-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmaskrcnn_fp16.txt
2477 lines (2463 loc) · 229 KB
/
maskrcnn_fp16.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
type tensor_float64_t {
tensor_nil_float64,
tensor0_float64(float64),
tensor1_float64(Tensor[(?), float64]),
tensor2_float64(Tensor[(?, ?), float64]),
tensor3_float64(Tensor[(?, ?, ?), float64]),
tensor4_float64(Tensor[(?, ?, ?, ?), float64]),
tensor5_float64(Tensor[(?, ?, ?, ?, ?), float64]),
tensor6_float64(Tensor[(?, ?, ?, ?, ?, ?), float64]),
}
type List[A] {
Cons(A, List[A]),
Nil,
}
type tensor_uint8_t {
tensor_nil_uint8,
tensor0_uint8(uint8),
tensor1_uint8(Tensor[(?), uint8]),
tensor2_uint8(Tensor[(?, ?), uint8]),
tensor3_uint8(Tensor[(?, ?, ?), uint8]),
tensor4_uint8(Tensor[(?, ?, ?, ?), uint8]),
tensor5_uint8(Tensor[(?, ?, ?, ?, ?), uint8]),
tensor6_uint8(Tensor[(?, ?, ?, ?, ?, ?), uint8]),
}
type tensor_uint16_t {
tensor_nil_uint16,
tensor0_uint16(uint16),
tensor1_uint16(Tensor[(?), uint16]),
tensor2_uint16(Tensor[(?, ?), uint16]),
tensor3_uint16(Tensor[(?, ?, ?), uint16]),
tensor4_uint16(Tensor[(?, ?, ?, ?), uint16]),
tensor5_uint16(Tensor[(?, ?, ?, ?, ?), uint16]),
tensor6_uint16(Tensor[(?, ?, ?, ?, ?, ?), uint16]),
}
type tensor_int8_t {
tensor_nil_int8,
tensor0_int8(int8),
tensor1_int8(Tensor[(?), int8]),
tensor2_int8(Tensor[(?, ?), int8]),
tensor3_int8(Tensor[(?, ?, ?), int8]),
tensor4_int8(Tensor[(?, ?, ?, ?), int8]),
tensor5_int8(Tensor[(?, ?, ?, ?, ?), int8]),
tensor6_int8(Tensor[(?, ?, ?, ?, ?, ?), int8]),
}
type tensor_int64_t {
tensor_nil_int64,
tensor0_int64(int64),
tensor1_int64(Tensor[(?), int64]),
tensor2_int64(Tensor[(?, ?), int64]),
tensor3_int64(Tensor[(?, ?, ?), int64]),
tensor4_int64(Tensor[(?, ?, ?, ?), int64]),
tensor5_int64(Tensor[(?, ?, ?, ?, ?), int64]),
tensor6_int64(Tensor[(?, ?, ?, ?, ?, ?), int64]),
}
type tensor_int16_t {
tensor_nil_int16,
tensor0_int16(int16),
tensor1_int16(Tensor[(?), int16]),
tensor2_int16(Tensor[(?, ?), int16]),
tensor3_int16(Tensor[(?, ?, ?), int16]),
tensor4_int16(Tensor[(?, ?, ?, ?), int16]),
tensor5_int16(Tensor[(?, ?, ?, ?, ?), int16]),
tensor6_int16(Tensor[(?, ?, ?, ?, ?, ?), int16]),
}
type tensor_int32_t {
tensor_nil_int32,
tensor0_int32(int32),
tensor1_int32(Tensor[(?), int32]),
tensor2_int32(Tensor[(?, ?), int32]),
tensor3_int32(Tensor[(?, ?, ?), int32]),
tensor4_int32(Tensor[(?, ?, ?, ?), int32]),
tensor5_int32(Tensor[(?, ?, ?, ?, ?), int32]),
tensor6_int32(Tensor[(?, ?, ?, ?, ?, ?), int32]),
}
type tensor_float32_t {
tensor_nil_float32,
tensor0_float32(float32),
tensor1_float32(Tensor[(?), float32]),
tensor2_float32(Tensor[(?, ?), float32]),
tensor3_float32(Tensor[(?, ?, ?), float32]),
tensor4_float32(Tensor[(?, ?, ?, ?), float32]),
tensor5_float32(Tensor[(?, ?, ?, ?, ?), float32]),
tensor6_float32(Tensor[(?, ?, ?, ?, ?, ?), float32]),
}
type Tree[A] {
Rose(A, List[Tree[A]]),
}
type Option[A] {
Some(A),
None,
}
type tensor_float16_t {
tensor_nil_float16,
tensor0_float16(float16),
tensor1_float16(Tensor[(?), float16]),
tensor2_float16(Tensor[(?, ?), float16]),
tensor3_float16(Tensor[(?, ?, ?), float16]),
tensor4_float16(Tensor[(?, ?, ?, ?), float16]),
tensor5_float16(Tensor[(?, ?, ?, ?, ?), float16]),
tensor6_float16(Tensor[(?, ?, ?, ?, ?, ?), float16]),
}
def @main(%input0: Tensor[(1, 3, 512, 512), float32], %model.backbone.body.conv1.weight: Tensor[(64, 3, 7, 7), float32], %model.backbone.body.bn1.weight: Tensor[(64), float32], %model.backbone.body.bn1.running_var: Tensor[(64), float32], %model.backbone.body.bn1.bias: Tensor[(64), float32], %model.backbone.body.bn1.running_mean: Tensor[(64), float32], %model.backbone.body.layer1.0.conv1.weight: Tensor[(64, 64, 1, 1), float32], %model.backbone.body.layer1.0.bn1.weight: Tensor[(64), float32], %model.backbone.body.layer1.0.bn1.running_var: Tensor[(64), float32], %model.backbone.body.layer1.0.bn1.bias: Tensor[(64), float32], %model.backbone.body.layer1.0.bn1.running_mean: Tensor[(64), float32], %model.backbone.body.layer1.0.conv2.weight: Tensor[(64, 64, 3, 3), float32], %model.backbone.body.layer1.0.bn2.weight: Tensor[(64), float32], %model.backbone.body.layer1.0.bn2.running_var: Tensor[(64), float32], %model.backbone.body.layer1.0.bn2.bias: Tensor[(64), float32], %model.backbone.body.layer1.0.bn2.running_mean: Tensor[(64), float32], %model.backbone.body.layer1.0.conv3.weight: Tensor[(256, 64, 1, 1), float32], %model.backbone.body.layer1.0.bn3.weight: Tensor[(256), float32], %model.backbone.body.layer1.0.bn3.running_var: Tensor[(256), float32], %model.backbone.body.layer1.0.bn3.bias: Tensor[(256), float32], %model.backbone.body.layer1.0.bn3.running_mean: Tensor[(256), float32], %model.backbone.body.layer1.0.downsample.0.weight: Tensor[(256, 64, 1, 1), float32], %model.backbone.body.layer1.0.downsample.1.weight: Tensor[(256), float32], %model.backbone.body.layer1.0.downsample.1.running_var: Tensor[(256), float32], %model.backbone.body.layer1.0.downsample.1.bias: Tensor[(256), float32], %model.backbone.body.layer1.0.downsample.1.running_mean: Tensor[(256), float32], %model.backbone.body.layer1.1.conv1.weight: Tensor[(64, 256, 1, 1), float32], %model.backbone.body.layer1.1.bn1.weight: Tensor[(64), float32], %model.backbone.body.layer1.1.bn1.running_var: Tensor[(64), float32], %model.backbone.body.layer1.1.bn1.bias: Tensor[(64), float32], %model.backbone.body.layer1.1.bn1.running_mean: Tensor[(64), float32], %model.backbone.body.layer1.1.conv2.weight: Tensor[(64, 64, 3, 3), float32], %model.backbone.body.layer1.1.bn2.weight: Tensor[(64), float32], %model.backbone.body.layer1.1.bn2.running_var: Tensor[(64), float32], %model.backbone.body.layer1.1.bn2.bias: Tensor[(64), float32], %model.backbone.body.layer1.1.bn2.running_mean: Tensor[(64), float32], %model.backbone.body.layer1.1.conv3.weight: Tensor[(256, 64, 1, 1), float32], %model.backbone.body.layer1.1.bn3.weight: Tensor[(256), float32], %model.backbone.body.layer1.1.bn3.running_var: Tensor[(256), float32], %model.backbone.body.layer1.1.bn3.bias: Tensor[(256), float32], %model.backbone.body.layer1.1.bn3.running_mean: Tensor[(256), float32], %model.backbone.body.layer1.2.conv1.weight: Tensor[(64, 256, 1, 1), float32], %model.backbone.body.layer1.2.bn1.weight: Tensor[(64), float32], %model.backbone.body.layer1.2.bn1.running_var: Tensor[(64), float32], %model.backbone.body.layer1.2.bn1.bias: Tensor[(64), float32], %model.backbone.body.layer1.2.bn1.running_mean: Tensor[(64), float32], %model.backbone.body.layer1.2.conv2.weight: Tensor[(64, 64, 3, 3), float32], %model.backbone.body.layer1.2.bn2.weight: Tensor[(64), float32], %model.backbone.body.layer1.2.bn2.running_var: Tensor[(64), float32], %model.backbone.body.layer1.2.bn2.bias: Tensor[(64), float32], %model.backbone.body.layer1.2.bn2.running_mean: Tensor[(64), float32], %model.backbone.body.layer1.2.conv3.weight: Tensor[(256, 64, 1, 1), float32], %model.backbone.body.layer1.2.bn3.weight: Tensor[(256), float32], %model.backbone.body.layer1.2.bn3.running_var: Tensor[(256), float32], %model.backbone.body.layer1.2.bn3.bias: Tensor[(256), float32], %model.backbone.body.layer1.2.bn3.running_mean: Tensor[(256), float32], %model.backbone.body.layer2.0.conv1.weight: Tensor[(128, 256, 1, 1), float32], %model.backbone.body.layer2.0.bn1.weight: Tensor[(128), float32], %model.backbone.body.layer2.0.bn1.running_var: Tensor[(128), float32], %model.backbone.body.layer2.0.bn1.bias: Tensor[(128), float32], %model.backbone.body.layer2.0.bn1.running_mean: Tensor[(128), float32], %model.backbone.body.layer2.0.conv2.weight: Tensor[(128, 128, 3, 3), float32], %model.backbone.body.layer2.0.bn2.weight: Tensor[(128), float32], %model.backbone.body.layer2.0.bn2.running_var: Tensor[(128), float32], %model.backbone.body.layer2.0.bn2.bias: Tensor[(128), float32], %model.backbone.body.layer2.0.bn2.running_mean: Tensor[(128), float32], %model.backbone.body.layer2.0.conv3.weight: Tensor[(512, 128, 1, 1), float32], %model.backbone.body.layer2.0.bn3.weight: Tensor[(512), float32], %model.backbone.body.layer2.0.bn3.running_var: Tensor[(512), float32], %model.backbone.body.layer2.0.bn3.bias: Tensor[(512), float32], %model.backbone.body.layer2.0.bn3.running_mean: Tensor[(512), float32], %model.backbone.body.layer2.0.downsample.0.weight: Tensor[(512, 256, 1, 1), float32], %model.backbone.body.layer2.0.downsample.1.weight: Tensor[(512), float32], %model.backbone.body.layer2.0.downsample.1.running_var: Tensor[(512), float32], %model.backbone.body.layer2.0.downsample.1.bias: Tensor[(512), float32], %model.backbone.body.layer2.0.downsample.1.running_mean: Tensor[(512), float32], %model.backbone.body.layer2.1.conv1.weight: Tensor[(128, 512, 1, 1), float32], %model.backbone.body.layer2.1.bn1.weight: Tensor[(128), float32], %model.backbone.body.layer2.1.bn1.running_var: Tensor[(128), float32], %model.backbone.body.layer2.1.bn1.bias: Tensor[(128), float32], %model.backbone.body.layer2.1.bn1.running_mean: Tensor[(128), float32], %model.backbone.body.layer2.1.conv2.weight: Tensor[(128, 128, 3, 3), float32], %model.backbone.body.layer2.1.bn2.weight: Tensor[(128), float32], %model.backbone.body.layer2.1.bn2.running_var: Tensor[(128), float32], %model.backbone.body.layer2.1.bn2.bias: Tensor[(128), float32], %model.backbone.body.layer2.1.bn2.running_mean: Tensor[(128), float32], %model.backbone.body.layer2.1.conv3.weight: Tensor[(512, 128, 1, 1), float32], %model.backbone.body.layer2.1.bn3.weight: Tensor[(512), float32], %model.backbone.body.layer2.1.bn3.running_var: Tensor[(512), float32], %model.backbone.body.layer2.1.bn3.bias: Tensor[(512), float32], %model.backbone.body.layer2.1.bn3.running_mean: Tensor[(512), float32], %model.backbone.body.layer2.2.conv1.weight: Tensor[(128, 512, 1, 1), float32], %model.backbone.body.layer2.2.bn1.weight: Tensor[(128), float32], %model.backbone.body.layer2.2.bn1.running_var: Tensor[(128), float32], %model.backbone.body.layer2.2.bn1.bias: Tensor[(128), float32], %model.backbone.body.layer2.2.bn1.running_mean: Tensor[(128), float32], %model.backbone.body.layer2.2.conv2.weight: Tensor[(128, 128, 3, 3), float32], %model.backbone.body.layer2.2.bn2.weight: Tensor[(128), float32], %model.backbone.body.layer2.2.bn2.running_var: Tensor[(128), float32], %model.backbone.body.layer2.2.bn2.bias: Tensor[(128), float32], %model.backbone.body.layer2.2.bn2.running_mean: Tensor[(128), float32], %model.backbone.body.layer2.2.conv3.weight: Tensor[(512, 128, 1, 1), float32], %model.backbone.body.layer2.2.bn3.weight: Tensor[(512), float32], %model.backbone.body.layer2.2.bn3.running_var: Tensor[(512), float32], %model.backbone.body.layer2.2.bn3.bias: Tensor[(512), float32], %model.backbone.body.layer2.2.bn3.running_mean: Tensor[(512), float32], %model.backbone.body.layer2.3.conv1.weight: Tensor[(128, 512, 1, 1), float32], %model.backbone.body.layer2.3.bn1.weight: Tensor[(128), float32], %model.backbone.body.layer2.3.bn1.running_var: Tensor[(128), float32], %model.backbone.body.layer2.3.bn1.bias: Tensor[(128), float32], %model.backbone.body.layer2.3.bn1.running_mean: Tensor[(128), float32], %model.backbone.body.layer2.3.conv2.weight: Tensor[(128, 128, 3, 3), float32], %model.backbone.body.layer2.3.bn2.weight: Tensor[(128), float32], %model.backbone.body.layer2.3.bn2.running_var: Tensor[(128), float32], %model.backbone.body.layer2.3.bn2.bias: Tensor[(128), float32], %model.backbone.body.layer2.3.bn2.running_mean: Tensor[(128), float32], %model.backbone.body.layer2.3.conv3.weight: Tensor[(512, 128, 1, 1), float32], %model.backbone.body.layer2.3.bn3.weight: Tensor[(512), float32], %model.backbone.body.layer2.3.bn3.running_var: Tensor[(512), float32], %model.backbone.body.layer2.3.bn3.bias: Tensor[(512), float32], %model.backbone.body.layer2.3.bn3.running_mean: Tensor[(512), float32], %model.backbone.body.layer3.0.conv1.weight: Tensor[(256, 512, 1, 1), float32], %model.backbone.body.layer3.0.bn1.weight: Tensor[(256), float32], %model.backbone.body.layer3.0.bn1.running_var: Tensor[(256), float32], %model.backbone.body.layer3.0.bn1.bias: Tensor[(256), float32], %model.backbone.body.layer3.0.bn1.running_mean: Tensor[(256), float32], %model.backbone.body.layer3.0.conv2.weight: Tensor[(256, 256, 3, 3), float32], %model.backbone.body.layer3.0.bn2.weight: Tensor[(256), float32], %model.backbone.body.layer3.0.bn2.running_var: Tensor[(256), float32], %model.backbone.body.layer3.0.bn2.bias: Tensor[(256), float32], %model.backbone.body.layer3.0.bn2.running_mean: Tensor[(256), float32], %model.backbone.body.layer3.0.conv3.weight: Tensor[(1024, 256, 1, 1), float32], %model.backbone.body.layer3.0.bn3.weight: Tensor[(1024), float32], %model.backbone.body.layer3.0.bn3.running_var: Tensor[(1024), float32], %model.backbone.body.layer3.0.bn3.bias: Tensor[(1024), float32], %model.backbone.body.layer3.0.bn3.running_mean: Tensor[(1024), float32], %model.backbone.body.layer3.0.downsample.0.weight: Tensor[(1024, 512, 1, 1), float32], %model.backbone.body.layer3.0.downsample.1.weight: Tensor[(1024), float32], %model.backbone.body.layer3.0.downsample.1.running_var: Tensor[(1024), float32], %model.backbone.body.layer3.0.downsample.1.bias: Tensor[(1024), float32], %model.backbone.body.layer3.0.downsample.1.running_mean: Tensor[(1024), float32], %model.backbone.body.layer3.1.conv1.weight: Tensor[(256, 1024, 1, 1), float32], %model.backbone.body.layer3.1.bn1.weight: Tensor[(256), float32], %model.backbone.body.layer3.1.bn1.running_var: Tensor[(256), float32], %model.backbone.body.layer3.1.bn1.bias: Tensor[(256), float32], %model.backbone.body.layer3.1.bn1.running_mean: Tensor[(256), float32], %model.backbone.body.layer3.1.conv2.weight: Tensor[(256, 256, 3, 3), float32], %model.backbone.body.layer3.1.bn2.weight: Tensor[(256), float32], %model.backbone.body.layer3.1.bn2.running_var: Tensor[(256), float32], %model.backbone.body.layer3.1.bn2.bias: Tensor[(256), float32], %model.backbone.body.layer3.1.bn2.running_mean: Tensor[(256), float32], %model.backbone.body.layer3.1.conv3.weight: Tensor[(1024, 256, 1, 1), float32], %model.backbone.body.layer3.1.bn3.weight: Tensor[(1024), float32], %model.backbone.body.layer3.1.bn3.running_var: Tensor[(1024), float32], %model.backbone.body.layer3.1.bn3.bias: Tensor[(1024), float32], %model.backbone.body.layer3.1.bn3.running_mean: Tensor[(1024), float32], %model.backbone.body.layer3.2.conv1.weight: Tensor[(256, 1024, 1, 1), float32], %model.backbone.body.layer3.2.bn1.weight: Tensor[(256), float32], %model.backbone.body.layer3.2.bn1.running_var: Tensor[(256), float32], %model.backbone.body.layer3.2.bn1.bias: Tensor[(256), float32], %model.backbone.body.layer3.2.bn1.running_mean: Tensor[(256), float32], %model.backbone.body.layer3.2.conv2.weight: Tensor[(256, 256, 3, 3), float32], %model.backbone.body.layer3.2.bn2.weight: Tensor[(256), float32], %model.backbone.body.layer3.2.bn2.running_var: Tensor[(256), float32], %model.backbone.body.layer3.2.bn2.bias: Tensor[(256), float32], %model.backbone.body.layer3.2.bn2.running_mean: Tensor[(256), float32], %model.backbone.body.layer3.2.conv3.weight: Tensor[(1024, 256, 1, 1), float32], %model.backbone.body.layer3.2.bn3.weight: Tensor[(1024), float32], %model.backbone.body.layer3.2.bn3.running_var: Tensor[(1024), float32], %model.backbone.body.layer3.2.bn3.bias: Tensor[(1024), float32], %model.backbone.body.layer3.2.bn3.running_mean: Tensor[(1024), float32], %model.backbone.body.layer3.3.conv1.weight: Tensor[(256, 1024, 1, 1), float32], %model.backbone.body.layer3.3.bn1.weight: Tensor[(256), float32], %model.backbone.body.layer3.3.bn1.running_var: Tensor[(256), float32], %model.backbone.body.layer3.3.bn1.bias: Tensor[(256), float32], %model.backbone.body.layer3.3.bn1.running_mean: Tensor[(256), float32], %model.backbone.body.layer3.3.conv2.weight: Tensor[(256, 256, 3, 3), float32], %model.backbone.body.layer3.3.bn2.weight: Tensor[(256), float32], %model.backbone.body.layer3.3.bn2.running_var: Tensor[(256), float32], %model.backbone.body.layer3.3.bn2.bias: Tensor[(256), float32], %model.backbone.body.layer3.3.bn2.running_mean: Tensor[(256), float32], %model.backbone.body.layer3.3.conv3.weight: Tensor[(1024, 256, 1, 1), float32], %model.backbone.body.layer3.3.bn3.weight: Tensor[(1024), float32], %model.backbone.body.layer3.3.bn3.running_var: Tensor[(1024), float32], %model.backbone.body.layer3.3.bn3.bias: Tensor[(1024), float32], %model.backbone.body.layer3.3.bn3.running_mean: Tensor[(1024), float32], %model.backbone.body.layer3.4.conv1.weight: Tensor[(256, 1024, 1, 1), float32], %model.backbone.body.layer3.4.bn1.weight: Tensor[(256), float32], %model.backbone.body.layer3.4.bn1.running_var: Tensor[(256), float32], %model.backbone.body.layer3.4.bn1.bias: Tensor[(256), float32], %model.backbone.body.layer3.4.bn1.running_mean: Tensor[(256), float32], %model.backbone.body.layer3.4.conv2.weight: Tensor[(256, 256, 3, 3), float32], %model.backbone.body.layer3.4.bn2.weight: Tensor[(256), float32], %model.backbone.body.layer3.4.bn2.running_var: Tensor[(256), float32], %model.backbone.body.layer3.4.bn2.bias: Tensor[(256), float32], %model.backbone.body.layer3.4.bn2.running_mean: Tensor[(256), float32], %model.backbone.body.layer3.4.conv3.weight: Tensor[(1024, 256, 1, 1), float32], %model.backbone.body.layer3.4.bn3.weight: Tensor[(1024), float32], %model.backbone.body.layer3.4.bn3.running_var: Tensor[(1024), float32], %model.backbone.body.layer3.4.bn3.bias: Tensor[(1024), float32], %model.backbone.body.layer3.4.bn3.running_mean: Tensor[(1024), float32], %model.backbone.body.layer3.5.conv1.weight: Tensor[(256, 1024, 1, 1), float32], %model.backbone.body.layer3.5.bn1.weight: Tensor[(256), float32], %model.backbone.body.layer3.5.bn1.running_var: Tensor[(256), float32], %model.backbone.body.layer3.5.bn1.bias: Tensor[(256), float32], %model.backbone.body.layer3.5.bn1.running_mean: Tensor[(256), float32], %model.backbone.body.layer3.5.conv2.weight: Tensor[(256, 256, 3, 3), float32], %model.backbone.body.layer3.5.bn2.weight: Tensor[(256), float32], %model.backbone.body.layer3.5.bn2.running_var: Tensor[(256), float32], %model.backbone.body.layer3.5.bn2.bias: Tensor[(256), float32], %model.backbone.body.layer3.5.bn2.running_mean: Tensor[(256), float32], %model.backbone.body.layer3.5.conv3.weight: Tensor[(1024, 256, 1, 1), float32], %model.backbone.body.layer3.5.bn3.weight: Tensor[(1024), float32], %model.backbone.body.layer3.5.bn3.running_var: Tensor[(1024), float32], %model.backbone.body.layer3.5.bn3.bias: Tensor[(1024), float32], %model.backbone.body.layer3.5.bn3.running_mean: Tensor[(1024), float32], %model.backbone.body.layer4.0.conv1.weight: Tensor[(512, 1024, 1, 1), float32], %model.backbone.body.layer4.0.bn1.weight: Tensor[(512), float32], %model.backbone.body.layer4.0.bn1.running_var: Tensor[(512), float32], %model.backbone.body.layer4.0.bn1.bias: Tensor[(512), float32], %model.backbone.body.layer4.0.bn1.running_mean: Tensor[(512), float32], %model.backbone.body.layer4.0.conv2.weight: Tensor[(512, 512, 3, 3), float32], %model.backbone.body.layer4.0.bn2.weight: Tensor[(512), float32], %model.backbone.body.layer4.0.bn2.running_var: Tensor[(512), float32], %model.backbone.body.layer4.0.bn2.bias: Tensor[(512), float32], %model.backbone.body.layer4.0.bn2.running_mean: Tensor[(512), float32], %model.backbone.body.layer4.0.conv3.weight: Tensor[(2048, 512, 1, 1), float32], %model.backbone.body.layer4.0.bn3.weight: