13\""} +types-pytz = ">=2022.1.1" + +[[package]] +name = "parso" +version = "0.8.3" +description = "A Python Parser" +optional = false +python-versions = ">=3.6" +files = [ + {file = "parso-0.8.3-py2.py3-none-any.whl", hash = "sha256:c001d4636cd3aecdaf33cbb40aebb59b094be2a74c556778ef5576c175e19e75"}, + {file = "parso-0.8.3.tar.gz", hash = "sha256:8c07be290bb59f03588915921e29e8a50002acaf2cdc5fa0e0114f91709fafa0"}, +] + +[package.extras] +qa = ["flake8 (==3.8.3)", "mypy (==0.782)"] +testing = ["docopt", "pytest (<6.0.0)"] + +[[package]] +name = "pathspec" +version = "0.12.1" +description = "Utility library for gitignore style pattern matching of file paths." +optional = false +python-versions = ">=3.8" +files = [ + {file = "pathspec-0.12.1-py3-none-any.whl", hash = "sha256:a0d503e138a4c123b27490a4f7beda6a01c6f288df0e4a8b79c7eb0dc7b4cc08"}, + {file = "pathspec-0.12.1.tar.gz", hash = "sha256:a482d51503a1ab33b1c67a6c3813a26953dbdc71c31dacaef9a838c4e29f5712"}, +] + +[[package]] +name = "pexpect" +version = "4.9.0" +description = "Pexpect allows easy control of interactive console applications." +optional = false +python-versions = "*" +files = [ + {file = "pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523"}, + {file = "pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f"}, +] + +[package.dependencies] +ptyprocess = ">=0.5" + +[[package]] +name = "pillow" +version = "10.1.0" +description = "Python Imaging Library (Fork)" +optional = false +python-versions = ">=3.8" +files = [ + {file = "Pillow-10.1.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:1ab05f3db77e98f93964697c8efc49c7954b08dd61cff526b7f2531a22410106"}, + {file = "Pillow-10.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6932a7652464746fcb484f7fc3618e6503d2066d853f68a4bd97193a3996e273"}, + {file = "Pillow-10.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5f63b5a68daedc54c7c3464508d8c12075e56dcfbd42f8c1bf40169061ae666"}, + {file = "Pillow-10.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0949b55eb607898e28eaccb525ab104b2d86542a85c74baf3a6dc24002edec2"}, + {file = "Pillow-10.1.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:ae88931f93214777c7a3aa0a8f92a683f83ecde27f65a45f95f22d289a69e593"}, + {file = "Pillow-10.1.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:b0eb01ca85b2361b09480784a7931fc648ed8b7836f01fb9241141b968feb1db"}, + {file = "Pillow-10.1.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d27b5997bdd2eb9fb199982bb7eb6164db0426904020dc38c10203187ae2ff2f"}, + {file = "Pillow-10.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:7df5608bc38bd37ef585ae9c38c9cd46d7c81498f086915b0f97255ea60c2818"}, + {file = "Pillow-10.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:41f67248d92a5e0a2076d3517d8d4b1e41a97e2df10eb8f93106c89107f38b57"}, + {file = "Pillow-10.1.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:1fb29c07478e6c06a46b867e43b0bcdb241b44cc52be9bc25ce5944eed4648e7"}, + {file = "Pillow-10.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2cdc65a46e74514ce742c2013cd4a2d12e8553e3a2563c64879f7c7e4d28bce7"}, + {file = "Pillow-10.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50d08cd0a2ecd2a8657bd3d82c71efd5a58edb04d9308185d66c3a5a5bed9610"}, + {file = "Pillow-10.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:062a1610e3bc258bff2328ec43f34244fcec972ee0717200cb1425214fe5b839"}, + {file = "Pillow-10.1.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:61f1a9d247317fa08a308daaa8ee7b3f760ab1809ca2da14ecc88ae4257d6172"}, + {file = "Pillow-10.1.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:a646e48de237d860c36e0db37ecaecaa3619e6f3e9d5319e527ccbc8151df061"}, + {file = "Pillow-10.1.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:47e5bf85b80abc03be7455c95b6d6e4896a62f6541c1f2ce77a7d2bb832af262"}, + {file = "Pillow-10.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:a92386125e9ee90381c3369f57a2a50fa9e6aa8b1cf1d9c4b200d41a7dd8e992"}, + {file = "Pillow-10.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:0f7c276c05a9767e877a0b4c5050c8bee6a6d960d7f0c11ebda6b99746068c2a"}, + {file = "Pillow-10.1.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:a89b8312d51715b510a4fe9fc13686283f376cfd5abca8cd1c65e4c76e21081b"}, + {file = "Pillow-10.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:00f438bb841382b15d7deb9a05cc946ee0f2c352653c7aa659e75e592f6fa17d"}, + {file = "Pillow-10.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3d929a19f5469b3f4df33a3df2983db070ebb2088a1e145e18facbc28cae5b27"}, + {file = "Pillow-10.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a92109192b360634a4489c0c756364c0c3a2992906752165ecb50544c251312"}, + {file = "Pillow-10.1.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:0248f86b3ea061e67817c47ecbe82c23f9dd5d5226200eb9090b3873d3ca32de"}, + {file = "Pillow-10.1.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:9882a7451c680c12f232a422730f986a1fcd808da0fd428f08b671237237d651"}, + {file = "Pillow-10.1.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:1c3ac5423c8c1da5928aa12c6e258921956757d976405e9467c5f39d1d577a4b"}, + {file = "Pillow-10.1.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:806abdd8249ba3953c33742506fe414880bad78ac25cc9a9b1c6ae97bedd573f"}, + {file = "Pillow-10.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:eaed6977fa73408b7b8a24e8b14e59e1668cfc0f4c40193ea7ced8e210adf996"}, + {file = "Pillow-10.1.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:fe1e26e1ffc38be097f0ba1d0d07fcade2bcfd1d023cda5b29935ae8052bd793"}, + {file = "Pillow-10.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7a7e3daa202beb61821c06d2517428e8e7c1aab08943e92ec9e5755c2fc9ba5e"}, + {file = "Pillow-10.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:24fadc71218ad2b8ffe437b54876c9382b4a29e030a05a9879f615091f42ffc2"}, + {file = "Pillow-10.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fa1d323703cfdac2036af05191b969b910d8f115cf53093125e4058f62012c9a"}, + {file = "Pillow-10.1.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:912e3812a1dbbc834da2b32299b124b5ddcb664ed354916fd1ed6f193f0e2d01"}, + {file = "Pillow-10.1.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:7dbaa3c7de82ef37e7708521be41db5565004258ca76945ad74a8e998c30af8d"}, + {file = "Pillow-10.1.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:9d7bc666bd8c5a4225e7ac71f2f9d12466ec555e89092728ea0f5c0c2422ea80"}, + {file = "Pillow-10.1.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:baada14941c83079bf84c037e2d8b7506ce201e92e3d2fa0d1303507a8538212"}, + {file = "Pillow-10.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:2ef6721c97894a7aa77723740a09547197533146fba8355e86d6d9a4a1056b14"}, + {file = "Pillow-10.1.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:0a026c188be3b443916179f5d04548092e253beb0c3e2ee0a4e2cdad72f66099"}, + {file = "Pillow-10.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:04f6f6149f266a100374ca3cc368b67fb27c4af9f1cc8cb6306d849dcdf12616"}, + {file = "Pillow-10.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bb40c011447712d2e19cc261c82655f75f32cb724788df315ed992a4d65696bb"}, + {file = "Pillow-10.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1a8413794b4ad9719346cd9306118450b7b00d9a15846451549314a58ac42219"}, + {file = "Pillow-10.1.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:c9aeea7b63edb7884b031a35305629a7593272b54f429a9869a4f63a1bf04c34"}, + {file = "Pillow-10.1.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:b4005fee46ed9be0b8fb42be0c20e79411533d1fd58edabebc0dd24626882cfd"}, + {file = "Pillow-10.1.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:4d0152565c6aa6ebbfb1e5d8624140a440f2b99bf7afaafbdbf6430426497f28"}, + {file = "Pillow-10.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:d921bc90b1defa55c9917ca6b6b71430e4286fc9e44c55ead78ca1a9f9eba5f2"}, + {file = "Pillow-10.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:cfe96560c6ce2f4c07d6647af2d0f3c54cc33289894ebd88cfbb3bcd5391e256"}, + {file = "Pillow-10.1.0-pp310-pypy310_pp73-macosx_10_10_x86_64.whl", hash = "sha256:937bdc5a7f5343d1c97dc98149a0be7eb9704e937fe3dc7140e229ae4fc572a7"}, + {file = "Pillow-10.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b1c25762197144e211efb5f4e8ad656f36c8d214d390585d1d21281f46d556ba"}, + {file = "Pillow-10.1.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:afc8eef765d948543a4775f00b7b8c079b3321d6b675dde0d02afa2ee23000b4"}, + {file = "Pillow-10.1.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:883f216eac8712b83a63f41b76ddfb7b2afab1b74abbb413c5df6680f071a6b9"}, + {file = "Pillow-10.1.0-pp39-pypy39_pp73-macosx_10_10_x86_64.whl", hash = "sha256:b920e4d028f6442bea9a75b7491c063f0b9a3972520731ed26c83e254302eb1e"}, + {file = "Pillow-10.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1c41d960babf951e01a49c9746f92c5a7e0d939d1652d7ba30f6b3090f27e412"}, + {file = "Pillow-10.1.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:1fafabe50a6977ac70dfe829b2d5735fd54e190ab55259ec8aea4aaea412fa0b"}, + {file = "Pillow-10.1.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:3b834f4b16173e5b92ab6566f0473bfb09f939ba14b23b8da1f54fa63e4b623f"}, + {file = "Pillow-10.1.0.tar.gz", hash = "sha256:e6bf8de6c36ed96c86ea3b6e1d5273c53f46ef518a062464cd7ef5dd2cf92e38"}, +] + +[package.extras] +docs = ["furo", "olefile", "sphinx (>=2.4)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-removed-in", "sphinxext-opengraph"] +tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "platformdirs" +version = "4.1.0" +description = "A small Python package for determining appropriate platform-specific dirs, e.g. a \"user data dir\"." +optional = false +python-versions = ">=3.8" +files = [ + {file = "platformdirs-4.1.0-py3-none-any.whl", hash = "sha256:11c8f37bcca40db96d8144522d925583bdb7a31f7b0e37e3ed4318400a8e2380"}, + {file = "platformdirs-4.1.0.tar.gz", hash = "sha256:906d548203468492d432bcb294d4bc2fff751bf84971fbb2c10918cc206ee420"}, +] + +[package.extras] +docs = ["furo (>=2023.7.26)", "proselint (>=0.13)", "sphinx (>=7.1.1)", "sphinx-autodoc-typehints (>=1.24)"] +test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4)", "pytest-cov (>=4.1)", "pytest-mock (>=3.11.1)"] + +[[package]] +name = "pluggy" +version = "1.3.0" +description = "plugin and hook calling mechanisms for python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pluggy-1.3.0-py3-none-any.whl", hash = "sha256:d89c696a773f8bd377d18e5ecda92b7a3793cbe66c87060a6fb58c7b6e1061f7"}, + {file = "pluggy-1.3.0.tar.gz", hash = "sha256:cf61ae8f126ac6f7c451172cf30e3e43d3ca77615509771b3a984a0730651e12"}, +] + +[package.extras] +dev = ["pre-commit", "tox"] +testing = ["pytest", "pytest-benchmark"] + +[[package]] +name = "prompt-toolkit" +version = "3.0.43" +description = "Library for building powerful interactive command lines in Python" +optional = false +python-versions = ">=3.7.0" +files = [ + {file = "prompt_toolkit-3.0.43-py3-none-any.whl", hash = "sha256:a11a29cb3bf0a28a387fe5122cdb649816a957cd9261dcedf8c9f1fef33eacf6"}, + {file = "prompt_toolkit-3.0.43.tar.gz", hash = "sha256:3527b7af26106cbc65a040bcc84839a3566ec1b051bb0bfe953631e704b0ff7d"}, +] + +[package.dependencies] +wcwidth = "*" + +[[package]] +name = "psutil" +version = "5.9.7" +description = "Cross-platform lib for process and system monitoring in Python." +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*" +files = [ + {file = "psutil-5.9.7-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:0bd41bf2d1463dfa535942b2a8f0e958acf6607ac0be52265ab31f7923bcd5e6"}, + {file = "psutil-5.9.7-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:5794944462509e49d4d458f4dbfb92c47539e7d8d15c796f141f474010084056"}, + {file = "psutil-5.9.7-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:fe361f743cb3389b8efda21980d93eb55c1f1e3898269bc9a2a1d0bb7b1f6508"}, + {file = "psutil-5.9.7-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:e469990e28f1ad738f65a42dcfc17adaed9d0f325d55047593cb9033a0ab63df"}, + {file = "psutil-5.9.7-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:3c4747a3e2ead1589e647e64aad601981f01b68f9398ddf94d01e3dc0d1e57c7"}, + {file = "psutil-5.9.7-cp27-none-win32.whl", hash = "sha256:1d4bc4a0148fdd7fd8f38e0498639ae128e64538faa507df25a20f8f7fb2341c"}, + {file = "psutil-5.9.7-cp27-none-win_amd64.whl", hash = "sha256:4c03362e280d06bbbfcd52f29acd79c733e0af33d707c54255d21029b8b32ba6"}, + {file = "psutil-5.9.7-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:ea36cc62e69a13ec52b2f625c27527f6e4479bca2b340b7a452af55b34fcbe2e"}, + {file = "psutil-5.9.7-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1132704b876e58d277168cd729d64750633d5ff0183acf5b3c986b8466cd0284"}, + {file = "psutil-5.9.7-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fe8b7f07948f1304497ce4f4684881250cd859b16d06a1dc4d7941eeb6233bfe"}, + {file = "psutil-5.9.7-cp36-cp36m-win32.whl", hash = "sha256:b27f8fdb190c8c03914f908a4555159327d7481dac2f01008d483137ef3311a9"}, + {file = "psutil-5.9.7-cp36-cp36m-win_amd64.whl", hash = "sha256:44969859757f4d8f2a9bd5b76eba8c3099a2c8cf3992ff62144061e39ba8568e"}, + {file = "psutil-5.9.7-cp37-abi3-win32.whl", hash = "sha256:c727ca5a9b2dd5193b8644b9f0c883d54f1248310023b5ad3e92036c5e2ada68"}, + {file = "psutil-5.9.7-cp37-abi3-win_amd64.whl", hash = "sha256:f37f87e4d73b79e6c5e749440c3113b81d1ee7d26f21c19c47371ddea834f414"}, + {file = "psutil-5.9.7-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:032f4f2c909818c86cea4fe2cc407f1c0f0cde8e6c6d702b28b8ce0c0d143340"}, + {file = "psutil-5.9.7.tar.gz", hash = "sha256:3f02134e82cfb5d089fddf20bb2e03fd5cd52395321d1c8458a9e58500ff417c"}, +] + +[package.extras] +test = ["enum34", "ipaddress", "mock", "pywin32", "wmi"] + +[[package]] +name = "ptyprocess" +version = "0.7.0" +description = "Run a subprocess in a pseudo terminal" +optional = false +python-versions = "*" +files = [ + {file = "ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35"}, + {file = "ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"}, +] + +[[package]] +name = "pure-eval" +version = "0.2.2" +description = "Safely evaluate AST nodes without side effects" +optional = false +python-versions = "*" +files = [ + {file = "pure_eval-0.2.2-py3-none-any.whl", hash = "sha256:01eaab343580944bc56080ebe0a674b39ec44a945e6d09ba7db3cb8cec289350"}, + {file = "pure_eval-0.2.2.tar.gz", hash = "sha256:2b45320af6dfaa1750f543d714b6d1c520a1688dec6fd24d339063ce0aaa9ac3"}, +] + +[package.extras] +tests = ["pytest"] + +[[package]] +name = "pycodestyle" +version = "2.11.1" +description = "Python style guide checker" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pycodestyle-2.11.1-py2.py3-none-any.whl", hash = "sha256:44fe31000b2d866f2e41841b18528a505fbd7fef9017b04eff4e2648a0fadc67"}, + {file = "pycodestyle-2.11.1.tar.gz", hash = "sha256:41ba0e7afc9752dfb53ced5489e89f8186be00e599e712660695b7a75ff2663f"}, +] + +[[package]] +name = "pycparser" +version = "2.21" +description = "C parser in Python" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +files = [ + {file = "pycparser-2.21-py2.py3-none-any.whl", hash = "sha256:8ee45429555515e1f6b185e78100aea234072576aa43ab53aefcae078162fca9"}, + {file = "pycparser-2.21.tar.gz", hash = "sha256:e644fdec12f7872f86c58ff790da456218b10f863970249516d60a5eaca77206"}, +] + +[[package]] +name = "pyflakes" +version = "3.1.0" +description = "passive checker of Python programs" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pyflakes-3.1.0-py2.py3-none-any.whl", hash = "sha256:4132f6d49cb4dae6819e5379898f2b8cce3c5f23994194c24b77d5da2e36f774"}, + {file = "pyflakes-3.1.0.tar.gz", hash = "sha256:a0aae034c444db0071aa077972ba4768d40c830d9539fd45bf4cd3f8f6992efc"}, +] + +[[package]] +name = "pygments" +version = "2.17.2" +description = "Pygments is a syntax highlighting package written in Python." +optional = false +python-versions = ">=3.7" +files = [ + {file = "pygments-2.17.2-py3-none-any.whl", hash = "sha256:b27c2826c47d0f3219f29554824c30c5e8945175d888647acd804ddd04af846c"}, + {file = "pygments-2.17.2.tar.gz", hash = "sha256:da46cec9fd2de5be3a8a784f434e4c4ab670b4ff54d605c4c2717e9d49c4c367"}, +] + +[package.extras] +plugins = ["importlib-metadata"] +windows-terminal = ["colorama (>=0.4.6)"] + +[[package]] +name = "pyparsing" +version = "3.1.1" +description = "pyparsing module - Classes and methods to define and execute parsing grammars" +optional = false +python-versions = ">=3.6.8" +files = [ + {file = "pyparsing-3.1.1-py3-none-any.whl", hash = "sha256:32c7c0b711493c72ff18a981d24f28aaf9c1fb7ed5e9667c9e84e3db623bdbfb"}, + {file = "pyparsing-3.1.1.tar.gz", hash = "sha256:ede28a1a32462f5a9705e07aea48001a08f7cf81a021585011deba701581a0db"}, +] + +[package.extras] +diagrams = ["jinja2", "railroad-diagrams"] + +[[package]] +name = "pyproject-api" +version = "1.6.1" +description = "API to interact with the python pyproject.toml based projects" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pyproject_api-1.6.1-py3-none-any.whl", hash = "sha256:4c0116d60476b0786c88692cf4e325a9814965e2469c5998b830bba16b183675"}, + {file = "pyproject_api-1.6.1.tar.gz", hash = "sha256:1817dc018adc0d1ff9ca1ed8c60e1623d5aaca40814b953af14a9cf9a5cae538"}, +] + +[package.dependencies] +packaging = ">=23.1" +tomli = {version = ">=2.0.1", markers = "python_version < \"3.11\""} + +[package.extras] +docs = ["furo (>=2023.8.19)", "sphinx (<7.2)", "sphinx-autodoc-typehints (>=1.24)"] +testing = ["covdefaults (>=2.3)", "pytest (>=7.4)", "pytest-cov (>=4.1)", "pytest-mock (>=3.11.1)", "setuptools (>=68.1.2)", "wheel (>=0.41.2)"] + +[[package]] +name = "pytest" +version = "7.4.3" +description = "pytest: simple powerful testing with Python" +optional = false +python-versions = ">=3.7" +files = [ + {file = "pytest-7.4.3-py3-none-any.whl", hash = "sha256:0d009c083ea859a71b76adf7c1d502e4bc170b80a8ef002da5806527b9591fac"}, + {file = "pytest-7.4.3.tar.gz", hash = "sha256:d989d136982de4e3b29dabcc838ad581c64e8ed52c11fbe86ddebd9da0818cd5"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "sys_platform == \"win32\""} +exceptiongroup = {version = ">=1.0.0rc8", markers = "python_version < \"3.11\""} +iniconfig = "*" +packaging = "*" +pluggy = ">=0.12,<2.0" +tomli = {version = ">=1.0.0", markers = "python_version < \"3.11\""} + +[package.extras] +testing = ["argcomplete", "attrs (>=19.2.0)", "hypothesis (>=3.56)", "mock", "nose", "pygments (>=2.7.2)", "requests", "setuptools", "xmlschema"] + +[[package]] +name = "pytest-cov" +version = "4.1.0" +description = "Pytest plugin for measuring coverage." +optional = false +python-versions = ">=3.7" +files = [ + {file = "pytest-cov-4.1.0.tar.gz", hash = "sha256:3904b13dfbfec47f003b8e77fd5b589cd11904a21ddf1ab38a64f204d6a10ef6"}, + {file = "pytest_cov-4.1.0-py3-none-any.whl", hash = "sha256:6ba70b9e97e69fcc3fb45bfeab2d0a138fb65c4d0d6a41ef33983ad114be8c3a"}, +] + +[package.dependencies] +coverage = {version = ">=5.2.1", extras = ["toml"]} +pytest = ">=4.6" + +[package.extras] +testing = ["fields", "hunter", "process-tests", "pytest-xdist", "six", "virtualenv"] + +[[package]] +name = "pytest-sugar" +version = "0.9.7" +description = "pytest-sugar is a plugin for pytest that changes the default look and feel of pytest (e.g. progressbar, show tests that fail instantly)." +optional = false +python-versions = "*" +files = [ + {file = "pytest-sugar-0.9.7.tar.gz", hash = "sha256:f1e74c1abfa55f7241cf7088032b6e378566f16b938f3f08905e2cf4494edd46"}, + {file = "pytest_sugar-0.9.7-py2.py3-none-any.whl", hash = "sha256:8cb5a4e5f8bbcd834622b0235db9e50432f4cbd71fef55b467fe44e43701e062"}, +] + +[package.dependencies] +packaging = ">=21.3" +pytest = ">=6.2.0" +termcolor = ">=2.1.0" + +[package.extras] +dev = ["black", "flake8", "pre-commit"] + +[[package]] +name = "python-dateutil" +version = "2.8.2" +description = "Extensions to the standard Python datetime module" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" +files = [ + {file = "python-dateutil-2.8.2.tar.gz", hash = "sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86"}, + {file = "python_dateutil-2.8.2-py2.py3-none-any.whl", hash = "sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9"}, +] + +[package.dependencies] +six = ">=1.5" + +[[package]] +name = "pytz" +version = "2023.3.post1" +description = "World timezone definitions, modern and historical" +optional = false +python-versions = "*" +files = [ + {file = "pytz-2023.3.post1-py2.py3-none-any.whl", hash = "sha256:ce42d816b81b68506614c11e8937d3aa9e41007ceb50bfdcb0749b921bf646c7"}, + {file = "pytz-2023.3.post1.tar.gz", hash = "sha256:7b4fddbeb94a1eba4b557da24f19fdf9db575192544270a9101d8509f9f43d7b"}, +] + +[[package]] +name = "pywin32" +version = "306" +description = "Python for Window Extensions" +optional = false +python-versions = "*" +files = [ + {file = "pywin32-306-cp310-cp310-win32.whl", hash = "sha256:06d3420a5155ba65f0b72f2699b5bacf3109f36acbe8923765c22938a69dfc8d"}, + {file = "pywin32-306-cp310-cp310-win_amd64.whl", hash = "sha256:84f4471dbca1887ea3803d8848a1616429ac94a4a8d05f4bc9c5dcfd42ca99c8"}, + {file = "pywin32-306-cp311-cp311-win32.whl", hash = "sha256:e65028133d15b64d2ed8f06dd9fbc268352478d4f9289e69c190ecd6818b6407"}, + {file = "pywin32-306-cp311-cp311-win_amd64.whl", hash = "sha256:a7639f51c184c0272e93f244eb24dafca9b1855707d94c192d4a0b4c01e1100e"}, + {file = "pywin32-306-cp311-cp311-win_arm64.whl", hash = "sha256:70dba0c913d19f942a2db25217d9a1b726c278f483a919f1abfed79c9cf64d3a"}, + {file = "pywin32-306-cp312-cp312-win32.whl", hash = "sha256:383229d515657f4e3ed1343da8be101000562bf514591ff383ae940cad65458b"}, + {file = "pywin32-306-cp312-cp312-win_amd64.whl", hash = "sha256:37257794c1ad39ee9be652da0462dc2e394c8159dfd913a8a4e8eb6fd346da0e"}, + {file = "pywin32-306-cp312-cp312-win_arm64.whl", hash = "sha256:5821ec52f6d321aa59e2db7e0a35b997de60c201943557d108af9d4ae1ec7040"}, + {file = "pywin32-306-cp37-cp37m-win32.whl", hash = "sha256:1c73ea9a0d2283d889001998059f5eaaba3b6238f767c9cf2833b13e6a685f65"}, + {file = "pywin32-306-cp37-cp37m-win_amd64.whl", hash = "sha256:72c5f621542d7bdd4fdb716227be0dd3f8565c11b280be6315b06ace35487d36"}, + {file = "pywin32-306-cp38-cp38-win32.whl", hash = "sha256:e4c092e2589b5cf0d365849e73e02c391c1349958c5ac3e9d5ccb9a28e017b3a"}, + {file = "pywin32-306-cp38-cp38-win_amd64.whl", hash = "sha256:e8ac1ae3601bee6ca9f7cb4b5363bf1c0badb935ef243c4733ff9a393b1690c0"}, + {file = "pywin32-306-cp39-cp39-win32.whl", hash = "sha256:e25fd5b485b55ac9c057f67d94bc203f3f6595078d1fb3b458c9c28b7153a802"}, + {file = "pywin32-306-cp39-cp39-win_amd64.whl", hash = "sha256:39b61c15272833b5c329a2989999dcae836b1eed650252ab1b7bfbe1d59f30f4"}, +] + +[[package]] +name = "pyzmq" +version = "25.1.2" +description = "Python bindings for 0MQ" +optional = false +python-versions = ">=3.6" +files = [ + {file = "pyzmq-25.1.2-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:e624c789359f1a16f83f35e2c705d07663ff2b4d4479bad35621178d8f0f6ea4"}, + {file = "pyzmq-25.1.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:49151b0efece79f6a79d41a461d78535356136ee70084a1c22532fc6383f4ad0"}, + {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d9a5f194cf730f2b24d6af1f833c14c10f41023da46a7f736f48b6d35061e76e"}, + {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:faf79a302f834d9e8304fafdc11d0d042266667ac45209afa57e5efc998e3872"}, + {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f51a7b4ead28d3fca8dda53216314a553b0f7a91ee8fc46a72b402a78c3e43d"}, + {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:0ddd6d71d4ef17ba5a87becf7ddf01b371eaba553c603477679ae817a8d84d75"}, + {file = "pyzmq-25.1.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:246747b88917e4867e2367b005fc8eefbb4a54b7db363d6c92f89d69abfff4b6"}, + {file = "pyzmq-25.1.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:00c48ae2fd81e2a50c3485de1b9d5c7c57cd85dc8ec55683eac16846e57ac979"}, + {file = "pyzmq-25.1.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:5a68d491fc20762b630e5db2191dd07ff89834086740f70e978bb2ef2668be08"}, + {file = "pyzmq-25.1.2-cp310-cp310-win32.whl", hash = "sha256:09dfe949e83087da88c4a76767df04b22304a682d6154de2c572625c62ad6886"}, + {file = "pyzmq-25.1.2-cp310-cp310-win_amd64.whl", hash = "sha256:fa99973d2ed20417744fca0073390ad65ce225b546febb0580358e36aa90dba6"}, + {file = "pyzmq-25.1.2-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:82544e0e2d0c1811482d37eef297020a040c32e0687c1f6fc23a75b75db8062c"}, + {file = "pyzmq-25.1.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:01171fc48542348cd1a360a4b6c3e7d8f46cdcf53a8d40f84db6707a6768acc1"}, + {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bc69c96735ab501419c432110016329bf0dea8898ce16fab97c6d9106dc0b348"}, + {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3e124e6b1dd3dfbeb695435dff0e383256655bb18082e094a8dd1f6293114642"}, + {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7598d2ba821caa37a0f9d54c25164a4fa351ce019d64d0b44b45540950458840"}, + {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:d1299d7e964c13607efd148ca1f07dcbf27c3ab9e125d1d0ae1d580a1682399d"}, + {file = "pyzmq-25.1.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:4e6f689880d5ad87918430957297c975203a082d9a036cc426648fcbedae769b"}, + {file = "pyzmq-25.1.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:cc69949484171cc961e6ecd4a8911b9ce7a0d1f738fcae717177c231bf77437b"}, + {file = "pyzmq-25.1.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9880078f683466b7f567b8624bfc16cad65077be046b6e8abb53bed4eeb82dd3"}, + {file = "pyzmq-25.1.2-cp311-cp311-win32.whl", hash = "sha256:4e5837af3e5aaa99a091302df5ee001149baff06ad22b722d34e30df5f0d9097"}, + {file = "pyzmq-25.1.2-cp311-cp311-win_amd64.whl", hash = "sha256:25c2dbb97d38b5ac9fd15586e048ec5eb1e38f3d47fe7d92167b0c77bb3584e9"}, + {file = "pyzmq-25.1.2-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:11e70516688190e9c2db14fcf93c04192b02d457b582a1f6190b154691b4c93a"}, + {file = "pyzmq-25.1.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:313c3794d650d1fccaaab2df942af9f2c01d6217c846177cfcbc693c7410839e"}, + {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1b3cbba2f47062b85fe0ef9de5b987612140a9ba3a9c6d2543c6dec9f7c2ab27"}, + {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fc31baa0c32a2ca660784d5af3b9487e13b61b3032cb01a115fce6588e1bed30"}, + {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:02c9087b109070c5ab0b383079fa1b5f797f8d43e9a66c07a4b8b8bdecfd88ee"}, + {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:f8429b17cbb746c3e043cb986328da023657e79d5ed258b711c06a70c2ea7537"}, + {file = "pyzmq-25.1.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:5074adeacede5f810b7ef39607ee59d94e948b4fd954495bdb072f8c54558181"}, + {file = "pyzmq-25.1.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:7ae8f354b895cbd85212da245f1a5ad8159e7840e37d78b476bb4f4c3f32a9fe"}, + {file = "pyzmq-25.1.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:b264bf2cc96b5bc43ce0e852be995e400376bd87ceb363822e2cb1964fcdc737"}, + {file = "pyzmq-25.1.2-cp312-cp312-win32.whl", hash = "sha256:02bbc1a87b76e04fd780b45e7f695471ae6de747769e540da909173d50ff8e2d"}, + {file = "pyzmq-25.1.2-cp312-cp312-win_amd64.whl", hash = "sha256:ced111c2e81506abd1dc142e6cd7b68dd53747b3b7ae5edbea4578c5eeff96b7"}, + {file = "pyzmq-25.1.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:7b6d09a8962a91151f0976008eb7b29b433a560fde056ec7a3db9ec8f1075438"}, + {file = "pyzmq-25.1.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:967668420f36878a3c9ecb5ab33c9d0ff8d054f9c0233d995a6d25b0e95e1b6b"}, + {file = "pyzmq-25.1.2-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5edac3f57c7ddaacdb4d40f6ef2f9e299471fc38d112f4bc6d60ab9365445fb0"}, + {file = "pyzmq-25.1.2-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:0dabfb10ef897f3b7e101cacba1437bd3a5032ee667b7ead32bbcdd1a8422fe7"}, + {file = "pyzmq-25.1.2-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:2c6441e0398c2baacfe5ba30c937d274cfc2dc5b55e82e3749e333aabffde561"}, + {file = "pyzmq-25.1.2-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:16b726c1f6c2e7625706549f9dbe9b06004dfbec30dbed4bf50cbdfc73e5b32a"}, + {file = "pyzmq-25.1.2-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:a86c2dd76ef71a773e70551a07318b8e52379f58dafa7ae1e0a4be78efd1ff16"}, + {file = "pyzmq-25.1.2-cp36-cp36m-win32.whl", hash = "sha256:359f7f74b5d3c65dae137f33eb2bcfa7ad9ebefd1cab85c935f063f1dbb245cc"}, + {file = "pyzmq-25.1.2-cp36-cp36m-win_amd64.whl", hash = "sha256:55875492f820d0eb3417b51d96fea549cde77893ae3790fd25491c5754ea2f68"}, + {file = "pyzmq-25.1.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b8c8a419dfb02e91b453615c69568442e897aaf77561ee0064d789705ff37a92"}, + {file = "pyzmq-25.1.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8807c87fa893527ae8a524c15fc505d9950d5e856f03dae5921b5e9aa3b8783b"}, + {file = "pyzmq-25.1.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5e319ed7d6b8f5fad9b76daa0a68497bc6f129858ad956331a5835785761e003"}, + {file = "pyzmq-25.1.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:3c53687dde4d9d473c587ae80cc328e5b102b517447456184b485587ebd18b62"}, + {file = "pyzmq-25.1.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:9add2e5b33d2cd765ad96d5eb734a5e795a0755f7fc49aa04f76d7ddda73fd70"}, + {file = "pyzmq-25.1.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:e690145a8c0c273c28d3b89d6fb32c45e0d9605b2293c10e650265bf5c11cfec"}, + {file = "pyzmq-25.1.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:00a06faa7165634f0cac1abb27e54d7a0b3b44eb9994530b8ec73cf52e15353b"}, + {file = "pyzmq-25.1.2-cp37-cp37m-win32.whl", hash = "sha256:0f97bc2f1f13cb16905a5f3e1fbdf100e712d841482b2237484360f8bc4cb3d7"}, + {file = "pyzmq-25.1.2-cp37-cp37m-win_amd64.whl", hash = "sha256:6cc0020b74b2e410287e5942e1e10886ff81ac77789eb20bec13f7ae681f0fdd"}, + {file = "pyzmq-25.1.2-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:bef02cfcbded83473bdd86dd8d3729cd82b2e569b75844fb4ea08fee3c26ae41"}, + {file = "pyzmq-25.1.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e10a4b5a4b1192d74853cc71a5e9fd022594573926c2a3a4802020360aa719d8"}, + {file = "pyzmq-25.1.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:8c5f80e578427d4695adac6fdf4370c14a2feafdc8cb35549c219b90652536ae"}, + {file = "pyzmq-25.1.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:5dde6751e857910c1339890f3524de74007958557593b9e7e8c5f01cd919f8a7"}, + {file = "pyzmq-25.1.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ea1608dd169da230a0ad602d5b1ebd39807ac96cae1845c3ceed39af08a5c6df"}, + {file = "pyzmq-25.1.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:0f513130c4c361201da9bc69df25a086487250e16b5571ead521b31ff6b02220"}, + {file = "pyzmq-25.1.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:019744b99da30330798bb37df33549d59d380c78e516e3bab9c9b84f87a9592f"}, + {file = "pyzmq-25.1.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:2e2713ef44be5d52dd8b8e2023d706bf66cb22072e97fc71b168e01d25192755"}, + {file = "pyzmq-25.1.2-cp38-cp38-win32.whl", hash = "sha256:07cd61a20a535524906595e09344505a9bd46f1da7a07e504b315d41cd42eb07"}, + {file = "pyzmq-25.1.2-cp38-cp38-win_amd64.whl", hash = "sha256:eb7e49a17fb8c77d3119d41a4523e432eb0c6932187c37deb6fbb00cc3028088"}, + {file = "pyzmq-25.1.2-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:94504ff66f278ab4b7e03e4cba7e7e400cb73bfa9d3d71f58d8972a8dc67e7a6"}, + {file = "pyzmq-25.1.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6dd0d50bbf9dca1d0bdea219ae6b40f713a3fb477c06ca3714f208fd69e16fd8"}, + {file = "pyzmq-25.1.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:004ff469d21e86f0ef0369717351073e0e577428e514c47c8480770d5e24a565"}, + {file = "pyzmq-25.1.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:c0b5ca88a8928147b7b1e2dfa09f3b6c256bc1135a1338536cbc9ea13d3b7add"}, + {file = "pyzmq-25.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2c9a79f1d2495b167119d02be7448bfba57fad2a4207c4f68abc0bab4b92925b"}, + {file = "pyzmq-25.1.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:518efd91c3d8ac9f9b4f7dd0e2b7b8bf1a4fe82a308009016b07eaa48681af82"}, + {file = "pyzmq-25.1.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:1ec23bd7b3a893ae676d0e54ad47d18064e6c5ae1fadc2f195143fb27373f7f6"}, + {file = "pyzmq-25.1.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:db36c27baed588a5a8346b971477b718fdc66cf5b80cbfbd914b4d6d355e44e2"}, + {file = "pyzmq-25.1.2-cp39-cp39-win32.whl", hash = "sha256:39b1067f13aba39d794a24761e385e2eddc26295826530a8c7b6c6c341584289"}, + {file = "pyzmq-25.1.2-cp39-cp39-win_amd64.whl", hash = "sha256:8e9f3fabc445d0ce320ea2c59a75fe3ea591fdbdeebec5db6de530dd4b09412e"}, + {file = "pyzmq-25.1.2-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:a8c1d566344aee826b74e472e16edae0a02e2a044f14f7c24e123002dcff1c05"}, + {file = "pyzmq-25.1.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:759cfd391a0996345ba94b6a5110fca9c557ad4166d86a6e81ea526c376a01e8"}, + {file = "pyzmq-25.1.2-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7c61e346ac34b74028ede1c6b4bcecf649d69b707b3ff9dc0fab453821b04d1e"}, + {file = "pyzmq-25.1.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4cb8fc1f8d69b411b8ec0b5f1ffbcaf14c1db95b6bccea21d83610987435f1a4"}, + {file = "pyzmq-25.1.2-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:3c00c9b7d1ca8165c610437ca0c92e7b5607b2f9076f4eb4b095c85d6e680a1d"}, + {file = "pyzmq-25.1.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:df0c7a16ebb94452d2909b9a7b3337940e9a87a824c4fc1c7c36bb4404cb0cde"}, + {file = "pyzmq-25.1.2-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:45999e7f7ed5c390f2e87ece7f6c56bf979fb213550229e711e45ecc7d42ccb8"}, + {file = "pyzmq-25.1.2-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ac170e9e048b40c605358667aca3d94e98f604a18c44bdb4c102e67070f3ac9b"}, + {file = "pyzmq-25.1.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d1b604734bec94f05f81b360a272fc824334267426ae9905ff32dc2be433ab96"}, + {file = "pyzmq-25.1.2-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:a793ac733e3d895d96f865f1806f160696422554e46d30105807fdc9841b9f7d"}, + {file = "pyzmq-25.1.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:0806175f2ae5ad4b835ecd87f5f85583316b69f17e97786f7443baaf54b9bb98"}, + {file = "pyzmq-25.1.2-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:ef12e259e7bc317c7597d4f6ef59b97b913e162d83b421dd0db3d6410f17a244"}, + {file = "pyzmq-25.1.2-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ea253b368eb41116011add00f8d5726762320b1bda892f744c91997b65754d73"}, + {file = "pyzmq-25.1.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1b9b1f2ad6498445a941d9a4fee096d387fee436e45cc660e72e768d3d8ee611"}, + {file = "pyzmq-25.1.2-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:8b14c75979ce932c53b79976a395cb2a8cd3aaf14aef75e8c2cb55a330b9b49d"}, + {file = "pyzmq-25.1.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:889370d5174a741a62566c003ee8ddba4b04c3f09a97b8000092b7ca83ec9c49"}, + {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9a18fff090441a40ffda8a7f4f18f03dc56ae73f148f1832e109f9bffa85df15"}, + {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:99a6b36f95c98839ad98f8c553d8507644c880cf1e0a57fe5e3a3f3969040882"}, + {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4345c9a27f4310afbb9c01750e9461ff33d6fb74cd2456b107525bbeebcb5be3"}, + {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:3516e0b6224cf6e43e341d56da15fd33bdc37fa0c06af4f029f7d7dfceceabbc"}, + {file = "pyzmq-25.1.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:146b9b1f29ead41255387fb07be56dc29639262c0f7344f570eecdcd8d683314"}, + {file = "pyzmq-25.1.2.tar.gz", hash = "sha256:93f1aa311e8bb912e34f004cf186407a4e90eec4f0ecc0efd26056bf7eda0226"}, +] + +[package.dependencies] +cffi = {version = "*", markers = "implementation_name == \"pypy\""} + +[[package]] +name = "ruff" +version = "0.1.9" +description = "An extremely fast Python linter and code formatter, written in Rust." +optional = false +python-versions = ">=3.7" +files = [ + {file = "ruff-0.1.9-py3-none-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl", hash = "sha256:e6a212f436122ac73df851f0cf006e0c6612fe6f9c864ed17ebefce0eff6a5fd"}, + {file = "ruff-0.1.9-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:28d920e319783d5303333630dae46ecc80b7ba294aeffedf946a02ac0b7cc3db"}, + {file = "ruff-0.1.9-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:104aa9b5e12cb755d9dce698ab1b97726b83012487af415a4512fedd38b1459e"}, + {file = "ruff-0.1.9-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:1e63bf5a4a91971082a4768a0aba9383c12392d0d6f1e2be2248c1f9054a20da"}, + {file = "ruff-0.1.9-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4d0738917c203246f3e275b37006faa3aa96c828b284ebfe3e99a8cb413c8c4b"}, + {file = "ruff-0.1.9-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:69dac82d63a50df2ab0906d97a01549f814b16bc806deeac4f064ff95c47ddf5"}, + {file = "ruff-0.1.9-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2aec598fb65084e41a9c5d4b95726173768a62055aafb07b4eff976bac72a592"}, + {file = "ruff-0.1.9-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:744dfe4b35470fa3820d5fe45758aace6269c578f7ddc43d447868cfe5078bcb"}, + {file = "ruff-0.1.9-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:479ca4250cab30f9218b2e563adc362bd6ae6343df7c7b5a7865300a5156d5a6"}, + {file = "ruff-0.1.9-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:aa8344310f1ae79af9ccd6e4b32749e93cddc078f9b5ccd0e45bd76a6d2e8bb6"}, + {file = "ruff-0.1.9-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:837c739729394df98f342319f5136f33c65286b28b6b70a87c28f59354ec939b"}, + {file = "ruff-0.1.9-py3-none-musllinux_1_2_i686.whl", hash = "sha256:e6837202c2859b9f22e43cb01992373c2dbfeae5c0c91ad691a4a2e725392464"}, + {file = "ruff-0.1.9-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:331aae2cd4a0554667ac683243b151c74bd60e78fb08c3c2a4ac05ee1e606a39"}, + {file = "ruff-0.1.9-py3-none-win32.whl", hash = "sha256:8151425a60878e66f23ad47da39265fc2fad42aed06fb0a01130e967a7a064f4"}, + {file = "ruff-0.1.9-py3-none-win_amd64.whl", hash = "sha256:c497d769164df522fdaf54c6eba93f397342fe4ca2123a2e014a5b8fc7df81c7"}, + {file = "ruff-0.1.9-py3-none-win_arm64.whl", hash = "sha256:0e17f53bcbb4fff8292dfd84cf72d767b5e146f009cccd40c2fad27641f8a7a9"}, + {file = "ruff-0.1.9.tar.gz", hash = "sha256:b041dee2734719ddbb4518f762c982f2e912e7f28b8ee4fe1dee0b15d1b6e800"}, +] + +[[package]] +name = "scipy" +version = "1.11.4" +description = "Fundamental algorithms for scientific computing in Python" +optional = false +python-versions = ">=3.9" +files = [ + {file = "scipy-1.11.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:bc9a714581f561af0848e6b69947fda0614915f072dfd14142ed1bfe1b806710"}, + {file = "scipy-1.11.4-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:cf00bd2b1b0211888d4dc75656c0412213a8b25e80d73898083f402b50f47e41"}, + {file = "scipy-1.11.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b9999c008ccf00e8fbcce1236f85ade5c569d13144f77a1946bef8863e8f6eb4"}, + {file = "scipy-1.11.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:933baf588daa8dc9a92c20a0be32f56d43faf3d1a60ab11b3f08c356430f6e56"}, + {file = "scipy-1.11.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8fce70f39076a5aa62e92e69a7f62349f9574d8405c0a5de6ed3ef72de07f446"}, + {file = "scipy-1.11.4-cp310-cp310-win_amd64.whl", hash = "sha256:6550466fbeec7453d7465e74d4f4b19f905642c89a7525571ee91dd7adabb5a3"}, + {file = "scipy-1.11.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f313b39a7e94f296025e3cffc2c567618174c0b1dde173960cf23808f9fae4be"}, + {file = "scipy-1.11.4-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:1b7c3dca977f30a739e0409fb001056484661cb2541a01aba0bb0029f7b68db8"}, + {file = "scipy-1.11.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:00150c5eae7b610c32589dda259eacc7c4f1665aedf25d921907f4d08a951b1c"}, + {file = "scipy-1.11.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:530f9ad26440e85766509dbf78edcfe13ffd0ab7fec2560ee5c36ff74d6269ff"}, + {file = "scipy-1.11.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5e347b14fe01003d3b78e196e84bd3f48ffe4c8a7b8a1afbcb8f5505cb710993"}, + {file = "scipy-1.11.4-cp311-cp311-win_amd64.whl", hash = "sha256:acf8ed278cc03f5aff035e69cb511741e0418681d25fbbb86ca65429c4f4d9cd"}, + {file = "scipy-1.11.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:028eccd22e654b3ea01ee63705681ee79933652b2d8f873e7949898dda6d11b6"}, + {file = "scipy-1.11.4-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:2c6ff6ef9cc27f9b3db93a6f8b38f97387e6e0591600369a297a50a8e96e835d"}, + {file = "scipy-1.11.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b030c6674b9230d37c5c60ab456e2cf12f6784596d15ce8da9365e70896effc4"}, + {file = "scipy-1.11.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ad669df80528aeca5f557712102538f4f37e503f0c5b9541655016dd0932ca79"}, + {file = "scipy-1.11.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:ce7fff2e23ab2cc81ff452a9444c215c28e6305f396b2ba88343a567feec9660"}, + {file = "scipy-1.11.4-cp312-cp312-win_amd64.whl", hash = "sha256:36750b7733d960d7994888f0d148d31ea3017ac15eef664194b4ef68d36a4a97"}, + {file = "scipy-1.11.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6e619aba2df228a9b34718efb023966da781e89dd3d21637b27f2e54db0410d7"}, + {file = "scipy-1.11.4-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:f3cd9e7b3c2c1ec26364856f9fbe78695fe631150f94cd1c22228456404cf1ec"}, + {file = "scipy-1.11.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d10e45a6c50211fe256da61a11c34927c68f277e03138777bdebedd933712fea"}, + {file = "scipy-1.11.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:91af76a68eeae0064887a48e25c4e616fa519fa0d38602eda7e0f97d65d57937"}, + {file = "scipy-1.11.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6df1468153a31cf55ed5ed39647279beb9cfb5d3f84369453b49e4b8502394fd"}, + {file = "scipy-1.11.4-cp39-cp39-win_amd64.whl", hash = "sha256:ee410e6de8f88fd5cf6eadd73c135020bfbbbdfcd0f6162c36a7638a1ea8cc65"}, + {file = "scipy-1.11.4.tar.gz", hash = "sha256:90a2b78e7f5733b9de748f589f09225013685f9b218275257f8a8168ededaeaa"}, +] + +[package.dependencies] +numpy = ">=1.21.6,<1.28.0" + +[package.extras] +dev = ["click", "cython-lint (>=0.12.2)", "doit (>=0.36.0)", "mypy", "pycodestyle", "pydevtool", "rich-click", "ruff", "types-psutil", "typing_extensions"] +doc = ["jupytext", "matplotlib (>2)", "myst-nb", "numpydoc", "pooch", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-design (>=0.2.0)"] +test = ["asv", "gmpy2", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] + +[[package]] +name = "setuptools" +version = "69.0.3" +description = "Easily download, build, install, upgrade, and uninstall Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "setuptools-69.0.3-py3-none-any.whl", hash = "sha256:385eb4edd9c9d5c17540511303e39a147ce2fc04bc55289c322b9e5904fe2c05"}, + {file = "setuptools-69.0.3.tar.gz", hash = "sha256:be1af57fc409f93647f2e8e4573a142ed38724b8cdd389706a867bb4efcf1e78"}, +] + +[package.extras] +docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier"] +testing = ["build[virtualenv]", "filelock (>=3.4.0)", "flake8-2020", "ini2toml[lite] (>=0.9)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "pip (>=19.1)", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy (>=0.9.1)", "pytest-perf", "pytest-ruff", "pytest-timeout", "pytest-xdist", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"] +testing-integration = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "packaging (>=23.1)", "pytest", "pytest-enabler", "pytest-xdist", "tomli", "virtualenv (>=13.0.0)", "wheel"] + +[[package]] +name = "six" +version = "1.16.0" +description = "Python 2 and 3 compatibility utilities" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" +files = [ + {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"}, + {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, +] + +[[package]] +name = "stack-data" +version = "0.6.3" +description = "Extract data from python stack frames and tracebacks for informative displays" +optional = false +python-versions = "*" +files = [ + {file = "stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695"}, + {file = "stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9"}, +] + +[package.dependencies] +asttokens = ">=2.1.0" +executing = ">=1.2.0" +pure-eval = "*" + +[package.extras] +tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] + +[[package]] +name = "termcolor" +version = "2.4.0" +description = "ANSI color formatting for output in terminal" +optional = false +python-versions = ">=3.8" +files = [ + {file = "termcolor-2.4.0-py3-none-any.whl", hash = "sha256:9297c0df9c99445c2412e832e882a7884038a25617c60cea2ad69488d4040d63"}, + {file = "termcolor-2.4.0.tar.gz", hash = "sha256:aab9e56047c8ac41ed798fa36d892a37aca6b3e9159f3e0c24bc64a9b3ac7b7a"}, +] + +[package.extras] +tests = ["pytest", "pytest-cov"] + +[[package]] +name = "tokenize-rt" +version = "5.2.0" +description = "A wrapper around the stdlib `tokenize` which roundtrips." +optional = false +python-versions = ">=3.8" +files = [ + {file = "tokenize_rt-5.2.0-py2.py3-none-any.whl", hash = "sha256:b79d41a65cfec71285433511b50271b05da3584a1da144a0752e9c621a285289"}, + {file = "tokenize_rt-5.2.0.tar.gz", hash = "sha256:9fe80f8a5c1edad2d3ede0f37481cc0cc1538a2f442c9c2f9e4feacd2792d054"}, +] + +[[package]] +name = "tomli" +version = "2.0.1" +description = "A lil' TOML parser" +optional = false +python-versions = ">=3.7" +files = [ + {file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"}, + {file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"}, +] + +[[package]] +name = "tornado" +version = "6.4" +description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." +optional = false +python-versions = ">= 3.8" +files = [ + {file = "tornado-6.4-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:02ccefc7d8211e5a7f9e8bc3f9e5b0ad6262ba2fbb683a6443ecc804e5224ce0"}, + {file = "tornado-6.4-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:27787de946a9cffd63ce5814c33f734c627a87072ec7eed71f7fc4417bb16263"}, + {file = "tornado-6.4-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f7894c581ecdcf91666a0912f18ce5e757213999e183ebfc2c3fdbf4d5bd764e"}, + {file = "tornado-6.4-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e43bc2e5370a6a8e413e1e1cd0c91bedc5bd62a74a532371042a18ef19e10579"}, + {file = "tornado-6.4-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f0251554cdd50b4b44362f73ad5ba7126fc5b2c2895cc62b14a1c2d7ea32f212"}, + {file = "tornado-6.4-cp38-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:fd03192e287fbd0899dd8f81c6fb9cbbc69194d2074b38f384cb6fa72b80e9c2"}, + {file = "tornado-6.4-cp38-abi3-musllinux_1_1_i686.whl", hash = "sha256:88b84956273fbd73420e6d4b8d5ccbe913c65d31351b4c004ae362eba06e1f78"}, + {file = "tornado-6.4-cp38-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:71ddfc23a0e03ef2df1c1397d859868d158c8276a0603b96cf86892bff58149f"}, + {file = "tornado-6.4-cp38-abi3-win32.whl", hash = "sha256:6f8a6c77900f5ae93d8b4ae1196472d0ccc2775cc1dfdc9e7727889145c45052"}, + {file = "tornado-6.4-cp38-abi3-win_amd64.whl", hash = "sha256:10aeaa8006333433da48dec9fe417877f8bcc21f48dda8d661ae79da357b2a63"}, + {file = "tornado-6.4.tar.gz", hash = "sha256:72291fa6e6bc84e626589f1c29d90a5a6d593ef5ae68052ee2ef000dfd273dee"}, +] + +[[package]] +name = "tox" +version = "4.11.4" +description = "tox is a generic virtualenv management and test command line tool" +optional = false +python-versions = ">=3.8" +files = [ + {file = "tox-4.11.4-py3-none-any.whl", hash = "sha256:2adb83d68f27116812b69aa36676a8d6a52249cb0d173649de0e7d0c2e3e7229"}, + {file = "tox-4.11.4.tar.gz", hash = "sha256:73a7240778fabf305aeb05ab8ea26e575e042ab5a18d71d0ed13e343a51d6ce1"}, +] + +[package.dependencies] +cachetools = ">=5.3.1" +chardet = ">=5.2" +colorama = ">=0.4.6" +filelock = ">=3.12.3" +packaging = ">=23.1" +platformdirs = ">=3.10" +pluggy = ">=1.3" +pyproject-api = ">=1.6.1" +tomli = {version = ">=2.0.1", markers = "python_version < \"3.11\""} +virtualenv = ">=20.24.3" + +[package.extras] +docs = ["furo (>=2023.8.19)", "sphinx (>=7.2.4)", "sphinx-argparse-cli (>=1.11.1)", "sphinx-autodoc-typehints (>=1.24)", "sphinx-copybutton (>=0.5.2)", "sphinx-inline-tabs (>=2023.4.21)", "sphinxcontrib-towncrier (>=0.2.1a0)", "towncrier (>=23.6)"] +testing = ["build[virtualenv] (>=0.10)", "covdefaults (>=2.3)", "detect-test-pollution (>=1.1.1)", "devpi-process (>=1)", "diff-cover (>=7.7)", "distlib (>=0.3.7)", "flaky (>=3.7)", "hatch-vcs (>=0.3)", "hatchling (>=1.18)", "psutil (>=5.9.5)", "pytest (>=7.4)", "pytest-cov (>=4.1)", "pytest-mock (>=3.11.1)", "pytest-xdist (>=3.3.1)", "re-assert (>=1.1)", "time-machine (>=2.12)", "wheel (>=0.41.2)"] + +[[package]] +name = "traitlets" +version = "5.14.0" +description = "Traitlets Python configuration system" +optional = false +python-versions = ">=3.8" +files = [ + {file = "traitlets-5.14.0-py3-none-any.whl", hash = "sha256:f14949d23829023013c47df20b4a76ccd1a85effb786dc060f34de7948361b33"}, + {file = "traitlets-5.14.0.tar.gz", hash = "sha256:fcdaa8ac49c04dfa0ed3ee3384ef6dfdb5d6f3741502be247279407679296772"}, +] + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] +test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<7.5)", "pytest-mock", "pytest-mypy-testing"] + +[[package]] +name = "types-pytz" +version = "2023.3.1.1" +description = "Typing stubs for pytz" +optional = false +python-versions = "*" +files = [ + {file = "types-pytz-2023.3.1.1.tar.gz", hash = "sha256:cc23d0192cd49c8f6bba44ee0c81e4586a8f30204970fc0894d209a6b08dab9a"}, + {file = "types_pytz-2023.3.1.1-py3-none-any.whl", hash = "sha256:1999a123a3dc0e39a2ef6d19f3f8584211de9e6a77fe7a0259f04a524e90a5cf"}, +] + +[[package]] +name = "typing-extensions" +version = "4.9.0" +description = "Backported and Experimental Type Hints for Python 3.8+" +optional = false +python-versions = ">=3.8" +files = [ + {file = "typing_extensions-4.9.0-py3-none-any.whl", hash = "sha256:af72aea155e91adfc61c3ae9e0e342dbc0cba726d6cba4b6c72c1f34e47291cd"}, + {file = "typing_extensions-4.9.0.tar.gz", hash = "sha256:23478f88c37f27d76ac8aee6c905017a143b0b1b886c3c9f66bc2fd94f9f5783"}, +] + +[[package]] +name = "tzdata" +version = "2023.3" +description = "Provider of IANA time zone data" +optional = false +python-versions = ">=2" +files = [ + {file = "tzdata-2023.3-py2.py3-none-any.whl", hash = "sha256:7e65763eef3120314099b6939b5546db7adce1e7d6f2e179e3df563c70511eda"}, + {file = "tzdata-2023.3.tar.gz", hash = "sha256:11ef1e08e54acb0d4f95bdb1be05da659673de4acbd21bf9c69e94cc5e907a3a"}, +] + +[[package]] +name = "virtualenv" +version = "20.25.0" +description = "Virtual Python Environment builder" +optional = false +python-versions = ">=3.7" +files = [ + {file = "virtualenv-20.25.0-py3-none-any.whl", hash = "sha256:4238949c5ffe6876362d9c0180fc6c3a824a7b12b80604eeb8085f2ed7460de3"}, + {file = "virtualenv-20.25.0.tar.gz", hash = "sha256:bf51c0d9c7dd63ea8e44086fa1e4fb1093a31e963b86959257378aef020e1f1b"}, +] + +[package.dependencies] +distlib = ">=0.3.7,<1" +filelock = ">=3.12.2,<4" +platformdirs = ">=3.9.1,<5" + +[package.extras] +docs = ["furo (>=2023.7.26)", "proselint (>=0.13)", "sphinx (>=7.1.2)", "sphinx-argparse (>=0.4)", "sphinxcontrib-towncrier (>=0.2.1a0)", "towncrier (>=23.6)"] +test = ["covdefaults (>=2.3)", "coverage (>=7.2.7)", "coverage-enable-subprocess (>=1)", "flaky (>=3.7)", "packaging (>=23.1)", "pytest (>=7.4)", "pytest-env (>=0.8.2)", "pytest-freezer (>=0.4.8)", "pytest-mock (>=3.11.1)", "pytest-randomly (>=3.12)", "pytest-timeout (>=2.1)", "setuptools (>=68)", "time-machine (>=2.10)"] + +[[package]] +name = "wcwidth" +version = "0.2.12" +description = "Measures the displayed width of unicode strings in a terminal" +optional = false +python-versions = "*" +files = [ + {file = "wcwidth-0.2.12-py2.py3-none-any.whl", hash = "sha256:f26ec43d96c8cbfed76a5075dac87680124fa84e0855195a6184da9c187f133c"}, + {file = "wcwidth-0.2.12.tar.gz", hash = "sha256:f01c104efdf57971bcb756f054dd58ddec5204dd15fa31d6503ea57947d97c02"}, +] + +[metadata] +lock-version = "2.0" +python-versions = "^3.10" +content-hash = "41e40199e7e98cc36730d932a1afc2a0c9eecd5597b74d16979d7c08e4cbfad8" From a45487843dac55712a075d6c5c4fcd650666695f Mon Sep 17 00:00:00 2001 From: martinvonk Date: Thu, 28 Dec 2023 11:53:31 +0100 Subject: [PATCH 06/16] update pedotransfer function from wosten 1999 --- doc/examples/03_pedotransfer_functions.ipynb | 36 +++----------------- src/pedon/soil.py | 8 ++--- src/pedon/soilmodel.py | 1 + tests/test_ptf.py | 2 +- 4 files changed, 11 insertions(+), 36 deletions(-) diff --git a/doc/examples/03_pedotransfer_functions.ipynb b/doc/examples/03_pedotransfer_functions.ipynb index 4e6a8ae..89ee358 100644 --- a/doc/examples/03_pedotransfer_functions.ipynb +++ b/doc/examples/03_pedotransfer_functions.ipynb @@ -30,7 +30,8 @@ "clay_p = 30 # clay [%]\n", "rho = 1.5 # bulk density [g/cm3]\n", "om_p = 10 # organic matter [%]\n", - "m50 = 1e4 # median sand fraction\n", + "m50 = 150 # median sand fraction [um]\n", + "ts = False # topsoil boolean\n", "\n", "ss = pe.SoilSample(\n", " sand_p=sand_p, silt_p=silt_p, clay_p=clay_p, rho=rho, om_p=om_p, m50=m50\n", @@ -44,10 +45,10 @@ "outputs": [], "source": [ "# wosten pedotransfer function (van Genuchten)\n", - "wos = ss.wosten(ts=False)\n", + "wos = ss.wosten(ts=ts)\n", "\n", "# wosten pedotransfer function for sand (van Genuchten)\n", - "woss = ss.wosten_sand(ts=False)\n", + "woss = ss.wosten_sand(ts=ts)\n", "\n", "# wosten pedotransfer function for clay (van Genuchten)\n", "wosc = ss.wosten_clay()\n", @@ -63,27 +64,7 @@ "outputs": [ { "data": { - "text/plain": [ - "Genuchten(k_s=2.3092153354485525, theta_r=0.01, theta_s=0.37463915256887226, alpha=0.026393025283215923, n=0.05097405111222048, l=0.41079593038489876)" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "wos" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAJOCAYAAAAqFJGJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADeDklEQVR4nOzdd3QU5dvG8e/sZtN7gSSQQm/SRIqChCCIoAiKigTpoRcBAUGUogIWpAfpvYgIgj9pIoJIERBEUTpCQk2D9LZJ5v0jZl9iCCQhyaTcn3NyTnZ2duaa2d1n996Z5xlFVVUVIYQQQgghhHgMOq0DCCGEEEIIIUo+KSyEEEIIIYQQj00KCyGEEEIIIcRjk8JCCCGEEEII8diksBBCCCGEEEI8NikshBBCCCGEEI9NCgshhBBCCCHEY5PCQgghhBBCCPHYpLAQQgghhBBCPDYpLESBatWqFa1atTLdvnbtGoqisGrVKs0yicLj6+tL7969tY4hhMiH4tA+K4rClClTTLdXrVqFoihcu3ZNs0yFTctt7N27N76+vnl+XHF4rRRn+d2vpZEUFmXcmTNneO211/Dx8cHS0pIKFSrQtm1b5s+fX2QZjh8/jqIozJ49O9t9nTp1QlEUVq5cme2+li1bUqFChTyta8OGDcyZMye/UfOlVatWKIpi+rOysqJevXrMmTOH9PT0fC2zKLfjyJEjTJkyhaioqCJZX15cuXKFgQMHUrlyZSwtLbG3t6d58+bMnTuXxMREreMJkSeZXzh/++23B97fqlUrnnjiiSJOVfKVtXbi1q1bTJkyhdOnTxfqenbu3JmlKCwovr6+WT4z7/9LSkoq8PXlVlHt15LOTOsAQjtHjhzB398fb29v+vfvj7u7O9evX+fXX39l7ty5DB8+PM/L/OGHH/L8mCeffBJra2sOHTrEqFGjsmU0MzPj8OHD9OnTxzQ9JSWFEydO0LFjxzyta8OGDfz111+MHDkyzzkfR8WKFZkxYwYAERERbNiwgVGjRhEeHs60adPyvLyi3I4jR44wdepUevfujaOjY5b7Lly4gE6nze8TO3bs4PXXX8fCwoKePXvyxBNPkJKSwqFDhxg7dix///03S5Ys0SSbECJ/evTowZtvvomFhUWBLK8sthO3bt1i6tSp+Pr60qBBgyz3LV26NF8/aPn4+JCYmIjBYDBN27lzJ0FBQYVSXDRo0IB33nkn23Rzc/MCX1duFcZ+LY2ksCjDpk2bhoODAydOnMj2hTEsLCxfy8zPm97MzIymTZty+PDhLNMvXLhAREQEAQEBHDp0KMt9J0+eJCkpiRYtWuQrZ0FKT08nJSUFS0vLHOdxcHDgrbfeMt0eNGgQNWvWZP78+Xz44Yfo9fqiiFrgCurDP6+uXr3Km2++iY+PDz/99BMeHh6m+4YOHcrly5fZsWNHgawrPj4eGxubAlmWECVRUb4H9Hp9gbWHRdlOlBT3FwZ5oSjKQz/jClqFChWyfGYWd/ndr6WRnApVhl25coU6depkKyoAypUrl+V2amoqH330EVWqVMHCwgJfX1/ee+89kpOTs8z33z4WudWiRQtCQ0O5fPmyadrhw4ext7dnwIABpiLj/vsyHwewfft2XnzxRTw9PbGwsKBKlSp89NFHpKWlZcm2Y8cOgoODTYdV7z8nMjk5mcmTJ1O1alUsLCzw8vJi3Lhx2bZRURSGDRvG+vXrqVOnDhYWFuzevTtP22tpaUnjxo2JjY3NVsStW7eORo0aYWVlhbOzM2+++SbXr18vtO3Ytm0bTzzxBBYWFtSpUyfLtkyZMoWxY8cCUKlSJdP6Ms8NflAfi3/++YfXX38dZ2dnrK2tadasWbYP7wMHDqAoCl9//TXTpk2jYsWKWFpa8txzz2V5DeTks88+Iy4ujuXLl2f5spCpatWqvP3228DDzw3+7/ndU6ZMQVEUzp49S0BAAE5OTrRo0YKZM2eiKArBwcHZljFhwgTMzc25d++eadqxY8d44YUXcHBwwNraGj8/v2yFsxCPy8/Pj/r16z/wvho1atCuXTvT7aioKHr37o2DgwOOjo706tXrgac39u7dG1tbW65cuUKHDh2ws7Oje/fuAPzyyy+8/vrreHt7m9qWUaNGZTudKKfPgdych55T/4Ndu3bh5+eHnZ0d9vb2NG7cmA0bNjx0WXlpJyD3n3O+vr689NJLHDp0iCZNmmBpaUnlypVZs2ZNtnX8/ffftG7dGisrKypWrMjHH3/8wF+2/9sW3b+u/7axUVFRjBo1Cl9fXywsLKhYsSI9e/YkIiKCAwcO0LhxYwD69OljarMz27/7nwOj0Yizs3OWswEyxcTEYGlpyZgxY4Ds7Wjv3r0JCgoyZc/8U1UVX19fOnXqlG2ZSUlJODg4MHDgwGz35UVmO/1fD3rt5OW5Kqj9mik+Pp533nkHLy8vLCwsqFGjBjNnzkRV1Szz5eazuCSRIxZlmI+PD0ePHuWvv/565Hm7gYGBrF69mtdee4133nmHY8eOMWPGDM6dO8e333772FkyC4RDhw5RtWpVIKN4aNasGU2bNsVgMHDkyBFefvll0312dnamD9VVq1Zha2vL6NGjsbW15aeffmLSpEnExMTw+eefAzBx4kSio6O5ceOGqT+Hra0tkHHU4eWXX+bQoUMMGDCAWrVqcebMGWbPns3FixfZtm1blrw//fQTX3/9NcOGDcPV1fWxOsPdX9hNmzaNDz74gDfeeIPAwEDCw8OZP38+LVu25Pfff8fR0bFAt+PQoUNs3bqVIUOGYGdnx7x58+jSpQshISG4uLjw6quvcvHiRTZu3Mjs2bNxdXUFwM3N7YHbFBoayjPPPENCQgIjRozAxcWF1atX8/LLL/PNN9/wyiuvZJn/k08+QafTMWbMGKKjo/nss8/o3r07x44de+i++9///kflypV55pln8rLLc+3111+nWrVqTJ8+HVVVeemllxg3bhxff/21qdDK9PXXX/P888/j5OQEZLw22rdvT6NGjZg8eTI6nY6VK1fSunVrfvnlF5o0aVIomUXpER0dneWHlExGozHL7R49etC/f/9sbfiJEye4ePEi77//PgCqqtKpUycOHTrEoEGDqFWrFt9++y29evV64PpTU1Np166dqai2trYGYPPmzSQkJDB48GBcXFw4fvw48+fP58aNG2zevLmgNj+bVatW0bdvX+rUqcOECRNwdHTk999/Z/fu3QQEBOT4uLy2E3n5nLt8+TKvvfYa/fr1o1evXqxYsYLevXvTqFEj6tSpA8CdO3fw9/cnNTWV8ePHY2Njw5IlS7Cyssr3voiLi+PZZ5/l3Llz9O3blyeffJKIiAi+++47bty4Qa1atfjwww+ZNGkSAwYM4NlnnwV44D4wGAy88sorbN26lcWLF2c542Dbtm0kJyfz5ptvPjDHwIEDuXXrFnv37mXt2rWm6Yqi8NZbb/HZZ59x9+5dnJ2dTff973//IyYmJldHIoxGY7b3gLW1tem1mBe5ea4Kcr9Cxnvu5ZdfZv/+/fTr148GDRqwZ88exo4dy82bN7P1KX3UZ3GJoooy64cfflD1er2q1+vVp59+Wh03bpy6Z88eNSUlJct8p0+fVgE1MDAwy/QxY8aogPrTTz+Zpvn5+al+fn6m21evXlUBdeXKlQ/NEhMTo+r1erVfv36maTVq1FCnTp2qqqqqNmnSRB07dqzpPjc3N7Vt27am2wkJCdmWOXDgQNXa2lpNSkoyTXvxxRdVHx+fbPOuXbtW1el06i+//JJl+qJFi1RAPXz4sGkaoOp0OvXvv/9+6DZl8vPzU2vWrKmGh4er4eHh6vnz59WxY8eqgPriiy+a5rt27Zqq1+vVadOmZXn8mTNnVDMzsyzTC2o7zM3N1cuXL5um/fHHHyqgzp8/3zTt888/VwH16tWr2dbn4+Oj9urVy3R75MiRKpBl/bGxsWqlSpVUX19fNS0tTVVVVd2/f78KqLVq1VKTk5NN886dO1cF1DNnzmRbV6bo6GgVUDt16pTjPPd72GsQUCdPnmy6PXnyZBVQu3Xrlm3ep59+Wm3UqFGWacePH1cBdc2aNaqqqmp6erparVo1tV27dmp6erppvoSEBLVSpUpZXrNC/NfKlStV4KF/derUMc0fFRWlWlpaqu+++26W5YwYMUK1sbFR4+LiVFVV1W3btqmA+tlnn5nmSU1NVZ999tls741evXqpgDp+/Phs+R7Uzs6YMUNVFEUNDg42Tfvv58D9y/5vu/Xf92DmPshsb6KiolQ7Ozu1adOmamJiYpbH3v8e+6+8thN5+Zzz8fFRAfXgwYOmaWFhYaqFhYX6zjvvmKZltofHjh3LMp+Dg0O2NvW/++H+dd3fxk6aNEkF1K1bt2abN3N/nDhxIsc277/PwZ49e1RA/d///pdlvg4dOqiVK1c23X5QOzp06FD1QV8jL1y4oALql19+mWX6yy+/rPr6+j70eVPV/9+///3L3D+Z7fR//fe1c/+yHvVcFfR+zXzPffzxx1nme+2111RFUbJ87ub2s7ikkFOhyrC2bdty9OhRXn75Zf744w8+++wz2rVrR4UKFfjuu+9M8+3cuROA0aNHZ3l8ZseqgjhH1c7Ojnr16pn6UkRERHDhwgXTrwHNmzc3nUpy8eJFwsPDs/SvuP8XoNjYWCIiInj22WdJSEjg/Pnzj1z/5s2bqVWrFjVr1iQiIsL017p1awD279+fZX4/Pz9q166d6+07f/48bm5uuLm5UbNmTT7//HNefvnlLKfnbN26lfT0dN54440sGdzd3alWrVq2DAWxHW3atKFKlSqm2/Xq1cPe3p5//vkn19t2v507d9KkSZMsz42trS0DBgzg2rVrnD17Nsv8ffr0yfIrWeavQA9bf0xMDJDxmiksgwYNyjata9eunDx5kitXrpimbdq0CQsLC9Nh/9OnT3Pp0iUCAgKIjIw07f/4+Hiee+45Dh48KB38xCMFBQWxd+/ebH/16tXLMp+DgwOdOnVi48aNptMr0tLS2LRpE507dzb1i9i5cydmZmYMHjzY9Fi9Xv/QATrunzfT/e1sfHw8ERERPPPMM6iqyu+///5Y25yTvXv3Ehsby/jx47Od4/+g02Ey5bWdyOvnXO3atU3tFWQcxa1Ro0aWtmvnzp00a9Ysy1FKNzc306ll+bFlyxbq16+f7egvPHx/5KR169a4urqyadMm07R79+6xd+9eunbtmq+M1atXp2nTpqxfv9407e7du+zatYvu3bvnKmfTpk2zvf579uyZrzy5ea4Ker/u3LkTvV7PiBEjskx/5513UFWVXbt2ZZle0J/FWpJTocq4xo0bs3XrVlJSUvjjjz/49ttvmT17Nq+99hqnT5+mdu3aBAcHo9PpTKcoZXJ3d8fR0fGB553nR4sWLZg/fz4REREcOXIEvV5Ps2bNgIzDjQsXLiQ5OTlb/wrIOI/1/fff56effjJ9oGSKjo5+5LovXbrEuXPncjzF57/9ICpVqpSnbfP19TWNGnHlyhWmTZtGeHh4lg/KS5cuoaoq1apVe+AyctM5LK/b4e3tnW0eJyenLP0F8iI4OJimTZtmm16rVi3T/fefsvHf9WeeTvSw9dvb2wMZBWRhedDz+/rrrzN69Gg2bdrEe++9h6qqbN68mfbt25syXbp0CSDHU0wg4/WYuZ1CPEiTJk146qmnsk13cnLKdnpIz5492bRpE7/88gstW7bkxx9/JDQ0lB49epjmCQ4OxsPDw3TKZKYaNWo8cP1mZmZUrFgx2/SQkBAmTZrEd999l+09mpt2Nj8yC/m8DrOb13Yir59zuWk7c2oPc9rvuXHlyhW6dOmS78f/l5mZGV26dGHDhg0kJydjYWHB1q1bMRqN+S4sION1OWzYMIKDg/Hx8WHz5s0YjcYsr8uHcXV1pU2bNvle//1y81wV9H4NDg7G09MzW2F7/2dhXjOWFFJYCCBjNKfGjRvTuHFjqlevTp8+fdi8eTOTJ082zZOfqj0vMguLw4cPc+TIEerWrWv6IHzmmWdITk7mxIkTHDp0CDMzM1PRERUVhZ+fH/b29nz44YdUqVIFS0tLTp06xbvvvpurX4jT09OpW7cus2bNeuD9Xl5eWW7n9RxZGxubLI1k8+bNefLJJ3nvvfeYN2+eKYOiKOzateuBo6L890vBg+R1O3IafUX9T+eywpKf9dvb2+Pp6clff/2Vq3Xk9Lq9v2P/fz3o+fX09OTZZ5/l66+/5r333uPXX38lJCSETz/91DRP5mvt888/zzYcYabcPI9C5Fa7du0oX74869ato2XLlqxbtw53d/fH+lJmYWGRbRjptLQ02rZty927d3n33XepWbMmNjY23Lx5k969e2dpZzM78f7Xw95zBS2v7USm3H7OFVXbWRT77M0332Tx4sXs2rWLzp078/XXX1OzZs0cBwbI7TJHjRrF+vXree+991i3bh1PPfXUYxVVmfLapmv9OZcbJSFjbklhIbLJ/KXs9u3bQEYn7/T0dC5dumSqtiGjo25UVBQ+Pj4Fst77O3AfPXqU5s2bm+7z9PTEx8eHw4cPc/jwYRo2bGjqxHXgwAEiIyPZunUrLVu2ND3m6tWr2daRU4NUpUoV/vjjD5577rlCL6Ag4zDnW2+9xeLFixkzZgze3t5UqVIFVVWpVKkS1atXf+jji3I78rIcHx8fLly4kG165uloBfVaeemll1iyZAlHjx7l6aeffui8mUcH/jsCTn6OtHXt2pUhQ4Zw4cIFNm3ahLW1dZZrqWQeyra3ty+wX9uEeBi9Xk9AQACrVq3i008/Zdu2bfTv3z/LFxUfHx/27dtHXFxclsL2Qe/VnJw5c4aLFy+yevXqLKek7N27N9u8Tk5ODzyFIz/vucz31F9//ZXtaMKj5KWdKIzPOR8fH9NRzPs9aL87OTlla6NSUlJMn8OZqlSp8shiKa9tf8uWLfHw8GDTpk20aNGCn376iYkTJz7ycQ9bj7OzMy+++CLr16+ne/fuHD58uMAu6np/m37/4CePc/ZEQe9XHx8ffvzxR2JjY7MctSjoz8LiSPpYlGH79+9/YDWcea5p5i8LHTp0AMjWKGT+Kv7iiy8WSB5PT08qVarEvn37+O2337KNtvDMM8+wbds2Lly4kOU0qMwP0Pu3JSUlhYULF2Zbh42NzQMP2b/xxhvcvHmTpUuXZrsvMTGR+Pj4fG9XTsaNG4fRaDTtx1dffRW9Xs/UqVOzPS+qqhIZGWm6XZTbkXmedm6uvN2hQweOHz/O0aNHTdPi4+NZsmQJvr6+eeqX8jDjxo3DxsaGwMBAQkNDs91/5coV5s6dC2R8yXd1deXgwYNZ5nnQ6+NRunTpgl6vZ+PGjWzevJmXXnopy/j+jRo1okqVKsycOZO4uLhsjw8PD8/zOoV4lB49enDv3j0GDhxIXFxctlF3OnToQGpqKl9++aVpWlpaGvPnz8/1Oh7Uzqqqanqf3a9KlSqcP38+y+v9jz/+yNeQy88//zx2dnbMmDEj21WXH/Vrbl7aicL4nOvQoQO//vorx48fN00LDw/P0vcgU5UqVbK1UUuWLMn2K3yXLl1Mpy3/V+b+yEubDaDT6Xjttdf43//+x9q1a0lNTc3VaVCPWk+PHj04e/YsY8eORa/X5zjCVF5lFpv376/4+HhWr16d72UW9H7t0KEDaWlpLFiwIMv02bNnoygK7du3z3fW4k6OWJRhw4cPJyEhgVdeeYWaNWuSkpLCkSNH2LRpE76+vqaxrevXr0+vXr1YsmSJ6bSj48ePs3r1ajp37oy/v3+BZWrRooVp6Lr7j1hARmGxceNG03z3T3dycqJXr16MGDECRVFYu3btAz90GjVqxKZNmxg9ejSNGzfG1taWjh070qNHD77++msGDRrE/v37ad68OWlpaZw/f56vv/6aPXv2PPCc58dRu3ZtOnTowLJly/jggw+oUqUKH3/8MRMmTODatWt07twZOzs7rl69yrfffsuAAQNMY4oX5XY0atQIyBiu980338RgMNCxY8cHXjBr/PjxbNy4kfbt2zNixAicnZ1ZvXo1V69eZcuWLQV2le4qVaqwYcMGunbtSq1atbJcUffIkSNs3rw5y9jvgYGBfPLJJwQGBvLUU09x8OBBLl68mOf1litXDn9/f2bNmkVsbGy2D1+dTseyZcto3749derUoU+fPlSoUIGbN2+yf/9+7O3t+d///ve4my9EFg0bNuSJJ54wDd7w5JNPZrm/Y8eONG/enPHjx3Pt2jVq167N1q1b89QvombNmlSpUoUxY8Zw8+ZN7O3t2bJlywPPAe/bty+zZs2iXbt29OvXj7CwMBYtWkSdOnWy9YF7FHt7e2bPnk1gYCCNGzc2XV/mjz/+ICEh4aFfJvPSThTG59y4ceNYu3YtL7zwAm+//bZpuFkfHx/+/PPPLPMGBgYyaNAgunTpQtu2bfnjjz/Ys2ePaYjvTGPHjuWbb77h9ddfp2/fvjRq1Ii7d+/y3XffsWjRIurXr0+VKlVwdHRk0aJF2NnZYWNjQ9OmTR/aN7Br167Mnz+fyZMnU7du3SxHbXKS+dkwYsQI2rVrl614ePHFF3FxcTH1Rfvv9bHy6/nnn8fb25t+/fqZipYVK1bg5uZGSEhIvpZZ0Pu1Y8eO+Pv7M3HiRK5du0b9+vX54Ycf2L59OyNHjszSUbvUKcohqETxsmvXLrVv375qzZo1VVtbW9Xc3FytWrWqOnz4cDU0NDTLvEajUZ06dapaqVIl1WAwqF5eXuqECROyDOWqqvkfbjbT4sWLVUCtUKFCtvtOnTplGnbuv/kOHz6sNmvWTLWyslI9PT1NQ+cC6v79+03zxcXFqQEBAaqjo6MKZBkeLiUlRf3000/VOnXqqBYWFqqTk5PaqFEjderUqWp0dLRpPkAdOnRorrZHVTP2yf1DRN7vwIED2YYZ3LJli9qiRQvVxsZGtbGxUWvWrKkOHTpUvXDhQpFsx3+HN1RVVf3oo4/UChUqqDqdLstwfg+a98qVK+prr72mOjo6qpaWlmqTJk3U77//Pss8mcPNbt68Ocv0vL5eLl68qPbv31/19fVVzc3NVTs7O7V58+bq/Pnzs7w2ExIS1H79+qkODg6qnZ2d+sYbb6hhYWE5DjcbHh6e4zqXLl2qAqqdnV224S8z/f777+qrr76quri4qBYWFqqPj4/6xhtvqPv27cvVdomyKXO4zBMnTjzw/oe1JZ999pkKqNOnT3/g/ZGRkWqPHj1Ue3t71cHBQe3Ro4f6+++/P3C4WRsbmwcu4+zZs2qbNm1UW1tb1dXVVe3fv79pWMz/vmfXrVunVq5cWTU3N1cbNGig7tmzJ1/DzWb67rvv1GeeeUa1srJS7e3t1SZNmqgbN258YM7/ym07kdvPOR8fnyxDhWd60DC7f/75p+rn56daWlqqFSpUUD/66CN1+fLl2bYxLS1Nfffdd1VXV1fV2tpabdeunXr58uUHtrGRkZHqsGHD1AoVKqjm5uZqxYoV1V69eqkRERGmebZv367Wrl1bNTMzy/L8POg5UNWMIVW9vLweOESqqj64bU5NTVWHDx+uurm5qYqiPHAI2CFDhqiAumHDhmz35SSn/Xu/kydPqk2bNlXNzc1Vb29vddasWTkON5vb56qg92tsbKw6atQo1dPTUzUYDGq1atXUzz//PNtwu3n5LC4JFFUtgT1DhBBCCGEyd+5cRo0axbVr1x44wowQWhg1ahTLly/nzp07+bq4nSh5pLAQQgghSjBVValfvz4uLi65ut6NEEUhKSkJLy8vXnrpJVauXKl1HFFEykQfi6tXr9K3b19CQ0PR6/X8+uuvDzw/XAghhCgp4uPj+e6779i/fz9nzpxh+/btWkcSgrCwMH788Ue++eYbIiMjefvtt7WOJIpQmSgsevfuzccff8yzzz7L3bt3sbCw0DqSEEII8VjCw8MJCAjA0dGR9957j5dfflnrSEJw9uxZunfvTrly5Zg3b16O1/QRpVOpPxXq77//5u233+bHH3/UOooQQgghhBClVrG/jsXBgwfp2LEjnp6eKIrCtm3bss0TFBSEr68vlpaWNG3aNMuY0ZcuXTINxfnkk08yffr0IkwvhBBCCCFE2VDsC4v4+Hjq169PUFDQA+/PHMt/8uTJnDp1ivr169OuXTvCwsIASE1N5ZdffmHhwoUcPXqUvXv3PvBKoUIIIYQQQoj8K1GnQimKwrfffkvnzp1N05o2bUrjxo1NVzdMT0/Hy8uL4cOHM378eI4ePcqUKVPYs2cPAJ9//jmQcTGUB0lOTiY5Odl0Oz09nbt37+Li4pKny7kLIURZoaoqsbGxeHp6FthFEAuDtO9CCJF3eWnjS3Tn7ZSUFE6ePMmECRNM03Q6HW3atOHo0aMANG7cmLCwMO7du4eDgwMHDx5k4MCBOS5zxowZTJ06tdCzCyFEaXP9+nUqVqyodYwcSfsuhBD5l5s2vkQXFhEREaSlpVG+fPks08uXL8/58+cBMDMzY/r06bRs2RJVVXn++ed56aWXclzmhAkTGD16tOl2dHQ03t7eXLx4EWdnZ9N0s+VtUO5dIfWNjajezQp4y4qXlGvB3HjzTVSdjgrbt2Hp5qZ1JM0YjUb279+Pv78/BoPBNH3jhY0s/HMhZjoz5vnNo65rXQ1TFr6c9kNZI/shw927d6levTp2dnZaR3moh7XvNuHh3Bk1mrS7dzGrUAGPuXMwFOMi6b9K02tRtqV4km0pnopiW2JjY6lUqVKu2vgSXVjkVvv27Wnfvn2u5rWwsHjgcLTOzs64uLj8/wRrM0hQwMkB7p9eGrm4kFivHsl//435r8dw6d1L60SaMRqNWFtb4+LikuUNPPTpoVxNucoPwT/w0R8fsanjJlytXDVMWrhy2g9ljeyHrIr76UQPbd+rVcN189eE9AvEeP06MUOH4b10CZa1ammQNO9K02tRtqV4km0pnopiWzKXm5s2vvieDJsLrq6u6PV6QkNDs0wPDQ3F3d39sZYdFBRE7dq1ady48WMtp7Sw65hxlCf2++81TlI8KYrCh80/pLJDZcISw3h7/9skpyU/+oFCiCKXU/tu7u2N74b1WNSsSVpEBME9ehJ/7HgOSxFCCPFfJbqwMDc3p1GjRuzbt880LT09nX379vH0008/1rKHDh3K2bNnOXHixOPGLBVsX3gBVacj+a+/SP7nqtZxiiUbgw3zWs/DztyOP8P/5MOjH1KCxkYQosx4WPtu5uaGz9o1WD/1FOlxcVzv358YGUlQCCFypdgXFnFxcZw+fZrTp08DcPXqVU6fPk1ISAgAo0ePZunSpaxevZpz584xePBg4uPj6dOnj4apSx8zFxfiq1cDIPq77RqnKb587H2Y6TcTvaLnuyvfsebsGq0jCSHySG9nh9fyZdi2eQ41JYWbb4/k3ubNWscSQohir9j3sfjtt9/w9/c33c7seNerVy9WrVpF165dCQ8PZ9KkSdy5c4cGDRqwe/fubB268yooKIigoCDS0tIeazmlSWzDJ7E9f4GY7/6H24gRKMV4WEktPeP5DGMbj+WT458w6+QsKjtU5tmKz2odSwjxr9y07zoLCyrOmcOdqVOJ2vwNdz6YRFpkJC4DBxb7viRC3C8tLQ2j0fjYyzEajZiZmZGUlFTivxvJtmRlMBjQ6/UFkqfYFxatWrV65Okkw4YNY9iwYQW63qFDhzJ06FBiYmJwcHAo0GWXVHF1aqPY2GC8dYvEU6ewfuoprSMVWwE1A7h07xJbLm1h3MFxrH9xPZUdKmsdSwhB7tt3xcwM9w8/RO/iQuSixYTPmUtq5F3KTxgvP6yIYk9VVe7cuUNUVFSBLc/d3Z3r16+X+OJatiU7R0dH3N3dH3t/FPvCQhQfqsGAbdu2xG7bRtS2bVJYPISiKExsOpGr0Vc5FXaKET+NYH2H9ThYSJEqREmiKArlRo7EzNmF0OnTubd2LWl37+I5YzqKubnW8YTIUWZRUa5cOaytrR/7C2N6ejpxcXHY2toW6wth5oZsy/9TVZWEhATCwsIA8PDweKw8UljkQE6FejD7Ti8Tu20bsTt3kT5hAjobG60jFVsGvYFZrWbRbUc3gmOCGfvzWBa2ybjWhRBCO/lp35179kDv5MStCROI2bGDtKgoKs6bK22gKJbS0tJMRYVLAQ2Jn56eTkpKCpaWlqXiy7hsy/+zsrICICwsjHLlyj3WaVEle28WIhkV6sEsGzXC4ONNekICMXt+0DpOsedi5cL81vOxMrPi6O2jzPxtptaRhCjz8tu+O3R8Ca8vF6JYWRF/+DDBffqSeu9eIaUUIv8y+1RYW1trnESUFJmvlcftjyOFhcgTRVFwfLULAFFbt2icpmSo4VyD6S2mA7D+3Ho2nNugcSIhRH7ZPvssPqtWondwIOnPPwkO6I7x1i2tYwnxQCW9/4AoOgX1WpHCQuSZQ+dOoNOR+NtJkq/KNS1yo41PG95+8m0APj3xKT9f/1njREKI/LKqXx+fDesx8/Ag5epVrnULIPnyZa1jCSGE5qSwyIFceTtnhvLlsXm2BQDRW7/VOE3J0e+JfnSp1oV0NZ2xB8dyNvKs1pGEKJMKon23qFIF3w3rMa9ShdTQUK51f4uE338vwJRCCFHySGGRA+lj8XCOXTJOh4retg01NVXjNCWDoihMbDaRpz2eJjE1kWH7hnEn/o7WsYQocwqqfTd4eOCzbi1W9euTHh1NSJ++xB08WEAphSh7Fi1ahJ2dHan3fa+Ii4vDYDDQqlWrLPMeOHAARVG4cuVKvtd37do1FEUxXYRZPD4pLES+2LVqhd7ZmdTwcOIOHdI6Tolh0Bn4otUXVHWsSnhiOEP2DSEuJU7rWEKIfDJzcsJ75QpsWj6LmpTE9SFDif7uO61jCVEi+fv7ExcXx2+//Waa9ssvv+Du7s6xY8dISkoyTd+/fz/e3t5UqVJFi6giB1JYiHxRzM1xePllAKK3SCfuvLAztyPouSBcrVy5dO8SYw6OITVdjvoIUVLprK3xCgrC/uWOkJrKrXHvErlqldaxhChxatSogYeHBwcOHDBNO3DgAJ06daJSpUr8+uuvWab7+/uTnJzMiBEjKFeuHJaWlrRo0SLL0ch79+7RvXt33NzcsLKyolq1aqxcuRLAVJQ0bNgQRVGyHBVZtmwZtWrVwtLSkpo1a7Jw4ULTfZlHOrZu3Yq/vz/W1tbUr1+fo0ePFtKeKTmksMiB9LF4NIdXXwEgdv8BUiMjNU5TsnjaerKg9QKszKw4fPMw049Nf+QV5oUQBaMw2nfFYMDzk09w7tULgLBPPiXsiy/kfS2KDVVVSUhJfay/xJS0fD0uL+8Df39/9u/fb7q9f/9+WrVqhZ+fn2l6YmIix44dw9/fn3HjxrFlyxZWr17NqVOnqFq1Ku3atePu3bsAfPDBB5w9e5Zdu3Zx7tw5vvzyS1xdXQFMhcqPP/7I7du32bp1KwDr169n0qRJTJs2jXPnzjF9+nQ++OADVq9enSXrxIkTGTNmDKdPn6Z69ep069Yty2lcZZFcqSsHQ4cOZejQocTExODgIFdLfhDL6tWxrFePpD//JHr7d7j07aN1pBKljmsdPnn2E0buH8nmi5upaFeRvk/01TqWEKVeYbXvik5HufHvond1IfyLWUQuXUbq3bt4TJ2KYiYft0JbicY0ak/ao8m6z37YDmvz3L0H/P39GTlyJKmpqSQmJvL777/j5+eH0Whk0aJFABw9epTk5GRatWpF//79WbVqFe3btwdg6dKl7N27l+XLlzN27FhCQkJo2LAhTz31FAC+vr6kp6cTExODm5sbAC4uLri7u5syTJ48mS+++IJXX30VgEqVKnH27FkWL15Mr39/PAAYM2YML774IgBTp06lTp06XL58mZo1az7mHiu55IiFeCyZnbijNm+WX+byobV3a8Y2HgvA7JOz+d+V/2mcSAjxOBRFwbV/fzymfQw6HdFbtnJjxNuk33duuBAiZ61atSI+Pp4TJ07wyy+/UL16ddzc3PDz8zP1szhw4ACVK1cmOjoao9FI8+bNTY83GAw0adKEc+fOATB48GC++uorGjRowLhx4zhy5MhD1x8fH8+VK1fo168ftra2pr+PP/44W0fxevXqmf738PAAMq5eXZbJTyjisdi/+CJhn35KytWrJBw/gU3TJlpHKnF61O7Bnfg7rDm7hkmHJ+Fs6UzzCs0f/UAhRLHl2KULekdHbo5+h7iffiIkMBCvhQvR29trHU2UUVYGPWc/bJfvx6enpxMbE4udvR06Xd5+l7Yy6HM9b9WqValYsSL79+/n3r17+Pn5AeDp6YmXlxdHjhxh//79tG7dOlfLa9++PcHBwezcuZO9e/fy3HPPMWTIED744IMHzh8XlzGgytKlS2natGmW+/T6rNthMBhM/2deYC49PT13G1pKyREL8Vj0tjYZHRaBe19t1DhNyfXOU+/QoVIHUtVURh0YxV8Rf2kdSQjxmOyeew7vZUvR2dmR+NtJgt/qgbGM/5optKMoCtbmZo/1Z2Wuz9fj8npVZ39/fw4cOMCBAweydKhu2bIlu3bt4vjx4/j7+1OlShXMzc05fPiwaR6j0ciJEyeoXbu2aZqbmxu9evVi3bp1zJkzh6VLlwJgbm4OQFpammne8uXL4+npyT///EPVqlWz/FWqVCk/u75MkcIiB9J5O/ec3nwTgNi9P5IaEaFxmpJJp+j4uPnHNPNoRmJqIkP3DSU4JljrWEKUSkXZvls3bozPurXo3VxJvniR4G4BpFy7VujrFaIk8/f359ChQ5w+fdp0xALAz8+PxYsXk5KSgr+/PzY2NgwePJixY8eye/duzp49S//+/UlISKBfv34ATJo0ie3bt3P58mX+/vtvvv/+e2rVqgVAuXLlsLKyYvfu3YSGhhIdHQ1k9JeYMWMG8+bN4+LFi5w5c4aVK1cya9asot8ZJYwUFjmQC+TlnmXNmlg1aACpqURt2ap1nBLLoDcwx38OtZxrcTfpLgP3DiQiUQo1IQpaUbfvljVq4LtxIwYfb4w3b3ItoDuJf/1dJOsWoiTy9/cnMTGRqlWrUr58edN0Pz8/YmNjTcPSAnzyySd06dKFHj168OSTT3L58mX27NmDk5MTkHFUYsKECdSrV4+WLVui1+vZsGEDAGZmZsybN4/Fixfj6elJp06dAAgMDGTZsmWsXLmSunXr4ufnx6pVq+SIRS5IYSEKhOObXQGI+vpr1PsOKYq8sTHYsLDNQiraVuRm3E2G/CgX0BOiNDCvWBHf9euxqF2LtLt3CenZk/j7xuQXQvw/X19fVFU1dcDO5OPjg6qqnD9/3jTN0tKSefPmER4eTlJSEocOHcpyNPL999/n7NmzJCQkEBkZybZt27IUCIGBgYSEhJCWlpbl+hkBAQH8/vvvJCcnc/fuXX7++WdeeeWVLPkaNGhgmt/R0RFVVbNdIbyskcJCFAj7F15A5+CA8eZN4u8711HknauVK4vbLsbZ0plzd88x8sBIUtJStI4lhHhMZq6u+KxZg3WzZqQnJHC9/wBidmsz/KcQQhQGKSxEgdBZWuLYuTMA9zZ+pW2YUsDb3puFbRZibWbNsdvHmHhoImnpciRIiJJOb2uL15LF2LVrh2o0cnPUKO5tlIEvhBClgxQWosA4ds04HSru558x3rqlcZqSr45LHWb7z8ZMZ8bua7v5+NjHcq0QIUoBnbk5FWZ9kXEKqapyZ+qHhC8Ikve3EKLEk8JCFBiLypWwbtoU0tOJ+uYbreOUCs94PsOMZ2egU3R8c/EbZp+cLV8+hCgFFL0e98mTcR06FICIBQsI/egj6aMmhCjRpLDIgQw3mz9O/3bivrd5M2qK9AsoCC/4vsDkpycDsPLvlSw9s1TjREKUbMWlfVcUBbfhwyj/wfugKNzbsJGbY8aQLm2nEKKEksIiBzLcbP7YPfccejdX0sIjiNm7V+s4pcar1V5lzFNjAJj/+3zWn1uvcSIhSq7i1r47d+9OhVlfgMFA7K7dXB84kLS4eK1jCSFEnklhIQqUYm5uumDevTVrNU5TuvSq04tB9QcB8MnxT9h+ebvGiYQQBcW+fXu8Fy9CsbYm4eivhPTqRerdu1rHEkKIPJHCQhQ4p65dwWAg8Y8/SPzzT63jlCpD6g/hrVpvATDpyCR+DP5R40RCiIJi88wz+Kxejd7JiaS//864SveNm1rHEkKIXJPCQhQ4M1dXHDq0B+DuunUapyldFEVhbOOxdK7amXQ1nbEHx3Lk5hGtYwkhCohV3Sfw2bAeg6cnKcHBBHfrRtKFi1rHEkKIXJHCQhQKp7cyflWP2bWb1PBwjdOULjpFx5Snp9DWpy2p6amMPDCSU6GntI4lhCggFpUq4bNxAxbVqpEaHk5wjx4knDypdSwhRAnn6+vLnDlzCnUdUliIQmFVty5WDRqA0ci9TV9rHafU0ev0fPrspzSv0JzE1EQG/ziYP8L/0DqWEKKAGMqXx2fdWqyefJL0mBhC+vYj9qf9WscSolAtWrQIOzs7UlNTTdPi4uIwGAy0atUqy7wHDhxAURSuXLnyWOu8du0aiqJw+vTpx1pObv3xxx+8/PLLlCtXDktLS3x9fenatSthYWFFsv7CJoWFKDTOPXsAcO+rr2To2UJg0BuY3Wo2TdybkJCawKC9g/gr4i+tYwkhCojewQHv5cuwbdUKNTmZG8OHE7X1W61jCVFo/P39iYuL47fffjNN++WXX3B3d+fYsWMkJSWZpu/fvx9vb2+qVKmiRdR8CQ8P57nnnsPZ2Zk9e/Zw7tw5Vq5ciaenJ/HxpWMkOCksRKGxa9sWs3LlSIuIIGb3bq3jlEpWZlbMbz2fRuUbEWeMY8DeAZyNPKt1LCFEAdFZWVFx/jwcOneGtDRuv/cekcuXax1LiEJRo0YNPDw8OHDggGnagQMH6NSpE5UqVeLXX3/NMt3f3x+A5ORkRowYYToK0KJFiyzDSd+7d4/u3bvj5uaGlZUVNWrUYP36jGHbK1WqBEDDhg1RFCXLkZFly5ZRq1YtLC0tqVmzJgsXLjTdl3mkY+vWrfj7+2NtbU39+vU5evRojtt3+PBhoqOjWbZsGQ0bNqRSpUr4+/sze/ZsU460tDT69etHpUqVTFnnzp2bZTm9e/emc+fOzJw5kwoVKlC5cmWGDRuG0Wg0zRMWFkbHjh2xsrKiUqVKpu0tbFJYiEKjGAw4BXQD4O6atXLF6EJibbAm6LkgGrg1IDYllgF7B3Dh7gWtYwkhCohiMOAxYzrO/foCEPb5TEI/+xw1PV3jZKJEUVVIiX+8P2NC/h6Xh89/f39/9u///9P+9u/fT6tWrfDz8zNNT0xM5NixY6bCYty4cWzZsoXVq1dz6tQpqlatSrt27bj775DNH3zwAWfPnmXXrl2cO3eOoKAgnJ2dATh+/DgAP/74I7dv32br1q0ArF+/nkmTJjFt2jTOnTvH9OnT+eCDD1i9enWWvBMnTmTMmDGcPn2a6tWr061btyynct3P3d2d1NRUvv322xy/E6Wnp1OxYkU2b97M2bNnmTRpEu+99x5ff531tPL9+/dz5coV9u3bx8KFC1m9ejWrVq0y3d+7d2+uX7/O/v37+eabb1i4cGGRnG5lVuhrKKGCgoIICgoiLS1N6yglmuMbbxCx8EuS/vqLxN9PY/1kQ60jlUo2Bhu+bPMlA/cO5M+IP+n/Q39WtFtBVaeqWkcTotgpie27oiiUHzsWM2cXwj7/nLsrVpAWGYnHxx+hGAxaxxMlgTEBpnvm++E6wDG/D37vFpjb5GpWf39/Ro4cSWpqKomJifz+++/4+flhNBpZtGgRAEePHiU5ORl/f3/i4+P58ssvWbVqFe3bZ4xIuXTpUvbu3cvy5csZO3YsISEhNGzYkKeeegoAb29vYmJiAHBzcwPAxcUFd3d3U47JkyfzxRdf8OqrrwIZRzbOnj3L4sWL6dWrl2m+MWPG8OKLLwIwdepU6tSpw+XLl6lZs2a2bWvWrBnvvfceAQEBDBo0iCZNmtC6dWt69uxJ+fLlATAYDEydOtX0mEqVKnH06FG+/vpr3njjDdN0JycnFixYgKIoeHp60qFDB/bt20f//v25ePEiu3bt4vjx4zRu3BiA5cuXU6tWrVw9B49DjljkoLhdmbWkMnN2xv7ljgDcXblS4zSlm625LV+2/ZI6LnW4l3yPwB8C+Sf6H61jCVHslOT23aVfXzxmzAC9nujt27kxbDjpiYlaxxKiwLRq1Yr4+HhOnDjBL7/8QvXq1XFzc8PPz8/Uz+LAgQNUrlwZb29vrly5gtFopHnz5qZlGAwGmjRpwrlz5wAYPHgwX331FQ0aNGDcuHEcOfLwYdrj4+O5cuUK/fr1w9bW1vT38ccfZ+ssXq9ePdP/Hh4eAA89MjBt2jTu3LnDokWLqFOnDosWLaJmzZqcOXPGNE9QUBCNGjXCzc0NW1tblixZQkhISJbl1KlTB71en2Xdmes9d+4cZmZmNGrUyHR/zZo1cXR0fOh2FwQ5YiEKnUvv3kR/s4XYH38kJTgYcx8frSOVWvbm9ixuu5jAHwI5f/c8gXsCWfnCSnzsZZ8LUVo4vtIZvaMDN0eNJu7nnwnp2w/3+fO0jiWKO4N1xpGDfEpPTycmNhZ7Ozt0ujz+Lm2wzvWsVatWpWLFiuzfv5979+7h5+cHgKenJ15eXhw5coT9+/fTunXrXC+zffv2BAcHs3PnTvbu3Uvbtm0JDAzM1nchU1xcHJBx5KNp06ZZ7rv/yzxkFDGZFEUBMvbVw7i4uPD666/z+uuvM336dBo2bMjMmTNZvXo1X331FWPGjOGLL77g6aefxs7Ojs8//5xjx47luN7MdT9qvUVBjliIQmdRtSq2fn6gqtz9z7mJouA5WDiwtO1SqjlVIzwxnL57+hISE/LoBwohSgw7f3+8V6xAZ29P4u+/c7N3b8yiorWOJYozRck4Helx/gzW+Xvcv1+4c8vf358DBw5w4MCBLJ2pW7ZsaTrFJ7N/RZUqVTA3N+fw4cOm+YxGIydOnKB27dqmaW5ubvTq1Yt169Yxa9YsU18Jc3NzgCynRpYvXx5PT0/++ecfqlatmuUvs5N1QTE3N6dKlSqmUaEOHz7MM888w5AhQ2jYsCFVq1bN85C6NWvWJDU1lZP3Xf/mwoULREVFFWT0B5LCQhQJ574ZnQ6jtn5L6r17Gqcp/RwtHVnadilVHKoQlhBGn919uBp9VetYQogCZP1kQ3zWrcWsXDlSLl/B68svSbkq73NR8vn7+3Po0CFOnz5tOmIB4Ofnx+LFi0lJSTEVFjY2NgwePJixY8eye/duzp49S//+/UlISKBfv34ATJo0ie3bt3P58mX+/vtvduzYQfXq1QEoV64cVlZW7N69m9DQUKKjMwr0qVOnMmPGDObNm8fFixc5c+YMK1euZNasWfneru+//5633nqL77//nosXL3LhwgVmzpzJzp076dSpEwDVqlXjt99+Y8+ePVy8eJEPPvggz6dt1qhRgxdeeIGBAwdy7NgxTp48SWBgIFZWVvnOnltSWIgiYd2kMZZ16qAmJXFvwwat45QJLlYuLGu3jKqOVQlLDKPvnr5ciXq8CwkJIYoXy+rV8d24AYOvD4aoKG706k3ifedqC1ES+fv7k5iYSNWqVU2dmiGjsIiNjTUNS5vpk08+oUuXLvTo0YMnn3ySy5cvs2fPHpycnICMowITJkygXr16tGzZEr1ez/J/h202MzNj3rx5LF68GE9PT9MX/MDAQJYtW8bKlSupW7cufn5+rFq16rGOWNSuXRtra2veeecdGjRoQLNmzfj6669ZtmwZPXpkXPtr4MCBvPrqq3Tt2pWmTZsSGRnJkCFD8ryuzOtj+Pn58eqrrzJgwADKlSuX7+y5pagyBuhDxcTE4ODgQEREBC4uLv9/x4LGEHEReu8A3xbaBSwiRqORnTt30qFDh2zn9eVW9I4d3HpnDHpnZ6r+tA+dpWUBpyx8BbEfitrdpLv0/6E/F+9dxNnSmaXPL6W6U/XHWmZJ3A+FQfZDhsjISFxdXYmOjsbe3l7rOLmWY/teAiWFhnKu+1tY3riBYm1NxfnzsL2vM2tJUpreV1ptS1JSElevXqVSpUpYFtBnbXp6OjExMdjb2+e9j0UxI9uS3cNeM5ltZW7a+JK9N0WJYt+uHWaeHqTdvUv09u+0jlNmOFs6s/z55dRyrsXdpLv029OP83fPax1LCFGA9M7OXB/QH6tmzVATErg+aDDRO3ZoHUsIUcZIYSGKjGJmhsu/Yz/fXblSLu5UhBwtHVn6/FKecHmCqOQo+u3px9+Rf2sdSwhRgFQLCzyDFmDfoT0YjdwaM5a7a9dpHUsIUYZIYSGKlEOX19DZ2ZFy7RpxBw5oHadMcbBwYMnzS6jnVo+YlBj67+nPmXA5F1uI0kQxN8dz5kycuncHVSV02jTC583L8Sq/QghRkKSwEEVKb2uD05tdAYhcslQ+7IqYnbkdi9ss5slyTxJrjGXA3gGcDjutdSwhRAFSdDrKvz8R1xHDAYhY+CV3Jk9BLUFXGhdClExlorDw9fWlXr16NGjQwDQ8mdCOU48eKObmJJ4+TUIJvPJtSWdrbsuXbb6ksXtj4oxxDNw7kJOhJx/9QCFEiaEoCm5DhuA+ZQooClFff83NkaNIT07WOpoQohQrE4UFwJEjRzh9+jT79+/XOkqZZyhXDocurwIQuWixxmnKJmuDNUHPBdHUoykJqQkM/nEwx24fe/QDhRAlitObXakwZw6KwUDs3r1c7z+AtH+vKiyEEAWtzBQWonhx6RcIej3xR47ImOsasTKzYkHrBTT3bE5iaiJDfhzCgesHtI4lhChg9u2ex2vpUnQ2NiQcP05wz56kRkRoHUsIUQoV+8Li4MGDdOzYEU9PTxRFYdu2bdnmCQoKwtfXF0tLS5o2bcrx48ez3K8oCn5+fjRu3Jj169cXUXLxMOYVK+Dw0ksARCyWoxZasTSzZF7rebT2ak1Kegqj9o9i19VdWscSQhQwm2ZN8V6zGr2LC8lnz3EtoDsp169rHUsIUcoU+8IiPj6e+vXrExQU9MD7N23axOjRo5k8eTKnTp2ifv36tGvXjrCwMNM8hw4d4uTJk3z33XdMnz6dP//8s6jii4dwGdAfFIW4H/eRfOmS1nHKLHO9OV+0+oKXKr9EqprKuwff5ZuL32gdSwhRwKzq1MF3w3oMFStiDAnhWkAASeflmjZCiIJjpnWAR2nfvj3t27fP8f5Zs2bRv39/+vTpA8CiRYvYsWMHK1asYPz48QBUqFABAA8PDzp06MCpU6eoV6/eA5eXnJxM8n2d22JiYoCMq2cajUbTdDNVRQFSU1NR75teWmVuu7EAt1Xn7Y1Nm+eI3/sj4YuXUH7G9AJbdmEpjP1QXExpOgUrvRWbL21m6tGpxCbF8lattx44b2neD3kh+yFDSdn+3LbvJVFuX4uKpycV1qzm1qDBpFy8SPBbPfCYNw+rxk8VRcxcKU3vK622xWg0oqoq6enppBfQNaMyR3HMXG5JVty35cCBAzz33HNERkbi6Oj40HkLalvS09NRVRWj0Yher89yX15ev8W+sHiYlJQUTp48yYQJE0zTdDodbdq04ejRo0DGEY/09HTs7OyIi4vjp59+4o033shxmTNmzGDq1KnZpu/fvx9ra2vT7dZxcdgBv/56jMi/owtuo4q5vXv3FujyLGrVwmfvj8Ts3MmftWthdHEp0OUXloLeD8VFPbUedyzu8EvyL8z6fRanz53G38IfRVEeOH9p3Q95Vdb3Q0JCgtYRciW37XtJltvXoi6gG56r12B99SrXBwzgdkA34uvUKeR0eVOa3ldFvS1mZma4u7sTFxdHSkpKgS47Nja2QJd3vxUrVjB58mSuXr2KmVnGV9S4uDgqVapE06ZN+f77703zHjp0iI4dO3Lq1CkqVaqUr/XFxsYSEhJC/fr1OXjwIHXr1i2Q7XiUP//8k1mzZnHkyBFiYmKoUKECLVq0YPjw4VStWtXUpsbGxqLT5e7kosd9XlJSUkhMTOTgwYOkpqZmuS8vbXyJLiwiIiJIS0ujfPnyWaaXL1+e8/8e3g0NDeWVV14BIC0tjf79+9O4ceMclzlhwgRGjx5tuh0TE4OXlxf+/v643Pel1yzkI0iGZs2aovo0L8jNKpaMRiN79+6lbdu2GAyGAl32rZOnSDh8mPpXr1GuR48CXXZBK8z9UFx0UDuw4uwKgv4I4qekn/D09WRUw1FZiouysB9yQ/ZDhsjISK0j5Epu2/eSKD+vxfQXXyR03LvE799PhXXrcZv0AQ5duhRy0kcrTe8rrbYlKSmJ69evY2tri6WlZYEsU1VVYmNjsbOzy/HHpsfVvn173nnnHS5evEizZs0AOHz4MO7u7pw8eRJzc3PT9hw/fhxvb2/q16+f5/Xcvy22trYA2NjYYG9vX3Abk4Pvv/+e119/neeff55169ZRpUoVwsLC+Oabb/jss8/46quvTD902NnZPTJTQT0vSUlJWFlZ0bJly2yvmcyju7lRoguL3KhcuTJ//PFHrue3sLDAwsKCoKAggoKCSPv3gkIGgyFro/Dvk2dmZgYlvOHLi2z7oQC4DRlM8OHDxG7bRrlhQzH8p1AsjgpjPxQngxoMws7Cjk+Of8K68+tITEvkg2YfoNdlPTxa2vdDbpX1/VBStj3X7XsJlqdtMRjwmj+P25MnE71lK+FTpkJ0DC4D+hfaF8e8KLPPSwFIS0tDURR0Ol2uf/F+lMzTbDKXWxhq1aqFh4cHBw8e5JlnngEyBvHp1KkTP/30E8ePH6dVq1YA/Pzzz/j7+6PT6UhOTmbs2LF89dVXxMTE8NRTTzF79mzTD8n37t1j2LBh/PDDD8TFxVGxYkVGjhzJ4MGDqVKlCgCNGjUCwM/PjwMHDgCwbNkyvvjiC65evYqvry8jRoxgyJAhAFy7do1KlSqxZcsW5s+fz7Fjx6hWrRqLFi3i6aeffuD2JSQk0K9fPzp06MC3335rml6lShWefvppoqKisjxnmf9HRkYybNgwDh48yL1796hSpQrvvfce3bp1Iz09na+++oqJEydy69YtLCwsTMvt3LkzdnZ2rF279pH7XqfToSjKA1+reXntFvvO2w/j6uqKXq8nNDQ0y/TQ0FDc3d0fa9lDhw7l7NmznJALuBU660aNsHqqEarRSOTSZVrHEf/qXqs7HzX/CJ2iY8ulLUz4ZQLG9JJ/zrMQ0r7/P8XMDI+PP8ZlwAAAwmfPJnTGDNRieN65eDyqqpJgTHisv8TUxHw9LrMfQG74+/tnuebY/v37adWqFX5+fqbpiYmJHDt2zHTR43HjxrFlyxZWr17NqVOnqFq1Ku3atePu3bsAfPDBB5w9e5Zdu3Zx7tw5goKCcHZ2BjCNJPrjjz9y+/Zttm7dCsD69euZNGkS06ZN49y5c0yfPp0PPviA1atXZ8k7ceJExowZw+nTp6levTrdunXLdipRpj179hAREcG4ceMeeH9O/SmSkpJo1KgRO3bs4K+//mLAgAH06NHDlL1Tp06kpaXx3XffmR4TFhbGjh076Nu3b847uxCU6CMW5ubmNGrUiH379tG5c2cgo6Let28fw4YN0zacyBO3oUMJ6dOXqK+/xqV/YIk4alEWdK7aGWsza9795V12XdtFfGo8M/1mYlaymw4hxH0URaHc6FGYuTgTOuMT7q1ZS9rde3hOn4Zibq51PFFAElMTabqhqSbrPhZwDGtD7vox+fv7M3LkSFJTU0lMTOT333/Hz88Po9HIokWLADh69CjJycn4+/sTHx/Pl19+yapVq0yD/SxdupS9e/eyfPlyxo4dS0hICA0bNuSppzIGKfD29jad3uPm5gaAi4tLlh+lJ0+ezBdffMGrr2Zc0LdSpUqcPXuWxYsX06tXL9N8Y8aM4cUXXwRg6tSp1KlTh8uXL1OzZs1s23bp3xEwH3Tfw1SoUIExY8aYbg8fPpw9e/bw9ddf89RTT2FlZUW3bt1YuXIlr7/+OgDr1q3D29vbdISnqBT7IxZxcXGcPn2a06dPA3D16lVOnz5NSEgIAKNHj2bp0qWsXr2ac+fOMXjwYOLj402jROVXUFAQtWvXfmh/DFFwrJs1yzhqkZJC5OIlWscR93ne93nm+c/DUm/JwRsHGbh3IDEpuT/fUojiRtr3B3Pu1QvPzz8DMzNivv+e60OGkl5COuaL0qNVq1bEx8dz4sQJfvnlF6pXr46bmxt+fn4cO3aMpKQkDhw4QOXKlfH29ubKlSsYjUaaN////q4Gg4EmTZpw7tw5AAYPHsxXX31FgwYNGDduHEeOHHlohvj4eK5cuUK/fv2wtbU1/X388cdcuXIly7z3jzLq4eEBkOWSB/fLy5Gb+6WlpfHRRx9Rt25dnJ2dsbW1Zc+ePabvwgCBgYH88MMP3Lx5E4BVq1bRu3fvIj+tsdj/7Pjbb7+ZDnUBpo53vXr1YtWqVXTt2pXw8HAmTZrEnTt3aNCgAbt3787WoTuvhg4dytChQ4mJicHBweGxliUeTVEU3IYNJ6R3b6I2b844avHvG1Ro79mKz7Lk+SUM3TeU38N+p9/efnRRte/kKUR+SPueM4eOHdE7OnJjxNvEHzpEcJ8+eC1ahJmTk9bRxGOyMrPiWMCxfD8+PT3d1Ek4r30srMyscj1v1apVqVixIvv37+fevXv4+fkB4OnpiZeXF0eOHGH//v20bt0618ts3749wcHB7Ny509SZPjAwkLlz5z5w/ri4OCDjyEfTplmP8vx3KNb7+x9kfonPadjX6tWrA3D+/Pkc+2E8yOeff87cuXOZM2cOdevWxcbGhpEjR2YZ8athw4bUr1+fNWvW8Pzzz/P333+zY8eOXK+joBT7IxatWrVCVdVsf6tWrTLNM2zYMIKDg0lOTubYsWPZXgSiZLBp1hTrxo1RjUYilshRi+KmYbmGrH5hNeWsynEl+gqLYxdzLeaa1rGEEAXM9tln8Vm5Ar2DA0l//EnwWz0w3r6tdSzxmBRFwdpg/Vh/VmZW+XpcXn819/f358CBAxw4cCDLqTwtW7Zk165dHD9+3PSjc5UqVTA3N+fw4cOm+YxGIydOnKB27dqmaW5ubvTq1Yt169Yxa9YsU18J839P98sczAEyRhf19PTkn3/+oWrVqln+8ju0LcDzzz+Pq6srn3322QPvj4qKeuD0w4cP06lTJ9566y3q169P5cqVuXjxYrb5AgMDWbVqFStXrqRNmzZ4eXnlO2t+FfvCQityqFwbrsMz+sZEfbMF461bGqcR/1XNqRprO6zFx86HaDWavnv78lfEX1rHEiJPpH1/NKsGDfDZsB4zd3dSrlzhWrcAki9f1jqWKCP8/f05dOgQp0+fNh2xgIwRmxYvXkxKSoqpsLCxsWHw4MGMHTuW3bt3c/bsWfr3728agQlg0qRJbN++ncuXL5t+yc88elCuXDmsrKzYvXs3oaGhREdnXJts6tSpzJgxg3nz5nHx4kXOnDnDypUrmTVrVr63y8bGhmXLlrFjxw5efvllfvzxR65du8Zvv/3GuHHjGDRo0AMfV61aNfbu3cuRI0c4d+4cAwcOzDZwEUBAQAA3btxg6dKlRd5pO5MUFjmQUUO0YdOkCdZNm4LRSIT0tSiWPG09WdF2BRX0FYhKjqLvnr4cufXw81WFKE6kfc8diypV8N24AfPKlUm9c4fg7m+R+G9/RyEKk7+/P4mJiVStWjXLqe1+fn7ExsZSo0YNU38GgE8++YQuXbrQo0cPnnzySS5fvsyePXtw+vcUPnNzcyZMmEC9evVo2bIler2e5cuXAxmXDZg3bx6LFy/G09OTTp06ARm//i9btoyVK1dSt25d/Pz8WLVq1WMdsYCMEZyOHDmCwWAgICCAmjVr0q1bN6Kjo/n4448f+Jj333+fJ598knbt2tGqVSvc3d1Ngxbdz8HBgS5dumBra/vA+4tCse9jIcoet+HDCD52jKgtW3Dp3x/zihW0jiT+w8nSib62ffnB6geO3TnG0H1Dmd5iOu0rtdc6mhCiABk8PPBZv47rgwZlnBbVpy8V587BtmVLraOJUszX1/eBHZ19fHweON3S0pJ58+Yxb968By7v/fff5/333zfdTk9Pz3LRt8DAQAIDA7M9LiAggICAgFxndHR0zFUH7aeeeootW7bkeH9mN4BMzs7ObNu27YHz/rc/x82bN+nevXuW61kUJTliIYod66eewvrpZpCaSuTiRVrHETmwUCyY5zePF3xfIDU9lXcPvsv6c+u1jiWEKGBmTk74rFyJTYsWqImJXB8ylOj//U/rWEKI+9y7d49vv/2WAwcOMHToUM1ySGGRAzkHV1tuw4cDEPXtNlKuX9c4jciJQW/g05af0q1mN1RUPjn+CQt+X5DvIfWEKArSvuedztoar4VB2L/0EqSmcmvsOO7+50JhQgjtNGrUiN69e/Ppp59So0YNzXJIYZEDOQdXW9ZPPolN8+aQmkr4/PlaxxEPoVN0TGgygWENMjreL/5zMR/++iFp6WmPeKQQ2pD2PX8Uc3M8P/sUp549AAid8QlhX8ySHxKEKAb++ecfoqOjs1xITwtSWIhiy23UKABi/vc9SRcuaJxGPIyiKAysP5APmn2ATtHxzcVvGPPzGJLTkrWOJoQoQIpOR/kJE0ztc+TSpdx+/33U1FSNkwkhigMpLESxZfVEHezavwCqSvjsOVrHEbnwRo03+MLvCww6Az+G/MjgHwcTmxKrdSwhRAFSFAXXgQNw/+hD0OmI3rKVG2+PJD0pSetoQgiNSWEhijW3ESNAryfuwAESTp7UOo7IhTY+bVjUZhE2BhtO3DlB3z19iUiM0DqWEKKAOb3+OhXnzUUxNydu3z5CAgNJu2+kHSFE2SOFRQ6kc1/xYFGpEo5dugDIubwlSBOPJqxstxJnS2fO3z1Pz109uR4rnfBF8SDte8Gxa9MGr2VL0dnakvjbSYJ79MQYFqZ1LCGERqSwyIF07is+XIcOQbGwIPHUKeJ+/lnrOCKXarnUYm37tVS0rcj12Ov02NmD83fPax1LCGnfC5hNkyb4rFuL3tWV5AsXCA7oTsq1a1rHEkJoQAoLUewZypfHucdbAITPmo36n4vBiOLL296btR3WUsOpBpFJkfTZ3YcTd+TLnBCljWXNmvhu3IDB2xvjjRtc6/4WiX//rXUsIUQRk8JClAgu/fujs7cn+eJFYnbs0DqOyANXK1dWvrCSRuUbEWeMY9DeQewL3qd1LCFEATP38sJ3w3osatUiLTKSkJ69iP/1V61jCZHNqlWr8PHx0TpGqSSFhSgR9A4OuAQGAhA+dx5qSorGiURe2JnbsbjtYlp7tSYlPYXRP49my8UtWscSQhQwM1dXfNasxrpJE9Lj47nefwAxe37QOpYoge7cucPw4cOpXLkyFhYWeHl50bFjR/btkx+mijMpLHIgnfuKH+ceb2Hm5obxxg3ufbVJ6zgijyz0FnzR6gu6VOtCuprOlKNTWPLnEumQL4qctO+FS29nh9fSJdi1bYtqNHJz5Ehps0WeXLt2jUaNGvHTTz/x+eefc+bMGXbv3o2/vz9Dhw7VOp54CCksciCd+4ofnZUVrv82KBELF8qwhiWQmc6MyU9Ppn/d/gDM/30+nxz/hHRV+s2IoiPte+HTWVhQYc5sHN94A1SVO1OmEL5wofyQIHJlyJAhKIrC8ePH6dKlC9WrV6dOnTqMHj2aX/89vS4kJIROnTpha2uLvb09b7zxBqGhoaZl/PHHH/j7+2NnZ4e9vT2NGjXit99+y7Kebdu2Ua1aNSwtLWnXrh3Xr2eMXnjt2jV0Ol22+efMmYOPjw/p0tczR1JYiBLF8bUumFetQlpUFBGLFmsdR+SDoiiMeHIE45uMB2DD+Q2M/2U8xjSjxsmEEAVJ0etxnzoF1yGDAYiYN5/Qjz6WATg0oqoq6QkJj/eXmJivx+WloLx79y67d+9m6NCh2NjYZLvf0dGR9PR0OnXqxN27d/n555/Zu3cv//zzD127djXN1717dypWrMiJEyc4efIk48ePx2AwmO5PTExkxowZrFmzhsOHDxMVFcWbb74JgK+vL23atGHlypVZ1r1y5Up69+6NTidfn3NipnUAIfJCMTOj/LhxXB8wkHtr1+LU7U3Mvby0jiXyoXut7jhaOPL+offZdXUX0cnRzG41G2uDtdbRhBAFRFEU3EaMQO/sQui0adzbsIG0qHt4fPIJOnNzreOVKWpiIheebPTYywl99CzZ1Dh1EsU6d2375cuXUVWVmjVr5jjPvn37OHPmDFevXsXr3+8Aa9asoU6dOpw4cYLGjRsTEhLC2LFjTcupVq1almUYjUbmzZvH008/DcDq1aupVasWx48fp0mTJgQGBjJo0CBmzZqFhYUFp06d4syZM2zfvj0fe6DskJJLlDg2zz6LzTPPoBqNhH0xS+s44jG8WPlFFjy3ACszK47cOkLgD4HcS7qndSwhRAFzfqs7njM/B4OBmJ27uDFoEGlx8VrHEsVQbo5unDt3Di8vL1NRAVC7dm0cHR05d+4cAKNHjyYwMJA2bdrwySefcOXKlSzLMDMzy9LPqmbNmlke37lzZ/R6Pd9++y2QMZKUv78/vr6+j7uJpZocsRAljqIolHt3HFc7v0Ls7t0knOqJ9ZMNtY4l8ql5heYsf345g/cN5kzEGXrt7sWStktwt3HXOpoQogA5vPgiegdHbowYQfyRo4T07o3XksWYOTtrHa1MUKysqHHqZL4fn56eTkxsLPZ2dnk+FUixssr1vNWqVUNRFM6ff7wLqk6ZMoWAgAB27NjBrl27mDx5Ml999RWvvPJKrh5vbm5Oz549WblyJa+++iobNmxg7ty5j5WpLJAjFqJEsqxRA8fXugAQ+ukn0iGwhKvrVpc1L6yhvHV5rkZfpceuHvwT/Y/WsYQQBcy2RXN8Vq1E7+hI0l9/ERzQHePNm1rHKhMURUFnbf14f1ZW+Xqcoii5zuns7Ey7du0ICgoiPj77Ua2oqChq1arF9evXTZ2tAc6ePUtUVBS1a9c2TatevTqjRo3ihx9+4NVXX83SZyI1NTVL5+wLFy6Ylp0pMDCQH3/8kYULF5Kamsqrr76a6+0oq6SwyIEMR1j8uY0YgWJtTdIffxKzc6fWccRjquxYmbXt1+Jr78ud+Dv02tWLM+FntI4lSiFp37VlVa8ePhs2YObpQcq1a1zrFkDSxYtaxxLFSFBQEGlpaTRp0oQtW7Zw6dIlzp07Z+oT0aZNG+rWrUv37t05deoUx48fp2fPnvj5+fHUU0+RmJjIsGHDOHDgAMHBwRw+fJgTJ05kKRoMBgNvv/02x44d4+TJk/Tu3ZtmzZrRpEkT0zy1atWiWbNmvPvuu3Tr1g2rPBx5KauksMiBDEdY/Jm5ueES2A+A8C9mkZ6crHEi8bg8bD1Y034NT7g8QVRyFP1+6MeRW0e0jiVKGWnftWdRuRK+GzdiUa0qqWFhBL/Vg4RTp7SOJYqJypUrc+rUKfz9/XnnnXd44oknaNu2Lfv27ePLL79EURS2b9+Ok5MTLVu2pE2bNlSuXJlNmzKul6LX64mMjKRnz55Ur16dN954g/bt2zN16lTTOqysrBg7diwBAQE0b94cW1tb0+Pv169fP1JSUujbt2+RbX9JJn0sRInm0qcPUZu+xnjrFndXrcZ14ACtI4nH5GTpxPJ2yxm5fyRHbx9l6L6hzHh2Bi/4vqB1NCFEATKUL4/P2rVcHzyExN9/J6RPXyrMmY1lixZaRxPFgIeHBwsWLGDBggUPvN/b2zvHEZrMzc3ZuHFjjsvu3bs3r776Kvb29rz22msPzXHz5k3q1q0rRzhzSY5YiBJNZ2VFuXdGAxCxeDHG0PwMhCeKG2uDNQueW0A733akpqcy7udxfHX+K61jCSEKmN7REe8Vy7H180NNTubGsOHEyHCeohiIi4vjr7/+YsGCBQwfPlzrOCWGFBaixLPv2BGrBg1QExIIm/mF1nFEATHXm/Pps5/StUZXVFSmHZvGl6e/lI76QpQyOisrKi6Yj0OnTpCWRtj7H+D080GtY4kybtiwYTRq1IhWrVrJaVB5IIWFKPEURaH8+++DohDzv//JebqliF6nZ2LTiQyun3Hl3oV/LGTG8Rmkq3LlXiFKE8VgwGPGdJz79AHAbedOImbNkh8ShGZWrVpFcnIymzZtQq/Xax2nxJDCQpQKVk/UwfHf8yTvfPQxalqaxolEQVEUhSENhjChyQQUFDae38j4X8ZjTDdqHU0IUYAUnY7y747DZfQoAKJWruL2hPdQU1M1TiaEyC0pLESp4TZqJDo7O5LPnSNq8zdaxxEFLKBWAJ88+wlmihm7ru5i9IHRJKfJSGBClDZOffpw5/XXQK8nets2bgwbTnpiotaxSiQ54iNyq6BeK1JYiFLDzNkZt387WIXPmUNaVJS2gUSB61C5A3Nbz8VcZ86B6wcYtm8YCcYErWMJIQpYzFNP4TFnNoqFBXEHDhDSL5C06GitY5UYBoMBgIQEaR9F7mS+VjJfO/klw82KUsUpoBtRm78m+dJlwucvwP2D97WOJApYy4ot+bLNlwz7aRi/3v6VQT8OIui5IOzM7bSOJoQoQDatWuG9YnnGcLSnThH8Vg+8li3FUL681tGKPb1ej6OjI2FhYQBY5/Hq1w+Snp5OSkoKSUlJ6HQl+3dp2Zb/p6oqCQkJhIWF4ejo+Nj9SaSwyEFQUJDpyo+i5FDMzCg/cSIhvftwb+NGHN94A8sa1bWOJQpYE48mLGm7hCE/DuH3sN8J/CGQRW0W4WTppHU0UQJI+15yWDdqlHGti8BAki9dIrhbAF7LlmFRuZLW0Yo9d3d3AFNx8bhUVSUxMRErK6vHLlK0JtuSnaOjo+k18ziksMjB0KFDGTp0KDExMTg4OGgdR+SBTbNm2LVrR+yePdz56EN81q4t8Q2HyK5BuQYsb7ecgXsHcjbyLH339GVJ2yW4WbtpHU0Uc9K+lyyWNarjs3Ej1/v1IyU4mODu3fFasgSruk9oHa1YUxQFDw8PypUrh9H4+INdGI1GDh48SMuWLR/7dBmtybZkZTAYCmzkKyksRKlU/t1xxB08SOJvJ4n+dhuOr76idSRRCGq51GLVC6vo/0N/Lkddpvfu3ix9fimetp5aRxNCFCDzihXw2bCe6wMGkvT334T06kXFBfOxeeYZraMVe3q9vkC+NOr1elJTU7G0tCzxX8ZlWwpPyT6xTIgcGDw9cRs2FICwzz4j9d49jROJwlLZsTKr2q+igm0FQmJD6LW7FyExIVrHEkIUMDMXF7xXr8b66WakJyQQMnAQMTt3ah1LCHEfKSxEqeXcsycW1aqRFhVF2BdyRe7SzMvOi1UvrMLX3pc78Xfou6evFBdClEJ6Wxu8Fi/Grv0LYDRy850x3F2/XutYQoh/SWEhSi3FYMB96hQAor/ZIlfkLuXcbdxZ+cJKKjtUJjQhVIoLIUopnbk5FWbOxCmgG6gqoR99TPi8+XLNBiGKASksRKlm/eSTOLzWBYA7k6egFkAHNlF8uVq5srzdclNx0WdPHykuhCiFFL2e8h98gOuwYQBELFzInalTUWWkLyE0JYWFKPXKvfMOekdHki9d4u6aNVrHEYUss7io4lCFsIQwKS6EKKUURcFt2FDcJ08CRSHqq03cHP0O6SkpWkcTosySwkKUemZOTpQbOxaA8AVBGG/d0jiRKGyuVq4sa7csS3ERHBOsdSwhRCFw6taNCrNnoRgMxO7Zw/X+A0iLi9M6lhBlkhQWokxweKUzVk81Qk1M5M7H07SOI4rAf4uLwB8CuR13W+tYQohCYP/CC3gtXYLO2pqEY8cI7tmT1IgIrWMJUeaUmcIiISEBHx8fxowZo3UUoQFFp8Nj8mQwMyPup5+I+eEHrSOJIpBZXGSOFhX4QyARifJlQ4jSyKZZM7zXrEHv7Ezy2XNc696dlBs3tI4lRJlSZgqLadOm0axZM61jCA1ZVKuGS2A/AO589BFp0dEaJxJFwdXKlaXPLzVd56L/D/2JTpbnXojSyOqJOvhuWI+hQgWMwSFc69aNpAsXtI4lRJlRJgqLS5cucf78edq3b691FKEx18GDMa9UibTwCEI//1zrOKKIuNu4s7TtUtys3LgcdZlBewcRlyLnYAtRGpn7+uKzYQMW1auTFh5B8Fs9SDhxQutYQpQJxb6wOHjwIB07dsTT0xNFUdi2bVu2eYKCgvD19cXS0pKmTZty/PjxLPePGTOGGTNmFFFiUZzpLCzw+PgjIOPaFvFHj2qcSBQVL3svlrRdgqOFI39F/sWwn4aRmJqodSwhRCEwlC+Hz7q1WDVqRHpsLCH9Aondt0/rWEKUesW+sIiPj6d+/foEBQU98P5NmzYxevRoJk+ezKlTp6hfvz7t2rUjLCwMgO3bt1O9enWqV69elLFFMWbdqBFOAQEA3J40mfRE+XJZVlR1qsqitouwNdhyMvQkY34eQ2p6qtaxhBCFQG9vj/fyZdi2bo2aksKN4SOI2rJF61hClGpmWgd4lPbt2z/0FKZZs2bRv39/+vTpA8CiRYvYsWMHK1asYPz48fz666989dVXbN68mbi4OIxGI/b29kyaNOmBy0tOTiY5Odl0OyYmBgCj0YjxvourmakqCpCamlomLrqWue3GUrKtTiOGE/vTTxivXyd0zhxcc9mpv7Tth/wqyfuhun115vrNZcj+IRy8cZAPj3zI+03eR1GUPC+rJO+HglRStj+37XtJVJpeiwW6LXo95b+YiTL1Q2K3beP2xPdJCQvHsV/ffL3n80qel+JJtiV/68gNRVVVtdCSFDBFUfj222/p3LkzACkpKVhbW/PNN9+YpgH06tWLqKgotm/fnuXxq1at4q+//mLmzJk5rmPKlClMnTo12/QNGzZgbW1tut367LvYJd/mUNX3iLSr+XgbJjRhc/48FVauQlUUQoYOIdnLS+tIogidM55jQ/wGVFSes3wOf0t/rSOVWAkJCQQEBBAdHY29vb3WcXKU2/ZdlEKqiuvu3Tgf+BmAey1aEP5iB9AV+xM3hNBcXtr4Yn/E4mEiIiJIS0ujfPnyWaaXL1+e8+fP52uZEyZMYPTo0abbMTExeHl54e/vj4uLi2m6WchHkAzNmjVF9Wmevw0oQYxGI3v37qVt27YYDAat4xSMDh24ExZO3I4dVNvzA16bvkJ5xLaVyv2QD6VhP3SgA96XvJlxYgb7kvbRon4LOlXplKdllIb9UBAiIyO1jpAruW3fS6LS9FostG158UXurV5D5MyZOB06hLejI+U+nPrIdv9xyPNSPMm25E3m0d3cKNGFRV717t37kfNYWFhgYWGRbbrBYMj6hP17CNXMzAxK+IsyL7LthxLO4/2J/HPkCCmXLhG9ahVuQ4bk6nGlbT/kV0nfDwG1AwhPCmfZmWV8fPxjPOw8aF4h7z8UlPT98LhKyrbnun0vwWRbHq5cYD8s3Fy5NfF9Yr//nvSYaCrOmYOukI9YyfNSPMm25H7ZuVWijwG6urqi1+sJDQ3NMj00NBR3d/fHWnZQUBC1a9emcePGj7UcUbyZOTlRfuJEACK+XCTjnZdBIxqOoGPljqSpaYz5eQz/RP2jdSRRyKR9L9scOnXCK2gBiqUl8Qd/IaRPX1Lv3dM6lhClQokuLMzNzWnUqBH77htCLj09nX379vH0008/1rKHDh3K2bNnOSFjX5d69i92wLbNc2A0cuvd8agpKVpHEkVIURSmPjOVRuUbEWeMY/hPw+UCeqWctO/C1s8P75Ur0Dk4kPjHHwS/1QPj7dtaxxKixCv2hUVcXBynT5/m9OnTAFy9epXTp08TEhICwOjRo1m6dCmrV6/m3LlzDB48mPj4eNMoUUI8iqIoeEyZgt7RkeTz54lYtEjrSKKIGfQGZrWahaeNJyGxITIMrRBlgHXDhviuW4tZ+fKkXLnCtW4BJF+5onUsIUq0Yl9Y/PbbbzRs2JCGDRsCGYVEw4YNTcPFdu3alZkzZzJp0iQaNGjA6dOn2b17d7YO3Xklh8rLFjNXV9ynTAEgYvESEs+c0TaQKHLOls7Maz0PKzMrfr39K5+fkCuzl1bSvotMFtWq4btxA+aVKpF65w7BAd1J/OMPrWMJUWIV+8KiVatWqKqa7W/VqlWmeYYNG0ZwcDDJyckcO3aMpk2bPvZ65VB52WP/QjvsO3SAtDRujZ9A+n3j3YuyoYZzDWa0mAHAhvMb2HZ5m7aBRKGQ9l3cz+Dpic+G9VjWq0dadDTBvfsQ98shrWMJUSIV+8JCiKJU/oP30bu5knLlCuFz52kdR2jgOZ/nGNIgY3Swab9O49K9SxonEkIUNjMnJ3xWrsCmeXPUxESuDx5M9P++1zqWECWOFBY5kEPlZZOZkxMeUz8E4O7KlSScPKlxIqGFgfUG8oznMySlJTH6wGgSjAlaRxIFSNp38SA6Gxu8vlyI/YsvQmoqt8aO5e6aNVrHEqJEkcIiB3KovOyya+2PwyuvgKpya8J7pCfIl8qyRqfomPHsDMpZl+NazDWmHp2KqqpaxxIFRNp3kRPF3BzPzz/DqUcPAEKnzyBs9hx5/wuRS1JYCPEA5d+bgJmHB8aQEMJmztQ6jtCAs6Uzn7f8HL2iZ+fVnXxz6RutIwkhioCi01H+vQm4jRwJQOTixdyZNAk1VUaKE+JRpLAQ4gH0dnZ4fPwRAPc2bCTu5581TiS08GT5Jxnx5AgAPj/xOcExwRonEkIUBUVRcB00EPcPp4JOR9Tmb7gxcqQM6iHEI0hhkQM5B1fYNm9uOhx+672JpEZGapxIaKF3nd40cW9CYmoiEw9NJC09TetI4jFJ+y5yy+mNN6gwdw6KuTlxP+7jemB/0mJjtY4lRLElhUUO5BxcAVBuzDtYVKtGWmQktye+L+fZlkE6RcfHzT/G1mDLH+F/sPLvlVpHEo9J2neRF/Zt2+K1dCk6W1sSTpwguEdPUsPDtY4lRLEkhYUQD6GzsMBz5ucoBgNxBw4Q8/XXWkcSGvCw9WB8k/EABJ0O4sLdCxonEkIUJZumTfBZuwa9qyvJ589zLaA7KSEhWscSotiRwkKIR7CsUYNyY94BIOLzmZiHhmmcSGjh5Sov4+/lT2p6Ku8ffp/UdOnIKURZYlmrFr4b1mPw8sJ4/TrXugWQdPas1rGEKFaksMiBnIMr7ufUo0fGhZOSk3H/aiNqSorWkUQRUxSFSU9Pwt7cnvN3z/PV+a+0jiTySdp3kV/m3t74bliPRa1apEVGEtyjJ/HHjmsdS4hiQwqLHMg5uOJ+ik6Hx4zp6Bwdsbx1m8gFC7SOJDTgauXK20++DcCC0wsIS5CjVyWRtO/icZi5ueGzZjXWjRuTHh/P9cBAYn74QetYQhQLUlgIkUuGcuUoN2UKAFGrVhN/9Ki2gYQmXqv+GvXc6hFvjOeLU19oHUcIoQG9nR1ey5Zi17YNqtHIzZGjuLdJ+uAJIYWFEHlg+1xropo0AVXl5rhxMgRtGaRTdHzQ7AN0io69IXu5ZLykdSQhhAZ0FhZUmDMHx9dfh/R07kyeTMSXX8rogaJMk8JCiDwK7/gS5lWqkBYewa1x76Kmp2sdSRSxms41CagZAMDuxN1ybQshyihFr8f9w6m4DBoIQPjceYR+PE0+F0SZJYVFDqRzn8iJam5O+Zmfo1haEn/4MJHLl2sdSWhgUP1B2BnsCE0P5fur32sdR+SBtO+iICmKQrmRIyk/cSIA99av59aYsTLIhyiTpLDIgXTuEw9jUbUq7u9nfIiEz5lLwqnfNU4kipqDhQP9nugHwKIzi0hKTdI4kcgtad9FYXDu8RaeM2eCmRkxO3dyffAQ0hMStI4lRJGSwkKIfHLo0gX7l16CtDRuvvMOaVFRWkcSRaxr9a44KA6EJoSy/tx6reMIITTm8NKLeH35JYq1NfGHD3OzXyC6+HitYwlRZKSwECKfFEXBfcoUDD7epN6+za33JkqnvTLGQm9BG6s2ACz/azlxKXEaJxJCaM322Rb4rFyB3tGR5L/+wvvLRRhv3dI6lhBFQgoLIR6D3taGCrNmoRgMxP30E/fWrtM6kihi9Q31qWRfidiUWL6+KMNNCiHAqn59fDasx8zdHfPwcG706EnyJRlBTpR+UlgI8Zis6tSh3LvvAhD6+ecknvlL40SiKOkUHb1r9wZgzd9rpK+FEAIAi8qVqbh2DcnlypEWFsa1t3pIfzxR6klhIUQBcOoegF3bNmA0cnPkSOlvUca84PsCHjYeRCZFsv3ydq3jCCGKCTN3d64PGohFvXqkR0cT0rcvsQcOaB1LiEIjhUUOZDhCkReKouAxbRoGLy+MN29yc9w4Gce8DDHoDPR5og8AK/9eSWp6qsaJxMNI+y6KUrqNDRWWLsGm5bOoSUncGDqMqG3btI4lRKGQwiIHMhyhyCu9vT0V581FsbAg/uAvRCxapHUkUYReqfoKThZO3Iy7ycEbB7WOIx5C2ndR1HTW1ngFBWH/ckdIS+P2+AlErlipdSwhCpwUFkIUIMtatXCfMgWAiPkLiDt0WNtAoshYmlnySrVXANh0YZPGaYQQxY1iMOD5ySc49+4NQNhnnxE2c6aMJihKFSkshChgjq90xvGNN0BVuTVmjAwzWIa8Xv11FBSO3DpCcEyw1nGEEMWMotNR7t1xlBvzDgCRy5Zze+L7qKly+qQoHaSwEKIQlJ/4HpZ16pAWFcWNkaNIT0nROpIoAhXtKtKiQgsANl/YrHEaIURxpCgKLoGBeEz7GHQ6ordu5cbwEaQnJmodTYjHJoWFEIVAZ2FBhblz0Tk4kPTnn4R98onWkUQR6VqjKwDbr2zHmGbUOI0Qorhy7NKFigvmo1hYELd/PyGB/UmLjtY6lhCPRQoLIQqJecUKVPj8M1AU7m3YSPR332kdSRSB5hWa42zpTFRyFEdvH9U6jhCiGLNr3Rrv5cvQ2dmRePIkwW/1wBgapnUsIfJNCgshCpFty5a4Dh4MwO0PJpH4198aJxKFzUxnRvtK7QH4/p/vNU4jhCjurJ96Cp91azFzcyP50iWCu3Uj+epVrWMJkS9SWAhRyFyHDsHGryVqcjI3hg8nNTJS60iikHWo1AGAA9cPkGBM0DaMEKLYs6xRA5+NGzD4eGO8dYvg7m/JD1GiRJLCQohCpuj1VJg5E3NfX1Jv3+bG22+jSmfuUq2ua1287LxITE1k//X9WscRQpQA5hUr4rthA5a1a5N29y4hPXsSf+SI1rGEyBMpLHIgV2YVBUlvZ0fFhUHobG1J/O0kd2bM0DqSKESKovCC7wsA/BTyk8ZpxH9J+y6KKzMXF7zXrMa6WTPSExIIGTiImF27tI4lRK5JYZEDuTKrKGgWlSvj+W9n7qiNX3Hv66+1jiQKkZ+XHwCHbx2W0aGKGWnfRXGmt7XFa8li7Nq1A6ORm6Pf4e6GDVrHEiJXpLAQogjZ+fvjNmI4AHc++piEU79rnEgUlrqudXG2dCbeGM9vob9pHUcIUYLozM2pMOsLHLu9CapK6IcfET5/gVylWxR7UlgIUcRcBg3C7vnnwWjkxtsjMIaGah1JFAKdosOvYsZRi4M3DmqcRghR0ih6Pe6TJuE6dCgAEUFB3PnwQ9S0NI2TCZEzKSyEKGKKouA5YzoW1auTFh7BjWHDSU9K0jqWKASZhcWhm4c0TiKEKIkURcFt+DDKT/rAdBrtzXfGkC4DgIhiSgoLITSgs7GhYtAC9A4OJJ05w+33Jsoh7lKosUdjdIqOazHXCEuQi14JIfLHOSCACrO+AIOB2N27uT5wIGlx8VrHEiIbKSyE0Ii5lxcV5s4FMzNidu4kImih1pFEAbM3t6emc00ATtyRjsJCiPyzb98e78WL0Flbk3D0V0J69pTrIoliRwoLITRk06wp7pMnARCxYAHR3+/QOJEoaE3cmwBSWAghHp/NM8/gvXo1eicnks6e5VpAACk3bmgdSwgTKSyE0JjT66/j3LcvALffe4/E06e1DSQKVGP3jGslHL9zXOMkQojSwKruE/hsWI/B0xNjcAjB3QJIunBB61hCAFJYCFEslHtnNLatW6OmpHB96DCMN29qHUkUkIblGgJwPfY695LuaZxGCFEaWFSqhM/GjVhUq0ZqeDjBb/Ug4TcZ1lpoTwoLIYoBRa+nwuefYVGzJmmRkVwfNJi0uDitY4kCYGduh6+9LwB/R/6tbRghRKlhKF8On3VrsXrySdJjYwnpF0jsTz9pHUuUcaW+sIiKiuKpp56iQYMGPPHEEyxdulTrSEI8kM7GBq8vF6J3cyX50iVuvvOOjFdeSjzh+gQAZyLOaJxECFGa6B0c8F6+DNtWrVCTk7kxfARRW7ZqHUuUYaW+sLCzs+PgwYOcPn2aY8eOMX36dCJlFAVRTBk8PPBauBDFwoL4nw8S+umnWkcSBSCzsPgr4i+NkwghShudlRUVF8zH4ZVXIC2N2xMnErlsmQxhLjRR6gsLvV6PtbU1AMnJyaiqKm82UaxZ1a2L578Fxb01a7m7erXGicTjur+wkPZHCFHQFDMzPKZPwyWwHwBhM78g7NPPUNPTNU4myppiX1gcPHiQjh074unpiaIobNu2Lds8QUFB+Pr6YmlpSdOmTTl+POvoK1FRUdSvX5+KFSsyduxYXF1diyi9EPlj/0I7yo15B4DQTz4lZvcejROJx1HTuSY6RcfdpLuEJ4ZrHUcIUQopikK5MWMoN24cAHdXreL2hAmoRqPGyURZUuwLi/j4eOrXr09QUNAD79+0aROjR49m8uTJnDp1ivr169OuXTvCwv7/KreOjo788ccfXL16lQ0bNhAaGlpU8YXIN+d+/XAKCABV5da4cSScPKl1JJFPFnoLvO28Afgn+h+N0wghSjOXvn3w+GQG6PVEb/+O68OGkZ6QoHUsUUaYaR3gUdq3b0/79u1zvH/WrFn079+fPn36ALBo0SJ27NjBihUrGD9+fJZ5y5cvT/369fnll1947bXXHri85ORkkpOTTbdjYmIAMBqNGO+r+s1UFQVITU0tE78GZG67sQxs68MU9X5wHjeWlNu3id+/n+tDhlJxzRrMK1cqknU/jLweMuRlP1Syr8S1mGtcirxEI9dGhR2tSJWU10Fu2/eSqDS9J2VbHp/Niy/iYWfHnXfGEP/zQa717oPnwiD0Dg75XqY8L8VTUWxLXpatqCXohF9FUfj222/p3LkzACkpKVhbW/PNN9+YpgH06tWLqKgotm/fTmhoKNbW1tjZ2REdHU3z5s3ZuHEjdevWfeA6pkyZwtSpU7NN37Bhg6mvBkDrs+9il3ybQ1XfI9KuZoFupxD3U1JSqLhkKVbXr2N0ciJk6BDS7Oy0jiXyaG/iXn5O/pkm5k142fplreMUqISEBAICAoiOjsbe3l7rODnKbfsuRGlheS2YCqtWok9MIrlcOW7260eqY/6LC1E25aWNL/ZHLB4mIiKCtLQ0ypcvn2V6+fLlOX/+PADBwcEMGDDA1Gl7+PDhORYVABMmTGD06NGm2zExMXh5eeHv74+Li4tpulnIR5AMzZo1RfVpXsBbVvwYjUb27t1L27ZtMRgMWsfRjFb7Ia1lS2706AkhIdTe+i0VVq5Ap+EXIXk9ZMjTfrgKPx/9GaODkQ5tOxRNwCJSUkbay237XhKVpvekbEvBSm7bhluDBmMRFkb1lSvxXLw4X0e+i8O2FBTZlrzJPLqbGyW6sMiNJk2acPr06VzPb2FhgYWFBUFBQQQFBZH273UEDAZD1idMUQAwMzODEv6izIts+6GMKur9YChfHu+lS7j2ZjeSz54ldOzYjGFpzbR9C8vrIUNu9kN1l+oA/BPzD2ZmZij/tiGlQUl5DeS6fS/BZFuKJy23xVC7NpU2biCkXyAp165xs1cvvJYsxqpevfwtT56XYqkwtyUvyy32nbcfxtXVFb1en60zdmhoKO7u7o+17KFDh3L27FlOnDjxWMsRoqCY+/jgtehLFEtL4g/+wu0pU2To0hLE18EXgOjkaKKSozTNUtZJ+y7KGkOFCvhsWI9l3bqkRUUR3LsPcYcOax1LlEIlurAwNzenUaNG7Nu3zzQtPT2dffv28fTTT2uYTIjCYVW/PhVmfQE6HdHfbCF8zlytI4lcsjKzws3KDYBbcbc0TiOEKGvMnJ3xWbUSm2eeQU1I4PrgwUR/v0PrWKKUKfaFRVxcHKdPnzadznT16lVOnz5NSEgIAKNHj2bp0qWsXr2ac+fOMXjwYOLj402jROVXUFAQtWvXpnHjxo+7CUIUKLvWrXGfMhmAyMWLiVy1SttAItc8bT0BuBl3U+MkZZu076Ks0tnY4LXoS+w7tAejkVtjxnB3zVqtY4lSpNgXFr/99hsNGzakYcOGQEYh0bBhQyZNmgRA165dmTlzJpMmTaJBgwacPn2a3bt3Z+vQnVdyqFwUZ05vvIHbqFEAhH3yKVEPuHCkKH4q2FYA5IiF1qR9F2WZYm6O58yZOHXvDkDo9OmEzZkjp9aKAlHsO2+3atXqkS/2YcOGMWzYsCJKJETx4DKgP2n37mVcXXXi++jtHbBr7a91LPEQmYXFjbgbGicRQpRlik5H+fcnYubqQvjceUQuWkxa5F3cp0xG0eu1jidKsGJ/xEII8WCKolBu3FgcOneGtDRujhpFwm+/aR1LPETmqVByxEIIoTVFUXAdPBj3KVNApyNq82ZujhxJ+n0XkRQir6SwyIGcgytKAkWnw+Pjj7D190dNTub6oMEk/XsNF1H8SGFRPEj7LsT/c3qzKxXmzEYxGIjd+yPXA/uTFhurdSxRQklhkQM5B1eUFIqZGRVmz8LqqUakx8UREtiflH8HNxDFS3nrjL5f4YnhGicp26R9FyIr++efx2vpUnQ2NiScOEFwz16khks7JfJOCgshSgGdpSVeX36JRc2apEVEENK3H8bQMK1jif9wtXIFICYlhpS0FI3TCCHE/7Np1hSftWvQu7iQfO4c1wK6y49UIs+ksMiBHCoXJY3ezg7vZUsxeHtjvHGDkD59SI2M1DqWuI+9uT1muowxMyIT5bnRirTvQjyYZe3a+G5Yj6FiRYzXr3MtoDtJ585pHUuUIFJY5EAOlYuSyMzVFe8VKzDz8CDln38I6RdIWlSU1rHEvxRFMR21iEiM0DhN2SXtuxA5M/fxwWfDetMR8OAePYk/dlzrWKKEkMJCiFLGvGIFfFauQO/mSvL584T0H0BaXJzWscS/Mq++LYWFEKK4MpQrh8+a1Vg/9RTpcXFc79+fuH37tI4lSgApLIQohcx9ffFZsQK9oyNJZ85wfeAg0hMStI4lABcrFwAikqSwEEIUX3p7e7yWLcW2zXOoKSncGf0O9sflyIV4OCkshCilLKpVw3vFcnR2diSePMn1oUNlfPJiQE6FEkKUFDpLSyrOmYPDa10gPR33LVu5u3SpXKVb5EgKixxI5z5RGljWro330iXorK1JOPorN0e8jZoioxFpydHCEYDo5Ghtg5Rh0r4LkXuKmRkeH32EU/9AAO7Om0/o9Bmo6ekaJxPFkRQWOZDOfaK0sGrQgIqLvkSxtCTu55+5OWYsamqq1rHKLHtzewBikmM0TlJ2SfsuRN4oioLLiBGEdXwJgHtr13Jr7Dj5oUpkI4WFEGWATZMmVFywIOPKqj/8wK0J76GmpWkdq0wyFRYpUlgIIUqWqBYtKD9jBpiZEbNjB9cHDyE9Pl7rWKIYkcJCiDLCtkVzKsydm/GB8L//cWvCBCkuNGBnbgdAbEqsxkmEECLv7F56Ea8vF6JYWRF/+DDBffqSeu+e1rFEMSGFhRBliF1rfyp88UVGcfHd/7g1XoqLomZvIUcshBAlm+2zz+KzaiV6BweS/vyT4IDuGG/d0jqWKAaksMiBdO4TpZV9u+epMOuL/z9y8e54KS6KkPSx0J6070I8Pqv69fHZsB4zd3dSrl7lWkB3ki9f1jqW0JgUFjmQzn2iNLN//nkqzJ6VUVx8/31GcSEduouE9LHQnrTvQhQMiypV8N24AfMqVUi9c4dr3d8i4ffftY4lNCSFhRBllH3btlJcaCDzVKiktCRS0mREFSFEyWbw8MBn3Vos69cjPTqakD59iTt4UOtYQiNSWAhRhtm3bUvFObNNI3zcGveuFBeFzNZgi4ICyFELIUTpYObkhM/Kldg8+yxqUhLXhwwl+rvvtI4lNCCFhRBlnF2bNlScOwcMBmJ27pTiopDpFB2WZpYAJBoTNU4jhBAFQ2dtjdfCIOw7doTUVG6Ne5fIVau0jiWKmBQWQgjsnnsuS3Fxc+xYVKNR61illpWZFQAJqQkaJxFCiIKjGAx4fvoJzr16AhD2yaeEffEFqqpqnEwUFSkshBAA2LVubSouYnft5sbbI0lPTtY6VqmUWVgkpsoRCyFE6aLodJQbPx630aMBiFy6jNvvvy9HwssIKSxyIMMRirLIrnVrvBbMRzE3J+6nn7gxeAjpifLlt6BJYaEtad+FKFyKouA6oD8eH38EOh3RW7ZyY8TbpCclaR1NFDIpLHIgwxGKssrWzw+vJYtRrK2JP3KEkP79SYuL0zpWqWJtZg1AUqp8yGpB2nchiobja69Rcd5c049VIYGBpMXIoBWlmRQWQohsbJo1w3v5MnR2diT+dpKQ3n1Ii4rSOlapYeq8LUcshBClnF2bNhmfJ7a2JP52kuC3emAMC9M6ligkUlgIIR7IumFDfFavQu/kRNJffxHcsxepERFaxyoV5FQoIURZYt24MT7r1qJ3cyX54kWCuwWQcu2a1rFEIZDCQgiRI8vatfFZuwYzN7eMD4O3emC8fVvrWCWeFBZCiLLGsmZNfDdswODjjfHmTa4FdCfx77+1jiUKmBQWQoiHsqhaFZ91azHz9CDl2jWCu7+F8fp1rWOVaJmFRVKa9LEQQpQd5l5e+K5fj0XtWqTdvUtIz17E//qr1rFEAZLCQgjxSOY+PviuW4e5jw/GW7e40as35qGhWscqsUzXsTDKdSyEEGWLmasrPmvWYN20Kenx8VzvP4CY3Xu0jiUKiBQWQohcMXh64rNuLRbVqpEWHo7XosUk/fGH1rFKpMzO23LEQghRFultbfFashi7559HNRq5OWoU9zZu1DqWKABSWAghcs3MzQ3vNauxqFcPfUICN/v3J+6XX7SOVeIYdAYAjGlydXMhRNmks7CgwuxZOHbtCqrKnakfEr4gSK7SXcJJYSGEyBMzJycqLF1CfPXqqIlJXB88hOjvd2gdq0QxFRbpUlgIIcouRa/HfcpkXIcMASBiwQJCP/oINS1N42Qiv6SwyIFcmVWInOmsrbnZqye27dtDaiq3xozh7tp1WscqMQx6KSy0JO27EMWHoii4jRhO+fffB0Xh3oaN3BwzhvSUFK2jiXyQwiIHcmVWIR7BzIzyn8zAqXt3AEKnTSN83jw5jJ0LcsRCW9K+C1H8OL/VnQpfzASDgdhdu7k+cCBpcfFaxxJ5JIWFECLfFJ2O8u9PxHXEcAAiFn7JnSlT5TD2I2QWFqnpqRonEUKI4sO+Qwe8Fn2JYm1NwtFfCenVi9S7d7WOJfJACgshxGNRFAW3IUNwnzIZFIWoTZu4OWo06cnJWkcrtqTzthBCPJht8+b4rF6F3smJpL//zrhK942bWscSuSSFhRCiQDi9+SYVZs/KOIz9ww+E9OtHWlSU1rGKJeljIYQQObOqWxef9eszLswaHExwt24kXbiodSyRC1JYCCEKjP0LL+C9dAk6W1sSfzvJte5vYbwpvzT9l/SxEEKIh7OoXAnfjRuxqFaV1PBwgnv0IOHkSa1jiUeQwkIIUaBsmjXL+KWpfHlSrlzh6ptvknT2rNaxihUpLIQQ4tEM5cvjs3YtVg0bkh4TQ0jffsT+tF/rWOIhpLAQQhQ4yxrV8d301b9X6Y4g+K0exP1ySOtYxYb0sRBCiNzROzrivWI5tn5+qMnJ3Bg+nKit32odS+RACgshRKEwuLvjs2E91s2akZ6QwPVBg4jaskXrWMWC9LEQQojc01lZUXHBfBw6d4a0NG6/9x6Ry5drHUs8gBQWQohCo7ezw3vJYuw7dsz4MJj4PuHzF5T5a13IqVBCCJE3isGAx4zpOPftC0DY5zMJ/exz1PR0jZOJ+5X6wuL69eu0atWK2rVrU69ePTZv3qx1JCHKFMXcHM/PPsVlwAAAIoKCuP3++6jGsvulWgoLIYTIO0VRKD9uLOXGjgHg7ooV3J7wXpn+PCluSn1hYWZmxpw5czh79iw//PADI0eOJD5eruQoRFFSFIVyo0dlXOtCpyN6y1ZCBgwgLTpa62iakFOhhBAi/1z69cNj+nTQ64nevp0bw4aTnpiodSxBGSgsPDw8aNCgAQDu7u64urpyV67iKIQmnN58k4pBC0xXVb3WLYCUkBCtYxU5M8UMkM7bQgiRX46vvkLF+fNRLCyI+/lnQvrKtZOKg2JfWBw8eJCOHTvi6emJoihs27Yt2zxBQUH4+vpiaWlJ06ZNOX78+AOXdfLkSdLS0vDy8irk1EKInNj5++O7fh1m7u6k/PMP197oSsJvv2kdq0jpFT0AKmW7r4kQQjwOu9b+eK9cgc7ensTffye4Rw+Md+5oHatMK/aFRXx8PPXr1ycoKOiB92/atInRo0czefJkTp06Rf369WnXrh1hYWFZ5rt79y49e/ZkyZIlRRFbCPEQlrVq4fv1JiyfeIK0qChC+vQlevt2rWMVGZ2S0fSmqWkaJxFCiJLN+skn8Vm3FrNy5Ui+dJlrAQEk/3NV61hllpnWAR6lffv2tG/fPsf7Z82aRf/+/enTpw8AixYtYseOHaxYsYLx48cDkJycTOfOnRk/fjzPPPPMQ9eXnJxMcnKy6XZMTAwARqMR432dg8xUFQVITU0tE52GMrfdWAa29WFkP2QokP3g5ITniuWEvvce8T/u49a740m8fAXnYUNRdMX+Nw8g//shPS1jFJP09PRS8VoqKduQ2/a9JCpNbZNsS/FUnLdFX6kSFdas5tagQRivBXOte3c8FwZh+cQTD5y/OG9LXhXFtuRl2YpagsZ9VBSFb7/9ls6dOwOQkpKCtbU133zzjWkaQK9evYiKimL79u2oqkpAQAA1atRgypQpj1zHlClTmDp1arbpGzZswNra2nS79dl3sUu+zaGq7xFpV/NxN02Isis9Hdc9P+B84AAAsfXqceeN11ENBm1zFaLItEhmx87GAgs+cPxA6ziPLSEhgYCAAKKjo7G3t9c6To5y274LIUomfVwcFVauwvLGDdLNzbnVowcJ1atpHavEy0sbX6ILi1u3blGhQgWOHDnC008/bZpv3Lhx/Pzzzxw7doxDhw7RsmVL6tWrZ7p/7dq11K1b94HreNAvWl5eXty+fRsXFxfTdLNFT6NEXiL1re2oPs0LeEuLH6PRyN69e2nbti2GUvyF71FkP2QojP0Q8+02wj78EFJTsaj7BB7z5mHm6logyy4s+d0PN+Nu0vG7jliZWXH4jcOFmLBoREZG4uHhUewLi9y27yVRaWqbZFuKp5KyLenx8dweOYrEX38FMzPKT5+G3X/OfCkp25IbRbEtMTExuLq65qqNL/anQj2uFi1akJ6Hi6dYWFhgYWGRbbrBYMj6hCkKkDGcLSX8RZkX2fZDGSX7IUNB7geXN17H0teHm8NHkHzmL250C6DiggVYPVGnQJZfmPK6H8wN5gCkq+ml4nVUUrYh1+17CSbbUjzJthQhR0e8lyzm1rvvErtrN6HvjofoGJx7vJVt1mK/LXlQmNuSl+WWjBOZc+Dq6operyc0NDTL9NDQUP6vvTsPa+pK/wD+DYGwCLIogigIKoq4gFVRWxVisYx1XGvrqFNxo6Oi1aFaa6tSO7VOrbZojUu1grY62s64tK6DDFTrhhutFdRicWVxQxFECMn9/UHNTwpoQpabhO/nefLoPbm59z2H5MCbc8+53t7eeh1boVAgODgY3bp10+s4RKS9BmFh8N+6BbKAAFTk5+PK6NG4v3u32GEZ3OPJ22qBd4wVA/t3IutmI5Oh2ZIlcB81ChAEFCxciFvLl8OCLtKxWBadWMhkMnTp0gUpKSmaMrVajZSUlCqXRtVFbGwsMjMzceLECX3DJCIdyPz94f/NVjQI7wOhrAy5b83EzaWfQlBZzwpKTCzExf6dyPpJpFJ4zZuLxtOmAgBur1yF/Pj3rep3iTky+8SiuLgYGRkZyMjIAADk5OQgIyMDV3+/qVZcXBzWrl2LDRs2ICsrC5MnT0ZJSYlmlSgisjxSFxf4rlyJRjETAQB31q7F9SmxUBUXixyZYTCxICIyPolEAs/YWHi/Hw9IJLj3zTe4MePvUD8x14oMy+znWJw8eRJyuVyzHRcXB6By5aekpCSMGDECt27dwvz585Gfn4/Q0FDs27cPXl5eep1XoVBAoVBAxcyWSBQSqRRN3noL9m3aIm/uXBT/8AMuj/gLfBUrIPP3Fzs8vTxOLAQIEAQBkt/nbJFpsH8nql/c//IXSN3ckTtrFh4kJ6Pi3j3Y/HmA2GFZJa0Si+XLl+t84HHjxsHFxUXn1/1RRETEM6+Jmzp1KqZOnar3uZ4UGxuL2NhYFBUVwdXV1aDHJiLtuQ78M2T+/rg+dSrKL11Czmsj0OzTT+Hcy3JXY7N5YrBYLag1d+Im02D/TlT/NPxTFKRurrg+JRalJ06g+Y0bqOgTDrum+s3Jpaq0SixmzJiB5s2bQyrV7pfftWvX8Oc//9kgiQURkWPHDgj497e4Pu1NlGZk4Nobb6DJrFnwGBttkd/229j8IbEAEwsiImNr0KMH/DZuxLU3YuCQm4sbY8bAb/2XkPn6ih2a1dD6UqiTJ0+iSZMmWu1rDQkFh8qJzIutpyf8Nm5A/oIFuP+fbbj58cd4lJmJph8sgI2jo9jh6aTKiAU4z8LU2L8T1V+OHdqj2caNuPT6GODaNVweNQp+a9fCIYg3OzYErSZvx8fHw9nZWeuDvvvuu/Dw8KhzUOaAq4YQmR8bmQxNP/wQXu++C0ilKPr+e1z+y0iUX7kidmg6eTzHAgBUav5xa2rs34nqN1mLFrg6ZTJkbdpAdes2rvz1dZSkp4sdllXQOrFwcnLS+qBz5syBm5tbXWMiIqqVRCKBx5jX0SIpEdLGjVF24QJyhr+KB6mpYoemtScTCwFcV52IyNRUDRuiWeJ6OHbtAnVxMa5NjMGDAwfEDsvimf1ys0RENXHq1g0B//kPHENDoX7wANcnT8Gt5Z9DUJv/pUVPTtZWCRyxICISg7RhQ/itWwfnvn0hlJfj+pvTce/f/xY7LIumc2Jx584dxMbGIjg4GI0bN4aHh0eVh7XgnVmJzJ+dVxO02Lih8u6qAG6vXIlrkyZBde+euIE9w5MTznknWNNj/05Ej9k4OKD58mVwfWUYoFYjb+483F7zBfvmOtL5Phavv/46srOzMWHCBHh5eVnkiiza4HKERJZBIpPBe/48OIZ0Qt78eJQcPISc4a+i+efL4dCundjh1YgjFuJi/05ET5LY2qLphx/C1qMR7qxdi1uffYaKO7fh9c47kNjw4h5d6JxYHDp0CD/++CNCQkKMEQ8RUZ24Dh4M+zZtcH3am1Bev47LfxmJph8sgOvgwWKHVs2TX8jw7ttEROKTSCRo8lYcpI08cPOfH6Nw41dQ3S2Ez0cLIZHJxA7PYuichgUFBaG0tNQYsRAR6cWhXTsE/PtbNOjTG0JZGXJnv4O899+HuqxM7NCqeTyBm4kFEZH5aDR2LHwWfwzY2qJo1y5cmxIL9cOHYodlMXROLFauXIn33nsPP/zwA+7cuYOioqIqD2vBa3CJLJPUzQ2+q1ej8ZQpgESCe1u24vJI81uSlomFeNi/E9HTuA4aBN+VCkgcHFDy44+4Mm4cKgoLxQ7LIuicWLi5uaGoqAh9+/ZFkyZN4O7uDnd3d7i5ucHd3d0YMYqC65wTWS6JjQ0835wG3y++gNTdHWWZWch5ZTiK9v9X7NA0Ht8kj4mF6bF/J6Jnce7TB36J62Hj6opHP/2MK399Hcq8PLHDMns6z7EYPXo07OzssHnzZquevE1Els+5dy8EbN+GG2/NROmpU7gxfToevv46vGbNFP2aWamNFFAzsSAiMldOnTvDf9PXuDoxBuWXLuHyyFHwW7cW9q1bix2a2dI5sfjll19w5swZtG3b1hjxEBEZlJ23N1okJeLWsmW4s+5LFH71FUozMtDss88ga95MtLgkqPxShokFEZH5sm/dGv6bN1UmF7/9hiuj/wrfNavhGBoqdmhmSedLobp27Ypr164ZIxYiIqOQ2NmhycyZaL5qZeWw9tmzyBk2DA/+9z/xYuJoLxGRRbDz8UGLTV/DIaQTVPfv48q48Sg+eFDssMySzonFtGnTMH36dCQlJeHUqVP4+eefqzyIiMyVi1yOltu3wTEkBOqiIlyfEouCxZ9AUCrFDo2IiMyYrbs7Wqxfjwa9ekEoLcW1KbG4//33YodldnS+FGrEiBEAgPHjx2vKJBIJBEGARCKBSmUdN3tSKBRQKBRWUx8iqmTn44MWX23EzaWf4u6GDbi7fj1KT5+Gz5Ilol4aRabD/p2I6sKmQQP4rlQgd867KNq9G7mz3obq7l14REeLHZrZ0HnEIicnp9rjt99+0/xrLbhqCJH1kshk8JrzDpqv+Bw2Li4ozchAztChKNq7V+zQyATYvxNRXUlkMvh8shjur78OAChY9E/c/PQzCIIgcmTmQecRixYtWhgjDiIik3OJjERAUDvkzpyJ0owM3Ph7HIoPH4b3u+/CxslJ7PCIiMgMSWxs4PXuHNg2aoRbCQm488UXqLh7B03ffx8SW53/tLYqOo9YLFq0COvXr69Wvn79enz88ccGCYqIyFRkzZuhxddfodHkSYBEgvv//g9yXhmOR1lZYodGRERmSiKRoPGkv8H7Hx8ANja4/+//4Pr0GVA/eiR2aKLSObFYs2YNgoKCqpW3b98eq1evNkhQRESmJLG1RZPp0+GXmAjbJk1QnpODy6+NwN2NX3F4m4iIauX+6qtotiwBEpkMxSkpuDpxIlRFRWKHJRqdE4v8/Hw0bdq0WrmnpyfyeEdCIrJgDXp0R8DOHXDu2xeCUomCjz7C9clTUHH3rtihERGRmWrYrx98162FjbMzSk+ewpXXx0B586bYYYlC58TC19cXhw8frlZ++PBh+Pj4GCQoc6BQKBAcHIxu3bqJHQoRmZCtuzuaK1bAa97cym+g0tKQM3gISo4dEzs0MhD270RkaA3CwtDiq42QNm6MsgsXcGXUaJRfuSJ2WCanc2IRExODGTNmIDExEVeuXMGVK1ewfv16/P3vf0dMTIwxYhQFVw0hqr8kEgk8Ro+G/7ffQNaqFSpu3cLVceNxc+lSCOXlYodHemL/TkTG4NCuHfw3b4Kdnx+U16/j8qjRKD13TuywTErnxGLWrFmYMGECpkyZgpYtW6Jly5aYNm0a3nzzTcyZM8cYMRIRicKhbVsEfPsN3F59FRAE3Fm7Djkj/oKyX3812DkEcA4HEZG1kPn5wX/T17Bv1w6qO3dwdUx0vRrx1jmxkEgk+Pjjj3Hr1i0cO3YMP/30E+7evYv58+cbIz4iIlHZODmh6T8+QLPlyyB1c0NZVhZyXhmOuxs3QlCr63xcCSQGjJKIiMyFracnWmzcAKewMKhLSnAt5g0U7f+v2GGZhM6JxWPOzs7o1q0bOnToAHt7e0PGRERkdhq+9BICvtuJBr17QygvR8FHi5A7aTJs798XOzQiIjIzUhcX+K79Ai79+kFQKnFjxgwUbtkqdlhGp1ViMWzYMBTpsHTW6NGjcbOezoYnIutl16QJfL9YA6/58yBxcEDp0aNo8VkCiuvJN1FERKQ9G3t7NEv4DG6vvQYIAvLffx+3Vq606mXMtUosdu7ciVu3bqGoqOiZj/v37+P7779HcXGxsWMnIjI5iUQCj1GjELDtP7APDoa0tBT5M2cid/ZsqB48EDs8IiIyIxKpFN4L3q+8CSuA28s/R8E/PtTrUlpzplViIQgC2rRpA3d392c+PDw8UFJSYuy4iYhEZd+yJZp//RXu9O1bedfVnd8hZ/AQPORKQ0RE9ASJRIIm06fD6733AACFmzcjd+ZMqK1wlUFbbXZKTU3V+cDNmjXT+TVERJZEYmeHO1EvodO4sbj57ntQXruGK2Oi4TF+HDzffBM2nH9GRES/83j9r5C6uyN3zhwU7dkL1b17aLb8c0idG4gdmsFolViEh4cbOw4iIovlGBqKgO3bUbDoI9z/zzbc/XI9itN+gM8/F8GxY0exwyMiIjPh+ucBkLq54fqbb6LkyFFcHTsWvl+sga2Hh9ihGUSdV4WydrwzKxHpQurcAD4LF6L5SgWkjRuj/NIlXP7LSNxMSLDK4W5Lxv6diMTk3OsFtEhKhNTNDY9++QVXRo2G8sYNscMyCCYWteCdWYmoLlz69kXL779DwwEDAJUKd1avweXhr+JRZqbYodHv2L8TkdgcO3VCi82bYOvTFOWXL+PyyFF4dPGi2GHpjYkFEZGB2bq7o9nSJWi2bBmkHh4ou3gROa+NwK0VCghKpdjhERGRGbBv2RL+mzdD1roVKm7exJW/vo6Hp0+LHZZemFgQERlJw6iX0HLX93CJigIqKnB7xQrkvDYCjy5c0OxjzeuZExHR09l5e8P/66/hGBoKdVERro6fgAdpaWKHVWdaTd5+0saNG6ts29jYwNPTE71794aTk5PBAiMisga2Hh5olvAZHuzdi/wFH6AsKws5w1/Fn3tJ8U0YkwoiovpO6uYGv8T1uD5jBkp+OIjrsVPR9MMP4TZ0iNih6UznxGL69OlVtlUqFYqLi+Hp6Yn//e9/aN++vcGCIyKyBhKJBA1ffhlO3boh7/0FKE5JwbBUJTplAUL4XcDVX+wQiYhIRDaOjvBdsQJ5c+fi/s7vkDdnDoSyMrj/ZYTYoelE50uhCgsLqzyKioqQl5eHXr16YcaMGUYIkYjIOth6eqL5is/hs/hjPLSXoHU+oPrfYbHDIiIiMyCxs0PTRYvgPuZ1AMCdtWtFjkh3Oo9Y/PzzzzWWjx8/HkOHDkV6ejocHBwAAJ06ddIvOiIiKyORSOA6aBDObpiL7ueUgEoldkhERGQmJDY2cBs2DIUbv4K6vEzscHSmc2IRGhoKiURS44RDiUSCHj16aP6v4i9MIiIiIqJ6QefEIicnp8byy5cvo1+/fvj555/h6Oiod2BERERERGQ5dE4s3N3dq2yr1WpcvnwZH374IaKiohAUFGSw4IiIiIiIyDLoPHnbzc0N7u7umkejRo3w3HPPoaioCAqFwhgx6m3o0KFwd3fH8OHDxQ6FiIiIiMgq6TxikZqaWmVbKpXCz88Pfn5+BgvK0KZPn47x48djw4YNYodCRERERGSVdE4swsPDjRGHUUVERCDNgu9iSERERERk7nS+FMrUDh48iIEDB8LHxwcSiQQ7duyoto9CoYC/vz8cHBzQvXt3pKenmz5QIiIiIqJ6zOwTi5KSEoSEhNQ6f2Pr1q2Ii4tDfHw8Tp8+jZCQEERFReHmzZsmjpSISHcCqi/dTUREZIl0vhTK1Pr374/+/fvX+vynn36KmJgYjBs3DgCwevVq7N69G+vXr8c777yj8/nKyspQVvb/NyQpKioCACiVSiiVSk25rSBAAqCiogLCE+XW6nHdlfWgrk/DdqjEdqhkiHZQq9UW346WEr+2/bslsqbPJOtinlgX06moqKj8j/DsGE1RF12ObfaJxdOUl5fj1KlTmDNnjqbMxsYGkZGROHr0aJ2OuWjRIixYsKBaeWpqKpycnDTbfYuL4QLg2LHjuHPufp3OZYmSk5PFDsEssB0qsR0q1aUd1L/fZDQ7+xLO79lj6JBM6uHDh2KHoBVt+3dLZk2fSdbFPLEuxifLzYU/Kr8M2aPl7wdj1kWXPt6iE4vbt29DpVLBy8urSrmXlxfOnz+v2Y6MjMRPP/2EkpISNG/eHN9++y169uxZ4zHnzJmDuLg4zXZRURF8fX0hl8vRqFEjTbnt1X8AZUCPHt0htHjBwDUzP0qlEsnJyejXrx/s7OzEDkc0bIdKbIdK+rTDpo3zAACtW7dCy5dfNkZ4JnPnzh2xQ9CKtv27JbKmzyTrYp5YF9Mpu3AB15Yth729PV5+xu8HU9Tl8eiuNiw6sdDWgQMHtN7X3t4e9vb21crt7Oyq/sAkEgCAra0tYIZvSmOp1g71FNuhEtuhUp3aobILgY2NjcW3oaXEr3X/bsFYF/PEupgnc62Lyvb3P88l2vevxqyLLsc1+8nbT9O4cWNIpVIUFBRUKS8oKIC3t7dex1YoFAgODka3bt30Og4REZkX9u9ERMZh0YmFTCZDly5dkJKSoilTq9VISUmp9VInbcXGxiIzMxMnTpzQN0wiIjIj7N+JiIzD7C+FKi4uRnZ2tmY7JycHGRkZ8PDwgJ+fH+Li4hAdHY2uXbsiLCwMCQkJKCkp0awSVVcKhQIKhQIqlUrfKhARkRlh/05EZBxmn1icPHkScrlcs/144l10dDSSkpIwYsQI3Lp1C/Pnz0d+fj5CQ0Oxb9++ahO6dRUbG4vY2FgUFRXB1dVVr2MREZH5YP9ORGQcZp9YREREQBCefgOpqVOnYurUqSaKiIiIiIiI/sii51gQEREREZF5YGJRC64aQkSm8PTxWDIG9u9ERMbBxKIWXDWEiIxLInYA9Rb7dyIi42BiQUREREREemNiUQsOlRMRWSf270RExsHEohYcKicisk7s34mIjIOJBRERERER6Y2JBRERERER6Y2JBRERERER6Y2JRS04uY+IyDqxfyciMg4mFrXg5D4iIuvE/p2IyDiYWBARERERkd6YWBARERERkd6YWBARiUAidgBEREQGxsSiFpzcR0Rkndi/ExEZBxOLWnByHxGRdWL/TkRkHEwsiIiIiIhIb0wsiIiIiIhIb0wsiIiIiIhIb0wsiIiIiIhIb0wsiIiIiIhIb0wsasHlCImIrBP7dyIi42BiUQsuR0hEZJ3YvxMRGQcTCyIiUQliB0BERGQQTCyIiIiIiEhvTCyIiIiIiEhvTCyIiIiIiEhvTCyIiIiIiEhvTCyIiIiIiEhvTCyIiIiIiEhvTCyIiIiIiEhvTCxqwTuzEhFZJ/bvRETGwcSiFrwzKxGRdWL/TkRkHEwsiIiIiIhIb0wsiIhEJAhiR0BERGQYTCyIiEQhETsAIiIig2JiQUREREREemNiQUREREREemNiQUREREREemNiQUREREREemNiQUREREREeqsXicWuXbvQtm1bBAYGYt26dWKHQ0RERERkdWzFDsDYKioqEBcXh9TUVLi6uqJLly4YOnQoGjVqJHZoRERERERWw+pHLNLT09G+fXs0a9YMzs7O6N+/P/773/+KHRYRERERkVUx+8Ti4MGDGDhwIHx8fCCRSLBjx45q+ygUCvj7+8PBwQHdu3dHenq65rnc3Fw0a9ZMs92sWTPcuHHDFKETEREREdUbZp9YlJSUICQkBAqFosbnt27diri4OMTHx+P06dMICQlBVFQUbt68aeJIiYiIiIjqL7NPLPr3748PP/wQQ4cOrfH5Tz/9FDExMRg3bhyCg4OxevVqODk5Yf369QAAHx+fKiMUN27cgI+Pj0liJyJ6NkHsAIiIiAzCoidvl5eX49SpU5gzZ46mzMbGBpGRkTh69CgAICwsDL/88gtu3LgBV1dX7N27F/Pmzav1mGVlZSgrK9NsFxUVAQCUSiWUSqWm3FYQIEHl5HDhiXJr9bjuynpQ16dhO1RiO1QyRDuo1WqLb0dLiV/b/t0SWdNnknUxT6yL6VRUVFT+R3h2jKaoiy7HtujE4vbt21CpVPDy8qpS7uXlhfPnzwMAbG1tsXTpUsjlcqjVarz99ttPXRFq0aJFWLBgQbXy1NRUODk5abb7FhfDBcCxY8dx59x9w1TIAiQnJ4sdgllgO1RiO1SqSzuo1WoAwKVLl3Bxzx5Dh2RSDx8+FDsErWjbv1sya/pMsi7miXUxPlluLvxR+WXIHi1/PxizLrr08RadWGhr0KBBGDRokFb7zpkzB3FxcZrtoqIi+Pr6Qi6XV0lIbK/+AygDevToDqHFCwaP2dwolUokJyejX79+sLOzEzsc0bAdKrEdKunTDpu/igcAtGrVCq1fftkY4ZnMnTt3xA5BK9r275bImj6TrIt5Yl1Mp+zCBVxbthz29vZ4+Rm/H0xRl8eju9qw6MSicePGkEqlKCgoqFJeUFAAb2/vOh3T3t4e9vb2UCgUUCgUUKlUAAA7O7uqPzCJBEDliAjM8E1pLNXaoZ5iO1RiO1SqUztUdiGwsbGx+Da0lPi17t8tGOtinlgX82SudVHZ/v7nuUT7/tWYddHluGY/eftpZDIZunTpgpSUFE2ZWq1GSkoKevbsqdexY2NjkZmZiRMnTugbJhERmRH270RExmH2IxbFxcXIzs7WbOfk5CAjIwMeHh7w8/NDXFwcoqOj0bVrV4SFhSEhIQElJSUYN26ciFETEREREdUvZp9YnDx5EnK5XLP9+PrY6OhoJCUlYcSIEbh16xbmz5+P/Px8hIaGYt++fdUmdOvqj0PlRERkHdi/ExEZh9knFhERERCEp6/zPnXqVEydOtWg542NjUVsbCyKiorg6upq0GMTEZF42L8TERmHRc+xICIiIiIi88DEohYKhQLBwcHo1q2b2KEQEZEBsX8nIjIOJha14KohRGQKT7/Qk4yB/TsRkXEwsSAiEtMz5pARERFZCiYWRERERESkNyYWteA1uERE1on9OxGZNYlE7AjqjIlFLXgNLhGRdWL/TkRkHEwsiIiIiIhIb0wsiIiIiIhIb0wsasFrcImIrBP7dyIi42BiUQteg0tEZJ3YvxMRGQcTCyIiIiIi0hsTCyIiIiIi0hsTCyIiUfHO20REZB2YWBARiUACy70BEhERUU2YWNSCq4YQEVkn9u9ERMbBxKIWXDWEiMg6sX8nIjIOJhZERERERKQ3JhZERERERKQ3JhZERERERKQ3JhZERERERKQ3JhZERERERKQ3Jha14HKERETWif07EZFxMLGoBZcjJCKyTuzfiYiMg4kFERERERHpjYkFERERERHpjYkFERERERHpjYkFERERERHpjYkFERERERHpjYkFERERERHpjYkFERERERHpjYlFLXgDJSIi68T+nYjIOJhY1II3UCIisk7s34mIjIOJBRERERER6Y2JBRERERER6Y2JBRGRiASxAyAiIjIQJhZERERERKQ3JhZERERERKQ3JhZERERERKQ3JhZERERERKQ3JhZERERERKQ3JhZERERERKS3epFYDB06FO7u7hg+fLjYoRARERERPZsFrkdeLxKL6dOnY+PGjWKHQUT0/yRiB0BERGRY9SKxiIiIgIuLi9hhEBERERFZLdETi4MHD2LgwIHw8fGBRCLBjh07qu2jUCjg7+8PBwcHdO/eHenp6aYPlIiIiIiIaiV6YlFSUoKQkBAoFIoan9+6dSvi4uIQHx+P06dPIyQkBFFRUbh586Zmn9DQUHTo0KHaIzc311TVICIiIiKq12zFDqB///7o379/rc9/+umniImJwbhx4wAAq1evxu7du7F+/Xq88847AICMjAyDxVNWVoaysjLNdlFREQBAqVRCqVRqym0FARIAFRUVEJ4ot1aP666sB3V9GrZDJbZDJX3a4fGcPJVKZfHtaCnxa9u/WyJr+kyyLuaJdTGdCmVF5X8E4ZkxmqIuuhxb9MTiacrLy3Hq1CnMmTNHU2ZjY4PIyEgcPXrUKOdctGgRFixYUK08NTUVTk5Omu2+xcVwAXDs2HHcOXffKLGYo+TkZLFDMAtsh0psh0p1aQe1Sg0AyPntN1zas8fQIZnUw4cPxQ5BK9r275bMmj6TrIt5Yl2MT5aXB39UfhmyR8vfD8asiy59vFknFrdv34ZKpYKXl1eVci8vL5w/f17r40RGRuKnn35CSUkJmjdvjm+//RY9e/ascd85c+YgLi5Os11UVARfX1/I5XI0atRIU2579R9AGdCjR3cILV7QsWaWR6lUIjk5Gf369YOdnZ3Y4YiG7VCJ7VBJn3b416b3AQABLVui7csvGyE607lz547YIWhF2/7dElnTZ5J1MU+si+mUXbiIawnLYG9vj5ef8fvBFHV5PLqrDbNOLAzlwIEDWu9rb28Pe3v7auV2dnZVf2CSyrUibW1tATN8UxpLtXaop9gOldgOlerWDpV9iNTGxuLb0FLi17p/t2Csi3liXcyTudZFZff7n+cSidbxGbMuuhxX9MnbT9O4cWNIpVIUFBRUKS8oKIC3t7dRz61QKBAcHIxu3boZ9TxERGRa7N+JiIzDrBMLmUyGLl26ICUlRVOmVquRkpJS66VMhhIbG4vMzEycOHHCqOchIiLTYv9ORGQcol8KVVxcjOzsbM12Tk4OMjIy4OHhAT8/P8TFxSE6Ohpdu3ZFWFgYEhISUFJSolklylgUCgUUCgVUKpVRz0NERKbF/p2IyDhETyxOnjwJuVyu2X48sS46OhpJSUkYMWIEbt26hfnz5yM/Px+hoaHYt29ftQndhhYbG4vY2FgUFRXB1dXVqOciIiLTYf9ORGQcoicWEREREAThqftMnToVU6dONVFERERERESkK7OeY0FERERERJaBiUUtuGoIEZF1Yv9ORGQcTCxqwVVDiMgUnn4hKBkD+3ciIuNgYkFERERERHpjYlELDpUTEVkn9u9ERMbBxKIWHConIrJO7N+JiIyDiQUREREREelN9PtYWAO1Wo3y8nKxwzAqpVIJW1tbPHr0qF7frVafdpDJZLCxYS5PRERE1omJhZ7KVUDOr79CrVaLHYpRCYIAb29vXLt2DRKJROxwRKNPO9jY2CAgIAAymcxI0RERERGJh4lFLRQKBRQKxVO/lRYgQV6pDFIHKXx9fa3622i1Wo3i4mI4OztbdT2fpa7toFarkZubi7y8PPj5+dXr5IxIbNr070REpDsmFrWIjY1FbGwsioqK4OrqWuM+FTJXPFTbwcfTE05OTiaO0LQeX+7l4OBQ7xOLuraDp6cncnNzUVFRATs7OyNFSETPok3/TkREuqu/fyEagMrOGZCAl7aQVh6/T/gtKREREVkjJhb6+P1yFl7WQtrg+4SIiIisGRMLIiIRCRDEDoGIiMggmFjUgndmJSKyTuzfiYiMg4lFLaz1zqyrV6+Gi4sLKioqNGXFxcWws7NDRERElX3T0tIgkUhw6dKlOp/v8uXLkEgkyMjIqPMxiIgMyVr7dyIisTGxqGfkcjmKi4tx8uRJTdmhQ4fg7e2N48eP49GjR5ry1NRU+Pn5oVWrVmKESkREREQWhIlFPdO2bVs0bdoUaWlpmrK0tDQMHjwYAQEBOHbsWJVyuVyOsrIyTJ8+HYGBgXByckKvXr2qfNNXWFiI0aNHw9PTE46OjggMDERiYiIAICAgAADQuXNnSCSSKqMi69atQ7t27eDg4ICgoCCsXLlS89zjkY5t27ZBLpfDyckJISEhOHr0qJFahoiIiIj0wcTCgARBwMPyClEegqD9BFC5XI7U1FTNdmpqKiIiIhAeHq4pLy0txfHjxyGXy/H2229j27ZtWLlyJU6ePInWrVsjKioKd+/eBQDMmzcPmZmZ2Lt3L7KysrBq1So0btwYAJCeng4AOHDgAPLy8rBt2zYAwKZNmzB//nwsXLgQWVlZ+OijjzBv3jxs2LChSqzvvfceZs6ciYyMDLRp0wYjR46schkXEREREZkH3iDPgEqVKgTP3y/KuTM/iIKTTLsfp1wux4wZM1BRUYHS0lKcOXMG4eHhUCqVWL16NQDg6NGjKCsrQ0REBGJiYrB+/Xr069cPDRs2xNq1a5GcnIwvv/wSs2bNwtWrV9G5c2d07doVAODv7685l6enJwCgUaNG8Pb21pTHx8dj6dKlGDZsGIDKkY3MzEysWbMG0dHRmv1mzpyJAQMGAAAWLFiA9u3bIzs7G0FBQXVvLCIiIiIyOCYW9VBERARKSkpw4sQJFBYWok2bNvD09ER4eDjGjRuHR48eIS0tDS1btsT9+/ehVCrxwgsvaF5vZ2eHsLAwZGVlAQAmT56MV155BadPn8ZLL72EIUOG4Pnnn6/1/CUlJbh06RImTJiAmJgYTXlFRUW1u+B26tRJ8/+mTZsCAG7evMnEgoiIiMjMMLGohUKhgEKh0OkuyY52UmR+EGXEqJ5+bm21bt0azZs3R2pqKgoLCxEeHg4A8PHxga+vL44cOYLU1FT07dtXq+P1798fV65cwZ49e5CcnIwXX3wRsbGxWLJkSY37FxcXAwDWrl2L7t27V3lOKq1aDzs7O83/H99gTq1Wa1dRIqIa1KV/JyKiZ+Mci1rUZTlCiUQCJ5mtKA9d7+osl8uRlpaGtLS0KhOq+/Tpg7179yI9PR1yuRytWrWCTCbD4cOHNfsolUqcOHECwcHBmjJPT09ER0fj66+/RkJCAr744gsAgEwmA4Aqv8C9vLzg4+OD3377Da1bt67yeDzZm4jIWLjcLBGRcXDEop6Sy+WIjY2FUqnUjFgAQHh4OKZOnYry8nLI5XI0aNAAkydPxuzZszWrNy1ZsgQPHz7EhAkTAADz589Hly5d0L59e5SVlWHXrl1o164dAKBJkyZwdHTEvn370Lx5czg4OMDV1RULFizAm2++CVdXV/zpT39CWVkZTp48icLCQsTFxYnSJkRERERUdxyxqKfkcjlKS0vRunVreHl5acrDw8Px4MEDzbK0APDPf/4Tw4YNw6RJk9C1a1dkZ2dj//79cHd3B1A5KjFnzhx06tQJffr0gVQqxZYtWwAAtra2WL58OdasWQMfHx8MHjwYADBx4kSsW7cOiYmJ6NixI8LDw5GUlMQRCyIiIiILxRGLesrf37/GJWpbtGhRrdzBwQHLli3DP/7xDzRs2BA2NlXz0blz52Lu3Lm1nmvixImYOHFitfJRo0Zh1KhRWsfn5uam07K6ROZMc/Ei39NERGQlOGJBRERERGQ2dJs3a06YWBARERERkd6YWBARERERkd6YWBARERERkd6YWBARERERkd6YWNRCoVAgODgY3bp1EzsUIiIyIPbvRETGwcSiFrwzKxGRdWL/TkRkHEwsiIiIiIhIb0wsiIiIiIhIb0wsiAzI398fCQkJYodBREREZHJMLOqZ1atXw8XFBRUVFZqy4uJi2NnZISIiosq+aWlpkEgkuHTpkl7nvHz5MiQSCTIyMvQ6jrZ++uknDBo0CE2aNIGDgwP8/f0xYsQI3Lx50yTnJ9KO5d5ZlYiIqCZMLOrMMv8okMvlKC4uxsmTJzVlhw4dgre3N44fP45Hjx5pylNTU+Hn54dWrVqJEWqd3Lp1Cy+++CI8PDywf/9+ZGVlITExET4+PigpKRE7PCIiIiKrxcSinmnbti2aNm2KtLQ0TVlaWhoGDx6MgIAAHDt2rEq5XC4HAJSVlWH27Nnw9vaGg4MDevXqVWVFlcLCQowePRqenp5wdHREYGAgEhMTAQABAQEAgM6dO0MikVQZGVm3bh3atWsHBwcHBAUFYeXKlZrnHo90bNu2DXK5HE5OTggJCcHRo0drrd/hw4dx//59rFu3Dp07d0ZAQADkcjk+++wzTRwqlQoTJkxAQEAAHB0d0bZtWyxbtqzKccaOHYshQ4ZgyZIlaNq0KRo1aoTY2FgolUrNPjdv3sTAgQPh6OiIgIAAbNq0SdsfAxEREZHVsRU7AKsiCIDyoTjntnMCJNqNosjlcqSmpuKdd94BUDky8fbbb0OlUiE1NRUREREoLS3F8ePHMX78eADA7Nmz8f333yMxMREBAQFYvHgxoqKikJ2dDQ8PD8ybNw+ZmZnYu3cvGjdujOzsbJSWlgIA0tPTERYWhgMHDqB9+/aQyWQAgE2bNmH+/PlYsWIFOnfujDNnziAmJgYNGjRAdHS0Jt733nsPS5YsQWBgIN577z2MHDkS2dnZsLWt/vb19vZGRUUFtm/fjuHDh0NSQ5uo1Wo0b94c3377LRo1aoQjR47gjTfeQNOmTfHaa69p9ktNTUXTpk2RmpqK7OxsjBgxAp06dcKIESMAVCYfubm5SE1NhZ2dHd58801ebkVERET1FhMLQ1I+BD7yEefc7+YCsgZa7SqXyzFjxgxUVFSgtLQUZ86cQXh4OJRKJVavXg0AOHr0KMrKyiCXy1FSUoLVq1dDoVCgf//+sLGxwdq1a5GcnIwvv/wSs2bNwtWrV9G5c2d07doVQOUk5sc8PT0BAI0aNYK3t7emPD4+HkuXLsWwYcMAVI5sZGZmYs2aNVUSi5kzZ2LAgAEAgAULFqB9+/bIzs5GUFBQtbr16NED7777LkaNGoVJkyYhLCwMffv2xZgxY+Dl5QUAsLOzw4IFCzSvCQgIwNGjR/HNN99USSzc3d2xYsUKSKVSBAUFYcCAAfjf//6HESNG4OLFi9i7dy/S09M1N9n68ssv0a5dO61+BkRERETWxuovhbp27RoiIiIQHByMTp064dtvvxU7JNFFRESgpKQEJ06cwKFDh9CmTRt4enoiPDxcM88iLS0NLVu2hJ+fHy5dugSlUonu3btrjmFnZ4ewsDBkZWUBACZPnowtW7YgNDQUb7/9No4cOfLUGEpKSnDp0iVMmDABzs7OmseHH35YbbJ4p06dNP9v2rQpADx1ZGDhwoXIz8/H6tWr0b59e6xevRpBQUE4e/asZh+FQoEuXbrA09MTzs7O+OKLL3D16tUqx2nfvj2kUmmVc9+6dQsAkJWVBVtbW3Tp0kXzfFBQENzc3J5abyIiIiJrZfUjFra2tkhISEBoaCjy8/PRpUsXvPzyy2jQQLtv93Vi51Q5ciAGOyetd23dujWaN2+O1NRUFBYWIjw8HADg4+MDX19fHDlyBKmpqejbt6/Wx+zfvz+uXLmCPXv2IDk5GS+++CJiY2OxZMmSGvcvLi4GAKxdu7ZKwgKgyh/zQGUS89jjS5vUavVT42nUqBFeffVVvPrqq/joo4/QuXNnLFmyBBs2bMCWLVswc+ZMLF26FD179oSLiws++eQTHD9+vNbzPj73s85LREREVF9ZfWLRtGlTzbfc3t7eaNy4Me7evWucxEIi0fpyJLHJ5XKkpaWhsLAQs2bN0pT36dNHc4nP5MmTAQCtWrWCTCbD8ePH0aFDBwCAUqnEiRMnMGPGDM1rPT09ER0djejoaPTu3RuzZs3CkiVLNHMqVCqVZl8vLy/4+Pjgt99+w+jRo41aV5lMhlatWmlWhTp8+DCef/55TJkyRbOPrkvqBgUFoaKiAqdOndJcCnXhwgXcu3fPYHETERERWRLRL4U6ePAgBg4cCB8fH0gkEuzYsaPaPgqFAv7+/nBwcED37t2Rnp5ep3OdOnUKKpUKvr6+ekZt+eRyOX788UdkZGRoRiwAIDw8HGvWrEF5eblmRagGDRpg0qRJiI+Px759+5CZmYmYmBg8fPgQEyZMAADMnz8fO3fuRHZ2Ns6dO4ddu3Zp5hs0adIEjo6O2LdvHwoKCnD//n0AlfMlFi1ahOXLl+PixYs4e/YsEhMT8emnn9a5Xrt27cJf//pX7Nq1CxcvXsSFCxewZMkS7NmzB4MHDwYABAYG4uTJk9i/fz8uXryIefPmVVnhShtt27bFn/70J/ztb3/D8ePHcerUKUycOBGOjo51jp2IiIjIkomeWJSUlCAkJAQKhaLG57du3Yq4uDjEx8fj9OnTCAkJQVRUVJVr7ENDQ9GhQ4dqj9zc/78s6e7duxgzZgy++OILo9fJEsjlcpSWlqJ169aaSc1AZWLx4MEDzbK0jy1atAgDBw5EdHQ0nnvuOWRnZ2P//v1wd3cHUDkqMGfOHHTq1Al9+vSBVCrFli1bAFRejrZ8+XKsWbMGPj4+mj/wJ06ciHXr1iExMREdO3ZEeHg4kpKSNMvC1kVwcDCcnJzw1ltvITQ0FD169MA333yDdevW4fXXXwcA/O1vf8OwYcMwYsQIdO/eHXfu3KkyeqGtx/fHCA8Px7Bhw/DGG2+gSZMmdY6d6hnLvBUOERFR7QQzAkDYvn17lbKwsDAhNjZWs61SqQQfHx9h0aJFWh/30aNHQu/evYWNGzfqHNP9+/cFAMLt27erPvF5N6H0k/ZC5s+nhdLSUp2Pa2lUKpVQWFgoqFQqsUMRlT7tUFpaKmRmZlrF+6W8vFzYsWOHUF5eLnYootKnHTa+9pyQ2TZI+GWF9n2Zubp9+7YAQLh//77Yoeik1v7dAlnTZ5J1MU+si+mUnr8gZLYNEi680OuZ+5qiLo/7Sm36eLOeY1FeXo5Tp05hzpw5mjIbGxtERkY+9SZpTxIEAWPHjkXfvn0131g/TVlZGcrKyjTbRUVFACrnFDx5czRbCL8fv3IisbVP6hUEQfOvtdf1afRpB7VaDUEQoFQqq01QtzSPPwtPfibqI33a4fe3ElQqlcW3o6XEr23/boms6TPJupgn1sV0Kip+j+v3vxmexhR10eXYZp1Y3L59GyqVqsqlOkDlxN/z589rdYzDhw9j69at6NSpk2b+xldffYWOHTvWuP+iRYuq3OPgsdTUVDg5/f/KS32Li2FnK0VZWRmKi4tRXl6uZa0s24MHD8QOwSzUpR3Ky8tRWlqKgwcPoqKiwghRmV5ycrLYIZiFurTD48UMLl++jJw9ewwdkkk9fCjSjUF1pG3/bsms6TPJupgn1sX4ZHn58EfllyF7tPz9YMy66NLHm3ViYQi9evXS6ZvlOXPmIC4uTrNdVFQEX19fyOVyNGrUSFNue+1DlD0qhb29PZydneHg4GDQuM2NIAh48OABXFxcarybdX2hTzs8evQIjo6O6NOnj8W/X5RKJZKTk9GvX79qy/LWJ/q0w5bNHwCovJlku5dfNkZ4JnPnzh2xQ9CKtv27JbKmzyTrYp5YF9Mpu3gR1xISYG9vj5ef8fvBFHV5PLqrDbNOLBo3bgypVIqCgoIq5QUFBVXu4GxI9vb2sLe3h0KhgEKh0HyraGdn94cfWOUflRJJ5eVZNjaiz4M3qsfJmUQisfq6Po0+7WBjYwOJRFLDe8lyWVNd9KFPO9jY2Fh8G1pK/Nr375aLdTFPrIt5Mte6qGx/j+n3vxm0Ycy66HJcs/4LUSaToUuXLkhJSdGUqdVqpKSkoGfPnkY9d2xsLDIzM3VehpSIiMwb+3ciIuMQfcSiuLgY2dnZmu2cnBxkZGTAw8MDfn5+iIuLQ3R0NLp27YqwsDAkJCSgpKQE48aNEzFqIiIiIiJ6kuiJxcmTJzU3YgOguf41OjoaSUlJGDFiBG7duoX58+cjPz8foaGh2LdvX7UJ3Yb2x6FyIiKyDuzfiYiMQ/TEIiIiQrOEZ22mTp2KqVOnmiiiSrGxsYiNjUVRURFcXV1Nem4iIjIe9u9ERMZh1nMsiIiIiIjIMjCxqIVCoUBwcDC6desmdihkBGlpaZBIJLh3757YoRCRibF/JyIyDiYWtbDWVUNWr14NFxeXKjdoKy4uhp2dHSIiIqrs+/iP70uXLul1zsuXL0MikSAjI0Ov4+jizJkzePXVV+Hl5QUHBwcEBgYiJiYGFy9eNFkMRGSerLV/JyISGxOLekYul6O4uBgnT57UlB06dAje3t44fvw4Hj16pClPTU2Fn58fWrVqJUaodbZr1y706NEDZWVl2LRpE7KysvD111/D1dUV8+bNEzs8IiIiIqvExKKuLPTu023btkXTpk2RlpamKUtLS8PgwYMREBCAY8eOVSl/vGJXWVkZZs+eDW9vbzg4OKBXr15Vvu0rLCzE6NGj4enpCUdHRwQGBiIxMREAEBAQAADo3LkzJBJJlZGRdevWoV27dnBwcEBQUBBWrlypee7xSMe2bdsgl8vh5OSEkJAQHD16tNb6PXz4EOPGjcPLL7+M7777DpGRkQgICED37t2xZMkSrFmzpsbX3blzByNHjkSzZs3g5OSEjh074l//+pfm+Y0bN6JRo0YoKyur8rohQ4bg9ddfrzUeotpZZh9CRERUGyYWtajLNbiCIOCh8qEoj2etrPUkuVyO1NRUzXZqaioiIiIQHh6uKS8tLcXx48c1icXs2bPx/fffIzExEadPn0br1q0RFRWFu3fvAgDmzZuHzMxM7N27F1lZWVi1ahUaN24MAEhPTwcAHDhwAHl5edi2bRsAYNOmTZg/fz4WLlyIrKwsfPTRR5g3bx42bNhQJd733nsPM2fOREZGBtq0aYORI0dWuZTrSfv378ft27fx9ttv1/i8m5tbjeWPHj1Cly5dsHv3bvzyyy9444038Prrr2tif/XVV6FSqfDdd99pXnPz5k3s3r0b48ePr72xicjscI4FEZFxiL7crLmqy3KEpRWl6L65u5Ejq9nxUcfhZOek1b5yuRwzZsxARUUFSktLcebMGYSHh0OpVGL16tUAgKNHj6KsrAxyuRwlJSVYvXo1FAoF+vfvDxsbG6xduxbJycn48ssvMWvWLFy9ehWdO3dG165dAQD+/v6a83l6egIAGjVqBG9vb015fHw8li5dimHDhgGoHNnIzMzEmjVrEB0drdlv5syZGDBgAABgwYIFaN++PbKzsxEUFFStbr/++isA1Pjc0zRr1gwzZ87UbE+bNg379+/HN998g7CwMDg6OmLUqFFISkpCVFQUAODrr7+Gn59ftbkpRGTeuNwsEZFxMLGohyIiIlBSUoITJ06gsLAQbdq0gaenJ8LDwzFu3Dg8evQIaWlpaNmyJfz8/PDzzz9DqVSie/f/T5rs7OwQFhaGrKwsAMDkyZPxyiuv4PTp03jppZcwZMgQPP/887XGUFJSgkuXLmHChAmIiYnRlFdUVFT7Rd+pUyfN/5s2bQqgcrSgpuRBl5GbJ6lUKnz00Uf45ptvcOPGDZSXl6OsrAxOTv+frMXExKBbt27Izc1Fw4YNkZSUhLFjx0JioZfFERERERkSEwsDcrR1xPFRx0U7t7Zat26N5s2bIzU1FYWFhQgPDwcA+Pj4wNfXF0eOHEFqair69u2r9TH79++PK1euYM+ePUhOTsaLL76I2NhYLFmypMb9i4uLAQBr166tkrAAgFQqrbJtZ2en+f/jP+LVanWNx23Tpg0A4Pz58+jZs6fW8X/yySdYtmwZEhIS0LFjRzRo0AAzZsxAeXm5Zp/OnTsjJCQEW7ZswcCBA3Hu3Dns3r1b63MQERERWTMmFrVQKBRQKBRQqVRav0YikWh9OZLY5HI50tLSUFhYiFmzZmnK+/Tpg7179yI9PR2TJ08GALRq1QoymQzHjx9Hhw4dAABKpRInTpzAjBkzNK/19PREdHQ0oqOj0bt3b8yaNQtLliyBTCYDgCpt6eXlBR8fH/z2228YPXq0wer10ksvoXHjxli8eDG2b99e7fl79+7VOM/i8OHDGDx4MP76178CqExcLl68iODg4Cr7jR8/HgkJCbhz5w4iIyPh6+trsNiJyDTq0r8TEdGzcfJ2Lax9nXO5XI4ff/wRGRkZmhELAAgPD8eaNWtQXl6umbjdoEEDTJo0CfHx8di3bx8yMzMRExODhw8fYsKECQCA+fPnY+fOncjOzsa5c+ewa9cutGvXDgDQpEkTODo6Yt++fSgoKMD9+/cBVM6XWLRoEZYvX46LFy/i7NmzSExMxKefflrnejVo0ADr1q3D7t27MWjQIBw4cACXL1/GyZMn8fbbb2PSpEk1vi4wMBDJyck4cuQIsrKy8Le//Q0FBQXV9hs1ahRyc3Oxbt06TtomslDW3r8TEYmFiUU9JZfLUVpaitatW8PLy0tTHh4ejgcPHmiWpX1s0aJFGDhwIKKjo/Hcc88hOzsb+/fvh7u7OwBAJpNhzpw56NSpE/r06QOpVIotW7YAAGxtbbF8+XKsWbMGPj4+GDx4MABg4sSJWLduHRITE9GxY0eEh4cjKSlJszxtXQ0ePBhHjhyBnZ0dRo0ahaCgIIwcORL379/Hhx9+WONr5s6di+eeew5RUVGIiIiAt7c3hgwZUm0/V1dXDBw4EM7OzjU+T0RERFRf8VKoesrf37/Gic4tWrSosdzBwQEff/wxVq1aBRub6vno3LlzMXfu3FrPN3HiREycOLFa+ahRozBq1CitY3Rzc9NqgnbXrl3xn//8p9bnIyIiqhzHw8MDO3bseOZxASAvLw+jRo2Cvb29VvsTERER1QdMLIi0VFhYiP/973/48ccfNcvyEhEREVElJhZEWurcuTMKCwvx/vvvo23btmKHQ1ZCQN2WSCYiIjI3TCxqwVVD6I8uX74MtVqNoqIisUMhIj2wfyciMg5O3q4FVw0hIrJO7N+JiIyDiQUREREREemNiQUREREREemNiQUREREREemNiQUREREREemNiQUREREREemNiUUtFAoFgoOD0a1bN7FDsUhJSUlwc3MTOwwiomrYvxMRGQcTi1rUh+UI8/PzMW3aNLRs2RL29vbw9fXFwIEDkZKSInZoRERGUx/6dyIiMfAGefXU5cuX8cILL8DNzQ2ffPIJOnbsCKVSif379yM2Nhbnz58XO0QiIiIisiAcsainpkyZAolEgvT0dLzyyito06YN2rdvj7i4OBw7dgwAcPXqVQwePBjOzs5wc3PDuHHjUFBQoDnGTz/9BLlcDhcXFzRs2BBdunTByZMnq5xnx44dCAwMhIODA6KionDt2jUAlYmNjY1Ntf0TEhLQokULqNVqI7cAERERERkSRyzqTFKtRBAECKWlIsQCSBwdIZFUj6kmd+/exb59+7Bw4UI0aNCg2vNubm5Qq9WapOKHH35AeXk5pkyZgpEjRyItLQ0AMHr0aHTu3BmrVq2CVCpFRkYG7OzsNMd5+PAhFi5ciI0bN0Imk2HKlCn4y1/+gsOHD8Pf3x+RkZFITExE165dNa9JTEzE2LFjYWPDnJesm3afViIiIsvBxMKAhNJSXHiuiyjnbnv6FCROTlrtm52dDUEQEBQUVOs+KSkpOHv2LHJycuDr6wu1Wo1Vq1ahZ8+eOHHiBLp164arV69i1qxZmuMEBgZWOYZSqcSKFSvQvXt3AMCGDRvQrl07pKenIywsDBMnTsSkSZPw6aefwt7eHqdPn8bZs2exc+fOOrYCEREREYmFXwvXQ4IgPHOfrKws+Pr6wtfXV1MWFBQENzc3ZGVlAQDi4uIwceJEREZG4p///CcuXbpU5Ri2trZVVl354+uHDBkCqVSK7du3A6hcSUoul8Pf31/fKhIRERGRiXHEwoAkjo5oe/qUaOfWVmBgICQSid4TtN9//32MGjUKu3fvxt69exEfH48tW7Zg6NChWr1eJpNhzJgxSExMxLBhw7B582YsW7ZMr5iIiIiISBwcsTAgiUQCGycnUR7azq8AAA8PD0RFRUGhUKCkpKTa8/fu3UO7du1w7do1zWRrADh//jzu3buH4OBgTVmbNm3w97//Hf/9738xbNgwJCYmap6rqKioMjn7woULmmM/NnHiRBw4cAArV65ERUUFhg0bpnU9iIiIiMh8MLGohbXfQEmhUEClUiEsLAz/+c9/8OuvvyIrKwvLly9Hz549ERkZiY4dO2L06NE4ffo00tPTMXnyZISHh6Nr164oLS3F1KlTkZaWhitXruDw4cM4ceJElaTBzs4O06ZNw/Hjx3Hq1CmMHTsWPXr0QFhYmGafdu3aoUePHpg9ezZGjhwJRx1GXoiI6sLa+3ciIrEwsaiFtd9AqWXLljh9+jTkcjneeustdOjQAf369UNKSgpWrVoFiUSCnTt3wt3dHX369MFLL70Ef39//Otf/wIASKVS3LlzB2PGjEGbNm3w2muvoX///liwYIHmHE5OTpg9ezZGjRqFF154Ac7Ozti6dWu1WCZMmIDy8nKMHz/eZPUnovrL2vt3IiKxcI5FPda0aVOsWLECK1asqPF5Pz8/zQpNarUaRUVFaNiwIYDK+RGPk4yajB07FmPHjgWAZ17edOPGDXTs2JHfHhIRERFZMI5YkGiKi4vxyy+/YMWKFZg2bZrY4RARERGRHphYkGimTp2KLl26ICIigpdBEREREVk4XgpFoklKSkJSUpLYYRARERGRAXDEgohIDNqvEE1ERGQRmFjo4/c7WGtzJ2sivk+IiIjImjGx0INUWQwIAsrLy8UOhSzA4/eJVCoVORIiIiIiw+McCz3Ylt+Hk40St27dgp2dHWxsrDdPU6vVKC8vx6NHj6y6ns9S13ZQq9W4desWnJycYGvLjx0RERFZH/6FowcJBDR1LEdOhQpXrlwROxyjEgQBpaWlcHR0hERSfy8O16cdbGxs4OfnV6/bj4iIiKyX1ScW9+7dQ2RkJCoqKlBRUYHp06cjJibGYMeX2QgIDAy0+suhlEolDh48iD59+sDOzk7scESjTzvIZLJ6PdpDRERE1s3qEwsXFxccPHgQTk5OKCkpQYcOHTBs2DA0atTIYOewsbGBg4ODwY5njqRSKSoqKuDg4FCvEwu2AxEREVHNrP7rU6lUCicnJwBAWVkZBEHg6jxERERERAYmemJx8OBBDBw4ED4+PpBIJNixY0e1fRQKBfz9/eHg4IDu3bsjPT1dp3Pcu3cPISEhaN68OWbNmoXGjRsbKHoiIiIiIgLMILEoKSlBSEgIFApFjc9v3boVcXFxiI+Px+nTpxESEoKoqCjcvHlTs09oaCg6dOhQ7ZGbmwsAcHNzw08//YScnBxs3rwZBQUFJqkbEREREVF9Ifoci/79+6N///61Pv/pp58iJiYG48aNAwCsXr0au3fvxvr16/HOO+8AADIyMrQ6l5eXF0JCQnDo0CEMHz68xn3KyspQVlam2b5//z4A4O7du1X2sy2tgKRMQMW9exDu3NHq/JZMqVTi4cOHuHPnTr2eW8B2qMR2qKRPO5SWq1CsUqGspBh3LLwPedw/mvtlptr275bImj6TrIt5Yl1Mp+xeIYpVKkjLy5/5+8EUdXnw4AEALft4wYwAELZv367ZLisrE6RSaZUyQRCEMWPGCIMGDdLqmPn5+UJRUZEgCIJw7949oX379sLPP/9c6/7x8fECAD744IMPPnR8XLp0Sed+35TYv/PBBx981P1x7dq1Z/azoo9YPM3t27ehUqng5eVVpdzLywvnz5/X6hhXrlzBG2+8oZm0PW3aNHTs2LHW/efMmYO4uDjN9r1799CiRQtcvXoVrq6udauIFSgqKoKvry+uXbuGhg0bih2OaNgOldgOldgOle7fvw8/Pz94eHiIHcpTWXP/bk3vRdbFPLEu5skUdREEAQ8ePICPj88z9zXrxMIQwsLCtL5UCgDs7e1hb29frdzV1dXi33yG0LBhQ7YD2A6PsR0qsR0qmft9WupD/25N70XWxTyxLubJ2HXR9ssXs/4t0LhxY0il0mqTrQsKCuDt7S1SVERERERE9EdmnVjIZDJ06dIFKSkpmjK1Wo2UlBT07NlTxMiIiIiIiOhJol8KVVxcjOzsbM12Tk4OMjIy4OHhAT8/P8TFxSE6Ohpdu3ZFWFgYEhISUFJSolklytjs7e0RHx9f4/B5fcJ2qMR2qMR2qMR2qGSp7WCpcdeEdTFPrIt5Yl2MRyII4q4PmJaWBrlcXq08OjoaSUlJAIAVK1bgk08+QX5+PkJDQ7F8+XJ0797dxJESEREREVFtRE8siIiIiIjI8pn1HAsiIiIiIrIMTCyIiIiIiEhvTCyIiIiIiEhvTCwAKBQK+Pv7w8HBAd27d0d6evpT9//2228RFBQEBwcHdOzYEXv27DFRpMalSzucO3cOr7zyCvz9/SGRSJCQkGC6QI1Ml3ZYu3YtevfuDXd3d7i7uyMyMvKZ7x9LoUs7bNu2DV27doWbmxsaNGiA0NBQfPXVVyaM1nh07R8e27JlCyQSCYYMGWLcAE1El3ZISkqCRCKp8nBwcDBhtIYxdOhQuLu7Y/jw4dWe27VrF9q2bYvAwECsW7dOhOjq7rPPPkP79u0RHByMN998E5Y81TInJwdyuRzBwcHo2LEjSkpKxA5JLw8fPkSLFi0wc+ZMsUOps2vXriEiIgLBwcHo1KkTvv32W7FD0oklf7afJNrPQajntmzZIshkMmH9+vXCuXPnhJiYGMHNzU0oKCiocf/Dhw8LUqlUWLx4sZCZmSnMnTtXsLOzE86ePWviyA1L13ZIT08XZs6cKfzrX/8SvL29hc8++8y0ARuJru0watQoQaFQCGfOnBGysrKEsWPHCq6ursL169dNHLlh6doOqampwrZt24TMzEwhOztbSEhIEKRSqbBv3z4TR25YurbDYzk5OUKzZs2E3r17C4MHDzZNsEakazskJiYKDRs2FPLy8jSP/Px8E0etv9TUVOG7774TXnnllSrlSqVSCAwMFK5fvy48ePBAaNOmjXD79m2RotTNzZs3hZYtWwqlpaVCRUWF8PzzzwtHjhwRO6w669Onj3Dw4EFBEAThzp07glKpFDki/bz77rvCa6+9Jrz11ltih1Jnubm5wpkzZwRBEIS8vDzBx8dHKC4uFjcoLVnyZ/uPxPo51PvEIiwsTIiNjdVsq1QqwcfHR1i0aFGN+7/22mvCgAEDqpR1795d+Nvf/mbUOI1N13Z4UosWLawmsdCnHQRBECoqKgQXFxdhw4YNxgrRJPRtB0EQhM6dOwtz5841RngmU5d2ePzH2rp164To6GirSCx0bYfExETB1dXVRNEZV2pqarXE4vDhw8KQIUM029OnTxc2b95s6tDq5ObNm4Kfn59QWFgolJaWCt26dROys7PFDqtOfvnlF+HFF18UOwyDuXjxojBs2DAhMTHRohOLP+rUqZNw9epVscPQiiV/tp/FVD+Hen0pVHl5OU6dOoXIyEhNmY2NDSIjI3H06NEaX3P06NEq+wNAVFRUrftbgrq0gzUyRDs8fPgQSqUSHh4exgrT6PRtB0EQkJKSggsXLqBPnz7GDNWo6toOH3zwAZo0aYIJEyaYIkyjq2s7FBcXo0WLFvD19cXgwYNx7tw5g8Z18OBBDBw4ED4+PpBIJNixY0e1fep6Gduz5ObmolmzZprtZs2a4caNGwY5trHr5enpiZkzZ8LPzw8+Pj6IjIxEq1atDBL7Hxm7Lr/++iucnZ0xcOBAPPfcc/joo48MGH1Vpni/zZw5E4sWLTJQxLUz5Wfn1KlTUKlU8PX11TNq7ehbN2N+tnVlyJ+TKX8O9TqxuH37NlQqFby8vKqUe3l5IT8/v8bX5Ofn67S/JahLO1gjQ7TD7NmzNb+sLVVd2+H+/ftwdnaGTCbDgAED8Pnnn6Nfv37GDtdo6tIOP/74I7788kusXbvWFCGaRF3aoW3btli/fj127tyJr7/+Gmq1Gs8//zyuX79usLhKSkoQEhIChUJR4/Nbt25FXFwc4uPjcfr0aYSEhCAqKgo3b97U7BMaGooOHTpUe+Tm5hosTl0Zu16FhYXYtWsXLl++jBs3buDIkSM4ePCgRdaloqIChw4dwsqVK3H06FEkJycjOTnZIuuyc+dOtGnTBm3atDFK/Kasy2N3797FmDFj8MUXXxi9To8Zom7mwlB1MfnPwehjImbsxo0bAoBq15fOmjVLCAsLq/E1dnZ21YbFFAqF0KRJE6PFaWx1aYcnWculUPq2w6JFiwR3d3fhp59+MlaIJlHXdlCpVMKvv/4qnDlzRliyZIng6uoqpKamGjla49G1HYqKigR/f39hz549mjJruBRK38+FIAhCeXm50KpVK6NdGgdA2L59e5UyQ1zOJwjaXwq1adMm3QN/BmPU65tvvhGmTJmi2V68eLHw8ccfGyTepzFGXY4cOSK89NJLmu3FixcLixcvNki8T2OMurzzzjtC8+bNhRYtWgiNGjUSGjZsKCxYsMCQYdfIWJ+dR48eCb179xY2btxoqFB1Vpe6meqzrau6/pzE+DnU6xGLxo0bQyqVoqCgoEp5QUEBvL29a3yNt7e3Tvtbgrq0gzXSpx2WLFmCf/7zn/jvf/+LTp06GTNMo6trO9jY2KB169YIDQ3FW2+9heHDh5tkWN9YdG2HS5cu4fLlyxg4cCBsbW1ha2uLjRs34rvvvoOtrS0uXbpkqtANyhD9g52dHTp37ozs7GxjhFiNsS/vDAsLwy+//IIbN26guLgYe/fuRVRUlN7HfRZD1MvX1xdHjhzBo0ePoFKpkJaWhrZt2xor5FoZoi7dunXDzZs3UVhYCLVajYMHD6Jdu3bGCrlWhqjLokWLcO3aNVy+fBlLlixBTEwM5s+fb6yQa2WIugiCgLFjx6Jv3754/fXXjRWqzrSpm1ifbV1pUxexfg71OrGQyWTo0qULUlJSNGVqtRopKSno2bNnja/p2bNnlf0BIDk5udb9LUFd2sEa1bUdFi9ejH/84x/Yt28funbtaopQjcpQ7we1Wo2ysjJjhGgSurZDUFAQzp49i4yMDM1j0KBBkMvlyMjIMNk1xoZmiPeDSqXC2bNn0bRpU2OFWYWhLu+MjIzEq6++ij179qB58+aaX9i2trZYunQp5HK5JpFu1KiRQetQE0PUq0ePHnj55ZfRuXNndOrUCa1atcKgQYOMEe5TGaIutra2+Oijj9CnTx906tQJgYGB+POf/2yMcJ/Kmi4nNkRdDh8+jK1bt2LHjh0IDQ1FaGgozp49a4xwdaJN3cT6bOtKm7qI9XOwNfoZzFxcXByio6PRtWtXhIWFISEhASUlJRg3bhwAYMyYMWjWrJnmm9fp06cjPDwcS5cuxYABA7BlyxacPHnSpNcQGoOu7VBeXo7MzEzN/2/cuIGMjAw4OzujdevWotVDX7q2w8cff4z58+dj8+bN8Pf313ygnZ2d4ezsLFo99KVrOyxatAhdu3ZFq1atUFZWhj179uCrr77CqlWrxKyG3nRpBwcHB3To0KHK693c3ACgWrml0fX98MEHH6BHjx5o3bo17t27h08++QRXrlzBxIkTxayGzg4cOFDrc4MGDRLlD3JDWLhwIRYuXCh2GAbRv39/9O/fX+wwDGrs2LFih6CXXr16Qa1Wix1GnVnyZ/tJYv0c6n1iMWLECNy6dQvz589Hfn4+QkNDsW/fPk0WePXqVdjY/P/AzvPPP4/Nmzdj7ty5ePfddxEYGIgdO3ZY/B8OurZDbm4uOnfurNlesmQJlixZgvDwcKSlpZk6fIPRtR1WrVqF8vLyajfQio+Px/vvv2/K0A1K13YoKSnBlClTcP36dTg6OiIoKAhff/01RowYIVYVDELXdrBWurZDYWEhYmJikJ+fD3d3d3Tp0gVHjhxBcHCwSeK11ss7ralerIt5sqa6/JE11c2s62Ky2RxERERGgFomNk6dOlWzrVKphGbNmuk8eVtM1lQv1sU8WVNd/sia6mZJdan3IxZERGR5iouLq0wGz8nJQUZGBjw8PODn5/fMy7fMlTXVi3VhXUzNmupmsXURNa0hIiKqg9TUVAFAtUd0dLRmn88//1zw8/MTZDKZEBYWJhw7dky8gLVkTfViXVgXU7OmullqXSSCIAhGzl2IiIiIiMjKWf+sQyIiIiIiMjomFkREREREpDcmFkREREREpDcmFkREREREpDcmFkREREREpDcmFkRmYNWqVfDz80ODBg0wbNgw3Lp166n7+/v7QyKRQCKR4N69e7Xul5SUpNlvxowZhg2aiIiI6AlMLIhEtm3bNsyaNQuff/45Tp48iQcPHmD48OHPfN0HH3yAvLw8uLq61rrPiBEjkJeXh549exoyZCIiIqJqeOdtIpEtXLgQU6dOxeDBgwEAGzZsgK+vL3788Uf06tWr1te5uLjA29v7qcd2dHSEo6MjZDKZQWMmIiIi+iOOWBCJqLCwEKdPn8aAAQM0ZT4+PujQoQMOHDggYmREREREumFiQSSi3377DQDQunXrKuWBgYGa54iIyLKlpaVp5rsNGTJE7HAAABKJBDt27KiyLZFI4ObmJlpMZPmYWBCJ6OHDhwAqEwlnZ2fNY+fOnZrniIjItMaOHVstAfj3v/8NBwcHLF26tM7HvXDhApKSkvQLTksLFizAX//6V633z8vLQ0JCgvEConqBiQWRiJycnABUfpuVkZGhebz00kua57T1ZGIyadIkY4RLRFQvrVu3DqNHj8aqVavw1ltv1fk4TZo0MdmIwM6dOzFo0CCt9/f29n7qYiBE2mBiQSSili1bAgAaNmyI1q1bax6PHj3SPKetJxOTDz74wBjhEhHVO4sXL8a0adOwZcsWjBs3TlP+73//Gx07doSjoyMaNWqEyMhIlJSU6HRstVqNxYsXo3Xr1rC3t4efnx8WLlwIALh8+TIkEgm++eYb9O7dG46OjujWrRsuXryIEydOoGvXrnB2dkb//v2rLVF+7do1nDt3Dn/6058AAL/++iv69OkDBwcHBAcHIzk5Wc9WIaoZV4UiEpG7uzu6dOmCQ4cOoU2bNgCA4uJiHD16VOfk4I/zNIiISD+zZ8/GypUrsWvXLrz44oua8ry8PIwcORKLFy/G0KFD8eDBAxw6dAiCIOh0/Dlz5mDt2rX47LPP0KtXL+Tl5eH8+fNV9omPj0dCQgL8/Pwwfvx4jBo1Ci4uLli2bBmcnJzw2muvYf78+Vi1apXmNd999x0iIiLQsGFDqNVqDBs2DF5eXjh+/Dju37/P+xqR0TCxIBLZe++9h8mTJ8PX1xcBAQGYO3cuunfvjhdeeEHs0IiI6q29e/di586dSElJQd++fas8l5eXh4qKCgwbNgwtWrQAAHTs2FGn4z948ADLli3DihUrEB0dDQBo1apVtWXGZ86ciaioKADA9OnTMXLkSKSkpGh+R0yYMKHavI2dO3dqljA/cOAAzp8/j/3798PHxwcA8NFHH6F///46xUukDV4KRSSyoUOH4v3338eECRMQEhICpVKJb775RuywiIjqtU6dOsHf3x/x8fEoLi6u8lxISAhefPFFdOzYEa+++irWrl2LwsJCnY6flZWFsrKyKiMhtcXxmJeXF4CqSYyXlxdu3ryp2S4qKsIPP/ygmV+RlZUFX19fTVIBgDdNJaNhYkFkBiZNmoRr167h4cOH2LZtGzw9PcUOiYioXmvWrBnS0tJw48YN/OlPf8KDBw80z0mlUiQnJ2Pv3r0IDg7G559/jrZt2yInJ0fr4zs6Omq1n52dneb/EomkxjK1Wq3ZfhyTr6+v1rEQGQoTCyILNXv2bDg7O+P+/fu17rNp0yY4Ozvj0KFDJoyMiMg6tGjRAj/88APy8/OrJRcSiQQvvPACFixYgDNnzkAmk2H79u1aHzswMBCOjo5ISUkxaMxPXgYFAO3atcO1a9eQl5enKTt27JhBz0n0GOdYEFmgH374AUqlEgDg4uJS636DBg1C9+7dAYA3PSIiqgNfX1+kpaVBLpcjKioK+/btQ1ZWFlJSUvDSSy+hSZMmOH78OG7duoV27dppfVwHBwfMnj0bb7/9NmQyGV544QXcunUL586dw4QJE+oUa0VFBfbu3YuZM2dqyiIjI9GmTRtER0fjk08+QVFREd577706HZ/oWZhYEFmgx5MFn8XFxeWpiQcRET1b8+bNqyQXq1evxsGDB5GQkICioiK0aNECS5cu1XlC9Lx582Bra4v58+cjNzcXTZs21es+RD/88AOcnZ3x3HPPacpsbGywfft2TJgwAWFhYfD398fy5cs1S9ESGZJE0HVtNCIiIiLS2uOkpLCw0Kijx2+++SYqKiqwcuXKOr0+KSkJM2bMwL179wwbGNUbHLEgIiIiMoHmzZtj4MCB+Ne//mWU43fo0KHOKz45OzujoqICDg4OBo6K6hOOWBAREREZUWlpKW7cuAGg8g94b29vkSOqLjs7G0DlilcBAQEiR0OWiokFERERERHpjcvNEhERERGR3phYEBERERGR3phYEBERERGR3phYEBERERGR3phYEBERERGR3phYEBERERGR3phYEBERERGR3phYEBERERGR3phYEBERERGR3v4PAdtma3DXa6kAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAJOCAYAAAAqFJGJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1hT1xvA8e9NCHsvAWW4cQ9cdSFWa9VarbZatW7co2rV1lpX62q1zmKdde9qta17QJ11494DnAyVvcn9/UHJT0SUkRCQ83keHuDm5p733iQneXOWJMuyjCAIgiAIgiAIQh4o9B2AIAiCIAiCIAiFn0gsBEEQBEEQBEHIM5FYCIIgCIIgCIKQZyKxEARBEARBEAQhz0RiIQiCIAiCIAhCnonEQhAEQRAEQRCEPBOJhSAIgiAIgiAIeSYSC0EQBEEQBEEQ8kwkFoIgCIIgCIIg5JlILAStatKkCU2aNNH8f//+fSRJYuXKlXqLSdAdDw8Pevbsqe8wBEHIhYJQP0uSxKRJkzT/r1y5EkmSuH//vt5i0jV9nmPPnj3x8PDI8f0KwnOlIMvtdX0XicSiiLt06RKffvop7u7uGBsbU7x4cZo3b86CBQvyLYZTp04hSRJz5szJdFvbtm2RJIkVK1Zkuq1x48YUL148R2WtX7+euXPn5jbUXGnSpAmSJGl+TExMqFq1KnPnzkWtVufqmPl5HsePH2fSpElERETkS3k5cefOHfr370+pUqUwNjbG0tKSBg0aMG/ePOLj4/UdniDkSPoHzjNnzrz29iZNmlC5cuV8jqrwK2r1xOPHj5k0aRKBgYE6LWfXrl0ZkkJt8fDwyPCe+fJPQkKC1svLrvy6roWdgb4DEPTn+PHj+Pj44ObmRt++fXFycuLBgwf8+++/zJs3j6FDh+b4mPv27cvxfWrWrImpqSlHjx5lxIgRmWI0MDDg2LFj9OrVS7M9KSmJ06dP06ZNmxyVtX79ei5fvszw4cNzHGdelChRgunTpwMQHh7O+vXrGTFiBGFhYUydOjXHx8vP8zh+/DiTJ0+mZ8+eWFtbZ7jtxo0bKBT6+X5i586dfPbZZxgZGdG9e3cqV65MUlISR48eZfTo0Vy5coUlS5boJTZBEHKnW7dufP755xgZGWnleEWxnnj8+DGTJ0/Gw8OD6tWrZ7ht6dKlufpCy93dnfj4eFQqlWbbrl278PPz00lyUb16db766qtM2w0NDbVeVnbp4rq+i0RiUYRNnToVKysrTp8+nekDY2hoaK6OmZsXvYGBAXXr1uXYsWMZtt+4cYPw8HC6dOnC0aNHM9x29uxZEhISaNiwYa7i1Ca1Wk1SUhLGxsZZ7mNlZcUXX3yh+X/AgAF4enqyYMECvv/+e5RKZX6EqnXaevPPqXv37vH555/j7u7OoUOHcHZ21tw2ePBgbt++zc6dO7VSVmxsLGZmZlo5liAURvn5GlAqlVqrD/OznigsXk4MckKSpDe+x2lb8eLFM7xnFnS5va7vItEVqgi7c+cOlSpVypRUADg6Omb4PyUlhR9++IHSpUtjZGSEh4cH3377LYmJiRn2e3WMRXY1bNiQkJAQbt++rdl27NgxLC0t6devnybJePm29PsB7Nixg9atW+Pi4oKRkRGlS5fmhx9+IDU1NUNsO3fuJCgoSNOs+nKfyMTERCZOnEiZMmUwMjLC1dWVMWPGZDpHSZIYMmQI69ato1KlShgZGbFnz54cna+xsTG1a9cmOjo6UxK3du1avLy8MDExwdbWls8//5wHDx7o7Dy2b99O5cqVMTIyolKlShnOZdKkSYwePRqAkiVLaspL7xv8ujEWd+/e5bPPPsPW1hZTU1Pq1auX6c07ICAASZLYvHkzU6dOpUSJEhgbG/P+++9neA5k5aeffiImJobly5dn+LCQrkyZMnz55ZfAm/sGv9q/e9KkSUiSxNWrV+nSpQs2NjY0bNiQWbNmIUkSQUFBmY4xduxYDA0NefHihWbbyZMn+fDDD7GyssLU1BRvb+9MibMg5JW3tzfVqlV77W3ly5enRYsWmv8jIiLo2bMnVlZWWFtb06NHj9d2b+zZsyfm5ubcuXOHVq1aYWFhQdeuXQE4cuQIn332GW5ubpq6ZcSIEZm6E2X1PpCdfuhZjT/YvXs33t7eWFhYYGlpSe3atVm/fv0bj5WTegKy/z7n4eHBRx99xNGjR6lTpw7GxsaUKlWK1atXZyrjypUrNG3aFBMTE0qUKMGUKVNe+832q3XRy2W9WsdGREQwYsQIPDw8MDIyokSJEnTv3p3w8HACAgKoXbs2AL169dLU2en138uPQXJyMra2thl6A6SLiorC2NiYUaNGAZnr0Z49e+Ln56eJPf1HlmU8PDxo27ZtpmMmJCRgZWVF//79M92WE+n19Kte99zJyWOlreuaLjY2lq+++gpXV1eMjIwoX748s2bNQpblDPtl5724MBEtFkWYu7s7J06c4PLly2/tt+vr68uqVav49NNP+eqrrzh58iTTp0/n2rVr/PHHH3mOJT1BOHr0KGXKlAHSkod69epRt25dVCoVx48f5+OPP9bcZmFhoXlTXblyJebm5owcORJzc3MOHTrEhAkTiIqKYubMmQCMGzeOyMhIHj58qBnPYW5uDqS1Onz88cccPXqUfv36UaFCBS5dusScOXO4efMm27dvzxDvoUOH2Lx5M0OGDMHe3j5Pg+FeTuymTp3K+PHj6dixI76+voSFhbFgwQIaN27M+fPnsba21up5HD16lG3btjFo0CAsLCyYP38+HTp0IDg4GDs7O9q3b8/NmzfZsGEDc+bMwd7eHgAHB4fXnlNISAj169cnLi6OYcOGYWdnx6pVq/j444/5/fff+eSTTzLsP2PGDBQKBaNGjSIyMpKffvqJrl27cvLkyTdeu7/++otSpUpRv379nFzybPvss88oW7Ys06ZNQ5ZlPvroI8aMGcPmzZs1iVa6zZs388EHH2BjYwOkPTdatmyJl5cXEydORKFQsGLFCpo2bcqRI0eoU6eOTmIW3h2RkZEZvkhJl5ycnOH/bt260bdv30x1+OnTp7l58ybfffcdALIs07ZtW44ePcqAAQOoUKECf/zxBz169Hht+SkpKbRo0UKTVJuamgKwZcsW4uLiGDhwIHZ2dpw6dYoFCxbw8OFDtmzZoq3Tz2TlypX07t2bSpUqMXbsWKytrTl//jx79uyhS5cuWd4vp/VETt7nbt++zaeffkqfPn3o0aMHv/32Gz179sTLy4tKlSoB8PTpU3x8fEhJSeGbb77BzMyMJUuWYGJikutrERMTQ6NGjbh27Rq9e/emZs2ahIeH8+eff/Lw4UMqVKjA999/z4QJE+jXrx+NGjUCeO01UKlUfPLJJ2zbto3Fixdn6HGwfft2EhMT+fzzz18bR//+/Xn8+DH79+9nzZo1mu2SJPHFF1/w008/8fz5c2xtbTW3/fXXX0RFRWWrJSI5OTnTa8DU1FTzXMyJ7DxW2ryukPaa+/jjj/H396dPnz5Ur16dvXv3Mnr0aB49epRpTOnb3osLFVkosvbt2ycrlUpZqVTK7733njxmzBh57969clJSUob9AgMDZUD29fXNsH3UqFEyIB86dEizzdvbW/b29tb8f+/ePRmQV6xY8cZYoqKiZKVSKffp00ezrXz58vLkyZNlWZblOnXqyKNHj9bc5uDgIDdv3lzzf1xcXKZj9u/fXzY1NZUTEhI021q3bi27u7tn2nfNmjWyQqGQjxw5kmH7okWLZEA+duyYZhsgKxQK+cqVK288p3Te3t6yp6enHBYWJoeFhcnXr1+XR48eLQNy69atNfvdv39fViqV8tSpUzPc/9KlS7KBgUGG7do6D0NDQ/n27duabRcuXJABecGCBZptM2fOlAH53r17mcpzd3eXe/Toofl/+PDhMpCh/OjoaLlkyZKyh4eHnJqaKsuyLPv7+8uAXKFCBTkxMVGz77x582RAvnTpUqay0kVGRsqA3LZt2yz3edmbnoOAPHHiRM3/EydOlAG5c+fOmfZ97733ZC8vrwzbTp06JQPy6tWrZVmWZbVaLZctW1Zu0aKFrFarNfvFxcXJJUuWzPCcFYRXrVixQgbe+FOpUiXN/hEREbKxsbH89ddfZzjOsGHDZDMzMzkmJkaWZVnevn27DMg//fSTZp+UlBS5UaNGmV4bPXr0kAH5m2++yRTf6+rZ6dOny5IkyUFBQZptr74PvHzsV+utV1+D6dcgvb6JiIiQLSws5Lp168rx8fEZ7vvya+xVOa0ncvI+5+7uLgPy4cOHNdtCQ0NlIyMj+auvvtJsS68PT548mWE/KyurTHXqq9fh5bJermMnTJggA/K2bdsy7Zt+PU6fPp1lnffqY7B3714ZkP/6668M+7Vq1UouVaqU5v/X1aODBw+WX/cx8saNGzIg//rrrxm2f/zxx7KHh8cbHzdZ/v/1ffUn/fqk19OvevW58/Kx3vZYafu6pr/mpkyZkmG/Tz/9VJYkKcP7bnbfiwsL0RWqCGvevDknTpzg448/5sKFC/z000+0aNGC4sWL8+eff2r227VrFwAjR47McP/0gVXa6KNqYWFB1apVNWMpwsPDuXHjhubbgAYNGmi6kty8eZOwsLAM4yte/gYoOjqa8PBwGjVqRFxcHNevX39r+Vu2bKFChQp4enoSHh6u+WnatCkA/v7+Gfb39vamYsWK2T6/69ev4+DggIODA56ensycOZOPP/44Q/ecbdu2oVar6dixY4YYnJycKFu2bKYYtHEezZo1o3Tp0pr/q1atiqWlJXfv3s32ub1s165d1KlTJ8NjY25uTr9+/bh//z5Xr17NsH+vXr0yfEuW/i3Qm8qPiooC0p4zujJgwIBM2zp16sTZs2e5c+eOZtumTZswMjLSNPsHBgZy69YtunTpwrNnzzTXPzY2lvfff5/Dhw+LAX7CW/n5+bF///5MP1WrVs2wn5WVFW3btmXDhg2a7hWpqals2rSJdu3aacZF7Nq1CwMDAwYOHKi5r1KpfOMEHS/vm+7lejY2Npbw8HDq16+PLMucP38+T+eclf379xMdHc0333yTqY//67rDpMtpPZHT97mKFStq6itIa8UtX758hrpr165d1KtXL0MrpYODg6ZrWW5s3bqVatWqZWr9hTdfj6w0bdoUe3t7Nm3apNn24sUL9u/fT6dOnXIVY7ly5ahbty7r1q3TbHv+/Dm7d++ma9eu2Yqzbt26mZ7/3bt3z1U82XmstH1dd+3ahVKpZNiwYRm2f/XVV8iyzO7duzNs1/Z7sT6JrlBFXO3atdm2bRtJSUlcuHCBP/74gzlz5vDpp58SGBhIxYoVCQoKQqFQaLoopXNycsLa2vq1/c5zo2HDhixYsIDw8HCOHz+OUqmkXr16QFpz48KFC0lMTMw0vgLS+rF+9913HDp0SPOGki4yMvKtZd+6dYtr165l2cXn1XEQJUuWzNG5eXh4aGaNuHPnDlOnTiUsLCzDG+WtW7eQZZmyZcu+9hjZGRyW0/Nwc3PLtI+NjU2G8QI5ERQURN26dTNtr1Chgub2l7tsvFp+eneiN5VvaWkJpCWQuvK6x/ezzz5j5MiRbNq0iW+//RZZltmyZQstW7bUxHTr1i2ALLuYQNrzMf08BeF16tSpQ61atTJtt7GxydQ9pHv37mzatIkjR47QuHFjDhw4QEhICN26ddPsExQUhLOzs6bLZLry5cu/tnwDAwNKlCiRaXtwcDATJkzgzz//zPQazU49mxvpiXxOp9nNaT2R0/e57NSdWdWHWV337Lhz5w4dOnTI9f1fZWBgQIcOHVi/fj2JiYkYGRmxbds2kpOTc51YQNrzcsiQIQQFBeHu7s6WLVtITk7O8Lx8E3t7e5o1a5br8l+WncdK29c1KCgIFxeXTInty++FOY2xsBCJhQCkzeZUu3ZtateuTbly5ejVqxdbtmxh4sSJmn1yk7XnRHpicezYMY4fP06VKlU0b4T169cnMTGR06dPc/ToUQwMDDRJR0REBN7e3lhaWvL9999TunRpjI2NOXfuHF9//XW2viFWq9VUqVKF2bNnv/Z2V1fXDP/ntI+smZlZhkqyQYMG1KxZk2+//Zb58+drYpAkid27d792VpRXPxS8Tk7PI6vZV+RXBpfpSm7Kt7S0xMXFhcuXL2erjKyety8P7H/V6x5fFxcXGjVqxObNm/n222/5999/CQ4O5scff9Tsk/5cmzlzZqbpCNNl53EUhOxq0aIFxYoVY+3atTRu3Ji1a9fi5OSUpw9lRkZGmaaRTk1NpXnz5jx//pyvv/4aT09PzMzMePToET179sxQz6YP4n3Vm15z2pbTeiJddt/n8qvuzI9r9vnnn7N48WJ2795Nu3bt2Lx5M56enllODJDdY44YMYJ169bx7bffsnbtWmrVqpWnpCpdTut0fb/PZUdhiDG7RGIhZJL+TdmTJ0+AtEHearWaW7duabJtSBuoGxERgbu7u1bKfXkA94kTJ2jQoIHmNhcXF9zd3Tl27BjHjh2jRo0amkFcAQEBPHv2jG3bttG4cWPNfe7du5epjKwqpNKlS3PhwgXef/99nSdQkNbM+cUXX7B48WJGjRqFm5sbpUuXRpZlSpYsSbly5d54//w8j5wcx93dnRs3bmTant4dTVvPlY8++oglS5Zw4sQJ3nvvvTfum9468OoMOLlpaevUqRODBg3ixo0bbNq0CVNT0wxrqaQ3ZVtaWmrt2zZBeBOlUkmXLl1YuXIlP/74I9u3b6dv374ZPqi4u7tz8OBBYmJiMiS2r3utZuXSpUvcvHmTVatWZeiSsn///kz72tjYvLYLR25ec+mvqcuXL2dqTXibnNQTunifc3d317Rivux1193GxiZTHZWUlKR5H05XunTptyZLOa37GzdujLOzM5s2baJhw4YcOnSIcePGvfV+byrH1taW1q1bs27dOrp27cqxY8e0tqjry3X6y5Of5KX3hLavq7u7OwcOHCA6OjpDq4W23wsLIjHGogjz9/d/bTac3tc0/ZuFVq1aAWSqFNK/FW/durVW4nFxcaFkyZIcPHiQM2fOZJptoX79+mzfvp0bN25k6AaV/gb68rkkJSWxcOHCTGWYmZm9tsm+Y8eOPHr0iKVLl2a6LT4+ntjY2FyfV1bGjBlDcnKy5jq2b98epVLJ5MmTMz0usizz7Nkzzf/5eR7p/bSzs/J2q1atOHXqFCdOnNBsi42NZcmSJXh4eORoXMqbjBkzBjMzM3x9fQkJCcl0+507d5g3bx6Q9iHf3t6ew4cPZ9jndc+Pt+nQoQNKpZINGzawZcsWPvroowzz+3t5eVG6dGlmzZpFTExMpvuHhYXluExBeJtu3brx4sUL+vfvT0xMTKZZd1q1akVKSgq//vqrZltqaioLFizIdhmvq2dlWda8zl5WunRprl+/nuH5fuHChVxNufzBBx9gYWHB9OnTM626/LZvc3NST+jifa5Vq1b8+++/nDp1SrMtLCwsw9iDdKVLl85URy1ZsiTTt/AdOnTQdFt+Vfr1yEmdDaBQKPj000/566+/WLNmDSkpKdnqBvW2crp168bVq1cZPXo0SqUyyxmmcio92Xz5esXGxrJq1apcH1Pb17VVq1akpqbyyy+/ZNg+Z84cJEmiZcuWuY61oBMtFkXY0KFDiYuL45NPPsHT05OkpCSOHz/Opk2b8PDw0MxtXa1aNXr06MGSJUs03Y5OnTrFqlWraNeuHT4+PlqLqWHDhpqp615usYC0xGLDhg2a/V7ebmNjQ48ePRg2bBiSJLFmzZrXvul4eXmxadMmRo4cSe3atTE3N6dNmzZ069aNzZs3M2DAAPz9/WnQoAGpqalcv36dzZs3s3fv3tf2ec6LihUr0qpVK5YtW8b48eMpXbo0U6ZMYezYsdy/f5927dphYWHBvXv3+OOPP+jXr59mTvH8PA8vLy8gbbrezz//HJVKRZs2bV67YNY333zDhg0baNmyJcOGDcPW1pZVq1Zx7949tm7dqrVVukuXLs369evp1KkTFSpUyLCi7vHjx9myZUuGud99fX2ZMWMGvr6+1KpVi8OHD3Pz5s0cl+vo6IiPjw+zZ88mOjo605uvQqFg2bJltGzZkkqVKtGrVy+KFy/Oo0eP8Pf3x9LSkr/++iuvpy8IGdSoUYPKlStrJm+oWbNmhtvbtGlDgwYN+Oabb7h//z4VK1Zk27ZtORoX4enpSenSpRk1ahSPHj3C0tKSrVu3vrYPeO/evZk9ezYtWrSgT58+hIaGsmjRIipVqpRpDNzbWFpaMmfOHHx9faldu7ZmfZkLFy4QFxf3xg+TOakndPE+N2bMGNasWcOHH37Il19+qZlu1t3dnYsXL2bY19fXlwEDBtChQweaN2/OhQsX2Lt3r2aK73SjR4/m999/57PPPqN37954eXnx/Plz/vzzTxYtWkS1atUoXbo01tbWLFq0CAsLC8zMzKhbt+4bxwZ26tSJBQsWMHHiRKpUqZKh1SYr6e8Nw4YNo0WLFpmSh9atW2NnZ6cZi/bq+li59cEHH+Dm5kafPn00Sctvv/2Gg4MDwcHBuTqmtq9rmzZt8PHxYdy4cdy/f59q1aqxb98+duzYwfDhwzMM1H7n5OcUVELBsnv3brl3796yp6enbG5uLhsaGsplypSRhw4dKoeEhGTYNzk5WZ48ebJcsmRJWaVSya6urvLYsWMzTOUqy7mfbjbd4sWLZUAuXrx4ptvOnTunmXbu1fiOHTsm16tXTzYxMZFdXFw0U+cCsr+/v2a/mJgYuUuXLrK1tbUMZJgeLikpSf7xxx/lSpUqyUZGRrKNjY3s5eUlT548WY6MjNTsB8iDBw/O1vnIcto1eXmKyJcFBARkmmZw69atcsOGDWUzMzPZzMxM9vT0lAcPHizfuHEjX87j1ekNZVmWf/jhB7l48eKyQqHIMJ3f6/a9c+eO/Omnn8rW1taysbGxXKdOHfnvv//OsE/6dLNbtmzJsD2nz5ebN2/Kffv2lT08PGRDQ0PZwsJCbtCggbxgwYIMz824uDi5T58+spWVlWxhYSF37NhRDg0NzXK62bCwsCzLXLp0qQzIFhYWmaa/THf+/Hm5ffv2sp2dnWxkZCS7u7vLHTt2lA8ePJit8xKKpvTpMk+fPv3a299Ul/z0008yIE+bNu21tz979kzu1q2bbGlpKVtZWcndunWTz58//9rpZs3MzF57jKtXr8rNmjWTzc3NZXt7e7lv376aaTFffc2uXbtWLlWqlGxoaChXr15d3rt3b66mm033559/yvXr15dNTExkS0tLuU6dOvKGDRteG+ersltPZPd9zt3dPcNU4eleN83uxYsXZW9vb9nY2FguXry4/MMPP8jLly/PdI6pqany119/Ldvb28umpqZyixYt5Nu3b7+2jn327Jk8ZMgQuXjx4rKhoaFcokQJuUePHnJ4eLhmnx07dsgVK1aUDQwMMjw+r3sMZDltSlVXV9fXTpEqy6+vm1NSUuShQ4fKDg4OsiRJr50CdtCgQTIgr1+/PtNtWcnq+r7s7Nmzct26dWVDQ0PZzc1Nnj17dpbTzWb3sdL2dY2OjpZHjBghu7i4yCqVSi5btqw8c+bMTNPt5uS9uDCQZLkQjgwRBEEQBEFj3rx5jBgxgvv37792hhlB0IcRI0awfPlynj59mqvF7YTCRyQWgiAIglCIybJMtWrVsLOzy9Z6N4KQHxISEnB1deWjjz5ixYoV+g5HyCdFYozFvXv36N27NyEhISiVSv7999/X9g8XBEEQhMIiNjaWP//8E39/fy5dusSOHTv0HZIgEBoayoEDB/j999959uwZX375pb5DEvJRkUgsevbsyZQpU2jUqBHPnz/HyMhI3yEJgiAIQp6EhYXRpUsXrK2t+fbbb/n444/1HZIgcPXqVbp27YqjoyPz58/Pck0f4d30zneFunLlCl9++SUHDhzQdyiCIAiCIAiC8M4q8OtYHD58mDZt2uDi4oIkSWzfvj3TPn5+fnh4eGBsbEzdunUzzBl969YtzVScNWvWZNq0afkYvSAIgiAIgiAUDQU+sYiNjaVatWr4+fm99vb0ufwnTpzIuXPnqFatGi1atCA0NBSAlJQUjhw5wsKFCzlx4gT79+9/7UqhgiAIgiAIgiDkXqHqCiVJEn/88Qft2rXTbKtbty61a9fWrG6oVqtxdXVl6NChfPPNN5w4cYJJkyaxd+9eAGbOnAmkLYbyOomJiSQmJmr+V6vVPH/+HDs7uxwt5y4IglBUyLJMdHQ0Li4uWlsEURdE/S4IgpBzOanjC/Xg7aSkJM6ePcvYsWM12xQKBc2aNePEiRMA1K5dm9DQUF68eIGVlRWHDx+mf//+WR5z+vTpTJ48WeexC4IgvGsePHhAiRIl9B1GlkT9LgiCkHvZqeMLdWIRHh5OamoqxYoVy7C9WLFiXL9+HQADAwOmTZtG48aNkWWZDz74gI8++ijLY44dO5aRI0dq/o+MjMTNzY2bN29ia2ur2S5d2oLB3jGoSzYhtcO7PT9z0v0gHn7+ObJCQfEd2zF2cNB5mcmpalrMO8qLuBQWfF6VhmXsdV5mdiQnJ+Pv74+Pjw8qlUqzfcONDSy8uBADhQHzvedTxb6KHqPUvayuQ1EjrkOa58+fU65cOSwsLPQdyhu9qX43Cwvj6YiRpD5/jkHx4jjPm4uqRAlSUtUM3XiRf+89x9nKiLW9a2NrZqjHs3i9d+m5KM6lYBLnUjDlx7lER0dTsmTJbNXxhTqxyK6WLVvSsmXLbO1rZGT02ulobW1tsbOz+/8GayswksBECS9vfxfZ2RFftSqJV65g+O9J7Hr2yJdiP6lbjpXH73PoXhxt6xaMa5ycnIypqSl2dnYZXsCD3xvMvaR77Avaxw8XfmBTm03YmxSMZEgXsroORY24DhkV9O5Eb6zfy5bFfstmgvv4kvzgAVGDh+C2dAnGFSqw1Lcxbf2Ocv9ZHON232dtn7oYGhSsLl/v0nNRnEvBJM6lYMqPc0k/bnbq+IJVM+aQvb09SqWSkJCQDNtDQkJwcnLK07H9/PyoWLEitWvXfv0OCmXab3VqnsopLCzapLXyRP/9d76V2ba6CwD7roQQm5iSb+XmhiRJfN/ge0pZlSI0PpQv/b8kMTXx7XcUBCHfZVW/G7q54bF+HUaenqSGhxPUrTuxJ09hZapiWY9amBsZcOrecyb9dUVPkQuCIBRshTqxMDQ0xMvLi4MHD2q2qdVqDh48yHvvvZenYw8ePJirV69y+vTp1+8g/XfpZHWeyikszD/8EFmhIPHyZRLv3suXMqu7WlPS3oz45FR2XXqSL2XmhZnKjPlN52NhaMHFsIt8f+J7CtHcCIJQZLypfjdwcMB9zWpMa9VCHRPDg759idq/nzKOFszvXB1JgvUng1nzb5AeIhcEQSjYCnxiERMTQ2BgIIGBgQDcu3ePwMBAgoODARg5ciRLly5l1apVXLt2jYEDBxIbG0uvXr10G1gRa7EwsLMjtlxZACL/3JEvZUqSRIeaxQH4/ezDfCkzr9wt3ZnlPQulpOTPO3+y+upqfYckCEIOKS0scF2+DPNm7yMnJfHoy+G82LKFpp7FGNPCE4DJf17hxJ1neo5UEAShYCnwYyzOnDmDj4+P5v/0gXc9evRg5cqVdOrUibCwMCZMmMDTp0+pXr06e/bsyTSgO6f8/Pzw8/MjNTWLxEH6L7GQi0ZiARBdoybm128Q9edfOAwbhpQP00q2r1mCn/ff5OS95wQ/i8PNzlTnZeZVfZf6jK49mhmnZjD77GxKWZWiUYlG+g5LEIT/vLV+BxRGRpSYO5enkycTseV3no6fQOqzZ/Tv14/rT6PYEfiYQevO8ueQhrjaFvx6SSi6UlNTSU5OzvNxkpOTMTAwICEh4Y2vncJAnEtGKpUKpVKplXgKfGLRpEmTt3YnGTJkCEOGDNFquYMHD2bw4MFERUVhZWWVeYci1mIBEFOpIpKZGcmPHxN/7hymtWrpvEwXaxMalrHnyK1wfj/3kJHNy+m8TG3o4tmFWy9usfXWVsYcHsO61usoZVVK32EJgkA26vf/SAYGOH3/PUo7O54tWkzY3HmkPHvOjFGjuRcey8WHkfRdfYatA+tjZlTg306FIkaWZZ4+fUpERITWjufk5MSDBw8K/EQNbyPOJTNra2ucnJzyfD1ETZhbRbDFQlapMG/enOjt24nYvj1fEguAT71KcORWOFvPPmT4+2VRKAp+JSBJEuPqjuNe5D3OhZ5j2KFhrGu1DiujrD/ECIJQ8EiShOPw4RjY2hEybRov1qwh9flzFo2dQNvFp7j+NJqRmwP5tatXoaibhKIjPalwdHTE1NQ0zx8Y1Wo1MTExmJubF+iFMLNDnMv/ybJMXFwcoaGhADg7O+cpHpFYZOGtTeVFsMUCwLLtx0Rv3070rt2ox45FYWam8zJbVHLCwsiARxHx/Hv3GfULyJoWb6NSqpjdZDadd3YmKCqI0f+MZmGztLUuBEHQn+x0hXqVbfduKG1seDx2LFE7d2IWEcHiMZP5fPVF9l4JYe7BW4WmRVV496WmpmqSCjstTYmvVqtJSkrC2Nj4nfgwLs7l/0xMTAAIDQ3F0dExT92iCvfV1CExK9TrGXt5oXJ3Qx0XR9TefflTpkrJR9XSpp4tLIO409mZ2LGg6QJMDEw48eQEs87M0ndIglDkvbV+z4JVm49w/XUhkokJsceOYTN+JD82dwNg/sFbhWL2OqFoSB9TYWoqxv8I2ZP+XMnreByRWORWEW2xkCQJ6/YdAIjYtjXfyv2sVtoS8rsuPyE6Ie+D0PJTedvyTGs4DYB119ax/tp6PUckCEJumTdqhPvKFSitrEi4eJGqP45mSCVzAL7afIErjyP1HKEg/F9hHz8g5B9tPVdEYpFb6WMs1AV74TZdsGrXFhQK4s+cJfFe/qxpUcPVmlIOZiQkqwvlt4LN3JvxZc0vAfjx9I/88+AfPUckCEJumVSrhvv6dRg4O5N07x5tl03kE5tE4pNT6bf6LOExYnFMQRCKJpFYZOGtK28r/1s2vQgmFqpixTBr1BCAyG1/5EuZkiTxmZcrUPi6Q6XrU7kPHcp2QC2rGX14NFefXdV3SIJQJL21fs8Go9Kl8Vi/DsPSpUkJCaH/1h9pmhrCo4h4Bq09R1JK0eomKwiCACKxyNJb++Aqim5iAWDdIa07VOT27cgp+XMNPqlRHIUEp++/4F54bL6UqU2SJDGu3jjec36P+JR4hhwcwtPYp/oOSxCKnNyOsXiVytkZ97VrMKlWDTkqitH75tPo+U1O3X/OxD+vvHWqdEEQMlq0aBEWFhakvPS5IiYmBpVKRZMmTTLsGxAQgCRJ3LlzJ9fl3b9/H0mSNIswC3knEovcSm+xSC1c/f21xaJJE5S2tqSEhRFz9Gi+lOlkZUyjsg4AbC2krRYqhYqfm/xMGesyhMWHMejgIGKSYvQdliAIuWRgY4Pbit8wa9wIEhMZe2w5TR+cZcOpYNb+G6Tv8AShUPHx8SEmJoYzZ85oth05cgQnJydOnjxJQkKCZru/vz9ubm6ULl1aH6EKWRCJRW5pEosk/cahJ5KhIVYffwxA5Nb8H8T9+9mHpKQWzq4GFoYW+L3vh72JPbde3GLU4VGkFNGWL0F4FyhMTXH188Py4zZIqamMPruBdrcPM/mvqxy/E67v8ASh0ChfvjzOzs4EBARotgUEBNC2bVtKlizJv//+m2G7j48PiYmJDBs2DEdHR4yNjWnYsGGG1sgXL17QtWtXHBwcMDExoWzZsqxYsQJAk5TUqFEDSZIytIosW7aMChUqYGxsjKenJwsXLtTclt7SsW3bNnx8fDA1NaVatWqcOHFCR1em8BCJRRbePsbCMO13Ef5AaNX+EwCi/QNIefYsX8psVqEYNqYqnkYl8M/NsHwpUxdczF34pekvmBiYcOzRMaadnCa6TQhCPtHGGItXSSoVLjNmYNujBwD9L/9Jt0t/M3jtWR48j9NaOYKQW7IsE5eUkqef+KTUXN0vJ+9vPj4++Pv7a/739/enSZMmeHt7a7bHx8dz8uRJfHx8GDNmDFu3bmXVqlWcO3eOMmXK0KJFC54/fw7A+PHjuXr1Krt37+batWv8+uuv2NunrYeVnqgcOHCAJ0+esG3bNgDWrVvHhAkTmDp1KteuXWPatGmMHz+eVatWZYh13LhxjBo1isDAQMqVK0fnzp0zdOMqisRKXVkYPHgwgwcPJioqCiur16yWnL7IWRFtsQAwLlcO46pVSbh4kcgdf2LXu5fuy1QpaV+zBMuP3mPDqQe8X6GYzsvUlUr2lZjRaAbD/Yez5eYWSliUoHfl3voOSxDeeW+t33NJUihw/OZrlPZ2hP08m463/LFKjKWfuSFbhjTC3Ei85Qr6E5+cSsUJe/VS9tXvW2BqmL3nv4+PD8OHDyclJYX4+HjOnz+Pt7c3ycnJLFq0CIATJ06QmJhIkyZN6Nu3LytXrqRly5YALF26lP3797N8+XJGjx5NcHAwNWrUoFatWgB4eHigVquJiorCwSGte7WdnR1OTk6aGCZOnMjPP/9M+/btAShZsiRXr15l8eLF9PjvywOAUaNG0bp1awAmT55MpUqVuH37Np6ennm8YoWXaLHIrfQWiyI6xiJd+iDuiC1b8u0b98510maH8r8RytPIhLfsXbA1dWvK6NqjAZhzdg5/3flLzxEJgpAXkiRh37cvzlOngEJBi+BTfPaXH6PXnkKtFq2SgvA2TZo0ITY2ltOnT3PkyBHKlSuHg4MD3t7emnEWAQEBlCpVisjISJKTk2nQoIHm/iqVijp16nDt2jUABg4cyMaNG6levTpjxozh+PHjbyw/NjaWO3fu0KdPH8zNzTU/U6ZMyTRQvGrVqpq/nZ2dgbTVq4sy8fVJbqWPsZBTQa2GQr4kfG5Ztm5N6I8/knTvHnGnTmNWt47OyyzjaEFtDxtO33/BljMPGPp+WZ2XqUvdKnbjaexTVl9dzYRjE7A1tqVB8QZvv6MgCAWWdYcOKK2teTBiJO89vYL5b1P4xX4Kw9rW1HdoQhFlolJy9fsWub6/Wq0mOioaC0sLFDn8zGOiUmZ73zJlylCiRAn8/f158eIF3t7eALi4uODq6srx48fx9/enadOm2Tpey5YtCQoKYteuXezfv5/333+fQYMGMX78+NfuHxOTNqHK0qVLqVu3bobblMqM56FSqTR/py8wp1YXzvGf2lI0Pw1rg+KlnExddFstlOZmWH7cBoAXGzfkW7md67gBsPH0g3fiW8Cvan1Fq5KtSJFTGBEwgsvhl/UdkiAIeWTx/vt4LF9GqqkZVZ7do8zUUez5R7y2Bf2QJAlTQ4M8/ZgYKnN1v5yu6uzj40NAQAABAQEZBlQ3btyY3bt3c+rUKXx8fChdujSGhoYcO3ZMs09ycjKnT5+mYsWKmm0ODg706NGDtWvXMnfuXJYuXQqAoWFa75PU1FTNvsWKFcPFxYW7d+9SpkyZDD8lS5bMzaUvUkRikYVsD96GIt8dyubzzwGI3n+AlPD8mQGlVRVnLI0NeBQRz5HbhX/WFYWkYEqDKdRzrkd8SjyDDw4mKEpMVSkIuqCLwdtZMa1dmzIb1hFvYU3JqCcYj+jPlVOXdF6uIBRmPj4+HD16lMDAQE2LBYC3tzeLFy8mKSkJHx8fzMzMGDhwIKNHj2bPnj1cvXqVvn37EhcXR58+fQCYMGECO3bs4Pbt21y5coW///6bChUqAODo6IiJiQl79uwhJCSEyMhIIG28xPTp05k/fz43b97k0qVLrFixgtmzZ+f/xShkRGKRhbcuoKT8f/NXUR7ADWDs6YlJ9eqQkkLE1m35U+Z/g7gBNp4KzpcydU2lVDHXZy4VbCvwPOE5/ff3Jzy+8CdNglDQaGuBvOwyLl+eCr9v4rl1MYrFPSemX2+enD6fL2ULQmHk4+NDfHw8ZcqUoVix/0/S4u3tTXR0tGZaWoAZM2bQoUMHunXrRs2aNbl9+zZ79+7FxsYGSGuVGDt2LFWrVqVx48YolUrWr18PgIGBAfPnz2fx4sW4uLjQtm1bAHx9fVm2bBkrVqygSpUqeHt7s3LlStFikQ0iscitDF2hivbUYgDWn3cCIGLzZuSXmhR16fP/BnHvvxpCWHRivpSpa2YqMxY2W0gJ8xI8innEoANiAT1BeBeYuLtRYctGgu1csUyIIaR3LyKOvXkQqSAUVR4eHsiyrBmAnc7d3R1Zlrl+/bpmm7GxMfPnzycsLIyEhASOHj2aoTXyu+++4+rVq8TFxfHs2TO2b9+eIUHw9fUlODiY1NTUDOtndOnShfPnz5OYmMjz58/5559/+OSTTzLEV716dc3+1tbWyLKcaYXwokYkFrklSaAo2qtvv8zyww9RWFmR/OgRsS/1ddQlTydLarhZk6KW+b2QrsT9OvYm9ixuvhhbY1uuPb/G8IDhJBXxVjFBeBfYujpRau0qLjmWxSg5kYf9+hO5Z4++wxIEQdAakVjkhWbKWfGhT2FsjHW7dgC82LAx38rtXDttEPem08HvxCDudG6WbixsthBTA1NOPjnJuKPjSFXnT0uQIAi6U7akMw5+CzniUhVlagqPRozkxYb8m/hCEARBl0RikRfK/7pDia5QAFh3SusOFfPPPyQ/fpwvZX5UzRlzIwPuP4vj37v5s/p3fqlkV4k5PnMwUBiw5/4eppycIlbnFoR3gE+VEqjH/8BOj/eQZJmnk78n7Bc/8foWBKHQE4lFXogWiwyMSpXEtG5dUKuJ+P33fCnT1NCAttVdAFj/jgzifll9l/pMbzQdhaTg95u/M+fsHPHhQxDeAf2blOVhjyGsLd8cgPBffiHkhx/ybYyaIAiCLojEIgvZmo5QjLHIxOa/QdwvtmxBTsqfhCt9TYu9V56+M4O4X/ahx4dMfG8iACuurGDppaV6jkgQCrf8nG42K5IkMePTalxq3hG/qp+gRuLF+g08GjUKdT7VnYIgCNomEossZGs6QqVILF5l8f77KB3sSQ0LJ2r//nwps3JxK2q4WZOcKrPp9LvXagHQvmx7RtUaBcCC8wtYd22dniMShMIrv6ebzYqxSsmSbrU4Wa0pM2p3JVWhJHr3Hh70709qTKxeYxMEQcgNkVjkhSaxEN8upZMMDTUL5r1YvSbfyu3+njsA604Gk5Kqzrdy81OPSj0YUG0AADNOzWDH7R16jkgQhLxysjJmcTcvTrrV5Lt6fUgxNCbuxL8E9+hByvPn+g5PEAQhR0RikRcGxmm/U9+97jd5YdOpE6hUxF+4QPzFi/lSZsvKztiaGfIkMoED10LzpUx9GFRtEF9U+AKACccncCDogJ4jEgQhr2q62TCtfRUCHcsx8r3+pFpYkXDlCkGdu5D08JG+wxMEQcg2kVjkhYFR2u/kBP3GUcAY2Ntj1aolAM/Xrs2XMo1VSjrVTlswb+2/QflSpj5IksTo2qNpV6YdalnN6MOjOf5ILLIlCIXdp14l8G1Ykls2rgxrMAi5mBNJQUEEde5Mwo2b+g5PEAQhW0RikRcGJmm/U0Ri8SqbL9K+VY/avYeUsLB8KbNLHTckCY7eDudO2Lu7WrVCUjDpvUk0d29OijqF4QHDORdyTt9hCYKQR9+09KRRWXvuGtsxuvFQlKXLkBIWRlC3bsSdPavv8ARBKOQ8PDyYO3euTssQiUVeqP7rCiUSi0xMqlTBpHp1SE7mxabN+VKmq60p73s6Au92qwWAUqHkx0Y/0qB4A+JT4hl4YCAXwi7oOyxBEPLAQKngl841KWlvxpVkI6Y0/xLjGjVQR0UR3LsP0Yf89R2iIOjUokWLsLCwICXl/+uDxcTEoFKpaNKkSYZ9AwICkCSJO3fu5KnM+/fvI0kSgYGBeTpOdl24cIGPP/4YR0dHjI2N8fDwoFOnToSGvhvduEVikRcGIrF4E9vu3QB4sXFjvk09+0W9tEHcv599SFzSu71woUqpYk6TOdRxqkNcShwD9g/gcvhlfYclCEIeWJmqWNq9FhZGBhx+msjytiMxa9IEOTGRh0OHErHtD32HKAg64+PjQ0xMDGfOnNFsO3LkCE5OTpw8eZKEhP9/3vL398fNzY3SpUvrI9RcCQsL4/3338fW1pa9e/dy7do1VqxYgYuLC7Gx78ZMcCKxyIv0xEKMsXgti+bNMXB0JDU8nKg9e/KlzMZlHXC3MyU6IYUdgfmz+rc+mRiYsKDpAryKeRGTHEO//f24+uyqvsMSBCEPyjiaM79zDSQJ1gaGcLjrV1i1awepqTz59lueLV+u7xAFQSfKly+Ps7MzAQEBmm0BAQG0bduWkiVL8u+//2bY7uPjA0BiYiLDhg3TtAI0bNgww3TSL168oGvXrjg4OGBiYkL58uVZty5t2vaSJUsCUKNGDSRJytAysmzZMipUqICxsTGenp4sXLhQc1t6S8e2bdvw8fHB1NSUatWqceLEiSzP79ixY0RGRrJs2TJq1KhByZIl8fHxYc6cOZo4UlNT6dOnDyVLltTEOm/evAzH6dmzJ+3atWPWrFkUL16cUqVKMWTIEJKT/7/8QWhoKG3atMHExISSJUtqzlfXRGKRF6LF4o0klQqbLp0BeL56Tb6sGK1QSHxRN63VYvWJoCKxSrWpyhS/9/2o7lCd6KRo+u3vx43nN/QdliAIeeDj6cjXH3oCMHH3Te77jsS2T28AQmfOIuSnmcjqd3NqbUFHZBmSYvP2kxyXu/vl4L3Yx8cHf///d/vz9/enSZMmeHt7a7bHx8dz8uRJTWIxZswYtm7dyqpVqzh37hxlypShRYsWPP9vyubx48dz9epVdu/ezbVr1/Dz88PW1haAU6dOAXDgwAGePHnCtm3bAFi3bh0TJkxg6tSpXLt2jWnTpjF+/HhWrVqVId5x48YxatQoAgMDKVeuHJ07d87QletlTk5OpKSk8Mcff2T5+UStVlOiRAm2bNnC1atXmTBhAt9++y2bN2fsVu7v78+dO3c4ePAgCxcuZNWqVaxcuVJze8+ePXnw4AH+/v78/vvvLFy4MF+6WxnovIRCys/PDz8/P1JTU7PeSYyxeCvrjh0JX/grCZcvE38+ENOaNXRe5me1SjBr3w2uPYniXPALvNxtdV6mvpmpzPi12a/039+fi+EX6buvL7+1+I0yNmX0HZogFDjZqt8LgP6NS3H9SRTbAx8zeP15dgwejKOtHaEzZ/L8t99IffYM5yk/IKlU+g5VKAyS42CaS67vrgCsc3vnbx+DoVm2dvXx8WH48OGkpKQQHx/P+fPn8fb2Jjk5mUWLFgFw4sQJEhMT8fHxITY2ll9//ZWVK1fSsmXajJRLly5l//79LF++nNGjRxMcHEyNGjWoVasWAG5ubkRFRQHg4OAAgJ2dHU5OTpo4Jk6cyM8//0z79u2BtJaNq1evsnjxYnr06KHZb9SoUbRu3RqAyZMnU6lSJW7fvo2np2emc6tXrx7ffvstXbp0YcCAAdSpU4emTZvSvXt3ihUrBoBKpWLy5Mma+5QsWZITJ06wefNmOnbsqNluY2PDL7/8giRJuLi40KpVKw4ePEjfvn25efMmu3fv5tSpU9SuXRuA5cuXU6FChWw9BnkhWiyykK2VWUWLxVsZ2Npi+XEbAJ6vWJEvZVqbGvJxtbTKc+Xxd3sQ98vMDc35tfmvVLKrxIvEF/ju8+Vu5F19hyUIBU5BWXn7bSRJYkaHqlQtYcWLuGT6rj6D0RfdcZ4+HZRKInfs4OGQoajj4/UdqiBoTZMmTYiNjeX06dMcOXKEcuXK4eDggLe3t2acRUBAAKVKlcLNzY07d+6QnJxMgwYNNMdQqVTUqVOHa9euATBw4EA2btxI9erVGTNmDMePv3ma9tjYWO7cuUOfPn0wNzfX/EyZMiXTYPGqVatq/nZ2dgZ4Y8vA1KlTefr0KYsWLaJSpUosWrQIT09PLl26pNnHz88PLy8vHBwcMDc3Z8mSJQQHB2c4TqVKlVAqlRnKTi/32rVrGBgY4OXlpbnd09MTa2vrN563NogWi7wQYyyyxa5nTyJ/30r0gQMkBQVh6O6u8zJ71Pdgy9mH7L70hCetPHG2MtF5mQWBpaEli5svxnefL9efX8d3ry8rPlyBu6Xur7kgCNpnrFKypFst2vxylBsh0YzcFMiiL9qitLbi0YiRxPzzD8G9++C0YL6+QxUKOpVpWstBLqnVaqKio7G0sEChyOH30irTbO9apkwZSpQogb+/Py9evMDb2xsAFxcXXF1dOX78OP7+/jRt2jTbx2zZsiVBQUHs2rWL/fv307x5c3x9fTONXUgXE5M2Zf3SpUupW7duhtte/jAPaUlMOkmSgLRr9SZ2dnZ89tlnfPbZZ0ybNo0aNWowa9YsVq1axcaNGxk1ahQ///wz7733HhYWFsycOZOTJ09mWW562W8rNz+IFou8EC0W2WJUpgzm3t4gyzx/pW+irlQubkWdkrakqGXWnCg6rRYAVkZWLG2+lLI2ZQmLD6P33t4ERwW//Y6CIBRITlbGLO7mhaFSwb6rIcw9cBMLHx/cfvsNhaUl8efP86hnTwwiIvUdqlCQSVJad6S8/KhMc3e//z5wZ5ePjw8BAQEEBARkGEzduHFjTRef9PEVpUuXxtDQkGPHjmn2S05O5vTp01SsWFGzzcHBgR49erB27Vpmz56tGSthaGgIkKFrZLFixXBxceHu3buUKVMmw0/6IGttMTQ0pHTp0ppZoY4dO0b9+vUZNGgQNWrUoEyZMjmeUtfT05OUlBTOvrT+zY0bN4iIiNBm6K8lEou8EGMsss22d9qgw4htf5Dy4kW+lNm7QdqLf8OpYOKTCnZfam2zNrZmafOllLYqTWhcKL329OJe5D19hyUIQi7VdLNhWvsqAMw/dJudF59gWrMG7mvXYODoSNLtO7j++itJ98TrXCj8fHx8OHr0KIGBgZoWCwBvb28WL15MUlKSJrEwMzNj4MCBjB49mj179nD16lX69u1LXFwcffr0AWDChAns2LGD27dvc+XKFXbu3Em5cuUAcHR0xMTEhD179hASEkJkZFqCPnnyZKZPn878+fO5efMmly5dYsWKFcyePTvX5/X333/zxRdf8Pfff3Pz5k1u3LjBrFmz2LVrF23btgWgbNmynDlzhr1793Lz5k3Gjx+f426b5cuX58MPP6R///6cPHmSs2fP4uvri4mJ7ntviMQiL0SLRbaZ1qmNcaVKyAkJvFi/Pl/KbF6xGCVsTHgRl8z2wEf5UmZBYmdix7IWyyhjXYbQ+FB67+3NnYi8LSQkCIL+fOpVAt+GaV+YjNpygSuPIzEuVw6PDetRebijiojgYY+exL/UV1sQCiMfHx/i4+MpU6aMZlAzpCUW0dHRmmlp082YMYMOHTrQrVs3atasye3bt9m7dy82NjZAWqvA2LFjqVq1Ko0bN0apVLL8v2mbDQwMmD9/PosXL8bFxUXzAd/X15dly5axYsUKqlSpgre3NytXrsxTi0XFihUxNTXlq6++onr16tSrV4/NmzezbNkyunVLW/urf//+tG/fnk6dOlG3bl2ePXvGoEGDclxW+voY3t7etG/fnn79+uHo6Jjr2LNLkovCfJx5EBUVhZWVFeHh4djZ2WW88dwa+HMIlG0BXfNndWl9SU5OZteuXbRq1SpTv77sity5k8dfjUJpa0uZQwdRGBtrOcrMlh25y5Sd1yhXzJy9wxtr+j/mljauQ357nvCcvvv6cvPFTWyNbVn6wVLK2ZTL0zEL43XQBXEd0jx79gx7e3siIyOxtLTUdzjZ9sb6vYBKSVXTa+VpjtwKp7i1CTuGNMDe3IiEkBCudf0C44cPkUxNKbFgPuYvDWYtTN6l15W+ziUhIYF79+5RsmRJjLX0XqtWq4mKisLS0jLnYywKGHEumb3pOZNeV2anji/cV1PfNC0WYkaO7LBs0QIDF2dSnz8ncsef+VJmx9qumBkquRkSw7Hbz/KlzILG1tiW5R8sp4JtBZ4nPKfP3j5cf35d32EJgpALBkoFv3SuSUl7Mx5FxDNw7VmSUtQobW150K8vJvXqIcfF8WDAQCJ37tR3uIIgFDEiscgLw/9mOUiK028chYRkYIDdf3M/P1+xIl8Wd7I0VvFZLVcAfjtWdPseWxtbs/SDpVS2q0xEYgR99vbhyrMr+g5LEIRcsDJVsbR7LSyMDDh9/wUT/7yMLMvIRka4+P2CZauWkJzM41Gjeb5mrb7DFQShCBGJRV4Ymqf9TorVbxyFiFWHT1FYWJB0/z4xAQH5UmaP+h5IEhy6HsrdsJh8KbMgsjKyYskHS6jqUJWopCj67u3LpTDRF1sQCqMyjubM71wDSYINpx6w7tQDACRDQ1xmzcKma1eQZUKmTiVs/vwsV/kVBEHQJpFY5IUmsSi6H1ZzSmluhs3nnQB4tmRpvrzZlbQ3o2n5tAFLq47f13l5BZmFoQWLmy2mpmNNopOj6be/H4GhgfoOSxCEXPDxdOTrD9NW952y6wY3I9PGkEkKBcW+G4f9sKEAhC/8lacTJyEX8JXGBUEo/IpEYuHh4UHVqlWpXr26ZnoyrTASiUVu2HTrhmRoSHxgIHH5tPJt7/9mUtly9iGR8cn5UmZBZW5ozq/NfqW2U21ikmPov78/Z0POvv2OgiAUOP0bl6JddRdS1TIrbioIfp7WNVeSJBwGDcJp0iSQJCI2b+bR8BGoExP1G7AgCO+0IpFYABw/fpzAwED8/f21d1BDs7TfoitUjqgcHbHq0B6AZ4sW50uZ9UvbUb6YBXFJqWw6LRaLM1WZ4ve+H3Wd6xKXEsfAAwM5+eTk2+8oCEKBIkkSMzpUpUpxS+JSJAauCyQmMUVzu83nnSg+dy6SSkX0/v086NuP1BjxZZggCLpRZBILnUjvCpWaBClJ+o2lkLHr4wtKJbHHj+fLnOuSJNGrgQcAK4/dJzlV/8ve65uJgQm/NP2FBi4NiE+JZ9CBQQQ8CNB3WIIg5JCxSsnCLtWxVMncDI1hxKZA1Or/dzO1bPEBrkuXojAzI+7UKYK6dyclPFyPEQuC8K4q8InF4cOHadOmDS4uLkiSxPbt2zPt4+fnh4eHB8bGxtStW5dTp05luF2SJLy9valduzbr1q3TXnDpLRYgukPlkGGJ4lh99BEA4Yvzp9WiXY3i2Jsb8Tgygb8vPs6XMgs6YwNj5jedT1PXpiSpkxjhP4Ld93brOyxBEHLIydKYPuVTUSkl9l8NYe6BmxluN6tXF7fVq1Da2ZF49Rr3u3Ql6cEDPUUrCMK7qsAnFrGxsVSrVg0/P7/X3r5p0yZGjhzJxIkTOXfuHNWqVaNFixaEhoZq9jl69Chnz57lzz//ZNq0aVy8eFE7wSlVoDRK+1skFjlm168vSBIxBw6SeOuWzsszVik1rRaL/7krZkn5j6HSkJ+b/MxHpT4iRU7h68Nf8/vN3/UdliAIOeRhAVPaVgRg/qHb7Lz4JMPtJpUq4bF+HaoSJUgODuZ+ly4kXBdr2giCoD0G+g7gbVq2bEnLli2zvH327Nn07duXXr16AbBo0SJ27tzJb7/9xjfffANA8eLFAXB2dqZVq1acO3eOqlWrvvZ4iYmJJL40uC0qKgpIWz0zOTnzoF8DI3OkuESS4yLB7N0dFJx+7q+7BrmlcHPDrNn7xO4/QNjiJRSbPk1rx85KJy8X/Pxvc/1pNP7Xn9KojH2O7q+L61BQTKo7CROlCVtubWHyiclEJ0TzRYUvXrvvu3wdckJchzSF5fxzWr8XJunxt6nsyI2nMfx2PIhRWwIpYW1IRef/r5QrubhQfPUqHg8YSNLNmwR90Q3n+fMxqV1LX6Fn8i69rvR1LsnJyciyjFqtRq2lNaPSv4xLP25hVtDPJSAggPfff59nz55hbW39xn21dS5qtRpZlklOTkapVGa4LSfP3wKfWLxJUlISZ8+eZezYsZptCoWCZs2aceLECSCtxUOtVmNhYUFMTAyHDh2iY8eOWR5z+vTpTJ48OdN2f39/TE1NM21vliJhBpwI2M8Ls7t5P6kCbv/+/Vo9nlGFCrjvP0DUrl1crFiBZDs7rR7/dWrbKvjnqYIZ288QXTF3L0JtX4eCoqpcladGTzmSeITZ52cTeC0QHyMfJEl67f7v6nXIqaJ+HeLiCscioTmt3wuj/fv3U1kGTysF1yOh57ITfFU1FQtVxv0UXTrjsmo1pvfu8aBfP5506UxspUr6CToL79LrKr/PxcDAACcnJ2JiYkhK0u4Y0OjoaK0e72W//fYbEydO5N69exgYpH1EjYmJoWTJktStW5e///5bs+/Ro0dp06YN586do2TJkrkqLzo6muDgYKpVq8bhw4epUqWKVs7jbS5evMjs2bM5fvw4UVFRFC9enIYNGzJ06FDKlCmjqVOjo6NRKLLXuSivj0tSUhLx8fEcPnyYlJSUDLflpI4v1IlFeHg4qampFCtWLMP2YsWKcf2/5t2QkBA++eQTAFJTU+nbty+1a9fO8phjx45l5MiRmv+joqJwdXXFx8cHu9d86DV4NANCw6lfqypySW9tnFaBlJyczP79+2nevDkqlertd8iBx2fPEXfsGNXu3cexWzetHvt1qkXE8/6co9yMVOBevT6VXCzffqf/6PI6FBSt5Fb8dvU3/C74cSjhEC4eLoyoMSJDclEUrkN2iOuQ5tmzZ/oOIVtyWr8XJq8+Fxs3TebTxSe5/yyO7WH2rOpZC0ODjB9Q1K1bEzLma2L9/Sm+dh0OE8Zj1aGDns7g/96l15W+ziUhIYEHDx5gbm6OsbGxVo4pyzLR0dFYWFhk+WVTXrVs2ZKvvvqKmzdvUq9ePQCOHTuGk5MTZ8+exdDQUHM+p06dws3NjWrVquW4nJfPxdw8bSIeMzMzLC2z/3kgt/7++28+++wzPvjgA9auXUvp0qUJDQ3l999/56effmLjxo2aLzosLCzeGpO2HpeEhARMTExo3LhxpudMeutudhTqxCI7SpUqxYULF7K9v5GREUZGRvj5+eHn50fqfwsKqVSq11cK/80MZZCaAIW8AsyOLK9DHjgMGkjQsWNEb9+O45DBqF5JFLXNw0FF6yrO/HnhMStOBDPv8xo5PoYurkNBMqD6ACyMLJhxagZrr68lPjWe8fXGo1RkbB59169DdhX161BYzj3H9XshlH4u9ioVy3rU5hO/Y5wJimDK7htM+6RKxg8eKhWuC+bzZOJEIrduI2zSZIiMwq5fX519cMyJd/FxyS+pqalIkoRCocj2N95vk97NJv24ulChQgWcnZ05fPgw9evXB9Im8Wnbti2HDh3i1KlTNGnSBIB//vkHHx8fFAoFiYmJjB49mo0bNxIVFUWtWrWYM2eO5ovkFy9eMGTIEPbt20dMTAwlSpRg+PDhDBw4kNKlSwPg5eUFgLe3NwEBAQAsW7aMn3/+mXv37uHh4cGwYcMYNGgQAPfv36dkyZJs3bqVBQsWcPLkScqWLcuiRYt47733Xnt+cXFx9OnTh1atWvHHH39otpcuXZr33nuPiIiIDI9Z+t/Pnj1jyJAhHD58mBcvXlC6dGm+/fZbOnfujFqtZuPGjYwbN47Hjx9jZGSkOW67du2wsLBgzZo1b732CoUCSZJe+1zNyXO3wA/efhN7e3uUSiUhISEZtoeEhODk5JSnYw8ePJirV69y+m0LuBlZpP1O1F3T4LvO1MsLk1peyMnJPFu6LF/K7Ne4FAB/X3zCwxeFoxtHfutaoSs/NPgBhaRg662tjD0ylmR14e/zLAjZrt8LuTKO5szvXANJgg2nHrDm36BM+0gGBjhPmYJdv34AhM2ZQ8j06cgFsN+5kDeyLBOXHJenn/iU+FzdLyeTpfj4+GRYc8zf358mTZrg7e2t2R4fH8/Jkyc1ix6PGTOGrVu3smrVKs6dO0eZMmVo0aIFz58/B2D8+PFcvXqV3bt3c+3aNfz8/LC1tQXQzCR64MABnjx5wrZt2wBYt24dEyZMYOrUqVy7do1p06Yxfvx4Vq1alSHecePGMWrUKAIDAylXrhydO3fO1JUo3d69ewkPD2fMmDGvvT2r8RQJCQl4eXmxc+dOLl++TL9+/ejWrZsm9rZt25Kamsqff/6puU9oaCg7d+6kd+/eWV9sHSjULRaGhoZ4eXlx8OBB2rVrB6Rl1AcPHmTIkCH5E4SxVdrvhIj8Ke8d5TB4MMG9ehOxeTN2fX113mpRubgVDcrYcez2M5YfvcfENgWrb3FB0a5MO0wNTPn6yNfsvr+b2JRYZnnPwqBwVx2CUGT4eDry9YeezNh9ncl/XaWMgzn1X5m0QpIkHEeOwMDOlpDpM3ixeg2pz1/gMm0qkqGhniIXtC0+JZ666+vqpeyTXU5iqsreOCYfHx+GDx9OSkoK8fHxnD9/Hm9vb5KTk1m0aBEAJ06cIDExER8fH2JjY/n1119ZuXKlZrKfpUuXsn//fpYvX87o0aMJDg6mRo0a1KqVNkmBm5ubpnuPg4MDAHZ2dhm+lJ44cSI///wz7dunLehbsmRJrl69yuLFi+nRo4dmv1GjRtG6dWsAJk+eTKVKlbh9+zaenp6Zzu3WfzNgvu62NylevDijRo3S/D906FD27t3L5s2bqVWrFiYmJnTu3JkVK1bw2WefAbB27Vrc3Nw0LTz5pcC3WMTExBAYGEhgYCAA9+7dIzAwkODgtNWTR44cydKlS1m1ahXXrl1j4MCBxMbGamaJyi0/Pz8qVqz4xvEYAJhYp/2Oj8hTeUWdab16aa0WSUk8W7wkX8rs1zit+XPT6QdExolv4rPygccHzPeZj7HSmMMPD9N/f3+ikrLf31IQCpps1+/viP6NS9GuugupaplB688R/Oz1rbS2PXrgMvMnMDAg6u+/eTBoMOpCMjBfeHc0adKE2NhYTp8+zZEjRyhXrhwODg54e3tz8uRJEhISCAgIoFSpUri5uXHnzh2Sk5Np0KCB5hgqlYo6depw7do1AAYOHMjGjRupXr06Y8aM4fjx42+MITY2ljt37tCnTx/Mzc01P1OmTOHOnTsZ9n15llFnZ2eADEsevCy309ynpqbyww8/UKVKFWxtbTE3N2fv3r2az8IAvr6+7Nu3j0ePHgGwcuVKevbsme/dGgv8145nzpzRNHUBmoF3PXr0YOXKlXTq1ImwsDAmTJjA06dPqV69Onv27Mk0oDunBg8ezODBg4mKisLKyirrHY2t036LFos8kSQJhyFDCe7Zk4gtW9JaLf57gepK47L2eDpZcP1pNGtPBjHYp4xOyyvMGpVoxJIPljD44GDOh56nz/4+dJD1P8hTEHIj2/X7O0KSJGZ0qMrd8FguPoyk7+ozbB1UH3OjzB8BrNq0QWltzcNhXxJ79ChBvXrhumgRBjY2eohc0CYTAxNOdjmZ6/ur1WrNIOGcjrEwMTDJ9r5lypShRIkS+Pv78+LFC7y90ybGcXFxwdXVlePHj+Pv70/Tpk2zfcyWLVsSFBTErl27NIPpfX19mTdv3mv3j4lJW5ts6dKl1K2bsZXn1alYXx5/kP4hPqtpX8uVKwfA9evXsxyH8TozZ85k3rx5zJ07lypVqmBmZsbw4cMzzPhVo0YNqlWrxurVq/nggw+4cuUKO3fuzHYZ2lLgWyyaNGmCLMuZflauXKnZZ8iQIQQFBZGYmMjJkyczPQl0SrRYaI1ZvbqY1q6NnJxM+BLdt1pIkkR/77SxFiuO3SchOVXnZRZmNRxrsOrDVTiaOHIn8g6LoxdzP+q+vsMSBCEbjFVKlnSrhYOFETdCohmxKRC1+vXfnpo3aoT7it9QWlmRcOEiQV90I/nJk9fuKxQekiRhqjLN04+JgUmu7pfTb819fHwICAggICAgQ1eexo0bs3v3bk6dOqX50rl06dIYGhpy7NgxzX7JycmcPn2aihUrarY5ODjQo0cP1q5dy+zZszVjJQz/6+6XPpkDpM0u6uLiwt27dylTpkyGn9xObQvwwQcfYG9vz08//fTa2yMiIl67/dixY7Rt25YvvviCatWqUapUKW7evJlpP19fX1auXMmKFSto1qwZrq6uuY41twp8YqEv2W4qFy0WWmU/NG1sTMTvW0l+/Fjn5X1U1YXi1iaExySy+cwDnZdX2JW1KcuaVmtwt3AnUo6k9/7eXA6/rO+wBCFHilpXqHROVsYs7uaFoVLB/qshzD2Q+YNJOpPq1XFfvw4DJyeS7tzhfucuJN6+nY/RCkWZj48PR48eJTAwUNNiAWkzNi1evJikpCRNYmFmZsbAgQMZPXo0e/bs4erVq/Tt21czAxPAhAkT2LFjB7dv39Z8k5/eeuDo6IiJiQl79uwhJCSEyMhIIG28xPTp05k/fz43b97k0qVLrFixgtmzZ+f6vMzMzFi2bBk7d+7k448/5sCBA9y/f58zZ84wZswYBgwY8Nr7lS1blv3793P8+HGuXbtG//79M01cBNClSxcePnzI0qVL833QdjqRWGQh27OGpLdYJETqPKaiwKxOHUzr1oXkZMLzYayFSqnQtFos/ucuyaliJpS3cTF34bfmv1FcWZyIxAh67+3N8cdv7q8qCAVJUZkV6nVqutkwrX3aImDzD91m58WsWyKMSpfGY8N6DEuVIuXpU4K6fkH8f+MdBUGXfHx8iI+Pp0yZMhm6tnt7exMdHU358uU14xkAZsyYQYcOHejWrRs1a9bk9u3b7N27F5v/uvAZGhoyduxYqlatSuPGjVEqlSxfvhxIW0xw/vz5LF68GBcXF9q2bQukffu/bNkyVqxYQZUqVfD29mblypV5arGAtBmcjh8/jkqlokuXLnh6etK5c2ciIyOZMmXKa+/z3XffUbNmTVq0aEGTJk1wcnLSTFr0MisrKzp06IC5uflrb88PBX6MRYGX3mIhukJpjcPQIQSdPEnE1q3Y9e2LYYniOi2vYy1X5h+8zaOIeLaff8RntfK/6bCwsTG2obd5b/aZ7OPk05MMPjiYaQ2n0bJkS32HJgjCW3zqVYLrT6JYdvQeX20JxN3OlMrFXz/WROXsjPu6tTwYMCCtW1Sv3pSYNxfzxo3zOWqhKPHw8HjtQGd3d/fXbjc2Nmb+/PnMnz//tcf77rvv+O677zT/q9XqDIu++fr64uvrm+l+Xbp0oUuXLtmO0draOlsDtGvVqsXWrVuzvD19GEA6W1tbtm/f/tp9Xx3P8ejRI7p27ZphPYv8JFos8krTYhGhzyjeKaa1amH6Xj1ISeHZ4kU6L89YpaRvo7RvIH4NuENqFv2OhYyMJCPme8/nQ48PSVGn8PXhr1l3bZ2+wxIEIRu+aelJ43IOJCSr6bf6DOExiVnua2Bjg/uKFZg1bIgcH8+DQYOJ/OuvfIxWEIS3efHiBX/88QcBAQEMHjxYb3GIxCILOR5jIVostMph6FAAIv7YTtID3Y996FrPHSsTFXfDY9lz+anOy3tXqJQqfmz8I509OyMjM+PUDH45/0uup9QThPxQVMdYvMxAqWDB5zUoaW/G48gEBq49S1JK1l1BFaamuC70w/KjjyAlhcejx/D8lYXCBEHQHy8vL3r27MmPP/5I+fLl9RaHSCyykO0+uOkL5KXEQ3KC7gMrIkxr1sSsQQNISSFswQKdl2duZEDP+h4A/OJ/W3wwzgGFpGBsnbEMqZ428H7xxcV8/+/3pKrFLFtCwVSUx1i8zMpUxdLutbAwMuD0/RdM/PPyG+s+ydAQl59+xKZ7NwBCps8g9OfZor4UhALg7t27REZGZlhITx9EYpFXxlag+G+oSvxz/cbyjnEYMQKAqL/+JuHGDZ2X16uBB2aGSq49iSLgRpjOy3uXSJJE/2r9GV9vPApJwe83f2fUP6NITM26e4UgCPpXxtGc+Z1rIEmw4dQD1vwb9Mb9JYWCYmPHaurnZ0uX8uS775BTUvIjXEEQCjiRWOSVJIFZ2nLwxLx+pUUhd0wqV8Ki5Ycgy4TNmavz8qxNDfminjsgWi1yq2P5jvzs/TMqhYoDwQcYeGAg0UnR+g5LEIQ38PF05JsPPQGY/NdVjt8Of+P+kiRh378fTj98DwoFkVu38fDL4agTRKu9IBR1IrHQBjP7tN+xb66MhZxzGDYMlEpiAgKIO3tW5+X1aVQSQwMFZ4Ne8O9d0QKVG83cm7Go2SLMVGacfnqa3nt7Ex4vXhuCUJD1a1yKT2oUJ1UtM2j9OYKfxb31PjaffUaJ+fOQDA2JOXiQYF9fUl+aaUcQhKJHJBZZyNHgvvQWi1jRfUbbjEqWxLpDB4B86cvraGFMp/+mm10YIBaDyq06znVY0WIFtsa2XH9+ne67u/MgWixAKBQMYvB2ZpIkMb19FaqVsCIiLhnf1aeJSXx79yaLZs1wXbYUhbk58WfOEtStO8mhovVeEIoqkVhkIUeD+zSJhahMdcF+8CAkIyPiz50j5p9/dF5ef+9SGCgkjtwKJ/BBhM7Le1dVsKvAmpZrKGFeggfRD+i2qxvXn1/Xd1iCIAZvZ8FYpWRxt1o4WhhxMySGEZsCUWdj+m2zOnVwX7sGpb09iTduENSlK0n37+s+YEEQChyRWGiDaLHQKVWxYth2+wKAsNlzkNW6XR27hI0p7WqkLcq34OAtnZb1rnOzdGNNqzWUtynPs4Rn9NrTi9NPxYc5QSionKyMWdzNC0MDBfuvhjDnwM1s3c/Y0xOPDetRubmR/PAh97t+QfyVKzqOVhCEgkYkFtqgSSxEP3JdsevbF4WlJYk3bxK1c6fOyxviUwalQuLg9VAuiFaLPLE3sWfFhyvwKuZFTHIMA/YP4GDQQX2HJQhCFmq42TD9kyoALDh0m78vPs7W/QxdXfFYvw6jChVIffaM4O49iP33X12GKgi5snLlStzd3fUdxjtJJBbaIGaF0jmllRV2vr4AhM2bj5yUpNPyPOzNaFc9rdVinmi1yDMLQwsWN19MU9emJKmTGPnPSLbe3KrvsARByEIHrxL0bVQSgFFbLnD5UWS27mdgb4/76lWY1qmDOjaWB337EbV3ny5DFd5RT58+ZejQoZQqVQojIyNcXV1p06YNBw+KL6YKMpFYZEEM3i54bLt9gYGDA8kPH/Ji4yadlze0aVqrxaHroWKshRYYKY34ucnPdCjbAbWsZtKJSSy5uERM6yvkOzF4O3u+aVmBxuUcSEhW02/1GcKis7cujdLCAtelS7Bo3hw5OZlHw4fnS50tvDvu37+Pl5cXhw4dYubMmVy6dIk9e/bg4+PD4MGD9R2e8AYischCzgZvp083KxILXVKYmGD/X4USvnChzqc19LA345P/xlrMy2Y/Y+HNDBQGTHxvIn2r9AVgwfkFzDg1A7Ws23EzgvAyMXg7e5QKiQWda1DK3ozHkQkMXHuWpJTsvVYVRkYUnzsH644dQZZ5OmkSYQsXii8ShGwZNGgQkiRx6tQpOnToQLly5ahUqRIjR47k3/+61wUHB9O2bVvMzc2xtLSkY8eOhISEaI5x4cIFfHx8sLCwwNLSEi8vL86cOZOhnO3bt1O2bFmMjY1p0aIFDx6kzV54//59FApFpv3nzp2Lu7s7ah2P9SzMRGKhDZYuab9jQiBVrD6qS9afdsCwTGlSIyIIX7RY5+Wlt1r43wgTrRZaIkkSw2oO45s63wCw/vp6vjnyDcmpyXqOTBCEV1mZqFjaoxYWRgacCXrBxD8vZzs5kJRKnCZPwn7QQADC5y8g5IcpOp+AQ3g9WZZRx8Xl7Sc+Plf3y0lC+fz5c/bs2cPgwYMxMzPLdLu1tTVqtZq2bdvy/Plz/vnnH/bv38/du3fp1KmTZr+uXbtSokQJTp8+zdmzZ/nmm29QqVSa2+Pj45k+fTqrV6/m2LFjRERE8PnnnwPg4eFBs2bNWLFiRYayV6xYQc+ePVEoxMfnrBjoO4B3gpkDKAxAnQIxT8GqhL4jemdJBgYUGzOGB/3682LNGmw6f46hq6vOynO3M6N9jeJsOfuQuQdusvSLGjorq6jpWqEr1kbWfHf0O3bf201kYiRzmszBVGWq79AEQXhJaQdz5neuQe9Vp9lw6gEVnC3p/p5Htu4rSRIOw4ahtLUjZOpUXqxfT2rEC5xnzEBhaKjbwIUM5Ph4btT0yvNxQt6+Syblz51FMs1e3X779m1kWcbT0zPLfQ4ePMilS5e4d+8erv99Bli9ejWVKlXi9OnT1K5dm+DgYEaPHq05TtmyZTMcIzk5mfnz5/Pee+8BsGrVKipUqMCpU6eoU6cOvr6+DBgwgNmzZ2NkZMS5c+e4dOkSO3bsyMUVKDpEyqUNCiVY/NdqEflIv7EUAWaNGmFWvz5ycjKhP8/WeXlD/mu1CBCtFlrXulRrfnn/F0wMTDj++Di++3x5kfBC32EJgvAKH09Hvvkw7QPa5L+ucvx2zmZBtP2iKy6zZoJKRdSu3TwcMIDUmFhdhCoUctlp3bh27Rqurq6apAKgYsWKWFtbc+3aNQBGjhyJr68vzZo1Y8aMGdy5cyfDMQwMDDKMs/L09Mxw/3bt2qFUKvnjjz+AtJmkfHx88PDwyOspvtNEi4W2WBWHyGCIegjU1Xc07zRJknD8egz32n1C9J49xJ3rjmlN3bUkvNxq8Yv/Xdrb66yoIqlB8QYs/2A5Aw8O5FL4JXrs6cGS5ktwMnPSd2iCILykX+NSXH8azR/nHzFo/Tn+HNwQN7vstzBatW6N0sqah8OGEXv8BME9e+K6ZDEGtrY6jFpIJ5mYUP7c2VzfX61WExUdjaWFRY67AkkmJtnet2zZskiSxPXreVtQddKkSXTp0oWdO3eye/duJk6cyMaNG/nkk0+ydX9DQ0O6d+/OihUraN++PevXr2fevHl5iqkoEC0W2mKZNshXtFjkD+Py5bH+tAMAIT/O0PmAwKFNy6JUSPxzK5z70Totqkiq4lCF1R+upphpMe5F3qPb7m7cjbyr77AEQXiJJElMb1+FaiWsiIhLxnf1aWISczau0LxhA9xXrkBpbU3C5csEdelK8iPxvpkfJElCYWqatx8Tk1zdT5KkbMdpa2tLixYt8PPzIzY2c6tWREQEFSpU4MGDB5rB1gBXr14lIiKCihUraraVK1eOESNGsG/fPtq3b59hzERKSkqGwdk3btzQHDudr68vBw4cYOHChaSkpNC+fftsn0dRJRKLLOR4OsL0AdxR2VtISMg7h2HDkExNSbhwkahdu3RalpudKR1qpiWPux+Il40ulLIuxZqWa/Cw9OBp7FN67O7BpbBL+g5LeAeJ6WZzz1ilZHG3WjhaGHEzJIYRmwJRq3P2xY5J1aq4r1+PgYszSffvc79zFxJuipn3hP/z8/MjNTWVOnXqsHXrVm7dusW1a9c0YyKaNWtGlSpV6Nq1K+fOnePUqVN0794db29vatWqRXx8PEOGDCEgIICgoCCOHTvG6dOnMyQNKpWKL7/8kpMnT3L27Fl69uxJvXr1qFOnjmafChUqUK9ePb7++ms6d+6MSQ5aXooq8QkpCzmejjB9wHbUQ90FJWRg4OCAnW8fAMJ+no06MXtzrOfWEJ+yGCgkrkcqOHX/uU7LKqqczZ1Z3XI1le0qE5EYQZ99fTj++Li+wxLeMWK62bxxsjJmcTcvDA0U7L8awpxcTMdtVKokHhs2YFS2DCmhoQR90Y24c+d0EK1QGJUqVYpz587h4+PDV199ReXKlWnevDkHDx7k119/RZIkduzYgY2NDY0bN6ZZs2aUKlWKTZvS1ktRKpU8e/aM7t27U65cOTp27EjLli2ZPHmypgwTExNGjx5Nly5daNCgAebm5pr7v6xPnz4kJSXRu3fvfDv/wkwkFtoiukLphV2vXhgUK0by48c8X7lKp2W52ZnSsVba4zznwG0xH7uO2BjbsLzFct5zfo/4lHgGHxzMnvt79B2WIAgvqeFmw/RPqgCw4NBt/r6Y89Z6VbFiuK9Zg0mNGqijogju1Ztof39thyoUUs7Ozvzyyy/cv3+fxMREHj58yI4dO2jSpAkAbm5u7Nixg5iYGKKioti8eTPFihUD0sZHbNiwgeDgYBITE3n06BELFizA2NgYgJ49exIUFET79u25c+cOCQkJ7N+/Hzc3t0xxPHr0iCpVqogWzmwSiYW2WKUnFqLFIj8pTExw/GokAOGLF5MckpuJ8LJvkHcpVJLMmaAIAm6IBRF1xVRlyi/v/0ILjxakqFMY888YNl7fqO+wBEF4SQevEvRtVBKAUVsucPlRZI6PobS2xu235Zh7eyMnJvJwyFCixHSeQgEQExPD5cuX+eWXXxg6dKi+wyk0RGKhLTYeab9jQyFJTKGXnyzbtMGkenXkuDhCZ/2s07KKWRrTyDmtpWLm3hs57lssZJ+h0pAfG/1Ip/KdkJGZenIqvwb+KlqKBKEA+aZlBRqXcyAhWU2/1WcIi855l1SFiQklflmAVdu2kJpK6HfjsfnnsA6iFYTsGzJkCF5eXjRp0kR0g8oBkVhoi4lN2g/A83v6jaWIkSSJYt99B5JE1F9/6byfbjMXNWZGSq4+iWLX5Sc6LauoUyqUjKs7joHV0lbuXXhhIdNPTUcti5V7BaEgUCokFnSuQSl7Mx5HJjBw7VmSUnL++pRUKpynT8O2Vy8AHHbtInz2bPFFgqA3K1euJDExkU2bNqFUKvUdTqEhEgttsi2V9vu5mCYzv5lUroT1p58C8PSHKcipqTory0wFfRp4ADB7301SUsWHXF2SJIlB1Qcxts5YJCQ2XN/AN0e+IVmdrO/QBEEArExULO1RCwsjA84EvWDCjsu5SggkhYJiX4/BbuQIACJWrOTJ2G+RU3I2pa0gCPojEgttEomFXjmMGI7CwoLEa9eI2PK7TsvqVd8dWzND7obHsu2cGLCfH7pU6MKMRjMwkAzYfW83IwNGkpiq25nABEHIntIO5szvUgNJgo2nH7D6RFCuj2XTqxdPP/sUlEoit2/n4ZChqOPjtRht0SFafITs0tZzRSQW2iQSC70ysLXF4b8BVmFz55IaEaGzssyNDBjUpDQAcw/cJDFFdy0kwv+1KtWKeU3nYagwJOBBAEMODiEuOU7fYQmCAPiUd+SbDz0B+P7vqxy/HZ7rY0XVqoXz3DlIRkbEBAQQ3MeX1MicDw4vqlQqFQBxcaJ+FLIn/bmS/tzJLQNtBCP8RyQWemfTpTMRWzaTeOs2YQt+wWn8dzor64t67iw7co/HkQmsPxlMrwYldVaW8H+NSzTm12a/MuTQEP598i8DDgzA730/LAwt9B2aIBR5/RqX4vrTaP44/4hB68/x5+CGuNmZ5upYZk2a4Pbbch4MHET8uXMEfdEN12VLUf03paiQNaVSibW1NaGhoQCY5nD169dRq9UkJSWRkJCAQlG4v5cW5/J/siwTFxdHaGgo1tbWeR5PIhKLLPj5+WlWfsw2TWIhBm/ri2RgQLFx4wju2YsXGzZg3bEjxuXL6aQsY5WSYe+X5ds/LuHnf5uOtVwxMxIvqfxQx7kOS5ovYdCBQZwPPY/vPl8WNVuEjbGNvkMTCoFc1e9CtkiSxPT2VbgbFsOFh5H4rj7NtkENMM9l3Wjq5YX7mjU88PUl8dYtgjp3wXXZMoxKiS9y3sbJyQlAk1zklSzLxMfHY2JikuckRd/EuWRmbW2tec7khfgUlIXBgwczePBgoqKisLKyyt6dbNO6xhD1EJLiwDB339IIeWNWrx4WLVoQvXcvT3/4Hvc1a3RWcXxWqwSLD98h6Fkcy4/eY9j7ZXVSjpBZdcfqLG+xnP77+3P12VV67+3NkuZLcDB10HdoQgGXq/pdyDZjlZLF3Wrx8S9HuRkSw4hNgSz+wguFInf1sHH5crhv2MCDPn1ICgoiqGtXXJcswaRKZS1H/m6RJAlnZ2ccHR1JTs77ZBfJyckcPnyYxo0b57m7jL6Jc8lIpVJpbeYrkVhok5kdmNpDXDiE3wCXGvqOqMgq9vUYYg4fJv7MWSL/2I51+090Uo5KqeCrD8ozbMN5Fv9zhy513bA3N9JJWUJmFewqsPLDlfTd15fbEbfpuacnSz9Yiou5i75DE4QizcnKmMXdvOi05F/2Xw1hzoGbfPVB+Vwfz7BEcdzXr+NBv/4kXLlCcI8elPhlAWb162sx6neTUqnUyodGpVJJSkoKxsbGhf7DuDgX3SncHcsKIscKab9Dr+k3jiJO5eKCw5DBAIT+9BMpL17orKyPqjhTtYQVsUmpzD94S2flCK9XyroUK1uupLh5cYKjg+mxpwfBUcH6DksQirwabjZM/6QKAAsO3ebvi4/zdDwDOzvcVq3C9L16qOPiCO4/gKhdu7QRqiAIWiISC21zrJj2O/SqfuMQsO3eHaOyZUmNiCD0Z92tyK1QSHzTMm0mlPUng7kbFqOzsoTXc7VwZeWHK/Gw9OBp7FN67+0tkgtBKAA6eJWgb6O08RCjtlzg8qO8zeykNDfDdfFiLFp+CMnJPPpqFM/XrdNGqIIgaIFILLQtvcUiRCQW+iapVDhNngRA5O9bdboid/3S9jT1dCRFLTNz7w2dlSNkzcnMiRUfrqCUVSlC4kJEciEIBcQ3LSvgXc6BhGQ1/VafITwmb+vPKAwNKT5rFjZdOoMsE/LDFMLmLxBrNghCASASC23TtFiIrlAFgWnNmlh92gGApxMnIWthAFtWvv7QE4UEuy8/5WyQ7rpeCVmzN7FneYvlmuSi195eIrkQBD1TKiTmf16DkvZmPI5MYODasySlqPN0TEmppNj48dgPGQJA+MKFPJ08GVnM9CUIeiUSC21Lb7GIfgzx4sNlQeD41Vcora1JvHWL56tX66yc8k4WfOblCsD0XdfEt2d6kp5clLYqTWhcqEguBKEAsDJVsbR7LSyMDDh9/wUT/7yS5zpSkiQchgzGaeIEkCQiNm7i0civUCclaSlqQRBySiQW2mZsCVZpHy5Fd6iCwcDGBsfRowEI+8WP5Md5G0D4JiOal8NYpeBM0Av2XQ3RWTnCm9mb2LOsxbIMyUVQVJC+wxKEIq2MoznzO9dAkmDDqWDW/qud16RN584UnzMbSaUieu9eHvTtR2qMGOsmCPogEgtdcKqa9vtJoF7DEP7P6pN2mNTyQo6P5+mUqTorx8nKGN+GaQsl/rj7OsmpeWvuF3Lv1eTCd58vT2Ke6DssQSjSfDwdGdMibbKLyX9d5cSdZ1o5ruWHH+K6dAkKU1PiTp4kqHt3UsLDtXJsQRCyr8gkFnFxcbi7uzNq1CjdF1b8v/UrHulusLCQM5JCgfPEiWBgQMyhQ0Tt26ezsvp7l8LWzJC74bFsOv1AZ+UIb5eeXKTPFuW7z5fwePFhQxD0aYB3KdpWdyFFLTNo3VkePI/TynHN6tXDbfVqlLa2JF69xv2uXUl6+FArxxYEIXuKTGIxdepU6tWrlz+FudRM+/1YJBYFiVHZstj59gHg6Q8/kBqZt2kPs2JhrOLL/1bgnnvgJjGJKTopR8geexN7ln6wVLPORd99fYlM1M1jLwjC20mSxI8dqlKluBUv4pLpu/oMsVqqJ00qV8Jj/TpUxYuTHBTM/c6dSbghZuoThPxSJBKLW7ducf36dVq2bJk/BaavuP38rhjAXcDYDxyIYcmSpIaFEzJzps7K6VzHDQ87U8JjklgUcEdn5QjZ42TmxNLmS3EwceB2xG0G7B9ATJLogy0I+mKsUrKkuxf25kZcfxrNyM2BqNXamfDC0MMD9/XrMSpXjtSwcIK+6Ebc6dNaObYgCG9W4BOLw4cP06ZNG1xcXJAkie3bt2fax8/PDw8PD4yNjalbty6nTp3KcPuoUaOYPn16PkUMmNqCTdqCQDw+n3/lCm+lMDLCecoPQNraFrEnTuikHEMDBWNbpc0QtuTIXR6+0E5Tv5B7rpauLGm+BGsjay4/u8yQQ0OIT4nXd1iCUGQ5W5mwuJsXhkoFe6+EMO/gLa0dW1XMEfe1azDx8kIdHU1wH1+iDx7U2vEFQXi9Ap9YxMbGUq1aNfz8/F57+6ZNmxg5ciQTJ07k3LlzVKtWjRYtWhAaGgrAjh07KFeuHOXKlcvPsKH4f92hHp3N33KFtzL18sKmSxcAnkyYiDpeNx8uP6hYjPdK2ZGUombG7us6KUPImTI2ZVjUfBHmKnPOhpxl1D+jSFGLrmqCoC9e7jZM+aQyAPMO3mL3Je1NsKC0tMRt+TLMmzZFTkri4dBhRGzdqrXjC4KQmYG+A3ibli1bvrEL0+zZs+nbty+9evUCYNGiRezcuZPffvuNb775hn///ZeNGzeyZcsWYmJiSE5OxtLSkgkTJrz2eImJiSQm/n9V0KioKACSk5NJzsHiagrnmigvb0V9/wSp7+luUbb8kn7uObkGBZnNsKFEHzpE8oMHhMydi302B/Xn9DqM/bAcbX89wd8Xn/BFnVC83G1yHXNBUpifD+UsyzHPex6D/Adx+OFhvj/+Pd/V+Q5JknJ8rMJ8HbSpsJy/tur3gqgwPxc/qebElUcRrDoRzMjNgazv7QVo6VyUSor9PAtp8vdEb9/Ok3HfkRQahnWf3rl6zedUYX5cXiXOpWDKj3PJybEluRCt4iVJEn/88Qft2rUDICkpCVNTU37//XfNNoAePXoQERHBjh07Mtx/5cqVXL58mVmzZmVZxqRJk5g8eXKm7evXr8fU1DTbsVrGBeFzYzzJCmN2V/0VWVJm+75C/jC7fp3iK1YiSxLBgweR6Oqqk3I23lFwIlSBq5nMyCqpKHT/XiZkw7Xka6yPXY+MzPvG7+Nj7KPvkAqtuLg4unTpQmRkJJaWlvoOJ0vaqt8F7UuVYdE1BTcjFdgayXxVJRVzlRYLkGXs9+zBNuAfAF40bEhY61agKPAdNwRB73JSxxf4Fos3CQ8PJzU1lWLFimXYXqxYMa5fz13Xk7FjxzJy5EjN/1FRUbi6uuLj44OdnV32D6RORZ49E1ViFK1qlEBOH9BdSCUnJ7N//36aN2+OSqXN2l6PWrXiaWgYMTt3UnbvPlw3bUR6y7nl5jrUiUmk2dyjPIhNJdmlOp/UcNFG9Hr1LjwfWtEKt1tuTD89nYMJB2lYrSFtS7fN0THeheugDc+eaWctAl3TWv1eAL0Lz8VGPsl0WPwvwc/jWXFTwdahPpgaG2mvgNatebFqNc9mzcLm6FHcrK1x/H7yW+v9vHgXHpd04lwKpvw4l/TW3ewo1IlFTvXs2fOt+xgZGWFklLkiU6lUOXzAVOBeH27uweDRSXCvk4P7Flw5vw4Fm/N347h7/DhJt24RuXIlDoMGZet+ObkOzjYqhjYty4zd1/n5wC1aVyuOmdG78dIr7M+HLhW7EJYQxrJLy5hyagrOFs40KN4gx8cp7NchrwrLuWuvfi+4CvO5OFipWNajNp/4HeN2FPy0/y5T21fVahmOvn0wcrDn8bjviP77b9RRkZSYOxeFjlusCvPj8ipxLgWTLs8lJ8ct1G2A9vb2KJVKQkJCMmwPCQnByckpT8f28/OjYsWK1K5dO/cHca+f9jvoeJ5iEXTHwMaGYuPGARD+6yKdzXfeq4EHbramhEQlsvgfMf1sQTKsxjDalGpDqpzKqH9GcTfirr5DEnRMK/W7oBPlilnw86dVkJBZd+oB608Ga70Mq7ZtcfX7BcnYmNjDRwju1ZuUF2JqeEHQhkKdWBgaGuLl5cXBl6aQU6vVHDx4kPfeey9Pxx48eDBXr17ldF7mvnZvmPY76Dio1XmKR9Ady9atMG/2PiQn8/jrb5CTkrRehpGBkm9beQKw+PBdHkWIaU4LCkmSmFx/Ml7FvIhJjmHooaFiAb133Kv1u+LfhZAgHvOC4v0KjrRyTXvPnLDjMqfuPdd6Gebe3rit+A2FlRXxFy4Q9EU3kp9ob0YqQSiqCnxiERMTQ2BgIIGBgQDcu3ePwMBAgoPTvsUYOXIkS5cuZdWqVVy7do2BAwcSGxurmSVKr5yrgaEFJETAE7GeRUElSRLOkyahtLYm8fp1whct0kk5LSo5UbekLYkpan4U088WKCqlitlNZuNi5kJwdLCYhraIUR6dCXMqw4FJEBOq73AEoHlxmVaVi5Gilhm49qxO1gIyrVEDj7VrMChWjKQ7d7jfuQuJd0SLsiDkRYFPLM6cOUONGjWoUSNt8PPIkSOpUaOGZrrYTp06MWvWLCZMmED16tUJDAxkz549mQZ055RWmsqVBlDKO+3vWwfyFI+gWwb29jhNmgRA+OIlxF+6pPUyJEli/EcVkST488JjztzX/rdwQu7ZGtsyv+l8TAxM+PfJv8w8rbuV2QX9erV+l23LQmIUHJ0Dc6vAzq/gRZCeoyzaJAmmf1KJis6WPItNot/qs8QlaT/ZNypbFo8N6zEsWZKUp08J6tKV+AsXtF6OIBQVBT6xaNKkCbIsZ/pZuXKlZp8hQ4YQFBREYmIiJ0+epG7dunkuVytdoQDKfpD2+9a+PMck6Jblhy2wbNUKUlN5/M1Y1C/Nd68tlYtb0alW2rS2E3ZcIVVdaGZ7LhLK25ZnesPpAKy/vp7tt7frNyBBJ16t31N67YHP10PxWpCSAKeXwfwasK0/hF7Tc7RFl6mhAUt71MLOzJCrT6IYveUiupghX+Xigvv6dRhXrUpqZCRBPXsRc+So1ssRhKKgwCcWhV6ZZmm/H52F2MIxJWNRVmz8dygd7Em6c4ewefN1UsboFuWxNDbg6pMo1p/S/sBEIW/ed3+fQdXTZgeb+u9Ubr24peeIBJ2TFODZGnwPQI+/oJQPyKlwcSMsrAcbusDDM/qOskgqbm3Cr194oVJK7Lz0BD//2zopx8DGBvcVv2HWoAFyfDwPBg4k8q+/dVKWILzLRGKRBa3NGmJVHBwrATLcOaSV2ATdMbCxwXny9wA8X7GCuLNntV6GnbkRo1qUB2DW3hs8j9X+YHEhb/pX7U99l/okpCYwMmAkccna798t6E+W9bskQcnG0H079PWHCm0ACW7shGXvw6o2cMcfCs+6su+EOiVtmfxxZQBm7bvJ/qshb7lH7ijMzHD9dSGWrVtDSgqPR4/m+erVOilLEN5VIrHIgta6QgGUbZ72++buvB9L0DmLpj5YffIJyDKPx36LOk77Hyq71HGjgrMlkfHJzNwrBnIXNApJwfRG03E0deR+1H0mn5isky4Ygn5kq34vXhM6rYXBp6B6V1AYwL3DsKYdLPWBq3+K2f7yUZe6bnSr5w7A8I3nuRkSrZNyJENDXGb+hE23bgCETJtO6Jy54vUvCNkkEov8UKFN2u+beyFZTDNaGBT7diwGzs4kBwcTOmuW1o9voFTwfdtKAGw8/YALDyK0XoaQN7bGtsxsPBOlpGTXvV38fut3fYck6INDOWi3EIYFQt0BYGACj8/D5m6wsC6cXwepyfqOskiY0KYi9UrZEpuUSt/VZ4iI001rr6RQUOzbsTgMHw7As8WLeTphAnKKmClOEN5GJBb5obgXWJaApBi4ffDt+wt6p7SwwHnKDwC8WL+BmH/+0XoZtT1s+aRGcWQZJvx5BbUYyF3g1CxWk2E1hwEw8/RMgqLETEFFlrUrtPwRRlyGRqPAyArCb8KOQWkDvU8uhiTRZU6XVEoFC7t6UcLGhKBncQxZf56UVN20GkmShP2A/jh9PxkUCiK2/M7D4cN1MqmHILxLRGKRBa2uzCpJULFt2t9Xd+T9eEK+MG/QQNMc/vjbcaQ80/7g+7EtPTE3MuDCgwh+P/tQ68cX8q5npZ7UcapDfEo8446OI1Wdqu+QhDzKU/1uZg/vj09LMJpNBjNHiHwAu8ekTVV7eCbER2g9ZiGNrZkhS7vXwtRQydHb4UzdpdtZu2w6dqT4vLlIhobEHDjIA9++pEbrphuWILwLRGKRBa2OsYD/JxY3dkNygnaOKeic46ivMCpbltRnz3gy7jut97N1tDRmeLOyAPy45zqRcaJLRUGjkBRMaTAFc5U5F8IusOLKCn2HJOSRVup3Y0toOByGX4LWP4O1O8SFw6EpaYvt7Z8A0boZZFzUVXC2ZHbHagCsOHafzWce6LQ8y+bNcV26FIW5OXGnTxPUrTspYWE6LVMQCiuRWOSXErXBwgWSouGO6A5VWCiMjHCZNRNJpSImIICozZu1XkaP+h6UcTTnWWwSs/ff0PrxhbxzNnfmmzrfAOAX6MeN5+JxEv6jMobavjD0HLRfCo4V0+r5Y/PSWjD+Hgkv7us7ynfOh5Wd+fL9tC9lvvvjMmeDXui0PLO6dXBfsxqlvT2J169zv0tXkoLFdOGC8CqRWOQXhQIqt0/7O3C9fmMRcsS4fHkcR30FQPjMWRiGhGr1+Cqlgskfpw3kXvNvEFcfR2n1+IJ2fFz6Y3xcfUhRp/Ddse9IUYuBnMJLlAZQtSMMOAadN0KJOpCaCGeWw/yasLUvhFzVd5TvlC/fL0uLSsVISlXTf81ZnkTqdnIU4woV8Fi/DpWrK8kPHnC/cxcSrorHVBBeJhKLLGh1jEW66l3Sft/cA7Hh2juuoHM23bqlLZyUmIjTxg3ISdqdjaRBGXtaV3FGLcP4HZfFQO4CSJIkJrw3AUtDS64/v87G6xv1HZKQSzqp39MpFFC+JfTZBz13Qun30xbbu7QZfn0P1n8OD05pv9wiSKGQmN2xOp5OFoTHJNJv9VkSknU7BsrQzQ2P9eswqlCB1GfPCOrWndiT4vEUhHQisciC1sdYABSrBM7VQZ0CF7XfpUbQHUmhwHn6NBTW1hg/fsKzX37RehnffVQBM0MlZ4NesEnHfYaF3LE3sefLml8C8EvgL4TGabf1SsgfOqnfXyVJ4NEQum2DfgH/jbOT0tYzWt4cVrROmyVQrI+QJ2ZGBiztXgsbUxWXHkXy9daLOl9zwsDBAffVqzCtXRt1bCwPfH2J2rdPp2UKQmEhEov8VuOLtN+B68QbSiGjcnTEcdIkACJWriL2xAmtHt/ZyoQRzcsBMGP3dcJjxLSGBdGn5T6lqkNVYpNj+fncz/oORygMXGpAx9Uw5HTae4BCBUFHYW17WOINV7aDmG0s11xtTfHrWhOlQmJH4GMWH76r8zKVFha4LluKRfNmyMnJPBo+ghebxBeGgiASi/xWuQMojSDkMjw8o+9ohBwyf78pEXXqgCzzaMwYrU9B27O+BxX/W5F72k7dTqMo5I5CUjC+3ngUkoL9wfu5lXxL3yEJhYV9WWjrB18GQr1BoDKFJxdgSw/wqwPn1kCKbhZ9e9fVL23PxDYVgbQZ9vyv6741UWFkRPG5c7H+7DNQq3k6cSLhv/4qVukWijSRWOQ3U9u05ALg1GL9xiLkSlibjzAsXZrUsHAej/kaWa29BZoMlAqmta+CJMG28484fluMxSmIPG096eKZNmZqT/wesbaFkDNWJeDD6TD8MjQeA8ZW8Ow2/DkE5leHEwshKVbfURY63eq507mOK7IMwzac53ZojM7LlJRKnL6fjN2A/gCEzZtPyJSpWn1fEITCRCQWWdDp4L46fdN+X9ku5jkvhGRDQ4rNmolkbEzssWM8W75cq8ev7mrNF3XdAfhu+2USU8SH1oJoQLUBWKgsCFGH8Pe9v/UdjpADOq3fc8LMDpqOgxFXoPkPYO4EUY9g79i0tTD++QnidTuN6rtEkiQmf1yZ2h42RCem0G/1GSLjdb82kCRJOA4fTrFx4wB4sW4dj0eN1vokH4JQGIjEIgs6HdxXvGbauhbqZDi7UvvHF3TOqEwZnL5LexMJmzuPuHPntXr80R+Wx8HCiLvhsSwK0H1/YSHnrIys6FO5DwCLLi0iIUUsfFlY5Mvg7ZwwsoAGw+DLC/DRXLApCfHPwX9qWoKx7zuIfqrvKAsFQwMFv37hhYuVMXfDYxm24Typ+TTLnm23L3CZNQsMDIjatYsHAwehjovLl7IFoaAQiYW+1ElrNuXMcrESdyFl1aEDlh99BKmpPPrqK1IjIrR2bEtjFeM/Susv7Bdwm3vholtEQdSpXCesJCtC4kJYd22dvsMRCjuVMdTqBUPOQIflUKwyJMXA8QVpi+399SU8F180vI29uRFLutfCWKXgn5th/Ljner6VbfVRa1x//RXJ1JTYY8d41McXRayov4WiQyQW+lKxLViWgJiQtBmihEJHkiScJk1C5e5GypMnPP52nFYH7bWp6kyjsvYkpagZv/2yGBBYABkpjWhm0gyA5ZeXE5Ok+z7dQhGgNIAqn8KAo9BlM7jWg9SktBbuBV7we294elnfURZolYtbMfPTagAsOXyXbece5lvZ5o0a4r7iN5TW1iRevozbr4tIfvw438oXBH0SiYW+GBimNX0DHJsLqbrvBypon9LcjOKzZyOpVMQcOsSLNWu1dmxJkpjSrjKGBgqO3g7nzwvijakgqqaqRknLkkQnRbP5pphuUtAiSYJyLaDPXui1G8o0A1kNl7fCogawriME/6vvKAusNtVcGOxTGoBvtl0i8EFEvpVtUq0a7uvXYeDkhGFYGA+7dSfxlphBTnj3icRCn2p2BzMHiAiGS7/rOxohl0wqVcLx668BCJk5k/hL2vsm0d3OjKE+ZQD44e+rRMaJBLSgUUgKelbsCcDqK6vFWAtBN9zrwxdbof9hqPQJIMGtvfBbC/itJdLtA2JtpNf4qnl5mlVwJClFTf81ZwiNyr/Xp1GpUpRYs5pER0dSQ0O5/0U3rY/HE4SCRiQW+qQygfcGp/19dLZYIKkQs+naBYvmzSA5mUfDh2t1vEU/71KUdjAjPCaJabvE2hYF0YceH+Js5syzhGfsuL1D3+EI7zLnavDZShh6Nu3LKYUKgo9jsOlzvG+MR7q6XbyXvEShkJjTqTplHc0JiUqk35qzJCTn3/UxcHLiwYD+GFWtijoykuDevYkOCMi38gUhv4nEIgv5Nh1hrT5gbA3hN+HCRt2WJeiMJEk4T52KytWV5EePeDRmjNbmMTcyUDKjQ1UANp15wDGxtkWBo1Ko6FW5FwArrqwgRZ2i54iENykw083mhV1p+HgBDL8I7w1BVplhHR+MwR++8EttOLsKUhL1HWWBYGGsYmn3WliZqAh8EMG4P/J3zJrazIziS5dg1rgRckICDwcPIWL79nwrXxDyk0gsspBv0xEaW0Kjr9L+9p8KyfG6LU/QGaWlJSXmz0MyMiL28BHCFy3S2rFre9jSrV7a2hZjt10iPkl8I1nQfFLmE2yMbHgU84jDDw/rOxzhDQrcdLN5YekCLaaSMuQ8153aIRtbw/M78NcwmFcdjv8CiWJSAQ97M37pUgOFBFvPPWT50Xv5Wr7C1BRXPz8sP24Dqak8+WYsz35bka8xCEJ+EIlFQVCnX9oMUVGP4NRSfUcj5IFxhQo4TZoEQPiCX4g5ekxrxx7zYXmcrYwJfh7H7P03tHZcQTuMDYz5pOwnAGy6sUnP0QhFjqktN5zbkzI0ED6YChbOEP0Y9o2DuZUhYAbEPdd3lHrVqKwD41qnTeM9bdc1Dt8My9fyJZUKlxkzsO3ZE4DQn34idNYsMeOf8E4RiUVBoDJOW30V4MjPYqXVQs76k3ZYd+wIsszjUaO0Ns2ghbGKqZ9UBmD50XtcyMcZToTs+azcZ0hIHH98nKCoIH2HIxRFhuZQf0jaYntt5oNtqbT3lIDpaYvt7R0HUUV3hrneDTz41KsEahmGrD+X72sESQoFjl+PwXFUWk+FZ8uW82Tcd8gpovuk8G4QiUVBUbUTOFaEhIi0b5aEQq3YuG8xrlSJ1IgIHg4fgTopSSvHbepZjI+ruaCW4eutF0lO1c44DkE7SliUoGHxhgBsubFFz9EIRZqBEXj1SFts79PfoFgVSI6FE7/AvGrw51B4dkffUeY7SZKY+kllarhZE5WQQt/VZ4hOyN/Z9iRJws7XF+epU0ChIHLbNh4OHYY6XnSFFgo/kVgUFAoltJia9vepJfDkon7jEfJEYWRE8XnzUFhZkXDxIqEztJcsTmxTERtTFdefRrP4n6L3waCg61S+EwA77uwgWaxPI+ibQgmVO8CAI9D1d3Crn7bY3rnV8Est2NKryL3fGBkoWfyFF06WxtwOjWH4xkBS1fnfHcn6f+zdd3hT1RvA8e/N6N60dFHasndbmU4oioiKIqIoiIiAgqAi4sAB8nPgQEW0CIIgU3HgQkARypC9iixBdlktlA660yS/Py6tIhQ60t4kfT/Pkydpmt773tv2JO8957zn3nup88nHKK6uZCcmcmzQYMyZmdUehxC2JImFPanfGZr3VBdA+mUk2KiqkNCGS51wwt97FxSF9PlfkvnTTzbZbi0vV8Z0V8cJT1p+gAOpMjHTnlwffj0BbgFkFGSw/tR6rcMRQqUo0LALPLoEHv0VGnZV32t2L4SpN8LcXnB0ndZRVpvaPm5M7dcaF4OO5X+l8v5v2sxb8+7cmbqfT0fn7U3e1q0cfagfppRUTWIRwhYksbA3Xd8CF284vhm2z9Y6GlFJXjfdRODQoQCcenUMebt222S7PWLD6dQ4iEKzhdEL/8SiwdU2cXkGnYFu0d0AWHRokcbRCHEZdTtA369hyFpo0QsUHRxYBjO7weddYf9vNWKxvZgIP969UMp78sqD/LRDm7knHm3aEDl3DoagIAr+/pujDz5IweHqrVolhK1IYmFvfEIh/iX18bKxkC1XLhxd4LAn8Ox4E9aCAo4/+SRFaWmV3qaiKLzRowUeLno2H0ln3kaZKGxPbo++HYCVySvJNeVqG4wQpQlpAb0+V+dhtH4E9C6QvAHm3wdTboRd3zn9Yns94sJ5/KZ6ADz/7Q52ndBmKJJb48ZEfjkfY2RdTCdPcrTvQza7ECVEdZLEwh61ewxCWqoTuRc9UyOuHDkzRa8nfMIEXKKiKDp1iuNPP43VBpO56/h78HzXxgC8veQvTmTIxD970TKwJRHeEeQV5ZGYnKh1OEJcWa360P0jePpPuO5JMHpCyk749lF1HoaTL7b3/G1N6NQ4iHyThcGzt3DmvDbH6lKnDlHz5+PWrBnmc+c49vDD5KyrOcPThHOQxKIUmq7MqjdAj09BZ4S/FsGfX1d/DMKm9N7e1JmcgM7Li7wtWzk9frxNttvv2ihaR/qTU2jmxe/+lHrodkJRFG6Lug2AFcdWaByN+C+nWHm7KviEwq1vwDO7oNNocPeHc4f+WWxvfQIUVm951uqg1yl89EAc9YI8OZWZz9C5Wyks0maOo6FWLerOnoVHhw5YcnM59vgQspYs0SQWISpCEotSaL4ya0hL6PSC+njxc5B5Qps4hM241qtH2IXJ3BlffkX615VPGPU6hfd6tcLVoGPN32f5clOyDSIVttAxoiMAa0+ulepQdkbz9t3eeQRApxdhxK6LF9v79SV1LYyV7zjdYnu+7kamPdwGb1cDW46mM/Yn7YYh6b28iPhsKt5du4LJxImRz3Ju/nzN4hGiPCSxsGfXPwNh10BBJnz/uNOPda0JvOPjCXrqSQBOv/4Gudu2V3qb9YK8eO7CkKg3f9nD8XQZ028PWga2JMAtgBxTDltStmgdjhDl5/rvxfY+Av9oyDsHK9+CiS3ht1fh/Gmto7SZ+kFeTHowDkWBLzcdY+4G7eau6VxcCP/gffwefACsVlL+9zpnPv5EeqWF3ZPEwp7pDdDzM3W865E1sPo9rSMSNlBryBC8b70VTCaOP/0UppSUSm9zwPXRtCkZErVT3nzsgE7R0bGO2mux+vhqjaMRohIMrurk7uFb4N7PIbgFFGbDukkwsZU6F/Ccc1Qxim9Su+RCzWs/7WbTYe16ZhS9npAxYwgcNgyAswkJnP7f/7Ca5SKjsF+SWNi7wIZw54fq45Vvw6FV2sYjKk1RFMLGv4Vro0aYz5zl+PAnseTnV2qbep3Cu71a4WbU8ceBs8zfdMxG0YrKKE4s/jjxh8aRCGEDegO07AVD/oA+X0NEezAXwJYZ8HFr+G4wpOzROspKG9qxPne2CqXIYmXo3K2aFsZQFIWgJ4cTPObVkmG0J54dhcUGBUCEqAqSWDiCmN4Q9xBghe8GOVXXc02l8/SkTsIn6H19yd+5k1MvvVzpXgZ1SFQTAN76ZS/J52RIlNbahrZFp+g4knWE1FwpHS2chKJAo67qQnuPLIb6N4PVDDu/hk+vhS8fhGTHnb+iKOqFmqahPqTlFPL4nC3kFWrbSxDQpw/hH7wPRiPnly4l+fHHMWc730R64fgksXAU3d6DoKaQkwpf9QVT5a5wC+25REQQ/tFHYDCQtXgxZxMmV3qbA66Lom3UhSFRC6VKlNZ8XHxoEqAme5tPO+4HLSEuS1Eg6nrotxAeWwXN7gYU2LcYPr8FvrgTDiY6ZMl0DxcDn/VrTYCnC7tOZNlFe+rTrRt1p05B5+FB7voNHHv4YZusiySELUli4ShcPOCBeeDmBye2wM9PO2RjLS7m2aE9IWPHAHD2k0/IXPRLpban0ym81ysGN6OOtQfSmLdRhkRprV1IO0ASC+HkwmLh/tkwfDPEPgQ6gzo3cE4PmBYPe38GizYlXCsqIsCDhD7XoNcp/Jh0kmlrDmkdEp7XXUfdWbPQ+/uTv2cPR/r0ofD4ca3DEqKEJBaOpFZ9uH8WKHr48ytY97HWEQkb8L/vPgIefRSAUy+9RF5SUqW2FxXoyfPFQ6IWy5AorbUNUddK2HR6k8aRCFENAhtCjwR4KgnaDwGDO5zcDgsegskdIOlLcKDyy9fWr8WYO5sB6kKkq/af0TgicG/Zgsj58zCGhWE6eoyjD/Yhf98+rcMSApDEwvHU6wS3va0+XjYG9vyoaTjCNmo/OxKvzp2xFhaSPGw4phOVW7fkkeuiaBcVQG6hmee//ROLRXq3tBJXOw6A5PPJpOenaxyNENXELwK6vaMutnfjKHD1hbP74IchMOka2DQNTNpNii6Ph6+NpHebCCxWeHL+No6c1X5ug2t0NJFffolrw4YUnTnD0Yf6kbtFyloL7Uli4YjaDYY2AymZzH14jdYRiUpS9HrC33sX1yZNMKelkTxkKObs7ApvT/evKlHrD6Uxe/0R2wUrysXbxZsonygAdqdpt+iWEJrwDISbX4VndsItr4FnEGQeg8Wj1LUw/vgQ8rO0jvKKFEXhfz2ac01dP7Lyixg8ewvZBUVah4UxuDaRc+fgfs01WM6f59jAQZxfsULrsEQN5/SJRUZGBm3atCE2NpYWLVowbdo0rUOqPEWB29+DJneCuRC+6gOnd2odlagknacnEZ9ORh8USMHff3Pi2WcrVa88KtCT0d2aAjB+yV8cSK14oiIqp0VgCwB2npX/U1FDufnCDc/AiJ1w+wTwrQs5Z+D319TVvJe/DjlntY6yVK4GPVMeak2wjyt/p2bzzIIku+gJ1vv6Uvfz6Xh16oS1oIDjTz5FxncLtQ5L1GBOn1h4e3uzevVqkpKS2LhxI2+99RZpzlBFQaeHe6dD3eugIAvm3us0CxTVZMbQUCImT0ZxdSVn1WpS3nmnUtvr1yGSGxsGUlBkYeTXSZjMjjV50lkUJxa7zu7SOBIhNGZ0V3vdn9oGPaZAYGMoyIQ1E9QEY8kLkFW5oaBVpbaPG1Meao2LXseyPSl8tPxvrUMCQOfuTp1PPsb3nnvAbObUyy+TNn265lWsRM3k9ImFXq/Hw8MDgIKCAqxWq/P8sxnd4cH5ULsZZKeopf0kuXB47i1bEnYhoUifPYdzs2ZVeFvFVaJ83Y38eTyTj1ccsFWYohz+nVg4TfsjRGXojRD7IDyxAXrPg7BroCgPNk7BkNCa2KPTIM0+Prj/W1xdf97q2RKAj5b/zdJdpzSOSKUYDIS+9Sa1Bg0EIHXC+6S+8y5WB6vEJRyf3ScWq1evpnv37oSFhaEoCj/88MMlr0lISCAqKgo3Nzfat2/Ppk0XV1/JyMggJiaGOnXq8NxzzxEYGFhN0VcDd3/o9z3UagBZx2FWd0g/qnVUopJ8butK7VHPApDy9jtkLf21wtsK8XXj9R7qB9uExAMkJWfYIkRRDk0CmqBTdJzLP8eZPO2ryghhN3Q6aHonDF4B/X6A6JtQLEVEnluDYcp18PXDcDJJ6ygv0qt1HQZcHwXAyK93sO/0eW0DukBRFGqPGkXt558H4NwXX3Bq9GisJsepwiUcn90nFjk5OcTExJCQkHDZ7y9YsICRI0cyduxYtm3bRkxMDF27diU19Z9Vbv38/NixYweHDx9m/vz5pKSkVFf41cM7BPovUpOLzGS150KSC4cXMHAg/n36gNXKyeefJ3fr1gpv666YMO6KCcNssfLMgiRyC7WfeFiTuOpdqetdF4BDmdrXwhfC7igK1I+H/j9T9MivnPK9BgWrWvnws44wpyccWWs36ze9fHtTrqtfi9xCM4NnbyEjt1DrkErUenQAoW+PB72ezB9/Inn4cCy5UnZcVA+D1gFcTbdu3ejWrVup3//ggw8YPHgwAwYMAGDKlCn88ssvzJgxgxdffPGi1wYHBxMTE8OaNWvo1avXZbdXUFBAQUFByddZWWq1CpPJhMmes373QOj7PYa5d6OcO4R15u0U9fkGajW0yeaLj92uz0E1qO7zEPD8cxSeOkVOYiLJTwyjzuzZuNSLrtC2xtzRmI2H0zh8Noc3F+3hte5NKxyX/D2oynMeon2iOZJ1hL/T/qZ1YOuqDq1aOcrfgcO272XgTP+Tptqt2FRvBLfGRuC6OQFl9/coB5fDweVY6rTDct0IrA26qMmIhibe35KeUzZy7Fwuw+ZtY3q/OAz6i6/XavV78bzjDkK9vTn97ChyVq3myCMDCJucgN7Xt8LbdKq/MTmWCu2jLBSrAw34VRSF77//nh49egBQWFiIh4cH3377bclzAP379ycjI4Mff/yRlJQUPDw88Pb2JjMzk+uvv54vv/ySli1bXnYfr732GuPGjbvk+fnz55fM1bBnboXnuP7A23gVnKbA4M2G+s+S4VFP67BEJSiFhdT5bBruycmY/P05NuwJzN7eFdrWXxkKn+7VAzCkqZmmfg7z7+/wluUtY1XBKtq5tOMuj7u0DsemcnNz6dOnD5mZmfj4+GgdTqkcvX2vqTwKUmmQupi6aWvQW9UPOJluEfwd0p0Tfu1A0W7wxYkcmLhLT6FFIT7UQo8o+5rT4HbkKOFfzESfl09B7dqcGDiQIr+KJxeiZipPG+/QicXJkycJDw9n3bp1XHvttSWve/7551m1ahUbN25k06ZNPPbYYyWTtocNG8bjjz9e6j4ud0UrIiKCU6dOUatWrSo7NpvKOYt+wQPoTiVhdfHE3Gs21uiOldqkyWRi2bJldOnSBaPRaKNAHY9W58F87hzH+z2M6dgxXJs1I3zmDHQV/CD0v1/+Ys6GY9T2dmXR8Gvx93Ap9zbk70FVnvOw+PBiXln/CnFBcXze5fNqirB6pKWlERoaaveJhVO076Vwpv/JUo/l/Gl0m6ag2zYTpVBdpM7qH4352iextuwNBldN4l2y6zRPLfgTgPfubUGP2LCS79nD76Xg7785OWQo5tRUDCEhhE2dWqGeb3s4FluRYymfrKwsAgMDy9TG2/1QqMpq164dSUlJZX69q6srrq6uJCQkkJCQgPnCOgJGo9Fx/vj8QuGRRfBVX5TDqzAseBDumQIt7q30ph3qPFSh6j4PxuBg6k77jCMPPEjBnj2kPPecWpbWUP5/4Zdub8bag2kcOpPDuF/28cmDcSgVHFIgfw+qspyHRrUaAXAo6xAGg6HC59weOcrfgFO071fh1McSEAG3vQkdR6krd2/4FCX9MIbFI2HNe3DtcGj9CLh6VWucd8VFsD81l08SD/Dyj3toHOpLqzp+Vz6WamRs1ozoL+dzbOAgCo8c4UT//kR8NhX3Vq0qtj1n/htzYFV5LOXZrt1P3r6SwMBA9Hr9JZOxU1JSCAkJqdS2hw0bxp49e9i8eXOltqMZV2/o+w00u1tdRO/bR2HlO3Yz8U2Un0tkJBFTPkVxcyNn9RpOvfZahUqXurvomdg7FoNO4Zc/T/HTjpNVEK34ryjfKAAyCzLJKMjQNJaazuHb95rO3R86Pg/P7IKu48E7DM6fgt9ehoktYOXbkHuuWkMa2aURtzStTWGRhcfnbOXM+YKr/1A1MoaHEzl/Hm4tW2LOyODoIwPI/mOt1mEJJ+TQiYWLiwutW7dm+fLlJc9ZLBaWL19+0dCoGsvgCr1mQodh6tcr31ITDFOetnGJCnOPiSH8g/dBpyPz2+84M/GjCm2nVR0/nuysTux/9YddnMyQv4mq5m5wJ8g9CICT2ZLMCVFpLp5w7RPwdBLc9TEE1IO8dFg5Hia2hN9egfOnqyUUnU7hw96x1A/y5FRmPkPnbqWwyL7mWxgCAoj8Yiae112HNTeX5KFDyVz0i9ZhCSdj94lFdnY2SUlJJcOZDh8+TFJSEseOHQNg5MiRTJs2jVmzZrF3716GDh1KTk5OSZWoikpISKBZs2a0bdu2soegLZ0ebntLbXR1Bti9EGZ2gyz7WNRHlJ93586EvDYWgLSpU0n74osKbWdYfH1iIvzIyi/iuW93YLFIb1ZVC/NSx16fyLbPlYVrCqdp34XK4ArXPAzDt6gX04JbQmE2rPtYTTB+HlEti8d6uxmZ9nAbvN0MbDmaztifdlf5PstL5+lJxJRP8bm9G5hMnBw1inOz52gdlnAidp9YbNmyhbi4OOLi4gA1kYiLi2PMmDEA9O7dmwkTJjBmzBhiY2NJSkpi6dKlBAcHV2q/TtdVfs3D8PCP4B4AJ7fDZ53g6DqtoxIV5H///QQ98wwAqW+/Q8ZlFo68GoNex4f3x+Bu1LP2QBrT/5D1FapauFc4ID0WWnO69l2odHpo0ROGrIG+30Lda9WhwFtnwsfXwHeDIKVqP+zXC/Ji0gNxKAp8uekY8zclV+n+KkJxcSFswgT8+/YFIOWtt0idOLFCQ2uF+C+7Tyw6depUUtHp37cv/nWVdvjw4Rw9epSCggI2btxI+/bttQvYnkXdoK5uGtQEsk+rC+n9MREs9tVdK8qm1mODCXjkEQBOvfwK51cklnsb9YK8GNO9GQDv/bqPXScybRmi+I/ixOJ49nGNIxHCiSkKNOwCjy6FAUugQRewWmDnN/DpdTD/AUiuuqQyvkltnu/aBIDXf/mLg1lVtqsKU3Q6gl95maCnnwIgbcpUTo8Zi/VCQQMhKsruEwthYwHRMGg5tLwfrGb4fSx89WC1T3QTlacoCrWffw7fHj3AbObEM8+Qu2VLubfzQNsIbmsegsls5akvt8uq3FWoeCiU9FgIUU0ir4OHvoXHV0PzewAF9i+Bz29RL64dXFElRU2GdKxH95gwiixWZuzTcyoz3+b7qCxFUQgcOpSQ114DnY6Mb77hxIgRWArsa+K5cCySWJTCqcfgunpBz8/gzomgd4X9S2Fqxyq9giOqhqLTEfrG63jFx2MtKCB5yFDy//qrfNtQFN6+tyUhPm4cOpvD/37eU0XRCkks7INTt+/i8kJj4L4v1HkYcf1AZ4Qja2DOPTCtM+xdZNPee0VRePfeVjQN8Sa7SGH4l0nkm+yzN8D/gd6ET/wQxWjk/LLfSR40GPP581qHJRyUJBalcPoxuIoCbQbAoGXgHw2Zx2BGV0h8C8yOv8R9TaIYDIR/+AHubVpjyc7m2KDBFF4oblBWfh4ufNA7BkWBrzYns2SnTO6vCsEe6tyvM3lnNI6kZnP69l2ULrAB3P2JWkmq/VAwuMPJbbCgL0y5Hv78Bsy26bV1d9GT0CcGD4OVP09k8eoPu+x2HoPPrbcSMW0aOk9Pcjdv5ujD/Sk6I+2UKD9JLGq60Bh4fBW06KUOjVr1Dky/Bc7s0zoyUQ46NzciPv0U1yZNMJ89y7FHB2JKSS3XNq6rH8iQjvUBeHHhTilBWwUC3QMByCrMotBcqHE0QtRgvnWg29vqWhg3PguuPpC6BxYOgk/awNYvoKjyQ4Ii/D3o39CCToFvth5n7sbyXfSpTp4d2hM5Zzb6WrUo2LuXI336lvsilRCSWJSiRnWVu/lCr8+h1wxw84NTSTD1JtgwRSZ2OxC9tzd1p0/DWLcupuPHOTZgAEVpaeXaxsgujYip40tmnolnFiRhlhK0NuXj4oNBp66WnpZXvt+NsJ0a1b6LK/MMhJvHwIid0PkVtXJi+mH4+Wn4KBY2fAqFuZXaRRM/K6NuVdcNGvfTbjYfsd85jW7NmhE1fx7GOnUwJSdzpE9f8vfu1Tos4UAksShFjewqb3EvPLEe6neGonxY+gLMvgvSDmodmSgjQ2AgdWfMwBAaSuGhQxwbOAhzRkaZf96o1/HRA3F4uOjZePgcU1bJ796WFEUp6bU4m3dW42hqrhrZvosrc/eDm567sJr3W+AdCudPwtIX1dW8V0+A/IpXzRt0fRR3tgqlyGJl6NxtnLbDydzFXCIjiZw/r6QH/Gi/h8nZuEnrsISDkMRCXMwnDB5aCLdPUMeeHlkDk69Ft/ZDFItUC3IELnXCiZw5A31QIAV//cWxwY9hzs4u889HBXoy7q7mAHy4bD9JyRlVFGnNVLz6tiQWQtghF0+4dhg8vUMtcOIfBblpsOJ1+LAlLH8dcsrf26goCu/2akWTEG/OZhcwdN5WCorsczI3gLF2bSJnz8KjTRss2dkkDx5M9vLlWoclHIAkFuJSigLtBqu9F/XiwVyAfuWbdNr3KspxuWrhCFyiooicMQO9nx/5O3eS/PgQLLll787v1boOd1y4uvb0V9vJLpCk0lZqudcC4Gy+JBZC2C2Dq1rgZPhWuOczdf2ngkxYM0HtwVj6EmSVr7qbh4uBqf1a4+tuZPuxDF77yb4r8Ol9fIiYPg2vW27GWljI6ZHP4rNJPgOIK5PEQpQuIBr6fQ89p2H1qIVP/gn0s+6ARc9AXobW0YmrcG3YkLozPkfn7U3e1q0kDxtW5vrkiqLwVo+WhPu5czQtl7E/Vu1qtTWJDIUSwoHoDRDTG4auh95zITQWTLmwIQE+ilHnYpw7XObNRdbyZNKD/1qZ244nc4NaGKTOxIn49roXLBZCvlvIuWnT7La6ldCeJBalkMl9FygKtLqfosfXczTgRhSssGUGfHyNem+x365coU7EqzvtM3QeHuSu38CJp57GWli2akS+HkY+7B2LToHvth3npx2y9oIt+Ln6AZBZIKuca0Xad1FuOh007Q6PrYSHvoO614G5UK0e9XFrWPgYpJZtDaGOjYJ4rmtjAMb+tIutR9OrLm4bUAwGQl9/Hf/BgwA4N+ljUt4aj1WKu4jLkMSiFDK57z88AkiKHExR3+8hsLE65nTRM2r1qMOrtY5OXIF7bCx1pnyK4uZG9qpVnBj1HNaisg1tahcdwPD4BgC8/P1OjqdXrjqKUCtDAWQVZGkcSc0l7buoMEWBBrfAo0tgwBL1sdUMfy6Aye1hwUNwcvtVNzO0Y31ubxmCyWxl6NytpGbZ72RuUHuxaz31FKnd7wQgfc4cTj73fJkvVImaQxILUS7WqBth6Fq47R21TG3KLpjVXW1M049oHZ4ohWe7dtT55BN1ZdXffuPk6JewmsvW2/TUzQ2Jq+vH+fwiRnyVRJFZrlJVRkliUSiJhRAOLfI6tffisZVqbwbA3p/hs04wpyccXVfqjyqKwnu9YmgU7EXq+QKemLeNwiL7b1szbriB4PHjwWAg65dfSB76BJacHK3DEnZEEgtRfnojdBgCT26HtoNA0amN6SftYNkYyLXfGt01mdcN1xP+0UfqG8LPP3Ny9OgyJRcGvY6Pesfh5Wpgy9F0EhKlBG1leLt4A3C+8LzGkQghbCIsTp1/8cRGaPUAKHo4uBxmdkM/+05qZ/0Jl5mT4OlqYGq/Nni7qW3r64vsezJ3Me877yDi08ko7u7krF3L0QGPUpRu38O5RPWRxEJUnGctuON9GPIHRHcEcwGs/UhdVGj1e1BQ9hKnonp4d44n/P331eTip585+WLZkou6tTx4vYdagnbSir/ZdiyjiiN1Xj6u0mMhhFOq3QR6ToUnt0LrAaB3QZe8gWsPTkA/4xbY89Mli85GB3ry0QOxKArM2XCUrzcnaxR8+XjdeCORX8xE7+tL/p9/crRPX0wnZR6ekMSiVDK5rxyCm8PDP8KDCyC4hVqSb8UbMCkWNk6ForJVIhLVw6frrYR/8P4/PRcvvFim5OKeuDr0iA3DbLHy7Dd/kicVaCtE5lhoT9p3UaUCoqH7RHh6B+Z2QyjSuaA7vQO+7gefXgs7FoD5nwa0c5NgRt7SCIBXftjlMGsHucfEEDl/HoaQEAoPH+ZIn74UHDigdVhCY5JYlEIm95WTokDj2+DxNdBzOvhHQ84ZWPI8fNwGts+7qCEV2vK59VbCP/xATS4WLVKTizJM6P5fjxbU8XfneEY+3xyW5qMiZI6F9qR9F9XCJwxLlzdY1vxDzNePBFdfOPMXfP/YP5UVL1x4GxbfgFubBVNotjBkzlbOnHeMC3Ku9esT9eV8XOrXp+j0aY70fYjc7VefvC6cl3wyELal00Gr+2D4ZrjjA/AKgcxj8OMT8Ekb2DYbiqSKhD3w6dKl3MmFj5uRjx6IQ69T2HpWx49J0vVdXsVDofLN+RSa5X9BCGdXaPDG0ukleGYn3DwGPAIh46haWfGjWNgwBZ05n/fvj6F+kCens/IZNm8bJgcplGEMDSVy7hzcYlphyczk2IBHyV4t1SJrKkksRNXQG6HtQHhqO3T5H7gHQPph+OlJmBQHm6aBKU/rKGs8ny5dqDPxw5IKHyeff+GqyUXrSH+GdaoHwNhFezmWJiVoy8PL6IWCAkivhRA1ipsv3PgsjNipVlb0DoPzJ2HpCzCxFd5bP2XaA03xcjWw6cg53lq8V+uIy8zg70/kzJl43ngj1vx8kp8YRuZPP2kdltCAJBaiarl4wPVPwzO74NY3wSsYso7D4lEwsRWsnSSTvDXmfcst1PloIhiNZC1eXKbkYuhN0dTztpJTYOapr7Y7zJU1e6BTdLgZ3ADIk+RaiJrHxUOtrPh0ktqz71sXclJh2avUm9uB71uux4tcZq494lALk+o8PIiYnIBP9+5QVMTJ518g7YsvtA5LVDNJLET1cPGE64bD03/C7RPAN6KkIWViC1j5NmSf0TrKGsv75psvSi5OPPccVpOp1Ncb9Dr6NTTj7WYgKTmDScv/rr5gnYC7wR2A3CLp7RGixjK4XujZ3wZ3faLOTcw7R8NdH7LF8xlGGL7lzW/XsT/FcUpTK0YjYe+8TUD/hwFIffsdUt9/H+tlyu0K5ySJhaheRjdoNxie3AZ3J0BAPchLh5Xj4cPm8ONwSHWc7l9n4t25c0lycX7JUo4/PQJLQekTCANc4X/dmwKQkHiAjYfSqilSx1ecWOQVSY+FEDWe3gjX9IPhW+CezyCwEW7m84wwLOR33XA2Tx9B9rnTWkdZZopOR+0XXyRo5EgA0qZN59Qrr5SpQIhwfJJYlELKEVYxgwvEPaQ2pL1mQNg16joY2+fA5A7qqqUHll92USFRdbw7dybik49RXFzIXrGC40OfwJJX+offO1uFcu81dbBY4ZkFSWTmlt7LIf4hiYW2pH0XdklvgJje8MQGuO8LigKb4q3k0df0LcaPY7D++jKcT9E6yjJRFIXAxwYT+sbroNOR+d1Cjj/1NJb8fK1DE1VMEotSSDnCaqLTQ4t7YfAKePRXaNpdXcn74HKY2xMmX6tWkjJJY1RdvDp2JOKzqSgeHuSsW8exwYMxZ5c+D2bc3c2JrOXBycx8Xvphp3R5l4GHwQOA/CL5u9aCtO/Crun00PweDE+s4/DNn7HLGo2rNR9l/SfwUStY/DxkntA6yjLx69WLOpM+KrlYdWzQIMxZUrTCmUliIeyDokDdDtB7rjpMqv1QcPGCM3vVSlIfNIXfXoG0g1pHWiN4duhA3c+no/P2Jm/LVo49MgBzRsZlX+vlauCjB+Iw6BR++fMU3249Xr3BOqCSydvSYyGEKI1OR/SNvUm67QceKXyObZYGUJQPm6aqC9AuegYyjmkd5VV533KL+n7i5UXelq0cfagfptRUrcMSVUQSC2F/AqKh29vwzG7o8ro60TvvHKz7WF1UaHYP2PuzLLhXxTzi4oic9QV6f3/yd+3i6MP9KTp79rKvjY3w45ku6sqxY3/azZGzOdUZqsORoVBCiLLq2yGSWrHd6Vk4jqG6MRSEdwBzobrA3qQ4+HGY3V9082jblsi5c9AHBVKwfz9HH+xD4ZEjWoclqoAkFsJ+ufvB9U/BU0nwwJfQoAugwKFEWPAQTGypVpPKOqVxoM7LrVkzIufMxhAUpL4ZPNQP06nLn+8hHevTPjqA3EIzT0sJ2iuSxEIIUVaKovBGjxY0DfVlSW4THjCNwdRvEdTrBJYi2D5XXYB24WNwZr/W4ZbKrUkToubPxxhZF9OJExzp05e83bu1DkvYmCQWwv7pDdDkdnjoW3XBvetHgEctdWGh4mpSCx6Cv5eBxax1tE7HtUEDIufOwRAWSuGRIxzt+xCm5ORLXqfXKXzYOxYfNwM7jmcy8Xf7fYPTWnFikW+WORZCiKtzd9Ez5aFr8HEzsP1YBm/s8oeHf4SBy6DhrWC1wJ8LIKEdfPMIpOzROuTLcomIIGrePFybNcV87hzHHu5PzoYNWoclbEgSC+FYAqKhyzgYuRfu/RzqXgdWszo0al4vNcn4/TU4e0DrSJ2KS2QkUXPn4hIZienkSY73fwSXlEurk4T5uTO+ZysAJq88yAYpQXtZJetYmGQdCyFE2UTW8uTD3rEAzFp/lB+2n4CIdtD3G3hsJTS5E7DC7u/h0+vUBMMOy7cbAgOJnD0bj/btseTkkDz4MbKW/qp1WMJGJLEQjsngCi17waNLYOh6aD8E3APg/Cn440P4pDV8fitsnQX5UoHCFoxhYUTOnYNrw4aYz5whYspU8nfsuOR1d7QK5f42dbBKCdpSFU/elh4LIUR53Nw0mKc6NwDgxYV/svfUhfe3sDh4YB4MWQvN7qYkwZh8LXwzAFL/0i7oy9B7eRHx2VS8b70Vq8nEiWeeIf3LL7UOS9iAJBbC8QU3g27vwLN/wf2zoWFXtWRt8kb4+Sl4vzF8PwQOrwGLjPuvDENQEHVnz8K1VSv0ubmcGDyY7DVrLnnd2O7NiQ705FRmPi99LyVo/8uoMwJgMkvSJYQon6dvacSNDQPJN1kYOncrWfn/akdCWqjvg0PXQdO7UBOMher6UN8+alcJhs7VlfAPP8Cvd2+wWjk97n+c+SRB3i8cnCQWwnkYXNUrNX2/VodK3TIOAhuBKRd2fAmz7oSPYtShUnY6/tQRGPz9CZ/2GTmNGmHNyyd56BNkLvrlotd4uhqY2DtWLUG78xTfSAnai5QkFhZJLIQQ5aPXKUx6II5wP3eOpOXy4nd/XvphPLg59J6j9mAUJxi7vruQYAyEM/s0if2/FL2ekNfGEvjEEwCc/eQTUl5/HatZ5ks6KkksSiErszo47xC4YQQM2wQDf4fWj4CrD2QeU4dKfXotTL4O1nzgEHXA7Y3Ow4MT/R/Gq1s3KCri5KhRnJsz96LXxET4MfJWtQTtaz/t5rCUoC1h1EtioSVp34Wj8/d04ZM+cRj1Cot3nmbWuiOXf2FIiwsJxh/qArRYYde3kNAevhtkF1WkFEUh6KknCX7lFVAU0ud/yYlRo7AUFmodmqgASSxKISuzOglFgYi20P0jGLUf7pulTnDTu0Dqblg+Ti1b+3lX2DwdcmSycZkZDAS/PR7/vn0BSHnzTc5MmnTRlbPHb6pPh3pqCdoRUoK2hPRYaEvad+EM4ur6M7pbUwDeXLyXHckZpb84pKW6AO3ja/6Z5L3zG5jcHr4bDGf/rpaYryTgob6Evz8BjEbOL1lK8uOPY86WC1KORhILUXMY3aF5D3WC26j9cNfHEH0ToEDyBvjlWXi/Ecy7D3Z8BfmZWkds9xSdjuBXXibwqScBODv5U06/Nq6kG7u4BK2vu5EdxzP56Hft37zsQXFiUWSRRR6FEBU34PoobmsegslsZdj8bVcvlhHaSn0PfHy1mmBYLbDza7VM7cLHNK+o6HP77URM+RTFw4Pc9Rs41r8/RefOaRqTKB9JLETN5O4P1zwM/X+GkXvg1jchNFZdbOjv3+D7x+G9BjC/NyTNh7wMrSO2W4qiEPTEE4S8NhYUhYwFCzjxzEgsBQUAhPq6M75nSwAmrzzAtmPpWoZrF2TythDCFhRF4Z1eragb4MHx9DxGfbujbJOfQ2P+STAa3/GvdTDawsLHNV3J2+v664mc9QV6f3/yd+9WV+k+fkKzeET5SGIhhE8YXDccHl8Fw7dAxxfUSd/mQti/FH4YqiYZ8+5D2TEfY1G21hHbJf8HHiD8ww/UbuzffuPYwIGYMzIAuL1lKPfEhWOxwsgFSeQW1uwr9TLHQghhK77uRib3vQYXvY5le1L4/I/DZf/h0Bh4cD48tgoa334hwfgKPmkLPz0JmdoU3nBv2ZLIefPUhVmPHuXogw+Sv0/7+SDi6iSxEOLfAhtC/EswfDM8sQE6jYagpmAxwd+/YVj0FLftfBL9l/fDttkyJ+M/fG67jbrTPkPn5UXelq0c6fsQphPqlabX7mpOqK8bR9JyGb/YfkoeakHmWAghbKlFuC+vdm8GwNtL/mLr0XL2DIfFwoNfqgvtNbxVXXh222yYFAdLXoDsVJvHfDWu9aKJ+vJLXBs2oOjMGY7260fu1q3VHocoH0kshChN7abQ6UUYtkGtLhX/CtbazdFhRndohXo1Z0JDmHUXbJwKGclaR2wXPDt0UK80BQdTePAghx94gPw9e/B1NzLhvhgA5mw4yqr9ZzSOVDuSWAghbO2h9nW5s1UoRRYrT87fRnpOBaoqhcWpK3k/+itE3aj23G+cAh/FoEt8vdp77I3BwUTOmYN7XByWrCyOPTqQ8ysSqzUGUT6SWAhRFkGNoeNzFA1exe9N38Hc6WUIaaVe1Tm8CpY8DxNbwJQbYeU7cHon1OBFftwaNyJqwVcXVuk+y9GH+pG95g+ubxDII9dFAfDcNzvIyK2Z5QRljoUQwtYURWF8z5ZEB3pyMjOfkV8nYbFU8H2obgd1DmK/HyC8NZhy0a/7iC67n0W3ZgIUnLdp7Fei9/Oj7ozP8erYEWtBAceffJKMhd9X2/5F+UhiIUQ55biFYrn+GRiyBp7ark78jrxeXe379J+w8i2YcgN81AqWjlZX/DbXvDkFxpAQIufPw6NDByy5uSQPGULGd9/xwm1NqBfkSer5Al79cbfWYWpC5lgIIaqCt5uRhD7X4GrQkbjvDFNWV2IStqJA/XgYtBwe+BJr7eYYLXnoV7+tLja77mMw5dku+CvQubtT55OP8e3RA8xmTr30Emmff14t+xblI4mFEJURUE+d+D1gMYz6G+6erFbYMLirC+9tmKyu+D2hAXw/BPb8VK1XerSm9/am7mdT8eneXX0zePkVsqd+yof3xaDXKfy84yQ/7TipdZjVToZCCSGqSrMwH8bd1RyA93/bz5YjlSzXqijQ5HaKBiWyJeoJrAH1ITcNfntFnYOxeToUVX3vs2I0Ejr+LQIefRSA1PcmkPLue1gtsj6SPXH6xCI5OZlOnTrRrFkzWrVqxTfffKN1SMJZeQZCXF+1wsbzh+CB+RDbF9wDIC8ddnwJX/eDd6Jh9t2wfrKmJf2qi+LiQti771DrsccAOJuQQNDUCTx5UxQAr3y/k9OZ+RpGWP0ksRBCVKXebSPoERuG2WLl6a+Srr6+RVkoOk74d6Do8bVw1yfgGwHnT6lrQE1uD7sWVvkQYEVRCH7+OWo/NwqAczNmcGr0S1hN0pbaC6dPLAwGAxMnTmTPnj389ttvjBgxgpwcWclRVDEXD2hyB/SYrPZkPLIYOgxTezgsJji0En4dDR9fAx+3hqUvwaFV1XLVRwuKolB75DPqWhc6HZnfLaTHV+/RPtBAVn4Roxf+Wbba605ChkIJIaqSoii83qMFkbU8OJGRx4u2bGN1BrimHzy5FW6fAJ614dwh+HYATIuHw6tts58rqDVwIKFvvQV6PZk//sjx4U9iyaueYVniypw+sQgNDSU2NhaAkJAQAgMDOSerOIrqpDdA1PVw21vqnIzhW6HrWxDdUW2g0w7AhgSYfRe8Ww8W9IPtczUp71fV/B94gDoJn6B4eJC3YQOv/TaRunnnSNx3hh+Sas4CSAbFAMjkbSFE1fF2MzLpgTgMOoUlu07z1WYbVy40uEK7wer7WqeXwMULTm6HWd1h7r1qEZMq5NfzHup8/DGKqyvZq1Zx7NF/1k4S2rH7xGL16tV0796dsLAwFEXhhx9+uOQ1CQkJREVF4ebmRvv27dm0adNlt7V161bMZjMRERFVHLUQVxDYAK4dBv1/gucPw/2zIfYh8AyCwvOw9yf4cZhayvazeFj5NpzYBk4yjtQ7Pp6oeXMxhITAsSN8/MfHND97iNd+2kPq+ZoxJEqv6AGwUnN6aYQQ1S8mwo/nb2sMwLifd/N3ShXM8XP1gk4vqAlGu8fUC2YHflerJC58HNKP2n6fF3h3jqfuzBnofHzI276do/36YTp9usr2J67O7hOLnJwcYmJiSEhIuOz3FyxYwMiRIxk7dizbtm0jJiaGrl27kpp68dXec+fO8fDDD/PZZ59VR9hClI2bDzS7G3okwLP7YfAK6PgihMaq3z+5DVaOV7uXP2iiTgD/82vIduw1INyaNiXq6wW4tWiBS8553l73Ga33bWBsDakSpVPUptdsNWsciRDC2Q26oR43Ngwk32ThyS+3k2+qonbHqzbc/p667lPznoD1wirebdThvrlVM1rE45priJw7B0Pt2hT8fYAjffpQcKgcq48LmzJoHcDVdOvWjW7dupX6/Q8++IDBgwczYMAAAKZMmcIvv/zCjBkzePHFFwEoKCigR48evPjii1x33XVX3F9BQQEFBQUlX2dlZQFgMpkw1eDJQcXHXpPPAVTDeajdSr3dMArOn0Y5uBzdgd9QDq9EyU5RJ4Dv+BIAa0grLPXisdaLx1qnHehdqiamy7DJefD3J2zG56S89BI5vy/nuW1f8mV2Kj81DaRbqzAbRVq1KnoeLGa198lisTjF/5SjHIMzt+/O1EbLsdjeO/c0p3vCev46fZ43Fu1m7J1Ny72NMh+LT13o8RlKuyHoVvwP3dE/YEMC1u1zsNwwEkubweowKhvSR0cTPnsWJ4cMwXTkKEf69iVscgJuLVpU7lgcQHUcS3m2rVgdaMakoih8//339OjRA4DCwkI8PDz49ttvS54D6N+/PxkZGfz4449YrVb69OlD48aNee211666j9dee41x48Zd8vz8+fPx8PCw0ZEIUT46i4mAnL+pnbWT2ud34pt37KLvF+lcOevVlFSflqR6tyTHNVgtEegILBYCf/2NgJUrAVhXJwb3gb3w9DBqG1cVSjOn8eH5D3HFlVf9XtU6nErLzc2lT58+ZGZm4uPjo3U4pZL2XdRke9MVpvylDsMc1NhMy4Bq+PhntRJ0fifNT35d8r6V7VKbPeG9OeXbxubvU/rsbMJnfoHb8eNYXFw42a8fuY0a2nQfNVF52niHTixOnjxJeHg469at49prry153fPPP8+qVavYuHEjf/zxBzfddBOtWrUq+f6cOXNo2bLlZfdxuStaERERnDp1ilq1alXNgTkAk8nEsmXL6NKlC0aj837guxq7OQ/ZKSiHV6E7lKj2ZuRcPDTK6lv3Qm9GZ6xRN6pDrmyoKs5D2ncLOfO/1zFYzKSE1af9vGkYAgNtsu2qUtHzcCL7BN1/6o67wZ2196+twgirR1paGqGhoXafWDhz+243bZMNyLFUnbeX7uPztUfxczfy07BrCfV1K/PPVupYLGaUP79Cv/JNlBx1qLql7nWYb3kdQmPKt62r7Sonh1MjniFvwwYwGAh+6028/zPyxd5+L5VRHceSlZVFYGBgmdp4ux8KVVk33HADlnJMenV1dcXV9dIuOqPR6PB/fLYg50Gl+XnwrwP+feGavuqk7pSdcHAFHFgOxzagZB5Dv30WbJ8Fih7qtIUGN0P9zhAWBzq9TcKw5XkIeaA3KV5BZI1+juCTBznYqzf1p36Ke4vmNtl+VSrveXAxqsPWLFaLU/w/Ocox1IT2XY7FPtnLsbzQrRmbjmSw80QmLyzczbxB7dHpytdrULFjMULbR6BVL1g7EdZ9jO7YOnQzblHXe7r5VfAOKec2S+HnR93PpnLyhRc4v2QpKS+8CJlZBPR76NKo7OT3YgtVeSzl2a7dT96+ksDAQPR6PSkpKRc9n5KSQkhI5f5AExISaNasGW3btq3UdoSocjqdesXnhmfgkUXwwhHo8zW0exxqNQCrGZI3QOKbMP1meK8+fPMIbJsNmfZV4jXmzs6sH/kOyV5B6NPOcLRvXzJ/+UXrsGyuePK2xeoclb4cjbTvoqZyMeiY9GAc7kY96w+lMWNtNU9ydvWCzq/A8C3Q8j7ACklzYdI1sOo9MNmmMqDOxYXwCRPw79MHrFZS3nyTM5Mm1aj1krTi0ImFi4sLrVu3Zvny5SXPWSwWli9fftHQqIoYNmwYe/bsYfPmzZUNU4jq5eoFjbrC7e+qCxg9/SfcORGadgdXX3UV8N3fw09PwofNIKE9LB0Nf/8OhblaR8+gPp0Yf+fzbApugrWggJPPjiL1/Q+wmp2ngpIkFtqS9l3UZNGBnrxyYfL2u7/uY9/pKihBezV+EXDvdBj4u9qjbsqBxDdgcgfY/6tNdqHo9QS/+gqBTw4H4OzkTzk99jWnei+xR3afWGRnZ5OUlERSUhIAhw8fJikpiWPH1ElAI0eOZNq0acyaNYu9e/cydOhQcnJySqpECVHj+UdCmwHQey48fwge/Q06vqA25ooOzvwFGybDvHvhnSiYfTesnQQpu0GDqztergZe6NWacR0e5dtG8QCkTZvG8SeGYc7OrvZ4qoIkFkIILfVpV5f4xkEUFlkYsSCJgiKNPmxHtIWBy+Dez8E7FNIPw/z7Yf4DcK7yvSmKohA0bBghr40FRSHj6685MeIZLP+aayVsy+4Tiy1bthAXF0dcXBygJhJxcXGMGTMGgN69ezNhwgTGjBlDbGwsSUlJLF26lODg4ErtV7rKhVPSG6Bue4h/CQb9Ds8dhPu+gGseBp86YC6AQyth2avw6XXwfhP4fijs/BZyzlZbmF2bh9CxSTCfN7uD729/rGRl1SO9H6DwyJFqi6OqFCcWVqzSNa8Bad9FTacoCu/0aoW/h5G9p7KY+PvfWgYDLXvB8M1w3VPqAnv7l6i96YnjwZRX6V34P/AA4R9+iGI0cn7ZMk4NfQJdfs1YkLW6lWny9qRJk8q94QEDBuDt7V3un/uvTp06XfWNd/jw4QwfPrzS+/q3YcOGMWzYMLKysvD19bXptoWwGx4B0Pwe9Wa1wtm/4eBydRL4kT8g+zTsmK/eUNS5HA1uRom8CcVSVGVhKYrC/+5uwS0frOIzGhH36gc0+Ph/FB48yOH7exP+wQd43XB9le2/qun+dU3HYrWUrMQtqoe070JAbW83xvdsyZC525iy6iCdm9SmbVSAdgG5esOtr0PcQ7D4OTi8Cla9ra7d1O0daFz6mmZl4XNbV/R+vhx/Yhh5mzdT58QJim7qiDHURpPGBVDGxGLEiBHUqVMHvb5sb37JycnceeedNkkshBDVRFEgqJF66zBUnUSXvEFNMg4mqpWnTiXBqSQMa97ndp0butwF0LCLWm2qVn2bhhMR4MFTNzfkvV/38epfFn6f9yUZo0aSl5RE8mOPUfu55wh4pD+Ko6zX8S863X8SCySxEEJUv9tahNKrdR2+3XqcZxYkseTpG/F207hKUlBjePhH2PODumJ3xlH48gFofAfcMQF8Kr6AqmeHDtSdPZvkxwbjdvIkJx5+mLozPsclIsJ28ddwZS43u2XLFmrXrl2m1zpDQpGQkEBCQgJmmeQjaiqjG9TrpN4Azp9WE4yDK7AeXIEh9yz8/at6A/CPUhOM+jdD9I3gVvkrwYNvrMd3245z6EwOn+7M4IXZszg9bhyZ3y0k9Z13yN+zh9D/jUPn7l7pfVWni3oskHkW1U3adyH+MbZ7M9YfTON4eh6vL9rDu71su65EhSiK2pPeoAusfg/WfwL7foHDq+GWsdBmoFoRsQLcWzQnfPZsDvZ7GJKTOdKnD3WnTcOtSRMbH0TNVKbfytixY/Hy8irzRl966SUCAjTsTrMBqRoixH94h0Dsg3DvNIpG7GFl4/9hjn8Vom4EnRHSj8CWGbCgL7wTDTNuU8sHntiqrrVRAS4GHa/coVYvmfnHEZLPmwh94w2CX3oJ9Hqyfv6ZIw88SOHRozY80KpXPMcCwGyRD7fVTdp3If7h7Wbkg/tjUBT4estxlu9NufoPVRdXL+gyDh5fDeFtoPA8LB4FM7pC6t4Kb9YlMpJjTwzFpVEjzGfOcvShfuRs2mTDwGuuMicWHh4eZd7o6NGj8fPzq2hMQgh7p+jI9IjCct3T/6yd8eACaPfYP2tnHFuvlg+c1hkmNIDvBkHSl3C+fG9a8Y1rc1OjIArNFt5avBdFUQh4uB+RX8xEHxhIwb59HO51H+cTE6vmWKvAvxMLKzJ5Wwihrfb1ajHohmgAXvp+J5l5Jo0j+o/g5jDwN+j2Hrh4wfFNMOVGWPEmFBVWaJNmHx/CZ87AvU1rLNnZJA8azPnff7dx4DWP3VeFEkI4AFcvaHwb3P7ehbUzdsCdH0KTO8HVB3LTYOc38MMQeL8RTLkBfn8NDq+56puCoii8ckdT9DqFX3ensO6gWp3Ko21bor/7DvfYWCznz3N86BOcmfQx1gr2jlSnf0/WNlulx0IIob1nb21MvUBPUrIKeGPRHq3DuZROD+0fg2EbofHtYDHB6ndhWjyc3lmhTep9fKg7fTpenTtjLSzk+FNPk/HttzYOvGYpd2KRlpbGsGHDaNasGYGBgQQEBFx0cxZSjlCISvCPgjaPwgPz1LUzBiyBG5+F0Fj1+6d3wh8fwqw74d1o+LIPbJ6uDqe6jEbB3vRtXxeA//28B7NFvcpvDK5N5OxZ6uqqwNnJk0keMgRzRkbVHl8l/XvCuZSbrX7SvgtxKTejnnd7tUJR4Jutx1m5L1XrkC7Ptw48MF8tle5RC1J2wWedYNW7YC5/T4vOzY06kz7C996eYLFw6pVXOTv1M2mbK6jMk7eL9evXjwMHDjBw4ECCg4MdsiJLWUg5QiFsRG+EyOvU281jIPsMHFzxT1nb3LPqpLx9v6ivD6gPDW5Rb1HXg4snAM/c0ogftp/gr9Pn+WH7Ce5tXQcAxcWFkDGv4h7TilNjxpKzeg2He91HnY8n4da0qVZHfUXSY6Etad+FuLw2UQE8cl0UM9ceYfTCnfz2zE3aV4m6nOLJ3ZE3wKIR8NciSHwT9i2GHlOgdvkmYisGA6FvvIEhoBZp06Zx5sMPKUo7S/CLL6JUcJJ4TVXuxGLNmjX88ccfxMTYQdUAIYTj8QqCmN7qzWKB0zvUBOPAckjeCOcOwqaDsGkq6F3UhKT+zfg3uIUhHevx7q/7+fD3/XSPCcPF8E+D73v33bg2asTxJ5/CdPw4Rx54kND/jcP37rs1PNjL+/cFGVl9WwhhT57r2pjle1M5di6Xtxb/xfieLbUOqXReQdB7rjrUdvEoOLkdpt4EXf4H7R9XE5AyUhSF2s+ORF8rgNS33yF99hzM59IJe+tNFBeXKjwI51LuNKxJkybk5VV+FUQhhECng7A4uGkUPLoEXjisvkm0fgR8I8Bc+K+VwK9lyPYeTPCYRYPMdXy9fv8lm3Nr2pTob7/B86YbsRYUcPKFFzn12mtYCgqq/dCupngCtyQWQgh74uFi4J17WwHw5aZj/PH3WY0jugpFgVb3wxMboeGtYC6ApS+oa1/kpJV7c7UeeYSwd98Bg4GsRYtIfmIYltzcKgjcOZU7sZg8eTIvv/wyq1atIi0tjaysrItuzkLG4AqhATdfaNodun8EI3bCsM3Qdbw6LMrghi7rOL0sv/KFy3v0Wn4j5rn3webPIfN4ySb0fn5ETJlC4BNPgKKQ8dUCjjxofyVpJbHQjrTvQlzZtfVr0a9DJAAvLvyTvEIHGLLpEwp9vlYrR+ldYf9SmHK9uvZFOfnedRcRkxNQ3NzI+eMPjg4YQFF6ehUE7XzKnVj4+fmRlZVF586dqV27Nv7+/vj7++Pn54e/v39VxKgJqXMuhMaKVwK/9gl46Dt4/jA8uADzNQNIUQJxoxD9gd/gl5HwYXP49Hr4fRwc24iClaCnniTis8/Q+/tTsGcvh+/tRdavv2l9VCWKF8mTxKL6SfsuxNW92K0J4X7uHE/P46Plf2sdTtkoilo5avByCGwE50/BrLtg+etgLirXprxuuom6M2eg8/Ulf8efHH2oH6ZTp6oocOdR7sSib9++GI1G5s+fz/Lly1mxYgUrVqwgMTGRFStWVEWMQggBLh7Q+Db0d01kffdV3FbwNh/xIObwdqDo1Mogf3wAM26F9xrAwsfwCjhD9II5uLdW65SfePppTr/5FtbCitU9tyW9Tp3ALYmFEMIeeboaGHdXcwCmrznEvtPnNY6oHEJawmMr4ZqHASusmQBze5Z7aJRHXBxR8+ZiCAmh8OBBjjzYh4IDB6okZGdR7snbu3btYvv27TRu3Lgq4hFCiKvqHhvOx4lN+fBMXVwbNWFIX3848Lva9X3gd8g7B38ugD8XYNS7EnlbJ86EdSDt5w2kz5lDXlIS4R9+iEudcM2OQUGdVCiJhRDCXt3SLJjbmoewdPdpXvlpD/21azLLz8UT7voYojvCT0/B4VXwWUfoPQeCWpR5M64NGhA1fx7HBg2m8NAhjvZ9iIipU3CPja262B1YuXss2rRpQ3JyclXEIoQQZaLXKQzt1ACA6WsOk2/0VSfv9ZoBzx2CRxbDdU9CQD0wF6Ac/JXangupc1M6Ojcd+Tt3cvieHpzXsJfVWUt1CyGcy9i7muHpoicpOZP1qQ7YbrXsBYN+V98PMpPh864oO74s1yaMYWFEzpuLW0wrzJmZHB3wKNmryz93oyYod2Lx5JNP8vTTT/PFF1+wdetW/vzzz4tuQghRHe6ODSPcz52z2QV8veVfFzv0BnX9i1vfgCe3wRMbIP4VCI3FOyyPel1O4V6rEMv5bI4/MYyU4fdiPb4dZDEkIYS4RKivO6O6qqNUfj6q48x5+6uyd1XBzWBwIjS6DcwFGBY9Scvjc8BS9knpBn9/ImfMwPOGG7Dm5ZH8xDAyf/65CoN2TOVOLHr37s3evXt59NFHadu2LbGxscTFxZXcOwupGiKEfTPqdQzpWA+AqasOYTJfZkiRokDtptDxOXh8FYzYhfHet4h8tAkBjXMAOPf7Ho727kXhG7Hq5O/TOyXJcHLSvgtRPg9fG0WLMB/yzApvLtmndTgV4+4HD3wJnV4CoN6ZZei/fRgKc8q8CZ2nJxGTE/C54w4oKuLkc89zbtasKgrYMZU7sTh8+PAlt0OHDpXcOwupGiKE/buvTQSBXq6cyMjjp6STV/8BvwjoMARl4C8Ef5lEnWfvQ+eqJy/NhcNf55M1fzJMuQE+aQsr3oTUvVV/EKLaSfsuRPnodQqv39UMBSu/7DzNmr/PaB1Sxeh00OkFinrOwKwY0f39K8y8Hc6fLvMmFBcXwt57F/9+/QBIGf82qR98iFUuSAEVSCwiIyOveBNCiOriZtQz4PooAGauO1y+ht0jAO/B/yP6l19xj2mFxaTjxLoATm4OwJJyAFa/C5M7QEIHWPUupB2smoMQQggH0CLchxtD1Db2tZ92X76X2EFYm97F2oYvYvWoBaeSYPot5bqQpOh0BL80mqARIwBI++wzTr36Ktai8pW0dUblTizGjx/PjBkzLnl+xowZvPPOOzYJSgghyurBdnVxNejYdSKLbcfKv4CRS51wIufNo9bQIaAoZB504/C6FuT7dASdEc7shcQ34eNrYHoXdUG+3HNVcCRCCGHfukVY8PcwcvBMDrPWHdE6nEpJ92xI0SNLIaC+Oql7xm1wYmuZf15RFAKHPE7I6/8DnY7Mb7/j+NMjsOTnV2HU9q/cicXUqVNp0qTJJc83b96cKVOm2CQoIYQoqwBPF+6ODQPgi3UVW11bMRio/fTT1J05E0Pt2hSeTOPIzCOcC38T612fQP3O6loZxzepC/K93xgWPISybzGKRa5QCSFqBg8DjOrSEICPfv/bMSdy/5t/tFoxqk5byM+AWXfD0fXl28R99xH+0UQUFxeyly/n2KBBmLOyqiZeB1DuxOL06dOEhoZe8nxQUBCnZEVCIYQG+l8XBcCSnadIyar41SLPDu2J/vEHvDp3xmoykfLeRI5/to6iOz6HkXvVSlPBLcBcCHt/xvDtw3Td9RS6X0dDym4bHY0QQtive68Jp2W4L+cLinjv17+0DqfyPAKg3/cQdSMUnlcX0ju0qlyb8OnShYjp09B5eZG3ZStH+z2MKTW1igK2b+VOLCIiIli7du0lz69du5awsDCbBGUPpGqIEI6jeZgvbaP8KbJYmbfxWKW2ZfD3p07CJwS/+op6BWrlSg7f3YOc3UfUtTGGroUhf8C1w7F61sbVnI1+yzT49Dp1qNT2eVCYa5sDE1VC2nchKk6vU3jtrmYAfL3lOEnJGdoGZAuu3tDna6h/M5hyYd596mKr5eDZrh2Rc2ajDwykYN8+jvbpS+HRivWiO7JyJxaDBw9mxIgRzJw5k6NHj3L06FFmzJjBM888w+DBg6siRk1I1RAhHEtxr8XXm5MxWypXnUNRFAL69iXqm69xqV+fojNnODbgUVLffx9rYSGEtISub1L01J+srz8KS5O7QGdQh0r9+AS83wR+GQWnd9ngyIStSfsuROW0jgygZ5y6DPdrP+12jopILh7w4JfQ+A4wF8BXD8GxDeXahFvTpkTNn4exbl1Mx49zpE9f8nbXrN7scicWzz33HAMHDuSJJ56gXr161KtXjyeffJKnnnqK0aNHV0WMQghxVV2aBePnYeR0Vj5rD5y1yTbdGjcm+puv8bvvPrBaSZs2ncO9H6Dg77/VF+gMpPq0wnzvDHhmD9w8FvyjoCATNk+DKdfD511hz4+lLsRkxQnekIUQNc6L3Zrg4aInKTmDX3Y6yVB4gyvc9wU06AJFeTDvfjhVvsWfXerWJWreXFybNsWclsaxh/uTs6F8CYojK3dioSgK77zzDmfOnGHDhg3s2LGDc+fOMWbMmKqITwghysTVoOfuGHU45rdbj9tsuzoPD0Jf/x/hkz5C7+dHwd69HL63F+dmz8Zq+Ve5Re9guHEkPLkd+v0AzXqovRjJG+Drh2FSLKz7BPIzAVBQbBajEEJUt9o+bjx+U30A3l26j8Iixy0/exGDC9w/G+peq14kmtsTzh4o3yaCgoicPQuPdu2w5OSQPPgxsn79rYoCti/lTiyKeXl50bZtW1q0aIGrq6stYxJCiArp1ToCgF93nyYzz2TTbfvceivRP/2I5403Yi0sJOWt8ZwcMhRDZubFL9TpoH483D8LRuyCG0eBewBkHIPfXoYPmsGSF8DqJG/CQogaa9CN0QR5u3LsXC5zNzjRfAIXD3jwK3XYa84ZmHsP5JSvJ1zv7U3EtM/w7tIFq8nEiREjSP9qQRUFbD/KlFj07NmTrHKUzurbty+pNXQ2vBBCOy3CfWgc7E1BkYVf/rR917yxdm0iPptK8JhXUdzcyFu/nsgPJ5Jd2pUon1C4+VUYuQe6fwRBTaAwGzZOUe8B0is32VwIIbTi6WrgmVsaAfDxir9tfkFHU+5+8ND36vDWjGNqz3NRYbk2oXN1JXzih/jdfz9YrZx+7TXOTJ7sHHNSSlGmxOLHH3/kzJkzZGVlXfWWmZnJzz//THZ2dlXHLoQQF1EUhXtbqxMKF26z3XCo/+4joE8fohd+h2uzZujz8jg9ahQnX3gB8/nzl/8hozu0fgSe2AAPLYR68f98b25PWPgYnNlfJfEKIURVur9NHRrU9iI918SUVQe1Dse2vILgwQXg4g1H18LiZ6GcSYGi1xMy7jV1EVbg7KSPSXn9jYuH0jqRMiUWVquVRo0a4e/vf9VbQEAAOTk5VR23EEJcVvcL8yy2HksntRJrWlyNa7161Jk7h7TOndVVV3/8icN39yD3SpWGFAUa3AwP/wBGT/U5qwX+XAAJ7eDbRyHNyd6YhRBOzaDX8eJt6sLJM/44zMmMPI0jsrHaTaDXDECBbbNh49Ryb0JRFGo//TTBL78MQPr8+ZwcNQpLYfl6QByBoSwvSkxMLPeGw8PDy/0zQghRWaG+7sRG+JGUnMGvu0/T79qoKtuXYjSS1vVWWg14hNSXXsaUnMzRh/sT8OgAgp56Ct2V5p/p9GAGes+FLXNg3y+w6zvY8xO0HQg3PQ+etaosdiGEsJWbm9amXXQAmw6f4+MVfzO+ZyutQ7KtRrfCra/Db6+oc+Ui2kJ463JvJqDfQ+j9/Tk5ejRZi5dgzsggfNLH6L08qyBobZQpsejYsWNVxyGEEDbTrUUISckZLK3ixKKYe2ws0d9/T8r4t8j8biHnPp9B9spVhL09HveWLa/8w8HN4MH5aknD5ePURZk2ToGkL9UqU+2HgNGtyo9BCCEqSlEUnu/amF5T1vPNluMM7diAurU8tA7Ltq4dDsc3q+XDv30UHl8Dbj7l3ozvnXeg9/Pj+FNPkbNuPcceeYSIz6ZiCAiogqCrX4WrQjk7WZlVCMfVrUUoABsOnSM9p3q6mvVenoS9+SZ1JiegDwyk8OBBjjzwIKkTJ5atuzu0FTz0nVqqNqSlWubw97HwSVvY/2uVx1+TSPsuhO21iQrgpkZBFFmsTFrxt9bh2J6iQPdJ4FsX0o/AohHlnm9RzOuG64n8YiZ6Pz/yd+3iaJ++mE6csGm4WpHEohSyMqsQjqtuLQ+ahfpgtlhZtielWvft3bkz9X7+CZ877gCzmbQpUznS6z7y9+wp2wbqx8Njq6HHFPAJh8xjMP9++Lo/ZDnJIlQak/ZdiKoxsotaIWrhtuMcPuuE823d/aDX56Do1aGrf1a8fKx7q1ZEzp+HISyUwiNHOPJgH/L3O34RD0kshBBO6dbmwQCs3F/9pa8N/v6Evz+B8I8+Qh8QQMH+/Ry+vzdnPknAaipDOUadDmIfhOGb4bon1TexPT+oE7w3TQMnrSYihHBssRF+3NykNhYrfPS7439IvqyIdhA/Wn289EXIPlPhTbnWq0fU/Pm4NKhPUWoqRx/qR+62bTYKVBuSWAghnNJNjYIA+OPvs5gt2tQM9+l6K/UW/Yx3165QVMTZTz7h8P29yd+3r+Q1V6xn7uIJt74Bj61UJwoWZMHiUWqJWum9EELYoWcu9Fr8uOMkB1JLKcHt6K4foQ5ZzUuHJc9XalPGkBCi5s7FPTYWS1YWxx4dyPmVK20SphbKnVjMnj37otvcuXP59ddfyc3NrYr4hBCiQmLq+OHjZiArv4gdxzM0i8MQEED4xA8J/+B99L6+FOzdy+Fe93Hnmnx0ZU14QlvBwGXQ7T0wesChRPj0OvhrcdUGL4QQ5dQi3JeuzYOxWuHjFQe0Dqdq6I1w18eg6GD3Qti3pHKb8/Oj7swZeHa8CWt+PseHDSfj+x9sE2s1K3di8fTTT190e+KJJ+jWrRvR0dHs3r27KmIUQohy0+sUbmgYCMDq/RXvqrYFRVHwuf126i36Ga+bbwaTiZ6J+bwxy4w17VzZNqLTQ/vH4LFVENIK8s7BVw/CopFQVFC1ByCEEOXw1M0NAfh5x0mOpTnpheewOLVSFKi9FqbKrZukc3cn4pNP8L37LjCbOTV6NOlfVXwOh1bKnVikp6dfdMvKyuLUqVPccMMNjBgxogpCFEKIirmpoTocSuvEopghKIg6n3xM2LvvkOuq0OA0mFesLd9GghrBoN/huqfUr7d8DrPuqtQ4XyGEsKXmYb50bBSExQpTVzvxop+dXgTvMMg4Bhs/rfTmFKOR0PHj8X+4HwBp06ZVepvVrdyJxZ9//nnJLSUlhUcffZRVq1axadOmkueFEEJLN16YZ7HjeCY5BUUaR6NSFAXfu+5iZ4MLywiZzeXfiMFVXayp73fg6gvJG+CzTupaGEIIYQee6FQfgG+2Hif1fOWu5tstF0+4eYz6ePX7NrnAo+h0+PXsCYCl0PF6o8u0QN6/xcbGoijKZSccKopChw4dSh6bK/KGKYQQNhLu5064nzsnMvJISs7g+gaBWodkWw1vgcEr4MvekHYAZnSF++eozwshhIbaRQfQOtKfrUfT+fyPw4zu1lTrkKpGq96waSqc3A4rx8OdH2gdkabK3WNx+PBhDh06xOHDhy+6JSYmotfr2bNnT8lrhBBCa60j/QHYciRd40iqSGADGLQc6t8Mplz48gHY85PWUQkhajhFUUp6LeZtOEZmXhlKbTsinQ5ufVN9vG02ZCRrG4/Gyp1Y+Pv7X3Tz9fUlPT2dN954g65du9KkSRMiIyOJjIysiniFEKJc2kZdSCyOlnGStCNy94M+C6B5T7CY4JtHYMdXWkclhKjhOjepTZMQb7ILipi74ajW4VSdqOsh+ia1/f3jQ62j0VS5Ews/P7+LEotatWpxzTXXkJWVRUJCQlXEWGn33HMP/v7+9OrVS+tQhBDVrE1UAADbjqZTZHbiheX0Rrh3OsQ+BFYzfD8Edn+vdVRCiBpMURQe71gPgNnrj2By5ja44wvq/fY5kHlC21g0VO7EIjExkRUrVpTcVq1axZEjR9i4cSN169atihgr7emnn2b27NlahyGE0ECjYG+8XQ3kFJrZl+KkizUV0+nV2uqtBwBWWPgYHF6tdVRCiBrsjpZhBHm7kpJVwOKdTrywZ9QNEHk9mAthvX1eaK8O5U4sOnbseNHthhtusNuEolinTp3w9vbWOgwhhAb0OoUW4b4A7D6RpXE01UCngzveh6Z3qW9wX/WF07u0jkoIUUO5GHQ81F4dHj9z7RFtg6lq149Q77fPgYJsTUPRSrkTi+q2evVqunfvTlhYGIqi8MMPP1zymoSEBKKionBzc6N9+/Zs2rSp+gMVQtitFuE+AOw+malxJNVEp4ee0yDyBijIggV9IS9D66iEEDVU3w51cdHrSErOYNsxJy2kAdDgFgior7a7O77UOhpN2H1ikZOTQ0xMTKnzNxYsWMDIkSMZO3Ys27ZtIyYmhq5du5KamlrNkQoh7FXzMLXHYtdJ++uxsHJp6W6bMLpB7zngVxfSj8APQ8HixOObhRB2K9DLlbtiwwCY8cdhjaOpQjodtH9cfbxxKlxmaQZnV+51LKpbt27d6NatW6nf/+CDDxg8eDADBgwAYMqUKfzyyy/MmDGDF198sdz7KygooKDgnwVJsrLUDyImkwmTyUlLpZVB8bHX5HMAch6KOdp5aFzbA4C9p7LILyhEr1Nssl1bnAeLxVJ159HoDT1nYJh1B8q+xZjXTsLSYZjNd+MofwfO3L472v/klcix2KfKHku/9nX4dutxluw6zbGz5wn1dbNleOVSpb+X5vdhWD4OJe1vig7/gTWiQ7k3UVR0YUFX69VjrI6/sfJs2+4TiyspLCxk69atjB49uuQ5nU7HLbfcwvr16yu0zfHjxzNu3LhLnk9MTMTDw6PCsTqLZcuWaR2CXZDzoHKU82CxgotOT26hmdnfLyHY3bbbr8h5sFy4knXgwEH+WrzYtgH9R2RYH2KTZ8KKN1h90o1st1Cbbj83N9em26sqNaF9d5T/ybKQY7FPlTmW+t56Dp6Ht75KpFuE9lfzq+r3Eut1DZHn1nD8l/fYUXdguX/e5eRJolAvhiwu4/tDVf6NlaeNd+jE4uzZs5jNZoKDgy96Pjg4mL/++qvk61tuuYUdO3aQk5NDnTp1+Oabb7j22msvu83Ro0czcuTIkq+zsrKIiIggPj6eWrVqVc2BOACTycSyZcvo0qULRqNR63A0I+dB5YjnYebxDfx5PIuwJq3p2jz46j9QBpU5D/NmvwpAgwb1qXf77TaJp1TWbli+Oor+0Ariz3+HucfP6jwMG0lLS7PZtqqSM7fvjvg/WRo5Fvtki2MpCj/Fs9/uJCnLgw+73ohBr82I/Kr+vShHfWHuGiKztxHeZQ4Yy3fhomDfPpI/moSrqyu3X+X9oTr+xop7d8vCoROLsvr999/L/FpXV1dcXV0ved5oNDp8o2ALch5Uch5UjnQeGtT25s/jWRxNz7d5zBU6DxdGY+l0uuo5h3dNgsnXoju+Cd3O+dDmUZtt2lH+BmpC+y7HYp/kWFR3xITzxuK/OJ1VwLrDGdzc1DYXeSqqyn4v9W4Cv7ooGccwHvgNWt1Xrh83Gy58PFfK3r5W5d9YebZr95O3ryQwMBC9Xk9KSspFz6ekpBASElKpbSckJNCsWTPatm1bqe0IIexD/SAvAA6m1swSgPhFQOdX1MeJb0G+/U1kry7SvguhDTejnnuvqQPA/I3HNI6mCul0EPOg+njn19rGUs0cOrFwcXGhdevWLF++vOQ5i8XC8uXLSx3qVFbDhg1jz549bN68ubJhCiHsQHFiceBMDU0sQO2lCKgPOWdg7USto9GMtO9CaOfB9uraZ4n7UjmZkadxNFWoeU/1/tDKGnUhx+4Ti+zsbJKSkkhKSgLg8OHDJCUlceyYmumOHDmSadOmMWvWLPbu3cvQoUPJyckpqRJVUXJFSwjn0qC2J6D2WFhrYAlAAAwu0OV/6uMNUyD3nLbxaETadyG0Uz/Ii/bRAVissGBzstbhVJ2gxuqFHHMhHHCeyftXY/eJxZYtW4iLiyMuLg5QE4m4uDjGjBkDQO/evZkwYQJjxowhNjaWpKQkli5desmE7vKSK1pCOJe6AZ7odQo5hWZSsgqu/gPOqskdENIKTDlqnfUaSNp3IbTV50Kvxbdbj2OxOOmFHkWBpneqj//6RdtYqpHdJxadOnXCarVecvviiy9KXjN8+HCOHj1KQUEBGzdupH379toFLISwSy4GHRH+ap3ZI2k5GkejIUWBG55RH2+cAoU1+FwIITTRtXkI3q4GTmTksfmIE/ecNrmQWOz/DYpqxgUtu08shBDCVsIvJBYn0p14XG9ZNLsb/KMgPwN2f691NEKIGsbNqOf2lup6Ogu3ndA4mioU3gY8g6DwPByvGT2kkliUQsbgCuF8wv0uJBZ2NGFQk0EAOj20fkR9vPULLSLQlLTvQmjvnmvCAVi88xT5JrPG0VQRnQ6iO6qPD63UNJTqIolFKWQMrhDOJ9xPXaTIPnosFG13H9sXdAb1KlrqX1d/vROR9l0I7bWLCiDcz53zBUUs25Ny9R9wVPXj1XtJLIQQwrmUDIWyox4LzXjVhga3qI/3/KhtLEKIGkenU7gnTu21WLjtuMbRVKHiHosTWyE/U9tYqoEkFqWQrnIhnI89DoXSVLO71fsallhI+y6EfSgeDrX677OcOe+kk5v9IqBWA7Ba4Og6raOpcpJYlEK6yoVwPnX+1WPhtCUOy6NxN3U4VOpuOPu31tFUG2nfhbAP9YO8iInww2yx8sufJ7UOp+rU7aDeJ2/SNo5qIImFEKLGCPF1A6CwyMK53EKNo7ED7v4QdaP6+O/ftI1FCFEjdW+lVodavOu0xpFUoTrt1PsaUBlKEgshRI1h1Ovw9zACcDbbSbvdy6t+Z/X+8Gpt4xBC1EjdLpSd3XzkHKlZ+RpHU0UiLiQWJ7aCuUjbWKqYJBZCiBol0MsVgLPnpccCgOib1Psja53+DU8IYX/C/dyJjfDDaoWlu5201yKwMbj6gilXHXrqxCSxKIVM7hPCOZUkFtJjoQppCW5+6gJOp5K0jqZaSPsuhH2540KvxS9/ntI4kiqi00Gd1upjJ59nIYlFKWRynxDOKdBbEouL6PQQ0V59fGKbtrFUE2nfhbAv3VqGALDpyDlSzzvpcKiwOPX+9E5t46hiklgIIWqUQC8XAM5IYvGPsFj1vob0WAgh7Esdfw9iLgyH+tVZJ3EHt1DvU3ZpG0cVk8RCCFGjyByLywiNVe9PJmkZhRCiBrvjQq/FEmdNLEJaqvepe8Fi1jaWKiSJhRCiRgmykzkWiqZ7/4/iHoszf4FJFg8UQlS/Ls0uDIc6fI6sfJPG0VSBgHpgcFcncJ87rHU0VUYSi1LI5D4hnFOtC0OhzuVIj0UJ71DwCASrGc7s0zqaKiftuxD2JzrQk3pBnhRZrKzZf1brcGxPp4faTdXHTjwcShKLUsjkPiGck6+7uo7FeWe8IlZRigK1GqiPzx3UNpZqIO27EPbp5ia1AVi+N0XjSKpIcHP1XhILIYRwDj4XEovMPEksLlKrvnqfdkjbOIQQNdbNTYMBSNyXitli1TiaKlC7mXp/dr+2cVQhSSyEEDWKj5uaWGTlF2G1OuEbV0UF1FPva0CPhRDCPrWJ9MfHzUB6rontx9K1Dsf2asAFHEkshBA1io+7AQCzxUpuofNW5ii3kjc8SSyEENow6HV0aqwOh/p9b6rG0VSBgAvt7LmD4KQXtiSxEELUKO5GPQadWpPJKSuPVFTJG57zXkkTQti/m5uqicWKv5xwnoV/JCh6tTLUeedcZVwSCyFEjaIoSsk8i6y8Io2jsSM+4ep97lkokopZQghtdGpUG71OYX9KNsfTc7UOx7b0RvCrqz520t5hSSxKIeUIhXBePm7qcCjpsfgXjwDQqQkXOU44BOFfpH0Xwn75ehiJjfAD4I+/nbDsbK1/DYdyQpJYlELKEQrhvHxLeiwksSihKOClVmThvBMOQfgXad+FsG/XNwgEYM0BJ0wsApx7PpskFkKIGsfrQo/F+Xx7GAplRxP4vC8kFtmntY1DCFGj3dhQTSzWHTiLxdnKzgZEq/cZR7WNo4pIYiGEqHHcjWpikWeSqlAX8QpR789LYiGE0E5shB9ermrZ2d0ns7QOx7aK57NlntA2jioiiYUQosZxd9EDSLnZ/yrpsXDuoVBCCPtm1OvoUC8AgDUHzmgcjY35Xkgssk5qG0cVkcRCCFHjeBjVxCJfeiwu5qEOPyDPCRemEkI4lBsuzLNwugncPnXU++zTYLaH4bi2JYmFEKLGKe6xyJMei4u5+ar3eRmahiGEEDc0DAJgy5F052qrPYPUCnxWi1OuZSGJhRCixnEzylCoy3LzUe/zM7WNQwhR49UP8iTU141Cs4UtR89pHY7t6HTgE6o+znK+eRaSWAghahyP4h4LGQp1seIeC0kshBAaUxSFDvVqAbD5sBMlFvDPcChJLIQQwvG5G4uHQjnf+NZKkcRCCGFH2kWrE7g3Olti4eu8laEksSiFrMwqhPNylx6Ly6shiYW070I4huLEYntyBgVFTtRee18YCiVzLGoOWZlVCOflLnMsLq8kscjQNIyqJu27EI6hXqAngV4uFBZZ2HnciS54eKoT08lxsopXSGIhhKiBiudYSLnZ/3DxUu9NuWB1stVuhRAOR1EU2kY54XCo4sQiVxILIYRweG52tECeXX1+N7j987goX7s4hBDiguLhUJucMbHIcbLF/5DEQghRA7ka1KbPZLZoGIWi4b5LYXT/57EpT7s4hBDiguIei61H0zFb7OlKTCV4XliMVIZCCSGE4zPqixMLJ3mTshW9ERS1N4eiAm1jEUIIoGmoD96uBrILith7KkvrcGzj3z0WdtVtXXmSWAghapzixKKwSMseCztV3GtRJD0WQgjt6XUKraP8Adh8xEmGQxX3WFiKnK5YhiQWQogax6hXhyEVWSSxuETxPAuTzLEQQtiHuAg1sUhKztA2EFsxuIKrj/rYyYZDSWIhhKhxXGQoVOmKEwvpsRBC2InYun6AEyUW8K95Fs41gVsSCyFEjWMoTixkKNSljNJjIYSwL7F1/AA4mpbLuZxCbYOxFY9a6n2ukwzvuqBGJBaLFi2icePGNGzYkOnTp2sdjhBCY8VDoQo1rQplpwzFcywksRBC2AdfDyP1Aj0B2OEsvRYlC5I60cJ/1IDEoqioiJEjR7JixQq2b9/Oe++9R1pamtZhCSE0VDwUqshZShfaUnGPhSQWQgg7EhvhB8B2SSzsmtMnFps2baJ58+aEh4fj5eVFt27d+O2337QOSwihoeKqUGaL1XnqottKyeRtmWMhhLAfTjfPQhILbaxevZru3bsTFhaGoij88MMPl7wmISGBqKgo3NzcaN++PZs2bSr53smTJwkPDy/5Ojw8nBMnTlRH6EIIO2XQ/7M4nbaL5NkhnUG9t2i/KrkQQhQrrgy1IzkDqzOs/SCJhTZycnKIiYkhISHhst9fsGABI0eOZOzYsWzbto2YmBi6du1KampqNUcqhHAUxT0WIInFJUoSiyJt4xBCiH9pEuqNq0FHZp6JI2m5WodTeZJYaKNbt2688cYb3HPPPZf9/gcffMDgwYMZMGAAzZo1Y8qUKXh4eDBjxgwAwsLCLuqhOHHiBGFhYdUSuxDCPv07sSjSvOSs1vv/D92Flbet0mMhhLAfRr2OFuHqh/Gk5HSNo7EBJ00sDFoHUBmFhYVs3bqV0aNHlzyn0+m45ZZbWL9+PQDt2rVj165dnDhxAl9fX5YsWcKrr75a6jYLCgooKCgo+TorS10+3mQyYTKZquhI7F/xsdfkcwByHoo5w3nQ6xTMFiu5BYV4uShX/4HLsMV5sFgsdnUe9ejQAWZTAZYyxmVP8V+JM7fvzvA/WUyOxT7Zw7G0DPNm69F0ko6lc2eL4Apvxx6ORTF6YQAseemY/xNHUdGFHmPr1WOsjmMpz7YdOrE4e/YsZrOZ4OCL/7iCg4P566+/ADAYDLz//vvEx8djsVh4/vnnqVWrVqnbHD9+POPGjbvk+cTERDw8PGx7AA5o2bJlWodgF+Q8qBz5POiseswo/Pb7cgJcK7etipwHy4VVvw8ePMj+xYsrF4ANtU09Qxiwa+efHDldtrhycx1jWEJNaN8d+X/yv+RY7JOWx2I6owB6/th1lMUcqvT2tDyWoKx9XAecP3Oclf95D3A5eZIo1Ishi8v4/lCVx1KeNt6hE4uyuuuuu7jrrrvK9NrRo0czcuTIkq+zsrKIiIggPj7+igmJszOZTCxbtowuXbpgNBq1Dkczch5UznAeXt62AlNBETfc1JGoWp4V2kZlzsP8OWMBqF+/Pg1uv71C+68K+u8XQsZmWjRrQrO2ZYvLUUp4O3P77gz/k8XkWOyTPRxL/dPnmXdgPSmFRm677VZ0uor3Nmt9LMqJYDg4AR8XK7f/5z2gYN8+kj+ahKur6yXf+6/qOJbi3t2ycOjEIjAwEL1eT0pKykXPp6SkEBISUqFturq64urqSkJCAgkJCZjN6jhjo9Ho8I2CLch5UMl5UDnyeXAx6KAArIq+0sdQofNw4f1Qp9PZ1znUu6h3WNGXMS67iv8KakL7Lsdin+RYbKNxmB8uBh3ZBUWczjYRWcGLQsU0/b14qRczlPysS2IwGy58PFfK3r5W5bGUZ7t2P3n7SlxcXGjdujXLly8vec5isbB8+XKuvfbaSm172LBh7Nmzh82bN1c2TCGEHdIp6id7WcfiP2rA5G1p34VwTEa9jsbB3gDsPln2q+h2qXjydkEmWJynOqHdJxbZ2dkkJSWRlJQEwOHDh0lKSuLYsWMAjBw5kmnTpjFr1iz27t3L0KFDycnJYcCAARpGLYSwd8U96BZnqIduS8WJhZSbFULYoeZhPgDsPung1ZRc/tXbYnKMeWplYfdDobZs2UJ8fHzJ18XjY/v3788XX3xB7969OXPmDGPGjOH06dPExsaydOnSSyZ0l9d/u8qFEM5FfyGzkLziP5TixMJ5rqD9l7TvQjiufxILB++xMLj/89iUC65e2sViQ3afWHTq1OmqKywOHz6c4cOH23S/w4YNY9iwYWRlZeHr62vTbQshtCdDoUpRAxbIk/ZdCMfVLEz9n3X4xEKnA6OHmlQU5mgdjc3Y/VAoIYSoCroLrZ8MhfoPGQolhLBjTUO9URQ4c76A1PP5WodTOcYLZa6daCiUJBalSEhIoFmzZrRt21brUIQQVaC4x0ISi/8o7rFw4snb0r4L4bg8XAzUC1TnJzh8r0VJYpGnbRw2JIlFKaRqiBDO7Z/EQts47C6tUYq7cpy3x0LadyEcW9NQdZ7F/tPnNY6kklwuJBYyFEoIIRxbSVUozTMLO0stSuZYOO/kbSGEY2t0oeTsvhQHTyxkKJQQQjiHksnb9vbBXms1YPK2EMKxFScWf6dkaxxJJRWXnJUeC+cnY3CFcG7FiYXkFf9RAyZvS/suhGNrFKyWZv079bz2vc6VUVqPxYX3J0ckiUUpZAyuEM5Np5Nys5fnuG9oZSXtuxCOLbKWJy4GHfkmC8npDjyMqGSOhQMfw39IYiGEqJFk5W0hhHBMep1C/SC112K/Iw+HMl4YCmWSoVBCCOHQZCiUEEI4rsbBxYmFA0/glh6LmkPG4Arh3GQoVM0l7bsQjq/hhQncDp1YyDoWNYeMwRXCuclQqJpL2nchHF+jksTCgYdCuchQKCGEcAp6WXlbCCEcVuMLicXB1GyKzA667o7BVb035Wsbhw1JYiGEqJHsZeVtIYQQ5VfH3x13o55Cs4Wj5xx0joL+QmJhLtQ2DhuSxEIIUSMpdjMUSuv9l8Ze4xJCCHWeXIPaF9azcNThUAYX9V4SCyGEcGx6jSdvK/a6XoQDL8wkhKhZ6gepcxQOnXXQxKK4x6KoQNs4bEgSi1JI1RAhnJuUm625pH0XwjlEB6o9FofPOOjk5+I5FmZJLJyeVA0RwrkVX5iXcrM1j7TvQjiH6As9FofPOmhioTeq90UyFEoIIRxa8VAo7edYCCGEqIh6gY6eWEiPhRBCOAWdlJsVQgiHFnUhsUjLKSQz16RxNBVQMnnbAWMvhSQWQogaScrNCiGEY/NyNVDbW73qfzjNAXstZPK2EEI4B53Msbgy6ckRQjiAesWVoc44YGUombwthBDOQaqqlkZOjBDCcZRUhnLEeRb6C0OhZPK285NyhEII4ZykfRfCeRRP4D7kiImF9FjUHFKOUAghnJO070I4j+jiylCOuJaF9FgIIYQQQghhH/69loXV0eaGFScW0mMhhBBCCCGEtiL8PdDrFPJMZk5n5WsdTvkUD4WyFIHFom0sNiKJhRBCCCGEcEguBh11/N0BOJqWq3E05VTcYwFgdo7hUJJYCCFqNAfrOBdCCPEfEf4eACSfc7DEorjHApxmOJQkFkKIGkmRsqpXISmXEMIxRAQ4aGLx7x4LJ5nALYmFEEKIf8gCH0IIBxMRoA6FSk7P0ziSclIU0BnUx5YibWOxEUkshBBCCCGEw6p7ocfimKP1WAAoevVeEgvnJgsoCSGEc5L2XQjn4rBzLEB6LGoKWUBJCCGck7TvQjiX4h6L1PMF5JvMGkdTTsWJhVXKzQohhBBCCKEpPw8jXq7qB/Tj6Q7Wa6GToVBCCCGEEELYBUVR/lUZysEmcMtQKCGEcHwlxY+s2pZVlaKuQghReXUvVIZyuAnc0mMhhBDC6WmccAkhRHk47ARu6bEQQgjhvGQdCyGE46lby0FLzpb0WMjkbSGEEEIIITRX0mPhaIvkSY+FEEIIIYQQ9qN49e3jDtdjIYmFEEIIIYQQdiPUV00szhcUcT7fpHE05SCJhRBCCCGEEPbD09WAr7sRgFOZ+RpHUw7KhY/iFgdb2K8UNSKxuOeee/D396dXr15ahyKEsBPF5Wal9pEQQjiHUF83AE5kONA8i5KVty+TWDjgG1SNSCyefvppZs+erXUYQgjxD7svvuSA72hCiBotzE8dDnUqw4F6LGQolOPp1KkT3t7eWochhBD2z+4THiGEuLwwP7XH4lSmA/ZYSGJhG6tXr6Z79+6EhYWhKAo//PDDJa9JSEggKioKNzc32rdvz6ZNm6o/UCGEEEIIYbeKJ3A71lAoWXnbpnJycoiJiSEhIeGy31+wYAEjR45k7NixbNu2jZiYGLp27UpqamrJa2JjY2nRosUlt5MnT1bXYQghhBBCCA2V9Fg41FCo4sTCOSZvG7QOoFu3bnTr1q3U73/wwQcMHjyYAQMGADBlyhR++eUXZsyYwYsvvghAUlKSzeIpKCigoKCg5OusrCwATCYTJpMDlS+zseJjr8nnAOQ8FHOG82CxqHMIzGZzhY+jMueheAZDZfZfFXRmC3rAYrFgLmNc9hT/lThz++4M/5PF5FjskyMcS5CnWhXqZEbeFeO0p2PRo0cHFJkKsF6Ip8h0offCar1qjNVxLOXZtuaJxZUUFhaydetWRo8eXfKcTqfjlltuYf369VWyz/HjxzNu3LhLnk9MTMTDw6NK9ulIli1bpnUIdkHOg8qRz8PpUzpAx+7du1mctqtS26rIebCYLQAcPnSIg4sXV2r/ttTo9H6aAseSk9lRxrhycx1jQaqa0L478v/kf8mx2Cd7Ppa0fAADJ9Jz+OWXxSXV/0pjD8fS/mwaIcDOHds5dtwHAJdTp4hCvRiyuIztcFUeS3naeLtOLM6ePYvZbCY4OPii54ODg/nrr7/KvJ1bbrmFHTt2kJOTQ506dfjmm2+49tprL/va0aNHM3LkyJKvs7KyiIiIID4+nlq1alXsQJyAyWRi2bJldOnSBaPRqHU4mpHzoHKG87A0awdJ51Jo1qw5t3eoW6FtVOY8fDnvNQCi69Wj8e23V2j/VUH3x19wCupGRBBexrjS0tKqOCrbcOb23Rn+J4vJsdgnRziWwiILryf9TpFVoUPHm6nl5XrZ19nTsei/+QqykmjZvBktrlHb3IJ9+0me+BGurq7cfpV2uDqOpbh3tyzsOrGwld9//73Mr3V1dcXV9dI/RKPRqPkfnz2Q86CS86By5POg06lTzPR6faWPoWLnQb2Uptfp7Osc6tXzotPp0JUxLruK/wpqQvsux2Kf5Fiqh9EIgV6unDlfwJkcMyH+V47TLo7FoO7foFjVAwDMxgsfzxWlzPFV5bGUZ7uaT96+ksDAQPR6PSkpKRc9n5KSQkhISJXuOyEhgWbNmtG2bdsq3Y8QQtglq/OuYyHtuxDOq3gtC4epDFVSbtY5Jm/bdWLh4uJC69atWb58eclzFouF5cuXlzqUyVaGDRvGnj172Lx5c5XuRwgh7IvzL2Qh7bsQzivM18HWslCcq9ys5kOhsrOzOXDgQMnXhw8fJikpiYCAAOrWrcvIkSPp378/bdq0oV27dkycOJGcnJySKlFVJSEhgYSEBMxm58gghRBCqKR9F8J5Fa9lcSrTQUrOOtkCeZonFlu2bCE+Pr7k6+KJdf379+eLL76gd+/enDlzhjFjxnD69GliY2NZunTpJRO6bW3YsGEMGzaMrKwsfH19q3RfQgghqo+070I4r+K1LE46ylAopXjwkHMMP9U8sejUqRPWq4zlHT58OMOHD6+miIQQQgghhCOq7aMmFqnnC67ySjtRPPrUatE0DFux6zkWQghRZZx/KoEQQtQ4wd5q5bfULAcZClXcYyGJhXOTqiFC1AxX6zEVzkfadyGc1797LByifS9JLLQNw1YksSiFVA0RQlQHJ3kvcSjSvgvhvGpf6LHILTSTXeAIE6IvdJ9Lj4UQQgjnJSmPEMLxeLoa8HZVpxA7xDwLJ5u8LYlFKaSrXAhRIynOP/lE2nchnFuQj9prkeII8ywU6bGoEaSrXAghnJO070I4t2DvC/Msshyox0ISCyGEEEIIIexL7Qs9FqnnHaHHojixcI6hUJqvY+EMLBYLhYWFWodRpUwmEwaDgfz8/Bq9Wm1lzoOLiws6neTy9sL5B/wIIUTNFHyhMlSKI/RYONnkbUksKqmwsJDDhw9jsTjHH0RprFYrISEhJCcno9SAMdilqcx50Ol0REdH4+LiUkXRiYpwjmtEQgghihVXhnKoyduSWDi3hIQEEhISrnhV2mq1curUKfR6PREREU59NdpisZCdnY2Xl5dTH+fVVPQ8WCwWTp48yalTp6hbt26NTs6E0FpZ2nchhOOqXdJj4QhDoUqW3tY0DFuRxKIUw4YNY9iwYWRlZeHr63vZ1xQVFZGbm0tYWBgeHh7VHGH1Kh7u5ebmVuMTi4qeh6CgIE6ePElRURFGo7GKIhTCRpzjPe6yytK+CyEcV/Hq22ccosfCuYZC1dxPiDZQfLVLhraIsij+O5GrpMK+SW+aEMKxOVaPhXNN3pbEwgZkWIsoC/k7EUIIIaqeY62+XdxjIYmFEEKISrI685gjIYTQgKerAa8Lq2/bfa+Fk03elsSiFLIyqxDOTXqQai5p34VwfiWVoey95GxxYuEkF5kksSiFs67MOmXKFLy9vSkq+qdrMDs7G6PRSKdOnS567cqVK1EUhYMHD1Z4f0eOHEFRFJKSkiq8DSGqkpP0PotycNb2XQjxj0AvNbFIy7H3xEImbwsHFh8fT3Z2Nlu2bCl5bs2aNYSEhLBx40by8//pMkxMTKRu3brUr19fi1CFEEIIISok0FstmJKWbecLGMtQKOHIGjduTGhoKCtXrix5buXKldx9991ER0ezYcOGi56Pj4+noKCAp59+moYNG+Lh4cENN9xw0ZW+9PR0+vbtS1BQEO7u7jRs2JCZM2cCEB0dDUBcXByKolzUKzJ9+nSaNm2Km5sbTZo0YfLkySXfK+7pWLhwIfHx8Xh4eBATE8P69eur6MwIIYQQwlnU8rzQY5Ft5z0WMnlblMZqtZJbWKTJzVqOP8j4+HgSExNLvk5MTKRTp0507Nix5Pm8vDw2btxIfHw8zz//PAsXLmTy5Mls2bKFBg0a0LVrV86dOwfAq6++yp49e1iyZAl79+7l008/JTAwEIBNmzYB8Pvvv3Pq1CkWLlwIwLx58xgzZgxvvvkme/fu5a233uLVV19l1qxZF8X68ssvM2rUKJKSkmjUqBEPPvjgRcO4hBBVxTne5IQQNVMtL7XH4oz0WFQrWSDPhvJMZpqN+VWTfe/5X1c8XMr264yPj2fEiBEUFRWRl5fH9u3b6dixIyaTiSlTpgCwfv16CgoK6NSpE4MHD2bGjBl06dIFHx8fpk2bxrJly/j888957rnnOHbsGHFxcbRp0waAqKiokn0FBQUBUKtWLUJCQkqeHzt2LO+//z49e/YE1J6NPXv2MHXqVPr371/yulGjRnHHHXcAMG7cOJo3b86BAwdo0qRJxU+WEKJ0MqldCOEEank5SI+FJBbC0XXq1ImcnBw2b95Meno6jRo1IigoiI4dOzJgwADy8/NZuXIl9erVIzMzE5PJxPXXX1/y80ajkXbt2rF3714Ahg4dyr333su2bdu49dZb6dGjB9ddd12p+8/JyeHgwYMMHDiQwYMHlzxfVFR0ySq4rVq1KnkcGhoKQGpqqiQWotLk47MQQjivQM8Lcyxy7L3HoviBc/QSS2JRioSEBBISEsq1SrK7Uc+e/3WtwqiuvO+yatCgAXXq1CExMZH09HQ6duwIQFhYGBEREaxbt47ExEQ6d+5cpu1169aNo0ePsnjxYpYtW8bNN9/MsGHDmDBhwmVfn52dDcC0adNo3779Rd/T6y8+DqPRWPK4uDyoxeIcWb0QQhsVad+FEI4l0Ft6LLQgcyxKUZFyhIqi4OFi0ORW3pr88fHxrFy5kpUrV140ofqmm25iyZIlbNq0ifj4eOrXr4+Liwtr164teY3JZGLz5s00a9as5LmgoCD69+/P3LlzmThxIp999hkALi7qFYN/v4EHBwcTFhbGGe88tQAAN59JREFUoUOHaNCgwUW34sneQlQX57hGJMpDys0K4fxqXeixOGvvcyxKJm9rG4WtSI9FDRUfH8+wYcMwmUwlPRYAHTt2ZPjw4RQWFhIfH4+npydDhw7lhRdeKKneNGHCBHJzcxk4cCAAY8aMoXXr1jRv3pyCggIWLVpE06ZNAahduzbu7u4sXbqUOnXq4Obmhq+vL+PGjeOpp57C19eX2267jYKCArZs2UJ6ejojR47U5JwIIYQQwjkUz7HILigi32TGrRwjO6qV9FgIZxAfH09eXh4NGjQgODi45PmOHTty/vz5krK0AG+//TY9e/ZkyJAhtGnThgMHDvDrr7/i7+8PqL0So0ePplWrVtx0003o9Xq++uorAAwGA5MmTWLq1KmEhYVx9913AzBo0CCmT5/OzJkzadmyJR07duSLL76QHgshhBBCVJqPmwEXvfox167nWThZYiE9FjVUVFTUZUvURkZGXvK8m5sbH330Ea+//jo+Pj7odBfno6+88gqvvPJKqfsaNGgQgwYNuuT5Pn360KdPnzLH5+fnV66yukLYs3/m68nftBBC2JqiKNTycuFUZj5p2QWE+7lrHdLllQxld473AumxEEIIcSlJeIQQDq54LYuz9jyB+7I9Fo5bt1ASCyFEjSTLNZRGTowQwjkUr75t3xO4iydvO8dQKEkshBBCCCGE0ynusUiz58SipMfCOXqJJbEQQgghhBBOJ9ARVt92ssnbklgIIWo0KQgghBDOKdAh5ljIUKgaISEhgWbNmtG2bVutQxFCCGFD0r4LUTMUz7Gw73KzUhWqRpCVWYUQwjlJ+y5EzRDg5QCrb8scCyGEEM7POd7khBA1V4CHmlhk5NpxYlFSFco52lxJLIQQNZIUVS2F1OEVQjgJ/wuJRbo9JxYyeVsIUZqoqCgmTpyodRhCCCFEjefnaQQg32Qh32TWOJpSyORt4cimTJmCt7c3RUVFJc9lZ2djNBrp1KnTRa9duXIliqJw8ODBSu3zyJEjKIpCUlJSpbZTVjt27OCuu+6idu3auLm5ERUVRe/evUlNTa2W/QtRNtIzIIQQVcnb1YBBp7a1dttrIT0WwpHFx8eTnZ3Nli1bSp5bs2YNISEhbNy4kfz8/JLnExMTqVu3LvXr19ci1Ao5c+YMN998MwEBAfz666/s3buXmTNnEhYWRk5OjtbhCSGEEKKaKIqCn4faa5GeY9I4mtI410UmSSxqmMaNGxMaGsrKlStLnlu5ciV333030dHRbNiw4aLn4+PjASgoKOCFF14gJCQENzc3brjhhosqqqSnp9O3b1+CgoJwd3enYcOGzJw5E4Do6GgA4uLiUBTlop6R6dOn07RpU9zc3GjSpAmTJ08u+V5xT8fChQuJj4/Hw8ODmJgY1q9fX+rxrV27lszMTKZPn05cXBzR0dHEx8fz4YcflsRhNpsZOHAg0dHRuLu707hxYz766KOLtvPII4/Qo0cPJkyYQGhoKLVq1WLYsGGYTP80TKmpqXTv3h13d3eio6OZN29eWX8NQgghhKgGDjHPwokYtA7AqVitYMrVZt9GjzJPuoyPjycxMZEXX3wRUHsmnn/+ecxmM4mJiXTq1Im8vDw2btzIo48+CsALL7zAzz//zMyZM4mOjubdd9+la9euHDhwgICAAF599VX27NnDkiVLCAwM5MCBA+Tl5QGwadMm2rVrx++//07z5s1xcVH/yefNm8eYMWP45JNPiIuLY/v27QwePBhPT0/69+9fEu/LL7/MhAkTaNiwIS+//DIPPvggBw4cwGC49M83JCSEoqIivv/+e3r16oVymXNisVioU6cO33zzDbVq1WLdunU89thjhIaGcv/995e8LjExkdDQUBITEzlw4AC9e/emVatW9O7dG1CTj5MnT5KYmIjRaOSpp56S4VZCCCGEHZHEonpJYmFLplx4K0ybfb90Elw8y/TS+Ph4RowYQVFREXl5eWzfvp2OHTtiMpmYMmUKAOvXr6egoID4+HhycnKYMmUKCQkJdOvWDZ1Ox7Rp01i2bBmff/45zz33HMeOHSMuLo42bdoA6iTmYkFBQQDUqlWLkJCQkufHjh3L+++/T8+ePQG1Z2PPnj1MnTr1osRi1KhR3HHHHQCMGzeO5s2bc+DAAZo0aXLJsXXo0IGXXnqJPn36MGTIENq1a0fnzp15+OGHCQ4OBsBoNDJu3LiSn4mOjmb9+vV8/fXXFyUW/v7+fPLJJ+j1epo0acIdd9zBihUr6N27N/v372fJkiVs2rSpZJGtzz//nKZNm5bpdyCEEEKIqlcyFCrXXodCFZNysw4hOTmZTp060axZM1q1asU333yjdUia69SpEzk5OWzevJk1a9bQqFEjgoKC6NixY8k8i5UrV1KvXj3q1q3LwYMHMZlMtG/fvmQbRqORdu3asXfvXgCGDh3KV199RWxsLM8//zzr1q27Ygw5OTkcPHiQgQMH4uXlVXJ74403Lpks3qpVq5LHoaGhAFfsGXjzzTc5ffo0U6ZMoXnz5kyZMoUmTZqwc+fOktckJCTQunVrgoKC8PLy4rPPPuPYsWMXbad58+bo9fqL9n3mzBkA9u7di8FgoHXr1iXfb9KkCX5+flc8bmE/LtebJf7FSWqqCyFqtuIeiwx7XX3byd6LnL7HwmAwMHHiRGJjYzl9+jStW7fm9ttvx9OzbFf3y8XoofYcaMHoUeaXNmjQgDp16pCYmEh6ejodO3YEICwsjIiICNatW0diYiKdO3cu8za7devG0aNHWbx4McuWLePmm29m2LBhTJgw4bKvz87OBmDatGkXJSzARR/mQU1iihV/GLRYrlw9oVatWtx3333cd999vPXWW8TFxTFhwgRmzZrFV199xahRo3j//fe59tpr8fb25r333mPjxo2l7rd431fbrxCOz7ne5IQQNZu/Z/FQKHvvsXAOTp9YhIaGllzlDgkJITAwkHPnzlVNYqEoZR6OpLX4+HhWrlxJeno6zz33XMnzN910U8kQn6FDhwJQv359XFxc2LhxIy1atADAZDKxefNmRowYUfKzQUFB9O/fn/79+3PjjTfy3HPPMWHChJI5FWbzPzWkg4ODCQsL49ChQ/Tt27dKj9XFxYX69euXVIVau3Yt1113HU888UTJa8pbUrdJkyYUFRWxdevWkqFQ+/btIyMjw2ZxCyGEEKJy/EuGQtlpj4WT0Xwo1OrVq+nevTthYWEoisIPP/xwyWsSEhKIiorCzc2N9u3bs2nTpgrta+vWrZjNZiIiIioZteOLj4/njz/+ICkpqaTHAqBjx45MnTqVwsLCkopQnp6eDBkyhLFjx7J06VL27NnD4MGDyc3NZeDAgQCMGTOGH3/8kQMHDrB7924WLVpUMt+gdu3auLu7s3TpUlJSUsjMzATU+RLjx49n0qRJ7N+/n507dzJz5kw++OCDCh/XokWLeOihh1i0aBH79+9n3759TJgwgcWLF3P33XcD0LBhQ7Zs2cKvv/7K/v37efXVVy+qcFUWjRs35rbbbuPxxx9n48aNbN26lUGDBuHu7l7h2IU2ZMSPEEI4L4eZvO0kb0aaJxY5OTnExMSQkJBw2e8vWLCAkSNHMnbsWLZt20ZMTAxdu3a9aIx9bGwsLVq0uOR28uQ/w5LOnTvHww8/zGeffVblx+QI4uPjycvLo0GDBiWTmkFNLM6fP19SlrbY+PHj6d69O/379+eaa67hwIED/Prrr/j7+wNqr8Do0aNp1aoVN910E3q9nq+++gpQh6NNmjSJqVOnEhYWVvIBf9CgQUyfPp2ZM2fSsmVLOnbsyBdffFFSFrYimjVrhoeHB88++yyxsbF06NCBr7/+munTp9OvXz8AHn/8cXr27Env3r1p3749aWlpF/VelFXx+hgdO3akZ8+ePPbYY9SuXbvCsYsaRkYcCSFElbP/ydvO9Wag+VCobt260a1bt1K//8EHHzB48GAGDBgAqCtH//LLL8yYMaOkXOrVVnQuKCigR48evPjii1x33XU2i92RRUVFYb1MdhwZGXnZ593c3HjnnXf49NNP0ekuzUdfeeUVXnnllVL3N2jQIAYNGnTJ83369KFPnz5ljtHPz++y8RWrV6/eVZNHV1dXZs6cWbLORrHx48eXPP7iiy8u+bmJEydisVjIysoC1KF1ixYtuug1xcmLEEIIIbRXPMciw957LJyE5onFlRQWFrJ161ZGjx5d8pxOp+OWW2654iJp/2a1WnnkkUfo3LlzmT70FRQUUFBQUPJ18YdIk8l00eJoxc9ZrVYsFovTT+ot/jBffLw1VWXOg8ViwWq1YjKZLpmg7miK/xf++z/hSIp/f2aLucLHUZnzUJwfm80V339V0FnM6AGL1YK5jHHZU/xXUp723dE4w/9kMTkW++Sox+Ltol4MTc8pvOQY7OFYFLMZA2CxWkva3KKiC3Fd+MxwJdVxLOXZtl0nFmfPnsVsNl80VAfUib9//fVXmbaxdu1aFixYQKtWrUrmb8yZM4eWLVte9vXjx4+/aI2DYomJiXh4XFx5yWAwEBISQnZ2Nv9v786jojjTNYA/TbM0yOYKoiwqoBARUQSNC5IQGeNFjdlGnAhGmTEuEy/ROJkYiblXnaAmxIiYqxNIJjHqZNzGdZABNWpcgmSMYhQDShBwCftOd90/CBUJoN30SvH8zqlz6Krqqvf7urvot7+l6uu7RiZcUVFh7BBMQkfqob6+HjU1NThx4gQaGxv1EJXhpaamGjuEDrtdYAbADNnZ2ThUdkWrY3WkHponM8jLy0PuoUNanV+XBhVfxVAABT8WIFPNuKqrjXRjUA1pcn3vrDrzZ/LXWBbT1NnKUtkAAOYor23EPw8egvyBnkemUBbX+99iBIB7d+/gzM/XXMvCInig6ceQQ2peh/VZFk2u8SadWOjCuHHjNPpl+Y033kBsbKz4uLy8HK6urggNDUXPnj1b7FtbW4v8/HzY2tpCoVDoLGZTJAgCKioqYGdn16Xn/9emHmpra2FtbY0JEyZ0+vdLQ0MDUlNT8dRTT7WalrezSP/yEs7fK4SPjw+eHuvRoWNoUw87tr8DoKnLn8/TT3fo/Ppg9vUPwG2gXz8XOKsZ1/379/UclW5ocn3vbKTwmWzGspimzlqWRqUKb144BgB4PORJ9LS1MqmyyC5VAreAXr174+mfr7l1164hPyEBVlZW4rr2GKIsza276jDpxKJXr16Qy+UoLi5usb64uLjFHZx1ycrKClZWVkhMTERiYqL4q6KFhUWrF0ypVEImk8HMzKzNcQdS0pycNZe3q9KmHszMzCCTydp8L3VWnbksza+f3EyudRm0qQczMzPTqkN5078FMzMzmKkZl0nF/xCaXN87K5bFNLEsxmNhAdgrmlosKhsEOD8Qu0mU5eeu0WYymXjNVZr/HNPP3xnUoc+yaHJck/6GaGlpiZEjRyItLU1cp1KpkJaWhjFjxuj13AsXLsSVK1c0noaUiIhMG6/vRF1LD94kz2CM3mJRWVmJnJwc8XFubi6ysrLQo0cPuLm5ITY2FlFRUQgMDERQUBASEhJQVVUlzhJFRKQNAdKYO5yIiNrmaGMJ3K9GSZUJj4eVyH0sjJ5YXLhwQbwRGwCx/2tUVBRSUlLw4osv4u7du1i5ciWKioowfPhwHDlypNWAbl37dVM5ERFJA6/vRF2Lg3VTV56yGlNssZDWuFWjJxYTJ0586H0JAGDRokVYtGiRgSJqsnDhQixcuBDl5eVwcHAw6LmJiEh/eH0n6lqaE4vyWmnMyGjKTHqMBRGR3kjrRyIiImqHvXXT7+im2WIhLUws2pGYmAhfX1+MGjXK2KGQHmRkZEAmk6G0tNTYoRCZJon0920Lr+9EXYu94ucWC5NOLKRxzWVi0Q6pzhqyZcsW2NnZtbhBW2VlJSwsLDBx4sQW+zZ/+b5x44ZW58zLy4NMJkNWVpZWx9HExYsX8fzzz8PJyQkKhQJeXl6IiYnBtWvXDBYDUeck/aYcqV7fiahtYlcoU0wsJHZvMCYWXUxoaCgqKytx4cIFcd3Jkyfh7OyMs2fPora2Vlyfnp4ONzc3DBo0yBihdtiBAwcwevRo1NXV4fPPP0d2djY+++wzODg44K233jJ2eERERGRA9uIYCxNMLCSGiUUXM3jwYPTt2xcZGRniuoyMDEybNg0DBgzA119/3WJ984xddXV1WL58OZydnaFQKDBu3LgWv/aVlJRg1qxZ6N27N6ytreHl5YXk5GQAwIABAwAAAQEBkMlkLVpGtm3bBh8fHygUCgwZMgSbN28WtzW3dOzevRuhoaGwsbGBv78/zpw50275qqurMWfOHDz99NPYv38/wsLCMGDAAAQHB2P9+vX46KOP2nze/fv3MXPmTPTr1w82Njbw8/PDF198IW7/9NNP0bNnT9TV1bV43vTp0/HSSy+1Gw+ZPuP1+JHWr1RERKbKtGeFkhYmFu3oSB9cQRBQ3VBtlOVRM2s9KDQ0FOnp6eLj9PR0TJw4ESEhIeL6mpoanD17Vkwsli9fjn/+859ITk5GZmYmPD09ER4ejp9++gkA8NZbb+HKlSs4fPgwsrOzkZSUhF69egEAzp07BwA4duwYCgsLsXv3bgDA559/jpUrV2L16tXIzs7GmjVr8NZbb+GTTz5pEe+bb76JpUuXIisrC97e3pg5c2aLrlwPOnr0KO7du4fXX3+9ze2Ojo5trq+trcXIkSNx8OBBfPfdd/j973+Pl156SYz9+eefh1KpxP79+8Xn3LlzBwcPHsTLL7/cfmUTkcnhGAuiruWXMRYmPCuURMa1GX26WVPVkekIaxprELw9WM+Rte1s5FnYWNiotW9oaCiWLFmCxsZG1NTU4OLFiwgJCUFDQwO2bNkCADhz5gzq6uoQGhqKqqoqbNmyBYmJiZg8eTLMzMywdetWpKam4q9//SuWLVuGW7duISAgAIGBgQAADw8P8Xy9e/cGAPTs2RPOzs7i+ri4OGzYsAEzZswA0NSyceXKFXz00UeIiooS91u6dCmmTJkCAFi1ahUee+wx5OTkYMiQIa3Kdv36dQBoc9vD9OvXD0uXLhUfL168GEePHsWuXbsQFBQEa2trREZGIiUlBeHh4QCAzz77DG5ubq3GphCRaeN0s0RdS/OsUKbZFUparddMLLqgiRMnoqqqCufPn0dJSQm8vb3Ru3dvhISEYM6cOaitrUVGRgYGDhwINzc3/Oc//0FDQwOCg39JmiwsLBAUFITs7GwAwCuvvIJnn30WmZmZmDRpEqZPn47HH3+83Riqqqpw48YNzJ07FzExMeL6xsbGVv/ohw0bJv7dt29fAE2tBW0lD5q03DxIqVRizZo12LVrFwoKClBfX4+6ujrY2PySrMXExGDUqFG4ffs27O3tkZKSgujoaMgkNvCqq5BJ7GJORERtY1cow2FioUPW5tY4G3nWaOdWl6enJ/r374/09HSUlJQgJCQEAODi4gJXV1ecPn0a6enpeOKJJ9Q+5uTJk3Hz5k0cOnQIqampePLJJ7Fw4UKsX7++zf0rKysBAFu3bm2RsACAXC5v8djCwkL8u/lLvEqlavO43t7eAICrV69izJgxase/bt06fPDBB0hISICfnx+6deuGJUuWoL6+XtwnICAA/v7+2LFjByIiInD58mUcPHhQ7XMQERGR4TV3haquV6JB2fb3B+NjVyhJS0xMRGJiIpRKpdrPkclkandHMrbQ0FBkZGSgpKQEy5YtE9dPmDABhw8fxrlz5/DKK68AAAYNGgRLS0ucPXsWQ4cOBQA0NDTg/PnzWLJkifjc3r17IyoqClFRURg/fjyWLVuG9evXw9LSEgBa1KWTkxNcXFzwww8/YNasWTor16RJk9CrVy/Ex8djz549rbaXlpa2Oc7i1KlTmDZtGn73u98BaEpcrl27Bl9f3xb7vfzyy0hISMD9+/cRFhYGV1dXncVOZFqk8U+uLR25vhNR52Wn+OXrbnlNA+ytTGiIscR6PZhQzZoWqc9zHhoaiq+++gpZWVliiwUAhISE4KOPPkJ9fb04cLtbt26YP38+4uLicOTIEVy5cgUxMTGorq7G3LlzAQArV67Evn37kJOTg8uXL+PAgQPw8fEBAPTp0wfW1tY4cuQIiouLUVZWBqBpvMTatWuxceNGXLt2DZcuXUJycjLee++9DperW7du2LZtGw4ePIipU6fi2LFjyMvLw4ULF/D6669j/vz5bT7Py8sLqampOH36NLKzs/GHP/wBxcXFrfaLjIzE7du3sW3bNg7aJmmS2D+5tkj9+k5ELZnLzWBr1TzOwoQHcEsAE4suKjQ0FDU1NfD09ISTk5O4PiQkBBUVFeK0tM3Wrl2LiIgIREVFYcSIEcjJycHRo0fRvXt3AIClpSXeeOMNDBs2DBMmTIBcLseOHTsAAObm5ti4cSM++ugjuLi4YNq0aQCAefPmYdu2bUhOToafnx9CQkKQkpIiTk/bUdOmTcPp06dhYWGByMhIDBkyBDNnzkRZWRn+93//t83nrFixAiNGjEB4eDgmTpwIZ2dnTJ8+vdV+Dg4OiIiIgK2tbZvbqfOR7u/yRETUzP7nVguOs9AvdoXqojw8PNoc6Ozu7t7meoVCgXfffRdJSUkwM2udj65YsQIrVqxo93zz5s3DvHnzWq2PjIxEZGSk2jE6OjqqNUA7MDAQ//jHP9rdPnHixBbH6dGjB/bu3fvI4wJAYWEhIiMjYWVlpdb+REREZFz21ha4XVZrmnffBjjdLFFXU1JSgn//+9/46quvxGl5iYiIyPTx7tuGwcSCSE0BAQEoKSnB22+/jcGDBxs7HNKSqQwlENgZi4hI7zjlrGEwsWgHZw2hX8vLy4NKpUJ5ebmxQyEiLfD6TtT1dIq7b0sAB2+3g7OGEBFJE6/vRF1P89232WKhX0wsiIioNYkMJCQiAn7pCmVyYyxMpV+ujjCxIKIujd+ff01a/+SIiIAHu0KZWGIhMUwsiIiIiEjS7Dl42yCYWBARERGRpIldoUw1sZBI8zkTCyLqktjhh4io67D7+c7bFXWmNiuUtP4bMbFoR2JiInx9fTFq1Chjh9IppaSkwNHR0dhhEBG1wus7Uddja9WUWFTWmlpiIS1MLNrRFaYjLCoqwuLFizFw4EBYWVnB1dUVERERSEtLM3ZoRER60xWu70TUUnOLRaXJtVhIC2+Q10Xl5eVh7NixcHR0xLp16+Dn54eGhgYcPXoUCxcuxNWrV40dIhEZlTT6+xIRAb+0WFTXK6FUmeL1zRRj0hxbLLqoBQsWQCaT4dy5c3j22Wfh7e2Nxx57DLGxsfj6668BALdu3cK0adNga2sLR0dHzJkzB8XFxeIxvv32W4SGhsLOzg729vYYOXIkLly40OI8e/fuhZeXFxQKBcLDw5Gfnw+gKbExMzNrtX9CQgLc3d2hUqn0XANE1CaJzalORAQAtopffkuvrjehVguJXXPZYqFDgiBAqKkxyrll1taQqfnm/Omnn3DkyBGsXr0a3bp1a7Xd0dERKpVKTCqOHz+O+vp6LFiwADNnzkRGRgYAYNasWQgICEBSUhLkcjmysrJgYWEhHqe6uhqrV6/Gp59+CktLSyxYsAC//e1vcerUKXh4eCAsLAzJyckIDAwUn5OcnIzo6GiYmTHnJcMQjPQrkbT+lRARmTYrczks5WaoV6pQWac0djiSxcRCh4SaGnw/YqRRzj048xvIbGzU2jcnJweCIGDIkCHt7pOWloZLly4hNzcXrq6uUKlUSEpKwpgxY3D+/HmMGjUKt27dwrJly8TjeHl5tThGQ0MDNm3ahODgYADAJ598Ah8fH5w7dw5BQUGYN28e5s+fj/feew9WVlbIzMzEpUuXsG/fvg7WAhEREVHbulnJUV+t4gBuPeLPwl2QoMZcydnZ2XB1dYWrq6u4bsiQIXB0dER2djYAIDY2FvPmzUNYWBj+8pe/4MaNGy2OYW5u3mLWlV8/f/r06ZDL5dizZw+AppmkQkND4eHhoW0RiR5JYq3PRET0CLamPIBbIvexYIuFDsmsrTE48xujnVtdXl5ekMlkWg/QfvvttxEZGYmDBw/i8OHDiIuLw44dO/DMM8+o9XxLS0vMnj0bycnJmDFjBrZv344PPvhAq5iIiIiI2mJrZQGgxsQSC2n9ysUWCx2SyWQws7ExyqLu+AoA6NGjB8LDw5GYmIiqqqpW20tLS+Hj44P8/HxxsDUAXL16FaWlpfD19RXXeXt747//+7/xr3/9CzNmzEBycrK4rbGxscXg7O+//148drN58+bh2LFj2Lx5MxobGzFjxgy1y0FERESkLjsrE26xkAgmFu2Q+g2UEhMToVQqERQUhH/84x+4fv06srOzsXHjRowZMwZhYWHw8/PDrFmzkJmZiXPnzuGVV15BSEgIAgMDUVNTg0WLFiEjIwM3b97EqVOncP78+RZJg4WFBRYvXoyzZ8/im2++QXR0NEaPHo2goCBxHx8fH4wePRrLly/HzJkzYa1BywsRUUdI/fpORG0z6a5QEsHEoh1Sv4HSwIEDkZmZidDQULz22msYOnQonnrqKaSlpSEpKQkymQz79u1D9+7dMWHCBEyaNAkeHh744osvAAByuRz379/H7Nmz4e3tjRdeeAGTJ0/GqlWrxHPY2Nhg+fLliIyMxNixY2Fra4udO3e2imXu3Lmor6/Hyy+/bLDyE9EjSKS/b1ukfn0noraJd982yVmhpHHN5RiLLqxv377YtGkTNm3a1OZ2Nzc3cYYmlUqF8vJy2NvbA2gaH9GcZLQlOjoa0dHRAPDI7k0FBQXw8/Pjr4dkFBL+/txB0urvS0TUTGyxqG2Ek5FjEUlsJhG2WJDRVFZW4rvvvsOmTZuwePFiY4dDREREEsYxFvrHxIKMZtGiRRg5ciQmTpzIblBkcDL+Mk9E1KXYMrHQOyYWZDQpKSmoq6vDzp07IZfLjR0OERERSVhzV6gqUxxjIZF+uUwsiIiMgQ0mREQGZZotFtL6Z8DEQgfUuZM1Ed8nRERExmPH6Wb1jomFFpq779TX1xs5EuoMmt8n7PZFRERkeE133mZioU+cblYL5ubmsLGxwd27d2FhYQEzM+nmaSqVCvX19aitrZV0OR+lo/WgUqlw9+5d2NjYwNycHzvqDNjCRkTSYto3yJPGNZffcLQgk8nQt29f5Obm4ubNm8YOR68EQUBNTQ2sra0hk9icy5rQph7MzMzg5ubWpeuPOgG+P4lIomytmnoMmFRiIbFrruQTi9LSUoSFhaGxsRGNjY149dVXERMTo7PjW1pawsvLS/LdoRoaGnDixAlMmDABFhYWxg7HaLSpB0tLyy7d2mNqJHYtJyKiR/ilK5RSKpMwmRzJJxZ2dnY4ceIEbGxsUFVVhaFDh2LGjBno2bOnzs5hZmYGhUKhs+OZIrlcjsbGRigUii6dWLAeiIiIOqfmrlBKlYAGlZGDkSjJ/3wql8thY2MDAKirq4MgCJydh4iIiKiLsbGQi63VtaZ2KwuJfDc1emJx4sQJREREwMXFBTKZDHv37m21T2JiIjw8PKBQKBAcHIxz585pdI7S0lL4+/ujf//+WLZsGXr16qWj6ImIiIioMzAzk8HWsqnVwnQSC2n1yzV6YlFVVQV/f38kJia2uX3nzp2IjY1FXFwcMjMz4e/vj/DwcNy5c0fcZ/jw4Rg6dGir5fbt2wAAR0dHfPvtt8jNzcX27dtRXFxskLIRERERkelo7g5lOomFtBh9jMXkyZMxefLkdre/9957iImJwZw5cwAAW7ZswcGDB/Hxxx/jT3/6EwAgKytLrXM5OTnB398fJ0+exHPPPdfmPnV1dairqxMfl5WVAQB++ukntc4hVQ0NDaiursb9+/e79NgC1kMTKdRDTWU5VHXVqCwrw/379zt0DG3qoaZeiUqlEnVVlR0+vz6YlVdCXidAVVkLpZpxNV8fTb2bqZSv71L4TDZjWUyTVMpioayFqq4aZZVKkyiLrKwC5nUCVNX14jW3rrQElUol5PX1j/z/YIjXpaKiAoCa13jBhAAQ9uzZIz6uq6sT5HJ5i3WCIAizZ88Wpk6dqtYxi4qKhPLyckEQBKG0tFR47LHHhP/85z/t7h8XFyegaTJhLly4cOGiwXLjxg2Nr/uGxOs7Fy5cuHR8yc/Pf+R11ugtFg9z7949KJVKODk5tVjv5OSEq1evqnWMmzdv4ve//704aHvx4sXw8/Nrd/833ngDsbGx4uPS0lK4u7vj1q1bcHBw6FhBJKC8vByurq7Iz8+Hvb29scMxGtZDE9ZDE9ZDk7KyMri5uaFHjx7GDuWhpHx9l9J7kWUxTSyLaTJEWQRBQEVFBVxcXB65r0knFroQFBSkdlcpALCysoKVlVWr9Q4ODp3+zacL9vb2rAewHpqxHpqwHpqY+n1ausL1XUrvRZbFNLEspknfZVH3xxeT/i/Qq1cvyOXyVoOti4uL4ezsbKSoiIiIiIjo10w6sbC0tMTIkSORlpYmrlOpVEhLS8OYMWOMGBkRERERET3I6F2hKisrkZOTIz7Ozc1FVlYWevToATc3N8TGxiIqKgqBgYEICgpCQkICqqqqxFmi9M3KygpxcXFtNp93JayHJqyHJqyHJqyHJp21Hjpr3G1hWUwTy2KaWBb9kQmCcecHzMjIQGhoaKv1UVFRSElJAQBs2rQJ69atQ1FREYYPH46NGzciODjYwJESEREREVF7jJ5YEBERERFR52fSYyyIiIiIiKhzYGJBRERERERaY2JBRERERERaY2IBIDExER4eHlAoFAgODsa5c+ceuv/f//53DBkyBAqFAn5+fjh06JCBItUvTerh8uXLePbZZ+Hh4QGZTIaEhATDBapnmtTD1q1bMX78eHTv3h3du3dHWFjYI98/nYUm9bB7924EBgbC0dER3bp1w/Dhw/G3v/3NgNHqj6bXh2Y7duyATCbD9OnT9RuggWhSDykpKZDJZC0WhUJhwGh145lnnkH37t3x3HPPtdp24MABDB48GF5eXti2bZsRouu4999/H4899hh8fX3xxz/+EZ15qGVubi5CQ0Ph6+sLPz8/VFVVGTskrVRXV8Pd3R1Lly41digdlp+fj4kTJ8LX1xfDhg3D3//+d2OHpJHO/Nl+kNFeB6GL27Fjh2BpaSl8/PHHwuXLl4WYmBjB0dFRKC4ubnP/U6dOCXK5XIiPjxeuXLkirFixQrCwsBAuXbpk4Mh1S9N6OHfunLB06VLhiy++EJydnYX333/fsAHriab1EBkZKSQmJgoXL14UsrOzhejoaMHBwUH48ccfDRy5bmlaD+np6cLu3buFK1euCDk5OUJCQoIgl8uFI0eOGDhy3dK0Hprl5uYK/fr1E8aPHy9MmzbNMMHqkab1kJycLNjb2wuFhYXiUlRUZOCotZeeni7s379fePbZZ1usb2hoELy8vIQff/xRqKioELy9vYV79+4ZKUrN3LlzRxg4cKBQU1MjNDY2Co8//rhw+vRpY4fVYRMmTBBOnDghCIIg3L9/X2hoaDByRNr585//LLzwwgvCa6+9ZuxQOuz27dvCxYsXBUEQhMLCQsHFxUWorKw0blBq6syf7V8z1uvQ5ROLoKAgYeHCheJjpVIpuLi4CGvXrm1z/xdeeEGYMmVKi3XBwcHCH/7wB73GqW+a1sOD3N3dJZNYaFMPgiAIjY2Ngp2dnfDJJ5/oK0SD0LYeBEEQAgIChBUrVugjPIPpSD00f1nbtm2bEBUVJYnEQtN6SE5OFhwcHAwUnX6lp6e3SixOnTolTJ8+XXz86quvCtu3bzd0aB1y584dwc3NTSgpKRFqamqEUaNGCTk5OcYOq0O+++474cknnzR2GDpz7do1YcaMGUJycnKnTix+bdiwYcKtW7eMHYZaOvNn+1EM9Tp06a5Q9fX1+OabbxAWFiauMzMzQ1hYGM6cOdPmc86cOdNifwAIDw9vd//OoCP1IEW6qIfq6mo0NDSgR48e+gpT77StB0EQkJaWhu+//x4TJkzQZ6h61dF6eOedd9CnTx/MnTvXEGHqXUfrobKyEu7u7nB1dcW0adNw+fJlncZ14sQJREREwMXFBTKZDHv37m21T0e7sT3K7du30a9fP/Fxv379UFBQoJNj67tcvXv3xtKlS+Hm5gYXFxeEhYVh0KBBOon91/RdluvXr8PW1hYREREYMWIE1qxZo8PoWzLE+23p0qVYu3atjiJunyE/O9988w2USiVcXV21jFo92pZNn59tTenydTLk69ClE4t79+5BqVTCycmpxXonJycUFRW1+ZyioiKN9u8MOlIPUqSLeli+fLn4z7qz6mg9lJWVwdbWFpaWlpgyZQo+/PBDPPXUU/oOV286Ug9fffUV/vrXv2Lr1q2GCNEgOlIPgwcPxscff4x9+/bhs88+g0qlwuOPP44ff/xRZ3FVVVXB398fiYmJbW7fuXMnYmNjERcXh8zMTPj7+yM8PBx37twR9xk+fDiGDh3aarl9+7bO4tSUvstVUlKCAwcOIC8vDwUFBTh9+jROnDjRKcvS2NiIkydPYvPmzThz5gxSU1ORmpraKcuyb98+eHt7w9vbWy/xG7IszX766SfMnj0b//d//6f3MjXTRdlMha7KYvDXQe9tIiasoKBAANCqf+myZcuEoKCgNp9jYWHRqlksMTFR6NOnj97i1LeO1MODpNIVStt6WLt2rdC9e3fh22+/1VeIBtHRelAqlcL169eFixcvCuvXrxccHByE9PR0PUerP5rWQ3l5ueDh4SEcOnRIXCeFrlDafi4EQRDq6+uFQYMG6a1rHABhz549LdbpojufIKjfFerzzz/XPPBH0Ee5du3aJSxYsEB8HB8fL7z77rs6ifdh9FGW06dPC5MmTRIfx8fHC/Hx8TqJ92H0UZY//elPQv/+/QV3d3ehZ8+egr29vbBq1Spdht0mfX12amtrhfHjxwuffvqprkLVWEfKZqjPtqY6+joZ43Xo0i0WvXr1glwuR3FxcYv1xcXFcHZ2bvM5zs7OGu3fGXSkHqRIm3pYv349/vKXv+Bf//oXhg0bps8w9a6j9WBmZgZPT08MHz4cr732Gp577jmDNOvri6b1cOPGDeTl5SEiIgLm5uYwNzfHp59+iv3798Pc3Bw3btwwVOg6pYvrg4WFBQICApCTk6OPEFvRd/fOoKAgfPfddygoKEBlZSUOHz6M8PBwrY/7KLool6urK06fPo3a2loolUpkZGRg8ODB+gq5Xbooy6hRo3Dnzh2UlJRApVLhxIkT8PHx0VfI7dJFWdauXYv8/Hzk5eVh/fr1iImJwcqVK/UVcrt0URZBEBAdHY0nnngCL730kr5C1Zg6ZTPWZ1tT6pTFWK9Dl04sLC0tMXLkSKSlpYnrVCoV0tLSMGbMmDafM2bMmBb7A0Bqamq7+3cGHakHKepoPcTHx+N//ud/cOTIEQQGBhoiVL3S1ftBpVKhrq5OHyEahKb1MGTIEFy6dAlZWVniMnXqVISGhiIrK8tgfYx1TRfvB6VSiUuXLqFv3776CrMFXXXvDAsLw/PPP49Dhw6hf//+4j9sc3NzbNiwAaGhoWIi3bNnT52WoS26KNfo0aPx9NNPIyAgAMOGDcOgQYMwdepUfYT7ULooi7m5OdasWYMJEyZg2LBh8PLywn/913/pI9yHklJ3Yl2U5dSpU9i5cyf27t2L4cOHY/jw4bh06ZI+wtWIOmUz1mdbU+qUxVivg7nez2DiYmNjERUVhcDAQAQFBSEhIQFVVVWYM2cOAGD27Nno16+f+Mvrq6++ipCQEGzYsAFTpkzBjh07cOHCBYP2IdQHTeuhvr4eV65cEf8uKChAVlYWbG1t4enpabRyaEvTenj33XexcuVKbN++HR4eHuIH2tbWFra2tkYrh7Y0rYe1a9ciMDAQgwYNQl1dHQ4dOoS//e1vSEpKMmYxtKZJPSgUCgwdOrTF8x0dHQGg1frORtP3wzvvvIPRo0fD09MTpaWlWLduHW7evIl58+YZsxgaO3bsWLvbpk6dapQv5LqwevVqrF692thh6MTkyZMxefJkY4ehU9HR0cYOQSvjxo2DSqUydhgd1pk/2w8y1uvQ5ROLF198EXfv3sXKlStRVFSE4cOH48iRI2IWeOvWLZiZ/dKw8/jjj2P79u1YsWIF/vznP8PLywt79+7t9F8cNK2H27dvIyAgQHy8fv16rF+/HiEhIcjIyDB0+DqjaT0kJSWhvr6+1Q204uLi8PbbbxsydJ3StB6qqqqwYMEC/Pjjj7C2tsaQIUPw2Wef4cUXXzRWEXRC03qQKk3roaSkBDExMSgqKkL37t0xcuRInD59Gr6+vgaJV6rdO6VULpbFNEmpLL8mpbKZdFkMNpqDiIhID9DOwMZFixaJj5VKpdCvXz+NB28bk5TKxbKYJimV5dekVLbOVJYu32JBRESdT2VlZYvB4Lm5ucjKykKPHj3g5ub2yO5bpkpK5WJZWBZDk1LZOm1ZjJrWEBERdUB6eroAoNUSFRUl7vPhhx8Kbm5ugqWlpRAUFCR8/fXXxgtYTVIqF8vCshialMrWWcsiEwRB0HPuQkREREREEif9UYdERERERKR3TCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyIiIiIiEhrTCyITEBSUhLc3NzQrVs3zJgxA3fv3n3o/h4eHpDJZJDJZCgtLW13v5SUFHG/JUuW6DZoIiIiogcwsSAyst27d2PZsmX48MMPceHCBVRUVOC555575PPeeecdFBYWwsHBod19XnzxRRQWFmLMmDG6DJmIiIioFd55m8jIVq9ejUWLFmHatGkAgE8++QSurq746quvMG7cuHafZ2dnB2dn54ce29raGtbW1rC0tNRpzERERES/xhYLIiMqKSlBZmYmpkyZIq5zcXHB0KFDcezYMSNGRkRERKQZJhZERvTDDz8AADw9PVus9/LyErcREVHnlpGRIY53mz59urHDAQDIZDLs3bu3xWOZTAZHR0ejxUSdHxMLIiOqrq4G0JRI2Nraisu+ffvEbUREZFjR0dGtEoAvv/wSCoUCGzZs6PBxv//+e6SkpGgXnJpWrVqF3/3ud2rvX1hYiISEBP0FRF0CEwsiI7KxsQHQ9GtWVlaWuEyaNEncpq4HE5P58+frI1wioi5p27ZtmDVrFpKSkvDaa691+Dh9+vQxWIvAvn37MHXqVLX3d3Z2fuhkIETqYGJBZEQDBw4EANjb28PT01NcamtrxW3qejAxeeedd/QRLhFRlxMfH4/Fixdjx44dmDNnjrj+yy+/hJ+fH6ytrdGzZ0+EhYWhqqpKo2OrVCrEx8fD09MTVlZWcHNzw+rVqwEAeXl5kMlk2LVrF8aPHw9ra2uMGjUK165dw/nz5xEYGAhbW1tMnjy51RTl+fn5uHz5Mn7zm98AAK5fv44JEyZAoVDA19cXqampWtYKUds4KxSREXXv3h0jR47EyZMn4e3tDQCorKzEmTNnNE4Ofj1Og4iItLN8+XJs3rwZBw4cwJNPPimuLywsxMyZMxEfH49nnnkGFRUVOHnyJARB0Oj4b7zxBrZu3Yr3338f48aNQ2FhIa5evdpin7i4OCQkJMDNzQ0vv/wyIiMjYWdnhw8++AA2NjZ44YUXsHLlSiQlJYnP2b9/PyZOnAh7e3uoVCrMmDEDTk5OOHv2LMrKynhfI9IbJhZERvbmm2/ilVdegaurKwYMGIAVK1YgODgYY8eONXZoRERd1uHDh7Fv3z6kpaXhiSeeaLGtsLAQjY2NmDFjBtzd3QEAfn5+Gh2/oqICH3zwATZt2oSoqCgAwKBBg1pNM7506VKEh4cDAF599VXMnDkTaWlp4v+IuXPnthq3sW/fPnEK82PHjuHq1as4evQoXFxcAABr1qzB5MmTNYqXSB3sCkVkZM888wzefvttzJ07F/7+/mhoaMCuXbuMHRYRUZc2bNgweHh4IC4uDpWVlS22+fv748knn4Sfnx+ef/55bN26FSUlJRodPzs7G3V1dS1aQtqLo5mTkxOAlkmMk5MT7ty5Iz4uLy/H8ePHxfEV2dnZcHV1FZMKALxpKukNEwsiEzB//nzk5+ejuroau3fvRu/evY0dEhFRl9avXz9kZGSgoKAAv/nNb1BRUSFuk8vlSE1NxeHDh+Hr64sPP/wQgwcPRm5urtrHt7a2Vms/CwsL8W+ZTNbmOpVKJT5ujsnV1VXtWIh0hYkFUSe1fPly2NraoqysrN19Pv/8c9ja2uLkyZMGjIyISBrc3d1x/PhxFBUVtUouZDIZxo4di1WrVuHixYuwtLTEnj171D62l5cXrK2tkZaWptOYH+wGBQA+Pj7Iz89HYWGhuO7rr7/W6TmJmnGMBVEndPz4cTQ0NAAA7Ozs2t1v6tSpCA4OBgDe9IiIqANcXV2RkZGB0NBQhIeH48iRI8jOzkZaWhomTZqEPn364OzZs7h79y58fHzUPq5CocDy5cvx+uuvw9LSEmPHjsXdu3dx+fJlzJ07t0OxNjY24vDhw1i6dKm4LiwsDN7e3oiKisK6detQXl6ON998s0PHJ3oUJhZEnVDzYMFHsbOze2jiQUREj9a/f/8WycWWLVtw4sQJJCQkoLy8HO7u7tiwYYPGA6LfeustmJubY+XKlbh9+zb69u2r1X2Ijh8/DltbW4wYMUJcZ2Zmhj179mDu3LkICgqCh4cHNm7cKE5FS6RLMkHTudGIiIiISG3NSUlJSYleW4//+Mc/orGxEZs3b+7Q81NSUrBkyRKUlpbqNjDqMthiQURERGQA/fv3R0REBL744gu9HH/o0KEdnvHJ1tYWjY2NUCgUOo6KuhK2WBARERHpUU1NDQoKCgA0fYF3dnY2ckSt5eTkAGia8WrAgAFGjoY6KyYWRERERESkNU43S0REREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWmNiQUREREREWvt/bSCVDppamSoAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -123,13 +104,6 @@ "\n", "f.tight_layout()" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { diff --git a/src/pedon/soil.py b/src/pedon/soil.py index af97f17..0050926 100644 --- a/src/pedon/soil.py +++ b/src/pedon/soil.py @@ -213,7 +213,7 @@ def wosten(self, ts: bool = False) -> Genuchten: - 0.1940 * self.om_p + 45.5 * self.rho - 7.24 * self.rho**2 - - 0.0003658 * self.clay_p**2 + + 0.0003658 * self.clay_p**2 + 0.002885 * self.om_p**2 - 12.81 * self.rho**-1 - 0.1524 * self.silt_p**-1 @@ -251,12 +251,12 @@ def wosten(self, ts: bool = False) -> Genuchten: ) theta_r = 0.01 return Genuchten( - k_s=exp(ks_), + k_s=max(exp(ks_), 0), theta_r=theta_r, theta_s=theta_s, alpha=exp(alpha_), - n=exp(n_), - l=exp(l_), + n=exp(n_)+1, + l=(10 * exp(l_) - 10) / (1 + exp(l_)), ) def wosten_sand(self, ts: bool = False) -> Genuchten: diff --git a/src/pedon/soilmodel.py b/src/pedon/soilmodel.py index fb27c67..e24e622 100644 --- a/src/pedon/soilmodel.py +++ b/src/pedon/soilmodel.py @@ -49,6 +49,7 @@ class Genuchten: alpha: float n: float l: float = 0.5 # noqa: E741 + m: float = field(init=False, repr=False) def __post_init__(self): self.m = 1 - 1 / self.n diff --git a/tests/test_ptf.py b/tests/test_ptf.py index 07c1f5e..86e8740 100644 --- a/tests/test_ptf.py +++ b/tests/test_ptf.py @@ -6,7 +6,7 @@ @pytest.fixture def ss() -> pe.soil.SoilSample: return pe.soil.SoilSample( - sand_p=40, silt_p=10, clay_p=30, rho=1.5, om_p=20, m50=10000 + sand_p=40, silt_p=10, clay_p=30, rho=1.5, om_p=20, m50=150 ) From ffc01f898516d5a55de7aa81327fec2da5f4ef48 Mon Sep 17 00:00:00 2001 From: martinvonk Date: Thu, 28 Dec 2023 11:53:46 +0100 Subject: [PATCH 07/16] fix test: rename soil --- tests/test_datasets.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/tests/test_datasets.py b/tests/test_datasets.py index b8c64d9..40fdb7d 100644 --- a/tests/test_datasets.py +++ b/tests/test_datasets.py @@ -10,7 +10,7 @@ def test_sample_staring_2001() -> None: def test_soil_from_name() -> None: - pe.soil.Soil("VS2D_Del Monte Sand").from_name(pe.Brooks) + pe.soil.Soil("Del Monte Sand").from_name(pe.Brooks) def test_soil_from_staring() -> None: From 39aeb53b26c42a0e1aa8513e5416c25c3f3438c7 Mon Sep 17 00:00:00 2001 From: martinvonk Date: Thu, 28 Dec 2023 16:30:50 +0100 Subject: [PATCH 08/16] black formatting --- doc/examples/03_pedotransfer_functions.ipynb | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/doc/examples/03_pedotransfer_functions.ipynb b/doc/examples/03_pedotransfer_functions.ipynb index 89ee358..664209e 100644 --- a/doc/examples/03_pedotransfer_functions.ipynb +++ b/doc/examples/03_pedotransfer_functions.ipynb @@ -5,7 +5,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "**Pedotransfer Function**" + "**Pedotransfer Function**\n", + "\n", + "Pedotransfer functions crate a relation for the soil model based on some measurements of a soil sample. There are different pedotransfers functions available that give a relation for different soil models, e.g. Genuchten or Brooks(-Corey). " ] }, { @@ -31,7 +33,7 @@ "rho = 1.5 # bulk density [g/cm3]\n", "om_p = 10 # organic matter [%]\n", "m50 = 150 # median sand fraction [um]\n", - "ts = False # topsoil boolean\n", + "ts = False # topsoil boolean\n", "\n", "ss = pe.SoilSample(\n", " sand_p=sand_p, silt_p=silt_p, clay_p=clay_p, rho=rho, om_p=om_p, m50=m50\n", From 432beeb22c75b57131b23ee037d86a22793c9c47 Mon Sep 17 00:00:00 2001 From: martinvonk Date: Thu, 28 Dec 2023 16:31:00 +0100 Subject: [PATCH 09/16] update curve fitting routine --- doc/examples/04_curve_fitting.ipynb | 423 ++++++++++++++++++++++++++++ src/pedon/soil.py | 54 ++-- 2 files changed, 452 insertions(+), 25 deletions(-) diff --git a/doc/examples/04_curve_fitting.ipynb b/doc/examples/04_curve_fitting.ipynb index e69de29..5b1c35e 100644 --- a/doc/examples/04_curve_fitting.ipynb +++ b/doc/examples/04_curve_fitting.ipynb @@ -0,0 +1,423 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Curve Fitting**\n", + "\n", + "It can be usefull to go from one soil model to the other. When the soil parameters are known the soil water retention curve and hydraulic conductivity function can be fitted." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pedon as pe\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def plot_compare(soilsample: pe.SoilSample, soilmodel: pe.soilmodel.SoilModel):\n", + " f, ax = plt.subplots(1, 2, sharey=True, figsize=(4.2, 4.5))\n", + " ax[0].scatter(soilsample.theta, soilsample.h, c=\"k\", s=10, label=\"Soil Sample\")\n", + " _ = pe.soilmodel.plot_swrc(\n", + " soilmodel, ax=ax[0], label=f\"Fitted Soil Model {soilmodel.__class__.__name__}\"\n", + " )\n", + " ax[0].set_yscale(\"log\")\n", + " ax[0].set_xlim(0, 0.5)\n", + " ax[0].set_yticks(soilsample.h)\n", + " ax[0].set_xticks(np.linspace(0, 0.5, 6))\n", + "\n", + " ax[1].scatter(soilsample.k, soilsample.h, c=\"k\", s=10)\n", + " _ = pe.soilmodel.plot_hcf(soilmodel, ax=ax[1])\n", + "\n", + " ax[1].set_yscale(\"log\")\n", + " ax[1].set_xscale(\"log\")\n", + "\n", + " k_left = 10 ** (np.floor(np.log10(min(soilsample.k))) - 1)\n", + " k_right = 10 ** (np.ceil(np.log10(max(soilsample.k))) + 1)\n", + " ax[1].set_xlim(k_left, k_right)\n", + " ax[0].set_ylabel(r\"|$\\psi$| [cm]\")\n", + " ax[0].set_xlabel(r\"$\\theta$ [-]\")\n", + " ax[1].set_xlabel(r\"$K_s$ [cm/d]\")\n", + " ncol = 3\n", + " ax[0].legend(\n", + " loc=(-0.02, 1),\n", + " fontsize=6,\n", + " frameon=False,\n", + " ncol=ncol,\n", + " columnspacing=0.8,\n", + " handlelength=2.5,\n", + " )\n", + "\n", + " f.align_xlabels()\n", + " # plt.close(f)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Genuchten(k_s=712.8, theta_r=0.045, theta_s=0.43, alpha=0.145, n=2.68, l=0.5)" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sn = \"Sand\"\n", + "soil = pe.Soil(sn).from_name(pe.Genuchten, \"HYDRUS\")\n", + "soilm_genuchten = getattr(soil, \"model\")\n", + "soilm_genuchten" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "h = np.logspace(-4, 6, num=11)\n", + "k = soilm_genuchten.k(h)\n", + "theta = soilm_genuchten.theta(h)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "SoilSample(sand_p=None, silt_p=None, clay_p=None, rho=None, th33=None, th1500=None, om_p=None, m50=None)" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "soilsample = pe.SoilSample(h=h, k=k, theta=theta)\n", + "soilsample" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Panday(k_s=579.2644356372081, alpha=0.1472262954630398, beta=2.629461599428002, brook=3.850325533054728, sr=0.10441881484323215)" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "soilm_panday = soilsample.fit(\n", + " pe.Panday,\n", + ")\n", + "soilm_panday" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The fit method finds the optimal curve through both the soil water retention curve and hydraulic conductivity function at the same time using the least squares algorithm. All parameters are subject to the optimization algorithm." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAGwCAYAAACdL9N0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABlzUlEQVR4nO3deXgURfrA8W9nMrkPIJEcEIzcciWBwBAUCAIiajAgyIpCQEVFwHWjGHSVwxMQkd9iVlxcBA8URQGvRTGCoEjYAAHkBsNNAgRyQ87+/RGZNQbI3D2TvJ/nmUenp6frLaY673R1TZWiqqqKEEIIYWduWgcghBCiYZCEI4QQwiEk4QghhHAISThCCCEcQhKOEEIIh5CEI4QQwiEk4QghhHAISThCCCEcQhKOEEIIh5CEI4QQwiEk4QghhHAISThCCCEcQhKOkyssLCQhIYH4+Hji4uL4z3/+c9V9H3nkEQBmzJjBV199VeO1nTt30qdPH/r27UuvXr04efKkTeMcO3Ysv/76q02PaQ9HjhzhuuuuIz4+nvj4eH744Qfjv9uqVas4c+YMAJmZmWzZssXk48bGxtba9sYbb9CzZ0969+7NY489dtX3LlmyhF9++YUjR44wfPjwWq8risK7775rfN6xY0eeeuopk+IaPnw4R44cueJrVyvP39+f+Ph4unXrxjfffGNSOVdypX8T0bC5ax1AfZWens6BAwdo27YtBoPB4uO899573HbbbUycOBFVVcnPz7/qvm+//fZVX3vxxRd566236NixIxcvXkRRFItjcnV9+/ZlxYoVxue33HILUJ1wWrduTdOmTcnMzKSoqIgePXpYVEZhYSHLly/nl19+QVEULly4cNV9x44dC3DVxHDjjTeyZs0axo0bx549e/D19bUoJlO1a9eO9evXc+LECQYNGsTtt99u1/JEwyFXOHaQkpJCz549GTNmDD179iQlJcXiY3l7e7N582ZycnJQFIVGjRoBMG/ePOLi4rj55pvZtm0bcO1vlN7e3nz//fcUFxfj7e2Nl5cXOTk59OvXj969ezN8+HAqKys5cuQIvXr1YuTIkXTs2JHly5dz5513EhUVxcGDBwFo37499957L7GxsSxbtqxGOaqqMnnyZPr168eAAQM4ceLEFeNRVZWSsgq7PcxZdSM2NpasrCzjH/Wnn36at956i//7v//j1ltvBeCVV16hb9++9OnTh127dgHw/vvvExsby7333ktRUVGNY7q5uXHu3Dm2bt2Kqqo0btwYgF27dnHzzTdz00038eqrrwJXviL9Ix8fH/R6PQUFBaxYsaLGVcnHH3+MwWCgZ8+efPvttwB8//33dO3alWHDhhmvZC9dusT999/PLbfcwpAhQygoKKjz36V58+aUlJSwa9cu+vbtS1xcHJMmTQJg/fr13HbbbQwdOpSoqCjj1e2V/k3Wrl1L37596d69O7NmzQJg2LBhxrbxr3/9i0WLFtUZj6gHVGFTmzdvVoFaj82bN1t0vLKyMvXFF19Uo6Ki1J49e6r79u1TT58+rfbu3VutrKxUs7Ky1AEDBqiqqqrdunVTVVVVp0+frn755Zc1jpOdna0+8sgjaqtWrdR77rlHLSoqUktLS9Xy8nJVVVX18ccfV7/77js1KytLbd++vVpRUaF+++23ateuXdXKykp11apV6vPPP6+qqqr6+vqqubm56qVLl9SoqCi1oqJCTUpKUnft2qV++eWXxv02b96sTpw48Yr1Ki4tV69P+cpuj+LS8iuWm5WVpQYHB6t9+/ZV+/btq+bm5hr/3S7XQVVV9d1331UXLFigqqqq7tq1Sx0zZoyqqqp68uRJdciQIWpFRYUaHR2tXrp0ST179qzq6+tbq6xvv/1Wve2229QbbrhBffvtt1VVVdU777xT3bNnj1pVVaUOHDhQzcrKMn5eWVlZ6t13313rON26dVM/+ugj9cMPP1TvuOMO9YcfflCffPJJtaKiQu3SpYt68eJFNT8/31gPg8Fg/HxatGihZmVlqQsWLFD//e9/q6qqqh9//LH62muvXbM8VVXVPXv2qN26dVNLSkrUqqoqVVVVdciQIeqBAwfUdevWqbfccouqqqr6zTffqH/729+u+m9SXFysqqqqVlZWqrGxsWpJSYn62WefqbNnz1ZVVVVvvfVW9cKFC1f8vET9Il1qNnbgwIGrbreka02v1/Pcc8/x3HPPsXbtWqZPn84TTzxBVFQUbm5uREZGkpeXV+dxQkJCWLhwIQDPPfcc77//PnfddRcTJkzgwoULnDp1iq5du9KmTRs6dOiATqcjPDycTp064ebmRrNmzfj+++8BuOGGG2jSpAkAERERnDt3zljOnj17WLlyJRs2bEBVVSIiIsyus739uUutLnv27GHTpk3Ex8cDoNPpOHv2LM2bN8fT0xNPT09uuOGGWu+79dZbufXWWyksLOSmm25i1KhRZGdnc+ONNwLQtWtXDh8+bFIMd9xxB4MGDcJgMBi7Q8+ePUuLFi3w8vLCy8sLvV5PRUUFlZWVxs+nS5cuxjr897//5b333qO8vJzevXtftaz9+/cTHx+Pu7s7b731FllZWTz55JOUlJTw22+/cerUKQCio6OB6jZw4cKFq/6bbN26lZkzZ1JeXs6RI0c4c+YMd955J4MGDeIvf/kLgYGBxit3Ub9JwrGxtm3bmrW9LkePHiUsLAwPDw+aNm2KqqpERkaSmZlJVVUVx44dM+lkPXjwIG3atAHguuuuQ1VVli1bxp133slDDz3E5MmTjd1Qf7y/88f/v/z6kSNHuHDhAj4+Phw/fpzg4GDjPu3bt+eee+7h+eefB6C8vPyK8Xjrdex5YZB5/xhm8NbrzH6PXq+nsrKy1v+3b9+evn378s477wDVdXJzc+PEiROUlZVRVFREVlZWjWNdunSJs2fPEhERgZ+fH15eXkB14t+7dy/t27dn27ZtPProo2zcuLHO2Pz9/Rk8eDB33nmn8T7eddddx9GjR7l06RJlZWWUlZXh7u6OTqczfj6Xu//at29PXFwco0ePNtbhagNHLt/DuWzy5Mk8+eSTDBgwgCFDhlyxnaiqynXXXXfFf5M5c+awcOFCWrZsSdeuXVFVFQ8PDzp27EhKSgr33XdfnfUX9UODTDhZWVk88MAD5OTkoNPp2Lx5s81uxBoMBp5++mnmzJlj3JaSkmLxwIFdu3YxcuRIvLy8UFWV1NRUQkNDueuuu+jVqxdubm4sWLCgzuN8/PHHfPXVV3h7e9OoUSM++OADDh06xOjRo/nyyy/x9vY2OaaIiAgef/xx9u7dy1NPPYVO978/7gkJCfzwww/069cPRVG47777ePDBB2sdQ1EUfDycq/kNHjyYJ554ggEDBnDvvfcyZswY0tPTWbZsGW3atKFv3764ubkxcOBAnn32WZ544gl69epF+/btadGiRY1jlZeXM27cOC5dukRlZSWjR4/Gz8+Pl19+mYceeghVVbnjjjuIjIw0Ob7LSfxyMtDpdEydOpU+ffrg5ubGSy+9BMALL7xA//79iYyMNMb18MMP8/DDDxtHuz355JN07NjRpHITEhL461//Svv27amqqrrqfjqd7or/JnfffTdDhw6lc+fO+Pv7G/dPSkritttu47333jP530C4NkVVzbi7Wk/07duXl156id69e3P+/HkCAgJwd7ftHz9bjVJzRrGxsWRkZGgdhnBxW7du5d133+XNN9/UOhThIM71FdMBdu/ejV6vN/ZhX+7rtjWDwVDvEo0QtrJq1SpmzZrFhx9+qHUowoFcblj0hg0bSEhIIDw8HEVRWLVqVa19UlNTiYyMxMvLC4PBUOMHfAcPHsTPz4+EhAS6du3KK6+84sDo6we5uhHWSkxMZPPmzbRq1UrrUIQDuVzCKS4uJioqitTU1Cu+vnz5cpKTk5k+fTrbtm0jKiqKQYMGGX9BXlFRwcaNG/nnP//JL7/8wtq1a1m7dq0jqyCEEA2SS9/DURSFlStXkpiYaNxmMBjo3r27sV+4qqqKiIgIJk+ezNSpU/nll1+YMWOG8Udyr732GgBTpky5YhmlpaWUlpYan1dVVXH+/HmCgoIa9K/1hW2oqkphYSHh4eG4udnn+5+0YWFPZrVhx//0x3YAdeXKlcbnpaWlqk6nq7FNVVV1zJgx6pAhQ1RVVdXy8nI1OjpaPX/+vFpZWaneeeedtX4k+UfTp0+/4g855SEPWz6OHz9uj1NE2rA8HPYwpQ3Xq0ED586do7KykpCQkBrbQ0JC2LdvHwDu7u688sor9OnTB1VVufXWW7nzzjuvesxnnnmG5ORk4/P8/HxatGjBgQMH6hxwsH37dhLHPEKTkbOouphP7tLJAHz55ZfExMSYXK/y8nLWrVtHv3790Ov1Jr/PWlqU25DqCnD+/Hnatm1bY7iwrdXVhrdv305CQgKeN8QSMOhx1Koq8la/xMp33jCrnWpBq8/NHly1LoWFhdxwww0mteF6lXBMNXjwYAYPHmzSvpd/NZ2amkpqaqrxx4BNmjQhKCjomu8dMGAA948ewxrFB7WijEuXLpGSksKAAQPMire8vBwfHx+CgoIc/kfY0eU2pLr+kT27tupqwwMGDODxxx9nzpw5uLfsgV+nW7j+L9OJ6x2Pr6dz/4nQ+nOzJVety+VYTWnDLjdo4FqCg4PR6XTk5OTU2J6Tk0NoaKhVx544caJxehBzXP5mGRAQwObNm42TFwrhaNdqw7Nnz2bz5s28MjyGIG83ivDmlW/2ahClqM/qVcLx8PCgW7dupKWlGbdVVVWRlpZGXFycVcdOTU2lQ4cOdO/e3aL3Xx6iLYRW6mrDBoOBh8fezz/uq379w/RjrNt/xpEhinrO5RJOUVERmZmZZGZmAtXT1GRmZnLs2DGg+opi0aJFLF26lL179zJhwgSKi4sZN26cVeVaeoUjhLMwtQ3f1DqYsb0iAUhZsZMLxWUOiE40BC6XcDIyMoiJiTHezExOTiYmJoZp06YBMHLkSObOncu0adOIjo4mMzOTNWvW1BpIYC5rr3CE0Jo5bXjq4Pa0us6XM4WlPL/a+VdyFa7B5RJOfHw8qqrWeixZssS4z6RJkzh69CilpaWkp6fbpCtLrnCEqzOnDXvpdcy7Jxqdm8JXO0/zxY5TDohQ1Hcul3C0Ilc4wtWZ24ajIhoxqV9rAJ5buYvs/Ev2DE80AJJwTCRXOMLVWdKGJ93Smi7NAym4VMGUFTvMWrpbiD+ThCOEuCq9zo1590Th6e7GxoPn+CD9mNYhCRcmCcdE0qUmXJ2lbbh1U39SbmsPwCtf7yXrXLE9whMNgCQcE0mXmnB11rThsb0i6dUqiIvllSR/kklF5dVX/hTiaiThCCHq5Oam8NqIKPw93dl+LI+3N/ymdUjCBUnCEUKYpFkjb2be1RGAN9Ye4NeT+RpHJFyNJBwTyT0c4eps0YaHxjTjto6hVFSpJH+SyaXyShtGKOo7STgmkns4wtXZog0risLLQzsR7OfJgZwi5q09YMMIRX0nCUcIYZYgP09mDesMwKKNv7H5t1yNIxKuQhKOEMJsAzqEMDI2AlWFpz7dQeGlcq1DEi5AEo4QwiLP3XkjzRt7c+LCRV76StbOEXWThGMiGTQgXJ2t27C/l57XR0ShKLA84zhr9+TU/SbRoEnCMZEMGhCuzh5t2NAyiPG9WwLwzOc7yS0qtdmxRf0jCUcIYZXkgW1pF+LPuaIynl25Syb4FFclCUcIYRUvvY55I6PQ6xS+3Z3D59tOah2ScFKScIQQVusYHsgTA9oCMOOL3ZzMu6hxRMIZScIRQtjEI31a0rVFIwpLK3jqkx1UVUnXmqhJEo4QwibcdW68fk803nodv/yWy5JNR7QOSTgZSTgmkmHRwtU5og3fEOzLs3fcCMDsNfs4dKbQbmUJ1yMJx0QyLFq4Oke14fsNLejT9jpKK6r42/IdlMvaOeJ3knCEEDalKApz7u5CoLeeXSfzefOHQ1qHJJyEJBwhhM2FBnrxYmInAN5cd4gdx/O0DUg4BUk4Qgi7GBIVTkJUOJVVKn/7JJOLZbJ2TkMnCUcIYTcv3tWRpv6e/Ha2mNlr9mkdjtBYg0w4kZGRdOnShejoaPr166d1OELUW418PJgzvAsASzYd4edD5zSOSGipQSYcgE2bNpGZmcm6deu0DkWIei2+XVPu79kCqF47J/+irJ3TUDXYhONoly5dIj09XeswhNDEs7ffSGSQD6fzLzFp8Y+8//77cj40QC6XcDZs2EBCQgLh4eEoisKqVatq7ZOamkpkZCReXl4YDAa2bNlS43VFUejbty/du3fnww8/tGu88+bNA6CgoICePXuSkpJi1/KEcEY+Hu68fk80iqqy8Xgpj760UM6HBshd6wDMVVxcTFRUFA888ADDhg2r9fry5ctJTk5m4cKFGAwG5s+fz6BBg9i/fz9NmzYF4KeffqJZs2acPn2aAQMG0LlzZ7p06XLF8kpLSykt/d8aHwUFBQCUl5dTXn7troGMjAw+/PBDgu6PRVEUvL29WbBgAYmJicTGxppc58vl1FWerWlRbkOqq6PKs6YN21LZqX0UZazEt/swgm6bhJKbZdH58EdafW724Kp1MSdeRXXhxSsURWHlypUkJiYatxkMBrp3786bb74JQFVVFREREUyePJmpU6fWOsaUKVPo2LEjY8eOvWIZM2bMYObMmbW2L1u2DB8fnzpjPF0Cs3a44+eu8nJ3GRYqaiopKWHUqFHk5+cTEBBglzKsbcO2VFEF83bpOFmi0LFxFePbVaEoDg1B2Jg5bbheJZyysjJ8fHxYsWJFjSSUlJREXl4eq1evpri4mKqqKvz9/SkqKqJv374sXLjwqvNLXenbYUREBKdPnyYoKOia8WVkZHDriCSC7n+DqpJ8zr3zEABpaWlmX+GsXbuWgQMHotfrTX6ftbQotyHVFSA3N5ewsDC7Jhxr2rAtZWRk0L9/f3RNImhy72wUnZ6C79/i6wV/t+oKR4vPzR5ctS4FBQUEBweb1IZdrkvtWs6dO0dlZSUhISE1toeEhLBvX/VvAHJychg6dCgAlZWVjB8//pqTGXp6euLp6UlqaiqpqalUVlZfpej1+jobRVxcHPfddx9rAFVVuXjxIikpKcTFxVlUP1PKtActym0odXVEWda0YVuKi4tj8uTJzJkzB7cN79G434M0GTCeZm2jrI5Dq/ZiD65WF3NirVcJxxQtW7Zkx44dZr9v4sSJTJw4kYKCAgIDA01+X3JyMmve2EBAQACbN2/GYDCYXbYQtmBpG7al2bNnM2zYMPbtP8BHOe7sy60eKv3Rwz3RuUnfWn3ncqPUriU4OBidTkdOTk6N7Tk5OYSGhlp1bGundr88Yk4IrTjLEhsGg4GkMaNZ9GBvfD10bDlynnc2/qZpTMIx6lXC8fDwoFu3bqSlpRm3VVVVkZaWZnE31mWyPIFwdc7WhiOa+DAtoQMAr393gH3ZBRpHJOzN5RJOUVERmZmZZGZmApCVlUVmZibHjh0DqruwFi1axNKlS9m7dy8TJkyguLiYcePGWVWus3w7FMJSztiG74mNYMCNTSmrrF47p6xC1s6pz1wu4WRkZBATE0NMTAxQnWBiYmKYNm0aACNHjmTu3LlMmzaN6OhoMjMzWbNmTa2BBOZytm+HQpjLGduwoii8OqwLTXw92Hu6gPnfH9A6JGFHLjdoID4+nrpGck+aNIlJkyY5KCIhhDWu8/fklaGdePSDbSz88TD9b2xKt+ubaB2WsAOXu8LRijN2RwhhDmduw7d1CmNY12ZUqZD8yQ6KSyu0DknYgSQcEzljd4QQ5nD2Njw9oSPhgV4czS3hlW/2ah2OsANJOEIIpxDoree1EVEAfJh+jHX7z2gckbA1STgmcubuCCFM4Qpt+KbWwYy7KRKAlBU7ySsp0zYgYVOScEzk7N0RQtTFVdpwym3taXWdL2cKS3lu1a9ahyNsSBKOEMKpeOl1zLsnGp2bwlc7T/PFjlNahyRsRBKOEMLpREU0YvItrQF4ftWvZOdf0jgiYQuScEzkCv3fQlyLq7Xhif1a06V5IPkXy3n6s511/v5OOD9JOCZylf5vIa7G1dqwXufGvHui8XR3Y8OBs3yQfkzrkISVJOEIIZxW66Z+TB3cHoBXvt5L1rlijSMS1pCEI4RwaklxkfRqFcTF8kqSP8mkolIm+HRVknBM5Gr930L8mau2YTc3hddGROHv6c72Y3m8vUHWznFVknBM5Gr930L8mSu34WaNvJl5V0cA3lh7gF9P5msckbCEJBwhhEsYGtOM2zqGUlGlkvxJJpfKK7UOSZhJEo4QwiUoisLLQzsR7OfJgZwi5q2VtXNcjSQcB5FfEAhhvSA/T2YN6wzAoo2/kZ51XuOIhDkk4QghXMqADiGMjI1AVWHq579ySZbOcRmScOxM0ToAIeqh5xM60LyxNyfyLrHyqPwZcxXySZnIVYeUCnFZfWrDfp7uvD4iCkWBzWfcSNsra+e4Akk4JnLlIaVCQP1rw4aWQTzQ63oA/r56D7lFpRpHJOoiCUcI4bL+1r81Yd4qucVlPLtyl0zw6eQk4QghXJanXsf9bSrR6xS+3Z3D59tOah2SuAZJOEIIl9bcFyb3awXAjC92czLvosYRiauRhOMgcqkvhP2MvzmSri0aUVhawZRPd1BVJeebM2qwCaekpITrr7+ep556SutQhBBWcv997RxvvY5Nh3NZsumI1iGJK2iwCefll1+mZ8+eWochhLCRyGBf/n7HjQDMXrOPQ2cKNY5I/FmDTDgHDx5k3759DB48WOtQhBA2dJ+hBX3aXkdpRRXJn+ygXNbOcSoul3A2bNhAQkIC4eHhKIrCqlWrau2TmppKZGQkXl5eGAwGtmzZUuP1p556ildffdUh8Sq/TzVQWlpKenq6Q8oUoqFSFIXXhnch0FvPzhP5PPP+et5//30595yEyyWc4uJioqKiSE1NveLry5cvJzk5menTp7Nt2zaioqIYNGgQZ85U/xJ59erVtG3blrZt2zok3tdffx2AwsJCevbsSUpKikPKFaKhCgnw4qXETgB8uqeIh55+Uc49J+GudQDmGjx48DW7wubNm8f48eMZN24cAAsXLuTrr79m8eLFTJ06lc2bN/Pxxx/z6aefUlRURHl5OQEBAUybNu2KxystLaW09H+/YC4oKACgvLyc8vLya8aakZHBBx98SNDo7iiKgre3NwsWLCAxMZHY2FiT63y5nLrKszUtym1IdXVUeda0YWd3tc8tuOQol/b/hFe7m7ku4SnOf/S0ReeeI2nVBq1lTryK6sLjdRVFYeXKlSQmJgJQVlaGj48PK1asMG4DSEpKIi8vj9WrV9d4/5IlS/j111+ZO3fuVcuYMWMGM2fOrLV92bJl+Pj41Bljdgm8usMdX3eVV7rLglGippKSEkaNGkV+fj4BAQF2KcPaNuyqisth9g4d+eUKfUKruPsGuZ9jD+a0YZe7wrmWc+fOUVlZSUhISI3tISEh7Nu3z6JjPvPMMyQnJxufFxQUEBERQb9+/QgKCrrmezMyMrh/+BiCRs+nsLCQe+99EIC0tDSzr3DWrl3LwIED0ev1FtXDElqU25DqCpCbm2v3Mqxpw87uap9bRkYG/fv3x6NFFI0Sn2NDthur//kia5b+n1Nf4WjRBq11+YrZFPUq4Zhr7Nixde7j6emJp6cnqamppKamUllZfZWi1+vrbBRxcXHcf/99/IfqBdguXrxISkoKcXFxFsVrSpn2oEW5DaWujijLmjbsKv5cl7i4OCZPnsycOXPQbfsa/653ED5sKh2iY52+zq72uZgTq8sNGriW4OBgdDodOTk5Nbbn5OQQGhpq1bEtnWn3ySefBMDPz4/Nmzcza9Ysq+IQwlL1bbbousyePZvNmzcz5744Qn3duIgnM7/YrXVYDVq9SjgeHh5069aNtLQ047aqqirS0tIsvqq4zNq1RDw9PTEYDFbFIIQ16tN6OKYyGAw8mDSa1DE9cVPg8+0n+c+u01qH1WC5XMIpKioiMzOTzMxMALKyssjMzOTYsWMAJCcns2jRIpYuXcrevXuZMGECxcXFxlFrlmpo3w5F/dOQ23C36xszIb56gs9nV+7iTOEljSNqmFwu4WRkZBATE0NMTAxQnWBiYmKMw5pHjhzJ3LlzmTZtGtHR0WRmZrJmzZpaAwnM1RC/HYr6paG34b/2b0uHsAAulJTzzGeydo4WXC7hxMfHo6pqrceSJUuM+0yaNImjR48af91vi64sy78dKlaXLYQtNOQrHAAPdzfeGBmNh86NtH1n+CTjuNYhNTgul3C00tC/HQrXJ20Y2oX689Sg6llGXvhyD8fPl2gcUcMiCcdEDf3boXB90oarPXhzS3pENqG4rJInP9lBpayd4zCScBxEuouFcA46N4XX74nC10PHliPn+fdPv2kdUoMhCcdE0h0hXJ204f+JaOLDtIQOAMz99gD7s2XtHEeQhGMi6Y4Qrk7acE33xEbQv31TyiqreGJ5JmUVMteavUnCEUI0SIqi8OrdnWnso2fv6QL+L+2A1iHVe5JwhBANVlN/L14Z2hmAt9YfZuvRCxpHVL9JwjGR9H8LVydt+MoGdw5jWEwzqlR48pNMSsoqtA6p3pKEYyJL+78V+d2ncBJyD+fqpg/pSFigF0dyS3jlm71ah1NvScIRQjR4gd565o6IAuCDzcf48cBZjSOqnyThOIjM2ySEc7updTBje0UCMOXTHeSVlGkbUD0kCUcIIX6Xclt7Wl7ny5nCUp5fLWvn2JokHBPJDVfh6qQN183bQ8cb90Sjc1P4cscpvthxSuuQ6hVJOCaSG67C1UkbNk1URCMm9WsNwPOrfiWnQNbOsRVJOEII8SeTbmlNl+aB5F8sZ8qKnXIP1kYk4QghxJ/odW7MuycKT3c3Nhw4y4fpx7QOqV6QhCOEEFfQuqk/Kbe1B+Dlr/dy5FyxxhG5Pkk4QghxFWN7RRLXMoiL5ZUkf5JJRaVM8GkNSTh2dnmiAekBFsL1uLkpzL0nCn9Pd7Ydy+PtDbJ2jjUk4ZhIhpQKVydt2DLNGnkzY0hHAOZ/f4Ddp/I1jsh1ScIxkQwpFa5O2rDlhnVtxqCOIZRXqiQv38Gl8kqtQ3JJknCEEKIOiqLwytDOBPt5sD+nkDfWyto5lpCEI4QQJgjy8+TVYV0A+NfG39iSdV7jiFyPJBwhhDDRwA4h3BPbHFWFJz/NpKhU1s4xhyQcIYQww/N3dqB5Y2+On7/IS1/t0Tocl9LgEk5eXh6xsbFER0fTqVMnFi1apHVIQggX4u9VvXaOosDH/z1O2t4crUNyGQ0u4fj7+7NhwwYyMzNJT0/nlVdeITc3V+uwhBAupGfLIB66+QYAUj7bRW5RqcYRuYYGl3B0Oh0+Pj4AlJaWoqqqXSfmU35fY7qsrJz09HS7lSOEcKwnb21H2xA/zhWVMmHxBt577305x+vgcglnw4YNJCQkEB4ejqIorFq1qtY+qampREZG4uXlhcFgYMuWLTVez8vLIyoqiubNmzNlyhSCg4PtFu9rr80B4OLFi/Ts2ZOUlBS7lSWEcBwvvY5590SjqFVsOVXGY7MXyzleB3etAzBXcXExUVFRPPDAAwwbNqzW68uXLyc5OZmFCxdiMBiYP38+gwYNYv/+/TRt2hSARo0asWPHDnJychg2bBjDhw8nJCTkiuWVlpZSWvq/y+WCggIAysvLKS8vv2asGRkZvLd0KcFje4Dihre3NwsWLCAxMZHY2FiT63y5nLrKszUtym1IdXVUeda0YWen1ed2WeGxPRT+shy/XvfS5NYJcPaQRec4aF8XS5kTr6K68EIPiqKwcuVKEhMTjdsMBgPdu3fnzTffBKCqqoqIiAgmT57M1KlTax3jscce45ZbbmH48OFXLGPGjBnMnDmz1vZly5YZu+auJfcSvLDdHb2bylyD/DpZ1FRSUsKoUaPIz88nICDALmVY24bFtVWq8I9fdRwpUmgbWMWEG6twU+p+X31hThuuVwmnrKwMHx8fVqxYUSMJJSUlkZeXx+rVq8nJycHHxwd/f3/y8/O56aab+Oijj+jcufMVy7jSt8OIiAhOnz5NUFDQNePLyMhgYOJIgse9hVpRxtl/3gdAWlqa2Vc4a9euZeDAgej1epPfZy0tym1IdQXIzc0lLCzMrgnHmjbs7LT63C7LyMigf//+6AJDaTLqNRS9F4Xr/81Xb0yx6ApHy7pYqqCggODgYJPasMt1qV3LuXPnqKysrNU9FhISwr59+wA4evQoDz/8sHGwwOTJk6+abAA8PT3x9PQkNTWV1NRUKiurr1L0en2djSIuLo5xY8fyJQAKFy9eJCUlhbi4OIvqZ0qZ9qBFuQ2lro4oy5o27Cq0qktcXByTJ09mzpw5sG4xQbc+RqP4sVzXqrPF8bja52JOrPUq4ZiiR48eZGZmmv2+iRMnMnHiRAoKCggMDDT5fX9/9lm+fDUNnbs7mzdvxmAwmF22ELZgaRsW1zZ79myGDRvG/v0HWHFOz84zkPxJJp9N6IVe53LjsuyqXv1rBAcHo9PpyMmp+UOsnJwcQkNDrTq2pVO7/z4qGsXNTZKN0JQsT2A/BoOBMWNG868H+xDg5c7OE/n8c91hrcNyOvUq4Xh4eNCtWzfS0tKM26qqqkhLS7O4G+syS6d2v5xwqlz3VpmoJ2R5AvsLDfTixcROAPzjh4PsPJGnbUBOxuUSTlFREZmZmcZusaysLDIzMzl27BgAycnJLFq0iKVLl7J3714mTJhAcXEx48aNs6pci69wfl/zU/KN0Jpc4TjGkKhw7ugSRmWVyt+WZ8raOX/gcgknIyODmJgYYmJigOoEExMTw7Rp0wAYOXIkc+fOZdq0aURHR5OZmcmaNWuu+jsbU1n67fCPwyNdeECgqAfkCscxFEXhpbs60dTfk8Nni5mzZr/WITkNlxs0EB8fX+cf7kmTJjFp0iQHRXRtbsr/Mo6q/q+LTQhRfzX29WD28C6Me/e/LP45iwE3NqVXa/vNaOIqXO4KRyvWDhoAuY8jtCVdao7Vr11TRhlaAPDUpzsouORaMwjYgyQcE1k+aOB/GadK8o3QkHSpOd7fb7+R64N8OJV/iZlfyNo5knDs7I9XOCqScYRoSHw93Xl9RBRuCny27QRrfs3WOiRNScIxkaXdEX++hyOEVqRLTRuxkU14pG8rAJ5duYuzhQ137RxJOCayzSg1GwclhBmkS007TwxoQ/tQf84Xl/HM5zsb7IhVSTh29scrnMoG2siEaOg83XW8MTIaD50b3+89w6cZJ7QOSROScOzM/Q+XOBWVVRpGIoTQ0o1hASTf2haAmV/u5vj5Eo0jcjxJOCaytP9b56YYBw6UV8oVjtCO3MPR3vjeLeke2Zjiskqe/HQHVQ1s6KokHBNZMyxa71b9z1wuVzhCQ3IPR3s6N4XXR0Tj46FjS9Z5/v1TltYhOZQkHAfQ66ovcSrkCkeIBq9FkA/P39kBgNe+3c/+7EKNI3IcSTgO4P77mhhlcoUjhAD+0j2CW9o3payyiuRPMimraBh/GyThmMia/u/LizBVVDWMRiWck9zDcR6KojDr7s409tGz+1QB/0g7qHVIDiEJx0TW9H9f7lIrr5AuNaEduYfjXJr6e/Hy0Orl7f+5/hDbj+dpG5ADSMJxAL10qQkhruD2zmEkRodTpcLTn/1KaT1fOkcSjgO4GwcNSMIRQtQ0c0gnQgO8OJJbwhdH6/ef5PpdOyfh8fsVTmkDuTEohDBdoI+e10Z0AeCnHDc2HjyncUT2IwnHAXw9q9e5Kymr59fLQgiL9G5zHaMNEQA8s3I3+SX1c+0cSTgOcDnhFJdWaByJEMJZTbm1LU29VHIKS5n2xa9ah2MXknBMZM2QUl8PHQAlZZJwhHZkWLRz8/bQcX/rSnRuCqszT/HVzlNah2RzknBMZM2QUh+P369wpEtNaEiGRTu/6/3h0T43APDcql/JKbikcUS2JQnHAfw8q69wpEtNCFGXifEt6dQsgLySclI+q19r50jCcQAf4z0cucIRQlybXufGG/dE4+Huxvr9Z1m25ZjWIdmMJBwH8PeqTjj5F+vnyBMhhG21CfHn6UHtAHjpq70cOVescUS2IQnHAYJ9PQE4X9xw1zIXQpjngZtuoGfLJlwsr147p7IerJ3jbs7OX3zxhdkFDBw4EG9vb7PfZy/Hjx9n9OjRnDlzBnd3d55//nlGjBhh1zKb+HoAcL64zK7lCCHqDzc3hbkjorht/ka2Hr3A2xsO81h8a63DsopZCScxMdGsgyuKwsGDB2nZsqVZ77Mnd3d35s+fT3R0NNnZ2XTr1o3bb78dX19fu5UZ5FedcM4VScIRQpiueWMfpid0YMqKnbyx9gDxbZvSITxA67AsZnaXWnZ2NlVVVSY9fHx87BGzVcLCwoiOjgYgNDSU4OBgzp8/b9cyg37vUsstLq1XI06EEPY3vFtzBnYIobxSJfmTTEorXHfwkVkJJykpyazusfvvv5+AANtm4w0bNpCQkEB4eDiKorBq1apa+6SmphIZGYmXlxcGg4EtW7Zc8Vhbt26lsrKSiIgIm8b4Z00DqhPOpfIqfvhps13LEkLUL4qi8OqwzgT5erAvu5AH31hJenq61mFZxKyE8+677+Lv72/y/m+99RbBwcFmB3UtxcXFREVFkZqaesXXly9fTnJyMtOnT2fbtm1ERUUxaNAgzpw5U2O/8+fPM2bMGP71r3/ZNL4rmf7cs1QUVV9F3T5iNCkpKXYvUwhRfwT7eXJj0XYANp7zpO/dD7jk3xGz7uE4g8GDBzN48OCrvj5v3jzGjx/PuHHjAFi4cCFff/01ixcvZurUqQCUlpaSmJjI1KlT6dWr1zXLKy0tpbT0f6PLCgoKACgvL6e8vO5hzhkZGSxYsIBGw18Evyb4NG3BggULSExMJDY2ts73Xy7rj/91FC3KbUh1dVR51rZhZ6bV52YP16pLRkYGny+Ygf+Ax/Du0I/rEp7kzYVPmfV3xF7M+bdXVCtuKly6dImdO3dy5swZqv60fPKQIUMsPazJFEVh5cqVxsEMZWVl+Pj4sGLFihoDHJKSksjLy2P16tWoqsqoUaNo164dM2bMqLOMGTNmMHPmzFrbly1bZtY9qvcPupFxzo0hLSrp30zu44hqJSUljBo1ivz8fJt3P19mqzYstHexAmbv0HGhTCGuaRV/aaX9kifmtGGLE86aNWsYM2YM587VXrtBURQqK+1/Y+vPCefUqVM0a9aMTZs2ERcXZ9zv6aef5scffyQ9PZ2ffvqJPn360KVLF+Pr77//Pp07d75iGVf6dhgREcHp06cJCgqqM8aMjAz69++Pr2EEvoZ7uLj7BwrT3iItLc2sK5y1a9cycOBA9Hq9Se+xBS3KbUh1BcjNzSUsLMyuCcfaNuzMtPrc7OFadbn8dwRA36wDje+u/gIxxeDHw3deu5fG3goKCggODjapDVvcpTZ58mRGjBjBtGnTCAkJsfQwDnfzzTfXuhq7Fk9PTzw9PUlNTSU1NdWYSPV6vUkNPC4ujsmTJ7Ng5UZ8AV3w9Tz++OM1EqKpTC3T1rQot6HU1RFlWduGXUF9r8vlvyNz5szh4qGt6P67ioDuiby7u5x7b1WNv/XTgjn/7hbPNJCTk0NycrJTJZvg4GB0Oh05OTk1tufk5BAaGmrVsa2ZaXf27Nl88vZcALxDWzHzpZetikUIS8hs0a5t9uzZbN68mffee4/VLz5I66Z+nCsq5blVu1zm5xYWJ5zhw4ezfv16G4ZiPQ8PD7p160ZaWppxW1VVFWlpaRZdUfyRtWuJ3BEfRyMfPZUqHMgusioWISwh6+G4PoPBwOjRo+ndqydv3BONu5vCN7uyWZ3pGmvnWNyl9uabbzJixAg2btxI586da11WPf7441YHdyVFRUUcOnTI+DwrK4vMzEyaNGlCixYtSE5OJikpidjYWHr06MH8+fMpLi42jlqz1MSJE5k4cSIFBQUEBgaa/X5FUYhq3ogfD5wlPSuXzs3NP4YQ1rC2DQvn0rl5II/3b8O8tQd4fvWvGFo2ISzQeaYRuxKLE85HH33Ed999h5eXF+vXr0dRFONriqLYLeFkZGTQr18/4/Pk5GSgeiTakiVLGDlyJGfPnmXatGlkZ2cTHR3NmjVrrO76+3P/tyVubh3MjwfO8tOhczzU23mm+xENgy3asHAuj8W3Im3fGXYcz2PKpzt574EeuLkpdb9RIxZ3qf39739n5syZ5Ofnc+TIEbKysoyP3377zZYx1hAfH4+qqrUeS5YsMe4zadIkjh49SmlpKenp6RgMBqvLtUX/981tqn8Em/7beZeenkK4JrmHU/+469yYd08UXno3fjp0jg/Tj2od0jVZnHDKysoYOXIkbm4NY4UDW/R/twvxJyTAk4vllWw8UHs4uRD2JPdw6qdW1/mRclt7AF75Zp9Tr51jcbZISkpi+fLltozFqdni26Gbm8IdncMBWL3DNW7yifpDrnDqr6S4SOJaBjn92jkW38OprKxkzpw5fPvtt3Tp0qXWoIF58+ZZHVx9dFd0OIt/zmLtnmzySspo5KPd+HkhRP3g5qbw2oguxrVzFm38jUf7ttI6rFosvsLZtWsXMTExuLm58euvv7J9+/Yaj/rGVt0RXZoH0iEsgEvlVXyYXn/WKhfOT7rU6rfmjX2YdmcHAOZ9d4B92QUaR1SbxVc469ats2UcTs9WQ0oVReGh3jeQ/MkOlm46woM334CXXmfDSIW4MhkWXf+NiG3Ot7uzSdt3huTlO1g18SY83J3nPrvFkbz66qssXry41vbFixcze/Zsq4Kq7+7sEk54oBdnCktZ/HOW1uEIIeoJRVF49e7ONPLRs+d0AW/+cFDrkGqwOOG8/fbbtG/fvtb2jh07snDhQquCqu883N2Ycls7AP657jBnC0vreIcQQpimqb8XLyV2AiB1/WF2HM/TNqA/sDjhZGdnExYWVmv7ddddx+nTp60KyhnZuv/7rqhmdGkeSFFpBTO+3O0ycyEJ1yX3cBqOO7uEkxAVTmVV9bLUl8qd43d/FieciIgIfv7551rbf/75Z8LDw60KyhnZekipm5vCy4mdcXdT+HrnaZeZC0m4LhkW3bC8eFdHmvp7cvhsMa99u1/rcAArEs748eN54oknePfddzl69ChHjx5l8eLF/O1vf2P8+PG2jLHe6tw8kMm3tAHgmc93seeU840qEUK4pkY+Hsy+u3rdr8U/Z7H5t1yNI7Ii4UyZMoUHH3yQxx57jJYtW9KyZUsmT57M448/zjPPPGPLGOu1if1a0btNMBfLKxn/XgY5BZe0DkkIUU/0a9+Uv3SPQFXhqU93UFRaoWk8FiccRVGYPXs2Z8+eZfPmzezYsYPz588zbdo0W8ZX77nr3Hjz3q7cEOzLybyLjFq0WQYRCCFs5rk7O9C8sTcnLlzk5a/3aBqL1QO0/fz86N69O506dcLT09MWMTkle95wDfTR894DPQgP9OLw2WJGLdrMybyLNi9HNGwyaKBh8vN0Z+6IKAA+2nKcdfvPaBaLWQln586dZi3PvHv3bioqtL2EsxV733CNaOLDsvE9CQnw5OCZIoam/syvJ/PtUpZomGTQQMPVs2UQD9x0AwDPfLaLgkvlmsRhVsKJiYkhN9f0G09xcXEcOybTt5gqMtiXzx+7ibYhfpwpLGXEwl/4NOO4DJkWQlhtyqB2RAb5kF1wiVe/2atJDGZNbaOqKs8//zw+Pj4m7V9WVmZRUA1Zs0berJjQi4kfbmPjwXNMWbGTjQfCuMlL68iEEK7M20PH7Lu7MPJfm/loy3Hu6BxuXKPLUcxKOH369GH/ftPHc8fFxeHt7dxLnjqjAC89S8b14K31h3jj+4N8sfM0Gzx0BLQ+w+AuzbQOTwjhogwtg0iKu56lvxwl5bOdfPu3Pvh5WjylptnMKmn9+vV2CkP8mc5NYdItbejZMognlmdy4sJFJizL5NbM00xL6EDzxqZdZQohxB89fVt70vad4cSFi8xZs48X7urksLKdZxpRcUWxkU34ZlIvBoRX4e6m8N2eHG6Z+yMvfrWH88XSZSmEMI+vp7vxB6Hv/XLUoT8IlYRjIi2HlHp76Ei4vopVE3oS1zKIssoq/v1TFn3nrOMfaQfJL9FmxIlwLTIsWlx2U+tg7u3RAoCUz3ZSUuaY0cSScEzkDENK24X6s2y8gaUP9KBDWACFpRXMW3uAXrPSeOmrPZyS3+6Ia3CGNiycx7O3tycs0IujuSX8I+2QQ8qUhONiFEWhb9vr+Gryzfzj3hjah/pTXFbJOz9l0WfOOv62PJOtRy/IUGohxDX5e+mNyxi8s/E39mcX2r1MSTguys1NYUhUOP/5a2+WjOtOXMsgKqpUVm4/yd1vbWLw/23kvV+OaPYDLyGE8+t/YwiDOoZQUaXy3KpdVFXZ94uqJBwXpygK8e2a8tHDPVk98SaGd2uOp7sb+7ILmbZ6N4aX00j+JJMNB85SUWn6LBFCiIZhekJHfDx0/PfIBVZsPWHXsswaFn3DDTegKIrZhTzxxBM8/vjjZr9PmCcqohFREY14/o4OfL79BMvSj3HwTBGfbzvJ59tOcp2/Jwldwhka04xOzQIs+iyFEPVLeCNv/jagLS9/s5dX/rOX/jc2JcjPPvNimpVwlixZYlEhkZGRFr3PXoYOHcr69evp378/K1as0Docmwv00TPuphsY2yuSbccusHL7Sb7eeZqzhaUs/jmLxT9nERnkw6COodzaMZSYiEa4uUnyEaKhGntTJJ9tO8G+7ELe+P4ALyV2tks5ZiWcvn37Gv//u+++Izo6mqZNm9o8KHv761//ygMPPMDSpUu1DsWuFEWh2/VN6HZ9E6bd2ZENB86yKvMka/fkcCS3hLc3/MbbG36jqb8nAzuEcGvHUOJaBuHhLj2tQjQkep0bM4Z05C//2syy9GOMiYukbYi/zcuxeE6DxMRESktLCQkJITo6mpiYGAYOHEh8fLwNw7OP+Pj4Bjdrgoe7GwM6hDCgQwhFpRX8uP8s3+7OZt2+M5wpLOXD9GN8mH4Mfy93bmnflFvaN8VwfWCNY6Snp3PgwAHatm2LwWDQqCZCCHvo2TKIWzuE8N2eHCYu+p6XBobb/Dy3+KtsYWEhO3bs4LXXXqNTp06kp6dz22230a9fP4qLi20ZYw0bNmwgISGB8PBwFEVh1apVtfZJTU0lMjISLy8vDAYDW7ZssVs8rsjP0507uoTxj3tj2Pr8QJaM6869PVoQ7OdJ4aUKVmee4q8fZ9Jz9o+8tlPHa98dYGzKq/S86WbGjBlDz549SUlJ0boaQggbc9/9JWplBQeLPIj/y6M2P88tvsLJzc2lU6dOdOrUifvuuw+AM2fOMGzYMF588UVmzZplsyD/qLi4mKioKB544AGGDRtW6/Xly5eTnJzMwoULMRgMzJ8/n0GDBrF//36Luv9KS0spLf3fCpwFBQUAlJeXU17umCHHl8uxR3kKcFPLxtzUsjHT72hH5vE8vt93lp8O5bIvu5ATxQr/2ngElC60+Otyyk7uoezYDv754Uruuusum/9q3Z51deZy7ckZ2rC9aPW52YPWdcnIyGDJgtfw6z0Wn5g7aNJnDAsW/J3ExERiY2Ov+j5z4lVUC38h6ObmRmhoKFFRUcZHdHQ0xcXF3H777Zw5Y/9V5RRFYeXKlSQmJhq3GQwGunfvzptvvglAVVUVERERTJ48malTpxr3W79+PW+++WadgwZmzJjBzJkza21ftmyZycs0uKqCMjiQr7AvX2F/nkJBec2BBYF6lXaNVNoFVv/XX69RoC6spKSEUaNGkZ+fT0BAgF3KaMhtWJivoAxe2KajXFV49MZKbmx07RRhThu2OOEcPnyYHTt2sHPnTnbs2MGOHTs4cuQIHh4elJeXc++992IwGIiOjqZ3796WFFGnPyecsrIyfHx8WLFiRY0klJSURF5eHqtXrzZuMzXhXOnbYUREBKdPnyYoKMim9bma8vJy1q5dy8CBA9HrHfdX/XK5wcHBDBw4EF1QCzxadMGjRRQezTqguHvU2L9DmD83tw7iplZBdGvRCE+9zuIytaqro8vNzc0lLCzMrgnHGdqwvWj1udmD1nXJyMigf//+APj1TsIn5k7KT+/n00d6XrMno6CggODgYJPasMVdaq1ataJVq1Y1urUKCgpYt24dQ4cORVVVli5dSkpKCiUlJZYWY5Zz585RWVlJSEhIje0hISHs27fP+HzAgAHs2LGD4uJimjdvzqeffkpcXNwVj+np6YmnpyepqamkpqZSWVkJgF6vd3ij0KJMgB49ejB58mTmzJkDJ/bDpk95KmUqdz34JBsPnmXjwXPsOV3AntOF7DldyL82HsFL74bhhiB6twmmT9vraNPUz6zf/WhVV0eX64iynKkN24vUxXpxcXHG87z054/x7nwr+rB2eDW/8ZrxmBOrxQmnSZMmREdHG7vTOnfujJ+fH9988w2tWrXiww8/BDA2bmfy/fffm/2eiRMnMnHiRAoKCggMDKz7DfXM7NmzGTZsWK1Raje3CeYZ4GxhKT8fOseG3xPQ2cJSfjxwlh8PnIWv9xIS4MnNra+jT9tgbmodTLCdflgmrq6ht2FRtz+e598X+vPjsVLe23SEri0a2+T4FiecxYsXG7vSVq9ezZEjRwDw8fHhk08+Me6n05nfrWKp4OBgdDodOTk5Nbbn5OQQGhpq1bH//O2wITIYDFcdJnmdvyeJMc1IjGmGqqocyCli48GzbDh4jvTfcskpKOWzbSf4bFv11BkdwwO4uU0wfdpcR2xkYzzdHddOGippw8IUl8/z6BP5/PjmT3y96zTP3nEjTf2tX+feqt/h/PE+SWFhIadPn6ZZs2b4+vpaHZglPDw86NatG2lpacbYqqqqSEtLY9KkSVYdW74dmk5RFNqF+tMu1J+HerfkUnklW49eqL76OVDd/bb7VPXj7R9/w1uvI65VEH3bXsdNLW3zTUrUJm1YmKNz80BiWjRi+7E8vsg8xUO9W1p9TJstZu3v74+/v+1/mfpnRUVFHDr0v7UbsrKyyMzMpEmTJrRo0YLk5GSSkpKIjY2lR48ezJ8/n+LiYsaNG2dVufLt0HJeeh03ta7uSntm8P+63zYePMfGg2c5U1jKD/vO8MO+6pGNQZ46tlTupV/7EOJaBeHrwDXX6zNpw8Jcw2Kasf1YHl/u0CDhOMPknRkZGfTr18/4PDk5GageibZkyRJGjhzJ2bNnmTZtGtnZ2URHR7NmzZpaAwnMJd8ObefP3W/7sgv58cBZNhw4y3+PnCe3FD7ccpwPtxxHr1OIvb4J/W9sysAOIVwfpM3Vc30gbViYa3DnMKZ/sZsdJ/I5mlts9fnncpN3xsfH17m42KRJk6zuQhOOoSgKN4YFcGNYAI/2bUVe0UVSP11LSWAkGw/lcux8Cb/8lssvv+Xy0td7aRvix8AOIQzsEEqXZoEy6agQdhTs50lcqyB+PpTL2j05Vl/lWDx5Z0Mj3RGO4evpTqcmKrffXj0U88i5YtbtP8PaPTmkZ53nQE4RB3KKSF13mKb+ngzuFMqQ6HBiIhpL8qmDtGFhib5tr+PnQ7lsOpzr2ITTkEl3hDYig30ZF3wD4266gfyScmPyWb+/etLRpb8cZekvR2nWyJs7o8IYEhVOhzBZ6+dKpA0LS/RqFQxA+m+5lFdWoddZPpu8JBzhMgJ99MZ7P6UVlWw6lMuXO07x3Z4cTuZd5O0ff+PtH3+jTVM/7u3Rgru7NifQp378GFAIrXQIC6CRj568knL2nCogKqKRxceShU9MlJqaSocOHWw+WaWwjKe7jn7tmzJvZDQZzw3grfu6cnvnUDzd3Th4pogXvtpDj1e+J/mTTDKOnK/zvl9DIG1YWMLNTaFzs+or4j2nC6w7li0CaggmTpzInj17+O9//6t1KOJPvPQ6BncO45/3dSPjuQG8mNiJG8MCKK2o4vNtJxm+8BcS/7mJ73ZnU1XVcBOPtGFhqQ5h1XOk7T6Vb9VxpEtN1Cv+XnpG97ye+w0t2HEin2XpR/lixyl2HM/j4fe30jbEj8fiW5MQFY5OBhkIYZIO4dUJZ9/pQquOI1c4ol5SFIXoiEbMGR7FTym3MLFfK/w93TmQU8QTyzO54x8b+engOa3DFMIlXP79zYkLF606jiQcE0n/t+sK9vNkyqD2/PzMLUwZ1I5Abz37sgu5/9/pPPr+Vs4UXNI6RIeQNiws1byxNwA5hZcorbB8WL0kHBNJ/7frC/DSM7Ffa36cEs+4myJxd1NYszubAfN+5Kudp7UOz+6kDQtLBfl64KV3Q1XhdJ7lX9Ak4YgGp5GPB9MTOvLFpJvp3CyQgksV/O3TXXzymxtlFVVahyeE01EUhfDA6quc0/mScIQwW4fwAFY+1otJ/VoD8HOOG+M/2EbBJW3WlBfCmTX6/Tdt+RctPz8k4ZhI+r/rJ3edG08Nase/7o/Bw01l0+HzjHv3v5SUVWgdms1JGxbWaOxTvaR8XkmZxceQhGMi6f+u3/q1u47HO1YS4OXO1qMXmPDBtnrXvSZtWFjj8qwdeXKFI4T1IvzgndFd8dbr+PHAWV7/br/WIQnhNBp5X77CkYQjhE3EtGjEGyOjAXh7w2/yWx0hfufvVT1PQKEV9zgl4QjxJ7d1CuU+QwsAnlu1q951rQlhCU99dbqw5nyQhCPEFTxz+40E+3lwJLeEZelHtQ5HCM15/L4sQakkHCFsy8/Tnb/2bwPAoo1ZVDbgST+FAPDU6wC5wnEIGVLa8IyIjaCxj56TeRdJ25ujdThWkzYsrOFpvMKRqW3sToaUNjxeeh3DuzUHqBdT30gbFtYw3sOplCscIexiUMdQANbtP0O5FSeaEK7OeA+nXBKOEHYR06IxQb4eFF6qYNvRC1qHI4RmPNzlCkcIu9K5KcRGNgZgx4k8bYMRQkNuSvWChdas1i4JR4g6REf8nnCOW7e8rhANXYNMOF999RXt2rWjTZs2vPPOO1qHI5xcx9+X1z14xrrldYVo6Ny1DsDRKioqSE5OZt26dQQGBtKtWzeGDh1KUFCQ1qEJJxX5+/K6R3NLqKpScXNTNI5ICNfU4K5wtmzZQseOHWnWrBl+fn4MHjyY7777TuuwhBMLb+SFu5tCaUUVOYUNYzlqIezB5RLOhg0bSEhIIDw8HEVRWLVqVa19UlNTiYyMxMvLC4PBwJYtW4yvnTp1imbNmhmfN2vWjJMnTzoidOGi3HVuNPaqvqr5ftNWjaMRQlu5ubmkp6db9F6XSzjFxcVERUWRmpp6xdeXL19OcnIy06dPZ9u2bURFRTFo0CDOnDnj4EhFfZGSksKJw/sAeGRyMikpKRpHJITjLX53MQBZR47Qs2dPi84Dl7uHM3jwYAYPHnzV1+fNm8f48eMZN24cAAsXLuTrr79m8eLFTJ06lfDw8BpXNCdPnqRHjx5XPV5paSmlpaXG5wUFBQCUl5dTXu6YpYgvl+Oo8rQs19nqmpGRwYIFCwgc8iwAXoHBLFiwgMTERGJjY21Wrj05Qxu2F63aiz04c10yMjL48osvaHRXZ9zc3PD29jaeB23btjX5OIqqWjOqWluKorBy5UoSExMBKCsrw8fHhxUrVhi3ASQlJZGXl8fq1aupqKjgxhtvZP369cZBA5s2bbrqoIEZM2Ywc+bMWtuXLVuGj4+PPaolnND7B93IOOfGkBaV9G9mu1OmpKSEUaNGkZ+fT0BAgM2O+0fShoUt7Lmg8PY+Hc19VaZ0+d98aua0YZe7wrmWc+fOUVlZSUhISI3tISEh7NtX3SXi7u7O66+/Tr9+/aiqquLpp5++5gi1Z555huTkZOPzgoICIiIi6Nevn8NGtpWXl7N27VoGDhyIXq93SJlaletsdc3IyKB///749R6LT8wdfPT5l7yz6UPS0tJscoWTm5tr9THq4gxt2F60ai/24Mx1ycjIIGnqkzS66+9kZWVx76vV3WlpaWlmXeHUq4RjqiFDhjBkyBCT9vX09MTT05PU1FRSU1OprKzO7Hq93uGNQosytSrXWeoaFxfH5MmT+dfmbAAqUXj88ceJi4uzWXn25kxt2F6kLvYVFxfHkCFD2ABUVVVx8eJFUlJSiIuLM3bRmsLlBg1cS3BwMDqdjpycmlPJ5+TkEBoaatWxZabdhmv27Nk89MBYAIYNH8msWbO0DchC0oaFNcY98AAAN0RGsnnzZovOg3qVcDw8POjWrRtpaWnGbVVVVaSlpVn9jVTWEmnYWkdWLzkd0MR1u6CkDQtbaBLUBIPBYNF7XS7hFBUVkZmZSWZmJgBZWVlkZmZy7NgxAJKTk1m0aBFLly5l7969TJgwgeLiYuOoNUvJt8OGzdPd+uV1tSZtWGjN5e7hZGRk0K9fP+PzyzdDk5KSWLJkCSNHjuTs2bNMmzaN7OxsoqOjWbNmTa2BBOb6c/+3aFguL69rzVogWpM2LKxxeUIna8Y1u1zCiY+Pp66R3JMmTWLSpEk2LXfixIlMnDiRgoICAgMDbXps4fy89NYvr6s1acNCay7XpaYV6f9u2Dzdq69wLpW7bsKRNiy0JgnHRNL/3bDpfp8husplfyYtbVhoTxKOEEIIh5CEYyLpjhCuTtqw0JokHBNJd4RwddKGhdYk4QghhKiTolTfx7RmWLQkHCHM4MKTqwuhOUk4JpL+74ZNqXsXpydtWGhNEo6JpP9buDppw0JrknCEEEI4hCQcIYQQDiEJRwghhENIwjGR3HAVAK48Rk3asLCGcbZoK44hCcdEcsO1Ybv8GwRXJm1YaE0SjhBCCIeQhCOEEMIhJOEIIYRwCEk4QgghHEISjhBmkKnURENli3EzknBMJENKGzbXH6MmbVjYhjUT2ErCMZEMKRWuTtqw0JokHCGEEA4hCUcIIYRDSMIRQgjhEJJwhDCDDFITwnINMuEMHTqUxo0bM3z4cK1DES6iHkylJoRVFBuM1WyQCeevf/0r7733ntZhCCFEg9IgE058fDz+/v5ahyFcUO65c6Snp2sdhhCauXDhgsXngNMlnA0bNpCQkEB4eDiKorBq1apa+6SmphIZGYmXlxcGg4EtW7Y4PlDRoCxZsgSAw4cP07NnT1JSUrQNSAgHW/TOIgCOHz9u8TngbuugrFVcXExUVBQPPPAAw4YNq/X68uXLSU5OZuHChRgMBubPn8+gQYPYv38/TZs2BSA6OpqKiopa7/3uu+8IDw83K57S0lJKS0uNzwsKCgAoLy+nvLzcrGNZ6nI5jipPy3Kdsa4ZGRl8+eWXNBrSCTc3N7y9vVmwYAGJiYnExsbapFx7coY2bC9atRd7cOa6ZGRksGrVKhoP7VLrHGjbtq3Jx1FUa+YpsDNFUVi5ciWJiYnGbQaDge7du/Pmm28CUFVVRUREBJMnT2bq1KkmH3v9+vW8+eabrFix4pr7zZgxg5kzZ9bavmzZMnx8fEwuT7i2Xy8oLNqno4WvypNdKm123JKSEkaNGkV+fj4BAQE2O+4fSRsWtrA/T+Gfe3WE+ahMjfrfOWBOG3aphFNWVoaPjw8rVqyokYSSkpLIy8tj9erVJh/b1IRzpW+HERERnD59mqCgILPqY6ny8nLWrl3LwIED0ev1DilTq3Kdsa4ZGRkMfnAKjYY8Q3n2IS588gwAaWlpVl/h5ObmEhYWZteE4wxt2F60ai/24Mx1ycjI4LaxT9B46DQqzh3l/LKngOpzoG3btgQHB5vUhp2uS+1azp07R2VlJSEhITW2h4SEsG/fPpOPM2DAAHbs2EFxcTHNmzfn008/JS4u7or7enp64unpSWpqKqmpqVRWVmd2vV7v8EahRZlaletMdY2LiyMhIYGNVF9RX7x4kZSUlKu2GXPLszdnasP2InWxr7i4OIYmJrKe2ufA5S5aU7hUwrGV77//3uz3TJw4kYkTJ1JQUEBgYKAdohLObNy4sWxckkHLVi1ZtXkzBoNB65DMJm1YWGP8+PGsfyediIgIVlp4DjjdKLVrCQ4ORqfTkZOTU2N7Tk4OoaGhdi1bpnYXAMFBQS6ZbEDasLCNRo0aW3wOuFTC8fDwoFu3bqSlpRm3VVVVkZaWZpPujWuRqd2Fq5M2LLTmdF1qRUVFHDp0yPg8KyuLzMxMmjRpQosWLUhOTiYpKYnY2Fh69OjB/PnzKS4uZty4cXaN68/936JhctoRNiaQNiy05nQJJyMjg379+hmfJycnA9Uj0ZYsWcLIkSM5e/Ys06ZNIzs7m+joaNasWVNrIIGtSf93w2aLeaS0Jm1YaM3pEk58fHydS5hOmjSJSZMmOSgiIYQQtuBS93C0JDdchauTNiysYYtrfEk4JpIbrsLVSRsWWpOEI4QQwmSqFUNnJOGYSLojBIDzTgRVN2nDQmuScEwk3RENnOsPUpM2LDQnCUcIIYRDSMIRQgjhEJJwTCT938LVSRsWVrFBt7IkHBNJ/7dwddKGhdYk4QhhBmuGhApRH1gzUlMSjhAmqAeD1ITQnCQcE0n/t3B10oaF1iThmEj6v4WrkzYstCYJRwghhENIwhHCDK48tY0Q1rDFmlCScIQwgaLIsAEhrCUJRwghhENIwhFCCGEya3qVJeGYSIaUClcnbVhoTRKOiWRIqXB10oaF1iThCGEGGaUmhOUk4QhhAhmjJho6WwzUlIQjhBDCISThCCGEcIgGl3COHz9OfHw8HTp0oEuXLnz66adahySEEC5DteJGprsN43AJ7u7uzJ8/n+joaLKzs+nWrRu33347vr6+WocmhBD1WoNLOGFhYYSFhQEQGhpKcHAw58+fl4QjTCKD1ISwnNN1qW3YsIGEhATCw8NRFIVVq1bV2ic1NZXIyEi8vLwwGAxs2bLForK2bt1KZWUlERERVkYt6rvLI3QuXDhPenq6tsEIoYHLg9Ty8wssPgecLuEUFxcTFRVFamrqFV9fvnw5ycnJTJ8+nW3bthEVFcWgQYM4c+aMcZ/o6Gg6depU63Hq1CnjPufPn2fMmDH861//snudhOt75513ADh29Bg9e/YkJSVF44iEcKyFb78NwOnTpyw+B5yuS23w4MEMHjz4qq/PmzeP8ePHM27cOAAWLlzI119/zeLFi5k6dSoAmZmZ1yyjtLSUxMREpk6dSq9everct7S01Pi8oKAAgPLycsrLy02pktUul+Oo8rQs1xnrmpGRwapVq2k8tAuKmxve3t4sWLCAxMREYmNjbVKuPTlDG7YXrdqLPThzXTIyMvj8s89oPDwKRVFqnANt27Y1+TiKas2QAztTFIWVK1eSmJgIQFlZGT4+PqxYscK4DSApKYm8vDxWr15d5zFVVWXUqFG0a9eOGTNm1Ln/jBkzmDlzZq3ty5Ytw8fHx9SqCBe3L0/hrb06mvmoPB1VabPjlpSUMGrUKPLz8wkICLDZcf9I2rCwhUMFsGC3OyHeKs9G/+8cMKcNu1TCOXXqFM2aNWPTpk3ExcUZ93v66af58ccfTepX/Omnn+jTpw9dunQxbnv//ffp3LnzFfe/0rfDiIgITp8+TVBQkIU1M095eTlr165l4MCB6PV6h5SpVbnOWNeMjAxuG/s3Gg99nvKzR7jw0RQA0tLSrL7Cyc3NJSwszK4JxxnasL1o1V7swZnrkpGRwW2jJ9F4+AtUnD/J+Q+eAKrPgbZt2xIcHGxSG3a6LjV7u/nmm6mqqjJ5f09PTzw9PUlNTSU1NZXKyurMrtfrHd4otChTq3Kdqa5xcXEkJt7Fj1RfIV+8eJGUlJQaX3qsKc/enKkN24vUxb7i4uIYdvfdrANUtarGOXC5i9YUTjdo4FqCg4PR6XTk5OTU2J6Tk0NoaKhdy5aZdhu28Q+NByAiIoLNmzcza9YsjSMyn7RhYY1HH3kEgLCwcIvPAZdKOB4eHnTr1o20tDTjtqqqKtLS0mzybfNaZC0RAdC4cWMMBoPWYVhE2rCwxuVl1gMCAyw+B5wu4RQVFZGZmWkcaZaVlUVmZibHjh0DIDk5mUWLFrF06VL27t3LhAkTKC4uNo5asxf5dihcnbRhoTWnu4eTkZFBv379jM+Tk5OB6pFoS5YsYeTIkZw9e5Zp06aRnZ1NdHQ0a9asISQkxK5x/bn/WwhXI21YaM3pEk58fHydk8NNmjSJSZMmOSiiahMnTmTixIkUFBQQGBjo0LKFsAVpw0JrTtel5qyk/1u4OmnDwias+CGNJBwTSf93w2aL1Q61Jm1YaE0SjhBCCIeQhGMi6Y4Qrk7asLCGLa7yJeGYSLojhKuTNiy0JglHCCGEQ0jCEcIMzjvVrRDOTxKOiaT/u2GrB4PUpA0LzUnCMZH0fwtXJ21Y2II1F/mScIQQQjiEJBwhhBB1skW3siQcIYQQDiEJx0Ryw1UAqFb1YGtL2rDQmiQcE8kN1wauHgxTkzYstCYJRwghhENIwhFCCGGyutYruxZJOEIIIRxCEo4QQog6yWzRQjiYzKUmhOUk4ZhIhpQ2bEo9GKYmbVhoTRKOiWRIqXB10oaF1iThCCGEcAhJOEIIIUwms0ULIYRwepJwhDCDDFITDZf1A2caXMLJy8sjNjaW6OhoOnXqxKJFi7QOSbgAW/wGQYiGzl3rABzN39+fDRs24OPjQ3FxMZ06dWLYsGEEBQVpHZoQQtRrDe4KR6fT4ePjA0BpaSmqqlo1N5BoWPLz80lPT9c6DCE0U1hYaPE54HQJZ8OGDSQkJBAeHo6iKKxatarWPqmpqURGRuLl5YXBYGDLli1mlZGXl0dUVBTNmzdnypQpBAcH2yh6UV+9/fbbAJw8eZKePXuSkpKicURCONY//5kKQE5OjsXngNN1qRUXFxMVFcUDDzzAsGHDar2+fPlykpOTWbhwIQaDgfnz5zNo0CD2799P06ZNAYiOjqaioqLWe7/77jvCw8Np1KgRO3bsICcnh2HDhjF8+HBCQkKuGE9paSmlpaXG5/n5+QCcP3/eFtU1SXl5OSUlJeTm5qLX6+t1uc5Y1+3bt/PZik9pNKQNVJTi5eXFP/7xDwYOHEhMTIxV5V5uR/a8ynaGNmwvWrUXe3Dmumzfvp1Pli+n8dB2tc6B1q1bAya2YdWJAerKlStrbOvRo4c6ceJE4/PKyko1PDxcffXVVy0qY8KECeqnn3561denT5+uUj04SR7ysNvj8OHDFrVfU0gblocjHsePH6+zLSqq6rw3MBRFYeXKlSQmJgJQVlaGj48PK1asMG4DSEpKIi8vj9WrV9d5zJycHHx8fPD39yc/P5+bbrqJjz76iM6dO19x/z9/O8zLy+P666/n2LFjBAYGWlU/UxUUFBAREcHx48cJCAhwSJlalduQ6grVVxstWrTgwoULNGrUyC5lOEMbthetPjd7cNW6qKpKYWEh4eHhuLld+y6N03WpXcu5c+eorKys1f0VEhLCvn37TDrG0aNHefjhh42DBSZPnnzVZAPg6emJp6dnre2BgYEObxQBAQGaNEQtym1IdQXqPFGt4Uxt2F60+tzswRXrYuoXF5dKOLbQo0cPMjMztQ5DCCEaHKcbpXYtwcHB6HQ6cnJyamzPyckhNDRUo6iEEEKYwqUSjoeHB926dSMtLc24raqqirS0NOLi4hwSg6enJ9OnT79iF0V9KlOrchtSXbUqV6u62oPUxbU43aCBoqIiDh06BEBMTAzz5s2jX79+NGnShBYtWrB8+XKSkpJ4++236dGjB/Pnz+eTTz5h3759Vx3aLIQQQntOl3DWr19Pv379am1PSkpiyZIlALz55pu89tprZGdnEx0dzT/+8Q8MBoODIxVCCGEOp0s4Qggh6ieXuocjhBDCdUnCEUII4RCScIQQQjiEJJwrMHc26k8//ZT27dvj5eVF586d+eabb+xa5u7du7n77ruJjIxEURTmz59vdnmWlLto0SJ69+5N48aNady4MQMGDDB7pm5zy/z888+JjY2lUaNG+Pr6Eh0dzfvvv292meaW+0cff/wxiqLUmE7JHmUuWbIERVFqPLy8vMwu0xp1LVA4dOhQGjduzPDhwx0al6WuFe/cuXPp2LEjnTp14oMPPtAgOsvs37+f6Oho48Pb2/uKs+o7JXtNGOiqPv74Y9XDw0NdvHixunv3bnX8+PFqo0aN1JycnCvu//PPP6s6nU6dM2eOumfPHvW5555T9Xq9umvXLruVuWXLFvWpp55SP/roIzU0NFR94403LKmq2eWOGjVKTU1NVbdv367u3btXHTt2rBoYGKieOHHCbmWuW7dO/fzzz9U9e/aohw4dUufPn6/qdDp1zZo1dq3rZVlZWWqzZs3U3r17q3fddZddy3z33XfVgIAA9fTp08ZHdna2WWVaq6KiQi0uLlZVVVWLiorUyMhI9dy5c8bX161bp37xxRfq3Xff7dC4LHW1eHfu3KnGxMSoFy9eVEtKSlSDwaBeuHBBmyCtUFhYqAYFBalFRUVah2ISSTh/Yu5s1Pfcc496xx131NhmMBjURx55xG5l/tH1119vccKxdubtiooK1d/fX126dKnDylRVVY2JiVGfe+45k/e3tNyKigq1V69e6jvvvKMmJSWZnXDMLfPdd99VAwMDzSrDnnJzc9Xrr79ePXv2bI3t69atc5mEo6pXjnf58uXqY489Znz+8MMPqx999JGjQ7Pahx9+qN5zzz1ah2Ey6VL7g7KyMrZu3cqAAQOM29zc3BgwYAC//PLLFd/zyy+/1NgfYNCgQVfd3xZl2oItyi0pKaG8vJwmTZo4pExVVUlLS2P//v306dPHpDKtKfeFF16gadOmPPjggyaXZW2ZRUVFXH/99URERHDXXXexe/fuGq/XpwUKHVGXq+nUqRPr168nLy+PCxcusH79ek6ePGmTYzuyXp988gkjR460MmLHkYTzB9eajTo7O/uK78nOzjZrf1uUaQu2KDclJYXw8PBaCdfWZebn5+Pn54eHhwd33HEHCxYsYODAgSaVaWm5P/30E//+979r3cOwZ5nt2rVj8eLFrF69mg8++ICqqip69erFiRMnjPtcXqAwNTX1ise4vEDh9OnT2bZtG1FRUQwaNIgzZ84Y97l8f+bPj1OnTgEYFyjMyspi2bJlteYutBVH1OVqOnTowOOPP84tt9zCsGHD6NmzJzqdzqXqVVBQwKZNm7j99tttErcjNLjZooVtzJo1i48//pj169fb/ca2v78/mZmZFBUVkZaWRnJyMi1btiQ+Pt4u5RUWFjJ69GgWLVrk0OXH4+LiaswJ2KtXL2688UbefvttXnzxRQAGDx7M4MGDr3qMefPmMX78eMaNGwfAwoUL+frrr1m8eDFTp04FMHm29JCQEKKioti4caNdBgk4si5X8sgjj/DII48A8NBDD9GmTRuLj/VHjqrX6tWrufXWWx0+sMQacoXzB5bMRh0aGmrV7NVazYBtTblz585l1qxZfPfdd3Tp0sXuZbq5udG6dWuio6N58sknGT58OK+++qrdyj18+DBHjhwhISEBd3d33N3dee+99/jiiy9wd3fn8OHDNi/zSvR6PTExMca5Betii27SnJwcCgsLgeoryw0bNtCuXTuT3mtLjuhqvnxFsX//frZs2cKgQYNsctxrsWW9XK07DSTh1GDJbNRxcXE19gdYu3atybNXazUDtqXlzpkzhxdffJE1a9YQGxvrkDL/rKqqqsYKlrYut3379uzatYvMzEzjY8iQIfTr14/MzEwiIiJsXuaVVFZWsmvXLsLCwkza3xbdpEePHqV3795ERUXRu3fvWgsUDhgwgBEjRvDNN9/QvHlzu91ntFVX87Xiveuuu+jQoQP3338/7777Lu7u9u/wsVW98vPzHZYkbUrrUQvO5uOPP1Y9PT3VJUuWqHv27FEffvhhtVGjRsbhqaNHj1anTp1q3P/nn39W3d3d1blz56p79+5Vp0+fbtGwaHPKLC0tVbdv365u375dDQsLU5966il1+/bt6sGDB+1a11mzZqkeHh7qihUragzdLSwstFuZr7zyivrdd9+phw8fVvfs2aPOnTtXdXd3VxctWmTXuv6ZJaPUzC1z5syZ6rfffqsePnxY3bp1q/qXv/xF9fLyUnfv3n3F4wPqypUrjc9PnjypAuqmTZtq7DdlyhS1R48eZsXuaPWpLn9UX+tlKbmH8ycjR47k7NmzTJs2zTgb9Zo1a4zfSI4dO1ZjOeBevXqxbNkynnvuOZ599lnatGnDqlWr6NSpk93KPHXqFDExMcbnc+fOZe7cufTt25f169fbrdy33nqLsrKyWv3506dPZ8aMGXYps7i4mMcee4wTJ07g7e1N+/bt+eCDD8zuSjC3XFswt8wLFy4wfvx4srOzady4Md26dWPTpk106NDBpPLq0wKF9akuf1Rf62UyrTOeEMIy/Onbs6pW//Zn0qRJxueVlZVqs2bNzPqdkxbqU13+qL7Wy1JyhSOEC/njAoUAWVlZZGZmGhcoTE5OJikpidjYWOMChcXFxcYRUc6kPtXlj+prvWxC64wnhDDdunXrVKDWIykpybjPggUL1BYtWqgeHh5qjx491M2bN2sX8DXUp7r8UX2tly3IAmxCCCEcQoZFCyGEcAhJOEIIIRxCEo4QQgiHkIQjhBDCISThCCGEcAhJOEIIIRxCEo4QQgiHkIQjhBDCISThCCGEcAhJOEIIIRxCEo4wmaqqzJs3jxtuuAEfHx8SExPJz8+/4r7x8fEoioKiKHUulzt27FjjvqtWrbJ94EIIpyAJR5hsypQpvPXWWyxdupSNGzeydevWa66DM378eE6fPl3n2kD/93//x+nTp20crRA1mfMlyFHi4+N54oknjM/r+5cvSTjCJOnp6cybN4/ly5fTp08funXrxvjx4/nmm2+u+h4fHx9CQ0PrXLo3MDCwYSw+JSzWt29fHnjggRrb5s+fj6+vL2+99ZbJxzH1S5CtjBs3jueee87k/ev7ly9ZD0eYZO7cufTv35+uXbsat4WEhHDu3DkNoxINgaqqbN++nREjRgBQUlLC+PHjWbduHWvXrqVXr14mH+vylyBHqKys5KuvvuLrr782+T2BgYEEBgbaMSptyRWOqFNpaSlff/01Q4cOrbH90qVL9frkEM7h4MGDFBYW0rVrV7KysujVqxdZWVls3brVrGRzNVVVVcyZM4fWrVvj6elJixYtePnll42vx8fHM3nyZJ544gkaN25MSEgIixYtMi6a5u/vT+vWrfnPf/5T47ibNm1Cr9fTvXt3oHq59DFjxuDn50dYWBivv/661bG7Gkk4ok7btm3j4sWLPPnkk/j5+RkfTz/9NG3bttU6PFHPbd26FZ1OR05ODrGxsRgMBtavX09YWJhNjv/MM88wa9Ysnn/+efbs2cOyZcsICQmpsc/SpUsJDg5my5YtTJ48mQkTJjBixAh69erFtm3buPXWWxk9ejQlJSXG93zxxRckJCSgKApQfQ/0xx9/ZPXq1Xz33XesX7+ebdu22aQOLkPb9d+EK1iyZInq6+urHjx4sMajbdu26gsvvHDF9/Tt21f961//WmPbBx98oPr6+hofGzZsqPE6V1j/XYinnnpK1el0qpubm5qammrxca7UJgsKClRPT0910aJF13zfzTffbHxeUVGh+vr6qqNHjzZuO336tAqov/zyi3FbmzZt1K+++kpVVVUtLCxUPTw81E8++cT4em5ururt7V0rJlWtv+eC3MMRdSooKCA4OJjWrVsbtx09epSDBw9y9913m3ycIUOGYDAYjM+bNWtm0zhF/bRt2zYGDBjAr7/+ytatW2167L1791JaWkr//v2vuV+XLl2M/6/T6QgKCqJz587GbZeviM6cOWM87qlTp4zHPXz4MGVlZTXaf5MmTWjXrp3N6uIKpEtN1Ck4OJj8/HzUP6xG/vLLL3P77bfToUMHk49zua/78sPb29se4Yp6Ztu2bQwePJjVq1fz0Ucf8dprr9XaZ9GiRXTt2pVOnToxcuRIk49tahvU6/U1niuKUmPb5W6zqqoqoLo7beDAgXh5eZkcS0MgCUfU6ZZbbuHSpUvMmjWLrKwsXnrpJb788kuzhqMKYYnffvuNvLw8unbtSrdu3Xj33Xd55plnWL16tXGfCxcukJqayn//+19+/fVX3n77bZOP36ZNG7y9vUlLS7Np3KtXr+auu+4yPm/VqhV6vZ709PQacR84cMCm5To7STiiTiEhISxZsoS33nqLjh07snnzZn766SciIiK0Dk3Uc1u3bkVRFKKjowEYOXIkzz77LPfdd5/xx5vu7u5cuHCBp59+mt27d9OoUSOTj+/l5UVKSgpPP/007733HocPH2bz5s38+9//tjjmM2fOkJGRwZ133mnc5ufnx4MPPsiUKVP44Ycf+PXXXxk7dixubg3rT7DcwxEmGTlypFldFULYwrZt22jTpg3+/v7GbTNnzmTPnj0MGTKELVu2EBoayq+//sqqVau45557ePnll0lMTDS5jOeffx53d3emTZvGqVOnCAsL49FHH7U45i+//JIePXoQHBxcY/trr71GUVERCQkJ+Pv78+STT151aqh6S+tRC6J+6tu3r6rX61VfX191586d19z3kUceUX19fevtyBxhXwcOHDD+/4QJE9SPP/74ivtdaZSaPSQkJKizZ8+26hj19VxoWNdzwmE+/PBD9uzZQ2ZmZp0jcV544QUyMzM5ePAgAwcOdFCEor546aWXaNeuHTExMSiKYpyR4Er++c9/4ufnx65du+wWz80338y9995r0XsfffRR/Pz8bByR81BU9Q9Dj4QQop46efIkFy9eBKBFixZ4eHhoHFFtZ86coaCgAICwsDB8fX01jsi2JOEIIYRwCOlSE0II4RCScIQQQjiEJBwhhBAOIQlHCCGEQ0jCEUII4RCScIQQQjiEJBwhhBAOIQlHCCGEQ0jCEUII4RD/D9/1H8VfADEdAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_compare(soilsample, soilm_panday)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It can be favorable to only optimize the relative hydraulic conductivity function, and leave parameter k_s untouched. That kan be achieved by providing `k_s` to the fit method." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Panday(k_s=712.7999894094452, alpha=0.14790376878960756, beta=2.614921028771825, brook=3.89780784854566, sr=0.10434739833114794)" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "soilm_panday = soilsample.fit(pe.Panday, k_s=max(soilsample.k))\n", + "soilm_panday" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It is also possible to provide bounds for the parameter space. By default, the bounds argument is `None` which takes the stored parameter bounds per soil model:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
