forked from ecjoliver/stormTracking
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathstorm_census.py
194 lines (175 loc) · 5.94 KB
/
storm_census.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
'''
Calculate storm census statistics
for tracked storms
'''
#
# Load required modules
#
import numpy as np
from matplotlib import pyplot as plt
import mpl_toolkits.basemap as bm
#
# Load storm data
#
data = np.load('storm_track.npz')
storms = data['storms']
#
# Some variables
#
# Cyclone properties
dt = 6. # Time step [hours]
age_min_hours = 72 # Minimum cyclone age to consider [hours]
age_min = age_min_hours/dt # [time steps]
# Census grid
lon = np.arange(0, 360+1, 2)
lat = np.arange(-90, 90+1, 2)
llon, llat = np.meshgrid(lon, lat)
X = len(lon)
Y = len(lat)
DIM = (Y,X)
#
# Calculate statistics
#
N = np.zeros(DIM) # Count of track positions
Nc = np.zeros(DIM) # Cyclones only
Na = np.zeros(DIM) # Anticyclones only
gen = np.zeros(DIM) # Count of genesis positions
genc = np.zeros(DIM)
gena = np.zeros(DIM)
term = np.zeros(DIM) # Count of termination positions
termc = np.zeros(DIM)
terma = np.zeros(DIM)
Nc_unique = np.zeros(DIM) # Unique counts
Na_unique = np.zeros(DIM)
counted = -1*np.ones(DIM, dtype=np.object)
amp = np.zeros(DIM) # Amplitude (central pressure)
ampc = np.zeros(DIM)
ampa = np.zeros(DIM)
for ed in range(len(storms)):
print ed, len(storms)
if (storms[ed]['age'] >= age_min ):
for t in range(storms[ed]['age']):
i = np.where((lon > storms[ed]['lon'][t]-1) * (lon < storms[ed]['lon'][t]))[0]
j = np.where((lat > storms[ed]['lat'][t]-1) * (lat < storms[ed]['lat'][t]))[0]
if len(j)>0 and len(i)>0:
# Count of storms and their average amplitude
amp[j,i] += storms[ed]['amp'][t]
N[j,i] += 1
if storms[ed]['type'] == 'anticyclonic':
Na[j,i] += 1
ampa[j,i] += storms[ed]['amp'][t]
else:
Nc[j,i] += 1
ampc[j,i] += storms[ed]['amp'][t]
# Genesis (first location)
if t == 0:
gen[j,i] += 1
if storms[ed]['type'] == 'anticyclonic':
gena[j,i] += 1
else:
genc[j,i] += 1
# Termination (last location)
if t == storms[ed]['age']-1:
term[j,i] += 1
if storms[ed]['type'] == 'anticyclonic':
terma[j,i] += 1
else:
termc[j,i] += 1
# Unique counts
firstcount = type(counted[j[0],i[0]])==type(-1)
notcountedyet = False
if not firstcount:
notcountedyet = not (ed in counted[j[0],i[0]])
if firstcount or notcountedyet:
if storms[ed]['type'] == 'anticyclonic':
Na_unique[j,i] += 1
else:
Nc_unique[j,i] += 1
counted[j[0],i[0]] = np.append(counted[j[0],i[0]], ed)
# Calculate totals and averages as appropriate
N_unique = Nc_unique + Na_unique
cyc = Nc_unique / Na_unique
pcyc = Nc_unique / N_unique
amp /= N
ampc /= Nc
ampa /= Na
#
# Plots
#
# Set up projection
proj = bm.Basemap(projection='robin', lon_0=180, resolution='c')
lonproj, latproj = proj(llon, llat)
# Distribution of cyclone tracks and intensity (and for anticyclones)
plt.figure()
plt.clf()
plt.subplot(2,2,1)
proj.drawcoastlines(linewidth=0.5)
plt.contourf(lonproj, latproj, Nc_unique, levels=np.append(np.arange(0, 250+1, 25), 10000), cmap=plt.cm.hot_r)
plt.title('Count of cyclone tracks')
H = plt.colorbar()
H.set_label('count')
plt.clim(0, 250)
plt.subplot(2,2,2)
proj.drawcoastlines(linewidth=0.5)
plt.contourf(lonproj, latproj, ampc, 24, cmap=plt.cm.rainbow)
H = plt.colorbar()
H.set_label('Pa')
plt.clim(95000, 101000)
plt.title('Average cyclone central pressure')
plt.subplot(2,2,3)
proj.drawcoastlines(linewidth=0.5)
plt.contourf(lonproj, latproj, Na_unique, levels=np.append(np.arange(0, 250+1, 25), 10000), cmap=plt.cm.hot_r)
plt.title('Count of anticyclone tracks')
H = plt.colorbar()
H.set_label('count')
plt.clim(0, 250)
plt.subplot(2,2,4)
proj.drawcoastlines(linewidth=0.5)
plt.contourf(lonproj, latproj, ampa, 24, cmap=plt.cm.rainbow)
H = plt.colorbar()
H.set_label('Pa')
plt.clim(101000, 105000)
plt.title('Average anticyclone central pressure')
# plt.savefig('figures/storm_distribution.png', bbox_inches='tight', pad_inches=0.05, dpi=300)
# Distribution of cyclone genesis and termination points (and for anticyclones)
plt.figure()
plt.clf()
plt.subplot(2,2,1)
proj.drawcoastlines(linewidth=0.5)
plt.contourf(lonproj, latproj, genc, levels=np.append(np.arange(0, 40+1, 5), 500), cmap=plt.cm.hot_r)
plt.title('Count of cyclone genesis')
H = plt.colorbar()
H.set_label('count')
plt.clim(0, 40)
plt.subplot(2,2,2)
proj.drawcoastlines(linewidth=0.5)
plt.contourf(lonproj, latproj, termc, levels=np.append(np.arange(0, 40+1, 5), 500), cmap=plt.cm.hot_r)
plt.title('Count of cyclone termination')
H = plt.colorbar()
H.set_label('count')
plt.clim(0, 40)
plt.subplot(2,2,3)
proj.drawcoastlines(linewidth=0.5)
plt.contourf(lonproj, latproj, gena, levels=np.append(np.arange(0, 40+1, 5), 500), cmap=plt.cm.hot_r)
plt.title('Count of anticyclone genesis')
H = plt.colorbar()
H.set_label('count')
plt.clim(0, 40)
plt.subplot(2,2,4)
proj.drawcoastlines(linewidth=0.5)
plt.contourf(lonproj, latproj, terma, levels=np.append(np.arange(0, 40+1, 5), 500), cmap=plt.cm.hot_r)
plt.title('Count of anticyclone termination')
H = plt.colorbar()
H.set_label('count')
plt.clim(0, 40)
# plt.savefig('figures/storm_genesis_termination.png', bbox_inches='tight', pad_inches=0.05, dpi=300)
# Proportion of cyclones to anticyclones
plt.clf()
plt.subplot(2,2,1)
proj.drawcoastlines(linewidth=0.5)
plt.contourf(lonproj, latproj, pcyc, 24, cmap=plt.cm.RdBu)
plt.title('Proportion of cyclones (vs. anticyclones)')
H = plt.colorbar()
H.set_label('Proportion (1 = all cylones, 0 = all anticyclones)')
plt.clim(0, 1)
# plt.savefig('figures/storm_proportion', bbox_inches='tight', pad_inches=0.05, dpi=300)