Tensor[(2048), float32], %model.backbone.body.layer4.0.bn3.running_var: Tensor[(2048), float32], %model.backbone.body.layer4.0.bn3.bias: Tensor[(2048), float32], %model.backbone.body.layer4.0.bn3.running_mean: Tensor[(2048), float32], %model.backbone.body.layer4.0.downsample.0.weight: Tensor[(2048, 1024, 1, 1), float32], %model.backbone.body.layer4.0.downsample.1.weight: Tensor[(2048), float32], %model.backbone.body.layer4.0.downsample.1.running_var: Tensor[(2048), float32], %model.backbone.body.layer4.0.downsample.1.bias: Tensor[(2048), float32], %model.backbone.body.layer4.0.downsample.1.running_mean: Tensor[(2048), float32], %model.backbone.body.layer4.1.conv1.weight: Tensor[(512, 2048, 1, 1), float32], %model.backbone.body.layer4.1.bn1.weight: Tensor[(512), float32], %model.backbone.body.layer4.1.bn1.running_var: Tensor[(512), float32], %model.backbone.body.layer4.1.bn1.bias: Tensor[(512), float32], %model.backbone.body.layer4.1.bn1.running_mean: Tensor[(512), float32], %model.backbone.body.layer4.1.conv2.weight: Tensor[(512, 512, 3, 3), float32], %model.backbone.body.layer4.1.bn2.weight: Tensor[(512), float32], %model.backbone.body.layer4.1.bn2.running_var: Tensor[(512), float32], %model.backbone.body.layer4.1.bn2.bias: Tensor[(512), float32], %model.backbone.body.layer4.1.bn2.running_mean: Tensor[(512), float32], %model.backbone.body.layer4.1.conv3.weight: Tensor[(2048, 512, 1, 1), float32], %model.backbone.body.layer4.1.bn3.weight: Tensor[(2048), float32], %model.backbone.body.layer4.1.bn3.running_var: Tensor[(2048), float32], %model.backbone.body.layer4.1.bn3.bias: Tensor[(2048), float32], %model.backbone.body.layer4.1.bn3.running_mean: Tensor[(2048), float32], %model.backbone.body.layer4.2.conv1.weight: Tensor[(512, 2048, 1, 1), float32], %model.backbone.body.layer4.2.bn1.weight: Tensor[(512), float32], %model.backbone.body.layer4.2.bn1.running_var: Tensor[(512), float32], %model.backbone.body.layer4.2.bn1.bias: Tensor[(512), float32], %model.backbone.body.layer4.2.bn1.running_mean: Tensor[(512), float32], %model.backbone.body.layer4.2.conv2.weight: Tensor[(512, 512, 3, 3), float32], %model.backbone.body.layer4.2.bn2.weight: Tensor[(512), float32], %model.backbone.body.layer4.2.bn2.running_var: Tensor[(512), float32], %model.backbone.body.layer4.2.bn2.bias: Tensor[(512), float32], %model.backbone.body.layer4.2.bn2.running_mean: Tensor[(512), float32], %model.backbone.body.layer4.2.conv3.weight: Tensor[(2048, 512, 1, 1), float32], %model.backbone.body.layer4.2.bn3.weight: Tensor[(2048), float32], %model.backbone.body.layer4.2.bn3.running_var: Tensor[(2048), float32], %model.backbone.body.layer4.2.bn3.bias: Tensor[(2048), float32], %model.backbone.body.layer4.2.bn3.running_mean: Tensor[(2048), float32], %model.backbone.fpn.inner_blocks.0.weight: Tensor[(256, 256, 1, 1), float32], %model.backbone.fpn.inner_blocks.0.bias: Tensor[(256), float32], %model.backbone.fpn.inner_blocks.1.weight: Tensor[(256, 512, 1, 1), float32], %model.backbone.fpn.inner_blocks.1.bias: Tensor[(256), float32], %model.backbone.fpn.inner_blocks.2.weight: Tensor[(256, 1024, 1, 1), float32], %model.backbone.fpn.inner_blocks.2.bias: Tensor[(256), float32], %model.backbone.fpn.inner_blocks.3.weight: Tensor[(256, 2048, 1, 1), float32], %model.backbone.fpn.inner_blocks.3.bias: Tensor[(256), float32], %model.backbone.fpn.layer_blocks.0.weight: Tensor[(256, 256, 3, 3), float32], %model.backbone.fpn.layer_blocks.0.bias: Tensor[(256), float32], %model.backbone.fpn.layer_blocks.1.weight: Tensor[(256, 256, 3, 3), float32], %model.backbone.fpn.layer_blocks.1.bias: Tensor[(256), float32], %model.backbone.fpn.layer_blocks.2.weight: Tensor[(256, 256, 3, 3), float32], %model.backbone.fpn.layer_blocks.2.bias: Tensor[(256), float32], %model.backbone.fpn.layer_blocks.3.weight: Tensor[(256, 256, 3, 3), float32], %model.backbone.fpn.layer_blocks.3.bias: Tensor[(256), float32], %model.rpn.head.conv.weight: Tensor[(256, 256, 3, 3), float32], %model.rpn.head.conv.bias: Tensor[(256), float32], %model.rpn.head.cls_logits.weight: Tensor[(3, 256, 1, 1), float32], %model.rpn.head.cls_logits.bias: Tensor[(3), float32], %model.rpn.head.bbox_pred.weight: Tensor[(12, 256, 1, 1), float32], %model.rpn.head.bbox_pred.bias: Tensor[(12), float32], %model.roi_heads.box_head.fc6.weight: Tensor[(1024, 12544), float32], %model.roi_heads.box_head.fc6.bias: Tensor[(1024), float32], %model.roi_heads.box_head.fc7.weight: Tensor[(1024, 1024), float32], %model.roi_heads.box_head.fc7.bias: Tensor[(1024), float32], %model.roi_heads.box_predictor.cls_score.weight: Tensor[(91, 1024), float32], %model.roi_heads.box_predictor.cls_score.bias: Tensor[(91), float32], %model.roi_heads.box_predictor.bbox_pred.weight: Tensor[(364, 1024), float32], %model.roi_heads.box_predictor.bbox_pred.bias: Tensor[(364), float32], %model.roi_heads.mask_head.mask_fcn1.weight: Tensor[(256, 256, 3, 3), float32], %model.roi_heads.mask_head.mask_fcn1.bias: Tensor[(256), float32], %model.roi_heads.mask_head.mask_fcn2.weight: Tensor[(256, 256, 3, 3), float32], %model.roi_heads.mask_head.mask_fcn2.bias: Tensor[(256), float32], %model.roi_heads.mask_head.mask_fcn3.weight: Tensor[(256, 256, 3, 3), float32], %model.roi_heads.mask_head.mask_fcn3.bias: Tensor[(256), float32], %model.roi_heads.mask_head.mask_fcn4.weight: Tensor[(256, 256, 3, 3), float32], %model.roi_heads.mask_head.mask_fcn4.bias: Tensor[(256), float32], %model.roi_heads.mask_predictor.conv5_mask.weight: Tensor[(256, 256, 2, 2), float32], %model.roi_heads.mask_predictor.conv5_mask.bias: Tensor[(256), float32], %model.roi_heads.mask_predictor.mask_fcn_logits.weight: Tensor[(91, 256, 1, 1), float32], %model.roi_heads.mask_predictor.mask_fcn_logits.bias: Tensor[(91), float32]) -> (Tensor[(?, 4), float32], Tensor[(?), float32], Tensor[(?), int64], Tensor[(?, 1, 28, 28), float32]) {
%0 = cast(%input0, dtype="float16") /* ty=Tensor[(1, 3, 512, 512), float16] */;
%1 = split(%0, indices_or_sections=1) /* ty=(Tensor[(1, 3, 512, 512), float16],) */;
%2 = %1.0;
%3 = cast(meta[relay.Constant][0] /* ty=Tensor[(3), float32] */, dtype="float16") /* ty=Tensor[(3), float16] */;
%4 = expand_dims(%3, axis=1) /* ty=Tensor[(3, 1), float16] */;
%5 = squeeze(%2, axis=[0]) /* ty=Tensor[(3, 512, 512), float16] */;
%6 = expand_dims(%4, axis=2) /* ty=Tensor[(3, 1, 1), float16] */;
%7 = cast(meta[relay.Constant][1] /* ty=Tensor[(3), float32] */, dtype="float16") /* ty=Tensor[(3), float16] */;
%8 = expand_dims(%7, axis=1) /* ty=Tensor[(3, 1), float16] */;
%9 = subtract(%5, %6) /* ty=Tensor[(3, 512, 512), float16] */;
%10 = expand_dims(%8, axis=2) /* ty=Tensor[(3, 1, 1), float16] */;
%11 = divide(%9, %10) /* ty=Tensor[(3, 512, 512), float16] */;
%12 = expand_dims(%11, axis=0) /* ty=Tensor[(1, 3, 512, 512), float16] */;
%13 = image.resize2d(%12, size=[800, 800], roi=[0f, 0f, 0f, 0f], rounding_method="", cubic_alpha=-0.75f) /* ty=Tensor[(1, 3, 800, 800), float16] */;
%14 = take(%13, 0 /* ty=int32 */, axis=0, mode="wrap") /* ty=Tensor[(3, 800, 800), float16] */;
%15 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%16 = nn.pad(%14, %15, pad_width=[[0, 0], [0, 0], [0, 0]]) /* ty=Tensor[(3, 800, 800), float16] */;
%17 = (%16,);
%18 = stack(%17) /* ty=Tensor[(1, 3, 800, 800), float16] */;
%19 = cast(%model.backbone.body.conv1.weight, dtype="float16") /* ty=Tensor[(64, 3, 7, 7), float16] */;
%20 = layout_transform(%18, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 800, 800, 3), float16] */;
%21 = layout_transform(%19, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(7, 7, 3, 64), float16] */;
%22 = cast(%model.backbone.body.bn1.weight, dtype="float16") /* ty=Tensor[(64), float16] */;
%23 = cast(%model.backbone.body.bn1.running_var, dtype="float16") /* ty=Tensor[(64), float16] */;
%24 = reshape(%23, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%25 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%26 = add(%24, %25) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%27 = reshape(%22, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%28 = rsqrt(%26) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%29 = multiply(%27, %28) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%30 = nn.conv2d(%20, %21, strides=[2, 2], padding=[3, 3, 3, 3], channels=64, kernel_size=[7, 7], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 400, 400, 64), float16] */;
%31 = layout_transform(%29, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 64), float16] */;
%32 = cast(%model.backbone.body.bn1.bias, dtype="float16") /* ty=Tensor[(64), float16] */;
%33 = cast(%model.backbone.body.bn1.running_mean, dtype="float16") /* ty=Tensor[(64), float16] */;
%34 = reshape(%33, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%35 = reshape(%32, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%36 = multiply(%34, %29) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%37 = subtract(%35, %36) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%38 = multiply(%30, %31) /* ty=Tensor[(1, 400, 400, 64), float16] */;
%39 = layout_transform(%37, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 64), float16] */;
%40 = add(%38, %39) /* ty=Tensor[(1, 400, 400, 64), float16] */;
%41 = nn.relu(%40) /* ty=Tensor[(1, 400, 400, 64), float16] */;
%42 = cast(%model.backbone.body.layer1.0.conv1.weight, dtype="float16") /* ty=Tensor[(64, 64, 1, 1), float16] */;
%43 = nn.max_pool2d(%41, pool_size=[3, 3], strides=[2, 2], padding=[1, 1, 1, 1], layout="NHWC") /* ty=Tensor[(1, 200, 200, 64), float16] */;
%44 = layout_transform(%42, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(1, 1, 64, 64), float16] */;
%45 = cast(%model.backbone.body.layer1.0.bn1.weight, dtype="float16") /* ty=Tensor[(64), float16] */;