p_inip_minp_maxswrc
k_s50.000.00100100000.0False
theta_r0.020.000010.2True
theta_s0.400.200000.5True
alpha0.020.001000.3True
beta2.301.0000012.0True
brook10.001.0000050.0False
\n", + "
" + ], + "text/plain": [ + " p_ini p_min p_max swrc\n", + "k_s 50.00 0.00100 100000.0 False\n", + "theta_r 0.02 0.00001 0.2 True\n", + "theta_s 0.40 0.20000 0.5 True\n", + "alpha 0.02 0.00100 0.3 True\n", + "beta 2.30 1.00000 12.0 True\n", + "brook 10.00 1.00000 50.0 False" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "panday_bounds = pe._params.pPanday.copy()\n", + "panday_bounds" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Panday(k_s=650.0023315503577, alpha=0.14760418018418328, beta=2.6213048302921647, brook=3.876780843640316, sr=0.10437900805049694)" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "panday_bounds.loc[\"k_s\", \"p_min\"] = 650\n", + "panday_bounds.loc[\"k_s\", \"p_ini\"] = max(soilsample.k)\n", + "soilm_panday = soilsample.fit(pe.Panday, pbounds=panday_bounds)\n", + "soilm_panday" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Other available option are to print the optimization result." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SciPy Optimization Result\n", + " message: `gtol` termination condition is satisfied.\n", + " success: True\n", + " status: 1\n", + " fun: [ 4.247e-05 4.247e-05 ... 1.242e-04 3.563e-04]\n", + " x: [ 5.793e+02 4.490e-02 4.300e-01 1.472e-01 2.629e+00\n", + " 3.850e+00]\n", + " cost: 1.0689285556262866e-06\n", + " jac: [[ 0.000e+00 0.000e+00 ... 0.000e+00 0.000e+00]\n", + " [ 0.000e+00 0.000e+00 ... 0.000e+00 0.000e+00]\n", + " ...\n", + " [-2.762e-06 0.000e+00 ... 5.912e-02 2.502e-02]\n", + " [-2.762e-06 0.000e+00 ... 7.331e-02 3.102e-02]]\n", + " grad: [ 3.400e-15 -7.665e-10 1.232e-09 -7.671e-09 -1.022e-09\n", + " -1.313e-10]\n", + " optimality: 9.57854018873565e-09\n", + " active_mask: [0 0 0 0 0 0]\n", + " nfev: 11\n", + " njev: 11\n" + ] + } + ], + "source": [ + "soilm_panday = soilsample.fit(pe.Panday, silent=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Other parameters are W1 and W2 that determine the weight of the hydraulic conductivity function (with respect to the SWRC). Default value for W1 is 0.1 which implies that the weight of the HCF is 10% than that of the SWRC. W2 ensures that proportional weight is given to the two types of data: `theta` and `k`. `k` is log optimized. Also weights can be added as an array to weigh each individual measurement. " + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.011126595857906313" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "weights = np.ones(theta.shape)\n", + "M = len(k) + len(theta)\n", + "N = len(theta)\n", + "W2 = (M - N) * sum(weights * theta) / (N * sum(weights * np.abs(np.log(k))))\n", + "W2" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "pedonenv-8qwidcX8-py3.10", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/src/pedon/soil.py b/src/pedon/soil.py index 0050926..9465271 100644 --- a/src/pedon/soil.py +++ b/src/pedon/soil.py @@ -3,7 +3,8 @@ from pathlib import Path from typing import Type -from numpy import append, array2string, exp, log, ones +from numpy import abs as npabs +from numpy import append, array2string, exp, full, isnan, log from pandas import DataFrame, read_csv from scipy.optimize import least_squares @@ -55,8 +56,8 @@ def fit_seperate( self, sm: Type[SoilModel], pbounds: DataFrame | None = None, - weights: FloatArray | None = None, - return_res: bool = False, + weights: FloatArray | float = 1.0, + silent: bool = True, ) -> SoilModel: """Fit the soil water retention and conductivity seperate.""" if pbounds is None: @@ -65,8 +66,8 @@ def fit_seperate( pbounds.loc["theta_s", "p_ini"] = max(self.theta) pbounds.loc["theta_s", "p_max"] = max(self.theta) + 0.01 - if weights is None: - weights = ones(self.h.shape) + if isinstance(weights, float): + weights = full(self.h.shape, weights) sml = sm(**dict(zip(pbounds.index, pbounds.loc[:, "p_ini"]))) @@ -102,20 +103,20 @@ def fit_k(p: FloatArray) -> FloatArray: opt_pars = dict(zip(pbounds.index[pbounds.loc[:, "swrc"]], res_swrc.x)) opt_pars.update(dict(zip(pbounds.index[~pbounds.loc[:, "swrc"]], res_k.x))) - opt_sm = sm(**opt_pars) - if return_res: - return opt_sm, {"res_swrc": res_swrc, "res_k": res_k} - return opt_sm + if not silent: + print("SciPy Optimization Result Soil Water Retention Curve\n", res_swrc) + print("SciPy Optimization Result Hydraulic Conductivity Function\n", res_k) + return sm(**opt_pars) def fit( self, sm: Type[SoilModel], pbounds: DataFrame | None = None, - weights: FloatArray | None = None, - W1: float | None = None, + weights: FloatArray | float = 1.0, + W1: float = 0.1, W2: float | None = None, - return_res: bool = False, k_s: float | None = None, + silent: bool = True, ) -> SoilModel: """Same method as RETC""" @@ -132,16 +133,13 @@ def fit( pbounds.loc["theta_s", "p_ini"] = max(theta) pbounds.loc["theta_s", "p_max"] = max(theta) + 0.02 - if weights is None: - weights = ones(self.h.shape) - - if W1 is None: - W1 = 0.1 + if isinstance(weights, float): + weights = full(self.h.shape, weights) if W2 is None: M = len(k) + len(theta) N = len(theta) - W2 = (M - N) * sum(weights * theta) / (N * sum(weights * k)) + W2 = (M - N) * sum(weights * theta) / (N * sum(weights * npabs(log(k)))) def fit_staring(p: FloatArray) -> FloatArray: est_pars = dict(zip(pbounds.index, p)) @@ -164,10 +162,11 @@ def fit_staring(p: FloatArray) -> FloatArray: opt_pars = dict(zip(pbounds.index, res.x)) if k_s is not None: opt_pars["k_s"] = k_s - opt_sm = sm(**opt_pars) - if return_res: - return opt_sm, {"res": res} - return opt_sm + + if not silent: + print("SciPy Optimization Result\n", res) + + return sm(**opt_pars) def wosten(self, ts: bool = False) -> Genuchten: """Wosten et al (1999) - Development and use of a database of hydraulic @@ -255,7 +254,7 @@ def wosten(self, ts: bool = False) -> Genuchten: theta_r=theta_r, theta_s=theta_s, alpha=exp(alpha_), - n=exp(n_)+1, + n=exp(n_) + 1, l=(10 * exp(l_) - 10) / (1 + exp(l_)), ) @@ -448,10 +447,15 @@ def from_name( sersm = sersm[sersm["source"] == source] serd = sersm.squeeze().to_dict() - + if isnan(serd["description"]): + serd["description"] = serd["soil type"] self.__setattr__("source", serd.pop("source")) self.__setattr__("description", serd.pop("description")) - smserd = {x: serd[x] for x in sm.__dataclass_fields__.keys()} + smserd = { + x: serd[x] + for x in sm.__dataclass_fields__.keys() + if sm.__dataclass_fields__[x].init + } self.__setattr__("model", sm(**smserd)) return self From 56088d42ad9f2cf9249de7e0c84ce33ca15883b7 Mon Sep 17 00:00:00 2001 From: martinvonk Date: Thu, 28 Dec 2023 16:33:20 +0100 Subject: [PATCH 10/16] fix isna bug --- src/pedon/soil.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/src/pedon/soil.py b/src/pedon/soil.py index 9465271..3c8b273 100644 --- a/src/pedon/soil.py +++ b/src/pedon/soil.py @@ -4,8 +4,8 @@ from typing import Type from numpy import abs as npabs -from numpy import append, array2string, exp, full, isnan, log -from pandas import DataFrame, read_csv +from numpy import append, array2string, exp, full, log +from pandas import DataFrame, isna, read_csv from scipy.optimize import least_squares from ._params import get_params @@ -447,7 +447,7 @@ def from_name( sersm = sersm[sersm["source"] == source] serd = sersm.squeeze().to_dict() - if isnan(serd["description"]): + if isna(serd["description"]): serd["description"] = serd["soil type"] self.__setattr__("source", serd.pop("source")) self.__setattr__("description", serd.pop("description")) From 85ffdea67990f32fbb38174365ae7f1bf370984d Mon Sep 17 00:00:00 2001 From: martinvonk Date: Fri, 12 Jan 2024 15:48:17 +0100 Subject: [PATCH 11/16] fix F541 f-string is missing placeholders --- src/pedon/soil.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/pedon/soil.py b/src/pedon/soil.py index 3c8b273..6a6d5cb 100644 --- a/src/pedon/soil.py +++ b/src/pedon/soil.py @@ -38,7 +38,7 @@ def from_staring(self, name: str, year: str = "2018") -> "SoilSample": f"No Staring series available for year '{year}'" "please use either '2001' or '2018'" ) - path = Path(__file__).parent / f"datasets/soilsamples.csv" + path = Path(__file__).parent / "datasets/soilsamples.csv" properties = read_csv(path, delimiter=";") staring_properties = properties[ properties["source"] == f"Staring_{year}" From c3e8d585ad4eb7d075fa302121dbd603e87a8fae Mon Sep 17 00:00:00 2001 From: martinvonk Date: Fri, 12 Jan 2024 17:54:55 +0100 Subject: [PATCH 12/16] update weights --- src/pedon/soil.py | 22 +++++++++++++--------- 1 file changed, 13 insertions(+), 9 deletions(-) diff --git a/src/pedon/soil.py b/src/pedon/soil.py index 6a6d5cb..ed56aed 100644 --- a/src/pedon/soil.py +++ b/src/pedon/soil.py @@ -4,7 +4,7 @@ from typing import Type from numpy import abs as npabs -from numpy import append, array2string, exp, full, log +from numpy import append, array2string, exp, full, log, log10 from pandas import DataFrame, isna, read_csv from scipy.optimize import least_squares @@ -121,7 +121,9 @@ def fit( """Same method as RETC""" theta = self.theta + N = len(theta) k = self.k + M = N + len(k) if pbounds is None: pbounds = get_params(sm.__name__) @@ -134,25 +136,27 @@ def fit( pbounds.loc["theta_s", "p_max"] = max(theta) + 0.02 if isinstance(weights, float): - weights = full(self.h.shape, weights) + weights = full(M, weights) if W2 is None: - M = len(k) + len(theta) - N = len(theta) - W2 = (M - N) * sum(weights * theta) / (N * sum(weights * npabs(log(k)))) + W2 = ( + (M - N) + * sum(weights[0:N] * theta) + / (N * sum(weights[N:M] * npabs(log10(k)))) + ) - def fit_staring(p: FloatArray) -> FloatArray: + def get_diff(p: FloatArray) -> FloatArray: est_pars = dict(zip(pbounds.index, p)) if k_s is not None: est_pars["k_s"] = k_s sml = sm(**est_pars) theta_diff = sml.theta(h=self.h) - theta - k_diff = log(sml.k(h=self.h)) - log(k) - diff = append(weights * theta_diff, weights * W1 * W2 * k_diff) + k_diff = log10(sml.k(h=self.h)) - log10(k) + diff = append(weights[0:N] * theta_diff, weights[N:M] * W1 * W2 * k_diff) return diff res = least_squares( - fit_staring, + get_diff, x0=pbounds.loc[:, "p_ini"], bounds=( pbounds.loc[:, "p_min"], From 42e1d13ca52de49ef6c36c871ec5f78b3b699400 Mon Sep 17 00:00:00 2001 From: martinvonk Date: Fri, 12 Jan 2024 17:55:04 +0100 Subject: [PATCH 13/16] update curve fitting docs --- doc/examples/04_curve_fitting.ipynb | 89 ++++++++++++++--------------- 1 file changed, 42 insertions(+), 47 deletions(-) diff --git a/doc/examples/04_curve_fitting.ipynb b/doc/examples/04_curve_fitting.ipynb index 5b1c35e..ac8af89 100644 --- a/doc/examples/04_curve_fitting.ipynb +++ b/doc/examples/04_curve_fitting.ipynb @@ -126,7 +126,7 @@ { "data": { "text/plain": [ - "Panday(k_s=579.2644356372081, alpha=0.1472262954630398, beta=2.629461599428002, brook=3.850325533054728, sr=0.10441881484323215)" + "Panday(k_s=572.4421544309812, alpha=0.1461730507877064, beta=2.6528189773626414, brook=3.7982278651292423, sr=0.10452908337641295)" ] }, "execution_count": 6, @@ -141,13 +141,6 @@ "soilm_panday" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The fit method finds the optimal curve through both the soil water retention curve and hydraulic conductivity function at the same time using the least squares algorithm. All parameters are subject to the optimization algorithm." - ] - }, { "cell_type": "code", "execution_count": 7, @@ -155,7 +148,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAGwCAYAAACdL9N0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABlzUlEQVR4nO3deXgURfrA8W9nMrkPIJEcEIzcciWBwBAUCAIiajAgyIpCQEVFwHWjGHSVwxMQkd9iVlxcBA8URQGvRTGCoEjYAAHkBsNNAgRyQ87+/RGZNQbI3D2TvJ/nmUenp6frLaY673R1TZWiqqqKEEIIYWduWgcghBCiYZCEI4QQwiEk4QghhHAISThCCCEcQhKOEEIIh5CEI4QQwiEk4QghhHAISThCCCEcQhKOEEIIh5CEI4QQwiEk4QghhHAISThCCCEcQhKOkyssLCQhIYH4+Hji4uL4z3/+c9V9H3nkEQBmzJjBV199VeO1nTt30qdPH/r27UuvXr04efKkTeMcO3Ysv/76q02PaQ9HjhzhuuuuIz4+nvj4eH744Qfjv9uqVas4c+YMAJmZmWzZssXk48bGxtba9sYbb9CzZ0969+7NY489dtX3LlmyhF9++YUjR44wfPjwWq8risK7775rfN6xY0eeeuopk+IaPnw4R44cueJrVyvP39+f+Ph4unXrxjfffGNSOVdypX8T0bC5ax1AfZWens6BAwdo27YtBoPB4uO899573HbbbUycOBFVVcnPz7/qvm+//fZVX3vxxRd566236NixIxcvXkRRFItjcnV9+/ZlxYoVxue33HILUJ1wWrduTdOmTcnMzKSoqIgePXpYVEZhYSHLly/nl19+QVEULly4cNV9x44dC3DVxHDjjTeyZs0axo0bx549e/D19bUoJlO1a9eO9evXc+LECQYNGsTtt99u1/JEwyFXOHaQkpJCz549GTNmDD179iQlJcXiY3l7e7N582ZycnJQFIVGjRoBMG/ePOLi4rj55pvZtm0bcO1vlN7e3nz//fcUFxfj7e2Nl5cXOTk59OvXj969ezN8+HAqKys5cuQIvXr1YuTIkXTs2JHly5dz5513EhUVxcGDBwFo37499957L7GxsSxbtqxGOaqqMnnyZPr168eAAQM4ceLEFeNRVZWSsgq7PcxZdSM2NpasrCzjH/Wnn36at956i//7v//j1ltvBeCVV16hb9++9OnTh127dgHw/vvvExsby7333ktRUVGNY7q5uXHu3Dm2bt2Kqqo0btwYgF27dnHzzTdz00038eqrrwJXviL9Ix8fH/R6PQUFBaxYsaLGVcnHH3+MwWCgZ8+efPvttwB8//33dO3alWHDhhmvZC9dusT999/PLbfcwpAhQygoKKjz36V58+aUlJSwa9cu+vbtS1xcHJMmTQJg/fr13HbbbQwdOpSoqCjj1e2V/k3Wrl1L37596d69O7NmzQJg2LBhxrbxr3/9i0WLFtUZj6gHVGFTmzdvVoFaj82bN1t0vLKyMvXFF19Uo6Ki1J49e6r79u1TT58+rfbu3VutrKxUs7Ky1AEDBqiqqqrdunVTVVVVp0+frn755Zc1jpOdna0+8sgjaqtWrdR77rlHLSoqUktLS9Xy8nJVVVX18ccfV7/77js1KytLbd++vVpRUaF+++23ateuXdXKykp11apV6vPPP6+qqqr6+vqqubm56qVLl9SoqCi1oqJCTUpKUnft2qV++eWXxv02b96sTpw48Yr1Ki4tV69P+cpuj+LS8iuWm5WVpQYHB6t9+/ZV+/btq+bm5hr/3S7XQVVV9d1331UXLFigqqqq7tq1Sx0zZoyqqqp68uRJdciQIWpFRYUaHR2tXrp0ST179qzq6+tbq6xvv/1Wve2229QbbrhBffvtt1VVVdU777xT3bNnj1pVVaUOHDhQzcrKMn5eWVlZ6t13313rON26dVM/+ugj9cMPP1TvuOMO9YcfflCffPJJtaKiQu3SpYt68eJFNT8/31gPg8Fg/HxatGihZmVlqQsWLFD//e9/q6qqqh9//LH62muvXbM8VVXVPXv2qN26dVNLSkrUqqoqVVVVdciQIeqBAwfUdevWqbfccouqqqr6zTffqH/729+u+m9SXFysqqqqVlZWqrGxsWpJSYn62WefqbNnz1ZVVVVvvfVW9cKFC1f8vET9Il1qNnbgwIGrbreka02v1/Pcc8/x3HPPsXbtWqZPn84TTzxBVFQUbm5uREZGkpeXV+dxQkJCWLhwIQDPPfcc77//PnfddRcTJkzgwoULnDp1iq5du9KmTRs6dOiATqcjPDycTp064ebmRrNmzfj+++8BuOGGG2jSpAkAERERnDt3zljOnj17WLlyJRs2bEBVVSIiIsyus739uUutLnv27GHTpk3Ex8cDoNPpOHv2LM2bN8fT0xNPT09uuOGGWu+79dZbufXWWyksLOSmm25i1KhRZGdnc+ONNwLQtWtXDh8+bFIMd9xxB4MGDcJgMBi7Q8+ePUuLFi3w8vLCy8sLvV5PRUUFlZWVxs+nS5cuxjr897//5b333qO8vJzevXtftaz9+/cTHx+Pu7s7b731FllZWTz55JOUlJTw22+/cerUKQCio6OB6jZw4cKFq/6bbN26lZkzZ1JeXs6RI0c4c+YMd955J4MGDeIvf/kLgYGBxit3Ub9JwrGxtm3bmrW9LkePHiUsLAwPDw+aNm2KqqpERkaSmZlJVVUVx44dM+lkPXjwIG3atAHguuuuQ1VVli1bxp133slDDz3E5MmTjd1Qf7y/88f/v/z6kSNHuHDhAj4+Phw/fpzg4GDjPu3bt+eee+7h+eefB6C8vPyK8Xjrdex5YZB5/xhm8NbrzH6PXq+nsrKy1v+3b9+evn378s477wDVdXJzc+PEiROUlZVRVFREVlZWjWNdunSJs2fPEhERgZ+fH15eXkB14t+7dy/t27dn27ZtPProo2zcuLHO2Pz9/Rk8eDB33nmn8T7eddddx9GjR7l06RJlZWWUlZXh7u6OTqczfj6Xu//at29PXFwco0ePNtbhagNHLt/DuWzy5Mk8+eSTDBgwgCFDhlyxnaiqynXXXXfFf5M5c+awcOFCWrZsSdeuXVFVFQ8PDzp27EhKSgr33XdfnfUX9UODTDhZWVk88MAD5OTkoNPp2Lx5s81uxBoMBp5++mnmzJlj3JaSkmLxwIFdu3YxcuRIvLy8UFWV1NRUQkNDueuuu+jVqxdubm4sWLCgzuN8/PHHfPXVV3h7e9OoUSM++OADDh06xOjRo/nyyy/x9vY2OaaIiAgef/xx9u7dy1NPPYVO978/7gkJCfzwww/069cPRVG47777ePDBB2sdQ1EUfDycq/kNHjyYJ554ggEDBnDvvfcyZswY0tPTWbZsGW3atKFv3764ubkxcOBAnn32WZ544gl69epF+/btadGiRY1jlZeXM27cOC5dukRlZSWjR4/Gz8+Pl19+mYceeghVVbnjjjuIjIw0Ob7LSfxyMtDpdEydOpU+ffrg5ubGSy+9BMALL7xA//79iYyMNMb18MMP8/DDDxtHuz355JN07NjRpHITEhL461//Svv27amqqrrqfjqd7or/JnfffTdDhw6lc+fO+Pv7G/dPSkritttu47333jP530C4NkVVzbi7Wk/07duXl156id69e3P+/HkCAgJwd7ftHz9bjVJzRrGxsWRkZGgdhnBxW7du5d133+XNN9/UOhThIM71FdMBdu/ejV6vN/ZhX+7rtjWDwVDvEo0QtrJq1SpmzZrFhx9+qHUowoFcblj0hg0bSEhIIDw8HEVRWLVqVa19UlNTiYyMxMvLC4PBUOMHfAcPHsTPz4+EhAS6du3KK6+84sDo6we5uhHWSkxMZPPmzbRq1UrrUIQDuVzCKS4uJioqitTU1Cu+vnz5cpKTk5k+fTrbtm0jKiqKQYMGGX9BXlFRwcaNG/nnP//JL7/8wtq1a1m7dq0jqyCEEA2SS9/DURSFlStXkpiYaNxmMBjo3r27sV+4qqqKiIgIJk+ezNSpU/nll1+YMWOG8Udyr732GgBTpky5YhmlpaWUlpYan1dVVXH+/HmCgoIa9K/1hW2oqkphYSHh4eG4udnn+5+0YWFPZrVhx//0x3YAdeXKlcbnpaWlqk6nq7FNVVV1zJgx6pAhQ1RVVdXy8nI1OjpaPX/+vFpZWaneeeedtX4k+UfTp0+/4g855SEPWz6OHz9uj1NE2rA8HPYwpQ3Xq0ED586do7KykpCQkBrbQ0JC2LdvHwDu7u688sor9OnTB1VVufXWW7nzzjuvesxnnnmG5ORk4/P8/HxatGjBgQMH6hxwsH37dhLHPEKTkbOouphP7tLJAHz55ZfExMSYXK/y8nLWrVtHv3790Ov1Jr/PWlqU25DqCnD+/Hnatm1bY7iwrdXVhrdv305CQgKeN8QSMOhx1Koq8la/xMp33jCrnWpBq8/NHly1LoWFhdxwww0mteF6lXBMNXjwYAYPHmzSvpd/NZ2amkpqaqrxx4BNmjQhKCjomu8dMGAA948ewxrFB7WijEuXLpGSksKAAQPMire8vBwfHx+CgoIc/kfY0eU2pLr+kT27tupqwwMGDODxxx9nzpw5uLfsgV+nW7j+L9OJ6x2Pr6dz/4nQ+nOzJVety+VYTWnDLjdo4FqCg4PR6XTk5OTU2J6Tk0NoaKhVx544caJxehBzXP5mGRAQwObNm42TFwrhaNdqw7Nnz2bz5s28MjyGIG83ivDmlW/2ahClqM/qVcLx8PCgW7dupKWlGbdVVVWRlpZGXFycVcdOTU2lQ4cOdO/e3aL3Xx6iLYRW6mrDBoOBh8fezz/uq379w/RjrNt/xpEhinrO5RJOUVERmZmZZGZmAtXT1GRmZnLs2DGg+opi0aJFLF26lL179zJhwgSKi4sZN26cVeVaeoUjhLMwtQ3f1DqYsb0iAUhZsZMLxWUOiE40BC6XcDIyMoiJiTHezExOTiYmJoZp06YBMHLkSObOncu0adOIjo4mMzOTNWvW1BpIYC5rr3CE0Jo5bXjq4Pa0us6XM4WlPL/a+VdyFa7B5RJOfHw8qqrWeixZssS4z6RJkzh69CilpaWkp6fbpCtLrnCEqzOnDXvpdcy7Jxqdm8JXO0/zxY5TDohQ1Hcul3C0Ilc4wtWZ24ajIhoxqV9rAJ5buYvs/Ev2DE80AJJwTCRXOMLVWdKGJ93Smi7NAym4VMGUFTvMWrpbiD+ThCOEuCq9zo1590Th6e7GxoPn+CD9mNYhCRcmCcdE0qUmXJ2lbbh1U39SbmsPwCtf7yXrXLE9whMNgCQcE0mXmnB11rThsb0i6dUqiIvllSR/kklF5dVX/hTiaiThCCHq5Oam8NqIKPw93dl+LI+3N/ymdUjCBUnCEUKYpFkjb2be1RGAN9Ye4NeT+RpHJFyNJBwTyT0c4eps0YaHxjTjto6hVFSpJH+SyaXyShtGKOo7STgmkns4wtXZog0risLLQzsR7OfJgZwi5q09YMMIRX0nCUcIYZYgP09mDesMwKKNv7H5t1yNIxKuQhKOEMJsAzqEMDI2AlWFpz7dQeGlcq1DEi5AEo4QwiLP3XkjzRt7c+LCRV76StbOEXWThGMiGTQgXJ2t27C/l57XR0ShKLA84zhr9+TU/SbRoEnCMZEMGhCuzh5t2NAyiPG9WwLwzOc7yS0qtdmxRf0jCUcIYZXkgW1pF+LPuaIynl25Syb4FFclCUcIYRUvvY55I6PQ6xS+3Z3D59tOah2ScFKScIQQVusYHsgTA9oCMOOL3ZzMu6hxRMIZScIRQtjEI31a0rVFIwpLK3jqkx1UVUnXmqhJEo4QwibcdW68fk803nodv/yWy5JNR7QOSTgZSTgmkmHRwtU5og3fEOzLs3fcCMDsNfs4dKbQbmUJ1yMJx0QyLFq4Oke14fsNLejT9jpKK6r42/IdlMvaOeJ3knCEEDalKApz7u5CoLeeXSfzefOHQ1qHJJyEJBwhhM2FBnrxYmInAN5cd4gdx/O0DUg4BUk4Qgi7GBIVTkJUOJVVKn/7JJOLZbJ2TkMnCUcIYTcv3tWRpv6e/Ha2mNlr9mkdjtBYg0w4kZGRdOnShejoaPr166d1OELUW418PJgzvAsASzYd4edD5zSOSGipQSYcgE2bNpGZmcm6deu0DkWIei2+XVPu79kCqF47J/+irJ3TUDXYhONoly5dIj09XeswhNDEs7ffSGSQD6fzLzFp8Y+8//77cj40QC6XcDZs2EBCQgLh4eEoisKqVatq7ZOamkpkZCReXl4YDAa2bNlS43VFUejbty/du3fnww8/tGu88+bNA6CgoICePXuSkpJi1/KEcEY+Hu68fk80iqqy8Xgpj760UM6HBshd6wDMVVxcTFRUFA888ADDhg2r9fry5ctJTk5m4cKFGAwG5s+fz6BBg9i/fz9NmzYF4KeffqJZs2acPn2aAQMG0LlzZ7p06XLF8kpLSykt/d8aHwUFBQCUl5dTXn7troGMjAw+/PBDgu6PRVEUvL29WbBgAYmJicTGxppc58vl1FWerWlRbkOqq6PKs6YN21LZqX0UZazEt/swgm6bhJKbZdH58EdafW724Kp1MSdeRXXhxSsURWHlypUkJiYatxkMBrp3786bb74JQFVVFREREUyePJmpU6fWOsaUKVPo2LEjY8eOvWIZM2bMYObMmbW2L1u2DB8fnzpjPF0Cs3a44+eu8nJ3GRYqaiopKWHUqFHk5+cTEBBglzKsbcO2VFEF83bpOFmi0LFxFePbVaEoDg1B2Jg5bbheJZyysjJ8fHxYsWJFjSSUlJREXl4eq1evpri4mKqqKvz9/SkqKqJv374sXLjwqvNLXenbYUREBKdPnyYoKOia8WVkZHDriCSC7n+DqpJ8zr3zEABpaWlmX+GsXbuWgQMHotfrTX6ftbQotyHVFSA3N5ewsDC7Jhxr2rAtZWRk0L9/f3RNImhy72wUnZ6C79/i6wV/t+oKR4vPzR5ctS4FBQUEBweb1IZdrkvtWs6dO0dlZSUhISE1toeEhLBvX/VvAHJychg6dCgAlZWVjB8//pqTGXp6euLp6UlqaiqpqalUVlZfpej1+jobRVxcHPfddx9rAFVVuXjxIikpKcTFxVlUP1PKtActym0odXVEWda0YVuKi4tj8uTJzJkzB7cN79G434M0GTCeZm2jrI5Dq/ZiD65WF3NirVcJxxQtW7Zkx44dZr9v4sSJTJw4kYKCAgIDA01+X3JyMmve2EBAQACbN2/GYDCYXbYQtmBpG7al2bNnM2zYMPbtP8BHOe7sy60eKv3Rwz3RuUnfWn3ncqPUriU4OBidTkdOTk6N7Tk5OYSGhlp1bGundr88Yk4IrTjLEhsGg4GkMaNZ9GBvfD10bDlynnc2/qZpTMIx6lXC8fDwoFu3bqSlpRm3VVVVkZaWZnE31mWyPIFwdc7WhiOa+DAtoQMAr393gH3ZBRpHJOzN5RJOUVERmZmZZGZmApCVlUVmZibHjh0DqruwFi1axNKlS9m7dy8TJkyguLiYcePGWVWus3w7FMJSztiG74mNYMCNTSmrrF47p6xC1s6pz1wu4WRkZBATE0NMTAxQnWBiYmKYNm0aACNHjmTu3LlMmzaN6OhoMjMzWbNmTa2BBOZytm+HQpjLGduwoii8OqwLTXw92Hu6gPnfH9A6JGFHLjdoID4+nrpGck+aNIlJkyY5KCIhhDWu8/fklaGdePSDbSz88TD9b2xKt+ubaB2WsAOXu8LRijN2RwhhDmduw7d1CmNY12ZUqZD8yQ6KSyu0DknYgSQcEzljd4QQ5nD2Njw9oSPhgV4czS3hlW/2ah2OsANJOEIIpxDoree1EVEAfJh+jHX7z2gckbA1STgmcubuCCFM4Qpt+KbWwYy7KRKAlBU7ySsp0zYgYVOScEzk7N0RQtTFVdpwym3taXWdL2cKS3lu1a9ahyNsSBKOEMKpeOl1zLsnGp2bwlc7T/PFjlNahyRsRBKOEMLpREU0YvItrQF4ftWvZOdf0jgiYQuScEzkCv3fQlyLq7Xhif1a06V5IPkXy3n6s511/v5OOD9JOCZylf5vIa7G1dqwXufGvHui8XR3Y8OBs3yQfkzrkISVJOEIIZxW66Z+TB3cHoBXvt5L1rlijSMS1pCEI4RwaklxkfRqFcTF8kqSP8mkolIm+HRVknBM5Gr930L8mau2YTc3hddGROHv6c72Y3m8vUHWznFVknBM5Gr930L8mSu34WaNvJl5V0cA3lh7gF9P5msckbCEJBwhhEsYGtOM2zqGUlGlkvxJJpfKK7UOSZhJEo4QwiUoisLLQzsR7OfJgZwi5q2VtXNcjSQcB5FfEAhhvSA/T2YN6wzAoo2/kZ51XuOIhDkk4QghXMqADiGMjI1AVWHq579ySZbOcRmScOxM0ToAIeqh5xM60LyxNyfyLrHyqPwZcxXySZnIVYeUCnFZfWrDfp7uvD4iCkWBzWfcSNsra+e4Akk4JnLlIaVCQP1rw4aWQTzQ63oA/r56D7lFpRpHJOoiCUcI4bL+1r81Yd4qucVlPLtyl0zw6eQk4QghXJanXsf9bSrR6xS+3Z3D59tOah2SuAZJOEIIl9bcFyb3awXAjC92czLvosYRiauRhOMgcqkvhP2MvzmSri0aUVhawZRPd1BVJeebM2qwCaekpITrr7+ep556SutQhBBWcv997RxvvY5Nh3NZsumI1iGJK2iwCefll1+mZ8+eWochhLCRyGBf/n7HjQDMXrOPQ2cKNY5I/FmDTDgHDx5k3759DB48WOtQhBA2dJ+hBX3aXkdpRRXJn+ygXNbOcSoul3A2bNhAQkIC4eHhKIrCqlWrau2TmppKZGQkXl5eGAwGtmzZUuP1p556ildffdUh8Sq/TzVQWlpKenq6Q8oUoqFSFIXXhnch0FvPzhP5PPP+et5//30595yEyyWc4uJioqKiSE1NveLry5cvJzk5menTp7Nt2zaioqIYNGgQZ85U/xJ59erVtG3blrZt2zok3tdffx2AwsJCevbsSUpKikPKFaKhCgnw4qXETgB8uqeIh55+Uc49J+GudQDmGjx48DW7wubNm8f48eMZN24cAAsXLuTrr79m8eLFTJ06lc2bN/Pxxx/z6aefUlRURHl5OQEBAUybNu2KxystLaW09H+/YC4oKACgvLyc8vLya8aakZHBBx98SNDo7iiKgre3NwsWLCAxMZHY2FiT63y5nLrKszUtym1IdXVUeda0YWd3tc8tuOQol/b/hFe7m7ku4SnOf/S0ReeeI2nVBq1lTryK6sLjdRVFYeXKlSQmJgJQVlaGj48PK1asMG4DSEpKIi8vj9WrV9d4/5IlS/j111+ZO3fuVcuYMWMGM2fOrLV92bJl+Pj41Bljdgm8usMdX3eVV7rLglGippKSEkaNGkV+fj4BAQF2KcPaNuyqisth9g4d+eUKfUKruPsGuZ9jD+a0YZe7wrmWc+fOUVlZSUhISI3tISEh7Nu3z6JjPvPMMyQnJxufFxQUEBERQb9+/QgKCrrmezMyMrh/+BiCRs+nsLCQe+99EIC0tDSzr3DWrl3LwIED0ev1FtXDElqU25DqCpCbm2v3Mqxpw87uap9bRkYG/fv3x6NFFI0Sn2NDthur//kia5b+n1Nf4WjRBq11+YrZFPUq4Zhr7Nixde7j6emJp6cnqamppKamUllZfZWi1+vrbBRxcXHcf/99/IfqBdguXrxISkoKcXFxFsVrSpn2oEW5DaWujijLmjbsKv5cl7i4OCZPnsycOXPQbfsa/653ED5sKh2iY52+zq72uZgTq8sNGriW4OBgdDodOTk5Nbbn5OQQGhpq1bEtnWn3ySefBMDPz4/Nmzcza9Ysq+IQwlL1bbbousyePZvNmzcz5744Qn3duIgnM7/YrXVYDVq9SjgeHh5069aNtLQ047aqqirS0tIsvqq4zNq1RDw9PTEYDFbFIIQ16tN6OKYyGAw8mDSa1DE9cVPg8+0n+c+u01qH1WC5XMIpKioiMzOTzMxMALKyssjMzOTYsWMAJCcns2jRIpYuXcrevXuZMGECxcXFxlFrlmpo3w5F/dOQ23C36xszIb56gs9nV+7iTOEljSNqmFwu4WRkZBATE0NMTAxQnWBiYmKMw5pHjhzJ3LlzmTZtGtHR0WRmZrJmzZpaAwnM1RC/HYr6paG34b/2b0uHsAAulJTzzGeydo4WXC7hxMfHo6pqrceSJUuM+0yaNImjR48af91vi64sy78dKlaXLYQtNOQrHAAPdzfeGBmNh86NtH1n+CTjuNYhNTgul3C00tC/HQrXJ20Y2oX689Sg6llGXvhyD8fPl2gcUcMiCcdEDf3boXB90oarPXhzS3pENqG4rJInP9lBpayd4zCScBxEuouFcA46N4XX74nC10PHliPn+fdPv2kdUoMhCcdE0h0hXJ204f+JaOLDtIQOAMz99gD7s2XtHEeQhGMi6Y4Qrk7acE33xEbQv31TyiqreGJ5JmUVMteavUnCEUI0SIqi8OrdnWnso2fv6QL+L+2A1iHVe5JwhBANVlN/L14Z2hmAt9YfZuvRCxpHVL9JwjGR9H8LVydt+MoGdw5jWEwzqlR48pNMSsoqtA6p3pKEYyJL+78V+d2ncBJyD+fqpg/pSFigF0dyS3jlm71ah1NvScIRQjR4gd565o6IAuCDzcf48cBZjSOqnyThOIjM2ySEc7updTBje0UCMOXTHeSVlGkbUD0kCUcIIX6Xclt7Wl7ny5nCUp5fLWvn2JokHBPJDVfh6qQN183bQ8cb90Sjc1P4cscpvthxSuuQ6hVJOCaSG67C1UkbNk1URCMm9WsNwPOrfiWnQNbOsRVJOEII8SeTbmlNl+aB5F8sZ8qKnXIP1kYk4QghxJ/odW7MuycKT3c3Nhw4y4fpx7QOqV6QhCOEEFfQuqk/Kbe1B+Dlr/dy5FyxxhG5Pkk4QghxFWN7RRLXMoiL5ZUkf5JJRaVM8GkNSTh2dnmiAekBFsL1uLkpzL0nCn9Pd7Ydy+PtDbJ2jjUk4ZhIhpQKVydt2DLNGnkzY0hHAOZ/f4Ddp/I1jsh1ScIxkQwpFa5O2rDlhnVtxqCOIZRXqiQv38Gl8kqtQ3JJknCEEKIOiqLwytDOBPt5sD+nkDfWyto5lpCEI4QQJgjy8+TVYV0A+NfG39iSdV7jiFyPJBwhhDDRwA4h3BPbHFWFJz/NpKhU1s4xhyQcIYQww/N3dqB5Y2+On7/IS1/t0Tocl9LgEk5eXh6xsbFER0fTqVMnFi1apHVIQggX4u9VvXaOosDH/z1O2t4crUNyGQ0u4fj7+7NhwwYyMzNJT0/nlVdeITc3V+uwhBAupGfLIB66+QYAUj7bRW5RqcYRuYYGl3B0Oh0+Pj4AlJaWoqqqXSfmU35fY7qsrJz09HS7lSOEcKwnb21H2xA/zhWVMmHxBt577305x+vgcglnw4YNJCQkEB4ejqIorFq1qtY+qampREZG4uXlhcFgYMuWLTVez8vLIyoqiubNmzNlyhSCg4PtFu9rr80B4OLFi/Ts2ZOUlBS7lSWEcBwvvY5590SjqFVsOVXGY7MXyzleB3etAzBXcXExUVFRPPDAAwwbNqzW68uXLyc5OZmFCxdiMBiYP38+gwYNYv/+/TRt2hSARo0asWPHDnJychg2bBjDhw8nJCTkiuWVlpZSWvq/y+WCggIAysvLKS8vv2asGRkZvLd0KcFje4Dihre3NwsWLCAxMZHY2FiT63y5nLrKszUtym1IdXVUeda0YWen1ed2WeGxPRT+shy/XvfS5NYJcPaQRec4aF8XS5kTr6K68EIPiqKwcuVKEhMTjdsMBgPdu3fnzTffBKCqqoqIiAgmT57M1KlTax3jscce45ZbbmH48OFXLGPGjBnMnDmz1vZly5YZu+auJfcSvLDdHb2bylyD/DpZ1FRSUsKoUaPIz88nICDALmVY24bFtVWq8I9fdRwpUmgbWMWEG6twU+p+X31hThuuVwmnrKwMHx8fVqxYUSMJJSUlkZeXx+rVq8nJycHHxwd/f3/y8/O56aab+Oijj+jcufMVy7jSt8OIiAhOnz5NUFDQNePLyMhgYOJIgse9hVpRxtl/3gdAWlqa2Vc4a9euZeDAgej1epPfZy0tym1IdQXIzc0lLCzMrgnHmjbs7LT63C7LyMigf//+6AJDaTLqNRS9F4Xr/81Xb0yx6ApHy7pYqqCggODgYJPasMt1qV3LuXPnqKysrNU9FhISwr59+wA4evQoDz/8sHGwwOTJk6+abAA8PT3x9PQkNTWV1NRUKiurr1L0en2djSIuLo5xY8fyJQAKFy9eJCUlhbi4OIvqZ0qZ9qBFuQ2lro4oy5o27Cq0qktcXByTJ09mzpw5sG4xQbc+RqP4sVzXqrPF8bja52JOrPUq4ZiiR48eZGZmmv2+iRMnMnHiRAoKCggMDDT5fX9/9lm+fDUNnbs7mzdvxmAwmF22ELZgaRsW1zZ79myGDRvG/v0HWHFOz84zkPxJJp9N6IVe53LjsuyqXv1rBAcHo9PpyMmp+UOsnJwcQkNDrTq2pVO7/z4qGsXNTZKN0JQsT2A/BoOBMWNG868H+xDg5c7OE/n8c91hrcNyOvUq4Xh4eNCtWzfS0tKM26qqqkhLS7O4G+syS6d2v5xwqlz3VpmoJ2R5AvsLDfTixcROAPzjh4PsPJGnbUBOxuUSTlFREZmZmcZusaysLDIzMzl27BgAycnJLFq0iKVLl7J3714mTJhAcXEx48aNs6pci69wfl/zU/KN0Jpc4TjGkKhw7ugSRmWVyt+WZ8raOX/gcgknIyODmJgYYmJigOoEExMTw7Rp0wAYOXIkc+fOZdq0aURHR5OZmcmaNWuu+jsbU1n67fCPwyNdeECgqAfkCscxFEXhpbs60dTfk8Nni5mzZr/WITkNlxs0EB8fX+cf7kmTJjFp0iQHRXRtbsr/Mo6q/q+LTQhRfzX29WD28C6Me/e/LP45iwE3NqVXa/vNaOIqXO4KRyvWDhoAuY8jtCVdao7Vr11TRhlaAPDUpzsouORaMwjYgyQcE1k+aOB/GadK8o3QkHSpOd7fb7+R64N8OJV/iZlfyNo5knDs7I9XOCqScYRoSHw93Xl9RBRuCny27QRrfs3WOiRNScIxkaXdEX++hyOEVqRLTRuxkU14pG8rAJ5duYuzhQ137RxJOCayzSg1GwclhBmkS007TwxoQ/tQf84Xl/HM5zsb7IhVSTh29scrnMoG2siEaOg83XW8MTIaD50b3+89w6cZJ7QOSROScOzM/Q+XOBWVVRpGIoTQ0o1hASTf2haAmV/u5vj5Eo0jcjxJOCaytP9b56YYBw6UV8oVjtCO3MPR3vjeLeke2Zjiskqe/HQHVQ1s6KokHBNZMyxa71b9z1wuVzhCQ3IPR3s6N4XXR0Tj46FjS9Z5/v1TltYhOZQkHAfQ66ovcSrkCkeIBq9FkA/P39kBgNe+3c/+7EKNI3IcSTgO4P77mhhlcoUjhAD+0j2CW9o3payyiuRPMimraBh/GyThmMia/u/LizBVVDWMRiWck9zDcR6KojDr7s409tGz+1QB/0g7qHVIDiEJx0TW9H9f7lIrr5AuNaEduYfjXJr6e/Hy0Orl7f+5/hDbj+dpG5ADSMJxAL10qQkhruD2zmEkRodTpcLTn/1KaT1fOkcSjgO4GwcNSMIRQtQ0c0gnQgO8OJJbwhdH6/ef5PpdOyfh8fsVTmkDuTEohDBdoI+e10Z0AeCnHDc2HjyncUT2IwnHAXw9q9e5Kymr59fLQgiL9G5zHaMNEQA8s3I3+SX1c+0cSTgOcDnhFJdWaByJEMJZTbm1LU29VHIKS5n2xa9ah2MXknBMZM2QUl8PHQAlZZJwhHZkWLRz8/bQcX/rSnRuCqszT/HVzlNah2RzknBMZM2QUh+P369wpEtNaEiGRTu/6/3h0T43APDcql/JKbikcUS2JQnHAfw8q69wpEtNCFGXifEt6dQsgLySclI+q19r50jCcQAf4z0cucIRQlybXufGG/dE4+Huxvr9Z1m25ZjWIdmMJBwH8PeqTjj5F+vnyBMhhG21CfHn6UHtAHjpq70cOVescUS2IQnHAYJ9PQE4X9xw1zIXQpjngZtuoGfLJlwsr147p7IerJ3jbs7OX3zxhdkFDBw4EG9vb7PfZy/Hjx9n9OjRnDlzBnd3d55//nlGjBhh1zKb+HoAcL64zK7lCCHqDzc3hbkjorht/ka2Hr3A2xsO81h8a63DsopZCScxMdGsgyuKwsGDB2nZsqVZ77Mnd3d35s+fT3R0NNnZ2XTr1o3bb78dX19fu5UZ5FedcM4VScIRQpiueWMfpid0YMqKnbyx9gDxbZvSITxA67AsZnaXWnZ2NlVVVSY9fHx87BGzVcLCwoiOjgYgNDSU4OBgzp8/b9cyg37vUsstLq1XI06EEPY3vFtzBnYIobxSJfmTTEorXHfwkVkJJykpyazusfvvv5+AANtm4w0bNpCQkEB4eDiKorBq1apa+6SmphIZGYmXlxcGg4EtW7Zc8Vhbt26lsrKSiIgIm8b4Z00DqhPOpfIqfvhps13LEkLUL4qi8OqwzgT5erAvu5AH31hJenq61mFZxKyE8+677+Lv72/y/m+99RbBwcFmB3UtxcXFREVFkZqaesXXly9fTnJyMtOnT2fbtm1ERUUxaNAgzpw5U2O/8+fPM2bMGP71r3/ZNL4rmf7cs1QUVV9F3T5iNCkpKXYvUwhRfwT7eXJj0XYANp7zpO/dD7jk3xGz7uE4g8GDBzN48OCrvj5v3jzGjx/PuHHjAFi4cCFff/01ixcvZurUqQCUlpaSmJjI1KlT6dWr1zXLKy0tpbT0f6PLCgoKACgvL6e8vO5hzhkZGSxYsIBGw18Evyb4NG3BggULSExMJDY2ts73Xy7rj/91FC3KbUh1dVR51rZhZ6bV52YP16pLRkYGny+Ygf+Ax/Du0I/rEp7kzYVPmfV3xF7M+bdXVCtuKly6dImdO3dy5swZqv60fPKQIUMsPazJFEVh5cqVxsEMZWVl+Pj4sGLFihoDHJKSksjLy2P16tWoqsqoUaNo164dM2bMqLOMGTNmMHPmzFrbly1bZtY9qvcPupFxzo0hLSrp30zu44hqJSUljBo1ivz8fJt3P19mqzYstHexAmbv0HGhTCGuaRV/aaX9kifmtGGLE86aNWsYM2YM587VXrtBURQqK+1/Y+vPCefUqVM0a9aMTZs2ERcXZ9zv6aef5scffyQ9PZ2ffvqJPn360KVLF+Pr77//Pp07d75iGVf6dhgREcHp06cJCgqqM8aMjAz69++Pr2EEvoZ7uLj7BwrT3iItLc2sK5y1a9cycOBA9Hq9Se+xBS3KbUh1BcjNzSUsLMyuCcfaNuzMtPrc7OFadbn8dwRA36wDje+u/gIxxeDHw3deu5fG3goKCggODjapDVvcpTZ58mRGjBjBtGnTCAkJsfQwDnfzzTfXuhq7Fk9PTzw9PUlNTSU1NdWYSPV6vUkNPC4ujsmTJ7Ng5UZ8AV3w9Tz++OM1EqKpTC3T1rQot6HU1RFlWduGXUF9r8vlvyNz5szh4qGt6P67ioDuiby7u5x7b1WNv/XTgjn/7hbPNJCTk0NycrJTJZvg4GB0Oh05OTk1tufk5BAaGmrVsa2ZaXf27Nl88vZcALxDWzHzpZetikUIS8hs0a5t9uzZbN68mffee4/VLz5I66Z+nCsq5blVu1zm5xYWJ5zhw4ezfv16G4ZiPQ8PD7p160ZaWppxW1VVFWlpaRZdUfyRtWuJ3BEfRyMfPZUqHMgusioWISwh6+G4PoPBwOjRo+ndqydv3BONu5vCN7uyWZ3pGmvnWNyl9uabbzJixAg2btxI586da11WPf7441YHdyVFRUUcOnTI+DwrK4vMzEyaNGlCixYtSE5OJikpidjYWHr06MH8+fMpLi42jlqz1MSJE5k4cSIFBQUEBgaa/X5FUYhq3ogfD5wlPSuXzs3NP4YQ1rC2DQvn0rl5II/3b8O8tQd4fvWvGFo2ISzQeaYRuxKLE85HH33Ed999h5eXF+vXr0dRFONriqLYLeFkZGTQr18/4/Pk5GSgeiTakiVLGDlyJGfPnmXatGlkZ2cTHR3NmjVrrO76+3P/tyVubh3MjwfO8tOhczzU23mm+xENgy3asHAuj8W3Im3fGXYcz2PKpzt574EeuLkpdb9RIxZ3qf39739n5syZ5Ofnc+TIEbKysoyP3377zZYx1hAfH4+qqrUeS5YsMe4zadIkjh49SmlpKenp6RgMBqvLtUX/981tqn8Em/7beZeenkK4JrmHU/+469yYd08UXno3fjp0jg/Tj2od0jVZnHDKysoYOXIkbm4NY4UDW/R/twvxJyTAk4vllWw8UHs4uRD2JPdw6qdW1/mRclt7AF75Zp9Tr51jcbZISkpi+fLltozFqdni26Gbm8IdncMBWL3DNW7yifpDrnDqr6S4SOJaBjn92jkW38OprKxkzpw5fPvtt3Tp0qXWoIF58+ZZHVx9dFd0OIt/zmLtnmzySspo5KPd+HkhRP3g5qbw2oguxrVzFm38jUf7ttI6rFosvsLZtWsXMTExuLm58euvv7J9+/Yaj/rGVt0RXZoH0iEsgEvlVXyYXn/WKhfOT7rU6rfmjX2YdmcHAOZ9d4B92QUaR1SbxVc469ats2UcTs9WQ0oVReGh3jeQ/MkOlm46woM334CXXmfDSIW4MhkWXf+NiG3Ot7uzSdt3huTlO1g18SY83J3nPrvFkbz66qssXry41vbFixcze/Zsq4Kq7+7sEk54oBdnCktZ/HOW1uEIIeoJRVF49e7ONPLRs+d0AW/+cFDrkGqwOOG8/fbbtG/fvtb2jh07snDhQquCqu883N2Ycls7AP657jBnC0vreIcQQpimqb8XLyV2AiB1/WF2HM/TNqA/sDjhZGdnExYWVmv7ddddx+nTp60KyhnZuv/7rqhmdGkeSFFpBTO+3O0ycyEJ1yX3cBqOO7uEkxAVTmVV9bLUl8qd43d/FieciIgIfv7551rbf/75Z8LDw60KyhnZekipm5vCy4mdcXdT+HrnaZeZC0m4LhkW3bC8eFdHmvp7cvhsMa99u1/rcAArEs748eN54oknePfddzl69ChHjx5l8eLF/O1vf2P8+PG2jLHe6tw8kMm3tAHgmc93seeU840qEUK4pkY+Hsy+u3rdr8U/Z7H5t1yNI7Ii4UyZMoUHH3yQxx57jJYtW9KyZUsmT57M448/zjPPPGPLGOu1if1a0btNMBfLKxn/XgY5BZe0DkkIUU/0a9+Uv3SPQFXhqU93UFRaoWk8FiccRVGYPXs2Z8+eZfPmzezYsYPz588zbdo0W8ZX77nr3Hjz3q7cEOzLybyLjFq0WQYRCCFs5rk7O9C8sTcnLlzk5a/3aBqL1QO0/fz86N69O506dcLT09MWMTkle95wDfTR894DPQgP9OLw2WJGLdrMybyLNi9HNGwyaKBh8vN0Z+6IKAA+2nKcdfvPaBaLWQln586dZi3PvHv3bioqtL2EsxV733CNaOLDsvE9CQnw5OCZIoam/syvJ/PtUpZomGTQQMPVs2UQD9x0AwDPfLaLgkvlmsRhVsKJiYkhN9f0G09xcXEcOybTt5gqMtiXzx+7ibYhfpwpLGXEwl/4NOO4DJkWQlhtyqB2RAb5kF1wiVe/2atJDGZNbaOqKs8//zw+Pj4m7V9WVmZRUA1Zs0berJjQi4kfbmPjwXNMWbGTjQfCuMlL68iEEK7M20PH7Lu7MPJfm/loy3Hu6BxuXKPLUcxKOH369GH/ftPHc8fFxeHt7dxLnjqjAC89S8b14K31h3jj+4N8sfM0Gzx0BLQ+w+AuzbQOTwjhogwtg0iKu56lvxwl5bOdfPu3Pvh5WjylptnMKmn9+vV2CkP8mc5NYdItbejZMognlmdy4sJFJizL5NbM00xL6EDzxqZdZQohxB89fVt70vad4cSFi8xZs48X7urksLKdZxpRcUWxkU34ZlIvBoRX4e6m8N2eHG6Z+yMvfrWH88XSZSmEMI+vp7vxB6Hv/XLUoT8IlYRjIi2HlHp76Ei4vopVE3oS1zKIssoq/v1TFn3nrOMfaQfJL9FmxIlwLTIsWlx2U+tg7u3RAoCUz3ZSUuaY0cSScEzkDENK24X6s2y8gaUP9KBDWACFpRXMW3uAXrPSeOmrPZyS3+6Ia3CGNiycx7O3tycs0IujuSX8I+2QQ8qUhONiFEWhb9vr+Gryzfzj3hjah/pTXFbJOz9l0WfOOv62PJOtRy/IUGohxDX5e+mNyxi8s/E39mcX2r1MSTguys1NYUhUOP/5a2+WjOtOXMsgKqpUVm4/yd1vbWLw/23kvV+OaPYDLyGE8+t/YwiDOoZQUaXy3KpdVFXZ94uqJBwXpygK8e2a8tHDPVk98SaGd2uOp7sb+7ILmbZ6N4aX00j+JJMNB85SUWn6LBFCiIZhekJHfDx0/PfIBVZsPWHXsswaFn3DDTegKIrZhTzxxBM8/vjjZr9PmCcqohFREY14/o4OfL79BMvSj3HwTBGfbzvJ59tOcp2/Jwldwhka04xOzQIs+iyFEPVLeCNv/jagLS9/s5dX/rOX/jc2JcjPPvNimpVwlixZYlEhkZGRFr3PXoYOHcr69evp378/K1as0Docmwv00TPuphsY2yuSbccusHL7Sb7eeZqzhaUs/jmLxT9nERnkw6COodzaMZSYiEa4uUnyEaKhGntTJJ9tO8G+7ELe+P4ALyV2tks5ZiWcvn37Gv//u+++Izo6mqZNm9o8KHv761//ygMPPMDSpUu1DsWuFEWh2/VN6HZ9E6bd2ZENB86yKvMka/fkcCS3hLc3/MbbG36jqb8nAzuEcGvHUOJaBuHhLj2tQjQkep0bM4Z05C//2syy9GOMiYukbYi/zcuxeE6DxMRESktLCQkJITo6mpiYGAYOHEh8fLwNw7OP+Pj4Bjdrgoe7GwM6hDCgQwhFpRX8uP8s3+7OZt2+M5wpLOXD9GN8mH4Mfy93bmnflFvaN8VwfWCNY6Snp3PgwAHatm2LwWDQqCZCCHvo2TKIWzuE8N2eHCYu+p6XBobb/Dy3+KtsYWEhO3bs4LXXXqNTp06kp6dz22230a9fP4qLi20ZYw0bNmwgISGB8PBwFEVh1apVtfZJTU0lMjISLy8vDAYDW7ZssVs8rsjP0507uoTxj3tj2Pr8QJaM6869PVoQ7OdJ4aUKVmee4q8fZ9Jz9o+8tlPHa98dYGzKq/S86WbGjBlDz549SUlJ0boaQggbc9/9JWplBQeLPIj/y6M2P88tvsLJzc2lU6dOdOrUifvuuw+AM2fOMGzYMF588UVmzZplsyD/qLi4mKioKB544AGGDRtW6/Xly5eTnJzMwoULMRgMzJ8/n0GDBrF//36Luv9KS0spLf3fCpwFBQUAlJeXU17umCHHl8uxR3kKcFPLxtzUsjHT72hH5vE8vt93lp8O5bIvu5ATxQr/2ngElC60+Otyyk7uoezYDv754Uruuusum/9q3Z51deZy7ckZ2rC9aPW52YPWdcnIyGDJgtfw6z0Wn5g7aNJnDAsW/J3ExERiY2Ov+j5z4lVUC38h6ObmRmhoKFFRUcZHdHQ0xcXF3H777Zw5Y/9V5RRFYeXKlSQmJhq3GQwGunfvzptvvglAVVUVERERTJ48malTpxr3W79+PW+++WadgwZmzJjBzJkza21ftmyZycs0uKqCMjiQr7AvX2F/nkJBec2BBYF6lXaNVNoFVv/XX69RoC6spKSEUaNGkZ+fT0BAgF3KaMhtWJivoAxe2KajXFV49MZKbmx07RRhThu2OOEcPnyYHTt2sHPnTnbs2MGOHTs4cuQIHh4elJeXc++992IwGIiOjqZ3796WFFGnPyecsrIyfHx8WLFiRY0klJSURF5eHqtXrzZuMzXhXOnbYUREBKdPnyYoKMim9bma8vJy1q5dy8CBA9HrHfdX/XK5wcHBDBw4EF1QCzxadMGjRRQezTqguHvU2L9DmD83tw7iplZBdGvRCE+9zuIytaqro8vNzc0lLCzMrgnHGdqwvWj1udmD1nXJyMigf//+APj1TsIn5k7KT+/n00d6XrMno6CggODgYJPasMVdaq1ataJVq1Y1urUKCgpYt24dQ4cORVVVli5dSkpKCiUlJZYWY5Zz585RWVlJSEhIje0hISHs27fP+HzAgAHs2LGD4uJimjdvzqeffkpcXNwVj+np6YmnpyepqamkpqZSWVkJgF6vd3ij0KJMgB49ejB58mTmzJkDJ/bDpk95KmUqdz34JBsPnmXjwXPsOV3AntOF7DldyL82HsFL74bhhiB6twmmT9vraNPUz6zf/WhVV0eX64iynKkN24vUxXpxcXHG87z054/x7nwr+rB2eDW/8ZrxmBOrxQmnSZMmREdHG7vTOnfujJ+fH9988w2tWrXiww8/BDA2bmfy/fffm/2eiRMnMnHiRAoKCggMDKz7DfXM7NmzGTZsWK1Raje3CeYZ4GxhKT8fOseG3xPQ2cJSfjxwlh8PnIWv9xIS4MnNra+jT9tgbmodTLCdflgmrq6ht2FRtz+e598X+vPjsVLe23SEri0a2+T4FiecxYsXG7vSVq9ezZEjRwDw8fHhk08+Me6n05nfrWKp4OBgdDodOTk5Nbbn5OQQGhpq1bH//O2wITIYDFcdJnmdvyeJMc1IjGmGqqocyCli48GzbDh4jvTfcskpKOWzbSf4bFv11BkdwwO4uU0wfdpcR2xkYzzdHddOGippw8IUl8/z6BP5/PjmT3y96zTP3nEjTf2tX+feqt/h/PE+SWFhIadPn6ZZs2b4+vpaHZglPDw86NatG2lpacbYqqqqSEtLY9KkSVYdW74dmk5RFNqF+tMu1J+HerfkUnklW49eqL76OVDd/bb7VPXj7R9/w1uvI65VEH3bXsdNLW3zTUrUJm1YmKNz80BiWjRi+7E8vsg8xUO9W1p9TJstZu3v74+/v+1/mfpnRUVFHDr0v7UbsrKyyMzMpEmTJrRo0YLk5GSSkpKIjY2lR48ezJ8/n+LiYsaNG2dVufLt0HJeeh03ta7uSntm8P+63zYePMfGg2c5U1jKD/vO8MO+6pGNQZ46tlTupV/7EOJaBeHrwDXX6zNpw8Jcw2Kasf1YHl/u0CDhOMPknRkZGfTr18/4PDk5GageibZkyRJGjhzJ2bNnmTZtGtnZ2URHR7NmzZpaAwnMJd8ObefP3W/7sgv58cBZNhw4y3+PnCe3FD7ccpwPtxxHr1OIvb4J/W9sysAOIVwfpM3Vc30gbViYa3DnMKZ/sZsdJ/I5mlts9fnncpN3xsfH17m42KRJk6zuQhOOoSgKN4YFcGNYAI/2bUVe0UVSP11LSWAkGw/lcux8Cb/8lssvv+Xy0td7aRvix8AOIQzsEEqXZoEy6agQdhTs50lcqyB+PpTL2j05Vl/lWDx5Z0Mj3RGO4evpTqcmKrffXj0U88i5YtbtP8PaPTmkZ53nQE4RB3KKSF13mKb+ngzuFMqQ6HBiIhpL8qmDtGFhib5tr+PnQ7lsOpzr2ITTkEl3hDYig30ZF3wD4266gfyScmPyWb+/etLRpb8cZekvR2nWyJs7o8IYEhVOhzBZ6+dKpA0LS/RqFQxA+m+5lFdWoddZPpu8JBzhMgJ99MZ7P6UVlWw6lMuXO07x3Z4cTuZd5O0ff+PtH3+jTVM/7u3Rgru7NifQp378GFAIrXQIC6CRj568knL2nCogKqKRxceShU9MlJqaSocOHWw+WaWwjKe7jn7tmzJvZDQZzw3grfu6cnvnUDzd3Th4pogXvtpDj1e+J/mTTDKOnK/zvl9DIG1YWMLNTaFzs+or4j2nC6w7li0CaggmTpzInj17+O9//6t1KOJPvPQ6BncO45/3dSPjuQG8mNiJG8MCKK2o4vNtJxm+8BcS/7mJ73ZnU1XVcBOPtGFhqQ5h1XOk7T6Vb9VxpEtN1Cv+XnpG97ye+w0t2HEin2XpR/lixyl2HM/j4fe30jbEj8fiW5MQFY5OBhkIYZIO4dUJZ9/pQquOI1c4ol5SFIXoiEbMGR7FTym3MLFfK/w93TmQU8QTyzO54x8b+engOa3DFMIlXP79zYkLF606jiQcE0n/t+sK9vNkyqD2/PzMLUwZ1I5Abz37sgu5/9/pPPr+Vs4UXNI6RIeQNiws1byxNwA5hZcorbB8WL0kHBNJ/7frC/DSM7Ffa36cEs+4myJxd1NYszubAfN+5Kudp7UOz+6kDQtLBfl64KV3Q1XhdJ7lX9Ak4YgGp5GPB9MTOvLFpJvp3CyQgksV/O3TXXzymxtlFVVahyeE01EUhfDA6quc0/mScIQwW4fwAFY+1otJ/VoD8HOOG+M/2EbBJW3WlBfCmTX6/Tdt+RctPz8k4ZhI+r/rJ3edG08Nase/7o/Bw01l0+HzjHv3v5SUVWgdms1JGxbWaOxTvaR8XkmZxceQhGMi6f+u3/q1u47HO1YS4OXO1qMXmPDBtnrXvSZtWFjj8qwdeXKFI4T1IvzgndFd8dbr+PHAWV7/br/WIQnhNBp5X77CkYQjhE3EtGjEGyOjAXh7w2/yWx0hfufvVT1PQKEV9zgl4QjxJ7d1CuU+QwsAnlu1q951rQlhCU99dbqw5nyQhCPEFTxz+40E+3lwJLeEZelHtQ5HCM15/L4sQakkHCFsy8/Tnb/2bwPAoo1ZVDbgST+FAPDU6wC5wnEIGVLa8IyIjaCxj56TeRdJ25ujdThWkzYsrOFpvMKRqW3sToaUNjxeeh3DuzUHqBdT30gbFtYw3sOplCscIexiUMdQANbtP0O5FSeaEK7OeA+nXBKOEHYR06IxQb4eFF6qYNvRC1qHI4RmPNzlCkcIu9K5KcRGNgZgx4k8bYMRQkNuSvWChdas1i4JR4g6REf8nnCOW7e8rhANXYNMOF999RXt2rWjTZs2vPPOO1qHI5xcx9+X1z14xrrldYVo6Ny1DsDRKioqSE5OZt26dQQGBtKtWzeGDh1KUFCQ1qEJJxX5+/K6R3NLqKpScXNTNI5ICNfU4K5wtmzZQseOHWnWrBl+fn4MHjyY7777TuuwhBMLb+SFu5tCaUUVOYUNYzlqIezB5RLOhg0bSEhIIDw8HEVRWLVqVa19UlNTiYyMxMvLC4PBwJYtW4yvnTp1imbNmhmfN2vWjJMnTzoidOGi3HVuNPaqvqr5ftNWjaMRQlu5ubmkp6db9F6XSzjFxcVERUWRmpp6xdeXL19OcnIy06dPZ9u2bURFRTFo0CDOnDnj4EhFfZGSksKJw/sAeGRyMikpKRpHJITjLX53MQBZR47Qs2dPi84Dl7uHM3jwYAYPHnzV1+fNm8f48eMZN24cAAsXLuTrr79m8eLFTJ06lfDw8BpXNCdPnqRHjx5XPV5paSmlpaXG5wUFBQCUl5dTXu6YpYgvl+Oo8rQs19nqmpGRwYIFCwgc8iwAXoHBLFiwgMTERGJjY21Wrj05Qxu2F63aiz04c10yMjL48osvaHRXZ9zc3PD29jaeB23btjX5OIqqWjOqWluKorBy5UoSExMBKCsrw8fHhxUrVhi3ASQlJZGXl8fq1aupqKjgxhtvZP369cZBA5s2bbrqoIEZM2Ywc+bMWtuXLVuGj4+PPaolnND7B93IOOfGkBaV9G9mu1OmpKSEUaNGkZ+fT0BAgM2O+0fShoUt7Lmg8PY+Hc19VaZ0+d98aua0YZe7wrmWc+fOUVlZSUhISI3tISEh7NtX3SXi7u7O66+/Tr9+/aiqquLpp5++5gi1Z555huTkZOPzgoICIiIi6Nevn8NGtpWXl7N27VoGDhyIXq93SJlaletsdc3IyKB///749R6LT8wdfPT5l7yz6UPS0tJscoWTm5tr9THq4gxt2F60ai/24Mx1ycjIIGnqkzS66+9kZWVx76vV3WlpaWlmXeHUq4RjqiFDhjBkyBCT9vX09MTT05PU1FRSU1OprKzO7Hq93uGNQosytSrXWeoaFxfH5MmT+dfmbAAqUXj88ceJi4uzWXn25kxt2F6kLvYVFxfHkCFD2ABUVVVx8eJFUlJSiIuLM3bRmsLlBg1cS3BwMDqdjpycmlPJ5+TkEBoaatWxZabdhmv27Nk89MBYAIYNH8msWbO0DchC0oaFNcY98AAAN0RGsnnzZovOg3qVcDw8POjWrRtpaWnGbVVVVaSlpVn9jVTWEmnYWkdWLzkd0MR1u6CkDQtbaBLUBIPBYNF7XS7hFBUVkZmZSWZmJgBZWVlkZmZy7NgxAJKTk1m0aBFLly5l7969TJgwgeLiYuOoNUvJt8OGzdPd+uV1tSZtWGjN5e7hZGRk0K9fP+PzyzdDk5KSWLJkCSNHjuTs2bNMmzaN7OxsoqOjWbNmTa2BBOb6c/+3aFguL69rzVogWpM2LKxxeUIna8Y1u1zCiY+Pp66R3JMmTWLSpEk2LXfixIlMnDiRgoICAgMDbXps4fy89NYvr6s1acNCay7XpaYV6f9u2Dzdq69wLpW7bsKRNiy0JgnHRNL/3bDpfp8husplfyYtbVhoTxKOEEIIh5CEYyLpjhCuTtqw0JokHBNJd4RwddKGhdYk4QghhKiTolTfx7RmWLQkHCHM4MKTqwuhOUk4JpL+74ZNqXsXpydtWGhNEo6JpP9buDppw0JrknCEEEI4hCQcIYQQDiEJRwghhENIwjGR3HAVAK48Rk3asLCGcbZoK44hCcdEcsO1Ybv8GwRXJm1YaE0SjhBCCIeQhCOEEMIhJOEIIYRwCEk4QgghHEISjhBmkKnURENli3EzknBMJENKGzbXH6MmbVjYhjUT2ErCMZEMKRWuTtqw0JokHCGEEA4hCUcIIYRDSMIRQgjhEJJwhDCDDFITwnINMuEMHTqUxo0bM3z4cK1DES6iHkylJoRVFBuM1WyQCeevf/0r7733ntZhCCFEg9IgE058fDz+/v5ahyFcUO65c6Snp2sdhhCauXDhgsXngNMlnA0bNpCQkEB4eDiKorBq1apa+6SmphIZGYmXlxcGg4EtW7Y4PlDRoCxZsgSAw4cP07NnT1JSUrQNSAgHW/TOIgCOHz9u8TngbuugrFVcXExUVBQPPPAAw4YNq/X68uXLSU5OZuHChRgMBubPn8+gQYPYv38/TZs2BSA6OpqKiopa7/3uu+8IDw83K57S0lJKS0uNzwsKCgAoLy+nvLzcrGNZ6nI5jipPy3Kdsa4ZGRl8+eWXNBrSCTc3N7y9vVmwYAGJiYnExsbapFx7coY2bC9atRd7cOa6ZGRksGrVKhoP7VLrHGjbtq3Jx1FUa+YpsDNFUVi5ciWJiYnGbQaDge7du/Pmm28CUFVVRUREBJMnT2bq1KkmH3v9+vW8+eabrFix4pr7zZgxg5kzZ9bavmzZMnx8fEwuT7i2Xy8oLNqno4WvypNdKm123JKSEkaNGkV+fj4BAQE2O+4fSRsWtrA/T+Gfe3WE+ahMjfrfOWBOG3aphFNWVoaPjw8rVqyokYSSkpLIy8tj9erVJh/b1IRzpW+HERERnD59mqCgILPqY6ny8nLWrl3LwIED0ev1DilTq3Kdsa4ZGRkMfnAKjYY8Q3n2IS588gwAaWlpVl/h5ObmEhYWZteE4wxt2F60ai/24Mx1ycjI4LaxT9B46DQqzh3l/LKngOpzoG3btgQHB5vUhp2uS+1azp07R2VlJSEhITW2h4SEsG/fPpOPM2DAAHbs2EFxcTHNmzfn008/JS4u7or7enp64unpSWpqKqmpqVRWVmd2vV7v8EahRZlaletMdY2LiyMhIYGNVF9RX7x4kZSUlKu2GXPLszdnasP2InWxr7i4OIYmJrKe2ufA5S5aU7hUwrGV77//3uz3TJw4kYkTJ1JQUEBgYKAdohLObNy4sWxckkHLVi1ZtXkzBoNB65DMJm1YWGP8+PGsfyediIgIVlp4DjjdKLVrCQ4ORqfTkZOTU2N7Tk4OoaGhdi1bpnYXAMFBQS6ZbEDasLCNRo0aW3wOuFTC8fDwoFu3bqSlpRm3VVVVkZaWZpPujWuRqd2Fq5M2LLTmdF1qRUVFHDp0yPg8KyuLzMxMmjRpQosWLUhOTiYpKYnY2Fh69OjB/PnzKS4uZty4cXaN68/936JhctoRNiaQNiy05nQJJyMjg379+hmfJycnA9Uj0ZYsWcLIkSM5e/Ys06ZNIzs7m+joaNasWVNrIIGtSf93w2aLeaS0Jm1YaM3pEk58fHydS5hOmjSJSZMmOSgiIYQQtuBS93C0JDdchauTNiysYYtrfEk4JpIbrsLVSRsWWpOEI4QQwmSqFUNnJOGYSLojBIDzTgRVN2nDQmuScEwk3RENnOsPUpM2LDQnCUcIIYRDSMIRQgjhEJJwTCT938LVSRsWVrFBt7IkHBNJ/7dwddKGhdYk4QhhBmuGhApRH1gzUlMSjhAmqAeD1ITQnCQcE0n/t3B10oaF1iThmEj6v4WrkzYstCYJRwghhENIwhHCDK48tY0Q1rDFmlCScIQwgaLIsAEhrCUJRwghhENIwhFCCGEya3qVJeGYSIaUClcnbVhoTRKOiWRIqXB10oaF1iThCGEGGaUmhOUk4QhhAhmjJho6WwzUlIQjhBDCISThCCGEcIgGl3COHz9OfHw8HTp0oEuXLnz66adahySEEC5DteJGprsN43AJ7u7uzJ8/n+joaLKzs+nWrRu33347vr6+WocmhBD1WoNLOGFhYYSFhQEQGhpKcHAw58+fl4QjTCKD1ISwnNN1qW3YsIGEhATCw8NRFIVVq1bV2ic1NZXIyEi8vLwwGAxs2bLForK2bt1KZWUlERERVkYt6rvLI3QuXDhPenq6tsEIoYHLg9Ty8wssPgecLuEUFxcTFRVFamrqFV9fvnw5ycnJTJ8+nW3bthEVFcWgQYM4c+aMcZ/o6Gg6depU63Hq1CnjPufPn2fMmDH861//snudhOt75513ADh29Bg9e/YkJSVF44iEcKyFb78NwOnTpyw+B5yuS23w4MEMHjz4qq/PmzeP8ePHM27cOAAWLlzI119/zeLFi5k6dSoAmZmZ1yyjtLSUxMREpk6dSq9everct7S01Pi8oKAAgPLycsrLy02pktUul+Oo8rQs1xnrmpGRwapVq2k8tAuKmxve3t4sWLCAxMREYmNjbVKuPTlDG7YXrdqLPThzXTIyMvj8s89oPDwKRVFqnANt27Y1+TiKas2QAztTFIWVK1eSmJgIQFlZGT4+PqxYscK4DSApKYm8vDxWr15d5zFVVWXUqFG0a9eOGTNm1Ln/jBkzmDlzZq3ty5Ytw8fHx9SqCBe3L0/hrb06mvmoPB1VabPjlpSUMGrUKPLz8wkICLDZcf9I2rCwhUMFsGC3OyHeKs9G/+8cMKcNu1TCOXXqFM2aNWPTpk3ExcUZ93v66af58ccfTepX/Omnn+jTpw9dunQxbnv//ffp3LnzFfe/0rfDiIgITp8+TVBQkIU1M095eTlr165l4MCB6PV6h5SpVbnOWNeMjAxuG/s3Gg99nvKzR7jw0RQA0tLSrL7Cyc3NJSwszK4JxxnasL1o1V7swZnrkpGRwW2jJ9F4+AtUnD/J+Q+eAKrPgbZt2xIcHGxSG3a6LjV7u/nmm6mqqjJ5f09PTzw9PUlNTSU1NZXKyurMrtfrHd4otChTq3Kdqa5xcXEkJt7Fj1RfIV+8eJGUlJQaX3qsKc/enKkN24vUxb7i4uIYdvfdrANUtarGOXC5i9YUTjdo4FqCg4PR6XTk5OTU2J6Tk0NoaKhdy5aZdhu28Q+NByAiIoLNmzcza9YsjSMyn7RhYY1HH3kEgLCwcIvPAZdKOB4eHnTr1o20tDTjtqqqKtLS0mzybfNaZC0RAdC4cWMMBoPWYVhE2rCwxuVl1gMCAyw+B5wu4RQVFZGZmWkcaZaVlUVmZibHjh0DIDk5mUWLFrF06VL27t3LhAkTKC4uNo5asxf5dihcnbRhoTWnu4eTkZFBv379jM+Tk5OB6pFoS5YsYeTIkZw9e5Zp06aRnZ1NdHQ0a9asISQkxK5x/bn/WwhXI21YaM3pEk58fHydk8NNmjSJSZMmOSiiahMnTmTixIkUFBQQGBjo0LKFsAVpw0JrTtel5qyk/1u4OmnDwias+CGNJBwTSf93w2aL1Q61Jm1YaE0SjhBCCIeQhGMi6Y4Qrk7asLCGLa7yJeGYSLojhKuTNiy0JglHCCGEQ0jCEcIMzjvVrRDOTxKOiaT/u2GrB4PUpA0LzUnCMZH0fwtXJ21Y2II1F/mScIQQQjiEJBwhhBB1skW3siQcIYQQDiEJx0Ryw1UAqFb1YGtL2rDQmiQcE8kN1wauHgxTkzYstCYJRwghhENIwhFCCGGyutYruxZJOEIIIRxCEo4QQog6yWzRQjiYzKUmhOUk4ZhIhpQ2bEo9GKYmbVhoTRKOiWRIqXB10oaF1iThCCGEcAhJOEIIIUwms0ULIYRwepJwhDCDDFITDZf1A2caXMLJy8sjNjaW6OhoOnXqxKJFi7QOSbgAW/wGQYiGzl3rABzN39+fDRs24OPjQ3FxMZ06dWLYsGEEBQVpHZoQQtRrDe4KR6fT4ePjA0BpaSmqqlo1N5BoWPLz80lPT9c6DCE0U1hYaPE54HQJZ8OGDSQkJBAeHo6iKKxatarWPqmpqURGRuLl5YXBYGDLli1mlZGXl0dUVBTNmzdnypQpBAcH2yh6UV+9/fbbAJw8eZKePXuSkpKicURCONY//5kKQE5OjsXngNN1qRUXFxMVFcUDDzzAsGHDar2+fPlykpOTWbhwIQaDgfnz5zNo0CD2799P06ZNAYiOjqaioqLWe7/77jvCw8Np1KgRO3bsICcnh2HDhjF8+HBCQkKuGE9paSmlpaXG5/n5+QCcP3/eFtU1SXl5OSUlJeTm5qLX6+t1uc5Y1+3bt/PZik9pNKQNVJTi5eXFP/7xDwYOHEhMTIxV5V5uR/a8ynaGNmwvWrUXe3Dmumzfvp1Pli+n8dB2tc6B1q1bAya2YdWJAerKlStrbOvRo4c6ceJE4/PKyko1PDxcffXVVy0qY8KECeqnn3561denT5+uUj04SR7ysNvj8OHDFrVfU0gblocjHsePH6+zLSqq6rw3MBRFYeXKlSQmJgJQVlaGj48PK1asMG4DSEpKIi8vj9WrV9d5zJycHHx8fPD39yc/P5+bbrqJjz76iM6dO19x/z9/O8zLy+P666/n2LFjBAYGWlU/UxUUFBAREcHx48cJCAhwSJlalduQ6grVVxstWrTgwoULNGrUyC5lOEMbthetPjd7cNW6qKpKYWEh4eHhuLld+y6N03WpXcu5c+eorKys1f0VEhLCvn37TDrG0aNHefjhh42DBSZPnnzVZAPg6emJp6dnre2BgYEObxQBAQGaNEQtym1IdQXqPFGt4Uxt2F60+tzswRXrYuoXF5dKOLbQo0cPMjMztQ5DCCEaHKcbpXYtwcHB6HQ6cnJyamzPyckhNDRUo6iEEEKYwqUSjoeHB926dSMtLc24raqqirS0NOLi4hwSg6enJ9OnT79iF0V9KlOrchtSXbUqV6u62oPUxbU43aCBoqIiDh06BEBMTAzz5s2jX79+NGnShBYtWrB8+XKSkpJ4++236dGjB/Pnz+eTTz5h3759Vx3aLIQQQntOl3DWr19Pv379am1PSkpiyZIlALz55pu89tprZGdnEx0dzT/+8Q8MBoODIxVCCGEOp0s4Qggh6ieXuocjhBDCdUnCEUII4RCScIQQQjiEJJwrMHc26k8//ZT27dvj5eVF586d+eabb+xa5u7du7n77ruJjIxEURTmz59vdnmWlLto0SJ69+5N48aNady4MQMGDDB7pm5zy/z888+JjY2lUaNG+Pr6Eh0dzfvvv292meaW+0cff/wxiqLUmE7JHmUuWbIERVFqPLy8vMwu0xp1LVA4dOhQGjduzPDhwx0al6WuFe/cuXPp2LEjnTp14oMPPtAgOsvs37+f6Oho48Pb2/uKs+o7JXtNGOiqPv74Y9XDw0NdvHixunv3bnX8+PFqo0aN1JycnCvu//PPP6s6nU6dM2eOumfPHvW5555T9Xq9umvXLruVuWXLFvWpp55SP/roIzU0NFR94403LKmq2eWOGjVKTU1NVbdv367u3btXHTt2rBoYGKieOHHCbmWuW7dO/fzzz9U9e/aohw4dUufPn6/qdDp1zZo1dq3rZVlZWWqzZs3U3r17q3fddZddy3z33XfVgIAA9fTp08ZHdna2WWVaq6KiQi0uLlZVVVWLiorUyMhI9dy5c8bX161bp37xxRfq3Xff7dC4LHW1eHfu3KnGxMSoFy9eVEtKSlSDwaBeuHBBmyCtUFhYqAYFBalFRUVah2ISSTh/Yu5s1Pfcc496xx131NhmMBjURx55xG5l/tH1119vccKxdubtiooK1d/fX126dKnDylRVVY2JiVGfe+45k/e3tNyKigq1V69e6jvvvKMmJSWZnXDMLfPdd99VAwMDzSrDnnJzc9Xrr79ePXv2bI3t69atc5mEo6pXjnf58uXqY489Znz+8MMPqx999JGjQ7Pahx9+qN5zzz1ah2Ey6VL7g7KyMrZu3cqAAQOM29zc3BgwYAC//PLLFd/zyy+/1NgfYNCgQVfd3xZl2oItyi0pKaG8vJwmTZo4pExVVUlLS2P//v306dPHpDKtKfeFF16gadOmPPjggyaXZW2ZRUVFXH/99URERHDXXXexe/fuGq/XpwUKHVGXq+nUqRPr168nLy+PCxcusH79ek6ePGmTYzuyXp988gkjR460MmLHkYTzB9eajTo7O/uK78nOzjZrf1uUaQu2KDclJYXw8PBaCdfWZebn5+Pn54eHhwd33HEHCxYsYODAgSaVaWm5P/30E//+979r3cOwZ5nt2rVj8eLFrF69mg8++ICqqip69erFiRMnjPtcXqAwNTX1ise4vEDh9OnT2bZtG1FRUQwaNIgzZ84Y97l8f+bPj1OnTgEYFyjMyspi2bJlteYutBVH1OVqOnTowOOPP84tt9zCsGHD6NmzJzqdzqXqVVBQwKZNm7j99tttErcjNLjZooVtzJo1i48//pj169fb/ca2v78/mZmZFBUVkZaWRnJyMi1btiQ+Pt4u5RUWFjJ69GgWLVrk0OXH4+LiaswJ2KtXL2688UbefvttXnzxRQAGDx7M4MGDr3qMefPmMX78eMaNGwfAwoUL+frrr1m8eDFTp04FMHm29JCQEKKioti4caNdBgk4si5X8sgjj/DII48A8NBDD9GmTRuLj/VHjqrX6tWrufXWWx0+sMQacoXzB5bMRh0aGmrV7NVazYBtTblz585l1qxZfPfdd3Tp0sXuZbq5udG6dWuio6N58sknGT58OK+++qrdyj18+DBHjhwhISEBd3d33N3dee+99/jiiy9wd3fn8OHDNi/zSvR6PTExMca5Betii27SnJwcCgsLgeoryw0bNtCuXTuT3mtLjuhqvnxFsX//frZs2cKgQYNsctxrsWW9XK07DSTh1GDJbNRxcXE19gdYu3atybNXazUDtqXlzpkzhxdffJE1a9YQGxvrkDL/rKqqqsYKlrYut3379uzatYvMzEzjY8iQIfTr14/MzEwiIiJsXuaVVFZWsmvXLsLCwkza3xbdpEePHqV3795ERUXRu3fvWgsUDhgwgBEjRvDNN9/QvHlzu91ntFVX87Xiveuuu+jQoQP3338/7777Lu7u9u/wsVW98vPzHZYkbUrrUQvO5uOPP1Y9PT3VJUuWqHv27FEffvhhtVGjRsbhqaNHj1anTp1q3P/nn39W3d3d1blz56p79+5Vp0+fbtGwaHPKLC0tVbdv365u375dDQsLU5966il1+/bt6sGDB+1a11mzZqkeHh7qihUragzdLSwstFuZr7zyivrdd9+phw8fVvfs2aPOnTtXdXd3VxctWmTXuv6ZJaPUzC1z5syZ6rfffqsePnxY3bp1q/qXv/xF9fLyUnfv3n3F4wPqypUrjc9PnjypAuqmTZtq7DdlyhS1R48eZsXuaPWpLn9UX+tlKbmH8ycjR47k7NmzTJs2zTgb9Zo1a4zfSI4dO1ZjOeBevXqxbNkynnvuOZ599lnatGnDqlWr6NSpk93KPHXqFDExMcbnc+fOZe7cufTt25f169fbrdy33nqLsrKyWv3506dPZ8aMGXYps7i4mMcee4wTJ07g7e1N+/bt+eCDD8zuSjC3XFswt8wLFy4wfvx4srOzady4Md26dWPTpk106NDBpPLq0wKF9akuf1Rf62UyrTOeEMIy/Onbs6pW//Zn0qRJxueVlZVqs2bNzPqdkxbqU13+qL7Wy1JyhSOEC/njAoUAWVlZZGZmGhcoTE5OJikpidjYWOMChcXFxcYRUc6kPtXlj+prvWxC64wnhDDdunXrVKDWIykpybjPggUL1BYtWqgeHh5qjx491M2bN2sX8DXUp7r8UX2tly3IAmxCCCEcQoZFCyGEcAhJOEIIIRxCEo4QQgiHkIQjhBDCISThCCGEcAhJOEIIIRxCEo4QQgiHkIQjhBDCISThCCGEcAhJOEIIIRxCEo4wmaqqzJs3jxtuuAEfHx8SExPJz8+/4r7x8fEoioKiKHUulzt27FjjvqtWrbJ94EIIpyAJR5hsypQpvPXWWyxdupSNGzeydevWa66DM378eE6fPl3n2kD/93//x+nTp20crRA1mfMlyFHi4+N54oknjM/r+5cvSTjCJOnp6cybN4/ly5fTp08funXrxvjx4/nmm2+u+h4fHx9CQ0PrXLo3MDCwYSw+JSzWt29fHnjggRrb5s+fj6+vL2+99ZbJxzH1S5CtjBs3jueee87k/ev7ly9ZD0eYZO7cufTv35+uXbsat4WEhHDu3DkNoxINgaqqbN++nREjRgBQUlLC+PHjWbduHWvXrqVXr14mH+vylyBHqKys5KuvvuLrr782+T2BgYEEBgbaMSptyRWOqFNpaSlff/01Q4cOrbH90qVL9frkEM7h4MGDFBYW0rVrV7KysujVqxdZWVls3brVrGRzNVVVVcyZM4fWrVvj6elJixYtePnll42vx8fHM3nyZJ544gkaN25MSEgIixYtMi6a5u/vT+vWrfnPf/5T47ibNm1Cr9fTvXt3oHq59DFjxuDn50dYWBivv/661bG7Gkk4ok7btm3j4sWLPPnkk/j5+RkfTz/9NG3bttU6PFHPbd26FZ1OR05ODrGxsRgMBtavX09YWJhNjv/MM88wa9Ysnn/+efbs2cOyZcsICQmpsc/SpUsJDg5my5YtTJ48mQkTJjBixAh69erFtm3buPXWWxk9ejQlJSXG93zxxRckJCSgKApQfQ/0xx9/ZPXq1Xz33XesX7+ebdu22aQOLkPb9d+EK1iyZInq6+urHjx4sMajbdu26gsvvHDF9/Tt21f961//WmPbBx98oPr6+hofGzZsqPE6V1j/XYinnnpK1el0qpubm5qammrxca7UJgsKClRPT0910aJF13zfzTffbHxeUVGh+vr6qqNHjzZuO336tAqov/zyi3FbmzZt1K+++kpVVVUtLCxUPTw81E8++cT4em5ururt7V0rJlWtv+eC3MMRdSooKCA4OJjWrVsbtx09epSDBw9y9913m3ycIUOGYDAYjM+bNWtm0zhF/bRt2zYGDBjAr7/+ytatW2167L1791JaWkr//v2vuV+XLl2M/6/T6QgKCqJz587GbZeviM6cOWM87qlTp4zHPXz4MGVlZTXaf5MmTWjXrp3N6uIKpEtN1Ck4OJj8/HzUP6xG/vLLL3P77bfToUMHk49zua/78sPb29se4Yp6Ztu2bQwePJjVq1fz0Ucf8dprr9XaZ9GiRXTt2pVOnToxcuRIk49tahvU6/U1niuKUmPb5W6zqqoqoLo7beDAgXh5eZkcS0MgCUfU6ZZbbuHSpUvMmjWLrKwsXnrpJb788kuzhqMKYYnffvuNvLw8unbtSrdu3Xj33Xd55plnWL16tXGfCxcukJqayn//+19+/fVX3n77bZOP36ZNG7y9vUlLS7Np3KtXr+auu+4yPm/VqhV6vZ709PQacR84cMCm5To7STiiTiEhISxZsoS33nqLjh07snnzZn766SciIiK0Dk3Uc1u3bkVRFKKjowEYOXIkzz77LPfdd5/xx5vu7u5cuHCBp59+mt27d9OoUSOTj+/l5UVKSgpPP/007733HocPH2bz5s38+9//tjjmM2fOkJGRwZ133mnc5ufnx4MPPsiUKVP44Ycf+PXXXxk7dixubg3rT7DcwxEmGTlypFldFULYwrZt22jTpg3+/v7GbTNnzmTPnj0MGTKELVu2EBoayq+//sqqVau45557ePnll0lMTDS5jOeffx53d3emTZvGqVOnCAsL49FHH7U45i+//JIePXoQHBxcY/trr71GUVERCQkJ+Pv78+STT151aqh6S+tRC6J+6tu3r6rX61VfX191586d19z3kUceUX19fevtyBxhXwcOHDD+/4QJE9SPP/74ivtdaZSaPSQkJKizZ8+26hj19VxoWNdzwmE+/PBD9uzZQ2ZmZp0jcV544QUyMzM5ePAgAwcOdFCEor546aWXaNeuHTExMSiKYpyR4Er++c9/4ufnx65du+wWz80338y9995r0XsfffRR/Pz8bByR81BU9Q9Dj4QQop46efIkFy9eBKBFixZ4eHhoHFFtZ86coaCgAICwsDB8fX01jsi2JOEIIYRwCOlSE0II4RCScIQQQjiEJBwhhBAOIQlHCCGEQ0jCEUII4RCScIQQQjiEJBwhhBAOIQlHCCGEQ0jCEUII4RD/D9/1H8VfADEdAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAGwCAYAAACdL9N0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABlw0lEQVR4nO3deVxU5f7A8c/MsC+igrIoirnmBgg6Yi6YmlliaJY3b0pa1jW1BRfs3nJpVfOa9xo3y3tNWyzTX2q2mEaalYEXFfc9XFJBQQEBZT2/P8y5Eiqznxn4vl+veemcOXOe7wPP8J3znOc8j0ZRFAUhhBDCxrRqByCEEKJukIQjhBDCLiThCCGEsAtJOEIIIexCEo4QQgi7kIQjhBDCLiThCCGEsAtJOEIIIexCEo4QQgi7kIQjhBDCLiThCCGEsAtJOEIIIexCEo6Du3z5MnFxccTGxhITE8M333xzy32feuopAGbNmsWXX35Z5bU9e/bQu3dv+vTpQ48ePThz5oxV43zsscfYt2+fVY9pCydOnKBRo0bExsYSGxvL999/b/i5rV27lvPnzwOQkZHB9u3bjT5udHR0tW1vvfUW3bt3p1evXjz99NO3fO+yZcv45ZdfOHHiBMOHD6/2ukaj4f333zc879ChA1OmTDEqruHDh3PixImbvnar8nx9fYmNjSUqKoqvv/7aqHJu5mY/E1G3uagdQG2VlpbGkSNHaNOmDXq93uzjfPDBB9x7771MmDABRVHIz8+/5b7vvvvuLV975ZVXeOedd+jQoQNXrlxBo9GYHZOz69OnD6tXrzY8v/vuu4FrCadVq1Y0btyYjIwMCgsL6datm1llXL58mZUrV/LLL7+g0Wi4dOnSLfd97LHHAG6ZGO688042bNjAmDFjOHDgAN7e3mbFZKy2bduyZcsWfvvtNwYOHMh9991n0/JE3SFnODaQlJRE9+7dGT16NN27dycpKcnsY3l6epKamkp2djYajYb69esDsGDBAmJiYujZsyc7d+4Ebv+N0tPTk++++46ioiI8PT3x8PAgOzubvn370qtXL4YPH05FRQUnTpygR48ejBgxgg4dOrBy5UoGDx5MeHg4R48eBaBdu3Y88sgjREdHs2LFiirlKIrCpEmT6Nu3L/379+e33367aTyKolBcWm6zhymrbkRHR5OZmWn4oz5t2jTeeecd/vGPf3DPPfcA8Prrr9OnTx969+7N3r17Afjwww+Jjo7mkUceobCwsMoxtVotOTk57NixA0VRaNCgAQB79+6lZ8+e3HXXXbzxxhvAzc9Ib+Tl5YWrqysFBQWsXr26ylnJp59+il6vp3v37nz77bcAfPfdd3Tp0oVhw4YZzmSvXr3Ko48+yt13382QIUMoKCio8efStGlTiouL2bt3L3369CEmJoaJEycCsGXLFu69916GDh1KeHi44ez2Zj+TTZs20adPH7p27cqcOXMAGDZsmKFtvPfeeyxZsqTGeEQtoAirSk1NVYBqj9TUVLOOV1paqrzyyitKeHi40r17d+XQoUPKuXPnlF69eikVFRVKZmam0r9/f0VRFCUqKkpRFEWZOXOmsn79+irHycrKUp566imlZcuWysMPP6wUFhYqJSUlSllZmaIoivLMM88oGzduVDIzM5V27dop5eXlyrfffqt06dJFqaioUNauXau89NJLiqIoire3t5Kbm6tcvXpVCQ8PV8rLy5WEhARl7969yvr16w37paamKhMmTLhpvYpKypTmSV/a7FFUUnbTcjMzM5WAgAClT58+Sp8+fZTc3FzDz+16HRRFUd5//31l0aJFiqIoyt69e5XRo0criqIoZ86cUYYMGaKUl5crERERytWrV5ULFy4o3t7e1cr69ttvlXvvvVdp0aKF8u677yqKoiiDBw9WDhw4oFRWVioDBgxQMjMzDb+vzMxM5cEHH6x2nKioKOWTTz5RPv74Y+X+++9Xvv/+e2Xy5MlKeXm50rlzZ+XKlStKfn6+oR56vd7w+2nWrJmSmZmpLFq0SPnPf/6jKIqifPrpp8qbb7552/IURVEOHDigREVFKcXFxUplZaWiKIoyZMgQ5ciRI8rmzZuVu+++W1EURfn666+V559//pY/k6KiIkVRFKWiokKJjo5WiouLlf/7v/9T5s6dqyiKotxzzz3KpUuXbvr7ErWLdKlZ2ZEjR2653ZyuNVdXV1588UVefPFFNm3axMyZM3nuuecIDw9Hq9USFhZGXl5ejccJDAxk8eLFALz44ot8+OGHPPDAA4wfP55Lly5x9uxZunTpQuvWrWnfvj06nY6QkBA6duyIVqulSZMmfPfddwC0aNGChg0bAhAaGkpOTo6hnAMHDrBmzRq2bt2KoiiEhoaaXGdb+2OXWk0OHDjAtm3biI2NBUCn03HhwgWaNm2Ku7s77u7utGjRotr77rnnHu655x4uX77MXXfdxciRI8nKyuLOO+8EoEuXLhw/ftyoGO6//34GDhyIXq83dIdeuHCBZs2a4eHhgYeHB66urpSXl1NRUWH4/XTu3NlQh//+97988MEHlJWV0atXr1uWdfjwYWJjY3FxceGdd94hMzOTyZMnU1xczK+//srZs2cBiIiIAK61gUuXLt3yZ7Jjxw5mz55NWVkZJ06c4Pz58wwePJiBAwfypz/9CT8/P8OZu6jdJOFYWZs2bUzaXpOTJ08SHByMm5sbjRs3RlEUwsLCyMjIoLKyklOnThn1YT169CitW7cGoFGjRiiKwooVKxg8eDBPPPEEkyZNMnRD3Xh958b/X3/9xIkTXLp0CS8vL06fPk1AQIBhn3bt2vHwww/z0ksvAVBWVnbTeDxddRx4eaBpPwwTeLrqTH6Pq6srFRUV1f7frl07+vTpw7///W/gWp20Wi2//fYbpaWlFBYWkpmZWeVYV69e5cKFC4SGhuLj44OHhwdwLfEfPHiQdu3asXPnTv7yl7/w448/1hibr68vgwYNYvDgwYbreI0aNeLkyZNcvXqV0tJSSktLcXFxQafTGX4/17v/2rVrR0xMDKNGjTLU4VYDR65fw7lu0qRJTJ48mf79+zNkyJCbthNFUWjUqNFNfybz5s1j8eLF3HHHHXTp0gVFUXBzc6NDhw4kJSXx5z//ucb6i9qhTiaczMxMxo4dS3Z2NjqdjtTUVKtdiNXr9UybNo158+YZtiUlJZk9cGDv3r2MGDECDw8PFEUhOTmZoKAgHnjgAXr06IFWq2XRokU1HufTTz/lyy+/xNPTk/r16/PRRx9x7NgxRo0axfr16/H09DQ6ptDQUJ555hkOHjzIlClT0On+98c9Li6O77//nr59+6LRaPjzn//M448/Xu0YGo0GLzfHan6DBg3iueeeo3///jzyyCOMHj2atLQ0VqxYQevWrenTpw9arZYBAwbw17/+leeee44ePXrQrl07mjVrVuVYZWVljBkzhqtXr1JRUcGoUaPw8fHhtdde44knnkBRFO6//37CwsKMju96Er+eDHQ6HdOnT6d3795otVpeffVVAF5++WX69etHWFiYIa4nn3ySJ5980jDabfLkyXTo0MGocuPi4nj22Wdp164dlZWVt9xPp9Pd9Gfy4IMPMnToUDp16oSvr69h/4SEBO69914++OADo38GwrlpFMWEq6u1RJ8+fXj11Vfp1asXFy9epF69eri4WPePn7VGqTmi6Oho0tPT1Q5DOLkdO3bw/vvv8/bbb6sdirATx/qKaQf79+/H1dXV0Id9va/b2vR6fa1LNEJYy9q1a5kzZw4ff/yx2qEIO3K6YdFbt24lLi6OkJAQNBoNa9eurbZPcnIyYWFheHh4oNfrq9zAd/ToUXx8fIiLi6NLly68/vrrdoy+dpCzG2Gp+Ph4UlNTadmypdqhCDtyuoRTVFREeHg4ycnJN3195cqVJCYmMnPmTHbu3El4eDgDBw403EFeXl7Ojz/+yL/+9S9++eUXNm3axKZNm+xZBSGEqJOc+hqORqNhzZo1xMfHG7bp9Xq6du1q6BeurKwkNDSUSZMmMX36dH755RdmzZpluEnuzTffBGDq1Kk3LaOkpISSkhLD88rKSi5evIi/v3+dvltfWIeiKFy+fJmQkBC0Wtt8/5M2LGzJpDZs/1t/rAdQ1qxZY3heUlKi6HS6KtsURVFGjx6tDBkyRFEURSkrK1MiIiKUixcvKhUVFcrgwYOr3SR5o5kzZ970Rk55yMOaj9OnT9viIyJtWB52exjThmvVoIGcnBwqKioIDAyssj0wMJBDhw4B4OLiwuuvv07v3r1RFIV77rmHwYMH3/KYL7zwAomJiYbn+fn5NGvWjCNHjtQ44GDXrl3Ej3qShn+aS+XVQnKXXZvAcf369URGRhpdr7KyMjZv3kzfvn1xdXU1+n2WUqPculRXgIsXL9KmTZsqw4WtraY2vGvXLuLi4nBvqafegAkolRXkrXmZNUv/aVI7VYNavzdbcNa6XL58mRYtWhjVhmtVwjHWoEGDGDRokFH7Xr9rOjk5meTkZMPNgA0bNsTf3/+27+3fvz+jRo/mG40XSmUFV69eJSkpif79+5sUb1lZGV5eXvj7+9v9j7C9y61Ldb2RLbu2amrD/fv355lnnmHevHm43tEN7/Z9CBs5m7t698XTzfQbaO1J7d+bNTlrXa7HakwbdrpBA7cTEBCATqcjOzu7yvbs7GyCgoIsOvaECRMM04OYYvLka9PI+/h4k5qaapi8UAh7u10bnjt3Lqmpqbw6tDMNPLRcxou5Gw6pEKWozWpVwnFzcyMqKoqUlBTDtsrKSlJSUoiJibHo2MnJybRv356uXbuaGZu73JcjVFVTG9br9Tw15lEWjrw26/iybSf46WjOTfcVwhxOl3AKCwvJyMggIyMDuDZNTUZGBqdOnQIgMTGRJUuWsHz5cg4ePMj48eMpKipizJgxFpVr7hmOEI7C2Dbcp00jRnVvDsDU1bvJv3Lz+fCEMJXTXcNJT0+nb9++hufXL4YmJCSwbNkyRowYwYULF5gxYwZZWVlERESwYcOGagMJTPXH/m8hnI0pbfiF+9rx07EcMnOKmPXFft4aEWH7AEWt53RnOLGxsSiKUu2xbNkywz4TJ07k5MmTlJSUkJaWZpWuLDnDEc7OlDbs5ebC3x8OR6uBNbvO8PXec3aIUNR2Tpdw1GLpNRwh1GZqG+7SrAFPx7YC4G9r9nK+4KotwxN1gCQcI8kZjnB25rThZ/q1pkNIPS4VlzH9870mLd0txB9JwhFC3JKbi5a3RkTg5qLl+0Pn+fS/p9UOSTgxSThGki414ezMbcNtAn2Zek9bAF758gCncottEZ6oAyThGEm61ISzs6QNP96zBfoWDSkurWDyqgwqKqVrTZhOEo4QokZarYb5D4Xj4+7Cf09cYsmPv6odknBCknCEEEYJbejFjLj2ACzYeISD5wpUjkg4G0k4RpJrOMLZWaMNPxTVlP53BlJaUcnzKzMoKZcboYXxJOEYSa7hCGdnjTas0WiY82An/L3dOJR1mYXfHbVihKK2k4QjhDBJgI87rw/rBMC7Pxwn/cRFlSMSzkISjhDCZAM7BDE8qimVCiR+tpuiknK1QxJOQBKOEMIsM+La06S+J6cuFvPqVwfVDkc4AUk4RpJBA8LZWbsN1/NwZf5D4QB8sv0Umw+dt8pxRe0lCcdIMmhAODtbtOGYlv483rMFANP+bw8Xi0qtdmxR+0jCEUJYZOrAtrRq7MOFyyW8uFYm+BS3JglHCGERD1cdbz0cgYtWw9d7s1iXcVbtkISDkoQjhLBYp6Z+PNOvNQAvrdvHufwrKkckHJEkHCGEVTwd25Lw0PpcvlrO1FV7qJQJPsUfSMIRQliFi07LWw+H4+Gq5adjOXyYelLtkISDkYRjJBkWLZydPdrwHY18+Ot9dwLwxjcHOX6h0GZlCecjCcdIMixaODt7teFH9c3p1TqAq2WVJH62m/KKSpuWJ5yHJBwhhFVptRrmDe9MPQ8Xdp/O419bjqsdknAQknCEEFYX7OfJK/EdAfhnylH2/pavckTCEUjCEULYxJDwEO7vHEx5pcLzn2VwtUzWzqnrJOEIIWxCo9Hw6gMdaeTrzrHzhczbcFjtkITK6mTCCQsLo3PnzkRERNC3b1+1wxGi1mrg7ca84Z0BWPpzJtuO56gckVBTnUw4ANu2bSMjI4PNmzerHYoQtVrfto0ZqW8GwJTPdlNwtUzliIRa6mzCsbfS0hLS0tLUDkMIVfztvjtp7u/F2fyrTFr6Ax9++KF8Huogp0s4W7duJS4ujpCQEDQaDWvXrq22T3JyMmFhYXh4eKDX69m+fXuV1zUaDX369KFr1658/PHHNo3373+fD0BhYRHdu3cnKSnJpuUJ4Yi83V34+0PhaBSFH06V8NQr78jnoQ5yUTsAUxUVFREeHs7YsWMZNmxYtddXrlxJYmIiixcvRq/Xs3DhQgYOHMjhw4dp3LgxAD/99BNNmjTh3Llz9O/fn06dOtG5c+eblldSUkJJSYnheUFBAQBlZWWUld2+ayA9PZ2PPvoI/1Fd0Wg0eHp6smjRIuLj44mOjja6ztfLqak8a1Oj3LpUV3uVZ0kbtqayc4cp3LEW7+ihBAyaRG5uplmfhyrHVOn3ZgvOWhdT4tUoTrx4hUajYc2aNcTHxxu26fV6unbtyttvvw1AZWUloaGhTJo0ienTp1c7xtSpU+nQoQOPPfbYTcuYNWsWs2fPrrZ9xYoVeHl51Rhj9hV4PcMFL53CG91kWKioqri4mJEjR5Kfn0+9evVsUoalbdiayithwV4dZ4o1dGxQyRNtK9Fo7BqCsDJT2nCtSjilpaV4eXmxevXqKkkoISGBvLw81q1bR1FREZWVlfj6+lJYWEifPn1YvHjxLeeXutm3w9DQUM6dO4e/v/9t40tPT+ee4aPwH/UPKq8WkvPeGABSUlJMPsPZtGkTAwYMwNXV1ej3WUqNcutSXQFyc3MJDg62acKxpA1bU3p6Ov369UPn34yGf5qDRudKwXf/4qtFL1p0hqPG780WnLUuBQUFBAQEGNWGna5L7XZycnKoqKggMDCwyvbAwEAOHToEQHZ2NkOHDgWgoqKCcePG3XYyQ3d3d9zd3UlOTiY5OZmKimtnKa6urjU2ipiYGB599FG+ARRF4cqVKyQlJRETE2NW/Ywp0xbUKLeu1NUeZVnShq0pJiaGSZMmMW/ePLRbP6RB37E07P8kTduGWxyHWu3FFpytLqbEWqsSjjHuuOMOdu/ebfL7JkyYwIQJEygoKMDPz8/o902ePIVvFvyAj483qamp6PV6k8sWwhrMbcPWNHfuXIYNG8ahw0f4JNuFQ7kwedVuPhnXHZ1W+tZqO6cbpXY7AQEB6HQ6srOzq2zPzs4mKCjIomNbOrW7m5u7JBuhKkdZYkOv15MwehTvje2Ft5uO7ZkXWfpTpqoxCfuoVQnHzc2NqKgoUlJSDNsqKytJSUkxuxvrOlmeQDg7R2vDzfy9eGlwewDe/PYwh7MuqxyRsDWnSziFhYVkZGSQkZEBQGZmJhkZGZw6dQqAxMRElixZwvLlyzl48CDjx4+nqKiIMWPGWFSuo3w7FMJcjtiGR3QNpV+7xpRWVPL8ygxKy2XtnNrM6RJOeno6kZGRREZGAtcSTGRkJDNmzABgxIgRzJ8/nxkzZhAREUFGRgYbNmyoNpDAVI727VAIUzliG9ZoNLzxYCcaeLly4FwB/0g5onZIwoacbtBAbGwsNY3knjhxIhMnTrRTREIISzT29eD1oZ0Y//FO3tlynLvbBRLVvIHaYQkbcLozHLU4YneEEKZw5DY8qFMwwyKbUKnA5M8yKC4tVzskYQOScIzkiN0RQpjC0dvwzCEdCPbz4ERuMa9/fVDtcIQNSMIRQjgEP09X5j8UDsBHqafYcvi8yhEJa5OEYyRH7o4QwhjO0IbvahXAYz3CAJi2eg95xaXqBiSsShKOkRy9O0KImjhLG54+qB0tG3lz/nIJL63br3Y4wook4QghHIqHq44FD0eg02pYv/ssX+w+q3ZIwkok4QghHE54aH0m3d0KgJfW7iMr/6rKEQlrkIRjJGfo/xbidpytDU/o24rOTf3Iv1LGtP/bU+P9d8LxScIxkrP0fwtxK87Whl11WhY8HIG7i5atRy7wUdoptUMSFpKEI4RwWK0a+zB9UDsAXv/qIJk5RSpHJCwhCcfGZPlcISyTEBPGXa38uVJWQeJnGZRXyASfzkoSjpEs7f+W/mehNme7hnOdVqvhzeHh+Hq4sOtUHot/OK52SMJMknCM5Gz930L8kTO34ZD6nswe0gGAhd8dZd+ZfJUjEuaQhCOEcApDI5swqGMQ5ZUKz6/M4GpZhdohCRNJwhFCOAWNRsNrQzsR4OPO0fOF/H3jYbVDEiaShCOEcBoNvd2Y+2AnAP79UyZpmRdVjkiYQhKOEMKp9LszkD91DUVRIOnzfVyVpXOchiQcIYTTeXFwe0IbenIm7yqfn5A/Y85CflNGctYhpUJcV5vasI+7C39/KAKNBtIuaPnuoKyd4wwk4RjJmYeUCgG1rw13a9GQx+8KA+Bv6/aTU1iibkCiRpJwhBBO67l+rQj2VLhYVMZfP98rN1g7OEk4NiYz2whhO+4uWka1rsBVp2HjgWz+b+cZtUMStyEJRwjh1Jp4w7O/r50z64v9/HapWOWIxK1IwhFCOL0neoYR1bwBhSXlTFm1m8pK6VpzRHU24RQXF9O8eXOmTJlil/Kk+QthOzqthgUPh+PlpiP114ss/TlT7ZDETdTZhPPaa6/RvXt3tcMQQlhJc39v/nb/nQDM+/YwR7MvqxyR+KM6mXCOHj3KoUOHGDRokNqhCCGsaGS3ZsS2bURpeSXPf5ZBabmsneNInC7hbN26lbi4OEJCQtBoNKxdu7baPsnJyYSFheHh4YFer2f79u1VXp8yZQpvvPGGnSK+pqy0lLS0NLuWKURdo9FomPdgZ+p7ubLvTAEvfLiFDz/8UD57DsLpEk5RURHh4eEkJyff9PWVK1eSmJjIzJkz2blzJ+Hh4QwcOJDz56/dibxu3TratGlDmzZt7BLv/PnzgWvXjLp3705SUpJdyhWirmpcz4NX4zsCsPpgIU8kvSqfPQfhonYApho0aNBtu8IWLFjAuHHjGDNmDACLFy/mq6++YunSpUyfPp3U1FQ+/fRTVq1aRWFhIWVlZdSrV48ZM2bc9HglJSWUlPzvDuaCggIAysrKKCsru22s6enpfPjhh/iP7goaDZ6enixatIj4+Hiio6ONrvP1cmoqz9rUKLcu1dVe5VnShh3drX5v/kUnuXroRzza9aJR3BQufjLVrM+ePanVBi1lSrwaxYlvzdVoNKxZs4b4+HgASktL8fLyYvXq1YZtAAkJCeTl5bFu3boq71+2bBn79u0znIXczKxZs5g9e3a17StWrMDLy6vGGM9fgdcyXPDUKczpJgtGiaqKi4sZOXIk+fn51KtXzyZlWNqGnVVxOczZrSO/VEOvoEqGt5DrObZgSht2ujOc28nJyaGiooLAwMAq2wMDAzl06JBZx3zhhRdITEw0PC8oKCA0NJS+ffvi7+9/2/emp6fz6IOP4j/6nxQVF/PII48BkJKSYvIZzqZNmxgwYACurq5m1cMcapRbl+oKkJuba/MyLGnDju5Wv7f09HT69euHa2hnGgx9iR+ztHzxzmtsWPaWQ5/hqNEGLXX9jNkYtSrhmOqxxx6rcR93d3fc3d1JTk4mOTmZioprZymurq41NoqYmBhGjXqUrwEUhStXrpCUlERMTIxZ8RpTpi2oUW5dqas9yrKkDTuLP9YlJiaGSZMmMW/ePHQ7vqRe1GBChk6jfXi0w9fZ2X4vpsTqdIMGbicgIACdTkd2dnaV7dnZ2QQFBVl0bHNn2p06dRoAXl5epKamMmfOHIviEMJctW226JrMnTuX1NRU3ny0B8E+Oq7gzowv9qkdVp1WqxKOm5sbUVFRpKSkGLZVVlaSkpJi9lnFdZauJeLq5oZer7coBiEsUZvWwzGWXq/n8YRR/Gu0Hp1Ww7qMs3y556zaYdVZTpdwCgsLycjIICMjA4DMzEwyMjI4deoUAImJiSxZsoTly5dz8OBBxo8fT1FRkWHUmrnq2rdDUfvU5TYc2awBE2JbAvDi2n2cL7iqckR1k9MlnPT0dCIjI4mMjASuJZjIyEjDsOYRI0Ywf/58ZsyYQUREBBkZGWzYsKHaQAJT1cVvh6J2qetteFK/1nRsUo+84jKm/d8eWTtHBU6XcGJjY1EUpdpj2bJlhn0mTpzIyZMnKSkpIS0tzSpdWXX526GoHep6G3bVaXnr4QjcXLRsOXyBFdtPqR1SneN0CUctFn87lC9TQmV1/QwHoHWgL9MGtgXg1S8PciKnSOWI6hZJOEaq698OhfOTNnzN2Lta0P2Ohlwpq2Dyqt1UyNo5diMJRwhRp2i1GuY/FI6Puws7Tl7i3a3H1Q6pzpCEYyTpjhDOTtrw/zRt4MXMuPYAvLXpCPvP5qscUd0gCcdI0h0hnJ204aqGRzXlnvaBlFUoJK7cTUm5zHVoa5JwbEyjdgBCiJvSaDS8PqwTAT5uHM6+zIJNR9QOqdaThCOEqLMCfNx5fWgnAN7b+ivbMy+qHFHtJgnHSNL/LZydtOGbu6dDEA9FNUVRYPKqDApLytUOqdaShGMk6f8Wzk7a8K3NiGtPk/qenL54hVe/PKB2OLWWJBwhRJ3n6+HK3x8OR6OBT/97mpSD2TW/SZhMEo4QQgDd7/DniZ4tAEj6v73kFpbU8A5hKkk4Qgjxu8n3tKV1Yx9yCkv425p9MsGnlUnCMZJccBXOTtpwzTxcdbw1IgIXrYYN+7NYs+uM2iHVKpJwjGTpBVf5niTUJoMGjNOxiR/P9W8NwMx1+zmbd0XliGoPSThCCPEHf+nTkshm9blcUs6UVbuplAk+rUISjhBC/IGLTsuChyPwdNWx7Xguy385oXZItYIkHBvTyNw2QjilFgHe/PW+dgDM+eYQx85fVjki5ycJRwghbuHR7s3p3aYRJeWVJH62m7KKSrVDcmqScIQQ4hY0Gg3zHuyMn6cre37LJ3nzMbVDcmqScIwkQ0qFs5M2bJ4gPw9eie8IwKLvj7H7dJ66ATkxSThGkiGlwtlJGzbfkPAQBncOpqJS4fnPMrhaJmvnmEMSjhBCGOHV+I409nXn1wtFzPnmkNrhOCVJOEIIYYT6Xm7MG94ZgGXbTvDzsRyVI3I+knCEEMJIsW0b82d9MwCmrNpN/pUylSNyLpJwhBDCBH+7/06a+3txLv8qs7/Yr3Y4TqXOJZy8vDyio6OJiIigY8eOLFmyRO2QhBBOxMvNhQUPR6DVwOe7zvDN3nNqh+Q06lzC8fX1ZevWrWRkZJCWlsbrr79Obm6uzcuVac6FqD2imjdgfGxLAP66Zi/nL19VOSLnUOcSjk6nw8vLC4CSkhIURbFpMtD+PrdNWXk5aWlpNitHCGFfz/ZrQ/vgelwqLuMv/97KBx98KJ/xGjhdwtm6dStxcXGEhISg0WhYu3ZttX2Sk5MJCwvDw8MDvV7P9u3bq7yel5dHeHg4TZs2ZerUqQQEBNgs3rlz5wBwtaSE7t27k5SUZLOyhBD24+ai5a0REWiVSnZmlzHh7x/JZ7wGLmoHYKqioiLCw8MZO3Ysw4YNq/b6ypUrSUxMZPHixej1ehYuXMjAgQM5fPgwjRs3BqB+/frs3r2b7Oxshg0bxvDhwwkMDLxpeSUlJZSU/G+p2YKCAgDKysooK7v9CJX09HSWLVtGwBg9Go0WT09PFi1aRHx8PNHR0UbX+Xo5NZVnbWqUW5fqaq/yLGnDjk6t39t1FzP3kf/TR/j2Gk2DfuNQsg+b9RkH9etiLlPi1ShOfHFBo9GwZs0a4uPjDdv0ej1du3bl7bffBqCyspLQ0FAmTZrE9OnTqx3j6aef5u6772b48OE3LWPWrFnMnj272vYVK1YYuuZu51IJzNrpgotG4e/d5e5kUVVxcTEjR44kPz+fevXq2aQMS9uwuL1KBd7er+P4ZQ13+CpM6lCBtg7NEm9KG65VCae0tBQvLy9Wr15dJQklJCSQl5fHunXryM7OxsvLC19fX/Lz87nrrrv45JNP6NSp003LuNm3w9DQUM6dO4e/v/9t40tPT2fAAw8RMPZdlIpyLiQ/AkBKSorJZzibNm1iwIABuLq6Gv0+S6lRbl2qK0Bubi7BwcE2TTiWtGFHp9bv7br09HT69euHtl5jGo6cj9bNk8KfPmT9m8+adYajZl3MVVBQQEBAgFFt2Om61G4nJyeHioqKat1jgYGBHDp0bSqKkydP8uSTTxoGC0yaNOmWyQbA3d0dd3d3kpOTSU5OpqLi2lmKq6trjY0iJiaGsWPG8MXvz69cuUJSUhIxMTFm1c+YMm1BjXLrSl3tUZYlbdhZqFWXmJgYJk2axLx589CkvIf/oGep1/PP1A/rYHY8zvZ7MSXWWpVwjNGtWzcyMjJMft+ECROYMGECBQUF+Pn5Gf2+F//2N754PQWtTkdqaip6vd7ksoWwBnPbsLi9uXPnMmzYMA4fPsK6i27syCrl+ZUZrJt4F+4uOrXDcyhON0rtdgICAtDpdGRnZ1fZnp2dTVBQkEXHNndqd831JT81Gkk2QlWyPIHt6PV6Ro8exeLHe9PQ241DWZdZ+N1RtcNyOLUq4bi5uREVFUVKSophW2VlJSkpKWZ3Y11n7tTu1/ON814pE7WFLE9ge4183Xl96LUu+nd/OE76iYsqR+RYnC7hFBYWkpGRYegWy8zMJCMjg1OnTgGQmJjIkiVLWL58OQcPHmT8+PEUFRUxZswYi8o199vh9Rs/QWYbEOqSMxz7uLdjEMO6NKFSgcTPdlNUUq52SA7D6RJOeno6kZGRREZGAtcSTGRkJDNmzABgxIgRzJ8/nxkzZhAREUFGRgYbNmy45X02xjL7DOeG/1dKvhEqkjMc+5k1pAMhfh6culjMa18fVDsch+F0gwZiY2NrPFOYOHEiEydOtFNEt1f9DKcODdAXoo6q5+HK/IfCGfnvNFaknWLAnYH0bddY7bBU53RnOGoxuzvihvwiZzhCTdKlZl89WgUw9q4WAEz7vz1cKipVOSL1ScIxkqWDBgAUJOMI9UiXmv1Nu7ctrRr7cOFyCS+u3Vfnr+NKwrGxql1qKgYihLA7D1cdbz0cgYtWw1d7z/HF7rNqh6QqSThGMvs+nBv+LwlHqEm61NTRqakfk+5uDcBLa/dxLv+KyhGpRxKOkcztjqhyhiNdakJF0qWmnqf7tiS8qR8FV8uZtnoPlXX0gq4kHBu78RpORR1tZELUda46LQtGRODuouXHozl8lHZS7ZBUIQnHxlxumKdcEo4QdVfLRj68MKgdAK9/fZDjFwpVjsj+JOEYydz+b90NCae0otLaYQlhNLmGo77RMWH0bBXA1bJKEj/bTXkd+5sgCcdI5g+L1uCmu/ZjLq+QMxyhHrmGoz6tVsO84Z3x9XBh9+k8/rXluNoh2ZUkHDtw0V07y5GEI4QIqe/JKw90BOCfKUfZ+1u+yhHZjyQcO7h+Haessm6dPgshbu6BiBDu6xREeaXC859lcLWsbiw/LwnHSJb0f7tKl5pwAHINx3FoNBpeje9EI193jp0v5M1vD6sdkl1IwjGSJf3f17vUyurYBULhWOQajmNp6O3G3AevrZ3zn58ySf219q+dIwnHDly0137MknCEEDe6u10gj3RrBkDS5/u4UsuXzpGEYwduLr93qcl9OEKIP3jx/jtp1tCLs/lX+fxE7f6TXLtr5yBcf+9SKy2XMxwhRFXe7i78/eFwNBrYfkHLxgPZaodkM5Jw7MDL7do6d8WldWMkihDCNF3DGjKuZxgAL31xgJzCEnUDshFJOHbg5aYDoLi0lnfQCiHM9szdrQjxUrhYVMb0/9tbK9fOkYRjJEuGlMoZjnAEMizasbm7aHm0VQWuOg3fHcxm1Y7f1A7J6iThGMmSIaXe7tfOcIpK5AxHqEeGRTu+Jt7w7N2tAHh5/QFOXyxWOSLrkoRjB3KGI4Qw1hM9w4hu3oDCknImr9pdq9bOkYRjB/+7hiMJRwhxezqthr8/HI6Xm47tmRf5z0+ZaodkNZJw7MDX49oZTsHVMpUjEUI4g+b+3rw0uD0Ab357mMNZl1WOyDok4dhBQ283AC4WlqociRDCWfypayh3t2tMaUUliZ9l1Ir7+FxM2fmLL74wuYABAwbg6elp8vts5fTp04waNYrz58/j4uLCSy+9xEMPPWTTMg0Jp1gSjhDCOBqNhjnDOnHPwq3sP1vAou+PMvmetmqHZRGTEk58fLxJB9doNBw9epQ77rjDpPfZkouLCwsXLiQiIoKsrCyioqK477778Pb2tlmZDb1+TzhFknCEEMZrXM+D1+I7MWHFTpI3H6Nvu8Z0adZA7bDMZnKXWlZWFpWVlUY9vLy8bBGzRYKDg4mIiAAgKCiIgIAALl607SytDX0k4QghzHN/52AeiAihUoHJn+3mihMPPjIp4SQkJJjUPfboo49Sr149k4O6na1btxIXF0dISAgajYa1a9dW2yc5OZmwsDA8PDzQ6/Vs3779psfasWMHFRUVhIaGWjXGP2rs6wFcSzg/bku1aVlCiNrn5SEdCaznTmZOEY8tXEtaWpraIZnFpITz/vvv4+vra/T+77zzDgEBASYHdTtFRUWEh4eTnJx809dXrlxJYmIiM2fOZOfOnYSHhzNw4EDOnz9fZb+LFy8yevRo3nvvPavGdzNzXn6JytIrANw9+EGSkpJsXqYQovbw83KlXX46AGkXPYj901+c8u+ISddwHMGgQYMYNGjQLV9fsGAB48aNY8yYMQAsXryYr776iqVLlzJ9+nQASkpKiI+PZ/r06fTo0eO25ZWUlFBS8r+J9AoKCgAoKyujrKzmYc7p6em8vWgRDf/8d7T+zfBu3IxFixYRHx9PdHR0je+/XtaN/9qLGuXWpbraqzxL27AjU+v3Zgu3q0t6ejqrFr2MT+zjeHW+l4D7n+ft9yab9HfEVkz52WsUC2aIu3r1Knv27OH8+fNUVlYdsjdkyBBzD2s0jUbDmjVrDIMZSktL8fLyYvXq1VUGOCQkJJCXl8e6detQFIWRI0fStm1bZs2aVWMZs2bNYvbs2dW2r1ixwqRrVO8d0rL/kpaH76jgrsDac+ewsExxcTEjR44kPz/f6t3P11mrDQv1lVTAvD06cq5qiA6oZFRr9YdKm9KGzU44GzZsYPTo0eTk5FQ/qEZDRYXtL2z9MeGcPXuWJk2asG3bNmJiYgz7TZs2jR9++IG0tDR++uknevfuTefOnQ2vf/jhh3Tq1OmmZdzs22FoaCjnzp3D39+/xhjT09Pp168fPr3H4BVxH8U711P40wekpKSYdIazadMmBgwYgKurq1HvsQY1yq1LdQXIzc0lODjYpgnH0jbsyNT6vdnC7epy/e8IgEtQGxoMfwWNVstzXX2YMOT2vTS2VlBQQEBAgFFt2OwutUmTJvHQQw8xY8YMAgMDzT2M3fXs2bPa2djtuLu74+7uTnJyMsnJyYZE6urqalQDj4mJYdKkSfxrwy68IkDTMJRnnnmmSkI0lrFlWpsa5daVutqjLEvbsDOo7XW5/ndk3rx5kLkbXeoq/HqMYPn+EkbeU2EYmKQGU37uZs80kJ2dTWJiokMlm4CAAHQ6HdnZVVfMy87OJigoyKJjWzLT7ty5c3lv7kwAGreJ5I033rAoFiHMIbNFO7e5c+eSmprKBx98wJdzn+bO4HpcKi7jr587z9o5Ziec4cOHs2XLFiuGYjk3NzeioqJISUkxbKusrCQlJcWsM4obWbqWyNB+3dFpNVwuVcgquGpRLEKYQ9bDcX56vZ5Ro0ZxV0x33hoRjptOy3cHz7Mq3TnWzjG7S+3tt9/moYce4scff6RTp07VTqueeeYZi4O7mcLCQo4dO2Z4npmZSUZGBg0bNqRZs2YkJiaSkJBAdHQ03bp1Y+HChRQVFRlGrZlrwoQJTJgwgYKCAvz8/Ex+v4erjnZBvuw/W8D2zIs8ENHEoniEMJWlbVg4lnZB9Zh8Txve+OYQs9fvJ6alP6ENHXsQiNkJ55NPPmHjxo14eHiwZcsWNBqN4TWNRmOzhJOenk7fvn0NzxMTE4FrI9GWLVvGiBEjuHDhAjNmzCArK4uIiAg2bNhgcdffH/u/zdGjpT/7zxaw7ViuJBxhd9Zow8KxPNHrDr47mM1/T1xi8qrdfDquO1qtpuY3qsTsLrW//e1vzJ49m/z8fE6cOEFmZqbh8euvv1ozxipiY2NRFKXaY9myZYZ9Jk6cyMmTJykpKSEtLQ29Xm9xudbo/+7R6tpNsD8fz3GaPldRe8g1nNpHp9Uw/6H/rZ2z9GfHXjvH7IRTWlrKiBEj0GrrxgoH1uj/7hbWEDcXLb9dusLBc7VjfQvhPOQaTu3U3N+bF++/tnbOvG8PcyTbcf+2mJ0tEhISWLlypTVjcWjW+Hbo7e5C37aNAFi/56y1QhPCKHKGU3s90i2U2LaNKC2v5PmVjrt2jtnXcCoqKpg3bx7ffvstnTt3rjZoYMGCBRYHVxvFhYfw7f5s1u46w+QBbXDR1Y0zRCGE7Wg0GuY92Nmwds7b3x8l0QHXzjH7r93evXuJjIxEq9Wyb98+du3aVeVR21irO6L/nYE09HbjXP5Vvt2fXfMbhLAS6VKr3RrX8+DV+I4AJG85TsbpPHUDugmzz3A2b95szTgcnrWGlHq46nhU34x/fn+Mf//0K/d1Cqoywk8IW5Fh0bXf4M4hbNyfzRe7z5L4WQZfTeqFp5tO7bAMzD7DeeONN1i6dGm17UuXLmXu3LkWBVXbPdq9Oe4uWnadymPTATnLEUJYz8sPdCCwnju/Xihi7oZDaodThdkJ591336Vdu3bVtnfo0IHFixdbFFRt17ieB4/3bAHAnG8OUVbhmBf4hBDOp76XG/OGhwOwbNsJfj5WfYJltZidcLKysggODq62vVGjRpw7d86ioByRtfu/x8e2xN/bjV9zinj3h+NWOaYQtyPXcOqOPm0a8Wj3ZgBMWbWb/CuOsV6Q2QknNDSUn3/+udr2n3/+mZCQEIuCckTWHlLq6+HKi4PvBOAfKUfZdybfKscV4lZkWHTd8tf77qS5vxfn8q8ye/1+tcMBLEg448aN47nnnuP999/n5MmTnDx5kqVLl/L8888zbtw4a8ZYa8VHNGFgh0DKKhTGf7yDS0WlaockhKglvNxcWPBwOBoNfL7zDN85wPVis0epTZ06ldzcXJ5++mlKS6/9ofTw8CApKYkXXnjBagHWZhqNhjnDOnPw3M+culjM0x/vZNnYrri7OM6oEiGE84pq3pBxve7gva2/8sKavUSHNaC+l5tq8Zh9hqPRaJg7dy4XLlwgNTWV3bt3c/HiRWbMmGHN+Gq9Bt5uLBkdjbebjl9+zWXCxzsd9i5hIYTzSRzQhpaNvLlwuYTZ6w+oGovFt7n7+PjQtWtXOnbsiLu7uzVicki2vODaNsiXJaOjcXe5trbFhBU7uVIqM/oK65JBA3WTh6uO+Q+Fo9XAml1n+HZ/lmqxmJRw9uzZY9LyzPv376e8vNzkoByRrS+49mgVwHujo3HTadl0IJtHlqSSW1hS8xuFMJIMGqi7Ips14MneLQH425q9XFTperFJCScyMpLc3Fyj94+JieHUqVMmB1VX9WnTiI+e0OPn6UrG6TyGvP0zO09dUjssIUQt8Fz/1rRu7ENOYSkzv1Bn1JpJgwYUReGll17Cy8u4VeWuDyYQxuvWoiGfP92Dscv+y8ncYh5e/AvP9WtFE1k+Rwhhgetda8Pe2cb63We5r2MQgzpVv5fSlkxKOL179+bw4cNG7x8TE4Onp6fJQdV1LRv58OWknvx1zT7W7z7L/E1HCfPR0TrqMh1DG6odnhDCSYWH1md8n5a8vfkYL67dR7cWDfH3sd+1d5MSzpYtW2wUhvgjXw9X/vmnCHq28ufl9Qc4UVhB/DupPN6rBZPubo2Pu9kj2oUQddikfq347mA2h7IuM+OL/SSP7GK3smUxFgem0WgY0bUZ3zxzF50bVlJeqfDuD7/SZ95mlv2cKcOnhRAmc3e51rWm02r4as85u94QKgnHSGoOKQ328+DxtpUsHhlBmL8XuUWlzFp/gH4LtrB6x2+SeIRRZFi0uK5jEz+e6HVtAuGX1u3j8lX7zLUmCcdIjjCktN+djdmU2IdX4zvSyNed0xevMGXVbvq8uZklW3+1W6MRzskR2rBwHM/1a0OzhtfmWpv/rfHX5i0hCcfJuOq0PNq9OT9MjWX6oHY08nXnXP5VXvv6ID3mfM/rXx8kM6dI7TCFEA7O003H60M7AfBB6kl2nLT9LRiScJyUl5sLf+nTkp+S+jL3wU7c0ciby1fLeW/rr/Sdv4WRS1JZv/usdLcJIW6pZ+sAHuzSFEWBFz7fY/O/FzLUycm5u+gY0bUZD0WF8v2h83ycdpItRy6w7Xgu247n4u/tRlx4CPGRTQhv6ifLWQshqnjx/jvZcvg8R7ILWfpzJn/p09JmZZmUcFq0aGHWH6znnnuOZ555xuT3CeNptRr6tw+kf/tAfrtUzGf/Pc3K9NNkF5SwbNsJlm07QZi/F0MimhAfEcIdjXzUDlkI4QAaeLvxwn13MmXVbhalHGVYZBMa1/OwSVkmJZxly5aZVUhYWJhZ77OVoUOHsmXLFvr168fq1avVDsfqmjbwIvGetjzTrzVbj15gXcZZNu7P5kRuMf9MOco/U47SPrgeAzsEMbBjIG0DfeXMR4g6bFhkEz5KPUnG6TzmbDjEgocjbFKOSQmnT58+hv9v3LiRiIgIGjdubPWgbO3ZZ59l7NixLF++XO1QbMpFp+XudoHc3S6QopJyNh3IZl3GGbYezeHAuQIOnCvgre+OEObvxcAOQdzTIYiI0ProtJJ8hKhLtFoNs4d04IHkn/l85xke7d6cLs0aWL0cs6/hxMfHU1JSQmBgIBEREURGRjJgwABiY2OtGJ5txMbG1rlZE7zdXYiPbEJ8ZBMuFpXy3cFsNu7PYuvRHE7kFvPu1l95d+uv1Pdy5a5WAfRqFUD3FvWrHCMtLY0jR47Qpk0b9Hq9OhURQthEeGh9Hopqyqodv/HM+1uZPzCQ7t27W7UMs0epXb58md27d/Pmm2/SsWNH0tLSuPfee+nbty9FRbYblrt161bi4uIICQlBo9Gwdu3aavskJycTFhaGh4cHer2e7du32yweZ9TQ242Ho0P5d0JXdr00gOSRXRgSHoKvuwt5xWV8tecc0z/fS+zff+S1XTpe/vIgjybNJaZ3X0aPHk337t1JSkpSuxpCCCsrTV9FZekVfrviwt2jnrX659zsM5zc3Fw6duxIx44d+fOf/wzA+fPnGTZsGK+88gpz5syxWpA3KioqIjw8nLFjxzJs2LBqr69cuZLExEQWL16MXq9n4cKFDBw4kMOHD5vV/VdSUkJJyf/WpSkoKACgrKyMsjL73Gh5vRxblOemhXvuDOCeOwMor6hkz5kCfjqWw8/HL7L7dD7nr8KHaadB05HQZz6hLOsopad2886qDcQNeQB9N+vetW7LujpyubbkCG3YVtT6vdmC2nVJT09nyaIFeMc8gnfXYTToPZpFi6YRHx9PdHT0Ld9nSrwaRVHMmvheq9USFBREeHi44REREUFRURH33Xcf58+fN+ewJtFoNKxZs4b4+HjDNr1eT9euXXn77bcBqKysJDQ0lEmTJjF9+nTDflu2bOHtt9+ucdDArFmzmD17drXtK1asMHqZBmd1pRyOFmg4lKfhcL6GnKtVr+146hRa+ym0q6/Q1k8hwDYDW2q14uJiRo4cSX5+PvXq1bNJGXW5DQvTFZXBy7t0XK3Q8FjrCiIDbp8iTGnDZiec48ePs3v3bvbs2cPu3bvZvXs3J06cwM3NjbKyMh555BH0ej0RERH06tXLnCJq9MeEU1paipeXF6tXr66ShBISEsjLy2PdunWGbcYmnJt9OwwNDeXcuXP4+/tbtT63UlZWxqZNmxgwYACurq52KfPGcgMCAhgwYADaeo1xC+2MW/Nw3Jp2ROtRdWh1s4ae3NXSn56t/OneoiH1PE2PVe262rvc3NxcgoODbZpwHKEN24pavzdbULsu6enp9OvXDwCvbsPx6T6C8pxTfDY2/Lbz7xUUFBAQEGBUGza7S61ly5a0bNmySrdWQUEBmzdvZujQoSiKwvLly0lKSqK4uNjcYkySk5NDRUUFgYGBVbYHBgZy6NAhw/P+/fuze/duioqKaNq0KatWrSImJuamx3R3d8fd3Z3k5GSSk5OpqKgAwNXV1e6NQo0yAbp168akSZOYN28eRdknIX09U5OSeOTpJH48msNPR3PYeeoSpy5e4dTF3/jkv7+h1UBEaH16tW5Er9YBhIfWx1Vn/CVDtepq73LtUZYjtWFbkbpYLiYmxvA5v5r6OV5dhuAS0IzKRm1uG48psZqdcBo2bEhERIShO61Tp074+Pjw9ddf07JlSz7++GMAQ+N2JN99953J75kwYQITJkygoKAAPz8/G0Tl2ObOncuwYcOqjVKLbNaAZ/q1prCknNTjufx49AI/Hsvh1wtF7DyVx85Tefwj5Si+7i50b+lP79YB9GzdiDB/L7n3x87qehsWNbvxc/7TlQZ8++tVlv6cSc/WAVY5vtkJZ+nSpYautHXr1nHixAkAvLy8+Oyzzwz76XQ6i4M0VkBAADqdjuzsqus7ZGdnExQUZNGx//jtsC7S6/W3HA7t4+5imOkA4EzeFX46eoGtR3P4+VgOecVlbDqQzabf195o2sCTXq0D6NW6ET1a+lPfy81u9airpA0LY1z/nPfMKeLb+Vv4/tB5Tl8sJrSh5df7LLoP58brJJcvX+bcuXM0adIEb29viwMzh5ubG1FRUaSkpBhiq6ysJCUlhYkTJ1p0bPl2aJom9T0Z0bUZI7o2o6JSYf/ZfH48msOPRy+w4+Qlfrt0hU+2n+aT7afRaqBT0/r0bh3AXXc0oMKsq4qiJtKGhSlaBHhzVyt/fj6Wy7qMM0y8u7XFx7Ta5J2+vr74+vpa63C3VFhYyLFjxwzPMzMzycjIoGHDhjRr1ozExEQSEhKIjo6mW7duLFy4kKKiIsaMGWNRufLt0Hw6rYbOTevTuWl9JvRtRVFJOdszL7L16AV+OprD0fOF7D6dx+7TeSz6Hjx1Or4r3E3fdoH0adPIZvM61TXShoWpHohows/Hclmz6wwT+rayuBvc6SbvTE9Pp2/fvobniYmJwLWRaMuWLWPEiBFcuHCBGTNmkJWVRUREBBs2bKg2kMBU8u3QerzdXejbrjF92127L+pc/hV+OprD1qM5bD1ynvwr5Xy9L5uv913rfmsfXI/Yto2IbduYLs3q42LC4APxP9KGhanu7RjES2v3cfxCEQfPXaZ9iGUjKZ1u8s7Y2FhqGsk9ceJEi7vQhP0E+3nyUHQoD0WHcrWklMWrvqEsoA0/Hstlz2/5hnnf/rXlOH6ervS7szH3dgiid5tGeLja7xqhEHVNPQ9XerYKIOXQeX44csG+CefGyTvrGumOsA+dVkMLX7ivXyum3nsnOYUlbD1ygS2HL7D16AXyisv4fOcZPt95Bk9XHX3aNGJgx0D63RlIPY/aMSzWVqQNC3P0an0t4fx49ALjYy1bK0cWYDOSdEeoI8DHnWFdmjKsS1MqKhXST1xkw/4sNu7P5kzeFTbsz2LD/izcXbT0bx/I0Igm9GnbyKR7fuoKacPCHL3bNAIg/cQlrpRW4Olmfq+CJBzhNHRaDfo7/NHf4c+Mwe3Zf7aADfuy+GbfOY5fKOKrPef4as85Gnq7Edc5mIeiQ+nYRP6wCmGJFgHeBPi4kVNYysGsAouWLZCvgUZKTk6mffv2t53iQdiPRqOhYxM/pgxsy3eJffhyUk/G3tWCAB83LhaVsvyXkwxe9BPD/vUz6zLO2HytdmcgbViY4/pnDWDfmXyLjiUJx0gTJkzgwIED/Pe//1U7FPEH1z8QM+Lak/pCP94f05XBnYNx1WnYeSqPZz/NoOfc7/nHd0fJKy5VO1zVSBsW5ur8e8LZ+5tlCUe61ESt4qLT0rdtY/q2bcz5gqus2H6Kj9NOcf5yCW99d4QlP/7KYz3CeKJXC5ndQAgjtQm6do9lZo5la53JGY6otRrX8+C5/m34Oelu/vGnCNoF+VJYUs7bm4/R580tvP9zJmUV0tUmRE2a/T6tzamLlk3ELAnHSNL/7bzcXLQ8ENGEr5/pxeJHo2gb6Ev+lTJmrz/Aff/4kV2nLqkdol1IGxbmup5wzl8u4Uqp+cPqJeEYSfq/nZ9Wq+HejkF8/WwvXh/aCX9vN46eL+TBd7Yxf+PRWj+Hm7RhYS4/T1d83a9dgTmTZ/5ZjiQcUefotBpG6pvxXWIfhkU2oVKBd3/MJHm/jpzCkpoPIEQdo9FoCPB1ByC30PyBN5JwRJ3VwNuNBSMi+Nefu+DtruP4ZQ0Pv7fd4gujQtRG9b2uzeRxqbjM7GNIwjGS9H/XXvd1CmbNX7rj765w+tIV/vTeL/x2yT6r1NqTtGFhiQa/j+q05NYCSThGkv7v2q1FgDfPdaygVSNvsgtKGL10OxeLatc9O9KGhSXkDEcIK6rnBksTogjx8+DXC0VM/iyjxpnJhagr6nv+foZzRc5whLCKYD8Plo7pipuLls2HL/BR2im1QxLCIXj9PmlnSZn5965JwhHiD9oF1SPp3nYAzNtwqE5PhyPEde4u19JFiQXzEkrCEeImHusRRrsgXy5fLedfW46rHY4QqnN3vZ5w5MZPIaxKp9UYznI+Tj1JYUm5yhEJoS53l9+71OQMx/ZkSGndE9u2EXc08qaotIJ1GWfUDsdi0oaFJQxdanINx/ZkSGndo9Fo+FPXUAC+2ZulcjSWkzYsLCFdakLY2ID2QQCkZeZy+ar59x8I4ewMXWpyhiOEbbQI8KZFgDdlFQqpv15UOxwhVKPTagCosODeNEk4QtSga9i1Ndz3/JanbiBCODlJOELUoFPT+gDstnB5XSHqujqZcL788kvatm1L69at+fe//612OMLB3fn78rrHzxeqHIkQzs1F7QDsrby8nMTERDZv3oyfnx9RUVEMHToUf39/tUMTDqqZ/7XVDs/lX6G0vBI3lzr5PU0Ii9W5T8727dvp0KEDTZo0wcfHh0GDBrFx40a1wxIOrJGPO56uOioVOJt3Re1whHBaTpdwtm7dSlxcHCEhIWg0GtauXVttn+TkZMLCwvDw8ECv17N9+3bDa2fPnqVJkyaG502aNOHMGee/qU/YjkajocG1xQ7ZnLZL3WCEUNn58+dJS0sz671Ol3CKiooIDw8nOTn5pq+vXLmSxMREZs6cyc6dOwkPD2fgwIGcP3/ezpGK2iIpKYlfD+0FYELiNJKSklSOSAj7+/CDDwA4euwY3bt3N+tz4HTXcAYNGsSgQYNu+fqCBQsYN24cY8aMAWDx4sV89dVXLF26lOnTpxMSElLljObMmTN069btlscrKSmhpOR/69wXFBQAUFZWRlmZfW4EvF6OvcpTs1xHq2t6ejqLFi3Cb/A0ADzqBbBo0SLi4+OJjo62Wrm25Aht2FbUai+24Mh1SU9P58uvvqT+4A7otFo8PT0Nn4M2bdoYfRyN4sQrTGk0GtasWUN8fDwApaWleHl5sXr1asM2gISEBPLy8li3bh3l5eXceeedbNmyxTBoYNu2bbccNDBr1ixmz55dbfuKFSvw8vKyRbWEA1pxTEvaBS2Dm1UwoIn1PjLFxcWMHDmS/Px86tWrZ7Xj3kjasLCGvRc1/PuwjjAfhec7/W96G1PacK1KONevz2zbto2YmBjDftOmTeOHH34w9Dt+8cUXTJkyhcrKSqZNm8aTTz55yzJu9u0wNDSUc+fO2W1kW1lZGZs2bWLAgAG4urrapUy1ynW0uqanp9OvXz98eo7Cq8sQinaso+jnj0hJSbHKGU5ubi7BwcE2TTiO0IZtRa32YguOXJf09HQGjUui/uAkys4d5tKqFwFISUmhTZs2BAQEGNWGna5LzRqGDBnCkCFDjNrX3d0dd3d3kpOTSU5OpqLiWmZ3dXW1e6NQo0y1ynWUusbExDBp0iTe/eUsXkAFWp555pkqX2gsLc/WHKkN24rUxbZiYmIYfP9gfgIqKiu5cuUKSUlJxMTEGLpojeF0gwZuJyAgAJ1OR3Z2dpXt2dnZBAUFWXRsmWm37po7dy5PPTEWgPhhw5kzZ47KEZlH2rCwxOjRowFo3aoVqampZn0OalXCcXNzIyoqipSUFMO2yspKUlJSLP5GKmuJ1G2twpoD4NcwQOVIzCdtWFhDQKNG6PV6s97rdAmnsLCQjIwMMjIyAMjMzCQjI4NTp04BkJiYyJIlS1i+fDkHDx5k/PjxFBUVGUatmUu+HdZt1lgLRG3ShoUlNBqNxcdwums46enp9O3b1/A8MTERuDYSbdmyZYwYMYILFy4wY8YMsrKyiIiIYMOGDQQGBlpU7h/7v0XdYo3VDtUmbViozekSTmxsLDUNrJs4cSITJ060arkTJkxgwoQJFBQU4OfnZ9VjC8dnjfXc1SZtWKjN6brU1CL933Xb9TOcq2XOe3YgbVioTRKOkaT/u27T/r7aYaXz3rYmbVioThKOEEIIu5CEYyTpjhDOTtqwsAZLTvIl4RhJuiOEs5M2LCxh+aBoSThCCCHsRBKOEEIIu5CEYyTp/xYAzjtGTdqwUJ8kHCNJ/3fdZo3+a7VJGxZqk4QjhBDCLiThCCGEMJol3cqScIQQQtTICpNFS8IxllxwFc5O2rBQmyQcI8kFV+HspA0LtUnCEcII1xefcuK5O4VQnSQcIYQQdiEJRwghhF1IwhFCCGE8C/qVJeEIIYSokQyLtiMZUiqcnbRhoTZJOEaSIaV12/Uvd848SE3asFCbJBwhhBB2IQlHCCGEXUjCEUIIYReScIQQQhhNZos20dChQ2nQoAHDhw9XOxQhhHAKGissQ1gnE86zzz7LBx98oHYYwolY4x4EIeq6OplwYmNj8fX1VTsM4YRycnJIS0tTOwwhVJObk2v2Z8DhEs7WrVuJi4sjJCQEjUbD2rVrq+2TnJxMWFgYHh4e6PV6tm/fbv9ARZ2ybNkyAH49/ivdu3cnKSlJ3YCEsLOl7y8F4NdM8z8DLtYOylJFRUWEh4czduxYhg0bVu31lStXkpiYyOLFi9Hr9SxcuJCBAwdy+PBhGjduDEBERATl5eXV3rtx40ZCQkJMiqekpISSkhLD84KCAgDKysooKysz6Vjmul6OvcpTs1xHrGt6ejrr16+n/pCOaLVaPD09WbRoEfHx8URHR1ulXFtyhDZsK2q1F1tw5Lqkp6ez/ov11H+gU7XPQJs2bYw+jkZRHHeFD41Gw5o1a4iPjzds0+v1dO3albfffhuAyspKQkNDmTRpEtOnTzf62Fu2bOHtt99m9erVt91v1qxZzJ49u9r2FStW4OXlZXR5wrntu6RhySEdzbwVJneusNpxi4uLGTlyJPn5+dSrV89qx72RtGFhDfsvaXjvkI5Qb4UpN3wGTGnDTpVwSktL8fLyYvXq1VWSUEJCAnl5eaxbt87oYxubcG727TA0NJRz587h7+9vUn3MVVZWxqZNmxgwYACurq52KVOtch2xrunp6Qx6fCr1h7xAWdYxLn32AgApKSkWn+Hk5uYSHBxs04TjCG3YVtRqL7bgyHVJT09n0Ngp1H/gr5RlH+fSymtf7lNSUmjTpg0BAQFGtWGH61K7nZycHCoqKggMDKyyPTAwkEOHDhl9nP79+7N7926Kiopo2rQpq1atIiYm5qb7uru74+7uTnJyMsnJyVRUXMvsrq6udm8UapSpVrmOVNeYmBji4uL4kWtn1FeuXCEpKemWbcbU8mzNkdqwrUhdbCsmJoYhQ+LYSvXPwPUuWmM4VcKxlu+++87k90yYMIEJEyZQUFCAn5+fDaISjmzMmMf4cVk6d7S8g7Wpqej1erVDMpm0YWGJMWPHsvX9/9KiRQuzPwMON0rtdgICAtDpdGRnZ1fZnp2dTVBQkE3LlqndBYC/v79TJhuQNiysw5LPgFMlHDc3N6KiokhJSTFsq6ysJCUlxSrdG7cjU7sLZydtWKjN4brUCgsLOXbsmOF5ZmYmGRkZNGzYkGbNmpGYmEhCQgLR0dF069aNhQsXUlRUxJgxY2wa1x/7v4VwNtKGhdocLuGkp6fTt29fw/PExETg2ki0ZcuWMWLECC5cuMCMGTPIysoiIiKCDRs2VBtIYG3S/y2cnbRhoTaHSzixsbHUNFJ74sSJTJw40U4RCSGEuE6xYL5op7qGoya54Fq3WWOmXLVJGxaWsMYnQBKOkeSCqwBw3NukayZtWKhNEo4QQgi7kIRjJOmOEM5O2rBQmyQcI0l3hHB20oaF2iThCCGEMJol1zEl4QhhDOcfpCaERTRWWGddEo6RpP9bODtpw0JtknCMJP3fAiy76U1t0oaF2iThCCGEsAtJOEIIIexCEo6RpP9bODtpw0JtknCMJP3fdVttGKQmbVhYgwyLFkIIYVMyeacQdubMk3cKoTZJOEIIIexCEo4QQgi7kIQjhBDCLiThGEmGlApnJ21YqE0SjpFkSGndZo2JC9UmbVhYgyXjZiThCCGEqJE1vnNJwhHCBDIsWgjzScIRQghhF5JwhBBC2EWdSzinT58mNjaW9u3b07lzZ1atWqV2SEIIUSe4qB2Avbm4uLBw4UIiIiLIysoiKiqK++67D29vb7VDEw7M+ceoCaG+OpdwgoODCQ4OBiAoKIiAgAAuXrwoCUcIIYygWDByxuG61LZu3UpcXBwhISFoNBrWrl1bbZ/k5GTCwsLw8PBAr9ezfft2s8rasWMHFRUVhIaGWhi1qCsuXrpIWlqa2mEIYXea38/zL126ZPZnwOESTlFREeHh4SQnJ9/09ZUrV5KYmMjMmTPZuXMn4eHhDBw4kPPnzxv2iYiIoGPHjtUeZ8+eNexz8eJFRo8ezXvvvWfzOgnn95///AeAUydP0b17d5KSklSOSAj7WvLvJcC16+DmfgYcrktt0KBBDBo06JavL1iwgHHjxjFmzBgAFi9ezFdffcXSpUuZPn06ABkZGbcto6SkhPj4eKZPn06PHj1q3LekpMTwvKCgAICysjLKysqMqZLFrpdjr/LULNcR65qens66dWupH98JjVaLp6cnixYtIj4+nujoaKuUa0uO0IZtRa32YguOXJf09HTWrl1Lg6Gd0Wg0VT4Dbdq0Mfo4GsWSDjkb02g0rFmzhvj4eABKS0vx8vJi9erVhm0ACQkJ5OXlsW7duhqPqSgKI0eOpG3btsyaNavG/WfNmsXs2bOrbV+xYgVeXl7GVkU4uUN5Gt45qKOJl8K08AqrHbe4uJiRI0eSn59PvXr1rHbcG0kbFtZwOE/Dvw7qCPFSSLrhM2BKG3aqhHP27FmaNGnCtm3biImJMew3bdo0fvjhB6P6FX/66Sd69+5N586dDds+/PBDOnXqdNP9b/btMDQ0lHPnzuHv729mzUxTVlbGpk2bGDBgAK6urnYpU61yHbGu6enp3PvY8zQY+hJlF05w6ZOpAKSkpFh8hpObm0twcLBNE44jtGFbUau92IIj1+XaZ+A5GgydUe0z0KZNGwICAoxqww7XpWZrPXv2pLKy0uj93d3dcXd3Jzk5meTkZCoqrmV2V1dXuzcKNcpUq1xHqmtMTAzx8Q/wA6BUVnLlyhWSkpKqfOmxpDxbc6Q2bCtSF9u69hmIv/YZUJQqn4HrXbTGcLhBA7cTEBCATqcjOzu7yvbs7GyCgoJsWrbMtFu3PfHEEwA0a96M1NRU5syZo3JEppM2LCwx7olxAISGhpr9GXCqhOPm5kZUVBQpKSmGbZWVlaSkpFjl2+btyFoiAqB+/Qbo9Xq1wzCLtGFhieuzRTdoYP5nwOESTmFhIRkZGYaRZpmZmWRkZHDq1CkAEhMTWbJkCcuXL+fgwYOMHz+eoqIiw6g1W5Fvh8LZSRsWanO4azjp6en07dvX8DwxMRG4NhJt2bJljBgxggsXLjBjxgyysrKIiIhgw4YNBAYG2jSuP/Z/C+FspA0LtTlcwomNja1x6oSJEycyceJEO0V0zYQJE5gwYQIFBQX4+fnZtWyhPk0tmE1N2rBQm8N1qTkq6f8Wzk7asFCbJBwjSf+3cHbShoXaJOEIIYQwmiVTBUjCMZJ0RwhnJ21YWMIaVzEl4RhJuiOEs5M2LNQmCUcIIYRdSMIRwgga5x8VLYTqJOEYSfq/hbOTNizUJgnHSNL/LZydtGGhNkk4QgghjKZg/rhoSThCmMBxlysUwsascB1TEo4QQgi7kIRjJLngWrfVhkFq0oaF2iThGEkuuApnJ21YqE0SjhBCCLuQhCOEEMIuJOEIYQJLhoQKURvIbNFCCCFsyhqr3krCEcIYtWGYmhAqk4RjJBlSKpydtGGhNkk4RpIhpcLZSRsWapOEI4QQwi4k4QghhLALSThCmEAm7xR1nSUfAUk4QhjBGkNChXBm1lj1ts4lnLy8PKKjo4mIiKBjx44sWbJE7ZCEEKJOcFE7AHvz9fVl69ateHl5UVRURMeOHRk2bBj+/v5qhyaEELVanTvD0el0eHl5AVBSUoKiKCjSMS+MlJefR1pamtphCKGa/Px8sz8DDpdwtm7dSlxcHCEhIWg0GtauXVttn+TkZMLCwvDw8ECv17N9+3aTysjLyyM8PJymTZsydepUAgICrBS9qK3ee+9dAM6cOUP37t1JSkpSOSIh7Ovddy3/DDhcl1pRURHh4eGMHTuWYcOGVXt95cqVJCYmsnjxYvR6PQsXLmTgwIEcPnyYxo0bAxAREUF5eXm1927cuJGQkBDq16/P7t27yc7OZtiwYQwfPpzAwMCbxlNSUkJJSYnheX5+PgAXL160RnWNUlZWRnFxMbm5ubi6utbqch2xrrt27eL/Vq+i/pDWUF6Kh4cH//znPxkwYACRkZEWlXu9HdnyLNsR2rCtqNVebMGR61L1M1BS5TPQqlUrwMg2rDgwQFmzZk2Vbd26dVMmTJhgeF5RUaGEhIQob7zxhllljB8/Xlm1atUtX585c6bCtZGA8pCHzR7Hjx83q/0aQ9qwPOzxOH36dI1tUaMojnsBQ6PRsGbNGuLj4wEoLS3Fy8uL1atXG7YBJCQkkJeXx7p162o8ZnZ2Nl5eXvj6+pKfn89dd93FJ598QqdOnW66/x+/Hebl5dG8eXNOnTqFn5+fRfUzVkFBAaGhoZw+fZp69erZpUy1yq1LdYVrZxvNmjXj0qVL1K9f3yZlOEIbthW1fm+24Kx1URSFy5cvExISglZ7+6s0Dteldjs5OTlUVFRU6/4KDAzk0KFDRh3j5MmTPPnkk4bBApMmTbplsgFwd3fH3d292nY/Pz+7N4p69eqp0hDVKLcu1RWo8YNqCUdqw7ai1u/NFpyxLsZ+cXGqhGMN3bp1IyMjQ+0whBCiznG4UWq3ExAQgE6nIzs7u8r27OxsgoKCVIpKCCGEMZwq4bi5uREVFUVKSophW2VlJSkpKcTExNglBnd3d2bOnHnTLoraVKZa5daluqpVrlp1tQWpi3NxuEEDhYWFHDt2DIDIyEgWLFhA3759adiwIc2aNWPlypUkJCTw7rvv0q1bNxYuXMhnn33GoUOHbjm0WQghhPocLuFs2bKFvn37VtuekJDAsmXLAHj77bd58803ycrKIiIign/+85/o9Xo7RyqEEMIUDpdwhBBC1E5OdQ1HCCGE85KEI4QQwi4k4QghhLALSTg3Yeps1KtWraJdu3Z4eHjQqVMnvv76a5uWuX//fh588EHCwsLQaDQsXLjQ5PLMKXfJkiX06tWLBg0a0KBBA/r372/yTN2mlvn5558THR1N/fr18fb2JiIigg8//NDkMk0t90affvopGo2mynRKtihz2bJlaDSaKg8PDw+Ty7RETQsUDh06lAYNGjB8+HC7xmWu28U7f/58OnToQMeOHfnoo49UiM48hw8fJiIiwvDw9PS86az6DslWEwY6q08//VRxc3NTli5dquzfv18ZN26cUr9+fSU7O/um+//888+KTqdT5s2bpxw4cEB58cUXFVdXV2Xv3r02K3P79u3KlClTlE8++UQJCgpS3nrrLXOqanK5I0eOVJKTk5Vdu3YpBw8eVB577DHFz89P+e2332xW5ubNm5XPP/9cOXDggHLs2DFl4cKFik6nUzZs2GDTul6XmZmpNGnSROnVq5fywAMP2LTM999/X6lXr55y7tw5wyMrK8ukMi1VXl6uFBUVKYqiKIWFhUpYWJiSk5NjeH3z5s3KF198oTz44IN2jctct4p3z549SmRkpHLlyhWluLhY0ev1yqVLl9QJ0gKXL19W/P39lcLCQrVDMYoknD8wdTbqhx9+WLn//vurbNPr9cpTTz1lszJv1Lx5c7MTjqUzb5eXlyu+vr7K8uXL7VamoihKZGSk8uKLLxq9v7nllpeXKz169FD+/e9/KwkJCSYnHFPLfP/99xU/Pz+TyrCl3NxcpXnz5sqFCxeqbN+8ebPTJBxFuXm8K1euVJ5++mnD8yeffFL55JNP7B2axT7++GPl4YcfVjsMo0mX2g1KS0vZsWMH/fv3N2zTarX079+fX3755abv+eWXX6rsDzBw4MBb7m+NMq3BGuUWFxdTVlZGw4YN7VKmoiikpKRw+PBhevfubVSZlpT78ssv07hxYx5//HGjy7K0zMLCQpo3b05oaCgPPPAA+/fvr/J6bVqg0B51uZWOHTuyZcsW8vLyuHTpElu2bOHMmTNWObY96/XZZ58xYsQICyO2H0k4N7jdbNRZWVk3fU9WVpZJ+1ujTGuwRrlJSUmEhIRUS7jWLjM/Px8fHx/c3Ny4//77WbRoEQMGDDCqTHPL/emnn/jPf/5T7RqGLcts27YtS5cuZd26dXz00UdUVlbSo0cPfvvtN8M+1xcoTE5Ovukxri9QOHPmTHbu3El4eDgDBw7k/Pnzhn2uX5/54+Ps2bMAhgUKMzMzWbFiRbW5C63FHnW5lfbt2/PMM89w9913M2zYMLp3745Op3OqehUUFLBt2zbuu+8+q8RtD3VutmhhHXPmzOHTTz9ly5YtNr+w7evrS0ZGBoWFhaSkpJCYmMgdd9xBbGysTcq7fPkyo0aNYsmSJXZdfjwmJqbKnIA9evTgzjvv5N133+WVV14BYNCgQQwaNOiWx1iwYAHjxo1jzJgxACxevJivvvqKpUuXMn36dACjZ0sPDAwkPDycH3/80SaDBOxZl5t56qmneOqppwB44oknaN26tdnHupG96rVu3Truueceuw8ssYSc4dzAnNmog4KCLJq9Wq0ZsC0pd/78+cyZM4eNGzfSuXNnm5ep1Wpp1aoVERERTJ48meHDh/PGG2/YrNzjx49z4sQJ4uLicHFxwcXFhQ8++IAvvvgCFxcXjh8/bvUyb8bV1ZXIyEjD3II1sUY3aXZ2NpcvXwaunVlu3bqVtm3bGvVea7JHV/P1M4rDhw+zfft2Bg4caJXj3o416+Vs3WkgCacKc2ajjomJqbI/wKZNm4yevVqtGbDNLXfevHm88sorbNiwgejoaLuU+UeVlZVVVrC0drnt2rVj7969ZGRkGB5Dhgyhb9++ZGRkEBoaavUyb6aiooK9e/cSHBxs1P7W6CY9efIkvXr1Ijw8nF69elVboLB///489NBDfP311zRt2tRm1xmt1dV8u3gfeOAB2rdvz6OPPsr777+Pi4vtO3ysVa/8/Hy7JUmrUnvUgqP59NNPFXd3d2XZsmXKgQMHlCeffFKpX7++YXjqqFGjlOnTpxv2//nnnxUXFxdl/vz5ysGDB5WZM2eaNSzalDJLSkqUXbt2Kbt27VKCg4OVKVOmKLt27VKOHj1q07rOmTNHcXNzU1avXl1l6O7ly5dtVubrr7+ubNy4UTl+/Lhy4MABZf78+YqLi4uyZMkSm9b1j8wZpWZqmbNnz1a+/fZb5fjx48qOHTuUP/3pT4qHh4eyf//+mx4fUNasWWN4fubMGQVQtm3bVmW/qVOnKt26dTMpdnurTXW5UW2tl7nkGs4fjBgxggsXLjBjxgzDbNQbNmwwfCM5depUleWAe/TowYoVK3jxxRf561//SuvWrVm7di0dO3a0WZlnz54lMjLS8Hz+/PnMnz+fPn36sGXLFpuV+84771BaWlqtP3/mzJnMmjXLJmUWFRXx9NNP89tvv+Hp6Um7du346KOPTO5KMLVcazC1zEuXLjFu3DiysrJo0KABUVFRbNu2jfbt2xtVXm1aoLA21eVGtbVeRlM74wkhzMMfvj0ryrV7fyZOnGh4XlFRoTRp0sSk+5zUUJvqcqPaWi9zyRmOEE7kxgUKATIzM8nIyDAsUJiYmEhCQgLR0dGGBQqLiooMI6IcSW2qy41qa72sQu2MJ4Qw3ubNmxWg2iMhIcGwz6JFi5RmzZopbm5uSrdu3ZTU1FT1Ar6N2lSXG9XWelmDLMAmhBDCLmRYtBBCCLuQhCOEEMIuJOEIIYSwC0k4Qggh7EISjhBCCLuQhCOEEMIuJOEIIYSwC0k4Qggh7EISjhBCCLuQhCOEEMIuJOEIoymKwoIFC2jRogVeXl7Ex8eTn59/031jY2PRaDRoNJoal8t97LHHDPuuXbvW+oELIRyCJBxhtKlTp/LOO++wfPlyfvzxR3bs2HHbdXDGjRvHuXPnalwb6B//+Afnzp2zcrRCVGXKlyB7iY2N5bnnnjM8r+1fviThCKOkpaWxYMECVq5cSe/evYmKimLcuHF8/fXXt3yPl5cXQUFBNS7d6+fnVzcWnxJm69OnD2PHjq2ybeHChXh7e/POO+8YfRxjvwRZy5gxY3jxxReN3r+2f/mS9XCEUebPn0+/fv3o0qWLYVtgYCA5OTkqRiXqAkVR2LVrFw899BAAxcXFjBs3js2bN7Np0yZ69Ohh9LGufwmyh4qKCr788ku++uoro9/j5+eHn5+fDaNSl5zhiBqVlJTw1VdfMXTo0Crbr169Wqs/HMIxHD16lMuXL9OlSxcyMzPp0aMHmZmZ7Nixw6RkcyuVlZXMmzePVq1a4e7uTrNmzXjttdcMr8fGxjJp0iSee+45GjRoQGBgIEuWLDEsmubr60urVq345ptvqhx327ZtuLq60rVrV+DacumjR4/Gx8eH4OBg/v73v1scu7ORhCNqtHPnTq5cucLkyZPx8fExPKZNm0abNm3UDk/Ucjt27ECn05GdnU10dDR6vZ4tW7YQHBxsleO/8MILzJkzh5deeokDBw6wYsUKAgMDq+yzfPlyAgIC2L59O5MmTWL8+PE89NBD9OjRg507d3LPPfcwatQoiouLDe/54osviIuLQ6PRANeugf7www+sW7eOjRs3smXLFnbu3GmVOjgNddd/E85g2bJlire3t3L06NEqjzZt2igvv/zyTd/Tp08f5dlnn62y7aOPPlK8vb0Nj61bt1Z5nZus/y7ElClTFJ1Op2i1WiU5Odns49ysTRYUFCju7u7KkiVLbvu+nj17Gp6Xl5cr3t7eyqhRowzbzp07pwDKL7/8YtjWunVr5csvv1QURVEuX76suLm5KZ999pnh9dzcXMXT07NaTIpSez8Lcg1H1KigoICAgABatWpl2Hby5EmOHj3Kgw8+aPRxhgwZgl6vNzxv0qSJVeMUtdPOnTvp378/+/btY8eOHVY99sGDBykpKaFfv3633a9z586G/+t0Ovz9/enUqZNh2/UzovPnzxuOe/bsWcNxjx8/TmlpaZX237BhQ9q2bWu1ujgD6VITNQoICCA/Px/lhtXIX3vtNe677z7at29v9HGu93Vff3h6etoiXFHL7Ny5k0GDBrFu3To++eQT3nzzzWr7LFmyhC5dutCxY0dGjBhh9LGNbYOurq5Vnms0mirbrnebVVZWAte60wYMGICHh4fRsdQFknBEje6++26uXr3KnDlzyMzM5NVXX2X9+vUmDUcVwhy//voreXl5dOnShaioKN5//31eeOEF1q1bZ9jn0qVLJCcn89///pd9+/bx7rvvGn381q1b4+npSUpKilXjXrduHQ888IDhecuWLXF1dSUtLa1K3EeOHLFquY5OEo6oUWBgIMuWLeOdd96hQ4cOpKam8tNPPxEaGqp2aKKW27FjBxqNhoiICABGjBjBX//6V/785z8bbt50cXHh0qVLTJs2jf3791O/fn2jj+/h4UFSUhLTpk3jgw8+4Pjx46SmpvKf//zH7JjPnz9Peno6gwcPNmzz8fHh8ccfZ+rUqXz//ffs27ePxx57DK22bv0Jlms4wigjRowwqatCCGvYuXMnrVu3xtfX17Bt9uzZHDhwgCFDhrB9+3aCgoLYt28fa9eu5eGHH+a1114jPj7e6DJeeuklXFxcmDFjBmfPniU4OJi//OUvZse8fv16unXrRkBAQJXtb775JoWFhcTFxeHr68vkyZNvOTVUraX2qAVRO/Xp00dxdXVVvL29lT179tx236eeekrx9vautSNzhG0dOXLE8P/x48crn3766U33u9koNVuIi4tT5s6da9ExautnoW6dzwm7+fjjjzlw4AAZGRk1jsR5+eWXycjI4OjRowwYMMBOEYra4tVXX6Vt27ZERkai0WgMMxLczL/+9S98fHzYu3evzeLp2bMnjzzyiFnv/ctf/oKPj4+VI3IcGkW5YeiREELUUmfOnOHKlSsANGvWDDc3N5Ujqu78+fMUFBQAEBwcjLe3t8oRWZckHCGEEHYhXWpCCCHsQhKOEEIIu5CEI4QQwi4k4QghhLALSThCCCHsQhKOEEIIu5CEI4QQwi4k4QghhLALSThCCCHs4v8BdklLEkSvK2AAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -168,6 +161,32 @@ "plot_compare(soilsample, soilm_panday)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The fit method finds the optimal curve through both the soil water retention curve and hydraulic conductivity function at the same time using the least squares algorithm. All parameters are subject to the optimization algorithm.\n", + "\n", + "The fit method uses the optimization algorithm from the 1991 [RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils](https://www.pc-progress.com/Documents/programs/retc.pdf) by M.Th. van Genuchten, F.J. Leij and S.R. Yates.\n", + "\n", + "The objective function $O(b)$ minimized is:\n", + "\n", + "$ O(b) = \\sum^N_{i=1}(w_i(\\theta_{o,i}-\\theta_i))^2 + \\sum^M_{i=N+1}(w_iW_1W_2(Y_{o,i}-Y_i))^2$\n", + "\n", + "Using the SciPy least-squares algorithm. \n", + "\n", + "With $N$ the number of $\\theta$ data points and $M$ is the number of $K$ and $\\theta$ data points\n", + "\n", + "$w_i$ are the individual weight factors per measurements (by default 1 for each measurement)\n", + "\n", + "$W_1$ is the weight factor for the hydraulic conductivity function with respect to the soil water retention (default is 0.1)\n", + "\n", + "$W_2$ is the proportional weight factor for two different data types and elimination factor for different units. By default the formulation for \n", + "$W_2 = \\frac{(M-N)\\sum^N_{i=1}w_i\\theta_{o,i}}{N\\sum^M_{i=N+1}w_i|Y_{o,i}|}$.\n", + "\n", + "$Y$ is indicates the for the logaritmic transform of such that $Y = log_{10}K$." + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -183,7 +202,7 @@ { "data": { "text/plain": [ - "Panday(k_s=712.7999894094452, alpha=0.14790376878960756, beta=2.614921028771825, brook=3.89780784854566, sr=0.10434739833114794)" + "Panday(k_s=712.7999894094452, alpha=0.14656691408919914, beta=2.643965735144585, brook=3.8329491617518454, sr=0.10448779206704849)" ] }, "execution_count": 8, @@ -310,7 +329,7 @@ { "data": { "text/plain": [ - "Panday(k_s=650.0023315503577, alpha=0.14760418018418328, beta=2.6213048302921647, brook=3.876780843640316, sr=0.10437900805049694)" + "Panday(k_s=650.0027068392608, alpha=0.14640200236757875, beta=2.6476559118830254, brook=3.8183761786812824, sr=0.10450508901642255)" ] }, "execution_count": 10, @@ -345,21 +364,21 @@ " message: `gtol` termination condition is satisfied.\n", " success: True\n", " status: 1\n", - " fun: [ 4.247e-05 4.247e-05 ... 1.242e-04 3.563e-04]\n", - " x: [ 5.793e+02 4.490e-02 4.300e-01 1.472e-01 2.629e+00\n", - " 3.850e+00]\n", - " cost: 1.0689285556262866e-06\n", + " fun: [ 2.206e-05 2.206e-05 ... -9.025e-05 -2.615e-04]\n", + " x: [ 5.724e+02 4.495e-02 4.300e-01 1.462e-01 2.653e+00\n", + " 3.798e+00]\n", + " cost: 5.483425529890278e-07\n", " jac: [[ 0.000e+00 0.000e+00 ... 0.000e+00 0.000e+00]\n", " [ 0.000e+00 0.000e+00 ... 0.000e+00 0.000e+00]\n", " ...\n", - " [-2.762e-06 0.000e+00 ... 5.912e-02 2.502e-02]\n", - " [-2.762e-06 0.000e+00 ... 7.331e-02 3.102e-02]]\n", - " grad: [ 3.400e-15 -7.665e-10 1.232e-09 -7.671e-09 -1.022e-09\n", - " -1.313e-10]\n", - " optimality: 9.57854018873565e-09\n", + " [ 1.944e-06 0.000e+00 ... -4.053e-02 -1.764e-02]\n", + " [ 1.944e-06 0.000e+00 ... -5.026e-02 -2.187e-02]]\n", + " grad: [ 1.672e-14 3.403e-09 -3.531e-10 5.768e-09 1.080e-09\n", + " 5.588e-11]\n", + " optimality: 1.7851416034930158e-09\n", " active_mask: [0 0 0 0 0 0]\n", - " nfev: 11\n", - " njev: 11\n" + " nfev: 10\n", + " njev: 10\n" ] } ], @@ -371,31 +390,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Other parameters are W1 and W2 that determine the weight of the hydraulic conductivity function (with respect to the SWRC). Default value for W1 is 0.1 which implies that the weight of the HCF is 10% than that of the SWRC. W2 ensures that proportional weight is given to the two types of data: `theta` and `k`. `k` is log optimized. Also weights can be added as an array to weigh each individual measurement. " - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.011126595857906313" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "weights = np.ones(theta.shape)\n", - "M = len(k) + len(theta)\n", - "N = len(theta)\n", - "W2 = (M - N) * sum(weights * theta) / (N * sum(weights * np.abs(np.log(k))))\n", - "W2" + "To parse other parameters for W1, W2, and individual weights there are other keyword arguements that for the fit method." ] } ], From c0064d6fe594886d93de4fe1af5ade6882b7d773 Mon Sep 17 00:00:00 2001 From: martinvonk Date: Fri, 12 Jan 2024 17:59:51 +0100 Subject: [PATCH 14/16] remove fit seperate method --- src/pedon/_params.py | 53 ++++++++++------------------------------- src/pedon/soil.py | 56 -------------------------------------------- tests/test_fit.py | 4 ---- 3 files changed, 13 insertions(+), 100 deletions(-) diff --git a/src/pedon/_params.py b/src/pedon/_params.py index cd1eefb..ce44925 100644 --- a/src/pedon/_params.py +++ b/src/pedon/_params.py @@ -16,30 +16,19 @@ "theta_s": 0.2, "alpha": 0.001, "n": 1.000001, - "l": -7, + "l": -7.0, }, "p_max": { "k_s": 100000.0, "theta_r": 0.2, "theta_s": 0.9, "alpha": 0.20, - "n": 12, - "l": 8, - }, - "swrc": { - "k_s": False, - "theta_r": True, - "theta_s": True, - "alpha": True, - "n": True, - "l": False, + "n": 12.0, + "l": 8.0, }, }, + dtype=float, ) -pGenuchten.loc[:, ["p_ini", "p_min", "p_max"]] = pGenuchten.loc[ - :, ["p_ini", "p_min", "p_max"] -].astype(float) -pGenuchten.loc[:, "swrc"] = pGenuchten.loc[:, "swrc"].astype(bool) pBrooks = DataFrame( data={ @@ -51,21 +40,16 @@ "h_b": 0.0001, "l": 0.1, }, - "p_max": {"k_s": 100000.0, "theta_r": 0.2, "theta_s": 0.5, "h_b": 100, "l": 5}, - "swrc": { - "k_s": False, - "theta_r": True, - "theta_s": True, - "h_b": True, - "l": True, + "p_max": { + "k_s": 100000.0, + "theta_r": 0.2, + "theta_s": 0.5, + "h_b": 100.0, + "l": 5.0, }, }, + dtype=float, ) -pBrooks.loc[:, ["p_ini", "p_min", "p_max"]] = pBrooks.loc[ - :, ["p_ini", "p_min", "p_max"] -].astype(float) -pBrooks.loc[:, "swrc"] = pBrooks.loc[:, "swrc"].astype(bool) - pPanday = DataFrame( data={ "p_ini": { @@ -89,23 +73,12 @@ "theta_r": 0.2, "theta_s": 0.5, "alpha": 0.30, - "beta": 12, + "beta": 12.0, "brook": 50.0, }, - "swrc": { - "k_s": False, - "theta_r": True, - "theta_s": True, - "alpha": True, - "beta": True, - "brook": False, - }, }, + dtype=float, ) -pPanday.loc[:, ["p_ini", "p_min", "p_max"]] = pPanday.loc[ - :, ["p_ini", "p_min", "p_max"] -].astype(float) -pPanday.loc[:, "swrc"] = pPanday.loc[:, "swrc"].astype(bool) def get_params(sm_name: str) -> DataFrame: diff --git a/src/pedon/soil.py b/src/pedon/soil.py index ed56aed..4dbe45d 100644 --- a/src/pedon/soil.py +++ b/src/pedon/soil.py @@ -52,62 +52,6 @@ def from_staring(self, name: str, year: str = "2018") -> "SoilSample": self.rho = staring_properties.loc[name, "rho"] return self - def fit_seperate( - self, - sm: Type[SoilModel], - pbounds: DataFrame | None = None, - weights: FloatArray | float = 1.0, - silent: bool = True, - ) -> SoilModel: - """Fit the soil water retention and conductivity seperate.""" - if pbounds is None: - pbounds = get_params(sm.__name__) - pbounds.loc["k_s", "p_ini"] = max(self.k) - pbounds.loc["theta_s", "p_ini"] = max(self.theta) - pbounds.loc["theta_s", "p_max"] = max(self.theta) + 0.01 - - if isinstance(weights, float): - weights = full(self.h.shape, weights) - - sml = sm(**dict(zip(pbounds.index, pbounds.loc[:, "p_ini"]))) - - def fit_swrc(p: FloatArray) -> FloatArray: - for pname, pv in zip(pbounds.index[pbounds.loc[:, "swrc"]], p): - sml.__setattr__(pname, pv) - diff = weights * (sml.theta(h=self.h) - self.theta) - return diff - - def fit_k(p: FloatArray) -> FloatArray: - for pname, pv in zip(pbounds.index[~pbounds.loc[:, "swrc"]], p): - sml.__setattr__(pname, pv) - diff = weights * (log(sml.k(h=self.h)) - log(self.k)) - return diff - - res_swrc = least_squares( - fit_swrc, - x0=pbounds.loc[pbounds.swrc, "p_ini"], - bounds=( - pbounds.loc[pbounds.swrc, "p_min"], - pbounds.loc[pbounds.swrc, "p_max"], - ), - ) - - res_k = least_squares( - fit_k, - x0=pbounds.loc[~pbounds.swrc, "p_ini"], - bounds=( - pbounds.loc[~pbounds.swrc, "p_min"], - pbounds.loc[~pbounds.swrc, "p_max"], - ), - ) - - opt_pars = dict(zip(pbounds.index[pbounds.loc[:, "swrc"]], res_swrc.x)) - opt_pars.update(dict(zip(pbounds.index[~pbounds.loc[:, "swrc"]], res_k.x))) - if not silent: - print("SciPy Optimization Result Soil Water Retention Curve\n", res_swrc) - print("SciPy Optimization Result Hydraulic Conductivity Function\n", res_k) - return sm(**opt_pars) - def fit( self, sm: Type[SoilModel], diff --git a/tests/test_fit.py b/tests/test_fit.py index cf444a2..2c6b7c0 100644 --- a/tests/test_fit.py +++ b/tests/test_fit.py @@ -64,7 +64,3 @@ def sample() -> pe.soil.SoilSample: def test_fit(sample: pe.soil.SoilSample) -> None: sample.fit(pe.soilmodel.Genuchten) - - -def test_fit_seperate(sample: pe.soil.SoilSample) -> None: - sample.fit(pe.soilmodel.Brooks) From 98d984b868c287c539bf68b4a59c3b9c9d119bd2 Mon Sep 17 00:00:00 2001 From: martinvonk Date: Fri, 12 Jan 2024 18:08:01 +0100 Subject: [PATCH 15/16] remove xlsx files --- pyproject.toml | 4 +- src/pedon/datasets/Brooks.csv | 12 ----- src/pedon/datasets/Genuchten.csv | 63 ---------------------- src/pedon/datasets/Soil_Parameters.xlsx | Bin 15232 -> 0 bytes src/pedon/datasets/Staring_2001.xlsx | Bin 25888 -> 0 bytes src/pedon/datasets/Staring_2018.xlsx | Bin 18413 -> 0 bytes tests/test_fit.py | 66 ------------------------ 7 files changed, 2 insertions(+), 143 deletions(-) delete mode 100644 src/pedon/datasets/Brooks.csv delete mode 100644 src/pedon/datasets/Genuchten.csv delete mode 100644 src/pedon/datasets/Soil_Parameters.xlsx delete mode 100644 src/pedon/datasets/Staring_2001.xlsx delete mode 100644 src/pedon/datasets/Staring_2018.xlsx delete mode 100644 tests/test_fit.py diff --git a/pyproject.toml b/pyproject.toml index 7f0b7de..38cef1d 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -10,7 +10,7 @@ description = "Python package for (unsaturated) soil properties including pedotr readme = "README.md" license = { file = "LICENSE" } requires-python = ">=3.10" -dependencies = ["numpy", "matplotlib", "pandas", "scipy", "openpyxl"] +dependencies = ["numpy", "matplotlib", "pandas", "scipy"] classifiers = [ 'Programming Language :: Python :: 3 :: Only', 'Programming Language :: Python :: 3.10', @@ -70,7 +70,7 @@ version = { attr = "pedon._version.__version__" } where = ["src"] [tool.setuptools.package-data] -"pedon.datasets" = ["*.xlsx"] +"pedon.datasets" = ["*.csv"] [tool.black] line-length = 88 diff --git a/src/pedon/datasets/Brooks.csv b/src/pedon/datasets/Brooks.csv deleted file mode 100644 index 2deed9c..0000000 --- a/src/pedon/datasets/Brooks.csv +++ /dev/null @@ -1,12 +0,0 @@ -name,source,description,soil type,k_s,theta_r,theta_s,h_b,l -VS2D_Del Monte Sand,VS2D,20 mesh,Sand,700000,0.011,0.36,0.00112,2.5 -VS2D_Fresno Medium Sand,VS2D,,Sand,40000,0,0.375,0.00149,0.84 -VS2D_Unconsolidated Sand,VS2D,,Sand,850,0.09,0.424,0.00114,4.4 -VS2D_Sand,VS2D,,Sand,820,0,0.435,0.00196,0.84 -VS2D_Fine Sand,VS2D,G.E. 13 - alpha 0.0104 in VS2DRTI,Sand,210,0.063,0.377,0.0082,3.7 -VS2D_Columbia Sandy Loam,VS2D,,Sandy Loam,70,0.11,0.496,0.0085,1.6 -VS2D_Touchet Silt Loam,VS2D,G.E. 3,Silt Loam,22,0.095,0.43,0.0145,1.7 -VS2D_Hygiene Sandstone,VS2D,,Sand,15,0.13,0.25,0.0106,2.9 -VS2D_Adelanto Loam,VS2D,,Loam,3.9,0.13,0.42,0.0141,0.51 -VS2D_Limon Silt,VS2D,imbibition data,Silt,1.3,0,0.449,0.00338,0.22 -VS2D_Yolo Light Clay,VS2D,alpha 0.0249 in VS2DRTI,Clay,1.1,0.055,0.495,0.00181,0.25 diff --git a/src/pedon/datasets/Genuchten.csv b/src/pedon/datasets/Genuchten.csv deleted file mode 100644 index d505ace..0000000 --- a/src/pedon/datasets/Genuchten.csv +++ /dev/null @@ -1,63 +0,0 @@ -name,source,description,soil type,k_s,theta_r,theta_s,alpha,n,l -HYDRUS_Sand,HYDRUS,,Sand,712.8,0.045,0.43,0.145,2.68,0.5 -HYDRUS_Loamy Sand,HYDRUS,,Loamy Sand,350.2,0.057,0.41,0.125,2.28,0.5 -HYDRUS_Sandy Loam,HYDRUS,,Sandy Loam,106.1,0.065,0.41,0.075,1.89,0.5 -HYDRUS_Loam,HYDRUS,,Loam,24.96,0.078,0.43,0.036,1.56,0.5 -HYDRUS_Silt,HYDRUS,,Silt,6,0.034,0.46,0.016,1.37,0.5 -HYDRUS_Silt Loam,HYDRUS,,Silt Loam,10.8,0.067,0.45,0.02,1.41,0.5 -HYDRUS_Sandy Clay Loam,HYDRUS,,Sandy Clay Loam,31.44,0.1,0.39,0.059,1.48,0.5 -HYDRUS_Clay Loam,HYDRUS,,Clay Loam,6.24,0.095,0.41,0.019,1.31,0.5 -HYDRUS_Silty Clay Loam,HYDRUS,,Silty Clay Loam,1.68,0.089,0.43,0.01,1.23,0.5 -HYDRUS_Sandy Clay,HYDRUS,,Sandy Clay,2.88,0.1,0.38,0.027,1.23,0.5 -HYDRUS_Silty Clay,HYDRUS,,Silty Clay,0.48,0.07,0.36,0.005,1.09,0.5 -HYDRUS_Clay,HYDRUS,,Clay,4.8,0.068,0.38,0.008,1.09,0.5 -B01,Staring,leemarm zeer fijn tot matig fijn zand,Sand,31.23,0.02,0.427,0.0217,1.735,0.981 -B02,Staring,zwak lemig zeer fijn tot matig fijn zand,Sand,83.24,0.02,0.434,0.0216,1.349,7.202 -B03,Staring,sterk lemig zeer fijn tot matig fijn zand,Sand,19.08,0.02,0.443,0.015,1.505,0.139 -B04,Staring,zeer sterk lemig zeer fijn tot matig fijn zand,Sand,34.88,0.02,0.462,0.0149,1.397,0.295 -B05,Staring,grof zand,Sand,63.65,0.01,0.381,0.0428,1.808,0.024 -B06,Staring,keileem,Sand,104.1,0.01,0.385,0.0209,1.242,-1.2 -B07,Staring,zeer lichte zavel,Sand,14.58,0,0.401,0.0183,1.248,0.952 -B08,Staring,matig lichte zavel,Sand,3,0.01,0.433,0.0105,1.278,-1.919 -B09,Staring,zware zavel,Sand,1.75,0,0.43,0.007,1.267,-2.387 -B10,Staring,lichte klei,Clay,3.83,0.01,0.448,0.0128,1.135,4.581 -B11,Staring,matig zware klei,Clay,6.31,0.01,0.591,0.0216,1.107,-5.549 -B12,Staring,zeer zware klei,Clay,2.25,0.01,0.53,0.0166,1.091,-4.494 -B13,Staring,zandige leem,Sandy Loam,29.83,0.01,0.416,0.0084,1.437,-1.357 -B14,Staring,siltige leem,Silt Loam,0.9,0.01,0.417,0.0054,1.302,-0.335 -B15,Staring,venig zand,Peat,87.45,0.01,0.528,0.0237,1.282,-1.478 -B16,Staring,zandig veen en veen,Peat,12.36,0.01,0.786,0.0211,1.279,-1.221 -B17,Staring,venige klei,Peat,4.48,0,0.719,0.0191,1.137,0 -B18,Staring,kleiig veen,Peat,13.14,0,0.765,0.0205,1.151,0 -O01,Staring,leemarm zeer fijn tot matig fijn zand,Sand,22.32,0.01,0.366,0.016,2.163,2.868 -O02,Staring,zwak lemig zeer fijn tot matig fijn zand,Sand,22.76,0.02,0.387,0.0161,1.524,2.44 -O03,Staring,sterk lemig zeer fijn tot matig fijn zand,Sand,12.37,0.01,0.34,0.0172,1.703,0 -O04,Staring,zeer sterk lemig zeer fijn tot matig fijn zand,Sand,25.81,0.01,0.364,0.0136,1.488,2.179 -O05,Staring,grof zand,Sand,17.42,0.01,0.337,0.0303,2.888,0.074 -O06,Staring,keileem,Sand,32.83,0.01,0.333,0.016,1.289,-1.01 -O07,Staring,beekleem,Sand,37.55,0.01,0.513,0.012,1.153,-2.013 -O08,Staring,zeer lichte zavel,Sand,8.64,0,0.454,0.0113,1.346,-0.904 -O09,Staring,matig lichte zavel,Sand,3.77,0,0.458,0.0097,1.376,-1.013 -O10,Staring,zware zavel,Sand,2.3,0.01,0.472,0.01,1.246,-0.793 -O11,Staring,lichte klei,Clay,2.12,0,0.444,0.0143,1.126,2.357 -O12,Staring,matig zware klei,Clay,1.08,0.01,0.561,0.0088,1.158,-3.172 -O13,Staring,zeer zware klei,Clay,9.69,0.01,0.573,0.0279,1.08,-6.091 -O14,Staring,zandige leem,Sandy Loam,2.5,0.01,0.394,0.0033,1.617,0.514 -O15,Staring,siltige leem,Silt Loam,2.79,0.01,0.41,0.0078,1.287,0 -O16,Staring,oligotroof veen,Peat,1.46,0,0.889,0.0097,1.364,-0.665 -O17,Staring,mesotroof en eutroof veen,Peat,3.4,0.01,0.849,0.0119,1.272,-1.249 -O18,Staring,moerige tussenlaag,Peat,35.95,0.01,0.58,0.0127,1.316,-0.786 -VS2D_Medium Sand,VS2D,,Medium Sand,40000,0.02,0.375,0.0431,3.1,0.5 -VS2D_Sandy Loam,VS2D,,Sandy Loam,70,0.15,0.496,0.00847,4.8,0.5 -VS2D_Silt Loam,VS2D,,Silt Loam,22.5,0.17,0.43,0.00505,7.0,0.5 -VS2D_Del Monte Sand,VS2D,20 mesh,Sand,700000,0.036,0.36,0.00142,6.3,0.5 -VS2D_Fresno Medium Sand,VS2D,,Sand,40000,0.02,0.375,0.00232,3.1,0.5 -VS2D_Unconsolidated Sand,VS2D,,Sand,850,0.051,0.424,0.00134,9,0.5 -VS2D_Sand,VS2D,,Sand,820,0.069,0.435,0.00326,3.9,0.5 -VS2D_Fine Sand,VS2D,"G.E. 13, alpha 0.0104 in VS2DRTI",Sand,210,0.072,0.377,0.0096,6.9,0.5 -VS2D_Columbia Sandy Loam,VS2D,,Sandy Loam,70,0.15,0.496,0.0118,4.8,0.5 -VS2D_Touchet Silt Loam,VS2D,G.E. 3,Silt Loam,22,0.17,0.43,0.0198,7,0.5 -VS2D_Hygiene Sandstone,VS2D,,Sand,15,0.15,0.25,0.0126,10.6,0.5 -VS2D_Adelanto Loam,VS2D,,Loam,3.9,0.16,0.42,0.0274,2.06,0.5 -VS2D_Limon Silt,VS2D,imbibition data,Silt,1.3,0.001,0.449,0.00651,1.3,0.5 -VS2D_Yolo Light Clay,VS2D,alpha 0.0249 in VS2DRTI,Clay,1.1,0.175,0.495,0.00401,1.6,0.5 diff --git a/src/pedon/datasets/Soil_Parameters.xlsx b/src/pedon/datasets/Soil_Parameters.xlsx deleted file mode 100644 index 002f3ccb5e3908623108d06dc68802b315de7f1b..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 15232 zcmeIZWpo@%vNbAdF-sORSj=oOGn2*4%xE#A#mr0=Sj^1Kj21Jq^y!?Ld1uCR?$7t@ z-dd|GS9NzpR%OMG$k-VvCkYCM3Iq-W2?PX02!xEWzGesv1cU(q0zv_T1kn(*v34}F zcGOXFvo&(iqII>hB*+B=Adw^doNY6d52gtxwXihmSwU}Ukci$EDEoTK<0AR?0(%m_ zG7Jj@$HA?&(JroUUb;FQ0~SxW6b+4$ti@X^X{fHeA;L=Md>JYwm<6S<6s4-nyZw+0 zJiw$7qg=WZyC1P;CTHz&MK|ewxFA$SkX1fLTd4=b-fFifIvn8~y-zO&UV=9*1-iB} z5l%I`6OrGn9JshzSUp?>vtgfSGs{oDu)tgI`<dgXgZ)EO0%`(WRNFtYmK433%{O!$W&QKl#7yE#jvMQT7R!#(JuozfRHj9OVcjsRe zw$4jA8BAD?!3|OlRyQB;dw&N7lKT&E)+y5y-+Wk{)CcxpKESDCZ)E8}NBhV5|3LY_ z7>WP(=;g7}vOV;$LFZyG!Grg6Yu^zCBwhH$S_qZAe8g7~>LT+9j|K_vwwcSrkx@B`>s=~>lAi3GASgfECyLmWZ}lQM&)v@5rHD$nkvq3V zQe19s`pE)t?NJh0G<<2Jgo?-YGBJgiknFD zUPvrFgyRk2kUE)8`84RDZ?g2mbI_9T_7O{2(UiliN@DZ?FX9t7$i*`SLdIJ*;{})1fD&5s6a$h?HaO`bE+iB3YqqDVl3eol-C}(&RvIB(^smtbc#A5AOdMWCX129d$)&aYO&f__#ek$2&%g@vDxkY+8O^O_ftGE=@E>JC zvcCHxT1FXM@Z?8TK1wv=oP9k!@GsBBRjGv_?kbvs6f2vTfbDuFP3t1v8hjKa z))E@If}qhXw2!biKXIa@mPPRdSFGE6M%RjPREDRF@n?w`H1m0VlNm>WLm7Nkwr)zC zy~>G2%danZQ&XE;?2+;fnUZ}gLQd^j0*3PCoK!%YNlB4Q%aPcJ!t0;$0L7D0m7onb zEAwD#`*imsRa!EWl7l7HN|d5**4CoXrdK>#w%dC!ju9OfpJ=+uy8m4SV(_>zVYAm9 zZ0GU-JAVsZi(i4@_V8{rity;yjW{E2Tv1XPIYxwg#t)bI`WnPi_*=j;xs% zo3_m9W!yUBi#V`O4LZTs^U!-egC4y9Z2*ucDb#!VuxU|HARsItNZ=3K{znY>cMJbl zJOKWfq~m)L2Yg1iO?ta&+YybfCXURL#{PR`40%MC zJ*-|Y*r7)os|{wY$mn)2?8!?^n4wUZxa=sJ8b7laZ8S9yfLmscX53cK0H~S}j~$LG zNs(j|nBoi5s6JzZMfdkPq%oKQC7v$@Od52g4nHYjqrV+JRZ}sK@!r|1ydS~*omUja z7tJt10s&Qbk{l#jyr1`df6LIx<2#WnuvKFzOl$xHRJL*H zuiJWpjrR48QE^@B3Q0;OH~@zqVZ(8QjfzJ>));&zxLC0?zwWr7o6osuf zY0L4PO|8;1i|g=KqE6)kE7MU|Jruy%4v}*Q2o!H4ts22E!`#Yn4ole(Y^> zjXuY@+neL6a=ZqB(Zi5a68b8SkrkgnAcCM5aX@JX+r+y&OX5#bIOo0~H$WLBcJS@L z9juPYc2uTiIW-lKMOJ=VeOB~EN|2jUS)4F`M|yBJk(UT+vLCCbj&{+-aOSYaElkN{ zB&CPM0UcVi>!U4zu(@xoZSl+hX`5>N)6MVA)jIlz)072h|GI-H8L&m9@|Ea**3E2G zFv~qxEjL|Cz!G()W^hlb2hK7cTV#)0qV)CS36|STX7C*e9m0%TqT!?RRxWrYg4Kiu z?5-ZIh%tgk=Z@y_%~E9W9L7Z2Emtl2`ow8jm4EjR5mg1X;% z#*YL$d)of&gm((ME3#jI#N_w)KTqXaTG6YGNH0|3-+0}{zK!8{f)h=Q2fqbwVKj05 zqHT1d9qK^nQeR%q?qm5{tcJIfV%jk{w*P8*liMPkY z+bkU~kI46@rSr@zuUEYHIv2tFmz!Ii$_?-Lf!&pj_r$mB$3x!s*Q?w8j<@@V)7#^Q z4IMfSH^QE@3AehV!Kn4rmUOh`eqdEI zIG&*=>2v8&pdL%~A#nv31?G=M6ZS728=%6!8R)(SyMg~+rel$hUwF)AX7nXh5&1C}>XEZU${?8Ys8=23~| zxz;_cIH~q`B~}ECWKcUVma`^qSKg&{R@1O+*@CaBG{DlEQ{)6N zPBw!ET$EVir(m9|#sk6q$vWe_Re0*-z3Qmt!rmc} zq4WzD;5dJPJ@zy?8+n>Xy0dzw^M@Q@JvH2FU2o4gJxAQ4M%CtfO{K{2$5R3aiv}T5 zz>vfdjp|dj@hLEFYK4b7F17cl9aw5$V>r?oIiQibtl~d;7RgPy}7H$xd4awQKC!QJ4w! zvdJY>ME??pBX|XnbXCUBio`$689c_5nIoncw+)x?AEvKwY+2DmP=S_RE*>g3<+1?> zSB=x|YgU(v@}!6(4x_1UUpY{CVT^Z0zxMZXXvk2ctn47q)?SBzkHKkr0blDQGC`gv zNAG_28WrW{=)CT3BVOBs=OYEcvZlLlM@Rjc-f$A(Vw%+oFRr!?W z8}5Ygo?ph!1LgAyv4{LOg1cdub(3>i;I0Kl#8?VWBqv*#yzb8QcQxH^pr9xaA>@oB zSdsO(ZocG9y2YP!ZPmC1*WKJ>}{b+_93An3@s9s2u zfgorE2-z+oTyi(O`EK_(pNGtLzno)Md=87d)#_Xv0~ZWD`*{tw~@`pzi_9`bt?9iu$Gta`x*}yV}uFC~l@vDEE;cNY5-3XKmLAMxo52@8Lel z3ued{J%~cT@Mag+wI3iTw!HQVLG$-xXLs{6f*{9)9*Vfd}oBb%M>_6~U%%WM<_Wt665L_fw)NSIygHlcTsp(t`U{3CcUmmIQt@ z#^zYrKqBnhE~v)cC<+9D1wJc=ir}Q<0-BGNvJ>_yvR|O6ZCzKPumB-FQkdOy4fFx( zkKs3vx8H!bT@~@G#au3?`u%%Bn& zD`0jjDPn9VD+QUt8zM55!0Oddoa6tL28O0VTQZc(wWlqz7>1j#VC->cl+-Qg@>mT; zAt+S9^gG}wUAMg!br%v2S;bZ?;p#rMn$z$ZY=f5TJWZnTUq?dXq z#Oytx5JU}eK@Aa$CPxg6@C)ZL3jvXDlJ+HEJ+qZ0cS%|dPs6G%t$DGcAv=Pi;}0c7 z4TaUGO&|;t0(3)DA0m%M3osKh3fsVqMMDc6^MeCcCDH;m^cJxsj}PhiO^M*Fub~i` ziecqTOHncO<ni~pc3fI zVRfS_`xZkhsCQ$G5|H+h!!*j<#t^{r07JVT&jiucgLPy=&s4c@%SYn^LMRl2=ns@^ zq*7`E_>*YFhvNYetZw@lRv@Tfs+g@F^eM{7dYA>icg`J=^GRW1Z^JpwVJFr}MAPr1 z5@3BUAROiR1UWNQ1_UStOk_6*l&pKXRWoSMqnKb3%IKQ2KqE3yfWa(!GNbl28;3flr2{dH?681S6eHeJUcsM7)z0SaY2I(2!S%RBc5b!If{ft zReC9 z+F8UH?o)WDE9JEk0krTgQU&qZcb$CE+H|?LDSLrII&PJYUuWy}P%b>ll|ii23KYFu zz4_k>ZBsF^!7qQ2L(7^Xd5aQ898irjJq+FHi_t>P(M&Z9_=MHu#hYpe(g8Q*eBQN{ zmoOx%O1K&!ZY7oc9CD*P z3z9O9(^g#_IxE4yM+hGHk_rN==cuJ@Nd!h>|Pj-BLARt$I%DtNVa{a9b?#6-x{*sc;~ZV{rmHFnhe#v`aUOU-&_m`3L+!u`E$GK#1SPT+SJg{c z1S>yCff$$$1ow3_UQ1#|musdIEz%k;b51BlCH|Xk&e{i33mCy%JWzwc5{8ihTey7; zSL@_x$~KLv#nd^F97AWUchD{7M;|v36OJ2Q#^ zl6sKF)1JWQ%WvXgKQ@l%-Wz-@R@OL`&nFC*J~i8H9`>Q2T+jUDHh+qcH5HdtC9@e! z|A6(fr^@gL;*vxJPdYR?SNGU1V5b*S4>V0DG2P)D|B(tCM@?wNeh7uASZ|7Nksa!X zIZE+!x0VnqtS88NzeD1_%3Yv27?4$1#)PwUHwxolZTWC*W=huS7)#BA^&;yN8(by z*I*tdNp=HwVWx!PT9w6Q9Qj2r1(He`nxiGbCqodhmEQ6#4}$HT4ji#S+zvk4S7;0d z{w$ET9;2i%-BIAehtORKL*KCaCnFIx3NehaSGLFM5YKMZ{vNw)n+yH+k|yFr2#j1V z5Lps-ql+{bcN|FZ&G+fZ8oLH3Lrqm_9Pz}e*wOWwVtS!@BF1vVHTk+&8nT*~u9V7R zxdP^c^`)L}=WS13hc3@{eCteXz8!rxiAM`Cml5ePc($lTsO>9=YddF<#Ri99dmW+`$4e@J;#?SSANZHW3HluUW{K; ztg3?MD4u;j(6_jXbssSB47uguI<7|fgxwolB}kDojkd}Bw7Ni3Ip8>{l+}Am%Wl@G zSpm;MR~cQz(U}E=Xt8$%GQ3s6hHZFz%kv^$Xgdbz$?BAQ%Vap_-!He4OAu%`F9i4B zF;o}6;N#4+@vffVStW^Lqnk*&<%Ae%f@)se&RbXI=0=a*L>kWPq{q)!Cm*55X)}yS zPnRv^K=upQF&(Ikp)KTY1g@_J$xa> z+cJs5j01s8iX~f-8d_Yc9q1a9*l9fVWVm<;<{b69lF5hWb+++4YdDBg?-Nv1q-(F| zuM^Ns=8*>inOTru%$fF!Xqtkspcq|;`x3Nq(Zh@B2<{pV06_;eH5f}DS~H*xJ*Kry z0v}OW*c?6Yd0J?DgZTfl)EWvgDcM_TYKe(aDwRQTX{u^v#z`hs1@d9337=}oE11sQ zLJ4T`M^e(qCVFiVbA1VOq!5$x{O^fbIv_g-D@zAS`{+jKCi#Vli+}KO|4mt!I91Q> zVsW}+2Ob9yezvimJA-Z#k<8YUVDHz@kW_nuhAn-y$>}GfvO;xum?=kTVd*Trh>aCb zEbI|tkdH&rGk>DLF(+l`vREfCUW3x-V+?*e6|p=`DRjk8*WYVff^SsO5TXu5J;TT* zQSf}K`BA4Q8G6h!nSObodl9#Fzoq$kwWA~-jBWWSAv`8Moq2=SJ5~z0pL6>3$wSXH z6JrsIw-bi4MHZRni;A-^_bL>&GyMiFla-Kitd5xnEWLua1O&xxQP~b#%7mY+_LyfO zHkmM7<>#8nZeLtp|Jmo*e3F!jSlSBY1IUfQ!Ol{Wtb?0CV;)jNPxPt=)rFY*bA@A< z_f3FPK|6`q=DIjiPnAE}_Zkve;#Ck{P*l2>)VDr|SBobicDy;2D*Z@Do!d8`6W-M6>6KoJZ^u1B79py3(i=rfh2^;3&_T9|if;0z@5)HEZe zgP#*atf02(Gwl{v?fAnj+!lQ@X|U_LB5*5@)x2TvI0n02V{TO^o@OrI*(d2U_c5Zw ziSVOD(KT)cq}6fy(ULZ#HnVC;T<`y#eo0=jUgkp#(g8g3gx~8{5&J0(uwGz<k18GX^X>4>svdq1xp zMyo`Bmn{ghw0m09S@%Ah;MESguj$h{jVc;Ae@}Jr{?g$_t6Df%pQdPgP4nP3Y*~L1 zwBGUDG{!bEacb<=jO-*~D#KM2uq70SoQPs2!7k%SA#bangiIxKqNqO>Dku@prhjPQ zjnX+v!gtXFDCYBtpUj^6>Ek07>Ek0|CA9h-aLm=p2Lf%Hp!zb$tG}gcP5jz z6|;lC#={qdLvAyh&ok3kbVVJA^kS>U?3t;~Czl-3Xz5l_D8lZ~7-1s7@P!{>9=v~= zEWN}MKbW~(XRnN9c$Sl1`dxTw40U%CA{W+42L@7vgNS6f8#Cg{^|MeDHT_Hp%Y6!b zMo?Ntbt`iAv79>9>2$VYcM1PZ3C5Y&rpGIFDBgZ-$qxLF|WJ3C~HiXJ65sseJWrH98=+O?VD!J80{$;R)t8l?a*rw~XAur1hM z&YYQ0fmQt~LXl0=^b0PlCzLofv)ZM8V~d^%^+dxKEN%vbbSBVl7d?X37f&ffL#Lt_ zehv7*U8B*1EZ1F&@_8M`*W^!S(CeP$S7!^ye?k+^Kb$KrxLgqhQtrhM$NQRh*E!nM>ciiU9UN=zU66TGXc~v}+mst*(#zg^L*nDtENr-K4_U389A4LR&14>AX|aT zjw0)`9GLKt>ZXl{vrGDIp*R#}V4*_X<;%F)@p zSSN> z+diRR>?$rtvM17z$`%|=1x{z$6y>(p0fgw4Yzi}dW#HvEyOw~m`IVNeUei!jY2kJC z?J=mUSbrQ<-rL!5B2LZNc)PFFB)zuu$t#LV4V%^4eOR0xWR2~n1{K93TLai z92-7{yhBsq3b^Idy#q|c!KEnlcJPZjifac{*PhXq8zjNZQls|7O%F{+;A~%5s#GGD zp+Usp%|4p+8$e$wek;H2R-_j6Zg(sX%#hrq6pKFs6D$%#(f!rZJzW+z|Hp^N>*D62 zOLhPOACLE8YTBOlY?GPN+Vk?%#M|qY;b~`xjSlbI*1!nS+X6n%^%D_=-9hv-Cy z=gZ2>z(mK>&HXu^+olG{efR~Qbchh!5YqBK)Sxlyj=jv&wkM}ML*Y0)4yYBvVN@9I z<`|SQ&nl~3f{Q5M)dg^6j?*LbW+|ixX~l&AuYr}Q{y7_%bW1!-<&p)@~!(#RT>PcYX3a15#J^X%q7Mj!%n^? zsu>flz#vOWGD+6=JPP<=1gt~|Z8{`ZX1>$|gh$c2ILTsf8CNxub5~r`&yYgG z`jBsF1v^G2yS#Y>>B4uzCq}N7VAb5$Ez-t0)s|fmC=4LXy9eRS+-;x$rjvofOsL62 zwyYsW3@<6NfDa;N@r2*6EV?)hK|h^;Lz~sWki=m+MhG*Bo-WmhX)+e2b}U39$BAvm zSZjii)j_P>`LUB$HT-%nA|i!{m}y1^q0}72guA@?=^ma+<40oYSSz^%Lmd2Q9XWt{ z92G(u)^8pHb=e0>=O83E+m}J)WgDAbg%2+d-;L|A-#X;(+3E^y6|S zC0CyLH3fk)oJDtV6xXV)UZ|D=9o>QmH;b%0s-Ta+km8Fu`0=d-Hy`16Y8Rr2{sYrc z=Pw1e$Yf#LN>oa{wdVwWi&naRP<=sDT(Ik8d!v$8nMM4Y=oo zFQ&J-4-MLHSei-;ouAe*&~?ogY7E&)awwOZtMq@c!4ga)dzOc=hd_uHPxR~K``^|T z`Eh|#Zt3Uc8p!f?(xlJVyV*O~;@S1J(E0y7PBvl~|5+L}VTPg62(^ugus39Hu?V`< z+KRokUQRB|_LdczYXP;&tOT(PLZ}G>6XDp(3QDUqn!{?y0M`O?HXwBbWaFEr=?dos zraHCPKoI=Y5Xm9g6Tku+VV)%-CRZ#>i576eufn)~53Rr3YONMaO=ied+WBLYdgYtF z*jL%2&LG+?;IOVaY1W|`pRSA>-g}PdY_EKe6mJWE1An)i;gohGwD6*MrIz>EL<8+# z=7F*5#bC$l(=Ntnvd>y@Nm#PuC@JV}yV ztIB4l4&yBpHKI`Xdap%hhLXLK-5LR*ud}kB=`qpfoOi8md&B3{7avjWy{9K+RA~Qs zf#J5F0nrJ$iqV=Qw&r~20QubtpxMot+UwsrxEJnS4dWx2RV9em&f<+0l znq9W~vq5ama@GORocnoxb^8VJ*Fxn2Xb14dAC%CEQ%Q~{XQQNQ(O`o`gpWDL09pOY z+fXqB)foum-5zlzax=>Kk_u)9c%NeFt{3f6e8xJ-Y}*E^&{EMGKK8GkC!ggD8>a_- z9KSd96NP4w& zUh$;tG)YIuwSp4|Gtw(gq$tm|_H3Xcq=x#mI_+QJeWq0p{tszMotX+Ht`qv^Mqn!cNPYM)SwmA&7hC88g zjVCzpu;bRZg*2;Gh5NX&j<(a4U$7C+F^OlN1wc6`y5T0nb!%tJ{9eM85g|YZ_o~Z* zN%y0h8OIhu))Sn2;eG{TE*4=w2x>TG)uK+-)D#e-`;X%2dzZ$WYPI-ptzMPh6#|Y1yo>qJG1#dgps^%Mq8a`9&zs&~W@E zJ20pacalsnR81qC+9-B)?D4iG{%7tC$5j{)pq=QvjqCoxi#}=MZC&*!&ZecNq|#U= zE#>M~>nFwW>DaUgWa*8Je8bs<=LIQv0^@6G{hO-?n3kFPuN+KgR! z>e5a(PlMibwD#oOT7w1S)e)*)uJa(#W_Gk*h7BA~gE>N!ch|lW*{8U&K&P=W7wNvk zwyVc$X7s8}r0F89Y#p|4Q@9|#LSf+*qH{B$u6FNFSsJXB6Tv#)TUxFRw0YX1LqR){ zc2w0t6W$e*=e~yO;jI5=#CNCVfOvI#R9Nob?0qrfJ72QvKdm}ob(l52bldH9^dgI` z^T}yL?&k@)|JlNBdkKWgfP^Ifc0DYt3UY>Dlho_Oq|&xv)7tHkn=;OT1~pdr0MoLYYXxvmjUag<@P7A$XJ{SN+)9ll>xu3POXAhzrKkR7~5B5 zDQ0a`N1Ot3<`~jxBk()bVn&BAVWGI90s1Bk+RcocO^J&pKkt4*@i5RXDwgN zycPNpk=NS8SBV%s&=KZ*6!L{MTOkS?$ku2KV~>peoJvQ)YZ5kx-T0(>up|K>k#5VG z5v8VSDry=}&5-vMa)vL;Y%V4W(i$pq3S=fSFmTH}QKNG4TSy|#mr(!F2in?z5qYk<-t^&CS_ViBh3S18x4&IE?x1x9W-?}3xr z80V^q17>1@5`qAM%|TnsN(?50G1Dw{kk;ymN?S9(Prw{FNKt#t$b3;EGhP9hqywJl zQ0n=79Qp3a^g!J>RE?%mP_wiK8Gc$oZ!uB6VH_n#+w49`|ie2`)?kB(4w4smdT{@S@EZ+9TqZjidf}5M9 z>R}ojK|xQA2L57#)rc~hK8%+mHm31mko=lzz=B#61CMM*N?Z8HRbnVJ(dRZ`1ztX1 zWv+oWWGe+9lvZ6qGv5M^?Y3E%*#6k~ac~OiF$PuPRK#JLB>7n8cIkFnF3FRQ|XC= z@|K`ah4Z>Z_M;J8UtAWyodr!Y1=m%8JFTB90WGR<#?UE4Q82CT;WBm#qTv5bNiEI~ zxsOb!jfq6N$)%#P*V?B}EDoJUK*fYKby(Gac#Mgfx=D7y-PrpgCDx&b{$QMqlI}q& zl8+Drj+h;X71_PXb&X;YiRhx630YkU?MqB$)f@2jyZvwd&*H#UwEC@drHsMGMcf!FW9`}qMjZmNX!1pev(CcvT^cLAO1s4gn6D%LyY=bW+Ww#MeGJ(@kMuZsiVPDD%2)Y2lEBjJ=%DKIAQSOP?+0Hnxo{F1Zs{)pv|Agj{dA)a0{v*UDtJHeG{^=U>{tU! zPbvO4M?GxpUQ|F)P>w5XQQOQ{@7QYtP(V^-TNjW(H>rL}T-QUMHow?A5f3A5E9f}! za)!BSo?c6yv5&x;>chdTI1-}yveURw#{}HeMk_Q6fWdZ{Fuju`|_rG9{*0Kfnc004jhAnCNYZUY1Wkb?mL$N&gnEg?HwXA@gzJ!KDj z6DJ*7cN=T`LJ(l`d;suw`~P$O4_<-kWF4zPdX&%`@W1dRZACGi45Rg)4RKR4>3@MV zoGgPZkQ@t_{Q8z&1~60*Lp+w|PqUwWJjHiE?G-MK;c!z}I4(_prutJ+ zU!cE!+5fB;PT?`$iG+JRZl9uI7VcKd3lDtfETIjKVuKrpFGR+fWv7CO;8tLOwR=-g z|5Cid{eHb*LI<*OBx@`i@BLfAzP^3{rX=#BV$*!c6xPCSC3l$(Hf7lE>`zr;3tOH2_l_D&xe4uUdP z&<`=c9^d!LtsU-|i*bTKhs@PcNGM!Ht!_1;X>SfL;FP3}siF?m2g8W2D^DwbGQ=c3 z$X$ElD687b3#2CYh(wp}gc}g%Xw|SFkxOtw(ReZfG)HALb`4)@fmQ^Su4+Q-+t~6i zlIF7f)>2E)Vfn&2q<=4FppH8knr+m2k6RNwy<({-nR8gw8|FH45_;$vTlYT*XZ0a} zc+<#ck1G-~BfT)riH(uuKly1kGv7_+cnq^a4poicP6S5bmG6EVtp5s&T@gFNr|;qi`0)*jG(M6>=QFm@xRjITNvDFLk=N-R6H}Z_Ew9bwpt=G9W*uQLowe~i2*F-tcfQe;{w)Tr9` zC7l5CDk2{wzE+y(IK_I7nE?;+T9RLp=UCV35eMKJux{!@JQ%Hh*swv(nl-`k-SCAT zT()qXy_$`IysnEZ;yQi=CAG={(ShPDGwFpI!L$bBYtDQJ1VYSD?FOLLoI>372`)WJ z4?X@s%f8Cwl$3?Pg4LjkTT4E>8Z8^hIKUCH;UDutA)(B`i9rtdr559vX3)>by91{>ZgE)FK~JYYZ&pKX1Cq=n1Gk8gNR9MBw{MKkSe3*<SgRq^E^2(Wb`mx8C^$YY=|BFxC&3u@6vTY%$On+98mSNJL6OOn*_Ww z_UFsKu;PfSvnU#U(JNP`ad7PT$j=TC-csAxaSia_o0ll+tvw1YV)>-Np7V6up;z8n zPVqkF&xmZ8s|2_n5bbp#hV~sdJpS9WLmoE@iiFq#Pc+`YnAmSIyPp-Di~7&>p`ZJ= zZ9-PZk`f7f&_k~^{{Xe-@M{4^Ym{x^&4LAXM|1gF!2^ssA!Vh}!CN_S;dPdxk^Evb0^1w=!{lcH9!I7FhTAnY^Ix z4uSG4v3qbY+25boy1JEKT{-`GPtLaD?!+D|dbkpUhcD_gTe|r`TlFJd4$K_tSyJ1* z`0~{Lg8u(QWq?-u1oSsv4L|?@EC2-1H!A;az5WxM|BodD`t~!w+y2kKx|0Vi|E0-; zdV&^w91>l3FkCz-f^^%ifuswE3nG3}yJ+qDlGeKhBNc z4-5Tz@*V+02(EBNWel2zGEvYN3Cu9QMK9+x7{7oU<@Tpw%^4J{q)dM?geysQfEap+ zScyJMV{F(5IrX!Vo_Sd5Pn^@Hle?t53!WfHb`p&`9e3Q5ozU?wqjBGF3HYxHo|UZk zJ^=;*XcPtjFuq&--wNKz+{DD$iSAzyhJQ4Db@Ei~=C`Bzobm>j`W%k|!G$sO=6|KQeJLZ5j5B+Y+&Z;g8I&+6{pSH`P(g z>$@r)GF!6%^gDu@MBPj{Q4kno>E&I$Z zo0dz6BDZjLNsv;9`sri2BO1C_c)RyX9(A7R|0|~mR z*Ihf#yb%tMhKG!b?nIJq^+U=SSS}wB6F3eT3&uQ>t5(57;b2Mx=&EdA{iV4Ng>@u1 z?=*Y+x>||!y%L5k`y))B5&~j!1cO8fv5g@j@{}d9(6GUe_b5$pIJrETZn%bUqqtOP z^*hN|y36G+*5LP9oX7oUS6O$u@3y3N8oQ~QN->GPO zu%&?CyBl>-MNS=`=vuvNwQ(KOIPF*``sVzDhtF~4m9-z2cK%EwC|ZF9jozLgwLL%M zmEG|5_Hlo_j`iVvdh;fSg~j>#etigiUZyp&bHD!)`mA!Y@o{(myEYcb_sP)v^ zwhoILk!$3H2aglAvuM4pNuo-Id@`Ql?j^qtGs&OSXtY=`$qq9KOJ)``>D2OGM7=}t z$Z7fU`pZldSSN$RVnPhol}6!*zS#Eg6Azx}#|U!EcPH;L@7{L!T&}#G)5Ngs8 z!fpkWk9x0f;s?DJe-~Xu7B2Y?Em&)Roxy;F^gtx?LkmpR8BA6cfx!x3{ia}&b@0Ik znIUBoC~;%)F$o%F0wK^&crG`%*&I~_o^w;t0}c_6VD+WeX-H&S(QOvb4?%l-!ecQv zU(lapp{cbCO5Gq{P~`eF1dlN@7icfkTZUNBQPI$xFN9NOp2hM@*2&kd#4!$ErtIqS zE)AB*r$WtjLx;tpWL{r_e?(bp6Bw~hlvKarHVYqRQpUF~pSM51z@k*NixBu*$qzo6 zw((*LY4wLt9GC`V!OeL&p8$fpVmR;cjTItO#x&6KhJ6Pt23jCFMh_7#n+mH|TL)O6 zhD3ZTtrq@3RbXi}QMBMX{>xhrzh;(KqQr}I&IgEDc^loI%!R$Iy%%=YG)Z|ca*$=2 z9cB|>2x~CF@}b;-j-qP?qu(+6%-t+zYII4}CRe50XR-NODCydl#|?ZQi%Di*VxQuB z@}=LCSMCTDgkhQmHMP|0wcHzAsIv+luidlWncsC%sxgo#uH~Opb0xFTc{UJ#?$5;r zHIL6AxGg4TA9=E&XU;0#nQ(Z*V$PNz3YPJ!IoN%Q7ZG`W6CZiYYNgA$`IW_P^{#N= z2)vml^J9@5SMu3_LbUT*VE{*g#gdick)>?8eH6B|bnebueB#)0GMwPx)fm`pg4BsQ z2b~_=t~l=0CbFV%1tdv9AKy4-=Dr{yuR8EH1GjEjkbfT+Sbhrr#StCRCn7J`S~qFt z9ThEB>gPad4E{DFGu^=?0;y8{1PBmG)-N_Uuy=;`TIkm!>c*C=a(PP|e|QKnej2U) zsSlyY9b>7ylM*^2)-aT#!O{}wl8{Wv8;H-vv6a>(qNK)r3^RK7Y9pW(7@8GC%uN{; z@)q`ftszADDTEitO9US_%*C>&P0%EHVj6qB+*}8P_{$TBb~m85vgo%TaD}+~O9qS3 z!=aljJDML`GPdL`mi;`xzW;z)$(lR>xX_dRwMs0)i{+eXy+?h$|arcW%BtoXLQw)UlpdkvUx{~I^sW~CHwj7 zX~Kw=>f^ybTYeBm3W5+1{e(g-=uZu1x#LQXbY!a_6xB>;^cj_D0QQl|GdPLNg|n_( zI%}t28DY)n*hHYl=Qn8WMYN~O{F_<|0_Q4V)^B9mLN#dBk;RBeM1#`63{*}NvTv0M zT_vj?`RLK-;BCMno#!OMnk7RnSI-G_T}aBTbq~Vvvb)#W4!CrmCRCxIqfF_VKxJ4Q z{CSD$uX)|S*8Eeov3}cvBHxj^9d7B&o3|RLNxs=!22&WbaAbONyye^?O-N573pY(5 zkzp{>R^ggddsrM=ty&vk*#WG#0JOS-bJ1od@ zW0}tk=uPt|%^!UX0Zvz1UyAX{Kmm3tdZPVBll=YUtl0j$@K$XOzL_VwkiHy?E(uKC zDMac&I6y7h7JIo~k-xe)MhaW}cO6zR6{B4$Z2dSDRdYLLso5KDn7+j8K z%c8C(31p|#ltoT(m6nfvb+e&gkq}IX%tR4 z+PApUHTdYql*`8((6mi{e+Oy*dTu96+8_j~c3b*=)F;y20Dcfzk71o5x(SU{{ymv(XLqpIP`seCK z%K6ETFjQR#m66~#jX^mK`AA%A*?UExy-3sgUMP3=j_*yOA4$#kei`U)HG zlc4N8p~z4gxxXf(fnZQq(yy+JF!ln2>o29~l}-tE6^>rO&jD>DC#S-AoXFTQwtoCr zyXB{!Z_4AAxOqo%(CDyvRYyU!6_&3-uducXr6P)q_uTxA9mGUz4?p%hjENV5o_TKJ z;Z7<9XE(e{q@gWe4 zv!1`0lCA@05knOr=nO!<{={Me?Bhj4$RuZ*3wwtvc22Ftf>C>Kp5?@AIOsfBSrm6ynlyPcqb!bJJ9+;}SAd4JwTD zOlpeclhSkk4N~{e{e`8HP!g{sB(ELxx}uhbl9q_!X4S>QBFhVD5buuD-%t6%GI*|A2({{EGZ{-9_zJ&i45LP^(myoj zIRNR*Bg4T&Qv4hU$0xhbk8KOH%K_A%Oq^Ut68fepn1Kvxe)~xVl%#heW@Y=RMu$mF zV_)MTLDd>T1i7?>+Coa)8a;HviDG{vTvO;=D;#u$=fW+ddOM<21U>uIRY{Gy;m{)nHSeV;18PL5ALus`k99+aZMUB=Z_jY|r)O+ic(7Ner0;i!eQvvj=6bP5Lo( z&Ec>X|>yHC}HQs6O)8C_d|)|Aud6r zh~zBvdVX7)np!)ZTBCb*^LziZHiMT(HgbIW^i0>+3+MN@R$bcG_l@)Y%C$3F&NlbU z`{Qkkt}89iulxPz`1Gdm^ZtDY{)?HeZjP=GF0jdhBX4_;ClA)guhqGM4Ny1K=i8OH z)mTDe|4lvI}nn5R-$ex;3H{b7B>0Lgp#cCz}vf7;R2SbIW z7;NyaeSJW1r4ursz?31(mTE}0K^nd=>Z21GpDb3Am4GdG4i_Iw$BN{n6?q9DsSH(zy}}%ujrZu zchl`hqcm_`Y|6Q;4UR{`|XVutL%rr+BV+(T7zk(Cubs}?G6yA>T_d$7RTM*&w+=hyei2LbDv)Lk~VABhDLwg(dSvBs^?(_>3{>%O1mj~lXz+ZL*#`x)M>&V5 zgtO5Yaa#%^z5|9n13`8c@FW|$&gV%%`KOclo!e@Xx&^Yy8Z)KokB~{R_S_=8iD!nA z@FkHgfoTyh1h_I5;-04?}l5AvVAUJNW_yc`gn!=UxZ$M^~xzn(}$g_WjqVrdq0XAyvA%Uqe8+N9l;8}lQ0K!G!0h0Q;(CTrET`8vzjTJZ{R2h z=HQn+8$PEVCyD7mz|xI5&$IItiYfE{DX?F=sQ+ChBav{3*9~-r+xy89h*daWWY-lj z{jS^WF~#ps%w8a;$vfFCdJ&GHP#`-wCW4Y0T`u!8!H}pMs4pyD7Awv(b3Pfr zW`Brvku5%B!gEk4o+GhBy)LBl(VedIv;=JFIEZ?G-OHP|w$PbdxV^=lL&FQR?eWya z<>=t^ut>hT@xB`H!x+nTO zM$NnD&h3as+-dMnFUPya`*B*$g9+ojSH|U;CQcW~o@`BE`k(B?SgIXu!ta)nlVb__Jt zE0Ffn0k7&s1v_cP!`W@5bVsR;%-%1fM+qM|t;P7dZG{?{VP2T-$0xeW6O@qSodw9r z)p`EwZ*i3txi<{dH`6c0@Vm13KM#s0y|b4`P~hCC`!}avs4ygi1!fL%Ek_V%0+=6~IL}>fpnk2WbPdWplEylpzVwIhX)XDcyf%trC&&A@x>rVc zQ1A`I9CZviHhf8!wQ?FxLt$yQx zfwsvMn+pUJbz2dSZ|?Ia`FaKAAvYfttra<$B)0PK3Dc=~3?NpSNQw95%n;H&CRLUe z;Z98~VYx+hl0pJ@iU;?XE?)MB@qRQE^^ zixH$W(DUTRsKvgCXCPR2^}x&&e&Cl|9ErrPXwZy z(jiND5%3K<$}yv}e`>{b%BRavy$W1dju2`^-%)NtcN$W`hB8)A|8CA0!6m5l<{lYA zp#;`d>5(?xK#pOFF;5J#;qlaQO@u6*kzR$i)TGqks&-mmMs5xGm5>mJR8CD&f9x_k zCA`Y9fUx8~gVC@Kr7OMU)tBUvE=wfvitCr0V5;=H8JTpj=xyomSIB|h|9f)$zn@AB z$DmfP-~s>|lm9K1VETtjWG8LKF3}@|-Xyq#Pd(QpJ=QZ@b^=#M_6Sg=2DLlqNEofe zMqNDu4tFriWLgywp|Dvhj;6gI<^~@A7O5J;uSzJHFyo3Q^OH!^R>_F=dF#UN${%vq zIo3*pV)6tOJx8t8oq`*+)q>oDK&DKYpMTJrOh+Iwy9qS~LG_{h6B1dmP2bYk_c$s> zl`1r!WKKinK~~%fGl&#~QpZxTDu2f`6mW=p)1h#yEwNYtFYDM@?Fyjx3=3~jUd;Q4 zOccXsO{({*rav>_Itj$0`9ba$u}U}jAxlUZ#4v^65oYAD?3MBvF^!6dbUA7iq55?F5z2zFR&PH`9Y6;84Af3b5H3IsRJS8v+&og3~>PZa4) z%Uq>Y?=K*!Sy`{2|0H)BHy7S8oaJoN{&!GBM09WT{JBek-h#SUlD)l(<<9#91S%LD z1y$*O3FCv<{g(^Q5yh`vzEDWjv>o~qr<29M8HGB%G~t%uRi%ttc-ne7e3BTX7W89g|BE71%i zhC!Bw#}v5$&-hGoEj;9oBeRfMJ@A?WBP=O=)xEGs%Zk335pZRR(bUI~%@;zr^HdsQ z$=V(-T19cq{J}tl6K+?pG z_r|6@U+)iPa(b+Iectc4pLTv9dw8FJF4}Dh-M^OD7y5!T2J?8s zzP|p3jr?`<`?~$yk=q;9J!~+k2;z&CdU?vaAbeq68;F53+^va5!`PWHkH~mt)D&tR zabeg#524sGvK7Z;=NJW_jlCl(8+(~J1>djsH*IJK-US_TUx_`m*hDn-T#4-t^c)V7 zg85{xCHQ6RyAW46O<5TZxaX!)=2U zId>=BnW&x{PhDwg_o4@w3Id*;5CS-d9M!hkT4*g00=Sn@Yu2{f+QW!IGOxBuWIccj zH+x6w9MOamVk9v>((LwX^~z9ksPjsb3`(~+G2vF~(V^7ZqXZCYWt|G_g9LcW?!yG+f2>i6WK@+=IHjLgPP^;r9SShjA7SaHaL_ek zwe=zL*T*UA<=|HtK)W*bj;p$7{lO^vu({ z2!KplmtZMa?+uc|6Uv)J>Lr^d#Szv|OQt|zh3vfqXTd1}JB(rtQr7h)o155w<{qPj zX4qPpaGR65Y71E#RwU!-q1*=p_JDP1D~dtnB{*`2Xj=g&sJcmT{@xkQLp%q{0+@PA zpd-iHIFAA#smcS8Tok}h!|0i=iXfDpl%IvU4si))q;KooGI&GMYCgm8k4W&DDL8BP zEr~9w3Iw3@#w@$NHPPVE0MM-o_xeHg9bNSJl=-kfTQ6>XO~daw(R+6pzeVzM>ARN2 z5zQM@JX)C}3FQ~qAh065*bkuwB#Kc{h7+yIXB2p%`jcvPE~>XHsEssL$RA(Ok4rct-T=*K`$femK%xkq1+Zq?`p%l*Y{H3{pEKb z;7J0gVtNnO6BVve01xn{Pw`t(0<+{GwXK;Umbc#^12NQ9l~p*VpR1%`#(G46&veIH zwO`+_X$U+}`m4OO>L<}1skAPB5KFJf(xufL!2UMjo_nFO``$3NR(k6km@>bJsjQVK zf1j+NoT3_3AUr%{@05y0xPB(w_7){Ic-P~IdMi6@dx7-{r zLhew)Jo*>;Ez6aqJBzuR$bM}2um(t`bl&?5?auo4Syb8i6Z?uvgM%0yqh;w+W3<{z ztx*3^;O`^By4fqnDuemf^dXp2Ss;;7j2m4b=q};EKW|q`cN=zoDHo0prlvJ03D)1h zZ4T^LNFHwpw<{Bz{_l{NLfuwl2%f5CzTStSv^>W z3R8-|F$GgeU|HY?!hYZO@5?HA(^;Ls#6v>OoPipf=byJc<&pUA_2MrLUMUbjksahO z0wkHQ5QF_H0i95^WVt5^Rf5^eu71|0AL5CG~qOarVGpWW|DD~s3+gr%; zLy89{8_0V8GYmS(sI{c!nD+|ZWg4rsE1^iNDjcO0xv0foOTOK)PKFdO59upbV8&a~Y=6a_=#$gqtK)n<8;x zkt|cnkD1S3ihcMTDz-kSElrEB#+ma-aR#r~Wel=%8=ZmWPf(W|UZ^k!Y&$q`8{$c8 zZvcMyK;oE(K*8djGMoo97e2dz5Ory!R^x*^mORF-Xpu20k!q0~lOr|C!3G7<%6!FT z8^Jc2>>sEarRS(&AYQ+Er+U^!w7pXyyxulvDpWBXIc;PQGxG|Pcbc#+K-L07E|l*Un}qZ%pEZ;pP}B%eX{zqd9{Gm*Skl)@G3TrkRO*k!NPw zkq27EU40?-A+4%-<`O0jwne07T&0A~4SW_4SB_FnAD>r`)QK=Ql+Hz<{*G*j>E?HJ zxZeIA+FViDXoap&CCNDj=F__`K^_|B58yNt(XE`P&JjqSnfdNItIJshTjp7AHp#JZy&$d2<%Z9sE%>ktJDxBXJgd$cv_+;JQ&b&L<2ohKJSpUptL-q!;&zZk zlUhN9{|44o1cT}Kwg6#-s_^rgQZrmv#`hP=pr{2%1Ra90ruNp#dWI2kl?VG2@I-nZ z5BjLUaNJsin|XO0n}q~VVoA+)B07@iiW$Wy>0DJ?m?VyNQWG^cMLXHR)GL<8Vs3;!|bkYIu5q$~YU=g>g7$%_@ovx-P zN~UJ-DQQw?(11|dV{Do$Y7^A(m842~TqVc$+oBOQ1y~Ohz-tYmPjLF@960%0YK+^t z@8un&R;nwS5x)NnvvJ!Th;l?YZ`A+&)Z6)Tsnv9 ze=!Kv`EyZT!(}@PCXD^H{M{o#uQ+7|F;z_QPC=*EK}^6p zNeZnBOTUEDe|IsHh`{ttXkq$1oYZL!D}Ol`3hF#Ocf9ZzN`@!O5BE8(oF<~>!B}m- z{HjKr+!K0Pj70FD5u0i2KZa{8@6B28u%BSGgNvc&Lb2BX(KWZ6YIQ$+01%bb)gJidj`+ zGY<*jtkTRM6Gc$E9X1yk`y=4UfA)ww+F|78LWU=BOEJCPnz~1?ri1Q1s#n=pRwffu zQxxnRo?67V+j^}CkVA3$O>!LAS><|*v<|CW5|cMDaThd9aWQ%q<>+@n4yRlixvQDF zuSUbkGmZBT_1#a^V1Z-TNEeM< z7mc%))fFsQYt(&ET`pkCregiEbj+O#n1ZcR+b|#O1&5WU)JC<4`Cbv3WV=iF?or{^ zYQgJ?RF#McYmF{8sd65t)UGCzsq{`PqNXozza@vtU{%tJswqZ7EsH%jdXcG=O~O!R zj=ja+KiT!tSg|~0)~lI?`m=yjJ9Bo~H)x9B|R;ZXZ>OC~2?o|4gr@WZapGg0-Y$C4ARFwfiAxDyhkwZsrh5)ePm@*KkB zhLifZG4mInF`#*|c`M(PrLdG#;4LkrRqoV7(ik}1BA2rE$AI9SUE>DH)-o7tOs_;lxf*i9kJZu}J_p(F(g zRykPssY2*2Qtg}OvD&>7QL7g0uDf1i1Y*c|DNqt~PN}v@oS~97O|k#Yqsmxx1~!Q4U#-I+Qr2k<`3`l6caT4tCQpY zEZxRIr9ZMJ&bT`AOO?UxDg856sYkSRJ?KD0^y3y_^AltCPT%^nabE3=0E38F^W5D$ zRWhl{fBrO%ixxEa2UzZfJb5e9IJ1=d z5>H17pCPe6d^Tk)w=8?-hLf>SB|IL+Y?xy3qc*~zQvj$SY$02RPjT>)TrRl1Xs{5F zBu*_vV?AxoQ$EX3G(u`Xr_zXFg%h*AslVI)S5bJJA;@Qo5+A3)gjBT_QJV<`;R2-K z49!gqq<&2BqLds2Z+rc6u+s!BHbHsr`7PsNZ$;ofs< zm^W^&(r|Rrg>k|xrV%M=5Z%qlpAj=?8;jS5-z{|PI!~AC4s`P?YhVNxEy}nmIria< zIL?z$9nnL+p9fs8BDjNQSMaf(EP&3WAoRNCOI@L>LB{9N(Eo-xCUG9L-b_^orb=W=v2~Lz8kls)z?n$+Qs4 zFV;%6Ja^r`RsLLm{^m#qitPG&q9_J%ju-zM~$92PhfzX3Z z{Y?)aKuUySDCgyi+pRPNo_gYtu#0Il^qRm%kgr}m>%ijOkuw(aj&hDsrt=hY7xeD(#W!X(DAzJ4D45(I$drU8M9?uF9EA>tmpd-hV^p{ugmm|Z} z90^mhjOI5C07|3R)6Yj*-7zVwNR?dgwJF^7uex^!x`chH{`d{Lid`O@0YL}-cg8JZ zB+CtNS5G(F?}_hY_3M%A>$|=|&hM7*W8v$O>}x6SMDDE-G6Wr`&5yUE4GC&ax0N`A zZF2G~CS_`n4jcj3w}<KioA&tKjOGLUCB3AP|j4FHsP>O>!X%{rd+3ijLU323kPo-QBd0yvyuU z>Px|GiQ&6tU)n446>X&A=Fmv~;Ew?|4)Rfi#*@HsAu^>g@ zX73B0qMoq+MA{NWGh|()q15p-U$DJMJChkXyc_{@I(~@dNL*xDe(MltVLsj75lZ^n zzDZevfq)ONQK;wG+YFYum(R>Oa>)v0Gqro6+yL)l@qVjrihXI6Xq`QWodetlglB*p z58Q5Z<3@~QzHwm&GGA>Vu)&Whw4g3tF|@=;w1M?KNaa-XVT%=Yhb?-|krNX87>Koz z_}l)91(53fh78Ag(&dG#0lqc}R56^O1x0=`qdd4mgVPQ!3muaGemws&Jg4=Iokm`g zg@UB6K#Vk%QrIEm&ZInf7_Zq*yY8at@WlYg|X>OL}sp_fCR|h6|Nzy`W8Y-+a9aZ|`vR+72O(*2`;@WRICQ*(y(bdQ7ABIG&LjG_}r{?{n8 z_Tg1D-4Et-TfI=TVt0BFPBz9#$#?1E7i0G&%_>@D(l^ne&Qp)$m2bAd;IG&{UcMzm zP&XJgO!F5=J+z2fAmoCSSuuqbN z*2gddB0qlK(~Py#a_Y7lAjl1{+Kjju(04u9d_VnLtUy`wb>8+_w)dLnd*k;O^mQKh zS;qI8_xaoJjqNq5lYpTml@CS5Dp<2=jY6U(rg8I=c0<$P$o&zU0Z?SmCAJT~%Qg6$ zJBqScYPHrqfo_D^^mAH|$DD0l)RRV?KG&Ltio?%W;{|I9Ut{oG~Hl=h;? z!+a#SYzU59tX-NhZR=Ny%!XpfzAFi`mLks*t?M-i2=(mIL8 z8iF*_YbYS-kK0E3aZ>3#p;jW_)B3xfgQc+9)=;~|vO2d=w;M3IVs+9>HTZ0YQj<;o zcj>mgqJstcG?JXqHYGe5hs)(K($ZaAWy6BqbU|L-U#^4eCYTP=>(#Zltk7JRZdFXw zjHN}tA@p6|b^#Y|%{XRAUS~lAT zs|9@vo6lF^{id6F%7X@*GvG)wTET`$t zFB}X%e%?JvuEo829a3fAgv0I!d@CB(6U=bB#j@C+uyIBn6U~TuYprU-beTux$JipU zQ)f9+tg9TyyxNidl_t zyJGlfn8c$uHGA}^R4_ax1F9h|N@MOXJt4c)sd!|^KD6Ek3;cG12z|XC4PIDpnqea} zqHgcq3X^aArpPoprkM~U4Y7fVMrUd%_MA2q=_3NQVsF8cw9+cjWg)!WF&m)y@8XOL$^BrdAeBLVBp_G z3l2Cyh=0C*q4KQ^UFXMpR;sHJ6nup|K^s-l+AYJ!>92v+qKqyhFV23GbtS?y2EFHe zS12O0&5Ywq+NpSIh#rZ1msmC4ndX#t+zWgR*rwM68IjP9+bH845h-ub&-rSG3Tk8A zA%aT|zYN>o_V~T}R%-#_*v!V6=16^}`es7N^4|h{z@c&Un^}jz9 z&SZi8EC2-n1oHg1p>XDZm4PSkd>02IgxpX){iNPQ9s^mo6;^N2EV!0wseE&?`Od2i z|IVvLlV5SWVGr<+q!j5wY>?pgb{ch>{?5{)x(8mRP%=vvV<3^2N~-eATDaL;O@dEm zr@PQrE)9*w9asok`Rg{-)4-($>>e1rY0~`ID}m|M2tuQ6j8*PXLaz!P7w0;qZ6t8K z6X!fq>d>vPS)TbPcsbS}y-*$rH^!P}xi?I`JXq|bRyl@isTn6|Y4Cc}lrY8?p+O<# zehf}BBK3T!l~vW6vifhonP6hj$Q;VeadxSfUy=ls#dj<`E`Hi`rtM^}$&2)uzq7^< zC3G%51RWL2T|h>UEMg9P^$}P~7g7tRzFvpbMkRM)@9sQve|iW(?vNNpZ4Iwe)0Nkw zwW`Fzr^M2|b-3j_ul5}zWy6fQ)Vjr3NWFF*(EvR>gs=$D84ubcro3xfIt!NMjYC-k0YQqn#g@y;Wf@2kTI_Y#w z%pOT6YNGI*TRf>$P=Ot(X7EmEEkcOxM&)`cdX|Vc3LPUl>=wg2oB-S2w+1*9X@k@5 zagH}VFP;Ymdwsy3cOVhkhWN+dRR;R6h=C+?Uv#o}NhDH?2(9ePA-{~T2l{hyTs+p_ zipN?#*V?ZTs25~1tT zpDQo!#?G7#EwJ#{x!d2g=NgGq2f227ynK9p*LZq(H@1B~AAc{l#!|F&dfs1OPE6j< zgRE55^7O{?YoUV zx8h!)xVu}?LW>orxEI&r?(XgqDDJKe&X@K(XY@Hd=l%QsdNY!}#~vB?ot@wktnt;y;WZQ_84q0IcA21 zgI+{3+GAo(jc-KN1=CnuLGR(_sVF#ONN5ke${hebOGRN`9ZW6X6rF3@2!DAHZJ|BM^GI zXv*-GungHniB0OSBFI@PweGSWnJY2YVd^8&yJ_n%JSYIya&d`YImltB8l0JI@)RU& zih;+Ri~c_}%$FDwBfcBED_=RCDqS`rXkqRe`b;`&?#gp96NtlHQBPB8i!DWN`HVil z(azX%*xML{*5&#DRc#(exLqn=GQ%CvC$o+?mL#`A#6g3aF6qD}bW}xLT5kiN>_+Ff zDuW(cO`GGae5zd~KSDmNw96bxfvv96x7ft{iF|mIv}zK!VM_|j$|R|ND(4yeu#$!i zrN~DIHp#dVh;5Ja8a{{idB9>7?+q>+Lla+|dtj)r>{7X9iMxJXqA|V4q!E7!u}Uhp z78p_YmHbMPZe&}$8$ZB3Ya}$K0#415DSk3f?#0yGX@LTT*D8a&p|o6t7hPn+CS;6>^{TWDt?zre5>8o}G6xVS!-@b=LtK zgIT?bbOD1wZ}U_PvkKEp2ab)N(}M)cG^tb%iSCUi*cOEM$@vSnC?%W~$5a{$S{oNCXsFU@p1LhzvNJ|Nk) zN`*_E%Rdu#;@;@B)fViTeGD+ z0t(sNaP)YBHc9Ps$n2$G*uJ)+m$Wj^J5++L9FMgl2^!;{NrS!1Z$xTWseGYu$r_oQ z(A$>M<@p82^N=)7c~NC5=d8|Z*L4p5b>ns{F|BmWn>mUxUg?ay@3%VjbNGVJZ#3># z=B}Za2M#hr2^27I3*Wvti?f~6=WM)XlihkmFrR*aeizHS^L#(d4^LwnYOtFhkYB4P zSLFMBApK&a&XlxMPLC@`*F0x=qSz4fYgB$M?4cJc8|~0~#7@C_j$8Hl+RH1gX&q&T zBExBhYREZ_i80NuzRuLn+2H+MN%5kzaE>m9#)R5}o*|f78Frnpi=X-9LxNUV^vSbG zbx)|i7#ViHK4~N$03Xn58Ig-*(Yg$XHg@Vz=oER1DVeYqqv* z*n)K!u{+a{Om6tmG!Et#7W7W?I;WrlNTTZTRo6C4YOoY}S<{lLmECC>1UIFlf>VYd z?|cmVj;#p_llASllI=&(?f>Rtu94vI1XTz-&*k+me%@~;g_D`FwK2o*?Qa~#fx5Kq z8@4yCB&T>q^|i?#w=!%BjR=sd%(IL%r?OmTc-Biyc`KSF!2uu=42(=ddWl6&!gM7X zd#W^Y1z52?wG~^B4=yQ}xsr&~{<%ugr+0VY$NLkldUpZ+ov+U%-9ShK@oLbb6JJry zaM^qpnvZg-0h0ccP$s-&!+OF-cFyPb;F1+&%xFKtxwHY~MI?iqiZCU~fU?j{<8P6` zCFFXEG9PjDSa@gxs2_f@)HF0pEGt6B0la(MrB-NOZq1X)CE|= zYX^*T?fFIM4#b)==^{f(P$?`c;(QLeaDn;-D`G6~nFNH)&!rG;H0tCq6Wm|P%#DiG5$t)ARrHMu|nd?AvsaI-frQPrq^qY0Q7;Hz5r zerPe@jjNuAM`T7w9723XNOhRy?$vpwd4h(IgSG z_4lEDS?Q)rxq$0VB4`q_TMg5GzS$AQ|Ds=EOoq)Dl?4f%DGz)$4`xW?6N0?>y-qH! z+U0vu3GfB3#wQ%uk5*WzZ9Gp8O})MDnQqqmIT-LiuJ#TRKg<&FUvF-Y-U|k%bBT{a zu7_Nh>>X{rxd0#IyRB$KgF{a6WdlVy`q4q#heVam=bGIpU63`ajr*MbS|Otm zXl=NsA{p@$Pdv#Mlz}*BycUfkbGTyyMgeUNQ8*{RX^?pKY>0OV{LFF66*&S^&Xd%G zQ(w$~xsCcKlN%$tKKg9rb6Py~9z|2Z?2E&CGQlOE@lwM+HJ!@i3duEM|4b5s;nxZ0 z#1+Hh#n=>y@uo>VVh0Egu=K&>_-g!D^e!Z#0={^54O5FQl=egSd!ly9Z&9Qj5yowM zIt&Lb{Tfd>^+jZ4;y%Y58SVMy=H*zwC9-XmUYO*rffF0T;^m=;x@2C|OvqetO*ujj z4DQCbq!(!&9BcRH7hwq53>h6fe}|;*zGRs^!lMpyMWr%Cu;}PRHg~s0gfkoS7h?e? z^xLrq8Z+G`%EO`1W6T{0`FxMa4@Nae5n9$^H#8!3oQM>~iDzU;GG-ZzdRa9bD3#&N zF=?VbO2qCcQS{-ujb1I}d@D3Gk)MQRQVzAy0@{?XsNn{TLZev{S2)~6Da90xGE_|o zM>_&UkVW#DK>&h2A?j8lW+9sxrK?!=9u>e{P(8-5Rr!TLuC#EJX*Sqn#JAj`Ivs)> zP9|n5vfd}6@`SMI^$p=!H`j<(QDI?O662*&bcE-06B2KRm;s{F+vnvHs>;Jfo6|!t%=z%d1F~fsBPjE0UXp*Zl6)t3tE6*|3+5Bl*khqL| z8_R8WnR!*K^MI@MZnh0`2^&k#e73@flQe@G)KF$n!hu9Mn&4R!$Qg(ro zo#(>~L%nK{m1!t1&_6KDAN*gk@Xz{2%1O>`bDTy6FUt3yP*trBPQfV=%ZelJ%H`!WGz=@ zFIctlty;n_H??70(w%;6NTC*KZzUA+#i(ET9SEs1FM*#MY&O}bN6}Ik@fNm~4ACxp zbdY#2pVt;ZzX}!HJ}t}MKl!OW^+Ev56_M_h?UCqh>1*igmNAgnV*Dy3FXmn2<5ZlX z&W445ltw=6{?det$*U1Hv#{5+uf9p$5BanE?h|J}`tFH~^&OZZYs-0f5-8F5lmcri zg;%EHttLM^c~#Aqqw+;-SG8nI&YO@O>oYX@x);w}dRn9+!j9{jF{P&SG?3#;7cCe5mIx|yF=^cD z$KAhDwwTROQPLsoyGvvM0P_5WMsjp=vod!4HRLg+rfIvt4)h`zdlY0WRdy=hoDay( z3@1q!R6~-0KZuQ^Or~Uj7Rz%8c>v=pRTO8NACk?F-Lw-&^c^oUNa@u2WbqWf&NT|| z90ZV1zffVWmpfgqt>@^@XA+I`qmfi@%0l)^ZN8y19}1sLM$UnU^0QKEV#@t?>!oa! zPdJ=YSm4JIJK=*pw^zM9l@wJ`9uEu7B22jQVGQE&tEU`+LKpR(o6*S-l||BI8W|eV z*C!3WUZ{STRKytw3NTbkXHVIAR_#98rP#Vk@;*Z)i`o&fuBDJ#bpE94{(Ruw=uKd^M~ExNUf>nrZ_H&@80nfSzmN;=i-rU`A&+>?Jk5KG-Iht;a9 z1se}_SC&TR6%k1m8zr8PZf1SR^+-4^p17cf*TNS|Hca6p&Z!_AqDWc7%8Z5pIHrtx z21>0XPAO)s?4>5gUUuH-!_eBf*oK7>=l;x%!qDF<09P>k9k^XzEomBizHw~-BMa&t zdmBMlbmfI~AI39Hk?J9R-f4`&qc5wG-&k!p}pgP4jluL62t1P9M=*o!}wdm^J^Fi0( zx@h1`FzR^ggwZ>N3}1EwYH(*!!JBH9ml}mg4yT|W{pDO**Z{4j^KYX^iqB)pDTq77ES>#g5YhV>@$srT?jzj4;Q=0`Xy1E7IIqc&!A#&^scfe2U~Hu9wvu4E)lX9)+K;-8YZ`IAm}DKxqW$^63AFF(Hl(9Q?yCb_P|ureg= zUZQCbc<_zy&pBOn){6RI49}O_pe^7Z!&0VS?_S2Pi!p{TzmkqZhvClUd{?VFg5 zQlVyte|8@iMAP({gTC}mfIsh5ba6@dJ&Qi1Q}Cdm)OYtm5pnc1h*S993v`6dAV=ke z7ZnNTWbXtgt|s?WW_}$XEa|@!)dMp1Q?7+5iuTBVQXo1a%?d<(8<~KkO50gs1Q&%z z!$|d>r>IRu9}}AjcfA3_D+Hx5BnN58zRZrnJ$O}VyVx!xTUI~{@Dh7;`F=zGU;sA1 zx6iU##As)}KFO^%lb}jFjy`<8axV2r(@BVBfiq3(x--n(kwS64ZaR`q>>}os*3W#R z>pmF#D_SENFQui5+b`}xg{*Rwj6b(?<&+&_qiG*^bRVaeO3{PLK~MYBkorg(mq|-{olNtLODm0CT&O`moF$Hqrijtv6y09EJiiQ2t-|-;t3np8b*aj843I73+3nU*wvxndum$kBZw8at-J=)*~YWt`fQB& zlwTG{95flqFhD1~2!9a2eg^JZ=m>Dx7SN(f+aUO9T2|KH)`3l@z2AN`T?@dE=NhA&Du`W0o;-D?k7UiP%=IZ@ddEUXX3)wifIpjF;QI8DW*4fp= zg5*Z^pH%C^NmJRJ&CHire}_F3G##WO`1dhg3z@{fz4{BM`1!;?=9o^~bw81$jq`137ad#~cptw5}m*Vd3?yf~!+@VN;z)$yk_Br4A z_xI(xlC_fDGi%NL=$e^FNfsIg3Gnw-p=zn|uap1!fO|U{I-A+Luqgc(2H{^A>+X)B z{kQ*Qpa1~m|Hd%?MOG&C$_%h#gcwp!`0{VyiksH^U>ZA6+yaM8*O=_s$q5>t?j+Go zjPY>=LQK0}pZaa@Z#cebDzv5=8S5_^@$g*v9x@7W-j@@xYSViXQr84yTdZ6(#R?>( z#D6*c%oU7T7hGW7Au(}2g1sk05$ZfI^G#};&F$SN>H?en@gw292OML1QQktW&gCv? z!ax+xXLU=XZ>qnxOr_WFVlD5|bCuW=}iY zGi_ambuOG2hOe8te`tnLkMY7;CR2(~v6{umtin^YRP#mVq#+s&vCwcRCn23EE9;~o zcCb1|EF0CMOU5VQmtYcoTV<|f>a!27mUcZ@=-n;{ycB!o%Vb|sNHEFiW7{+!&XXUh zoLfIpcH3+apt86zQsKr3On8d7EoDlbJT{hls=`uH(e;sII4IIAP+KO&F~VR`wuZNB z!}+?l8kJqxVSGOXeWTsl#-0mHC$?&%V!y?fSSN!C-| z&jq!6k7^66OM6?_=3%EM6-Iry8L6W_#G|R&_I~_23u?=t-(jKYu`(J<2o^RU9I88rax3ihY*^7BvKNV^L>R!*?fv+4Q_Rx+avFP)le9gCKsFmE zctF%Mtn4uRTV~lUZ-a?CRkjRMVHG{mW*|16x(D1v)BLrfqN{jA+6{t6dFywOr<0C`iC0 zM_fG5Km;ZSE58;vcuL|1oBAbxMlhm@ZBfiQR>dU_xrl`Dqrtv6+|f!$=G}R|-IOK$ z^8Vpzugq`-;BGXYz!Q2J2hA=1YdW+ScDV>QR_Fw=V<~7}$e0*afa3d*3lDx(yam44 z#q7MF?!@HXxk=ukn%H@*m!6m}%ZRXzGNG zWpWQO?+knrZax&smUx0$dJ08@vMDy{8;idG`oX4v1bPz5n1`ufZ@SBg=L)lG>JUPO)7v_KnD)xFQ>UO-W-~al{6{0qi~XE5R?5?<6A_)%VZXoIcllBj#)H!F z`Ij;fcV*15GZ~o(fi(G&!;)iul`SJ28fCL7f>6u1J#n5b5<2s~ASUGrC3};_PU_P) zFZbZH3oygf(}_%-v$5v-?>THdfiqaiQNlAFy%Mk(b_Db>8tf^$ioOvC)-SroRBDH^ zLrf$9gJ*x!Jd%+A3rB+xLkRy73m z-?8K$=YDgESxyQB0C?U)E9RSX|L<7x*}>WDuWSDvuP@uriWBlGGwSQ}7*Lno1f8tU zi;+pU8T_jPnTw2S*8X*~L6?7a1Mz^SLowUMS)~%KF0yNeFHc>*j*1%deNn5DoxDNQ ziKi&VLFsP8Jd%yG_$LkdLAlX}LE3Uu9hMo1-U7W*Ir+QI46L47L7C$OkrIsahUA6N z0=r(NJ5k-Q0`d-``Nf&uNI|Sz_3@d>nUgX%R_)3?1V*7)$sTdk1bSMr8g1qHL%-nZ zgM|q@A{2Jy$THJWep{+IvC zENzz`l5-NTNI@6&OMy@`XwumIN4{APOBNB<(kO}6u&Z^a{=y)M)vNRQIO$S?&bE`m&f&u^YNWw z(0%)Qx!BD)nb6i3-v{2c4Y$;t^Qv?Ir@PzK6UfH0dDuO7Gk2(P4xFHHd;5#q%hCAD z%Q3|6ru6l4aPfA!Hs^(+e``Z;>w@f#3_Zxa<$${^$IFwg!&1`we*fqd^7OKi0cq|( zn@rv4zL+NM+Te6JoF3medwE)S@$kDkpByw?3C-BY7JiYkxNnbjn0`I--_W?i^rCpV zFu#ZF98O!rc27S+UYduyCxiuJ+}&HeU$@%VH*SrWpEq6wAFpZ?i&=`jSjgPTs=GEw zUu<4|o7(^U{xd@y|84s9VbmXTd0=_(xbfw6vL+~w^i$jBmXHAC>GXVGS#t8;<92x7 zpA5}k$S+{<&+2^!dg%1zYh;jGvP6mMUd{{2)O1z1An~2Y>nloTPUn^&F%5U;=5?%|0`rKi{a`>?Fg#c-8&U6k30to}cW#{S9nzqc##(;y`u*DUyOK%COR%{m`(cfu!a~>($;~*duqX{iz zWD-J_1dC%LnTnr761vfYKTGl&gwEgG;4;a}FYrPu`tg^()Mf`@b4mrxv8xB(U={r| zVuJ;@&`j7x`^>MDyy~+F&!rV@@gAO`o?RR>RHQx(o-S+=jNh)m#LahHpy4orli^1r zF4E8kWtyH)8UR`m8!CP95d&-oi zDnu~z(Tl@Aq%bENQM`}Yv?PHC@)42@`@RDS2%+HzC3uYx3zpC)^hLy7X$KhQ4IO0Q z%b`-U?|sC;Cr;aAON4WyU;S)`NaoQk;$-urj4V%@(f6ywdIc1>u|%Qxhx%?#{y0Bl zp^S(+%`gFSMBx_HqSu4r;R%mT6wB!sN58AKiQ?op??QwQyZPET1c^h0bLx6Qax(b5 z9HyE;MC2jB*%YQ(%j}K#{gfg}#S}a~@EuEzb??fH%~lBUt21#mRd*6i_hp?hFIuSR z;IoN=Pmj$=MFU~@>;lt6$qm-%NHW~;feyeUxF0Nw#jFg=Ao?x!dqR>^t!wf7vS^4# z(0+R*WdGE1itI*zK*J4Fckw+Jbz1WK40WWG#V}RO&jZkPLoiM+g{nlcxZ-SLKPZKo zuX^fCjDL3R2BSD>_?9DS!~U$sWYMOe%)W#;V6u#<-DAmYNYFKo0LX4s5Y4|oK77;>aJ=A_%E?CT$>Ue=XhChQ- z#(1U$>OLr0kA1jxMw!E5U2=TCu*L?@p-nydY&Y(}dwb{ph1*cu?lWdG#e~rG$kq*| zqB79vdyuCQgpa&u%L=Inofnp}hj*J8T%gzr>Y-|->It-x=(#DQ7Rh%-aHNs!`BQ*@ zRG6VqRj;Y)CAHD;G_}c-R%NtLqTPcY63~aZFRg1FfQB$dtK~zs$h7@ZEpZd1o&h1xv&7{cYea6g_!cv{)ftK2WJ+n_s`|mwT znD^4czhn3E;XqFIil7u6EP$qx)Mc(VJ_`a&83K(PQ|bo*Bh)fXOI$s9?kYU^#!R?) z)uZlPC*SCAZWi{aLb9I;ctHbRslsRPVmljM%(S7L)T5(A0~1*QRfSdiRC>6fIB1yD z`F8YDE>`d9$!@Cz6_ecHoSkboJ=3Ox8`~BDeds&hiUVJ08P>|@E846*3IxwgTPu3e zm&OTEEvAMM9EFB>zH?LdsF_awIDn!KP9R@s)OavT*Y6s>>k_`v zqC~c{MUQ>m)(O^xm>4?+@8C_s^51YbAm;Ru5MPoK{CDlR&sJsdEi6n54DlTd z1Nc}2Psa;s47|DN&}fPzwM&$GqM9y=0Rksec5v20D#B-O*QK3nGi9Cb1!D3OzB2T`jDUmF9w0{ z^V^(WQpekk)fth>?xEhdO2OC1Q+h)KI}fLu^BOknks_Ih4oBgsOud8J3X zabfiAV_9ZZbRg%KRaiF3%(*Pkxt1$CX`+6Tg);?V3M z0cJsf>;!C}))@A-go`BD7up37FUx@p)j*I6lV+$1fSO+93=l^T0923aLhZB=pB84? zLzb;w>gzh+sB5o?mp`$?nSqQqF{}S1TY5!Y}JRFHHsdZ->ASzEkNK!d8Wd-*GS8O zZR;d!LT!xTDyxy=Al*!Rk^PFI{3>YbJO5B8i{kf40xwM^3l~v=lb2wSyunYtnh)7I z_TS}Ho3({y&k067PpFZb z19SqPtjQJv$?IgRX;Sl|(4tA6u_Rwx@D3Q+4jY>V-c}j0X;zzoaecocAs~2K_7)0E zH0Pk3fM5$YjCTyE>ea#cRP9#~X5mz)K15=u#(z|tC_(xGul2Bag980`wd`>yc;d{` zQ4s7@AEB00Cd@w0mLUIs6cmO2gJg%W3R?z)A-OR ziK(FStT;Luur=;-D=i_(PMkSGw`Hwo%SP&K*e-UlzY@_Lae#B_tIo0lUr z^-ZLZ6eiD9HoitdllGN*w2cz)KAbtAs-Yckx~bCY3YyxwDVwxcl3IG-FzW$VXsN*^ z@lCwGZa~wrPlkdjPE1|ixz$r{rciU&M2F>(C(?#lb9t4_b--=a?h}L4UuDBlg385dX3|QyV|b`FAM~N$@x@R(uG3m~m)jasM#+d58l)pfO{Amas8A@|+S% zj{h?t_#7P|az07b!|!MTD16AqHgeYo#I<=#gGq200NGv7-vEk>s6Z{{cqGHqD>XZHvm`F?`ksuUka>5)Mb(LMGv0xzEB>!PH6$Vaz%pJL%28`iEhs{g~{gqKH2%j zx11`SH+8HfVolo a|Wn?kbODh4H6i0Vfr2g{CnILnobZ?={GCY`uXZr$oZXJ}q> zBaE&j2s7b?&~&`;-!Qi8wvzy<{pK)QcauOW`jW$&d0BvxBlK5X;3_`#oLFjL1Wg-` znx$xL-g$EoKEKy5Wr%}$$~X$;C^8<8{JOHOmDs1u)JVi#oPCbDK7}HOOnxm4^xILc z8(uHX845#$-NGx8_>`3LWYV3Lk;W-j=20ds-m#mqPEIvjg|5w`vc!7QMNZAdM*fpo z!ZsC|XoO2fB5b47i?3kQa-=^BNpN6UQWrot^Kc+wI+_|B$X!v5P?Mzdi5Vlz8&CtW zmF+<<_mlOmO>8Dz{lAz34AFQ733PMQff0_Uo9`KOirm2gr{);O zlywV?)m5}8ELIzu?AqTij%AwD0KDKI0Jr=wgv0s zONn~uut_EIgr@7eqOudCOuqER5>)2^bzJMFkQ)cpP0p6Qfb;1R!%_el6eopVT9~x< zBA69;9%xW!Mwp9Cjgj8k8N!GT3SjugNFHqc1HDK(ndAGGy9DeC zD5TRMrWBvg=w^t`&6BX?Ge@?Fb4Sec`}yWw$g@e%GIWmELYS;=n&%?t@vg(1)QO(* zOS#S~`&LN++C|2C=V3q)ktHL5CmT~1sw1r$;Zj!%d)sFP!-!@BN$Ku%nX%0dCYx=} zjNuZ^Cm`eHnj=nr5G5Cq`59Yrj+>S3iY_vAzR$bMS@R>1*3cdZyWMemB9~uk+4`O_ zjNPVgdUuq|cU^!&_v>dxT-RxfxrHmBnQF{&liP!Inem0)NrZxsSNzqegvptZSFdk7 zHD}{*saV7s|IZ&q+^xxb?DGl0ApRPt%esU2z*hZOuq!O|h?)|hkTMN$kg5yCeCI1A zN?Xt|@@~%-Zi+P_GfLS2^}$IJFD^Z6!y_^gVmfB4|vb}m@ZSU$zhA|ZZ0R#78789J2N0FcoW1zJ0q;C4FZfu(Henrho zlK|0YwA^%v6qZS1D`QriV_uU7QDkRfd+p^~mqtYWjOW!iY$co0K`ukA8SM<)xR02?8NGpx z!POV>Tt54_v)?$``0@?~nMqEatCJbVX;BGm_Ki&h+9Fs(JleXN9n=HggF)Ip+BCB4 z0MV3R01kq1!E`E9n=EQXTA$-;7$@B5y2cN6v414fi{k1@|s^ zl)bWg`)t+<)YKPouxeT@AfJIN{zjAl#uPUOY>Ouk9*;)`>>jWnUaHhn^jsLDir52x zV8oRZ1f=N+6VZ1by6GO7PT0F&zXcbmVRI{{*c@W&6Lnb!={j?U@vn%xb8+bv7J6ea zWB>`aPd_Az24E32>sLML!>UisQ0(5I?U>|?`5@YgoU92*1rzJ6#8U>D{3*e8Li<&n&)9Ke%UKP+0yDj%`kxx zM+#UFrRGKQZ>9#Zpwyiq-aB)VRn5r?Lv!XA_Az;`HQZbzU{gC?=8&kw#=t#u{sCT+ z3<~D5G+kgr5w9*k_Cx*$M1o>xA?bbr@=RR zDsiwrCTC}ttlfT_HS@^mvxO{D9uCmoLj=}#ADy!K}1!;DO~+VSeo^KxOt!BRHz?!DF=QZwCTCX+gyecH;uQ z3UL6_x&Uq%Q$;bT!7F*ctit(8R7HZ~3`iSq$XtLS)7VZ79S$0QQz_9vYhYhXDk`#6 z%dayMNJ8y^aEcEV-k7IBUFw)6q<%~!*1gRu==%Ba=jVuCR?B;lk2#)2m5AMX@1L4D zzuS{~sl4h2FP+EJ3UR2?c>NgGqw#`iaR36n&S`*~hC-AgX0;yrA8?v=<4-_#Uxc_3 zM2sNyG$36FR$TNU!q=Y)F$&XU7v}M)1Wy_I?YwY(^p!!C=;Xqk=zrchtx85Y5vE6t z-%YS%ZEkANa>FKiTt_tqgX%Qua0UkJ_>w&|yuX$!*yA@&5o12U+JAVPDzbG^le!A# z{vjQ*A#ke#aZWaFFE;4Ive*)SlDgj5Oa{A0K|E)_;GKDc^9+sge%Er|)jIX0+l1oI&JMbD3A$ zikqz;C@KFS|XAhgKVVpmmc?A`=o;kG0RQAIS?) zeDVkONKEmiP-O~~+fj!l7VR{Ch?NZ~cIRC&MVlo#YkCMj-c(Rqoup%7mu#gg+n{6F zVRJ#Wp#tljBGlZ70LmhScr@b>XPDkR?hrKK`u7esz_*J4XmInE*L!?k#dr&1Sagr) z+y?IKW8+bXQ|52?wU-BO%QDzxKBIL7b2;6imZaG!sQ2y1d> zJjF&Wyv8GIPeS82%e3vPof2tN$qXRPL9iA|z)@^+={$vO@6=`38JOF;#Ot-&8O+5O z{nBv=B+Is zUAx!5*$}!#yF*N#y)8C3ZA-zNcV9m(FGzfmMy`U);j~P z#Y33_@~gd++}M}PqnxG`c8H<()M&Y}$<$BLLhUgQoQGkY6e^3tWa}*?91O~su~ej4 zq*|0#Z^f#fMuAlgKCH7^GthdI_WN#d*Cwo{py4{xjG)JJG(ESQsq!cf=Jz)DQw*`E zz0cxcX-7Gc>{C&Z6sNa)5}81dqD28G2%SKITP|b)!KdgbBJP>G&-|iK4rZBsj90SLgoNr@jMreO ztBQ*2g4GwST*Ijr#$T95{^uy*iup+f@5SHah$H=_02q7T4hj%A8uVpmhCPDPxGq#z zR7Z@yz?aQ4w1V>f#ddDPYN4|w&HEhtE`iLAb0H!6l61b!*SLxK9Q3DZMSpA8TR(qG znA;nN91l%0_xo6X8-tsle*O=CQX}^{yDl#LeY~?gUV;B!EBa^s=T@#Xm-uZP43gOY zbN%PTzt-RM>{NGUuptaMTh*-dh~z2WCr}C8s%|Hx2Yc+1%B8R-z^eAw7etn}d0!KL zz3vKU@5A2{qcBtH?$s~Ptvc?0Y8hww28JG!65Z>iOE-^xwSFDvF9%!m!XX<|?%cXt z(6c??VI!kiO-LSn%xXV|o zyjs0Z?Q*ymPhT#J7V9jYAfgVOx)triD5*p_#JBzZCI<4yf5yvnE@Gs)7M+`H%C>}< zvYQ=NHC%FB%UAcG#&5`Oyl;OLJ~U}DyLY2Ww`VOrfAG;;&RA_WV?W8ENt@hqCNmIu zTr}w_ZNBY4&zJUik8?nLziW_qw0{hSbhfsZ8M==TwmtgHuXa^@3-pUFGlO_3qUlknRkI5p%D`>s* zy=C>$K7Uc~E?V5ZvReLuWX!$=kz={=moGc((7vFV3`V_A-@kSCd1$WJId#Y|?=%-i z7jAAhe1b)8%UT|UoFBCj>94eqrT3uq|Lm6E{4?&ZS^eTcJkxQc+qfZ*{}h>>KsLXo zs`He+ly={-Gw5iP)e!HY!}tArQ$tWBDzS1IU14&k6UiO(lEn?mx;pd1h`fT=*A{BCmC+p(dswr61Qz!dL4W9~QD7CK?Y(au`BC&6_r5 zZ0Ok?FQaFF%$g+cW!rfYD_`e*erF(Vd=r;-0S{?3oDwSuwLEdN?||JlEBK5W)$ zpoai6jQnQ`c?f!X14`|ekuxW$Uufh)rfVOlw#5=s$jQkPnotNX$+gGh!q7)`%{hLF zMWm3kkvWIrBMly>Fp2q9+gG2h0t3{y;=2q$8vNFxopGFBy(N*1XqWY)4)o+s(93QMtH;4}NjU0@A0DR)7Swg%CdIte_I zVZfN?C8A-#N9kQSX@Q7&k!$Jzz0x)WjxMO=>TTpN!3JM~ds02`Vn14FLqmTFMl#GB z(|kZQ%=_D5uULvuri&_$K^;GDNVDV`*Ds(t0N)ULTlU9jLGQ3C5ku{$2=%ycaX`2t zyh#8yVj4yU$g6PYos=S8s zufx-9>ghdAMiFsT+QRS|vbkU%aYCpVBtH+LCVY{~$|rL+0b_?#feTL)oEO;*FdXwI zz8i`D636=sr}Ya75FHkIKN+t~b+^(oCtTB_>iV-sN>CV<3P@#!JL)#ArRIloux5)? zzz3%!bwpuM@t_S2*9p{~7@H9i7T+-*7Vdk(q4@w;Ef>PD#*wOkQi=q>$4oGaJ*O0LNgl9_i0 zBXXv=>3&D6Jr1e=ViPDBlAM2(#D9{MxuhSbSr%l=Yr<5KN(Cm^?BPkO|B0)3yNJ&7 zuMSZ`mhRc8sG>t{*0@Z^GY0y2q%TNPP*P=Y50AOeT(%sThL<`47}}rS2J!Vl+ABzB zQ;N+2=ZfE46f}^01HEG0EO~tTcO0b}ibH`S;rp^UG;?>`B>y6o)-Pcr*F2T`X2dc- z3swv?n0&VINkyauIsuSCDBqru*Hp)gj!wm7uSWW?Axiz7SGA8w7}Y^(K$m_ux@cD$ zL)*#i%gl8ElniMcOk9#awpO^ChKXB!%Phhj5}mh8QDL)R!e)M9vt!fIu^!J4HJs~# zHgD2jFHGpoSq|?^mwR+=n`4R$51{7}}(Tz#3Yy*7$J+N)U+(ZGKw1h0=);tz5F` z+5FMBX^{oT$V(ioGpQ`a#6bi|uo=XE-c1nf-0JcBzSHyg2Ne$j#{dawW`o@G##WlM zt%%S@S$PYfHmWSrf(yZ>;9ok?u*gs>WNv7gp2j;a=xY@@dq%U)HFM52rvt=X$>uyO zN(W&?2##E3dkR_@%{Xc3Z*3mmM#6WtMr~MApMK*)&De&e(T25jhHvQuvhIXCon-pK zRxIL&nN!Cqga-fKVf%x%>})N~E8(ULiL8 z3+!Lft20JKEmKanHkRTrBB%xU7*D&hROI*=&vwRHI8&Cl;%o5NSqh)uQH{ z9u&*wsx_cEsHtGV`BsqdLEua)=twVaDXJ&X@l?LeO>`y#@TR&lI`yJM$O%c7F7#6D z47o80Q>Wq}VcEc$ggCNh$~ivF5jR{Ng--2`V4OpVzulYR_Lg!-_LVksWdzcu6pAne zMta8Y9&loKqf&Lk&FNrjVW4$Ndk`WJVgjTA($Y4ZBVoFLp74F9xP2xOa_X$rFp+Hk z0x()&$Cc!-vgZ_b2bEV9Q4b6R9ZV^9SS-9?c88IaH`80hE7XRID=%ax!W@}?2jYN} zB82{h1WBQEnA3xr(}xO_gqhPp#ljn;boeh*EhPAFJTAx;R;mrEFzlcfFH@<+zD_rg z3q}M>L`CF-h_gn@k7w9m!e)=SDp$LDvg@lSM9$L;@>(O*3~ZJSx{%}+?@AJM=n zxy-(?=$Wn`F3Yqd#XqsL&=w@-vD~cTWq#bb*N1$0s5IW!?X;ou^0`%;JTISoQNQuJ zQCeRKZ?@|^iIKj$HD6sVb}(G3KC@^#8>8NEZ+*SH8?$q`m z3oV=blqKK&yUoe|>RxyEgGv*5+GaU}YOzxc-0o_%AB^yTd2 z<)z8%gzH2f;wEgh)pQpiROdb4u_X^VdVX<#!MkmiZ?;S7Eb{E2 z-`yOPLn|nZE`L+`sw9+PD`xBW4#nqU_|fW5)6t9NW~4Xdd2Y4(qvck!|9r-9ti(pu zspmRJHrkV1x%oWlOQ!8IWO*oN`FeQgqUq@nUT&5Ai=nVP%iX7+!A>}bR8fmNih@}c zn`>38FK$qBwCHZ@dnYed#izp^k4c(_yw$vWoSIWanb&Y{pV`+T{s+<3@!WiS(N&q; zLVMBGncTd4@^9yYd-BzpntyVFcMNH7p0zwf*Yp|N_aJ9oUaz4avQE(vV-Wo{Ze5)p z7_N3_raqRF{7AV}F38`=v81*cm~|z;@e4WfsONUsBm5laB36<~G|0 zU>{vPs}cb+Vo*|AF9Yq+d>keB0e#+1PtP8#K~?Utj2ImoP-Bdh)W`c0z?=l5kOb4m z1Ej`+p^s-3Is4cLqV9E+Qkf1#q(Prj{n#%GI6`jG>!nQjb!Tw+Iez9OS^5(j79Shd zwQ-=%6b!;=@jgKP+r^^3_Ioj0VwqA2Oe3Je^SI$Tw)RobiRn<$M@dLvA94^&NdFR- z9vDUpA;$(qVIe|S*T=C+NppDajd*HVdck}~N}8#W1{w71xwpe6iGNLiiEIdj3G!MD zPFM*~NQ=e(;_}bXF8TfrZJ?k03L5=9arl5fJOIn60X*IqtN!uaLGuG$z4f~s?H)Qw zELuq{AvvV`A*c{#3gc}zd@MM6=@2n2&lb(eSSO~loo*`ErH@?^Fo$y6`({vIjKXJN ztaxJL7Q*AyKrjYW*sM_)Klkf3SEAna}*na{&TC#8ON#g@UGS2+n* zAQ%;${dgDqc}RJgA%Gxg0s%A?1&B~)jQ|Zr5!!bOWPWzW!jFL41uA@mmF>~+4pegQ zk0dgII;357s#9*2_M%3x#Rc&*TN^+PmXJtbe72xVqnzH3sQwM>ZYdz=6x|D>C;Yzb z2v0#HAL927tQEu%s+a7EH8SsJ7e3+N-TA`g5gD0WqGhDVwS8#)JA86^6wpz+efzgi_QgN^pZha4Tvu-yF0InPEu} zj2{+ASnU)(M12~=h#QuMxb=6-kuP7#DPEY70_zz6m$}PC1ncnBx+|PXeEAM zvY@aZ4sBCmjE701gChXu8XW0PV}`BL{?rK0!Mlb~PVQ9r!24MWDRO?XfUE(79-3xk zG{AtE-aWEhZY__DgghXN)sI3)uy;G-a3D4VJr~BUY6dY*B$EvI)u9nXG>R;L=q#J_ zqaX7M5F-|wt38h#+*hTxjbIe6iNpjHbUxYNN1_ugvvD`w-$j-J>2c#xgk7<#ZMknq zScqiR!{H>Kv-zze1@8lxpTFmygLfHXp8*ODEnd(v7^j4jK*RwnOp%r)W^s&y;4s&p zJ7~h1N4y3l@E8RQI)I+#394N5?b5ijm0$3VeD$s_2o0cBPW~oWCj@Z}{+74HZ>2yR z{w&cHy{Cg>_AsI!@9`Od=iiSgJ&|&1p+vBvb!{6mWOHFxW8hoUVRlcYKox|T11ri& zBtPN~2-Sr6wTrIudYw(+?V!G7sHkRu1`-z{gbMMau=&=mdJOrlKBbEMWf5ac>8%+# z*2a=T)Tv$#B4`RNef9Q`Gnr7~#aDy>ackPz9xeb6hyVSx9F&te6^6_kK8+ks^l-;H z=>!=KIDnes(2KP#RI{)^fpF>An2&x`>Y3?Zut5yPB;_8B767yRTM8twiz6CEnm<)J zWE?pK8w%KkW2o+dfkQ5!LTE2>^ae=?I2*XIBQ)f$)V|Utie!=^euWD_F!>$V1eio6 zhKf5x3?SuL(Sp(tSRkK4d`}EjgEUM=>)4PXnhQG^HkZ82j_k=?1<5w8HrajTJUe8E|Q&1HYq%vY+%uO?pTLgcwr>tPFosBsW6Hq ztuc-CrDDET=^cMI^+dWNH&5o2>5P2RkXc}HH9TmJAQ1#6)BC+V!e zE?|KYoWY4Xa7b``v(V2ZVb9F-mrFQU8Y2tf_gRZ>a@_D~3g?uwfta7w@Ca=r{0eUa zTaDL&nW4cD^;EGdff|l(Xf?tT`B7+V9t0yah4(#=M)YfFDQ+RcV$0+=Cw9cB+_l-6 z5h@JYPsbP{xbFim)7F#%Vy=GZT_T{kV}f{B#KE!JglpotvjUY0VE@lm1l&G72;L-< zF>i`!0)s&+_-0$Ad+*97oeGk2c3*3Va>s;4jST@JD-!*XbZ$*d@J6Y`Y|AWV@TF@AZm-t*rDF8(&S?EsamY)?UztIlkeQky& ziC6=*xDQdKKvOXbcs)fNshdFdq)nRNDowk3ha_O0#N1Qw1}s_VI{=?UGSJ6pCC9PQ zLg=A!eRurk4J=(|m z+xd;yD{`0c>*wI7SLpwpjjr~+V&J@$odGcb0Mvi>x4XD{*_yfhoz&dWv~yTv#du+e ze{$Ov$%9TRB%F~-ZnMV9YN)1h3RLeFkC_)OhTQ+57EuZ{Vme;C6SK>?$o4ruMef>m z9xb^Cn@PitVp%rOyxiiBaK*$Xt-C#t>nF9F<%Q^dtxj zRvAR-`=D(UGS)=Ly3C&*heF?(#LI{ruB<~yDQUcX&jJ$r3LVO-%9(PlSsq_BDJ-dHZYdD;3N|{d|xfpHaviC z8#gljeW$pZ-jSZ2cs5a$DpSWHaM~+9OpPeVmyiEuz3T${9c)cVSfJb`(_AZ!{gjQJZp3ahVs*-7n$1YyfSHW9`+3Hdw7<1&5dRLie{08 zFVARKU$~oJ!@hQvPOlS{g~dwjjZj_-Yn68HHlM64WEDNeN^g|c{#AN~-$L0N{%>TEd`VsCZ%)xpm1_vcM;FP<~USwH=3R>%}} zA)BTGSwmvoCyIU<@U>?rGG*-=+KCleQ%!Xk9C%Z91@wNRvbO6siK6m9AkD@-cK4)^ z|KIY!7?OOqA`k$`ek;8ETXd-_=3wt?X76gK=H+PSqW{;3Ce_BR`&lubaSLo}lM9t( z!V|^FhPh^bL#tVlM2;lP*w6jCXm28->kUq!iHkI-=Vxcg%bN0t9&d`9fisM7V#6Zv zB#F8$SLtBNxz>#*r*}v~CY7m$$GKT`ZH)yJ9C$NI$m3iTitCFN)F5CAP^wEsQ*0I` zN6Az#BKfBsSsl1??yJl>Foz8b{NP8}NfXue_d1%=2TKB~WJO0=;GTqAWt;=v1bEaax>Hf*S| z-K2$**&KXck{$CZS?n-RHXp~}^+@)J{%;}vXFb+`6*&Lj%FA^Lx)-kBWIXpKYr=m* z)jzPm#akv04mN)U{;z8D#>9V_9Kc`Vv@_+bFfWO&HR)qjvcL@vNxwwW|!h zD1`8fBQw@VOLMgHpMTmf258}|v()3L=@A;fvsYH)e!;0mR|JJMa<;kP;i5=63XyEp z%oFD*&3j|T8%vA!pXPiotm`#U-4$5#RBfHHi5XUstsXD0Qr@@nj@w~@-j{o;Q=?>f zaNdzYrAQ=hW(=3Y7~FP>o>5oV-Hl{$5Y%}YW}pRzMJi)3(?GX=py~FP>*6!_cum_d zLE+@f^*X>f2x&q~?=4P)IHRDG*c-B`&_aIZXBWWiwb%<)Qo335Jadh#8VW!F|0eXG zMa$R%uPE}jO2JzM008G7rd%wIoy|;DU7fA$E&dhTvr=>;*I6-wUn6FGmajIyB~c-_ z&lCqD+2sTs%h@irwIpQPU!O1x(=!Umxp~;`h{TEVI7h z=dzA0tUdvyNOI~%Wl*ZPX=OcXuto1#)&H+Q!F~T(lrbkW4y|Glmk!T!+(N}ZW>7Y= z{2anN*^Oik$Im-BQY)-I*_gxX4!`__6w;USaZeq89wZhp$4JUI(?FC)SxiuS<%P1L z;(;oMvtp>&+f3*Ct!Czv)mQKS81d}01(xyrNcw=19kYye6 z1pm~_g=c%WvkhilOKH?}Q;+#FYYOVsY|xfdw+#tBxqqH(O5?YMhTjRB56=cay?G}` zPm`Vbn##iWrg)zl;qL~eOHgu7B-G2yBz)?E=H;dgrH49dUAaLSRWQX{r-6Syqn=h| zr}$wt@@^@VuSs0YwZ|nAARQbVm2}S?j-WT0kU?oP?PXk4Na3g68vbvUn%(+MsP*P( z9pBUn{U4S3Kg}*$dECD5Z;%_m-;Kk;!2p)B;FenRD)D5PiZMQi*@pIPd5|Q%%~^S0 zPp#DR^Jgw1G*B^Huj?