-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrair_utils.py
193 lines (154 loc) · 5.99 KB
/
rair_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import bz2
import numpy as np
import torch
def entropy(xs):
if isinstance(xs, torch.Tensor):
xs = xs / torch.sum(xs)
return -torch.sum(xs * torch.log(xs))
else:
xs = xs / np.sum(xs)
return -np.sum(xs * np.log(xs))
def compress(values, return_dict=False):
compressed_keys = []
compressed_values = []
for v in values:
if v in compressed_keys:
compressed_values[compressed_keys.index(v)] += 1
else:
compressed_keys.append(v)
compressed_values.append(1)
if return_dict:
return entropy(np.asarray(compressed_values)), compressed_keys, compressed_values
else:
return entropy(np.asarray(compressed_values))
def get_relation_matrix(
rep2compress,
compression_ndim,
precision=100,
granularity=2.5,
bidirectional=False,
non_dist=True,
distance="euclidean",
rounding_fn=np.floor,
):
if non_dist:
# Absolute difference and difference vectorized cases
relation_matrix = rep2compress[:, None, :] - rep2compress[None, :, :]
relation_matrix = relation_matrix.reshape(-1, compression_ndim)
if not bidirectional:
relation_matrix = np.abs(relation_matrix)
relation_matrix = granularity * rounding_fn(relation_matrix * precision / granularity)
else:
relation_matrix = rep2compress[:, None, :] - rep2compress[None, :, :]
relation_matrix = relation_matrix.reshape(-1, compression_ndim)
relation_matrix = granularity * rounding_fn(relation_matrix * precision / granularity)
if distance == "euclidean":
relation_matrix = np.sqrt(np.sum(relation_matrix**2, axis=-1, keepdims=True))
elif distance == "manhattan":
relation_matrix = np.sum(np.abs(relation_matrix), axis=-1, keepdims=True)
elif distance == "inf":
relation_matrix = np.amax(np.abs(relation_matrix), axis=-1, keepdims=True)
return relation_matrix
def get_mask(nObj, bidirectional=False):
mask = np.ones(nObj**2, dtype=bool)
if bidirectional:
mask[range(0, nObj**2, nObj + 1)] = False
else:
dummy = np.arange(nObj**2).reshape(nObj, nObj)
ind = np.tril_indices(nObj)
mask[dummy[ind]] = False
return mask
def get_obs_ready(obs, nObj, agent_dim, object_dyn_dim, compression_ndim):
if obs.ndim == 1:
obs = obs[None]
if isinstance(obs, torch.Tensor):
flat_object_dyn = obs.narrow(-1, agent_dim, object_dyn_dim * nObj)
# -> Reshape so that .... x nObj x object_dim
batched_object_dyn = flat_object_dyn.view(*obs.shape[:-1], nObj, object_dyn_dim)
# For now only return x-y
return batched_object_dyn[..., :compression_ndim]
else:
flat_object_dyn = obs[..., agent_dim : agent_dim + nObj * object_dyn_dim]
# -> Reshape so that .... x nObj x object_dim
batched_object_dyn = flat_object_dyn.reshape(*obs.shape[:-1], nObj, object_dyn_dim)
# return only the part of the observation to be compressed!
return batched_object_dyn[..., :compression_ndim]
def model_relational_rair(
obs,
env,
compression_ndim=2,
bidirectional=True,
non_dist=True,
distance="euclidean",
granularity=2.5,
precision=100,
rounding="floor",
):
rounding_fn = np.floor if rounding == "floor" else np.round
mask = get_mask(env.nObj, bidirectional)
obs_to_compress = get_obs_ready(obs, env.nObj, env.agent_dim, env.object_dyn_dim, compression_ndim)
# obs_to_compress shape [num_particles, num_entities, compression_ndim]
num_particles = obs_to_compress.shape[0]
compression_cost_per_sample = np.zeros((num_particles,))
for p in range(num_particles):
relation_matrix = get_relation_matrix(
obs_to_compress[p, :, :],
compression_ndim,
precision,
granularity,
bidirectional,
non_dist,
distance,
rounding_fn,
)
compression_cost_per_sample[p] = compress(relation_matrix[mask].tolist())
return compression_cost_per_sample
def get_frequency_table(
obs,
env,
compression_ndim=2,
bidirectional=True,
non_dist=True,
distance="euclidean",
granularity=2.5,
precision=100,
rounding="floor",
):
rounding_fn = np.floor if rounding == "floor" else np.round
mask = get_mask(env.nObj, bidirectional)
obs_to_compress = get_obs_ready(obs, env.nObj, env.agent_dim, env.object_dyn_dim, compression_ndim)
# obs_to_compress shape [num_particles, num_entities, compression_ndim]
num_particles = obs_to_compress.shape[0]
assert num_particles == 1
relation_matrix = get_relation_matrix(
obs_to_compress[0, :, :],
compression_ndim,
precision,
granularity,
bidirectional,
non_dist,
distance,
rounding_fn,
)
entropy_val, c_keys, c_vals = compress(relation_matrix[mask].tolist(), return_dict=True)
return entropy_val, c_keys, c_vals
# For compression with bzip2
def model_compression_costs_structured_obs(obs, env, compression_ndim=2, granularity=100):
if obs.ndim == 1:
obs = obs[None]
flat_object_dyn = obs[..., env.agent_dim : env.agent_dim + env.nObj * env.object_dyn_dim]
# -> Reshape so that .... x nObj x object_dim
batched_object_dyn = flat_object_dyn.reshape(*obs.shape[:-1], env.nObj, env.object_dyn_dim)
# For now only return x-y
obs_to_compress = batched_object_dyn[..., :compression_ndim]
obs_to_compress = np.round(obs_to_compress * granularity).astype(np.int32)
num_particles = obs_to_compress.shape[0]
num_dims = obs_to_compress.shape[-1]
compression_cost_per_sample = np.zeros((num_particles,))
for p in range(num_particles):
buff = 0
for d in range(num_dims):
compressed_obs = bz2.compress(obs_to_compress[p, :, d].tobytes())
buff += len(compressed_obs)
compression_cost_per_sample[p] = buff
return compression_cost_per_sample