%46 = cast(%model.backbone.body.layer1.0.bn1.running_var, dtype="float16") /* ty=Tensor[(64), float16] */;
%47 = reshape(%46, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%48 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%49 = add(%47, %48) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%50 = reshape(%45, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%51 = rsqrt(%49) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%52 = multiply(%50, %51) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%53 = nn.conv2d(%43, %44, padding=[0, 0, 0, 0], channels=64, kernel_size=[1, 1], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 200, 200, 64), float16] */;
%54 = layout_transform(%52, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 64), float16] */;
%55 = cast(%model.backbone.body.layer1.0.bn1.bias, dtype="float16") /* ty=Tensor[(64), float16] */;
%56 = cast(%model.backbone.body.layer1.0.bn1.running_mean, dtype="float16") /* ty=Tensor[(64), float16] */;
%57 = reshape(%56, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%58 = reshape(%55, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%59 = multiply(%57, %52) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%60 = subtract(%58, %59) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%61 = multiply(%53, %54) /* ty=Tensor[(1, 200, 200, 64), float16] */;
%62 = layout_transform(%60, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 64), float16] */;
%63 = add(%61, %62) /* ty=Tensor[(1, 200, 200, 64), float16] */;
%64 = cast(%model.backbone.body.layer1.0.conv2.weight, dtype="float16") /* ty=Tensor[(64, 64, 3, 3), float16] */;
%65 = nn.relu(%63) /* ty=Tensor[(1, 200, 200, 64), float16] */;
%66 = layout_transform(%64, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(3, 3, 64, 64), float16] */;
%67 = cast(%model.backbone.body.layer1.0.bn2.weight, dtype="float16") /* ty=Tensor[(64), float16] */;
%68 = cast(%model.backbone.body.layer1.0.bn2.running_var, dtype="float16") /* ty=Tensor[(64), float16] */;
%69 = reshape(%68, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%70 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%71 = add(%69, %70) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%72 = reshape(%67, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%73 = rsqrt(%71) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%74 = multiply(%72, %73) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%75 = nn.conv2d(%65, %66, padding=[1, 1, 1, 1], channels=64, kernel_size=[3, 3], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 200, 200, 64), float16] */;
%76 = layout_transform(%74, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 64), float16] */;
%77 = cast(%model.backbone.body.layer1.0.bn2.bias, dtype="float16") /* ty=Tensor[(64), float16] */;
%78 = cast(%model.backbone.body.layer1.0.bn2.running_mean, dtype="float16") /* ty=Tensor[(64), float16] */;
%79 = reshape(%78, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%80 = reshape(%77, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%81 = multiply(%79, %74) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%82 = subtract(%80, %81) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%83 = multiply(%75, %76) /* ty=Tensor[(1, 200, 200, 64), float16] */;
%84 = layout_transform(%82, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 64), float16] */;
%85 = add(%83, %84) /* ty=Tensor[(1, 200, 200, 64), float16] */;
%86 = cast(%model.backbone.body.layer1.0.conv3.weight, dtype="float16") /* ty=Tensor[(256, 64, 1, 1), float16] */;
%87 = nn.relu(%85) /* ty=Tensor[(1, 200, 200, 64), float16] */;
%88 = layout_transform(%86, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(1, 1, 64, 256), float16] */;
%89 = cast(%model.backbone.body.layer1.0.bn3.weight, dtype="float16") /* ty=Tensor[(256), float16] */;
%90 = cast(%model.backbone.body.layer1.0.bn3.running_var, dtype="float16") /* ty=Tensor[(256), float16] */;
%91 = reshape(%90, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%92 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%93 = add(%91, %92) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%94 = reshape(%89, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%95 = rsqrt(%93) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%96 = multiply(%94, %95) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%97 = nn.conv2d(%87, %88, padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 200, 200, 256), float16] */;
%98 = layout_transform(%96, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 256), float16] */;
%99 = cast(%model.backbone.body.layer1.0.bn3.bias, dtype="float16") /* ty=Tensor[(256), float16] */;
%100 = cast(%model.backbone.body.layer1.0.bn3.running_mean, dtype="float16") /* ty=Tensor[(256), float16] */;