`U__ zJ~f`zx5&Wk`y-C*eWx>Io^6^P8JqCe^G(Qt;N3cHKeQVom5xM}uglK+_+>}Ui%;Hy z_cb2nw;r9cR{XeFHhWiaL(zPRL`3pKRceb*BS3I7MJ_ld3HZA zUo$d^FyKCh0~ixP0IK;w09IvB zZ>mNZP|uF!KiC#)gmz44gSHVv0La;AfaNaGpD3G(QQeNdtr(`8f#C;+Uc@G2gbN@Z zKwq4KWQr2H3&5s;m#Uzff<7UEFvUw3t0~~=33OA?JCX=fZkU5jL3At8wW2qo5n9Eq zu{NpE4M1-NA`F;rgA|d_HX%YcW;~)M^B6m@%duxG^yUb{(q?3B$fYD&E`vlOdS#6; uXRSRX;LxjXga;rdpqI@E6BwM}5eRD_1$eW9&hKFm0>U5`28LE=5Dx(KZxLny diff --git a/tests/test_fit.py b/tests/test_fit.py deleted file mode 100644 index 2c6b7c0..0000000 --- a/tests/test_fit.py +++ /dev/null @@ -1,66 +0,0 @@ -import pytest -from numpy import array - -import pedon as pe - - -@pytest.fixture -def sample() -> pe.soil.SoilSample: - h = array( - [ - -1.0e00, - -1.0e01, - -2.0e01, - -3.1e01, - -5.0e01, - -1.0e02, - -2.5e02, - -5.0e02, - -1.0e03, - -2.5e03, - -5.0e03, - -1.0e04, - -1.6e04, - ] - ) - theta = array( - [ - 0.43, - 0.417, - 0.391, - 0.356, - 0.302, - 0.21, - 0.118, - 0.077, - 0.053, - 0.036, - 0.029, - 0.025, - 0.024, - ] - ) - - k = array( - [ - 2.341e01, - 1.138e01, - 6.040e00, - 3.130e00, - 1.140e00, - 1.600e-01, - 7.500e-03, - 6.500e-04, - 5.400e-05, - 2.000e-06, - 1.600e-07, - 1.400e-08, - 2.600e-09, - ] - ) - - return pe.soil.SoilSample(h=h, theta=theta, k=k) - - -def test_fit(sample: pe.soil.SoilSample) -> None: - sample.fit(pe.soilmodel.Genuchten) From dae3ed17a296b3dba4352f15af74507430b993c4 Mon Sep 17 00:00:00 2001 From: Martin Vonk <66305055+martinvonk@users.noreply.github.com> Date: Mon, 22 Jan 2024 20:52:53 +0100 Subject: [PATCH 16/16] Delete poetry.lock --- poetry.lock | 1877 --------------------------------------------------- 1 file changed, 1877 deletions(-) delete mode 100644 poetry.lock diff --git a/poetry.lock b/poetry.lock deleted file mode 100644 index 6f094ac..0000000 --- a/poetry.lock +++ /dev/null @@ -1,1877 +0,0 @@ -# This file is automatically @generated by Poetry 1.7.1 and should not be changed by hand. - -[[package]] -name = "appnope" -version = "0.1.3" -description = "Disable App Nap on macOS >= 10.9" -optional = false -python-versions = "*" -files = [ - {file = "appnope-0.1.3-py2.py3-none-any.whl", hash = "sha256:265a455292d0bd8a72453494fa24df5a11eb18373a60c7c0430889f22548605e"}, - {file = "appnope-0.1.3.tar.gz", hash = "sha256:02bd91c4de869fbb1e1c50aafc4098827a7a54ab2f39d9dcba6c9547ed920e24"}, -] - -[[package]] -name = "asttokens" -version = "2.4.1" -description = "Annotate AST trees with source code positions" -optional = false -python-versions = "*" -files = [ - {file = "asttokens-2.4.1-py2.py3-none-any.whl", hash = "sha256:051ed49c3dcae8913ea7cd08e46a606dba30b79993209636c4875bc1d637bc24"}, - {file = "asttokens-2.4.1.tar.gz", hash = "sha256:b03869718ba9a6eb027e134bfdf69f38a236d681c83c160d510768af11254ba0"}, -] - -[package.dependencies] -six = ">=1.12.0" - -[package.extras] -astroid = ["astroid (>=1,<2)", "astroid (>=2,<4)"] -test = ["astroid (>=1,<2)", "astroid (>=2,<4)", "pytest"] - -[[package]] -name = "black" -version = "23.12.1" -description = "The uncompromising code formatter." -optional = false -python-versions = ">=3.8" -files = [ - {file = "black-23.12.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e0aaf6041986767a5e0ce663c7a2f0e9eaf21e6ff87a5f95cbf3675bfd4c41d2"}, - {file = "black-23.12.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c88b3711d12905b74206227109272673edce0cb29f27e1385f33b0163c414bba"}, - {file = "black-23.12.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a920b569dc6b3472513ba6ddea21f440d4b4c699494d2e972a1753cdc25df7b0"}, - {file = "black-23.12.1-cp310-cp310-win_amd64.whl", hash = "sha256:3fa4be75ef2a6b96ea8d92b1587dd8cb3a35c7e3d51f0738ced0781c3aa3a5a3"}, - {file = "black-23.12.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8d4df77958a622f9b5a4c96edb4b8c0034f8434032ab11077ec6c56ae9f384ba"}, - {file = "black-23.12.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:602cfb1196dc692424c70b6507593a2b29aac0547c1be9a1d1365f0d964c353b"}, - {file = "black-23.12.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9c4352800f14be5b4864016882cdba10755bd50805c95f728011bcb47a4afd59"}, - {file = "black-23.12.1-cp311-cp311-win_amd64.whl", hash = "sha256:0808494f2b2df923ffc5723ed3c7b096bd76341f6213989759287611e9837d50"}, - {file = "black-23.12.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:25e57fd232a6d6ff3f4478a6fd0580838e47c93c83eaf1ccc92d4faf27112c4e"}, - {file = "black-23.12.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2d9e13db441c509a3763a7a3d9a49ccc1b4e974a47be4e08ade2a228876500ec"}, - {file = "black-23.12.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6d1bd9c210f8b109b1762ec9fd36592fdd528485aadb3f5849b2740ef17e674e"}, - {file = "black-23.12.1-cp312-cp312-win_amd64.whl", hash = "sha256:ae76c22bde5cbb6bfd211ec343ded2163bba7883c7bc77f6b756a1049436fbb9"}, - {file = "black-23.12.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1fa88a0f74e50e4487477bc0bb900c6781dbddfdfa32691e780bf854c3b4a47f"}, - {file = "black-23.12.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a4d6a9668e45ad99d2f8ec70d5c8c04ef4f32f648ef39048d010b0689832ec6d"}, - {file = "black-23.12.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b18fb2ae6c4bb63eebe5be6bd869ba2f14fd0259bda7d18a46b764d8fb86298a"}, - {file = "black-23.12.1-cp38-cp38-win_amd64.whl", hash = "sha256:c04b6d9d20e9c13f43eee8ea87d44156b8505ca8a3c878773f68b4e4812a421e"}, - {file = "black-23.12.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3e1b38b3135fd4c025c28c55ddfc236b05af657828a8a6abe5deec419a0b7055"}, - {file = "black-23.12.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4f0031eaa7b921db76decd73636ef3a12c942ed367d8c3841a0739412b260a54"}, - {file = "black-23.12.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:97e56155c6b737854e60a9ab1c598ff2533d57e7506d97af5481141671abf3ea"}, - {file = "black-23.12.1-cp39-cp39-win_amd64.whl", hash = "sha256:dd15245c8b68fe2b6bd0f32c1556509d11bb33aec9b5d0866dd8e2ed3dba09c2"}, - {file = "black-23.12.1-py3-none-any.whl", hash = "sha256:78baad24af0f033958cad29731e27363183e140962595def56423e626f4bee3e"}, - {file = "black-23.12.1.tar.gz", hash = "sha256:4ce3ef14ebe8d9509188014d96af1c456a910d5b5cbf434a09fef7e024b3d0d5"}, -] - -[package.dependencies] -click = ">=8.0.0" -ipython = {version = ">=7.8.0", optional = true, markers = "extra == \"jupyter\""} -mypy-extensions = ">=0.4.3" -packaging = ">=22.0" -pathspec = ">=0.9.0" -platformdirs = ">=2" -tokenize-rt = {version = ">=3.2.0", optional = true, markers = "extra == \"jupyter\""} -tomli = {version = ">=1.1.0", markers = "python_version < \"3.11\""} -typing-extensions = {version = ">=4.0.1", markers = "python_version < \"3.11\""} - -[package.extras] -colorama = ["colorama (>=0.4.3)"] -d = ["aiohttp (>=3.7.4)", "aiohttp (>=3.7.4,!=3.9.0)"] -jupyter = ["ipython (>=7.8.0)", "tokenize-rt (>=3.2.0)"] -uvloop = ["uvloop (>=0.15.2)"] - -[[package]] -name = "cachetools" -version = "5.3.2" -description = "Extensible memoizing collections and decorators" -optional = false -python-versions = ">=3.7" -files = [ - {file = "cachetools-5.3.2-py3-none-any.whl", hash = "sha256:861f35a13a451f94e301ce2bec7cac63e881232ccce7ed67fab9b5df4d3beaa1"}, - {file = "cachetools-5.3.2.tar.gz", hash = "sha256:086ee420196f7b2ab9ca2db2520aca326318b68fe5ba8bc4d49cca91add450f2"}, -] - -[[package]] -name = "cffi" -version = "1.16.0" -description = "Foreign Function Interface for Python calling C code." -optional = false -python-versions = ">=3.8" -files = [ - {file = "cffi-1.16.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:6b3d6606d369fc1da4fd8c357d026317fbb9c9b75d36dc16e90e84c26854b088"}, - {file = "cffi-1.16.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ac0f5edd2360eea2f1daa9e26a41db02dd4b0451b48f7c318e217ee092a213e9"}, - {file = "cffi-1.16.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7e61e3e4fa664a8588aa25c883eab612a188c725755afff6289454d6362b9673"}, - {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a72e8961a86d19bdb45851d8f1f08b041ea37d2bd8d4fd19903bc3083d80c896"}, - {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5b50bf3f55561dac5438f8e70bfcdfd74543fd60df5fa5f62d94e5867deca684"}, - {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7651c50c8c5ef7bdb41108b7b8c5a83013bfaa8a935590c5d74627c047a583c7"}, - {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4108df7fe9b707191e55f33efbcb2d81928e10cea45527879a4749cbe472614"}, - {file = "cffi-1.16.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:32c68ef735dbe5857c810328cb2481e24722a59a2003018885514d4c09af9743"}, - {file = "cffi-1.16.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:673739cb539f8cdaa07d92d02efa93c9ccf87e345b9a0b556e3ecc666718468d"}, - {file = "cffi-1.16.0-cp310-cp310-win32.whl", hash = "sha256:9f90389693731ff1f659e55c7d1640e2ec43ff725cc61b04b2f9c6d8d017df6a"}, - {file = "cffi-1.16.0-cp310-cp310-win_amd64.whl", hash = "sha256:e6024675e67af929088fda399b2094574609396b1decb609c55fa58b028a32a1"}, - {file = "cffi-1.16.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b84834d0cf97e7d27dd5b7f3aca7b6e9263c56308ab9dc8aae9784abb774d404"}, - {file = "cffi-1.16.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1b8ebc27c014c59692bb2664c7d13ce7a6e9a629be20e54e7271fa696ff2b417"}, - {file = "cffi-1.16.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ee07e47c12890ef248766a6e55bd38ebfb2bb8edd4142d56db91b21ea68b7627"}, - {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8a9d3ebe49f084ad71f9269834ceccbf398253c9fac910c4fd7053ff1386936"}, - {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e70f54f1796669ef691ca07d046cd81a29cb4deb1e5f942003f401c0c4a2695d"}, - {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5bf44d66cdf9e893637896c7faa22298baebcd18d1ddb6d2626a6e39793a1d56"}, - {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7b78010e7b97fef4bee1e896df8a4bbb6712b7f05b7ef630f9d1da00f6444d2e"}, - {file = "cffi-1.16.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:c6a164aa47843fb1b01e941d385aab7215563bb8816d80ff3a363a9f8448a8dc"}, - {file = "cffi-1.16.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e09f3ff613345df5e8c3667da1d918f9149bd623cd9070c983c013792a9a62eb"}, - {file = "cffi-1.16.0-cp311-cp311-win32.whl", hash = "sha256:2c56b361916f390cd758a57f2e16233eb4f64bcbeee88a4881ea90fca14dc6ab"}, - {file = "cffi-1.16.0-cp311-cp311-win_amd64.whl", hash = "sha256:db8e577c19c0fda0beb7e0d4e09e0ba74b1e4c092e0e40bfa12fe05b6f6d75ba"}, - {file = "cffi-1.16.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:fa3a0128b152627161ce47201262d3140edb5a5c3da88d73a1b790a959126956"}, - {file = "cffi-1.16.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:68e7c44931cc171c54ccb702482e9fc723192e88d25a0e133edd7aff8fcd1f6e"}, - {file = "cffi-1.16.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:abd808f9c129ba2beda4cfc53bde801e5bcf9d6e0f22f095e45327c038bfe68e"}, - {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88e2b3c14bdb32e440be531ade29d3c50a1a59cd4e51b1dd8b0865c54ea5d2e2"}, - {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fcc8eb6d5902bb1cf6dc4f187ee3ea80a1eba0a89aba40a5cb20a5087d961357"}, - {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b7be2d771cdba2942e13215c4e340bfd76398e9227ad10402a8767ab1865d2e6"}, - {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e715596e683d2ce000574bae5d07bd522c781a822866c20495e52520564f0969"}, - {file = "cffi-1.16.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2d92b25dbf6cae33f65005baf472d2c245c050b1ce709cc4588cdcdd5495b520"}, - {file = "cffi-1.16.0-cp312-cp312-win32.whl", hash = "sha256:b2ca4e77f9f47c55c194982e10f058db063937845bb2b7a86c84a6cfe0aefa8b"}, - {file = "cffi-1.16.0-cp312-cp312-win_amd64.whl", hash = "sha256:68678abf380b42ce21a5f2abde8efee05c114c2fdb2e9eef2efdb0257fba1235"}, - {file = "cffi-1.16.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0c9ef6ff37e974b73c25eecc13952c55bceed9112be2d9d938ded8e856138bcc"}, - {file = "cffi-1.16.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a09582f178759ee8128d9270cd1344154fd473bb77d94ce0aeb2a93ebf0feaf0"}, - {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e760191dd42581e023a68b758769e2da259b5d52e3103c6060ddc02c9edb8d7b"}, - {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:80876338e19c951fdfed6198e70bc88f1c9758b94578d5a7c4c91a87af3cf31c"}, - {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a6a14b17d7e17fa0d207ac08642c8820f84f25ce17a442fd15e27ea18d67c59b"}, - {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6602bc8dc6f3a9e02b6c22c4fc1e47aa50f8f8e6d3f78a5e16ac33ef5fefa324"}, - {file = "cffi-1.16.0-cp38-cp38-win32.whl", hash = "sha256:131fd094d1065b19540c3d72594260f118b231090295d8c34e19a7bbcf2e860a"}, - {file = "cffi-1.16.0-cp38-cp38-win_amd64.whl", hash = "sha256:31d13b0f99e0836b7ff893d37af07366ebc90b678b6664c955b54561fc36ef36"}, - {file = "cffi-1.16.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:582215a0e9adbe0e379761260553ba11c58943e4bbe9c36430c4ca6ac74b15ed"}, - {file = "cffi-1.16.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b29ebffcf550f9da55bec9e02ad430c992a87e5f512cd63388abb76f1036d8d2"}, - {file = "cffi-1.16.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dc9b18bf40cc75f66f40a7379f6a9513244fe33c0e8aa72e2d56b0196a7ef872"}, - {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9cb4a35b3642fc5c005a6755a5d17c6c8b6bcb6981baf81cea8bfbc8903e8ba8"}, - {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b86851a328eedc692acf81fb05444bdf1891747c25af7529e39ddafaf68a4f3f"}, - {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c0f31130ebc2d37cdd8e44605fb5fa7ad59049298b3f745c74fa74c62fbfcfc4"}, - {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f8e709127c6c77446a8c0a8c8bf3c8ee706a06cd44b1e827c3e6a2ee6b8c098"}, - {file = "cffi-1.16.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:748dcd1e3d3d7cd5443ef03ce8685043294ad6bd7c02a38d1bd367cfd968e000"}, - {file = "cffi-1.16.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8895613bcc094d4a1b2dbe179d88d7fb4a15cee43c052e8885783fac397d91fe"}, - {file = "cffi-1.16.0-cp39-cp39-win32.whl", hash = "sha256:ed86a35631f7bfbb28e108dd96773b9d5a6ce4811cf6ea468bb6a359b256b1e4"}, - {file = "cffi-1.16.0-cp39-cp39-win_amd64.whl", hash = "sha256:3686dffb02459559c74dd3d81748269ffb0eb027c39a6fc99502de37d501faa8"}, - {file = "cffi-1.16.0.tar.gz", hash = "sha256:bcb3ef43e58665bbda2fb198698fcae6776483e0c4a631aa5647806c25e02cc0"}, -] - -[package.dependencies] -pycparser = "*" - -[[package]] -name = "chardet" -version = "5.2.0" -description = "Universal encoding detector for Python 3" -optional = false -python-versions = ">=3.7" -files = [ - {file = "chardet-5.2.0-py3-none-any.whl", hash = "sha256:e1cf59446890a00105fe7b7912492ea04b6e6f06d4b742b2c788469e34c82970"}, - {file = "chardet-5.2.0.tar.gz", hash = "sha256:1b3b6ff479a8c414bc3fa2c0852995695c4a026dcd6d0633b2dd092ca39c1cf7"}, -] - -[[package]] -name = "click" -version = "8.1.7" -description = "Composable command line interface toolkit" -optional = false -python-versions = ">=3.7" -files = [ - {file = "click-8.1.7-py3-none-any.whl", hash = "sha256:ae74fb96c20a0277a1d615f1e4d73c8414f5a98db8b799a7931d1582f3390c28"}, - {file = "click-8.1.7.tar.gz", hash = "sha256:ca9853ad459e787e2192211578cc907e7594e294c7ccc834310722b41b9ca6de"}, -] - -[package.dependencies] -colorama = {version = "*", markers = "platform_system == \"Windows\""} - -[[package]] -name = "colorama" -version = "0.4.6" -description = "Cross-platform colored terminal text." -optional = false -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" -files = [ - {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"}, - {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, -] - -[[package]] -name = "comm" -version = "0.2.0" -description = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc." -optional = false -python-versions = ">=3.8" -files = [ - {file = "comm-0.2.0-py3-none-any.whl", hash = "sha256:2da8d9ebb8dd7bfc247adaff99f24dce705638a8042b85cb995066793e391001"}, - {file = "comm-0.2.0.tar.gz", hash = "sha256:a517ea2ca28931c7007a7a99c562a0fa5883cfb48963140cf642c41c948498be"}, -] - -[package.dependencies] -traitlets = ">=4" - -[package.extras] -test = ["pytest"] - -[[package]] -name = "contourpy" -version = "1.2.0" -description = "Python library for calculating contours of 2D quadrilateral grids" -optional = false -python-versions = ">=3.9" -files = [ - {file = "contourpy-1.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0274c1cb63625972c0c007ab14dd9ba9e199c36ae1a231ce45d725cbcbfd10a8"}, - {file = "contourpy-1.2.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ab459a1cbbf18e8698399c595a01f6dcc5c138220ca3ea9e7e6126232d102bb4"}, - {file = "contourpy-1.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6fdd887f17c2f4572ce548461e4f96396681212d858cae7bd52ba3310bc6f00f"}, - {file = "contourpy-1.2.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5d16edfc3fc09968e09ddffada434b3bf989bf4911535e04eada58469873e28e"}, - {file = "contourpy-1.2.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1c203f617abc0dde5792beb586f827021069fb6d403d7f4d5c2b543d87edceb9"}, - {file = "contourpy-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b69303ceb2e4d4f146bf82fda78891ef7bcd80c41bf16bfca3d0d7eb545448aa"}, - {file = "contourpy-1.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:884c3f9d42d7218304bc74a8a7693d172685c84bd7ab2bab1ee567b769696df9"}, - {file = "contourpy-1.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4a1b1208102be6e851f20066bf0e7a96b7d48a07c9b0cfe6d0d4545c2f6cadab"}, - {file = "contourpy-1.2.0-cp310-cp310-win32.whl", hash = "sha256:34b9071c040d6fe45d9826cbbe3727d20d83f1b6110d219b83eb0e2a01d79488"}, - {file = "contourpy-1.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:bd2f1ae63998da104f16a8b788f685e55d65760cd1929518fd94cd682bf03e41"}, - {file = "contourpy-1.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:dd10c26b4eadae44783c45ad6655220426f971c61d9b239e6f7b16d5cdaaa727"}, - {file = "contourpy-1.2.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5c6b28956b7b232ae801406e529ad7b350d3f09a4fde958dfdf3c0520cdde0dd"}, - {file = "contourpy-1.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ebeac59e9e1eb4b84940d076d9f9a6cec0064e241818bcb6e32124cc5c3e377a"}, - {file = "contourpy-1.2.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:139d8d2e1c1dd52d78682f505e980f592ba53c9f73bd6be102233e358b401063"}, - {file = "contourpy-1.2.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1e9dc350fb4c58adc64df3e0703ab076f60aac06e67d48b3848c23647ae4310e"}, - {file = "contourpy-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18fc2b4ed8e4a8fe849d18dce4bd3c7ea637758c6343a1f2bae1e9bd4c9f4686"}, - {file = "contourpy-1.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:16a7380e943a6d52472096cb7ad5264ecee36ed60888e2a3d3814991a0107286"}, - {file = "contourpy-1.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:8d8faf05be5ec8e02a4d86f616fc2a0322ff4a4ce26c0f09d9f7fb5330a35c95"}, - {file = "contourpy-1.2.0-cp311-cp311-win32.whl", hash = "sha256:67b7f17679fa62ec82b7e3e611c43a016b887bd64fb933b3ae8638583006c6d6"}, - {file = "contourpy-1.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:99ad97258985328b4f207a5e777c1b44a83bfe7cf1f87b99f9c11d4ee477c4de"}, - {file = "contourpy-1.2.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:575bcaf957a25d1194903a10bc9f316c136c19f24e0985a2b9b5608bdf5dbfe0"}, - {file = "contourpy-1.2.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:9e6c93b5b2dbcedad20a2f18ec22cae47da0d705d454308063421a3b290d9ea4"}, - {file = "contourpy-1.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:464b423bc2a009088f19bdf1f232299e8b6917963e2b7e1d277da5041f33a779"}, - {file = "contourpy-1.2.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:68ce4788b7d93e47f84edd3f1f95acdcd142ae60bc0e5493bfd120683d2d4316"}, - {file = "contourpy-1.2.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3d7d1f8871998cdff5d2ff6a087e5e1780139abe2838e85b0b46b7ae6cc25399"}, - {file = "contourpy-1.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6e739530c662a8d6d42c37c2ed52a6f0932c2d4a3e8c1f90692ad0ce1274abe0"}, - {file = "contourpy-1.2.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:247b9d16535acaa766d03037d8e8fb20866d054d3c7fbf6fd1f993f11fc60ca0"}, - {file = "contourpy-1.2.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:461e3ae84cd90b30f8d533f07d87c00379644205b1d33a5ea03381edc4b69431"}, - {file = "contourpy-1.2.0-cp312-cp312-win32.whl", hash = "sha256:1c2559d6cffc94890b0529ea7eeecc20d6fadc1539273aa27faf503eb4656d8f"}, - {file = "contourpy-1.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:491b1917afdd8638a05b611a56d46587d5a632cabead889a5440f7c638bc6ed9"}, - {file = "contourpy-1.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5fd1810973a375ca0e097dee059c407913ba35723b111df75671a1976efa04bc"}, - {file = "contourpy-1.2.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:999c71939aad2780f003979b25ac5b8f2df651dac7b38fb8ce6c46ba5abe6ae9"}, - {file = "contourpy-1.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b7caf9b241464c404613512d5594a6e2ff0cc9cb5615c9475cc1d9b514218ae8"}, - {file = "contourpy-1.2.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:266270c6f6608340f6c9836a0fb9b367be61dde0c9a9a18d5ece97774105ff3e"}, - {file = "contourpy-1.2.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dbd50d0a0539ae2e96e537553aff6d02c10ed165ef40c65b0e27e744a0f10af8"}, - {file = "contourpy-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:11f8d2554e52f459918f7b8e6aa20ec2a3bce35ce95c1f0ef4ba36fbda306df5"}, - {file = "contourpy-1.2.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ce96dd400486e80ac7d195b2d800b03e3e6a787e2a522bfb83755938465a819e"}, - {file = "contourpy-1.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6d3364b999c62f539cd403f8123ae426da946e142312a514162adb2addd8d808"}, - {file = "contourpy-1.2.0-cp39-cp39-win32.whl", hash = "sha256:1c88dfb9e0c77612febebb6ac69d44a8d81e3dc60f993215425b62c1161353f4"}, - {file = "contourpy-1.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:78e6ad33cf2e2e80c5dfaaa0beec3d61face0fb650557100ee36db808bfa6843"}, - {file = "contourpy-1.2.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:be16975d94c320432657ad2402f6760990cb640c161ae6da1363051805fa8108"}, - {file = "contourpy-1.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b95a225d4948b26a28c08307a60ac00fb8671b14f2047fc5476613252a129776"}, - {file = "contourpy-1.2.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:0d7e03c0f9a4f90dc18d4e77e9ef4ec7b7bbb437f7f675be8e530d65ae6ef956"}, - {file = "contourpy-1.2.0.tar.gz", hash = "sha256:171f311cb758de7da13fc53af221ae47a5877be5a0843a9fe150818c51ed276a"}, -] - -[package.dependencies] -numpy = ">=1.20,<2.0" - -[package.extras] -bokeh = ["bokeh", "selenium"] -docs = ["furo", "sphinx (>=7.2)", "sphinx-copybutton"] -mypy = ["contourpy[bokeh,docs]", "docutils-stubs", "mypy (==1.6.1)", "types-Pillow"] -test = ["Pillow", "contourpy[test-no-images]", "matplotlib"] -test-no-images = ["pytest", "pytest-cov", "pytest-xdist", "wurlitzer"] - -[[package]] -name = "coverage" -version = "7.3.4" -description = "Code coverage measurement for Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "coverage-7.3.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:aff2bd3d585969cc4486bfc69655e862028b689404563e6b549e6a8244f226df"}, - {file = "coverage-7.3.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e4353923f38d752ecfbd3f1f20bf7a3546993ae5ecd7c07fd2f25d40b4e54571"}, - {file = "coverage-7.3.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ea473c37872f0159294f7073f3fa72f68b03a129799f3533b2bb44d5e9fa4f82"}, - {file = "coverage-7.3.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5214362abf26e254d749fc0c18af4c57b532a4bfde1a057565616dd3b8d7cc94"}, - {file = "coverage-7.3.4-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f99b7d3f7a7adfa3d11e3a48d1a91bb65739555dd6a0d3fa68aa5852d962e5b1"}, - {file = "coverage-7.3.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:74397a1263275bea9d736572d4cf338efaade2de9ff759f9c26bcdceb383bb49"}, - {file = "coverage-7.3.4-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:f154bd866318185ef5865ace5be3ac047b6d1cc0aeecf53bf83fe846f4384d5d"}, - {file = "coverage-7.3.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:e0d84099ea7cba9ff467f9c6f747e3fc3906e2aadac1ce7b41add72e8d0a3712"}, - {file = "coverage-7.3.4-cp310-cp310-win32.whl", hash = "sha256:3f477fb8a56e0c603587b8278d9dbd32e54bcc2922d62405f65574bd76eba78a"}, - {file = "coverage-7.3.4-cp310-cp310-win_amd64.whl", hash = "sha256:c75738ce13d257efbb6633a049fb2ed8e87e2e6c2e906c52d1093a4d08d67c6b"}, - {file = "coverage-7.3.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:997aa14b3e014339d8101b9886063c5d06238848905d9ad6c6eabe533440a9a7"}, - {file = "coverage-7.3.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8a9c5bc5db3eb4cd55ecb8397d8e9b70247904f8eca718cc53c12dcc98e59fc8"}, - {file = "coverage-7.3.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:27ee94f088397d1feea3cb524e4313ff0410ead7d968029ecc4bc5a7e1d34fbf"}, - {file = "coverage-7.3.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8ce03e25e18dd9bf44723e83bc202114817f3367789052dc9e5b5c79f40cf59d"}, - {file = "coverage-7.3.4-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85072e99474d894e5df582faec04abe137b28972d5e466999bc64fc37f564a03"}, - {file = "coverage-7.3.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a877810ef918d0d345b783fc569608804f3ed2507bf32f14f652e4eaf5d8f8d0"}, - {file = "coverage-7.3.4-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:9ac17b94ab4ca66cf803f2b22d47e392f0977f9da838bf71d1f0db6c32893cb9"}, - {file = "coverage-7.3.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:36d75ef2acab74dc948d0b537ef021306796da551e8ac8b467810911000af66a"}, - {file = "coverage-7.3.4-cp311-cp311-win32.whl", hash = "sha256:47ee56c2cd445ea35a8cc3ad5c8134cb9bece3a5cb50bb8265514208d0a65928"}, - {file = "coverage-7.3.4-cp311-cp311-win_amd64.whl", hash = "sha256:11ab62d0ce5d9324915726f611f511a761efcca970bd49d876cf831b4de65be5"}, - {file = "coverage-7.3.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:33e63c578f4acce1b6cd292a66bc30164495010f1091d4b7529d014845cd9bee"}, - {file = "coverage-7.3.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:782693b817218169bfeb9b9ba7f4a9f242764e180ac9589b45112571f32a0ba6"}, - {file = "coverage-7.3.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7c4277ddaad9293454da19121c59f2d850f16bcb27f71f89a5c4836906eb35ef"}, - {file = "coverage-7.3.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3d892a19ae24b9801771a5a989fb3e850bd1ad2e2b6e83e949c65e8f37bc67a1"}, - {file = "coverage-7.3.4-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3024ec1b3a221bd10b5d87337d0373c2bcaf7afd86d42081afe39b3e1820323b"}, - {file = "coverage-7.3.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:a1c3e9d2bbd6f3f79cfecd6f20854f4dc0c6e0ec317df2b265266d0dc06535f1"}, - {file = "coverage-7.3.4-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:e91029d7f151d8bf5ab7d8bfe2c3dbefd239759d642b211a677bc0709c9fdb96"}, - {file = "coverage-7.3.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:6879fe41c60080aa4bb59703a526c54e0412b77e649a0d06a61782ecf0853ee1"}, - {file = "coverage-7.3.4-cp312-cp312-win32.whl", hash = "sha256:fd2f8a641f8f193968afdc8fd1697e602e199931012b574194052d132a79be13"}, - {file = "coverage-7.3.4-cp312-cp312-win_amd64.whl", hash = "sha256:d1d0ce6c6947a3a4aa5479bebceff2c807b9f3b529b637e2b33dea4468d75fc7"}, - {file = "coverage-7.3.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:36797b3625d1da885b369bdaaa3b0d9fb8865caed3c2b8230afaa6005434aa2f"}, - {file = "coverage-7.3.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:bfed0ec4b419fbc807dec417c401499ea869436910e1ca524cfb4f81cf3f60e7"}, - {file = "coverage-7.3.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f97ff5a9fc2ca47f3383482858dd2cb8ddbf7514427eecf5aa5f7992d0571429"}, - {file = "coverage-7.3.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:607b6c6b35aa49defaebf4526729bd5238bc36fe3ef1a417d9839e1d96ee1e4c"}, - {file = "coverage-7.3.4-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a8e258dcc335055ab59fe79f1dec217d9fb0cdace103d6b5c6df6b75915e7959"}, - {file = "coverage-7.3.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:a02ac7c51819702b384fea5ee033a7c202f732a2a2f1fe6c41e3d4019828c8d3"}, - {file = "coverage-7.3.4-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:b710869a15b8caf02e31d16487a931dbe78335462a122c8603bb9bd401ff6fb2"}, - {file = "coverage-7.3.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:c6a23ae9348a7a92e7f750f9b7e828448e428e99c24616dec93a0720342f241d"}, - {file = "coverage-7.3.4-cp38-cp38-win32.whl", hash = "sha256:758ebaf74578b73f727acc4e8ab4b16ab6f22a5ffd7dd254e5946aba42a4ce76"}, - {file = "coverage-7.3.4-cp38-cp38-win_amd64.whl", hash = "sha256:309ed6a559bc942b7cc721f2976326efbfe81fc2b8f601c722bff927328507dc"}, - {file = "coverage-7.3.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:aefbb29dc56317a4fcb2f3857d5bce9b881038ed7e5aa5d3bcab25bd23f57328"}, - {file = "coverage-7.3.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:183c16173a70caf92e2dfcfe7c7a576de6fa9edc4119b8e13f91db7ca33a7923"}, - {file = "coverage-7.3.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a4184dcbe4f98d86470273e758f1d24191ca095412e4335ff27b417291f5964"}, - {file = "coverage-7.3.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:93698ac0995516ccdca55342599a1463ed2e2d8942316da31686d4d614597ef9"}, - {file = "coverage-7.3.4-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fb220b3596358a86361139edce40d97da7458412d412e1e10c8e1970ee8c09ab"}, - {file = "coverage-7.3.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d5b14abde6f8d969e6b9dd8c7a013d9a2b52af1235fe7bebef25ad5c8f47fa18"}, - {file = "coverage-7.3.4-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:610afaf929dc0e09a5eef6981edb6a57a46b7eceff151947b836d869d6d567c1"}, - {file = "coverage-7.3.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:d6ed790728fb71e6b8247bd28e77e99d0c276dff952389b5388169b8ca7b1c28"}, - {file = "coverage-7.3.4-cp39-cp39-win32.whl", hash = "sha256:c15fdfb141fcf6a900e68bfa35689e1256a670db32b96e7a931cab4a0e1600e5"}, - {file = "coverage-7.3.4-cp39-cp39-win_amd64.whl", hash = "sha256:38d0b307c4d99a7aca4e00cad4311b7c51b7ac38fb7dea2abe0d182dd4008e05"}, - {file = "coverage-7.3.4-pp38.pp39.pp310-none-any.whl", hash = "sha256:b1e0f25ae99cf247abfb3f0fac7ae25739e4cd96bf1afa3537827c576b4847e5"}, - {file = "coverage-7.3.4.tar.gz", hash = "sha256:020d56d2da5bc22a0e00a5b0d54597ee91ad72446fa4cf1b97c35022f6b6dbf0"}, -] - -[package.dependencies] -tomli = {version = "*", optional = true, markers = "python_full_version <= \"3.11.0a6\" and extra == \"toml\""} - -[package.extras] -toml = ["tomli"] - -[[package]] -name = "cycler" -version = "0.12.1" -description = "Composable style cycles" -optional = false -python-versions = ">=3.8" -files = [ - {file = "cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30"}, - {file = "cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c"}, -] - -[package.extras] -docs = ["ipython", "matplotlib", "numpydoc", "sphinx"] -tests = ["pytest", "pytest-cov", "pytest-xdist"] - -[[package]] -name = "debugpy" -version = "1.8.0" -description = "An implementation of the Debug Adapter Protocol for Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "debugpy-1.8.0-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:7fb95ca78f7ac43393cd0e0f2b6deda438ec7c5e47fa5d38553340897d2fbdfb"}, - {file = "debugpy-1.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ef9ab7df0b9a42ed9c878afd3eaaff471fce3fa73df96022e1f5c9f8f8c87ada"}, - {file = "debugpy-1.8.0-cp310-cp310-win32.whl", hash = "sha256:a8b7a2fd27cd9f3553ac112f356ad4ca93338feadd8910277aff71ab24d8775f"}, - {file = "debugpy-1.8.0-cp310-cp310-win_amd64.whl", hash = "sha256:5d9de202f5d42e62f932507ee8b21e30d49aae7e46d5b1dd5c908db1d7068637"}, - {file = "debugpy-1.8.0-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:ef54404365fae8d45cf450d0544ee40cefbcb9cb85ea7afe89a963c27028261e"}, - {file = "debugpy-1.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:60009b132c91951354f54363f8ebdf7457aeb150e84abba5ae251b8e9f29a8a6"}, - {file = "debugpy-1.8.0-cp311-cp311-win32.whl", hash = "sha256:8cd0197141eb9e8a4566794550cfdcdb8b3db0818bdf8c49a8e8f8053e56e38b"}, - {file = "debugpy-1.8.0-cp311-cp311-win_amd64.whl", hash = "sha256:a64093656c4c64dc6a438e11d59369875d200bd5abb8f9b26c1f5f723622e153"}, - {file = "debugpy-1.8.0-cp38-cp38-macosx_11_0_x86_64.whl", hash = "sha256:b05a6b503ed520ad58c8dc682749113d2fd9f41ffd45daec16e558ca884008cd"}, - {file = "debugpy-1.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c6fb41c98ec51dd010d7ed650accfd07a87fe5e93eca9d5f584d0578f28f35f"}, - {file = "debugpy-1.8.0-cp38-cp38-win32.whl", hash = "sha256:46ab6780159eeabb43c1495d9c84cf85d62975e48b6ec21ee10c95767c0590aa"}, - {file = "debugpy-1.8.0-cp38-cp38-win_amd64.whl", hash = "sha256:bdc5ef99d14b9c0fcb35351b4fbfc06ac0ee576aeab6b2511702e5a648a2e595"}, - {file = "debugpy-1.8.0-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:61eab4a4c8b6125d41a34bad4e5fe3d2cc145caecd63c3fe953be4cc53e65bf8"}, - {file = "debugpy-1.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:125b9a637e013f9faac0a3d6a82bd17c8b5d2c875fb6b7e2772c5aba6d082332"}, - {file = "debugpy-1.8.0-cp39-cp39-win32.whl", hash = "sha256:57161629133113c97b387382045649a2b985a348f0c9366e22217c87b68b73c6"}, - {file = "debugpy-1.8.0-cp39-cp39-win_amd64.whl", hash = "sha256:e3412f9faa9ade82aa64a50b602544efcba848c91384e9f93497a458767e6926"}, - {file = "debugpy-1.8.0-py2.py3-none-any.whl", hash = "sha256:9c9b0ac1ce2a42888199df1a1906e45e6f3c9555497643a85e0bf2406e3ffbc4"}, - {file = "debugpy-1.8.0.zip", hash = "sha256:12af2c55b419521e33d5fb21bd022df0b5eb267c3e178f1d374a63a2a6bdccd0"}, -] - -[[package]] -name = "decorator" -version = "5.1.1" -description = "Decorators for Humans" -optional = false -python-versions = ">=3.5" -files = [ - {file = "decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186"}, - {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, -] - -[[package]] -name = "distlib" -version = "0.3.8" -description = "Distribution utilities" -optional = false -python-versions = "*" -files = [ - {file = "distlib-0.3.8-py2.py3-none-any.whl", hash = "sha256:034db59a0b96f8ca18035f36290806a9a6e6bd9d1ff91e45a7f172eb17e51784"}, - {file = "distlib-0.3.8.tar.gz", hash = "sha256:1530ea13e350031b6312d8580ddb6b27a104275a31106523b8f123787f494f64"}, -] - -[[package]] -name = "et-xmlfile" -version = "1.1.0" -description = "An implementation of lxml.xmlfile for the standard library" -optional = false -python-versions = ">=3.6" -files = [ - {file = "et_xmlfile-1.1.0-py3-none-any.whl", hash = "sha256:a2ba85d1d6a74ef63837eed693bcb89c3f752169b0e3e7ae5b16ca5e1b3deada"}, - {file = "et_xmlfile-1.1.0.tar.gz", hash = "sha256:8eb9e2bc2f8c97e37a2dc85a09ecdcdec9d8a396530a6d5a33b30b9a92da0c5c"}, -] - -[[package]] -name = "exceptiongroup" -version = "1.2.0" -description = "Backport of PEP 654 (exception groups)" -optional = false -python-versions = ">=3.7" -files = [ - {file = "exceptiongroup-1.2.0-py3-none-any.whl", hash = "sha256:4bfd3996ac73b41e9b9628b04e079f193850720ea5945fc96a08633c66912f14"}, - {file = "exceptiongroup-1.2.0.tar.gz", hash = "sha256:91f5c769735f051a4290d52edd0858999b57e5876e9f85937691bd4c9fa3ed68"}, -] - -[package.extras] -test = ["pytest (>=6)"] - -[[package]] -name = "executing" -version = "2.0.1" -description = "Get the currently executing AST node of a frame, and other information" -optional = false -python-versions = ">=3.5" -files = [ - {file = "executing-2.0.1-py2.py3-none-any.whl", hash = "sha256:eac49ca94516ccc753f9fb5ce82603156e590b27525a8bc32cce8ae302eb61bc"}, - {file = "executing-2.0.1.tar.gz", hash = "sha256:35afe2ce3affba8ee97f2d69927fa823b08b472b7b994e36a52a964b93d16147"}, -] - -[package.extras] -tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"] - -[[package]] -name = "filelock" -version = "3.13.1" -description = "A platform independent file lock." -optional = false -python-versions = ">=3.8" -files = [ - {file = "filelock-3.13.1-py3-none-any.whl", hash = "sha256:57dbda9b35157b05fb3e58ee91448612eb674172fab98ee235ccb0b5bee19a1c"}, - {file = "filelock-3.13.1.tar.gz", hash = "sha256:521f5f56c50f8426f5e03ad3b281b490a87ef15bc6c526f168290f0c7148d44e"}, -] - -[package.extras] -docs = ["furo (>=2023.9.10)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.24)"] -testing = ["covdefaults (>=2.3)", "coverage (>=7.3.2)", "diff-cover (>=8)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)", "pytest-timeout (>=2.2)"] -typing = ["typing-extensions (>=4.8)"] - -[[package]] -name = "flake8" -version = "6.1.0" -description = "the modular source code checker: pep8 pyflakes and co" -optional = false -python-versions = ">=3.8.1" -files = [ - {file = "flake8-6.1.0-py2.py3-none-any.whl", hash = "sha256:ffdfce58ea94c6580c77888a86506937f9a1a227dfcd15f245d694ae20a6b6e5"}, - {file = "flake8-6.1.0.tar.gz", hash = "sha256:d5b3857f07c030bdb5bf41c7f53799571d75c4491748a3adcd47de929e34cd23"}, -] - -[package.dependencies] -mccabe = ">=0.7.0,<0.8.0" -pycodestyle = ">=2.11.0,<2.12.0" -pyflakes = ">=3.1.0,<3.2.0" - -[[package]] -name = "fonttools" -version = "4.47.0" -description = "Tools to manipulate font files" -optional = false -python-versions = ">=3.8" -files = [ - {file = "fonttools-4.47.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:2d2404107626f97a221dc1a65b05396d2bb2ce38e435f64f26ed2369f68675d9"}, - {file = "fonttools-4.47.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c01f409be619a9a0f5590389e37ccb58b47264939f0e8d58bfa1f3ba07d22671"}, - {file = "fonttools-4.47.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d986b66ff722ef675b7ee22fbe5947a41f60a61a4da15579d5e276d897fbc7fa"}, - {file = "fonttools-4.47.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e8acf6dd0434b211b3bd30d572d9e019831aae17a54016629fa8224783b22df8"}, - {file = "fonttools-4.47.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:495369c660e0c27233e3c572269cbe520f7f4978be675f990f4005937337d391"}, - {file = "fonttools-4.47.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c59227d7ba5b232281c26ae04fac2c73a79ad0e236bca5c44aae904a18f14faf"}, - {file = "fonttools-4.47.0-cp310-cp310-win32.whl", hash = "sha256:59a6c8b71a245800e923cb684a2dc0eac19c56493e2f896218fcf2571ed28984"}, - {file = "fonttools-4.47.0-cp310-cp310-win_amd64.whl", hash = "sha256:52c82df66201f3a90db438d9d7b337c7c98139de598d0728fb99dab9fd0495ca"}, - {file = "fonttools-4.47.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:854421e328d47d70aa5abceacbe8eef231961b162c71cbe7ff3f47e235e2e5c5"}, - {file = "fonttools-4.47.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:511482df31cfea9f697930f61520f6541185fa5eeba2fa760fe72e8eee5af88b"}, - {file = "fonttools-4.47.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ce0e2c88c8c985b7b9a7efcd06511fb0a1fe3ddd9a6cd2895ef1dbf9059719d7"}, - {file = "fonttools-4.47.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e7a0a8848726956e9d9fb18c977a279013daadf0cbb6725d2015a6dd57527992"}, - {file = "fonttools-4.47.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e869da810ae35afb3019baa0d0306cdbab4760a54909c89ad8904fa629991812"}, - {file = "fonttools-4.47.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:dd23848f877c3754f53a4903fb7a593ed100924f9b4bff7d5a4e2e8a7001ae11"}, - {file = "fonttools-4.47.0-cp311-cp311-win32.whl", hash = "sha256:bf1810635c00f7c45d93085611c995fc130009cec5abdc35b327156aa191f982"}, - {file = "fonttools-4.47.0-cp311-cp311-win_amd64.whl", hash = "sha256:61df4dee5d38ab65b26da8efd62d859a1eef7a34dcbc331299a28e24d04c59a7"}, - {file = "fonttools-4.47.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:e3f4d61f3a8195eac784f1d0c16c0a3105382c1b9a74d99ac4ba421da39a8826"}, - {file = "fonttools-4.47.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:174995f7b057e799355b393e97f4f93ef1f2197cbfa945e988d49b2a09ecbce8"}, - {file = "fonttools-4.47.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ea592e6a09b71cb7a7661dd93ac0b877a6228e2d677ebacbad0a4d118494c86d"}, - {file = "fonttools-4.47.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:40bdbe90b33897d9cc4a39f8e415b0fcdeae4c40a99374b8a4982f127ff5c767"}, - {file = "fonttools-4.47.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:843509ae9b93db5aaf1a6302085e30bddc1111d31e11d724584818f5b698f500"}, - {file = "fonttools-4.47.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:9acfa1cdc479e0dde528b61423855913d949a7f7fe09e276228298fef4589540"}, - {file = "fonttools-4.47.0-cp312-cp312-win32.whl", hash = "sha256:66c92ec7f95fd9732550ebedefcd190a8d81beaa97e89d523a0d17198a8bda4d"}, - {file = "fonttools-4.47.0-cp312-cp312-win_amd64.whl", hash = "sha256:e8fa20748de55d0021f83754b371432dca0439e02847962fc4c42a0e444c2d78"}, - {file = "fonttools-4.47.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:c75e19971209fbbce891ebfd1b10c37320a5a28e8d438861c21d35305aedb81c"}, - {file = "fonttools-4.47.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e79f1a3970d25f692bbb8c8c2637e621a66c0d60c109ab48d4a160f50856deff"}, - {file = "fonttools-4.47.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:562681188c62c024fe2c611b32e08b8de2afa00c0c4e72bed47c47c318e16d5c"}, - {file = "fonttools-4.47.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a77a60315c33393b2bd29d538d1ef026060a63d3a49a9233b779261bad9c3f71"}, - {file = "fonttools-4.47.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:b4fabb8cc9422efae1a925160083fdcbab8fdc96a8483441eb7457235df625bd"}, - {file = "fonttools-4.47.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:2a78dba8c2a1e9d53a0fb5382979f024200dc86adc46a56cbb668a2249862fda"}, - {file = "fonttools-4.47.0-cp38-cp38-win32.whl", hash = "sha256:e6b968543fde4119231c12c2a953dcf83349590ca631ba8216a8edf9cd4d36a9"}, - {file = "fonttools-4.47.0-cp38-cp38-win_amd64.whl", hash = "sha256:4a9a51745c0439516d947480d4d884fa18bd1458e05b829e482b9269afa655bc"}, - {file = "fonttools-4.47.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:62d8ddb058b8e87018e5dc26f3258e2c30daad4c87262dfeb0e2617dd84750e6"}, - {file = "fonttools-4.47.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5dde0eab40faaa5476133123f6a622a1cc3ac9b7af45d65690870620323308b4"}, - {file = "fonttools-4.47.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f4da089f6dfdb822293bde576916492cd708c37c2501c3651adde39804630538"}, - {file = "fonttools-4.47.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:253bb46bab970e8aae254cebf2ae3db98a4ef6bd034707aa68a239027d2b198d"}, - {file = "fonttools-4.47.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:1193fb090061efa2f9e2d8d743ae9850c77b66746a3b32792324cdce65784154"}, - {file = "fonttools-4.47.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:084511482dd265bce6dca24c509894062f0117e4e6869384d853f46c0e6d43be"}, - {file = "fonttools-4.47.0-cp39-cp39-win32.whl", hash = "sha256:97620c4af36e4c849e52661492e31dc36916df12571cb900d16960ab8e92a980"}, - {file = "fonttools-4.47.0-cp39-cp39-win_amd64.whl", hash = "sha256:e77bdf52185bdaf63d39f3e1ac3212e6cfa3ab07d509b94557a8902ce9c13c82"}, - {file = "fonttools-4.47.0-py3-none-any.whl", hash = "sha256:d6477ba902dd2d7adda7f0fd3bfaeb92885d45993c9e1928c9f28fc3961415f7"}, - {file = "fonttools-4.47.0.tar.gz", hash = "sha256:ec13a10715eef0e031858c1c23bfaee6cba02b97558e4a7bfa089dba4a8c2ebf"}, -] - -[package.extras] -all = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "fs (>=2.2.0,<3)", "lxml (>=4.0,<5)", "lz4 (>=1.7.4.2)", "matplotlib", "munkres", "pycairo", "scipy", "skia-pathops (>=0.5.0)", "sympy", "uharfbuzz (>=0.23.0)", "unicodedata2 (>=15.1.0)", "xattr", "zopfli (>=0.1.4)"] -graphite = ["lz4 (>=1.7.4.2)"] -interpolatable = ["munkres", "pycairo", "scipy"] -lxml = ["lxml (>=4.0,<5)"] -pathops = ["skia-pathops (>=0.5.0)"] -plot = ["matplotlib"] -repacker = ["uharfbuzz (>=0.23.0)"] -symfont = ["sympy"] -type1 = ["xattr"] -ufo = ["fs (>=2.2.0,<3)"] -unicode = ["unicodedata2 (>=15.1.0)"] -woff = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "zopfli (>=0.1.4)"] - -[[package]] -name = "iniconfig" -version = "2.0.0" -description = "brain-dead simple config-ini parsing" -optional = false -python-versions = ">=3.7" -files = [ - {file = "iniconfig-2.0.0-py3-none-any.whl", hash = "sha256:b6a85871a79d2e3b22d2d1b94ac2824226a63c6b741c88f7ae975f18b6778374"}, - {file = "iniconfig-2.0.0.tar.gz", hash = "sha256:2d91e135bf72d31a410b17c16da610a82cb55f6b0477d1a902134b24a455b8b3"}, -] - -[[package]] -name = "ipykernel" -version = "6.28.0" -description = "IPython Kernel for Jupyter" -optional = false -python-versions = ">=3.8" -files = [ - {file = "ipykernel-6.28.0-py3-none-any.whl", hash = "sha256:c6e9a9c63a7f4095c0a22a79f765f079f9ec7be4f2430a898ddea889e8665661"}, - {file = "ipykernel-6.28.0.tar.gz", hash = "sha256:69c11403d26de69df02225916f916b37ea4b9af417da0a8c827f84328d88e5f3"}, -] - -[package.dependencies] -appnope = {version = "*", markers = "platform_system == \"Darwin\""} -comm = ">=0.1.1" -debugpy = ">=1.6.5" -ipython = ">=7.23.1" -jupyter-client = ">=6.1.12" -jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" -matplotlib-inline = ">=0.1" -nest-asyncio = "*" -packaging = "*" -psutil = "*" -pyzmq = ">=24" -tornado = ">=6.1" -traitlets = ">=5.4.0" - -[package.extras] -cov = ["coverage[toml]", "curio", "matplotlib", "pytest-cov", "trio"] -docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "trio"] -pyqt5 = ["pyqt5"] -pyside6 = ["pyside6"] -test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio", "pytest-cov", "pytest-timeout"] - -[[package]] -name = "ipython" -version = "8.19.0" -description = "IPython: Productive Interactive Computing" -optional = false -python-versions = ">=3.10" -files = [ - {file = "ipython-8.19.0-py3-none-any.whl", hash = "sha256:2f55d59370f59d0d2b2212109fe0e6035cfea436b1c0e6150ad2244746272ec5"}, - {file = "ipython-8.19.0.tar.gz", hash = "sha256:ac4da4ecf0042fb4e0ce57c60430c2db3c719fa8bdf92f8631d6bd8a5785d1f0"}, -] - -[package.dependencies] -colorama = {version = "*", markers = "sys_platform == \"win32\""} -decorator = "*" -exceptiongroup = {version = "*", markers = "python_version < \"3.11\""} -jedi = ">=0.16" -matplotlib-inline = "*" -pexpect = {version = ">4.3", markers = "sys_platform != \"win32\""} -prompt-toolkit = ">=3.0.41,<3.1.0" -pygments = ">=2.4.0" -stack-data = "*" -traitlets = ">=5" - -[package.extras] -all = ["black", "curio", "docrepr", "exceptiongroup", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.23)", "pandas", "pickleshare", "pytest", "pytest-asyncio (<0.22)", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"] -black = ["black"] -doc = ["docrepr", "exceptiongroup", "ipykernel", "matplotlib", "pickleshare", "pytest", "pytest-asyncio (<0.22)", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"] -kernel = ["ipykernel"] -nbconvert = ["nbconvert"] -nbformat = ["nbformat"] -notebook = ["ipywidgets", "notebook"] -parallel = ["ipyparallel"] -qtconsole = ["qtconsole"] -test = ["pickleshare", "pytest", "pytest-asyncio (<0.22)", "testpath"] -test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.23)", "pandas", "pickleshare", "pytest", "pytest-asyncio (<0.22)", "testpath", "trio"] - -[[package]] -name = "isort" -version = "5.13.2" -description = "A Python utility / library to sort Python imports." -optional = false -python-versions = ">=3.8.0" -files = [ - {file = "isort-5.13.2-py3-none-any.whl", hash = "sha256:8ca5e72a8d85860d5a3fa69b8745237f2939afe12dbf656afbcb47fe72d947a6"}, - {file = "isort-5.13.2.tar.gz", hash = "sha256:48fdfcb9face5d58a4f6dde2e72a1fb8dcaf8ab26f95ab49fab84c2ddefb0109"}, -] - -[package.extras] -colors = ["colorama (>=0.4.6)"] - -[[package]] -name = "jedi" -version = "0.19.1" -description = "An autocompletion tool for Python that can be used for text editors." -optional = false -python-versions = ">=3.6" -files = [ - {file = "jedi-0.19.1-py2.py3-none-any.whl", hash = "sha256:e983c654fe5c02867aef4cdfce5a2fbb4a50adc0af145f70504238f18ef5e7e0"}, - {file = "jedi-0.19.1.tar.gz", hash = "sha256:cf0496f3651bc65d7174ac1b7d043eff454892c708a87d1b683e57b569927ffd"}, -] - -[package.dependencies] -parso = ">=0.8.3,<0.9.0" - -[package.extras] -docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alabaster (==0.7.12)", "babel (==2.9.1)", "chardet (==4.0.0)", "commonmark (==0.8.1)", "docutils (==0.17.1)", "future (==0.18.2)", "idna (==2.10)", "imagesize (==1.2.0)", "mock (==1.0.1)", "packaging (==20.9)", "pyparsing (==2.4.7)", "pytz (==2021.1)", "readthedocs-sphinx-ext (==2.1.4)", "recommonmark (==0.5.0)", "requests (==2.25.1)", "six (==1.15.0)", "snowballstemmer (==2.1.0)", "sphinx (==1.8.5)", "sphinx-rtd-theme (==0.4.3)", "sphinxcontrib-serializinghtml (==1.1.4)", "sphinxcontrib-websupport (==1.2.4)", "urllib3 (==1.26.4)"] -qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] -testing = ["Django", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] - -[[package]] -name = "jupyter-client" -version = "8.6.0" -description = "Jupyter protocol implementation and client libraries" -optional = false -python-versions = ">=3.8" -files = [ - {file = "jupyter_client-8.6.0-py3-none-any.whl", hash = "sha256:909c474dbe62582ae62b758bca86d6518c85234bdee2d908c778db6d72f39d99"}, - {file = "jupyter_client-8.6.0.tar.gz", hash = "sha256:0642244bb83b4764ae60d07e010e15f0e2d275ec4e918a8f7b80fbbef3ca60c7"}, -] - -[package.dependencies] -jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" -python-dateutil = ">=2.8.2" -pyzmq = ">=23.0" -tornado = ">=6.2" -traitlets = ">=5.3" - -[package.extras] -docs = ["ipykernel", "myst-parser", "pydata-sphinx-theme", "sphinx (>=4)", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] -test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] - -[[package]] -name = "jupyter-core" -version = "5.6.0" -description = "Jupyter core package. A base package on which Jupyter projects rely." -optional = false -python-versions = ">=3.8" -files = [ - {file = "jupyter_core-5.6.0-py3-none-any.whl", hash = "sha256:7613ee3c01f1b0632b927d368bf4e2f5d38503320b2179eec46eea91d026b0ce"}, - {file = "jupyter_core-5.6.0.tar.gz", hash = "sha256:2970f1554685c89ebfedd784e44eea62d17a935e817f7bb704329a6129e178ca"}, -] - -[package.dependencies] -platformdirs = ">=2.5" -pywin32 = {version = ">=300", markers = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\""} -traitlets = ">=5.3" - -[package.extras] -docs = ["myst-parser", "pydata-sphinx-theme", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"] -test = ["ipykernel", "pre-commit", "pytest", "pytest-cov", "pytest-timeout"] - -[[package]] -name = "kiwisolver" -version = "1.4.5" -description = "A fast implementation of the Cassowary constraint solver" -optional = false -python-versions = ">=3.7" -files = [ - {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:05703cf211d585109fcd72207a31bb170a0f22144d68298dc5e61b3c946518af"}, - {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:146d14bebb7f1dc4d5fbf74f8a6cb15ac42baadee8912eb84ac0b3b2a3dc6ac3"}, - {file = "kiwisolver-1.4.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6ef7afcd2d281494c0a9101d5c571970708ad911d028137cd558f02b851c08b4"}, - {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9eaa8b117dc8337728e834b9c6e2611f10c79e38f65157c4c38e9400286f5cb1"}, - {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ec20916e7b4cbfb1f12380e46486ec4bcbaa91a9c448b97023fde0d5bbf9e4ff"}, - {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:39b42c68602539407884cf70d6a480a469b93b81b7701378ba5e2328660c847a"}, - {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aa12042de0171fad672b6c59df69106d20d5596e4f87b5e8f76df757a7c399aa"}, - {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a40773c71d7ccdd3798f6489aaac9eee213d566850a9533f8d26332d626b82c"}, - {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:19df6e621f6d8b4b9c4d45f40a66839294ff2bb235e64d2178f7522d9170ac5b"}, - {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:83d78376d0d4fd884e2c114d0621624b73d2aba4e2788182d286309ebdeed770"}, - {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:e391b1f0a8a5a10ab3b9bb6afcfd74f2175f24f8975fb87ecae700d1503cdee0"}, - {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:852542f9481f4a62dbb5dd99e8ab7aedfeb8fb6342349a181d4036877410f525"}, - {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:59edc41b24031bc25108e210c0def6f6c2191210492a972d585a06ff246bb79b"}, - {file = "kiwisolver-1.4.5-cp310-cp310-win32.whl", hash = "sha256:a6aa6315319a052b4ee378aa171959c898a6183f15c1e541821c5c59beaa0238"}, - {file = "kiwisolver-1.4.5-cp310-cp310-win_amd64.whl", hash = "sha256:d0ef46024e6a3d79c01ff13801cb19d0cad7fd859b15037aec74315540acc276"}, - {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:11863aa14a51fd6ec28688d76f1735f8f69ab1fabf388851a595d0721af042f5"}, - {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8ab3919a9997ab7ef2fbbed0cc99bb28d3c13e6d4b1ad36e97e482558a91be90"}, - {file = "kiwisolver-1.4.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fcc700eadbbccbf6bc1bcb9dbe0786b4b1cb91ca0dcda336eef5c2beed37b797"}, - {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dfdd7c0b105af050eb3d64997809dc21da247cf44e63dc73ff0fd20b96be55a9"}, - {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76c6a5964640638cdeaa0c359382e5703e9293030fe730018ca06bc2010c4437"}, - {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bbea0db94288e29afcc4c28afbf3a7ccaf2d7e027489c449cf7e8f83c6346eb9"}, - {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ceec1a6bc6cab1d6ff5d06592a91a692f90ec7505d6463a88a52cc0eb58545da"}, - {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:040c1aebeda72197ef477a906782b5ab0d387642e93bda547336b8957c61022e"}, - {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f91de7223d4c7b793867797bacd1ee53bfe7359bd70d27b7b58a04efbb9436c8"}, - {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:faae4860798c31530dd184046a900e652c95513796ef51a12bc086710c2eec4d"}, - {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:b0157420efcb803e71d1b28e2c287518b8808b7cf1ab8af36718fd0a2c453eb0"}, - {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:06f54715b7737c2fecdbf140d1afb11a33d59508a47bf11bb38ecf21dc9ab79f"}, - {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fdb7adb641a0d13bdcd4ef48e062363d8a9ad4a182ac7647ec88f695e719ae9f"}, - {file = "kiwisolver-1.4.5-cp311-cp311-win32.whl", hash = "sha256:bb86433b1cfe686da83ce32a9d3a8dd308e85c76b60896d58f082136f10bffac"}, - {file = "kiwisolver-1.4.5-cp311-cp311-win_amd64.whl", hash = "sha256:6c08e1312a9cf1074d17b17728d3dfce2a5125b2d791527f33ffbe805200a355"}, - {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:32d5cf40c4f7c7b3ca500f8985eb3fb3a7dfc023215e876f207956b5ea26632a"}, - {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f846c260f483d1fd217fe5ed7c173fb109efa6b1fc8381c8b7552c5781756192"}, - {file = "kiwisolver-1.4.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5ff5cf3571589b6d13bfbfd6bcd7a3f659e42f96b5fd1c4830c4cf21d4f5ef45"}, - {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7269d9e5f1084a653d575c7ec012ff57f0c042258bf5db0954bf551c158466e7"}, - {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da802a19d6e15dffe4b0c24b38b3af68e6c1a68e6e1d8f30148c83864f3881db"}, - {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3aba7311af82e335dd1e36ffff68aaca609ca6290c2cb6d821a39aa075d8e3ff"}, - {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:763773d53f07244148ccac5b084da5adb90bfaee39c197554f01b286cf869228"}, - {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2270953c0d8cdab5d422bee7d2007f043473f9d2999631c86a223c9db56cbd16"}, - {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d099e745a512f7e3bbe7249ca835f4d357c586d78d79ae8f1dcd4d8adeb9bda9"}, - {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:74db36e14a7d1ce0986fa104f7d5637aea5c82ca6326ed0ec5694280942d1162"}, - {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:7e5bab140c309cb3a6ce373a9e71eb7e4873c70c2dda01df6820474f9889d6d4"}, - {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:0f114aa76dc1b8f636d077979c0ac22e7cd8f3493abbab152f20eb8d3cda71f3"}, - {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:88a2df29d4724b9237fc0c6eaf2a1adae0cdc0b3e9f4d8e7dc54b16812d2d81a"}, - {file = "kiwisolver-1.4.5-cp312-cp312-win32.whl", hash = "sha256:72d40b33e834371fd330fb1472ca19d9b8327acb79a5821d4008391db8e29f20"}, - {file = "kiwisolver-1.4.5-cp312-cp312-win_amd64.whl", hash = "sha256:2c5674c4e74d939b9d91dda0fae10597ac7521768fec9e399c70a1f27e2ea2d9"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3a2b053a0ab7a3960c98725cfb0bf5b48ba82f64ec95fe06f1d06c99b552e130"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3cd32d6c13807e5c66a7cbb79f90b553642f296ae4518a60d8d76243b0ad2898"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:59ec7b7c7e1a61061850d53aaf8e93db63dce0c936db1fda2658b70e4a1be709"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:da4cfb373035def307905d05041c1d06d8936452fe89d464743ae7fb8371078b"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2400873bccc260b6ae184b2b8a4fec0e4082d30648eadb7c3d9a13405d861e89"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:1b04139c4236a0f3aff534479b58f6f849a8b351e1314826c2d230849ed48985"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:4e66e81a5779b65ac21764c295087de82235597a2293d18d943f8e9e32746265"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:7931d8f1f67c4be9ba1dd9c451fb0eeca1a25b89e4d3f89e828fe12a519b782a"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:b3f7e75f3015df442238cca659f8baa5f42ce2a8582727981cbfa15fee0ee205"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:bbf1d63eef84b2e8c89011b7f2235b1e0bf7dacc11cac9431fc6468e99ac77fb"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:4c380469bd3f970ef677bf2bcba2b6b0b4d5c75e7a020fb863ef75084efad66f"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-win32.whl", hash = "sha256:9408acf3270c4b6baad483865191e3e582b638b1654a007c62e3efe96f09a9a3"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-win_amd64.whl", hash = "sha256:5b94529f9b2591b7af5f3e0e730a4e0a41ea174af35a4fd067775f9bdfeee01a"}, - {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:11c7de8f692fc99816e8ac50d1d1aef4f75126eefc33ac79aac02c099fd3db71"}, - {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:53abb58632235cd154176ced1ae8f0d29a6657aa1aa9decf50b899b755bc2b93"}, - {file = "kiwisolver-1.4.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:88b9f257ca61b838b6f8094a62418421f87ac2a1069f7e896c36a7d86b5d4c29"}, - {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3195782b26fc03aa9c6913d5bad5aeb864bdc372924c093b0f1cebad603dd712"}, - {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc579bf0f502e54926519451b920e875f433aceb4624a3646b3252b5caa9e0b6"}, - {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a580c91d686376f0f7c295357595c5a026e6cbc3d77b7c36e290201e7c11ecb"}, - {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:cfe6ab8da05c01ba6fbea630377b5da2cd9bcbc6338510116b01c1bc939a2c18"}, - {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:d2e5a98f0ec99beb3c10e13b387f8db39106d53993f498b295f0c914328b1333"}, - {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:a51a263952b1429e429ff236d2f5a21c5125437861baeed77f5e1cc2d2c7c6da"}, - {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:3edd2fa14e68c9be82c5b16689e8d63d89fe927e56debd6e1dbce7a26a17f81b"}, - {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:74d1b44c6cfc897df648cc9fdaa09bc3e7679926e6f96df05775d4fb3946571c"}, - {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:76d9289ed3f7501012e05abb8358bbb129149dbd173f1f57a1bf1c22d19ab7cc"}, - {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:92dea1ffe3714fa8eb6a314d2b3c773208d865a0e0d35e713ec54eea08a66250"}, - {file = "kiwisolver-1.4.5-cp38-cp38-win32.whl", hash = "sha256:5c90ae8c8d32e472be041e76f9d2f2dbff4d0b0be8bd4041770eddb18cf49a4e"}, - {file = "kiwisolver-1.4.5-cp38-cp38-win_amd64.whl", hash = "sha256:c7940c1dc63eb37a67721b10d703247552416f719c4188c54e04334321351ced"}, - {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:9407b6a5f0d675e8a827ad8742e1d6b49d9c1a1da5d952a67d50ef5f4170b18d"}, - {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:15568384086b6df3c65353820a4473575dbad192e35010f622c6ce3eebd57af9"}, - {file = "kiwisolver-1.4.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0dc9db8e79f0036e8173c466d21ef18e1befc02de8bf8aa8dc0813a6dc8a7046"}, - {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:cdc8a402aaee9a798b50d8b827d7ecf75edc5fb35ea0f91f213ff927c15f4ff0"}, - {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:6c3bd3cde54cafb87d74d8db50b909705c62b17c2099b8f2e25b461882e544ff"}, - {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:955e8513d07a283056b1396e9a57ceddbd272d9252c14f154d450d227606eb54"}, - {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:346f5343b9e3f00b8db8ba359350eb124b98c99efd0b408728ac6ebf38173958"}, - {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b9098e0049e88c6a24ff64545cdfc50807818ba6c1b739cae221bbbcbc58aad3"}, - {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:00bd361b903dc4bbf4eb165f24d1acbee754fce22ded24c3d56eec268658a5cf"}, - {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7b8b454bac16428b22560d0a1cf0a09875339cab69df61d7805bf48919415901"}, - {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:f1d072c2eb0ad60d4c183f3fb44ac6f73fb7a8f16a2694a91f988275cbf352f9"}, - {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:31a82d498054cac9f6d0b53d02bb85811185bcb477d4b60144f915f3b3126342"}, - {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6512cb89e334e4700febbffaaa52761b65b4f5a3cf33f960213d5656cea36a77"}, - {file = "kiwisolver-1.4.5-cp39-cp39-win32.whl", hash = "sha256:9db8ea4c388fdb0f780fe91346fd438657ea602d58348753d9fb265ce1bca67f"}, - {file = "kiwisolver-1.4.5-cp39-cp39-win_amd64.whl", hash = "sha256:59415f46a37f7f2efeec758353dd2eae1b07640d8ca0f0c42548ec4125492635"}, - {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:5c7b3b3a728dc6faf3fc372ef24f21d1e3cee2ac3e9596691d746e5a536de920"}, - {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:620ced262a86244e2be10a676b646f29c34537d0d9cc8eb26c08f53d98013390"}, - {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:378a214a1e3bbf5ac4a8708304318b4f890da88c9e6a07699c4ae7174c09a68d"}, - {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaf7be1207676ac608a50cd08f102f6742dbfc70e8d60c4db1c6897f62f71523"}, - {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:ba55dce0a9b8ff59495ddd050a0225d58bd0983d09f87cfe2b6aec4f2c1234e4"}, - {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:fd32ea360bcbb92d28933fc05ed09bffcb1704ba3fc7942e81db0fd4f81a7892"}, - {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:5e7139af55d1688f8b960ee9ad5adafc4ac17c1c473fe07133ac092310d76544"}, - {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dced8146011d2bc2e883f9bd68618b8247387f4bbec46d7392b3c3b032640126"}, - {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c9bf3325c47b11b2e51bca0824ea217c7cd84491d8ac4eefd1e409705ef092bd"}, - {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5794cf59533bc3f1b1c821f7206a3617999db9fbefc345360aafe2e067514929"}, - {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e368f200bbc2e4f905b8e71eb38b3c04333bddaa6a2464a6355487b02bb7fb09"}, - {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e5d706eba36b4c4d5bc6c6377bb6568098765e990cfc21ee16d13963fab7b3e7"}, - {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:85267bd1aa8880a9c88a8cb71e18d3d64d2751a790e6ca6c27b8ccc724bcd5ad"}, - {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:210ef2c3a1f03272649aff1ef992df2e724748918c4bc2d5a90352849eb40bea"}, - {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:11d011a7574eb3b82bcc9c1a1d35c1d7075677fdd15de527d91b46bd35e935ee"}, - {file = "kiwisolver-1.4.5.tar.gz", hash = "sha256:e57e563a57fb22a142da34f38acc2fc1a5c864bc29ca1517a88abc963e60d6ec"}, -] - -[[package]] -name = "matplotlib" -version = "3.8.2" -description = "Python plotting package" -optional = false -python-versions = ">=3.9" -files = [ - {file = "matplotlib-3.8.2-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:09796f89fb71a0c0e1e2f4bdaf63fb2cefc84446bb963ecdeb40dfee7dfa98c7"}, - {file = "matplotlib-3.8.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6f9c6976748a25e8b9be51ea028df49b8e561eed7809146da7a47dbecebab367"}, - {file = "matplotlib-3.8.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b78e4f2cedf303869b782071b55fdde5987fda3038e9d09e58c91cc261b5ad18"}, - {file = "matplotlib-3.8.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4e208f46cf6576a7624195aa047cb344a7f802e113bb1a06cfd4bee431de5e31"}, - {file = "matplotlib-3.8.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:46a569130ff53798ea5f50afce7406e91fdc471ca1e0e26ba976a8c734c9427a"}, - {file = "matplotlib-3.8.2-cp310-cp310-win_amd64.whl", hash = "sha256:830f00640c965c5b7f6bc32f0d4ce0c36dfe0379f7dd65b07a00c801713ec40a"}, - {file = "matplotlib-3.8.2-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d86593ccf546223eb75a39b44c32788e6f6440d13cfc4750c1c15d0fcb850b63"}, - {file = "matplotlib-3.8.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:9a5430836811b7652991939012f43d2808a2db9b64ee240387e8c43e2e5578c8"}, - {file = "matplotlib-3.8.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b9576723858a78751d5aacd2497b8aef29ffea6d1c95981505877f7ac28215c6"}, - {file = "matplotlib-3.8.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ba9cbd8ac6cf422f3102622b20f8552d601bf8837e49a3afed188d560152788"}, - {file = "matplotlib-3.8.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:03f9d160a29e0b65c0790bb07f4f45d6a181b1ac33eb1bb0dd225986450148f0"}, - {file = "matplotlib-3.8.2-cp311-cp311-win_amd64.whl", hash = "sha256:3773002da767f0a9323ba1a9b9b5d00d6257dbd2a93107233167cfb581f64717"}, - {file = "matplotlib-3.8.2-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:4c318c1e95e2f5926fba326f68177dee364aa791d6df022ceb91b8221bd0a627"}, - {file = "matplotlib-3.8.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:091275d18d942cf1ee9609c830a1bc36610607d8223b1b981c37d5c9fc3e46a4"}, - {file = "matplotlib-3.8.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1b0f3b8ea0e99e233a4bcc44590f01604840d833c280ebb8fe5554fd3e6cfe8d"}, - {file = "matplotlib-3.8.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d7b1704a530395aaf73912be741c04d181f82ca78084fbd80bc737be04848331"}, - {file = "matplotlib-3.8.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:533b0e3b0c6768eef8cbe4b583731ce25a91ab54a22f830db2b031e83cca9213"}, - {file = "matplotlib-3.8.2-cp312-cp312-win_amd64.whl", hash = "sha256:0f4fc5d72b75e2c18e55eb32292659cf731d9d5b312a6eb036506304f4675630"}, - {file = "matplotlib-3.8.2-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:deaed9ad4da0b1aea77fe0aa0cebb9ef611c70b3177be936a95e5d01fa05094f"}, - {file = "matplotlib-3.8.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:172f4d0fbac3383d39164c6caafd3255ce6fa58f08fc392513a0b1d3b89c4f89"}, - {file = "matplotlib-3.8.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c7d36c2209d9136cd8e02fab1c0ddc185ce79bc914c45054a9f514e44c787917"}, - {file = "matplotlib-3.8.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5864bdd7da445e4e5e011b199bb67168cdad10b501750367c496420f2ad00843"}, - {file = "matplotlib-3.8.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ef8345b48e95cee45ff25192ed1f4857273117917a4dcd48e3905619bcd9c9b8"}, - {file = "matplotlib-3.8.2-cp39-cp39-win_amd64.whl", hash = "sha256:7c48d9e221b637c017232e3760ed30b4e8d5dfd081daf327e829bf2a72c731b4"}, - {file = "matplotlib-3.8.2-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:aa11b3c6928a1e496c1a79917d51d4cd5d04f8a2e75f21df4949eeefdf697f4b"}, - {file = "matplotlib-3.8.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d1095fecf99eeb7384dabad4bf44b965f929a5f6079654b681193edf7169ec20"}, - {file = "matplotlib-3.8.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:bddfb1db89bfaa855912261c805bd0e10218923cc262b9159a49c29a7a1c1afa"}, - {file = "matplotlib-3.8.2.tar.gz", hash = "sha256:01a978b871b881ee76017152f1f1a0cbf6bd5f7b8ff8c96df0df1bd57d8755a1"}, -] - -[package.dependencies] -contourpy = ">=1.0.1" -cycler = ">=0.10" -fonttools = ">=4.22.0" -kiwisolver = ">=1.3.1" -numpy = ">=1.21,<2" -packaging = ">=20.0" -pillow = ">=8" -pyparsing = ">=2.3.1" -python-dateutil = ">=2.7" - -[[package]] -name = "matplotlib-inline" -version = "0.1.6" -description = "Inline Matplotlib backend for Jupyter" -optional = false -python-versions = ">=3.5" -files = [ - {file = "matplotlib-inline-0.1.6.tar.gz", hash = "sha256:f887e5f10ba98e8d2b150ddcf4702c1e5f8b3a20005eb0f74bfdbd360ee6f304"}, - {file = "matplotlib_inline-0.1.6-py3-none-any.whl", hash = "sha256:f1f41aab5328aa5aaea9b16d083b128102f8712542f819fe7e6a420ff581b311"}, -] - -[package.dependencies] -traitlets = "*" - -[[package]] -name = "mccabe" -version = "0.7.0" -description = "McCabe checker, plugin for flake8" -optional = false -python-versions = ">=3.6" -files = [ - {file = "mccabe-0.7.0-py2.py3-none-any.whl", hash = "sha256:6c2d30ab6be0e4a46919781807b4f0d834ebdd6c6e3dca0bda5a15f863427b6e"}, - {file = "mccabe-0.7.0.tar.gz", hash = "sha256:348e0240c33b60bbdf4e523192ef919f28cb2c3d7d5c7794f74009290f236325"}, -] - -[[package]] -name = "mypy" -version = "1.8.0" -description = "Optional static typing for Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "mypy-1.8.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:485a8942f671120f76afffff70f259e1cd0f0cfe08f81c05d8816d958d4577d3"}, - {file = "mypy-1.8.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:df9824ac11deaf007443e7ed2a4a26bebff98d2bc43c6da21b2b64185da011c4"}, - {file = "mypy-1.