-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcls_object.py
60 lines (51 loc) · 1.45 KB
/
cls_object.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# coding:utf-8
# 在切割后图片中,进行统计各个类别的目标数量
# -*- coding: utf-8 -*-
# -*- coding:utf-8 -*-
#根据xml文件统计目标种类以及数量
import os
import xml.etree.ElementTree as ET
import numpy as np
np.set_printoptions(suppress=True, threshold=np.nan)
import matplotlib
from PIL import Image
def parse_obj(xml_path, filename):
tree=ET.parse(xml_path+filename)
objects=[]
for obj in tree.findall('object'):
obj_struct={}
obj_struct['name']=obj.find('name').text
objects.append(obj_struct)
return objects
def read_image(image_path, filename):
im=Image.open(image_path+filename)
W=im.size[0]
H=im.size[1]
area=W*H
im_info=[W,H,area]
return im_info
if __name__ == '__main__':
xml_path='D:/datasets/DOTA_clip/val/labeltxt/'
filenamess=os.listdir(xml_path)
filenames=[]
for name in filenamess:
name=name.replace('.xml','')
filenames.append(name)
recs={}
obs_shape={}
classnames=[]
num_objs={}
obj_avg={}
for i,name in enumerate(filenames):
recs[name]=parse_obj(xml_path, name+ '.xml' )
for name in filenames:
for object in recs[name]:
if object['name'] not in num_objs.keys():
num_objs[object['name']]=1
else:
num_objs[object['name']]+=1
if object['name'] not in classnames:
classnames.append(object['name'])
for name in classnames:
print('{}:{}个'.format(name,num_objs[name]))
print('信息统计算完毕。')