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2afecd6354bbfb6e0160f4e4ad9ba6e4e003b767dd80d85516e71f2e955ab50d"}, - {file = "mypy-1.8.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8963b83d53ee733a6e4196954502b33567ad07dfd74851f32be18eb932fb1cb9"}, - {file = "mypy-1.8.0-cp310-cp310-win_amd64.whl", hash = "sha256:e46f44b54ebddbeedbd3d5b289a893219065ef805d95094d16a0af6630f5d410"}, - {file = "mypy-1.8.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:855fe27b80375e5c5878492f0729540db47b186509c98dae341254c8f45f42ae"}, - {file = "mypy-1.8.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4c886c6cce2d070bd7df4ec4a05a13ee20c0aa60cb587e8d1265b6c03cf91da3"}, - {file = "mypy-1.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d19c413b3c07cbecf1f991e2221746b0d2a9410b59cb3f4fb9557f0365a1a817"}, - {file = "mypy-1.8.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9261ed810972061388918c83c3f5cd46079d875026ba97380f3e3978a72f503d"}, - {file = "mypy-1.8.0-cp311-cp311-win_amd64.whl", hash = "sha256:51720c776d148bad2372ca21ca29256ed483aa9a4cdefefcef49006dff2a6835"}, - {file = "mypy-1.8.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:52825b01f5c4c1c4eb0db253ec09c7aa17e1a7304d247c48b6f3599ef40db8bd"}, - {file = "mypy-1.8.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f5ac9a4eeb1ec0f1ccdc6f326bcdb464de5f80eb07fb38b5ddd7b0de6bc61e55"}, - {file = "mypy-1.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:afe3fe972c645b4632c563d3f3eff1cdca2fa058f730df2b93a35e3b0c538218"}, - {file = "mypy-1.8.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:42c6680d256ab35637ef88891c6bd02514ccb7e1122133ac96055ff458f93fc3"}, - {file = "mypy-1.8.0-cp312-cp312-win_amd64.whl", hash = "sha256:720a5ca70e136b675af3af63db533c1c8c9181314d207568bbe79051f122669e"}, - {file = "mypy-1.8.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:028cf9f2cae89e202d7b6593cd98db6759379f17a319b5faf4f9978d7084cdc6"}, - {file = "mypy-1.8.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4e6d97288757e1ddba10dd9549ac27982e3e74a49d8d0179fc14d4365c7add66"}, - {file = "mypy-1.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f1478736fcebb90f97e40aff11a5f253af890c845ee0c850fe80aa060a267c6"}, - {file = "mypy-1.8.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:42419861b43e6962a649068a61f4a4839205a3ef525b858377a960b9e2de6e0d"}, - {file = "mypy-1.8.0-cp38-cp38-win_amd64.whl", hash = "sha256:2b5b6c721bd4aabaadead3a5e6fa85c11c6c795e0c81a7215776ef8afc66de02"}, - {file = "mypy-1.8.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5c1538c38584029352878a0466f03a8ee7547d7bd9f641f57a0f3017a7c905b8"}, - {file = "mypy-1.8.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4ef4be7baf08a203170f29e89d79064463b7fc7a0908b9d0d5114e8009c3a259"}, - {file = "mypy-1.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7178def594014aa6c35a8ff411cf37d682f428b3b5617ca79029d8ae72f5402b"}, - {file = "mypy-1.8.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ab3c84fa13c04aeeeabb2a7f67a25ef5d77ac9d6486ff33ded762ef353aa5592"}, - {file = "mypy-1.8.0-cp39-cp39-win_amd64.whl", hash = "sha256:99b00bc72855812a60d253420d8a2eae839b0afa4938f09f4d2aa9bb4654263a"}, - {file = "mypy-1.8.0-py3-none-any.whl", hash = "sha256:538fd81bb5e430cc1381a443971c0475582ff9f434c16cd46d2c66763ce85d9d"}, - {file = "mypy-1.8.0.tar.gz", hash = "sha256:6ff8b244d7085a0b425b56d327b480c3b29cafbd2eff27316a004f9a7391ae07"}, -] - -[package.dependencies] -mypy-extensions = ">=1.0.0" -tomli = {version = ">=1.1.0", markers = "python_version < \"3.11\""} -typing-extensions = ">=4.1.0" - -[package.extras] -dmypy = ["psutil (>=4.0)"] -install-types = ["pip"] -mypyc = ["setuptools (>=50)"] -reports = ["lxml"] - -[[package]] -name = "mypy-extensions" -version = "1.0.0" -description = "Type system extensions for programs checked with the mypy type checker." -optional = false -python-versions = ">=3.5" -files = [ - {file = "mypy_extensions-1.0.0-py3-none-any.whl", hash = "sha256:4392f6c0eb8a5668a69e23d168ffa70f0be9ccfd32b5cc2d26a34ae5b844552d"}, - {file = "mypy_extensions-1.0.0.tar.gz", hash = "sha256:75dbf8955dc00442a438fc4d0666508a9a97b6bd41aa2f0ffe9d2f2725af0782"}, -] - -[[package]] -name = "nest-asyncio" -version = "1.5.8" -description = "Patch asyncio to allow nested event loops" -optional = false -python-versions = ">=3.5" -files = [ - {file = "nest_asyncio-1.5.8-py3-none-any.whl", hash = "sha256:accda7a339a70599cb08f9dd09a67e0c2ef8d8d6f4c07f96ab203f2ae254e48d"}, - {file = "nest_asyncio-1.5.8.tar.gz", hash = "sha256:25aa2ca0d2a5b5531956b9e273b45cf664cae2b145101d73b86b199978d48fdb"}, -] - -[[package]] -name = "numpy" -version = "1.26.2" -description = "Fundamental package for array computing in Python" -optional = false -python-versions = ">=3.9" -files = [ - {file = "numpy-1.26.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:3703fc9258a4a122d17043e57b35e5ef1c5a5837c3db8be396c82e04c1cf9b0f"}, - {file = "numpy-1.26.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:cc392fdcbd21d4be6ae1bb4475a03ce3b025cd49a9be5345d76d7585aea69440"}, - {file = "numpy-1.26.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:36340109af8da8805d8851ef1d74761b3b88e81a9bd80b290bbfed61bd2b4f75"}, - {file = "numpy-1.26.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bcc008217145b3d77abd3e4d5ef586e3bdfba8fe17940769f8aa09b99e856c00"}, - {file = "numpy-1.26.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:3ced40d4e9e18242f70dd02d739e44698df3dcb010d31f495ff00a31ef6014fe"}, - {file = "numpy-1.26.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b272d4cecc32c9e19911891446b72e986157e6a1809b7b56518b4f3755267523"}, - {file = "numpy-1.26.2-cp310-cp310-win32.whl", hash = "sha256:22f8fc02fdbc829e7a8c578dd8d2e15a9074b630d4da29cda483337e300e3ee9"}, - {file = "numpy-1.26.2-cp310-cp310-win_amd64.whl", hash = "sha256:26c9d33f8e8b846d5a65dd068c14e04018d05533b348d9eaeef6c1bd787f9919"}, - {file = "numpy-1.26.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b96e7b9c624ef3ae2ae0e04fa9b460f6b9f17ad8b4bec6d7756510f1f6c0c841"}, - {file = "numpy-1.26.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:aa18428111fb9a591d7a9cc1b48150097ba6a7e8299fb56bdf574df650e7d1f1"}, - {file = "numpy-1.26.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:06fa1ed84aa60ea6ef9f91ba57b5ed963c3729534e6e54055fc151fad0423f0a"}, - {file = "numpy-1.26.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:96ca5482c3dbdd051bcd1fce8034603d6ebfc125a7bd59f55b40d8f5d246832b"}, - {file = "numpy-1.26.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:854ab91a2906ef29dc3925a064fcd365c7b4da743f84b123002f6139bcb3f8a7"}, - {file = "numpy-1.26.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:f43740ab089277d403aa07567be138fc2a89d4d9892d113b76153e0e412409f8"}, - {file = "numpy-1.26.2-cp311-cp311-win32.whl", hash = "sha256:a2bbc29fcb1771cd7b7425f98b05307776a6baf43035d3b80c4b0f29e9545186"}, - {file = "numpy-1.26.2-cp311-cp311-win_amd64.whl", hash = "sha256:2b3fca8a5b00184828d12b073af4d0fc5fdd94b1632c2477526f6bd7842d700d"}, - {file = "numpy-1.26.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:a4cd6ed4a339c21f1d1b0fdf13426cb3b284555c27ac2f156dfdaaa7e16bfab0"}, - {file = "numpy-1.26.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5d5244aabd6ed7f312268b9247be47343a654ebea52a60f002dc70c769048e75"}, - {file = "numpy-1.26.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6a3cdb4d9c70e6b8c0814239ead47da00934666f668426fc6e94cce869e13fd7"}, - {file = "numpy-1.26.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa317b2325f7aa0a9471663e6093c210cb2ae9c0ad824732b307d2c51983d5b6"}, - {file = "numpy-1.26.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:174a8880739c16c925799c018f3f55b8130c1f7c8e75ab0a6fa9d41cab092fd6"}, - {file = "numpy-1.26.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:f79b231bf5c16b1f39c7f4875e1ded36abee1591e98742b05d8a0fb55d8a3eec"}, - {file = "numpy-1.26.2-cp312-cp312-win32.whl", hash = "sha256:4a06263321dfd3598cacb252f51e521a8cb4b6df471bb12a7ee5cbab20ea9167"}, - {file = "numpy-1.26.2-cp312-cp312-win_amd64.whl", hash = "sha256:b04f5dc6b3efdaab541f7857351aac359e6ae3c126e2edb376929bd3b7f92d7e"}, - {file = "numpy-1.26.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4eb8df4bf8d3d90d091e0146f6c28492b0be84da3e409ebef54349f71ed271ef"}, - {file = "numpy-1.26.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1a13860fdcd95de7cf58bd6f8bc5a5ef81c0b0625eb2c9a783948847abbef2c2"}, - {file = "numpy-1.26.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:64308ebc366a8ed63fd0bf426b6a9468060962f1a4339ab1074c228fa6ade8e3"}, - {file = "numpy-1.26.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:baf8aab04a2c0e859da118f0b38617e5ee65d75b83795055fb66c0d5e9e9b818"}, - {file = "numpy-1.26.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d73a3abcac238250091b11caef9ad12413dab01669511779bc9b29261dd50210"}, - {file = "numpy-1.26.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:b361d369fc7e5e1714cf827b731ca32bff8d411212fccd29ad98ad622449cc36"}, - {file = "numpy-1.26.2-cp39-cp39-win32.whl", hash = "sha256:bd3f0091e845164a20bd5a326860c840fe2af79fa12e0469a12768a3ec578d80"}, - {file = "numpy-1.26.2-cp39-cp39-win_amd64.whl", hash = "sha256:2beef57fb031dcc0dc8fa4fe297a742027b954949cabb52a2a376c144e5e6060"}, - {file = "numpy-1.26.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:1cc3d5029a30fb5f06704ad6b23b35e11309491c999838c31f124fee32107c79"}, - {file = "numpy-1.26.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:94cc3c222bb9fb5a12e334d0479b97bb2df446fbe622b470928f5284ffca3f8d"}, - {file = "numpy-1.26.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:fe6b44fb8fcdf7eda4ef4461b97b3f63c466b27ab151bec2366db8b197387841"}, - {file = "numpy-1.26.2.tar.gz", hash = "sha256:f65738447676ab5777f11e6bbbdb8ce11b785e105f690bc45966574816b6d3ea"}, -] - -[[package]] -name = "openpyxl" -version = "3.1.2" -description = "A Python library to read/write Excel 2010 xlsx/xlsm files" -optional = false -python-versions = ">=3.6" -files = [ - {file = "openpyxl-3.1.2-py2.py3-none-any.whl", hash = "sha256:f91456ead12ab3c6c2e9491cf33ba6d08357d802192379bb482f1033ade496f5"}, - {file = "openpyxl-3.1.2.tar.gz", hash = "sha256:a6f5977418eff3b2d5500d54d9db50c8277a368436f4e4f8ddb1be3422870184"}, -] - -[package.dependencies] -et-xmlfile = "*" - -[[package]] -name = "packaging" -version = "23.2" -description = "Core utilities for Python packages" -optional = false -python-versions = ">=3.7" -files = [ - {file = "packaging-23.2-py3-none-any.whl", hash = "sha256:8c491190033a9af7e1d931d0b5dacc2ef47509b34dd0de67ed209b5203fc88c7"}, - {file = "packaging-23.2.tar.gz", hash = "sha256:048fb0e9405036518eaaf48a55953c750c11e1a1b68e0dd1a9d62ed0c092cfc5"}, -] - -[[package]] -name = "pandas" -version = "2.1.4" -description = "Powerful data structures for data analysis, time series, and statistics" -optional = false -python-versions = ">=3.9" -files = [ - {file = "pandas-2.1.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:bdec823dc6ec53f7a6339a0e34c68b144a7a1fd28d80c260534c39c62c5bf8c9"}, - {file = "pandas-2.1.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:294d96cfaf28d688f30c918a765ea2ae2e0e71d3536754f4b6de0ea4a496d034"}, - {file = "pandas-2.1.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b728fb8deba8905b319f96447a27033969f3ea1fea09d07d296c9030ab2ed1d"}, - {file = "pandas-2.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:00028e6737c594feac3c2df15636d73ace46b8314d236100b57ed7e4b9ebe8d9"}, - {file = "pandas-2.1.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:426dc0f1b187523c4db06f96fb5c8d1a845e259c99bda74f7de97bd8a3bb3139"}, - {file = "pandas-2.1.4-cp310-cp310-win_amd64.whl", hash = "sha256:f237e6ca6421265643608813ce9793610ad09b40154a3344a088159590469e46"}, - {file = "pandas-2.1.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b7d852d16c270e4331f6f59b3e9aa23f935f5c4b0ed2d0bc77637a8890a5d092"}, - {file = "pandas-2.1.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:bd7d5f2f54f78164b3d7a40f33bf79a74cdee72c31affec86bfcabe7e0789821"}, - {file = "pandas-2.1.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0aa6e92e639da0d6e2017d9ccff563222f4eb31e4b2c3cf32a2a392fc3103c0d"}, - {file = "pandas-2.1.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d797591b6846b9db79e65dc2d0d48e61f7db8d10b2a9480b4e3faaddc421a171"}, - {file = "pandas-2.1.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d2d3e7b00f703aea3945995ee63375c61b2e6aa5aa7871c5d622870e5e137623"}, - {file = "pandas-2.1.4-cp311-cp311-win_amd64.whl", hash = "sha256:dc9bf7ade01143cddc0074aa6995edd05323974e6e40d9dbde081021ded8510e"}, - {file = "pandas-2.1.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:482d5076e1791777e1571f2e2d789e940dedd927325cc3cb6d0800c6304082f6"}, - {file = "pandas-2.1.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8a706cfe7955c4ca59af8c7a0517370eafbd98593155b48f10f9811da440248b"}, - {file = "pandas-2.1.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b0513a132a15977b4a5b89aabd304647919bc2169eac4c8536afb29c07c23540"}, - {file = "pandas-2.1.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9f17f2b6fc076b2a0078862547595d66244db0f41bf79fc5f64a5c4d635bead"}, - {file = "pandas-2.1.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:45d63d2a9b1b37fa6c84a68ba2422dc9ed018bdaa668c7f47566a01188ceeec1"}, - {file = "pandas-2.1.4-cp312-cp312-win_amd64.whl", hash = "sha256:f69b0c9bb174a2342818d3e2778584e18c740d56857fc5cdb944ec8bbe4082cf"}, - {file = "pandas-2.1.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3f06bda01a143020bad20f7a85dd5f4a1600112145f126bc9e3e42077c24ef34"}, - {file = "pandas-2.1.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ab5796839eb1fd62a39eec2916d3e979ec3130509930fea17fe6f81e18108f6a"}, - {file = "pandas-2.1.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:edbaf9e8d3a63a9276d707b4d25930a262341bca9874fcb22eff5e3da5394732"}, - {file = "pandas-2.1.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ebfd771110b50055712b3b711b51bee5d50135429364d0498e1213a7adc2be8"}, - {file = "pandas-2.1.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8ea107e0be2aba1da619cc6ba3f999b2bfc9669a83554b1904ce3dd9507f0860"}, - {file = "pandas-2.1.4-cp39-cp39-win_amd64.whl", hash = "sha256:d65148b14788b3758daf57bf42725caa536575da2b64df9964c563b015230984"}, - {file = "pandas-2.1.4.tar.gz", hash = "sha256:fcb68203c833cc735321512e13861358079a96c174a61f5116a1de89c58c0ef7"}, -] - -[package.dependencies] -numpy = [ - {version = ">=1.22.4,<2", markers = "python_version < \"3.11\""}, - {version = ">=1.23.2,<2", markers = "python_version == \"3.11\""}, - {version = ">=1.26.0,<2", markers = "python_version >= \"3.12\""}, -] -python-dateutil = ">=2.8.2" -pytz = ">=2020.1" -tzdata = ">=2022.1" - -[package.extras] -all = ["PyQt5 (>=5.15.6)", "SQLAlchemy (>=1.4.36)", "beautifulsoup4 (>=4.11.1)", "bottleneck (>=1.3.4)", "dataframe-api-compat (>=0.1.7)", "fastparquet (>=0.8.1)", "fsspec (>=2022.05.0)", "gcsfs (>=2022.05.0)", "html5lib (>=1.1)", "hypothesis (>=6.46.1)", "jinja2 (>=3.1.2)", "lxml (>=4.8.0)", "matplotlib (>=3.6.1)", "numba (>=0.55.2)", "numexpr (>=2.8.0)", "odfpy (>=1.4.1)", "openpyxl (>=3.0.10)", "pandas-gbq (>=0.17.5)", "psycopg2 (>=2.9.3)", "pyarrow (>=7.0.0)", "pymysql (>=1.0.2)", "pyreadstat (>=1.1.5)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)", "pyxlsb (>=1.0.9)", "qtpy (>=2.2.0)", "s3fs (>=2022.05.0)", "scipy (>=1.8.1)", "tables (>=3.7.0)", "tabulate (>=0.8.10)", "xarray (>=2022.03.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.3)", "zstandard (>=0.17.0)"] -aws = ["s3fs (>=2022.05.0)"] -clipboard = ["PyQt5 (>=5.15.6)", "qtpy (>=2.2.0)"] -compression = ["zstandard (>=0.17.0)"] -computation = ["scipy (>=1.8.1)", "xarray (>=2022.03.0)"] -consortium-standard = ["dataframe-api-compat (>=0.1.7)"] -excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.0.10)", "pyxlsb (>=1.0.9)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.3)"] -feather = ["pyarrow (>=7.0.0)"] -fss = ["fsspec (>=2022.05.0)"] -gcp = ["gcsfs (>=2022.05.0)", "pandas-gbq (>=0.17.5)"] -hdf5 = ["tables (>=3.7.0)"] -html = ["beautifulsoup4 (>=4.11.1)", "html5lib (>=1.1)", "lxml (>=4.8.0)"] -mysql = ["SQLAlchemy (>=1.4.36)", "pymysql (>=1.0.2)"] -output-formatting = ["jinja2 (>=3.1.2)", "tabulate (>=0.8.10)"] -parquet = ["pyarrow (>=7.0.0)"] -performance = ["bottleneck (>=1.3.4)", "numba (>=0.55.2)", "numexpr (>=2.8.0)"] -plot = ["matplotlib (>=3.6.1)"] -postgresql = ["SQLAlchemy (>=1.4.36)", "psycopg2 (>=2.9.3)"] -spss = ["pyreadstat (>=1.1.5)"] -sql-other = ["SQLAlchemy (>=1.4.36)"] -test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)"] -xml = ["lxml (>=4.8.0)"] - -[[package]] -name = "pandas-stubs" -version = "2.1.4.231218" -description = "Type annotations for pandas" -optional = false -python-versions = ">=3.9" -files = [ - {file = "pandas_stubs-2.1.4.231218-py3-none-any.whl", hash = "sha256:9c9a8db37b83ff4ff9f672644099abc624ed407aa46d9dcb5f305de9925b3d29"}, - {file = "pandas_stubs-2.1.4.231218.tar.gz", hash = "sha256:f0dd07b3bb2935ddcff9c7b7ba9076cf3529b968a0dee96fab53f5f8747974f7"}, -] - -[package.dependencies] -numpy = {version = ">=1.26.0", markers = "python_version < \"3.13\""} -types-pytz = ">=2022.1.1" - -[[package]] -name = "parso" -version = "0.8.3" -description = "A Python Parser" -optional = false -python-versions = ">=3.6" -files = [ - {file = "parso-0.8.3-py2.py3-none-any.whl", hash = "sha256:c001d4636cd3aecdaf33cbb40aebb59b094be2a74c556778ef5576c175e19e75"}, - {file = "parso-0.8.3.tar.gz", hash = "sha256:8c07be290bb59f03588915921e29e8a50002acaf2cdc5fa0e0114f91709fafa0"}, -] - -[package.extras] -qa = ["flake8 (==3.8.3)", "mypy (==0.782)"] -testing = ["docopt", "pytest (<6.0.0)"] - -[[package]] -name = "pathspec" -version = "0.12.1" -description = "Utility library for gitignore style pattern matching of file paths." -optional = false -python-versions = ">=3.8" -files = [ - {file = "pathspec-0.12.1-py3-none-any.whl", hash = "sha256:a0d503e138a4c123b27490a4f7beda6a01c6f288df0e4a8b79c7eb0dc7b4cc08"}, - {file = "pathspec-0.12.1.tar.gz", hash = "sha256:a482d51503a1ab33b1c67a6c3813a26953dbdc71c31dacaef9a838c4e29f5712"}, -] - -[[package]] -name = "pexpect" -version = "4.9.0" -description = "Pexpect allows easy control of interactive console applications." -optional = false -python-versions = "*" -files = [ - {file = "pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523"}, - {file = "pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f"}, -] - -[package.dependencies] -ptyprocess = ">=0.5" - -[[package]] -name = "pillow" -version = "10.1.0" -description = "Python Imaging Library (Fork)" -optional = false -python-versions = ">=3.8" -files = [ - {file = "Pillow-10.1.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:1ab05f3db77e98f93964697c8efc49c7954b08dd61cff526b7f2531a22410106"}, - {file = "Pillow-10.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6932a7652464746fcb484f7fc3618e6503d2066d853f68a4bd97193a3996e273"}, - {file = "Pillow-10.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5f63b5a68daedc54c7c3464508d8c12075e56dcfbd42f8c1bf40169061ae666"}, - {file = "Pillow-10.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0949b55eb607898e28eaccb525ab104b2d86542a85c74baf3a6dc24002edec2"}, - {file = "Pillow-10.1.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:ae88931f93214777c7a3aa0a8f92a683f83ecde27f65a45f95f22d289a69e593"}, - {file = "Pillow-10.1.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:b0eb01ca85b2361b09480784a7931fc648ed8b7836f01fb9241141b968feb1db"}, - {file = "Pillow-10.1.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d27b5997bdd2eb9fb199982bb7eb6164db0426904020dc38c10203187ae2ff2f"}, - {file = "Pillow-10.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:7df5608bc38bd37ef585ae9c38c9cd46d7c81498f086915b0f97255ea60c2818"}, - {file = "Pillow-10.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:41f67248d92a5e0a2076d3517d8d4b1e41a97e2df10eb8f93106c89107f38b57"}, - {file = "Pillow-10.1.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:1fb29c07478e6c06a46b867e43b0bcdb241b44cc52be9bc25ce5944eed4648e7"}, - {file = "Pillow-10.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2cdc65a46e74514ce742c2013cd4a2d12e8553e3a2563c64879f7c7e4d28bce7"}, - {file = "Pillow-10.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50d08cd0a2ecd2a8657bd3d82c71efd5a58edb04d9308185d66c3a5a5bed9610"}, - {file = "Pillow-10.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:062a1610e3bc258bff2328ec43f34244fcec972ee0717200cb1425214fe5b839"}, - {file = "Pillow-10.1.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:61f1a9d247317fa08a308daaa8ee7b3f760ab1809ca2da14ecc88ae4257d6172"}, - {file = "Pillow-10.1.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:a646e48de237d860c36e0db37ecaecaa3619e6f3e9d5319e527ccbc8151df061"}, - {file = "Pillow-10.1.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:47e5bf85b80abc03be7455c95b6d6e4896a62f6541c1f2ce77a7d2bb832af262"}, - {file = "Pillow-10.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:a92386125e9ee90381c3369f57a2a50fa9e6aa8b1cf1d9c4b200d41a7dd8e992"}, - {file = "Pillow-10.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:0f7c276c05a9767e877a0b4c5050c8bee6a6d960d7f0c11ebda6b99746068c2a"}, - {file = "Pillow-10.1.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:a89b8312d51715b510a4fe9fc13686283f376cfd5abca8cd1c65e4c76e21081b"}, - {file = "Pillow-10.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:00f438bb841382b15d7deb9a05cc946ee0f2c352653c7aa659e75e592f6fa17d"}, - {file = "Pillow-10.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3d929a19f5469b3f4df33a3df2983db070ebb2088a1e145e18facbc28cae5b27"}, - {file = "Pillow-10.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a92109192b360634a4489c0c756364c0c3a2992906752165ecb50544c251312"}, - {file = "Pillow-10.1.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:0248f86b3ea061e67817c47ecbe82c23f9dd5d5226200eb9090b3873d3ca32de"}, - {file = "Pillow-10.1.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:9882a7451c680c12f232a422730f986a1fcd808da0fd428f08b671237237d651"}, - {file = "Pillow-10.1.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:1c3ac5423c8c1da5928aa12c6e258921956757d976405e9467c5f39d1d577a4b"}, - {file = "Pillow-10.1.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:806abdd8249ba3953c33742506fe414880bad78ac25cc9a9b1c6ae97bedd573f"}, - {file = "Pillow-10.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:eaed6977fa73408b7b8a24e8b14e59e1668cfc0f4c40193ea7ced8e210adf996"}, - {file = "Pillow-10.1.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:fe1e26e1ffc38be097f0ba1d0d07fcade2bcfd1d023cda5b29935ae8052bd793"}, - {file = "Pillow-10.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7a7e3daa202beb61821c06d2517428e8e7c1aab08943e92ec9e5755c2fc9ba5e"}, - {file = "Pillow-10.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:24fadc71218ad2b8ffe437b54876c9382b4a29e030a05a9879f615091f42ffc2"}, - {file = "Pillow-10.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fa1d323703cfdac2036af05191b969b910d8f115cf53093125e4058f62012c9a"}, - {file = "Pillow-10.1.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:912e3812a1dbbc834da2b32299b124b5ddcb664ed354916fd1ed6f193f0e2d01"}, - {file = "Pillow-10.1.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:7dbaa3c7de82ef37e7708521be41db5565004258ca76945ad74a8e998c30af8d"}, - {file = "Pillow-10.1.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:9d7bc666bd8c5a4225e7ac71f2f9d12466ec555e89092728ea0f5c0c2422ea80"}, - {file = "Pillow-10.1.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:baada14941c83079bf84c037e2d8b7506ce201e92e3d2fa0d1303507a8538212"}, - {file = "Pillow-10.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:2ef6721c97894a7aa77723740a09547197533146fba8355e86d6d9a4a1056b14"}, - {file = "Pillow-10.1.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:0a026c188be3b443916179f5d04548092e253beb0c3e2ee0a4e2cdad72f66099"}, - {file = "Pillow-10.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:04f6f6149f266a100374ca3cc368b67fb27c4af9f1cc8cb6306d849dcdf12616"}, - {file = "Pillow-10.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bb40c011447712d2e19cc261c82655f75f32cb724788df315ed992a4d65696bb"}, - {file = "Pillow-10.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1a8413794b4ad9719346cd9306118450b7b00d9a15846451549314a58ac42219"}, - {file = "Pillow-10.1.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:c9aeea7b63edb7884b031a35305629a7593272b54f429a9869a4f63a1bf04c34"}, - {file = "Pillow-10.1.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:b4005fee46ed9be0b8fb42be0c20e79411533d1fd58edabebc0dd24626882cfd"}, - {file = "Pillow-10.1.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:4d0152565c6aa6ebbfb1e5d8624140a440f2b99bf7afaafbdbf6430426497f28"}, - {file = "Pillow-10.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:d921bc90b1defa55c9917ca6b6b71430e4286fc9e44c55ead78ca1a9f9eba5f2"}, - {file = "Pillow-10.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:cfe96560c6ce2f4c07d6647af2d0f3c54cc33289894ebd88cfbb3bcd5391e256"}, - {file = "Pillow-10.1.0-pp310-pypy310_pp73-macosx_10_10_x86_64.whl", hash = "sha256:937bdc5a7f5343d1c97dc98149a0be7eb9704e937fe3dc7140e229ae4fc572a7"}, - {file = "Pillow-10.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b1c25762197144e211efb5f4e8ad656f36c8d214d390585d1d21281f46d556ba"}, - {file = "Pillow-10.1.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:afc8eef765d948543a4775f00b7b8c079b3321d6b675dde0d02afa2ee23000b4"}, - {file = "Pillow-10.1.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:883f216eac8712b83a63f41b76ddfb7b2afab1b74abbb413c5df6680f071a6b9"}, - {file = "Pillow-10.1.0-pp39-pypy39_pp73-macosx_10_10_x86_64.whl", hash = "sha256:b920e4d028f6442bea9a75b7491c063f0b9a3972520731ed26c83e254302eb1e"}, - {file = "Pillow-10.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1c41d960babf951e01a49c9746f92c5a7e0d939d1652d7ba30f6b3090f27e412"}, - {file = "Pillow-10.1.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:1fafabe50a6977ac70dfe829b2d5735fd54e190ab55259ec8aea4aaea412fa0b"}, - {file = "Pillow-10.1.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:3b834f4b16173e5b92ab6566f0473bfb09f939ba14b23b8da1f54fa63e4b623f"}, - {file = "Pillow-10.1.0.tar.gz", hash = "sha256:e6bf8de6c36ed96c86ea3b6e1d5273c53f46ef518a062464cd7ef5dd2cf92e38"}, -] - -[package.extras] -docs = ["furo", "olefile", "sphinx (>=2.4)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-removed-in", "sphinxext-opengraph"] -tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] - -[[package]] -name = "platformdirs" -version = "4.1.0" -description = "A small Python package for determining appropriate platform-specific dirs, e.g. a \"user data dir\"." -optional = false -python-versions = ">=3.8" -files = [ - {file = "platformdirs-4.1.0-py3-none-any.whl", hash = "sha256:11c8f37bcca40db96d8144522d925583bdb7a31f7b0e37e3ed4318400a8e2380"}, - {file = "platformdirs-4.1.0.tar.gz", hash = "sha256:906d548203468492d432bcb294d4bc2fff751bf84971fbb2c10918cc206ee420"}, -] - -[package.extras] -docs = ["furo (>=2023.7.26)", "proselint (>=0.13)", "sphinx (>=7.1.1)", "sphinx-autodoc-typehints (>=1.24)"] -test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4)", "pytest-cov (>=4.1)", "pytest-mock (>=3.11.1)"] - -[[package]] -name = "pluggy" -version = "1.3.0" -description = "plugin and hook calling mechanisms for python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pluggy-1.3.0-py3-none-any.whl", hash = "sha256:d89c696a773f8bd377d18e5ecda92b7a3793cbe66c87060a6fb58c7b6e1061f7"}, - {file = "pluggy-1.3.0.tar.gz", hash = "sha256:cf61ae8f126ac6f7c451172cf30e3e43d3ca77615509771b3a984a0730651e12"}, -] - -[package.extras] -dev = ["pre-commit", "tox"] -testing = ["pytest", "pytest-benchmark"] - -[[package]] -name = "prompt-toolkit" -version = "3.0.43" -description = "Library for building powerful interactive command lines in Python" -optional = false -python-versions = ">=3.7.0" -files = [ - {file = "prompt_toolkit-3.0.43-py3-none-any.whl", hash = "sha256:a11a29cb3bf0a28a387fe5122cdb649816a957cd9261dcedf8c9f1fef33eacf6"}, - {file = "prompt_toolkit-3.0.43.tar.gz", hash = "sha256:3527b7af26106cbc65a040bcc84839a3566ec1b051bb0bfe953631e704b0ff7d"}, -] - -[package.dependencies] -wcwidth = "*" - -[[package]] -name = "psutil" -version = "5.9.7" -description = "Cross-platform lib for process and system monitoring in Python." -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*" -files = [ - {file = "psutil-5.9.7-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:0bd41bf2d1463dfa535942b2a8f0e958acf6607ac0be52265ab31f7923bcd5e6"}, - {file = "psutil-5.9.7-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:5794944462509e49d4d458f4dbfb92c47539e7d8d15c796f141f474010084056"}, - {file = "psutil-5.9.7-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:fe361f743cb3389b8efda21980d93eb55c1f1e3898269bc9a2a1d0bb7b1f6508"}, - {file = "psutil-5.9.7-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:e469990e28f1ad738f65a42dcfc17adaed9d0f325d55047593cb9033a0ab63df"}, - {file = "psutil-5.9.7-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:3c4747a3e2ead1589e647e64aad601981f01b68f9398ddf94d01e3dc0d1e57c7"}, - {file = "psutil-5.9.7-cp27-none-win32.whl", hash = "sha256:1d4bc4a0148fdd7fd8f38e0498639ae128e64538faa507df25a20f8f7fb2341c"}, - {file = "psutil-5.9.7-cp27-none-win_amd64.whl", hash = "sha256:4c03362e280d06bbbfcd52f29acd79c733e0af33d707c54255d21029b8b32ba6"}, - {file = "psutil-5.9.7-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:ea36cc62e69a13ec52b2f625c27527f6e4479bca2b340b7a452af55b34fcbe2e"}, - {file = "psutil-5.9.7-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1132704b876e58d277168cd729d64750633d5ff0183acf5b3c986b8466cd0284"}, - {file = "psutil-5.9.7-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fe8b7f07948f1304497ce4f4684881250cd859b16d06a1dc4d7941eeb6233bfe"}, - {file = "psutil-5.9.7-cp36-cp36m-win32.whl", hash = "sha256:b27f8fdb190c8c03914f908a4555159327d7481dac2f01008d483137ef3311a9"}, - {file = "psutil-5.9.7-cp36-cp36m-win_amd64.whl", hash = "sha256:44969859757f4d8f2a9bd5b76eba8c3099a2c8cf3992ff62144061e39ba8568e"}, - {file = "psutil-5.9.7-cp37-abi3-win32.whl", hash = "sha256:c727ca5a9b2dd5193b8644b9f0c883d54f1248310023b5ad3e92036c5e2ada68"}, - {file = "psutil-5.9.7-cp37-abi3-win_amd64.whl", hash = "sha256:f37f87e4d73b79e6c5e749440c3113b81d1ee7d26f21c19c47371ddea834f414"}, - {file = "psutil-5.9.7-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:032f4f2c909818c86cea4fe2cc407f1c0f0cde8e6c6d702b28b8ce0c0d143340"}, - {file = "psutil-5.9.7.tar.gz", hash = "sha256:3f02134e82cfb5d089fddf20bb2e03fd5cd52395321d1c8458a9e58500ff417c"}, -] - -[package.extras] -test = ["enum34", "ipaddress", "mock", "pywin32", "wmi"] - -[[package]] -name = "ptyprocess" -version = "0.7.0" -description = "Run a subprocess in a pseudo terminal" -optional = false -python-versions = "*" -files = [ - {file = "ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35"}, - {file = "ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"}, -] - -[[package]] -name = "pure-eval" -version = "0.2.2" -description = "Safely evaluate AST nodes without side effects" -optional = false -python-versions = "*" -files = [ - {file = "pure_eval-0.2.2-py3-none-any.whl", hash = "sha256:01eaab343580944bc56080ebe0a674b39ec44a945e6d09ba7db3cb8cec289350"}, - {file = "pure_eval-0.2.2.tar.gz", hash = "sha256:2b45320af6dfaa1750f543d714b6d1c520a1688dec6fd24d339063ce0aaa9ac3"}, -] - -[package.extras] -tests = ["pytest"] - -[[package]] -name = "pycodestyle" -version = "2.11.1" -description = "Python style guide checker" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pycodestyle-2.11.1-py2.py3-none-any.whl", hash = "sha256:44fe31000b2d866f2e41841b18528a505fbd7fef9017b04eff4e2648a0fadc67"}, - {file = "pycodestyle-2.11.1.tar.gz", hash = "sha256:41ba0e7afc9752dfb53ced5489e89f8186be00e599e712660695b7a75ff2663f"}, -] - -[[package]] -name = "pycparser" -version = "2.21" -description = "C parser in Python" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" -files = [ - {file = "pycparser-2.21-py2.py3-none-any.whl", hash = "sha256:8ee45429555515e1f6b185e78100aea234072576aa43ab53aefcae078162fca9"}, - {file = "pycparser-2.21.tar.gz", hash = "sha256:e644fdec12f7872f86c58ff790da456218b10f863970249516d60a5eaca77206"}, -] - -[[package]] -name = "pyflakes" -version = "3.1.0" -description = "passive checker of Python programs" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pyflakes-3.1.0-py2.py3-none-any.whl", hash = "sha256:4132f6d49cb4dae6819e5379898f2b8cce3c5f23994194c24b77d5da2e36f774"}, - {file = "pyflakes-3.1.0.tar.gz", hash = "sha256:a0aae034c444db0071aa077972ba4768d40c830d9539fd45bf4cd3f8f6992efc"}, -] - -[[package]] -name = "pygments" -version = "2.17.2" -description = "Pygments is a syntax highlighting package written in Python." -optional = false -python-versions = ">=3.7" -files = [ - {file = "pygments-2.17.2-py3-none-any.whl", hash = "sha256:b27c2826c47d0f3219f29554824c30c5e8945175d888647acd804ddd04af846c"}, - {file = "pygments-2.17.2.tar.gz", hash = "sha256:da46cec9fd2de5be3a8a784f434e4c4ab670b4ff54d605c4c2717e9d49c4c367"}, -] - -[package.extras] -plugins = ["importlib-metadata"] -windows-terminal = ["colorama (>=0.4.6)"] - -[[package]] -name = "pyparsing" -version = "3.1.1" -description = "pyparsing module - Classes and methods to define and execute parsing grammars" -optional = false -python-versions = ">=3.6.8" -files = [ - {file = "pyparsing-3.1.1-py3-none-any.whl", hash = "sha256:32c7c0b711493c72ff18a981d24f28aaf9c1fb7ed5e9667c9e84e3db623bdbfb"}, - {file = "pyparsing-3.1.1.tar.gz", hash = "sha256:ede28a1a32462f5a9705e07aea48001a08f7cf81a021585011deba701581a0db"}, -] - -[package.extras] -diagrams = ["jinja2", "railroad-diagrams"] - -[[package]] -name = "pyproject-api" -version = "1.6.1" -description = "API to interact with the python pyproject.toml based projects" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pyproject_api-1.6.1-py3-none-any.whl", hash = "sha256:4c0116d60476b0786c88692cf4e325a9814965e2469c5998b830bba16b183675"}, - {file = "pyproject_api-1.6.1.tar.gz", hash = "sha256:1817dc018adc0d1ff9ca1ed8c60e1623d5aaca40814b953af14a9cf9a5cae538"}, -] - -[package.dependencies] -packaging = ">=23.1" -tomli = {version = ">=2.0.1", markers = "python_version < \"3.11\""} - -[package.extras] -docs = ["furo (>=2023.8.19)", "sphinx (<7.2)", "sphinx-autodoc-typehints (>=1.24)"] -testing = ["covdefaults (>=2.3)", "pytest (>=7.4)", "pytest-cov (>=4.1)", "pytest-mock (>=3.11.1)", "setuptools (>=68.1.2)", "wheel (>=0.41.2)"] - -[[package]] -name = "pytest" -version = "7.4.3" -description = "pytest: simple powerful testing with Python" -optional = false -python-versions = ">=3.7" -files = [ - {file = "pytest-7.4.3-py3-none-any.whl", hash = "sha256:0d009c083ea859a71b76adf7c1d502e4bc170b80a8ef002da5806527b9591fac"}, - {file = "pytest-7.4.3.tar.gz", hash = "sha256:d989d136982de4e3b29dabcc838ad581c64e8ed52c11fbe86ddebd9da0818cd5"}, -] - -[package.dependencies] -colorama = {version = "*", markers = "sys_platform == \"win32\""} -exceptiongroup = {version = ">=1.0.0rc8", markers = "python_version < \"3.11\""} -iniconfig = "*" -packaging = "*" -pluggy = ">=0.12,<2.0" -tomli = {version = ">=1.0.0", markers = "python_version < \"3.11\""} - -[package.extras] -testing = ["argcomplete", "attrs (>=19.2.0)", "hypothesis (>=3.56)", "mock", "nose", "pygments (>=2.7.2)", "requests", "setuptools", "xmlschema"] - -[[package]] -name = "pytest-cov" -version = "4.1.0" -description = "Pytest plugin for measuring coverage." -optional = false -python-versions = ">=3.7" -files = [ - {file = "pytest-cov-4.1.0.tar.gz", hash = "sha256:3904b13dfbfec47f003b8e77fd5b589cd11904a21ddf1ab38a64f204d6a10ef6"}, - {file = "pytest_cov-4.1.0-py3-none-any.whl", hash = "sha256:6ba70b9e97e69fcc3fb45bfeab2d0a138fb65c4d0d6a41ef33983ad114be8c3a"}, -] - -[package.dependencies] -coverage = {version = ">=5.2.1", extras = ["toml"]} -pytest = ">=4.6" - -[package.extras] -testing = ["fields", "hunter", "process-tests", "pytest-xdist", "six", "virtualenv"] - -[[package]] -name = "pytest-sugar" -version = "0.9.7" -description = "pytest-sugar is a plugin for pytest that changes the default look and feel of pytest (e.g. progressbar, show tests that fail instantly)." -optional = false -python-versions = "*" -files = [ - {file = "pytest-sugar-0.9.7.tar.gz", hash = "sha256:f1e74c1abfa55f7241cf7088032b6e378566f16b938f3f08905e2cf4494edd46"}, - {file = "pytest_sugar-0.9.7-py2.py3-none-any.whl", hash = "sha256:8cb5a4e5f8bbcd834622b0235db9e50432f4cbd71fef55b467fe44e43701e062"}, -] - -[package.dependencies] -packaging = ">=21.3" -pytest = ">=6.2.0" -termcolor = ">=2.1.0" - -[package.extras] -dev = ["black", "flake8", "pre-commit"] - -[[package]] -name = "python-dateutil" -version = "2.8.2" -description = "Extensions to the standard Python datetime module" -optional = false -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" -files = [ - {file = "python-dateutil-2.8.2.tar.gz", hash = "sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86"}, - {file = "python_dateutil-2.8.2-py2.py3-none-any.whl", hash = "sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9"}, -] - -[package.dependencies] -six = ">=1.5" - -[[package]] -name = "pytz" -version = "2023.3.post1" -description = "World timezone definitions, modern and historical" -optional = false -python-versions = "*" -files = [ - {file = "pytz-2023.3.post1-py2.py3-none-any.whl", hash = "sha256:ce42d816b81b68506614c11e8937d3aa9e41007ceb50bfdcb0749b921bf646c7"}, - {file = "pytz-2023.3.post1.tar.gz", hash = "sha256:7b4fddbeb94a1eba4b557da24f19fdf9db575192544270a9101d8509f9f43d7b"}, -] - -[[package]] -name = "pywin32" -version = "306" -description = "Python for Window Extensions" -optional = false -python-versions = "*" -files = [ - {file = "pywin32-306-cp310-cp310-win32.whl", hash = "sha256:06d3420a5155ba65f0b72f2699b5bacf3109f36acbe8923765c22938a69dfc8d"}, - {file = "pywin32-306-cp310-cp310-win_amd64.whl", hash = "sha256:84f4471dbca1887ea3803d8848a1616429ac94a4a8d05f4bc9c5dcfd42ca99c8"}, - {file = "pywin32-306-cp311-cp311-win32.whl", hash = "sha256:e65028133d15b64d2ed8f06dd9fbc268352478d4f9289e69c190ecd6818b6407"}, - {file = "pywin32-306-cp311-cp311-win_amd64.whl", hash = "sha256:a7639f51c184c0272e93f244eb24dafca9b1855707d94c192d4a0b4c01e1100e"}, - {file = "pywin32-306-cp311-cp311-win_arm64.whl", hash = "sha256:70dba0c913d19f942a2db25217d9a1b726c278f483a919f1abfed79c9cf64d3a"}, - {file = "pywin32-306-cp312-cp312-win32.whl", hash = "sha256:383229d515657f4e3ed1343da8be101000562bf514591ff383ae940cad65458b"}, - {file = "pywin32-306-cp312-cp312-win_amd64.whl", hash = "sha256:37257794c1ad39ee9be652da0462dc2e394c8159dfd913a8a4e8eb6fd346da0e"}, - {file = "pywin32-306-cp312-cp312-win_arm64.whl", hash = "sha256:5821ec52f6d321aa59e2db7e0a35b997de60c201943557d108af9d4ae1ec7040"}, - {file = "pywin32-306-cp37-cp37m-win32.whl", hash = "sha256:1c73ea9a0d2283d889001998059f5eaaba3b6238f767c9cf2833b13e6a685f65"}, - {file = "pywin32-306-cp37-cp37m-win_amd64.whl", hash = "sha256:72c5f621542d7bdd4fdb716227be0dd3f8565c11b280be6315b06ace35487d36"}, - {file = "pywin32-306-cp38-cp38-win32.whl", hash = "sha256:e4c092e2589b5cf0d365849e73e02c391c1349958c5ac3e9d5ccb9a28e017b3a"}, - {file = "pywin32-306-cp38-cp38-win_amd64.whl", hash = "sha256:e8ac1ae3601bee6ca9f7cb4b5363bf1c0badb935ef243c4733ff9a393b1690c0"}, - {file = "pywin32-306-cp39-cp39-win32.whl", hash = "sha256:e25fd5b485b55ac9c057f67d94bc203f3f6595078d1fb3b458c9c28b7153a802"}, - {file = "pywin32-306-cp39-cp39-win_amd64.whl", hash = "sha256:39b61c15272833b5c329a2989999dcae836b1eed650252ab1b7bfbe1d59f30f4"}, -] - -[[package]] -name = "pyzmq" -version = "25.1.2" -description = "Python bindings for 0MQ" -optional = false -python-versions = ">=3.6" -files = [ - {file = "pyzmq-25.1.2-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:e624c789359f1a16f83f35e2c705d07663ff2b4d4479bad35621178d8f0f6ea4"}, - {file = "pyzmq-25.1.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:49151b0efece79f6a79d41a461d78535356136ee70084a1c22532fc6383f4ad0"}, - {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d9a5f194cf730f2b24d6af1f833c14c10f41023da46a7f736f48b6d35061e76e"}, - {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:faf79a302f834d9e8304fafdc11d0d042266667ac45209afa57e5efc998e3872"}, - {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f51a7b4ead28d3fca8dda53216314a553b0f7a91ee8fc46a72b402a78c3e43d"}, - {file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:0ddd6d71d4ef17ba5a87becf7ddf01b371eaba553c603477679ae817a8d84d75"}, - {file = "pyzmq-25.1.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:246747b88917e4867e2367b005fc8eefbb4a54b7db363d6c92f89d69abfff4b6"}, - {file = "pyzmq-25.1.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:00c48ae2fd81e2a50c3485de1b9d5c7c57cd85dc8ec55683eac16846e57ac979"}, - {file = "pyzmq-25.1.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:5a68d491fc20762b630e5db2191dd07ff89834086740f70e978bb2ef2668be08"}, - {file = "pyzmq-25.1.2-cp310-cp310-win32.whl", hash = "sha256:09dfe949e83087da88c4a76767df04b22304a682d6154de2c572625c62ad6886"}, - {file = "pyzmq-25.1.2-cp310-cp310-win_amd64.whl", hash = "sha256:fa99973d2ed20417744fca0073390ad65ce225b546febb0580358e36aa90dba6"}, - {file = "pyzmq-25.1.2-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:82544e0e2d0c1811482d37eef297020a040c32e0687c1f6fc23a75b75db8062c"}, - {file = "pyzmq-25.1.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:01171fc48542348cd1a360a4b6c3e7d8f46cdcf53a8d40f84db6707a6768acc1"}, - {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bc69c96735ab501419c432110016329bf0dea8898ce16fab97c6d9106dc0b348"}, - {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3e124e6b1dd3dfbeb695435dff0e383256655bb18082e094a8dd1f6293114642"}, - {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7598d2ba821caa37a0f9d54c25164a4fa351ce019d64d0b44b45540950458840"}, - {file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:d1299d7e964c13607efd148ca1f07dcbf27c3ab9e125d1d0ae1d580a1682399d"}, - {file = "pyzmq-25.1.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:4e6f689880d5ad87918430957297c975203a082d9a036cc426648fcbedae769b"}, - {file = "pyzmq-25.1.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:cc69949484171cc961e6ecd4a8911b9ce7a0d1f738fcae717177c231bf77437b"}, - {file = "pyzmq-25.1.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9880078f683466b7f567b8624bfc16cad65077be046b6e8abb53bed4eeb82dd3"}, - {file = "pyzmq-25.1.2-cp311-cp311-win32.whl", hash = "sha256:4e5837af3e5aaa99a091302df5ee001149baff06ad22b722d34e30df5f0d9097"}, - {file = "pyzmq-25.1.2-cp311-cp311-win_amd64.whl", hash = "sha256:25c2dbb97d38b5ac9fd15586e048ec5eb1e38f3d47fe7d92167b0c77bb3584e9"}, - {file = "pyzmq-25.1.2-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:11e70516688190e9c2db14fcf93c04192b02d457b582a1f6190b154691b4c93a"}, - {file = "pyzmq-25.1.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:313c3794d650d1fccaaab2df942af9f2c01d6217c846177cfcbc693c7410839e"}, - {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1b3cbba2f47062b85fe0ef9de5b987612140a9ba3a9c6d2543c6dec9f7c2ab27"}, - {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fc31baa0c32a2ca660784d5af3b9487e13b61b3032cb01a115fce6588e1bed30"}, - {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:02c9087b109070c5ab0b383079fa1b5f797f8d43e9a66c07a4b8b8bdecfd88ee"}, - {file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:f8429b17cbb746c3e043cb986328da023657e79d5ed258b711c06a70c2ea7537"}, - {file = "pyzmq-25.1.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:5074adeacede5f810b7ef39607ee59d94e948b4fd954495bdb072f8c54558181"}, - {file = "pyzmq-25.1.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:7ae8f354b895cbd85212da245f1a5ad8159e7840e37d78b476bb4f4c3f32a9fe"}, - {file = "pyzmq-25.1.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:b264bf2cc96b5bc43ce0e852be995e400376bd87ceb363822e2cb1964fcdc737"}, - {file = "pyzmq-25.1.2-cp312-cp312-win32.whl", hash = "sha256:02bbc1a87b76e04fd780b45e7f695471ae6de747769e540da909173d50ff8e2d"}, - {file = "pyzmq-25.1.2-cp312-cp312-win_amd64.whl", hash = "sha256:ced111c2e81506abd1dc142e6cd7b68dd53747b3b7ae5edbea4578c5eeff96b7"}, - {file = "pyzmq-25.1.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:7b6d09a8962a91151f0976008eb7b29b433a560fde056ec7a3db9ec8f1075438"}, - {file = "pyzmq-25.1.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:967668420f36878a3c9ecb5ab33c9d0ff8d054f9c0233d995a6d25b0e95e1b6b"}, - {file = "pyzmq-25.1.2-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5edac3f57c7ddaacdb4d40f6ef2f9e299471fc38d112f4bc6d60ab9365445fb0"}, - {file = "pyzmq-25.1.2-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:0dabfb10ef897f3b7e101cacba1437bd3a5032ee667b7ead32bbcdd1a8422fe7"}, - {file = "pyzmq-25.1.2-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:2c6441e0398c2baacfe5ba30c937d274cfc2dc5b55e82e3749e333aabffde561"}, - {file = "pyzmq-25.1.2-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:16b726c1f6c2e7625706549f9dbe9b06004dfbec30dbed4bf50cbdfc73e5b32a"}, - {file = "pyzmq-25.1.2-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:a86c2dd76ef71a773e70551a07318b8e52379f58dafa7ae1e0a4be78efd1ff16"}, - {file = "pyzmq-25.1.2-cp36-cp36m-win32.whl", hash = "sha256:359f7f74b5d3c65dae137f33eb2bcfa7ad9ebefd1cab85c935f063f1dbb245cc"}, - {file = "pyzmq-25.1.2-cp36-cp36m-win_amd64.whl", hash = "sha256:55875492f820d0eb3417b51d96fea549cde77893ae3790fd25491c5754ea2f68"}, - {file = "pyzmq-25.1.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b8c8a419dfb02e91b453615c69568442e897aaf77561ee0064d789705ff37a92"}, - {file = "pyzmq-25.1.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8807c87fa893527ae8a524c15fc505d9950d5e856f03dae5921b5e9aa3b8783b"}, - {file = "pyzmq-25.1.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5e319ed7d6b8f5fad9b76daa0a68497bc6f129858ad956331a5835785761e003"}, - {file = "pyzmq-25.1.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:3c53687dde4d9d473c587ae80cc328e5b102b517447456184b485587ebd18b62"}, - {file = "pyzmq-25.1.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:9add2e5b33d2cd765ad96d5eb734a5e795a0755f7fc49aa04f76d7ddda73fd70"}, - {file = "pyzmq-25.1.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:e690145a8c0c273c28d3b89d6fb32c45e0d9605b2293c10e650265bf5c11cfec"}, - {file = "pyzmq-25.1.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:00a06faa7165634f0cac1abb27e54d7a0b3b44eb9994530b8ec73cf52e15353b"}, - {file = "pyzmq-25.1.2-cp37-cp37m-win32.whl", hash = "sha256:0f97bc2f1f13cb16905a5f3e1fbdf100e712d841482b2237484360f8bc4cb3d7"}, - {file = "pyzmq-25.1.2-cp37-cp37m-win_amd64.whl", hash = "sha256:6cc0020b74b2e410287e5942e1e10886ff81ac77789eb20bec13f7ae681f0fdd"}, - {file = "pyzmq-25.1.2-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:bef02cfcbded83473bdd86dd8d3729cd82b2e569b75844fb4ea08fee3c26ae41"}, - {file = "pyzmq-25.1.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e10a4b5a4b1192d74853cc71a5e9fd022594573926c2a3a4802020360aa719d8"}, - {file = "pyzmq-25.1.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:8c5f80e578427d4695adac6fdf4370c14a2feafdc8cb35549c219b90652536ae"}, - {file = "pyzmq-25.1.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:5dde6751e857910c1339890f3524de74007958557593b9e7e8c5f01cd919f8a7"}, - {file = "pyzmq-25.1.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ea1608dd169da230a0ad602d5b1ebd39807ac96cae1845c3ceed39af08a5c6df"}, - {file = "pyzmq-25.1.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:0f513130c4c361201da9bc69df25a086487250e16b5571ead521b31ff6b02220"}, - {file = "pyzmq-25.1.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:019744b99da30330798bb37df33549d59d380c78e516e3bab9c9b84f87a9592f"}, - {file = "pyzmq-25.1.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:2e2713ef44be5d52dd8b8e2023d706bf66cb22072e97fc71b168e01d25192755"}, - {file = "pyzmq-25.1.2-cp38-cp38-win32.whl", hash = "sha256:07cd61a20a535524906595e09344505a9bd46f1da7a07e504b315d41cd42eb07"}, - {file = "pyzmq-25.1.2-cp38-cp38-win_amd64.whl", hash = "sha256:eb7e49a17fb8c77d3119d41a4523e432eb0c6932187c37deb6fbb00cc3028088"}, - {file = "pyzmq-25.1.2-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:94504ff66f278ab4b7e03e4cba7e7e400cb73bfa9d3d71f58d8972a8dc67e7a6"}, - {file = "pyzmq-25.1.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6dd0d50bbf9dca1d0bdea219ae6b40f713a3fb477c06ca3714f208fd69e16fd8"}, - {file = "pyzmq-25.1.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:004ff469d21e86f0ef0369717351073e0e577428e514c47c8480770d5e24a565"}, - {file = "pyzmq-25.1.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:c0b5ca88a8928147b7b1e2dfa09f3b6c256bc1135a1338536cbc9ea13d3b7add"}, - {file = "pyzmq-25.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2c9a79f1d2495b167119d02be7448bfba57fad2a4207c4f68abc0bab4b92925b"}, - {file = "pyzmq-25.1.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:518efd91c3d8ac9f9b4f7dd0e2b7b8bf1a4fe82a308009016b07eaa48681af82"}, - {file = "pyzmq-25.1.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:1ec23bd7b3a893ae676d0e54ad47d18064e6c5ae1fadc2f195143fb27373f7f6"}, - {file = "pyzmq-25.1.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:db36c27baed588a5a8346b971477b718fdc66cf5b80cbfbd914b4d6d355e44e2"}, - {file = "pyzmq-25.1.2-cp39-cp39-win32.whl", hash = "sha256:39b1067f13aba39d794a24761e385e2eddc26295826530a8c7b6c6c341584289"}, - {file = "pyzmq-25.1.2-cp39-cp39-win_amd64.whl", hash = "sha256:8e9f3fabc445d0ce320ea2c59a75fe3ea591fdbdeebec5db6de530dd4b09412e"}, - {file = "pyzmq-25.1.2-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:a8c1d566344aee826b74e472e16edae0a02e2a044f14f7c24e123002dcff1c05"}, - {file = "pyzmq-25.1.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:759cfd391a0996345ba94b6a5110fca9c557ad4166d86a6e81ea526c376a01e8"}, - {file = "pyzmq-25.1.2-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7c61e346ac34b74028ede1c6b4bcecf649d69b707b3ff9dc0fab453821b04d1e"}, - {file = "pyzmq-25.1.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4cb8fc1f8d69b411b8ec0b5f1ffbcaf14c1db95b6bccea21d83610987435f1a4"}, - {file = "pyzmq-25.1.2-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:3c00c9b7d1ca8165c610437ca0c92e7b5607b2f9076f4eb4b095c85d6e680a1d"}, - {file = "pyzmq-25.1.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:df0c7a16ebb94452d2909b9a7b3337940e9a87a824c4fc1c7c36bb4404cb0cde"}, - {file = "pyzmq-25.1.2-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:45999e7f7ed5c390f2e87ece7f6c56bf979fb213550229e711e45ecc7d42ccb8"}, - {file = "pyzmq-25.1.2-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ac170e9e048b40c605358667aca3d94e98f604a18c44bdb4c102e67070f3ac9b"}, - {file = "pyzmq-25.1.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d1b604734bec94f05f81b360a272fc824334267426ae9905ff32dc2be433ab96"}, - {file = "pyzmq-25.1.2-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:a793ac733e3d895d96f865f1806f160696422554e46d30105807fdc9841b9f7d"}, - {file = "pyzmq-25.1.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:0806175f2ae5ad4b835ecd87f5f85583316b69f17e97786f7443baaf54b9bb98"}, - {file = "pyzmq-25.1.2-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:ef12e259e7bc317c7597d4f6ef59b97b913e162d83b421dd0db3d6410f17a244"}, - {file = "pyzmq-25.1.2-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ea253b368eb41116011add00f8d5726762320b1bda892f744c91997b65754d73"}, - {file = "pyzmq-25.1.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1b9b1f2ad6498445a941d9a4fee096d387fee436e45cc660e72e768d3d8ee611"}, - {file = "pyzmq-25.1.2-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:8b14c75979ce932c53b79976a395cb2a8cd3aaf14aef75e8c2cb55a330b9b49d"}, - {file = "pyzmq-25.1.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:889370d5174a741a62566c003ee8ddba4b04c3f09a97b8000092b7ca83ec9c49"}, - {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9a18fff090441a40ffda8a7f4f18f03dc56ae73f148f1832e109f9bffa85df15"}, - {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:99a6b36f95c98839ad98f8c553d8507644c880cf1e0a57fe5e3a3f3969040882"}, - {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4345c9a27f4310afbb9c01750e9461ff33d6fb74cd2456b107525bbeebcb5be3"}, - {file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:3516e0b6224cf6e43e341d56da15fd33bdc37fa0c06af4f029f7d7dfceceabbc"}, - {file = "pyzmq-25.1.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:146b9b1f29ead41255387fb07be56dc29639262c0f7344f570eecdcd8d683314"}, - {file = "pyzmq-25.1.2.tar.gz", hash = "sha256:93f1aa311e8bb912e34f004cf186407a4e90eec4f0ecc0efd26056bf7eda0226"}, -] - -[package.dependencies] -cffi = {version = "*", markers = "implementation_name == \"pypy\""} - -[[package]] -name = "ruff" -version = "0.1.9" -description = "An extremely fast Python linter and code formatter, written in Rust." -optional = false -python-versions = ">=3.7" -files = [ - {file = "ruff-0.1.9-py3-none-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl", hash = "sha256:e6a212f436122ac73df851f0cf006e0c6612fe6f9c864ed17ebefce0eff6a5fd"}, - {file = "ruff-0.1.9-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:28d920e319783d5303333630dae46ecc80b7ba294aeffedf946a02ac0b7cc3db"}, - {file = "ruff-0.1.9-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:104aa9b5e12cb755d9dce698ab1b97726b83012487af415a4512fedd38b1459e"}, - {file = "ruff-0.1.9-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:1e63bf5a4a91971082a4768a0aba9383c12392d0d6f1e2be2248c1f9054a20da"}, - {file = "ruff-0.1.9-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4d0738917c203246f3e275b37006faa3aa96c828b284ebfe3e99a8cb413c8c4b"}, - {file = "ruff-0.1.9-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:69dac82d63a50df2ab0906d97a01549f814b16bc806deeac4f064ff95c47ddf5"}, - {file = "ruff-0.1.9-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2aec598fb65084e41a9c5d4b95726173768a62055aafb07b4eff976bac72a592"}, - {file = "ruff-0.1.9-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:744dfe4b35470fa3820d5fe45758aace6269c578f7ddc43d447868cfe5078bcb"}, - {file = "ruff-0.1.9-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:479ca4250cab30f9218b2e563adc362bd6ae6343df7c7b5a7865300a5156d5a6"}, - {file = "ruff-0.1.9-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:aa8344310f1ae79af9ccd6e4b32749e93cddc078f9b5ccd0e45bd76a6d2e8bb6"}, - {file = "ruff-0.1.9-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:837c739729394df98f342319f5136f33c65286b28b6b70a87c28f59354ec939b"}, - {file = "ruff-0.1.9-py3-none-musllinux_1_2_i686.whl", hash = "sha256:e6837202c2859b9f22e43cb01992373c2dbfeae5c0c91ad691a4a2e725392464"}, - {file = "ruff-0.1.9-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:331aae2cd4a0554667ac683243b151c74bd60e78fb08c3c2a4ac05ee1e606a39"}, - {file = "ruff-0.1.9-py3-none-win32.whl", hash = "sha256:8151425a60878e66f23ad47da39265fc2fad42aed06fb0a01130e967a7a064f4"}, - {file = "ruff-0.1.9-py3-none-win_amd64.whl", hash = "sha256:c497d769164df522fdaf54c6eba93f397342fe4ca2123a2e014a5b8fc7df81c7"}, - {file = "ruff-0.1.9-py3-none-win_arm64.whl", hash = "sha256:0e17f53bcbb4fff8292dfd84cf72d767b5e146f009cccd40c2fad27641f8a7a9"}, - {file = "ruff-0.1.9.tar.gz", hash = "sha256:b041dee2734719ddbb4518f762c982f2e912e7f28b8ee4fe1dee0b15d1b6e800"}, -] - -[[package]] -name = "scipy" -version = "1.11.4" -description = "Fundamental algorithms for scientific computing in Python" -optional = false -python-versions = ">=3.9" -files = [ - {file = "scipy-1.11.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:bc9a714581f561af0848e6b69947fda0614915f072dfd14142ed1bfe1b806710"}, - {file = "scipy-1.11.4-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:cf00bd2b1b0211888d4dc75656c0412213a8b25e80d73898083f402b50f47e41"}, - {file = "scipy-1.11.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b9999c008ccf00e8fbcce1236f85ade5c569d13144f77a1946bef8863e8f6eb4"}, - {file = "scipy-1.11.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:933baf588daa8dc9a92c20a0be32f56d43faf3d1a60ab11b3f08c356430f6e56"}, - {file = "scipy-1.11.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8fce70f39076a5aa62e92e69a7f62349f9574d8405c0a5de6ed3ef72de07f446"}, - {file = "scipy-1.11.4-cp310-cp310-win_amd64.whl", hash = "sha256:6550466fbeec7453d7465e74d4f4b19f905642c89a7525571ee91dd7adabb5a3"}, - {file = "scipy-1.11.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f313b39a7e94f296025e3cffc2c567618174c0b1dde173960cf23808f9fae4be"}, - {file = "scipy-1.11.4-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:1b7c3dca977f30a739e0409fb001056484661cb2541a01aba0bb0029f7b68db8"}, - {file = "scipy-1.11.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:00150c5eae7b610c32589dda259eacc7c4f1665aedf25d921907f4d08a951b1c"}, - {file = "scipy-1.11.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:530f9ad26440e85766509dbf78edcfe13ffd0ab7fec2560ee5c36ff74d6269ff"}, - {file = "scipy-1.11.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5e347b14fe01003d3b78e196e84bd3f48ffe4c8a7b8a1afbcb8f5505cb710993"}, - {file = "scipy-1.11.4-cp311-cp311-win_amd64.whl", hash = "sha256:acf8ed278cc03f5aff035e69cb511741e0418681d25fbbb86ca65429c4f4d9cd"}, - {file = "scipy-1.11.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:028eccd22e654b3ea01ee63705681ee79933652b2d8f873e7949898dda6d11b6"}, - {file = "scipy-1.11.4-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:2c6ff6ef9cc27f9b3db93a6f8b38f97387e6e0591600369a297a50a8e96e835d"}, - {file = "scipy-1.11.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b030c6674b9230d37c5c60ab456e2cf12f6784596d15ce8da9365e70896effc4"}, - {file = "scipy-1.11.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ad669df80528aeca5f557712102538f4f37e503f0c5b9541655016dd0932ca79"}, - {file = "scipy-1.11.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:ce7fff2e23ab2cc81ff452a9444c215c28e6305f396b2ba88343a567feec9660"}, - {file = "scipy-1.11.4-cp312-cp312-win_amd64.whl", hash = "sha256:36750b7733d960d7994888f0d148d31ea3017ac15eef664194b4ef68d36a4a97"}, - {file = "scipy-1.11.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6e619aba2df228a9b34718efb023966da781e89dd3d21637b27f2e54db0410d7"}, - {file = "scipy-1.11.4-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:f3cd9e7b3c2c1ec26364856f9fbe78695fe631150f94cd1c22228456404cf1ec"}, - {file = "scipy-1.11.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d10e45a6c50211fe256da61a11c34927c68f277e03138777bdebedd933712fea"}, - {file = "scipy-1.11.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:91af76a68eeae0064887a48e25c4e616fa519fa0d38602eda7e0f97d65d57937"}, - {file = "scipy-1.11.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6df1468153a31cf55ed5ed39647279beb9cfb5d3f84369453b49e4b8502394fd"}, - {file = "scipy-1.11.4-cp39-cp39-win_amd64.whl", hash = "sha256:ee410e6de8f88fd5cf6eadd73c135020bfbbbdfcd0f6162c36a7638a1ea8cc65"}, - {file = "scipy-1.11.4.tar.gz", hash = "sha256:90a2b78e7f5733b9de748f589f09225013685f9b218275257f8a8168ededaeaa"}, -] - -[package.dependencies] -numpy = ">=1.21.6,<1.28.0" - -[package.extras] -dev = ["click", "cython-lint (>=0.12.2)", "doit (>=0.36.0)", "mypy", "pycodestyle", "pydevtool", "rich-click", "ruff", "types-psutil", "typing_extensions"] -doc = ["jupytext", "matplotlib (>2)", "myst-nb", "numpydoc", "pooch", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-design (>=0.2.0)"] -test = ["asv", "gmpy2", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] - -[[package]] -name = "setuptools" -version = "69.0.3" -description = "Easily download, build, install, upgrade, and uninstall Python packages" -optional = false -python-versions = ">=3.8" -files = [ - {file = "setuptools-69.0.3-py3-none-any.whl", hash = "sha256:385eb4edd9c9d5c17540511303e39a147ce2fc04bc55289c322b9e5904fe2c05"}, - {file = "setuptools-69.0.3.tar.gz", hash = "sha256:be1af57fc409f93647f2e8e4573a142ed38724b8cdd389706a867bb4efcf1e78"}, -] - -[package.extras] -docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier"] -testing = ["build[virtualenv]", "filelock (>=3.4.0)", "flake8-2020", "ini2toml[lite] (>=0.9)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "pip (>=19.1)", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy (>=0.9.1)", "pytest-perf", "pytest-ruff", "pytest-timeout", "pytest-xdist", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"] -testing-integration = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "packaging (>=23.1)", "pytest", "pytest-enabler", "pytest-xdist", "tomli", "virtualenv (>=13.0.0)", "wheel"] - -[[package]] -name = "six" -version = "1.16.0" -description = "Python 2 and 3 compatibility utilities" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" -files = [ - {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"}, - {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, -] - -[[package]] -name = "stack-data" -version = "0.6.3" -description = "Extract data from python stack frames and tracebacks for informative displays" -optional = false -python-versions = "*" -files = [ - {file = "stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695"}, - {file = "stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9"}, -] - -[package.dependencies] -asttokens = ">=2.1.0" -executing = ">=1.2.0" -pure-eval = "*" - -[package.extras] -tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] - -[[package]] -name = "termcolor" -version = "2.4.0" -description = "ANSI color formatting for output in terminal" -optional = false -python-versions = ">=3.8" -files = [ - {file = "termcolor-2.4.0-py3-none-any.whl", hash = "sha256:9297c0df9c99445c2412e832e882a7884038a25617c60cea2ad69488d4040d63"}, - {file = "termcolor-2.4.0.tar.gz", hash = "sha256:aab9e56047c8ac41ed798fa36d892a37aca6b3e9159f3e0c24bc64a9b3ac7b7a"}, -] - -[package.extras] -tests = ["pytest", "pytest-cov"] - -[[package]] -name = "tokenize-rt" -version = "5.2.0" -description = "A wrapper around the stdlib `tokenize` which roundtrips." -optional = false -python-versions = ">=3.8" -files = [ - {file = "tokenize_rt-5.2.0-py2.py3-none-any.whl", hash = "sha256:b79d41a65cfec71285433511b50271b05da3584a1da144a0752e9c621a285289"}, - {file = "tokenize_rt-5.2.0.tar.gz", hash = "sha256:9fe80f8a5c1edad2d3ede0f37481cc0cc1538a2f442c9c2f9e4feacd2792d054"}, -] - -[[package]] -name = "tomli" -version = "2.0.1" -description = "A lil' TOML parser" -optional = false -python-versions = ">=3.7" -files = [ - {file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"}, - {file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"}, -] - -[[package]] -name = "tornado" -version = "6.4" -description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." -optional = false -python-versions = ">= 3.8" -files = [ - {file = "tornado-6.4-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:02ccefc7d8211e5a7f9e8bc3f9e5b0ad6262ba2fbb683a6443ecc804e5224ce0"}, - {file = "tornado-6.4-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:27787de946a9cffd63ce5814c33f734c627a87072ec7eed71f7fc4417bb16263"}, - {file = "tornado-6.4-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f7894c581ecdcf91666a0912f18ce5e757213999e183ebfc2c3fdbf4d5bd764e"}, - {file = "tornado-6.4-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e43bc2e5370a6a8e413e1e1cd0c91bedc5bd62a74a532371042a18ef19e10579"}, - {file = "tornado-6.4-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f0251554cdd50b4b44362f73ad5ba7126fc5b2c2895cc62b14a1c2d7ea32f212"}, - {file = "tornado-6.4-cp38-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:fd03192e287fbd0899dd8f81c6fb9cbbc69194d2074b38f384cb6fa72b80e9c2"}, - {file = "tornado-6.4-cp38-abi3-musllinux_1_1_i686.whl", hash = "sha256:88b84956273fbd73420e6d4b8d5ccbe913c65d31351b4c004ae362eba06e1f78"}, - {file = "tornado-6.4-cp38-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:71ddfc23a0e03ef2df1c1397d859868d158c8276a0603b96cf86892bff58149f"}, - {file = "tornado-6.4-cp38-abi3-win32.whl", hash = "sha256:6f8a6c77900f5ae93d8b4ae1196472d0ccc2775cc1dfdc9e7727889145c45052"}, - {file = "tornado-6.4-cp38-abi3-win_amd64.whl", hash = "sha256:10aeaa8006333433da48dec9fe417877f8bcc21f48dda8d661ae79da357b2a63"}, - {file = "tornado-6.4.tar.gz", hash = "sha256:72291fa6e6bc84e626589f1c29d90a5a6d593ef5ae68052ee2ef000dfd273dee"}, -] - -[[package]] -name = "tox" -version = "4.11.4" -description = "tox is a generic virtualenv management and test command line tool" -optional = false -python-versions = ">=3.8" -files = [ - {file = "tox-4.11.4-py3-none-any.whl", hash = "sha256:2adb83d68f27116812b69aa36676a8d6a52249cb0d173649de0e7d0c2e3e7229"}, - {file = "tox-4.11.4.tar.gz", hash = "sha256:73a7240778fabf305aeb05ab8ea26e575e042ab5a18d71d0ed13e343a51d6ce1"}, -] - -[package.dependencies] -cachetools = ">=5.3.1" -chardet = ">=5.2" -colorama = ">=0.4.6" -filelock = ">=3.12.3" -packaging = ">=23.1" -platformdirs = ">=3.10" -pluggy = ">=1.3" -pyproject-api = ">=1.6.1" -tomli = {version = ">=2.0.1", markers = "python_version < \"3.11\""} -virtualenv = ">=20.24.3" - -[package.extras] -docs = ["furo (>=2023.8.19)", "sphinx (>=7.2.4)", "sphinx-argparse-cli (>=1.11.1)", "sphinx-autodoc-typehints (>=1.24)", "sphinx-copybutton (>=0.5.2)", "sphinx-inline-tabs (>=2023.4.21)", "sphinxcontrib-towncrier (>=0.2.1a0)", "towncrier (>=23.6)"] -testing = ["build[virtualenv] (>=0.10)", "covdefaults (>=2.3)", "detect-test-pollution (>=1.1.1)", "devpi-process (>=1)", "diff-cover (>=7.7)", "distlib (>=0.3.7)", "flaky (>=3.7)", "hatch-vcs (>=0.3)", "hatchling (>=1.18)", "psutil (>=5.9.5)", "pytest (>=7.4)", "pytest-cov (>=4.1)", "pytest-mock (>=3.11.1)", "pytest-xdist (>=3.3.1)", "re-assert (>=1.1)", "time-machine (>=2.12)", "wheel (>=0.41.2)"] - -[[package]] -name = "traitlets" -version = "5.14.0" -description = "Traitlets Python configuration system" -optional = false -python-versions = ">=3.8" -files = [ - {file = "traitlets-5.14.0-py3-none-any.whl", hash = "sha256:f14949d23829023013c47df20b4a76ccd1a85effb786dc060f34de7948361b33"}, - {file = "traitlets-5.14.0.tar.gz", hash = "sha256:fcdaa8ac49c04dfa0ed3ee3384ef6dfdb5d6f3741502be247279407679296772"}, -] - -[package.extras] -docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] -test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<7.5)", "pytest-mock", "pytest-mypy-testing"] - -[[package]] -name = "types-pytz" -version = "2023.3.1.1" -description = "Typing stubs for pytz" -optional = false -python-versions = "*" -files = [ - {file = "types-pytz-2023.3.1.1.tar.gz", hash = "sha256:cc23d0192cd49c8f6bba44ee0c81e4586a8f30204970fc0894d209a6b08dab9a"}, - {file = "types_pytz-2023.3.1.1-py3-none-any.whl", hash = "sha256:1999a123a3dc0e39a2ef6d19f3f8584211de9e6a77fe7a0259f04a524e90a5cf"}, -] - -[[package]] -name = "typing-extensions" -version = "4.9.0" -description = "Backported and Experimental Type Hints for Python 3.8+" -optional = false -python-versions = ">=3.8" -files = [ - {file = "typing_extensions-4.9.0-py3-none-any.whl", hash = "sha256:af72aea155e91adfc61c3ae9e0e342dbc0cba726d6cba4b6c72c1f34e47291cd"}, - {file = "typing_extensions-4.9.0.tar.gz", hash = "sha256:23478f88c37f27d76ac8aee6c905017a143b0b1b886c3c9f66bc2fd94f9f5783"}, -] - -[[package]] -name = "tzdata" -version = "2023.3" -description = "Provider of IANA time zone data" -optional = false -python-versions = ">=2" -files = [ - {file = "tzdata-2023.3-py2.py3-none-any.whl", hash = "sha256:7e65763eef3120314099b6939b5546db7adce1e7d6f2e179e3df563c70511eda"}, - {file = "tzdata-2023.3.tar.gz", hash = "sha256:11ef1e08e54acb0d4f95bdb1be05da659673de4acbd21bf9c69e94cc5e907a3a"}, -] - -[[package]] -name = "virtualenv" -version = "20.25.0" -description = "Virtual Python Environment builder" -optional = false -python-versions = ">=3.7" -files = [ - {file = "virtualenv-20.25.0-py3-none-any.whl", hash = "sha256:4238949c5ffe6876362d9c0180fc6c3a824a7b12b80604eeb8085f2ed7460de3"}, - {file = "virtualenv-20.25.0.tar.gz", hash = "sha256:bf51c0d9c7dd63ea8e44086fa1e4fb1093a31e963b86959257378aef020e1f1b"}, -] - -[package.dependencies] -distlib = ">=0.3.7,<1" -filelock = ">=3.12.2,<4" -platformdirs = ">=3.9.1,<5" - -[package.extras] -docs = ["furo (>=2023.7.26)", "proselint (>=0.13)", "sphinx (>=7.1.2)", "sphinx-argparse (>=0.4)", "sphinxcontrib-towncrier (>=0.2.1a0)", "towncrier (>=23.6)"] -test = ["covdefaults (>=2.3)", "coverage (>=7.2.7)", "coverage-enable-subprocess (>=1)", "flaky (>=3.7)", "packaging (>=23.1)", "pytest (>=7.4)", "pytest-env (>=0.8.2)", "pytest-freezer (>=0.4.8)", "pytest-mock (>=3.11.1)", "pytest-randomly (>=3.12)", "pytest-timeout (>=2.1)", "setuptools (>=68)", "time-machine (>=2.10)"] - -[[package]] -name = "wcwidth" -version = "0.2.12" -description = "Measures the displayed width of unicode strings in a terminal" -optional = false -python-versions = "*" -files = [ - {file = "wcwidth-0.2.12-py2.py3-none-any.whl", hash = "sha256:f26ec43d96c8cbfed76a5075dac87680124fa84e0855195a6184da9c187f133c"}, - {file = "wcwidth-0.2.12.tar.gz", hash = "sha256:f01c104efdf57971bcb756f054dd58ddec5204dd15fa31d6503ea57947d97c02"}, -] - -[metadata] -lock-version = "2.0" -python-versions = "^3.10" -content-hash = "41e40199e7e98cc36730d932a1afc2a0c9eecd5597b74d16979d7c08e4cbfad8"