%101 = reshape(%100, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%102 = reshape(%99, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%103 = multiply(%101, %96) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%104 = subtract(%102, %103) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%105 = multiply(%97, %98) /* ty=Tensor[(1, 200, 200, 256), float16] */;
%106 = layout_transform(%104, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 256), float16] */;
%107 = cast(%model.backbone.body.layer1.0.downsample.0.weight, dtype="float16") /* ty=Tensor[(256, 64, 1, 1), float16] */;
%108 = layout_transform(%107, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(1, 1, 64, 256), float16] */;
%109 = cast(%model.backbone.body.layer1.0.downsample.1.weight, dtype="float16") /* ty=Tensor[(256), float16] */;
%110 = cast(%model.backbone.body.layer1.0.downsample.1.running_var, dtype="float16") /* ty=Tensor[(256), float16] */;
%111 = reshape(%110, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%112 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%113 = add(%111, %112) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%114 = reshape(%109, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%115 = rsqrt(%113) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%116 = multiply(%114, %115) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%117 = nn.conv2d(%43, %108, padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 200, 200, 256), float16] */;
%118 = layout_transform(%116, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 256), float16] */;
%119 = cast(%model.backbone.body.layer1.0.downsample.1.bias, dtype="float16") /* ty=Tensor[(256), float16] */;
%120 = cast(%model.backbone.body.layer1.0.downsample.1.running_mean, dtype="float16") /* ty=Tensor[(256), float16] */;
%121 = reshape(%120, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%122 = reshape(%119, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%123 = multiply(%121, %116) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%124 = subtract(%122, %123) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%125 = multiply(%117, %118) /* ty=Tensor[(1, 200, 200, 256), float16] */;
%126 = layout_transform(%124, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 256), float16] */;
%127 = add(%105, %106) /* ty=Tensor[(1, 200, 200, 256), float16] */;
%128 = add(%125, %126) /* ty=Tensor[(1, 200, 200, 256), float16] */;
%129 = add(%127, %128) /* ty=Tensor[(1, 200, 200, 256), float16] */;
%130 = cast(%model.backbone.body.layer1.1.conv1.weight, dtype="float16") /* ty=Tensor[(64, 256, 1, 1), float16] */;
%131 = nn.relu(%129) /* ty=Tensor[(1, 200, 200, 256), float16] */;
%132 = layout_transform(%130, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(1, 1, 256, 64), float16] */;
%133 = cast(%model.backbone.body.layer1.1.bn1.weight, dtype="float16") /* ty=Tensor[(64), float16] */;
%134 = cast(%model.backbone.body.layer1.1.bn1.running_var, dtype="float16") /* ty=Tensor[(64), float16] */;
%135 = reshape(%134, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%136 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%137 = add(%135, %136) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%138 = reshape(%133, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%139 = rsqrt(%137) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%140 = multiply(%138, %139) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%141 = nn.conv2d(%131, %132, padding=[0, 0, 0, 0], channels=64, kernel_size=[1, 1], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 200, 200, 64), float16] */;
%142 = layout_transform(%140, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 64), float16] */;
%143 = cast(%model.backbone.body.layer1.1.bn1.bias, dtype="float16") /* ty=Tensor[(64), float16] */;
%144 = cast(%model.backbone.body.layer1.1.bn1.running_mean, dtype="float16") /* ty=Tensor[(64), float16] */;
%145 = reshape(%144, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%146 = reshape(%143, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%147 = multiply(%145, %140) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%148 = subtract(%146, %147) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%149 = multiply(%141, %142) /* ty=Tensor[(1, 200, 200, 64), float16] */;
%150 = layout_transform(%148, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 64), float16] */;
%151 = add(%149, %150) /* ty=Tensor[(1, 200, 200, 64), float16] */;
%152 = cast(%model.backbone.body.layer1.1.conv2.weight, dtype="float16") /* ty=Tensor[(64, 64, 3, 3), float16] */;
%153 = nn.relu(%151) /* ty=Tensor[(1, 200, 200, 64), float16] */;
%154 = layout_transform(%152, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(3, 3, 64, 64), float16] */;
%155 = cast(%model.backbone.body.layer1.1.bn2.weight, dtype="float16") /* ty=Tensor[(64), float16] */;
%156 = cast(%model.backbone.body.layer1.1.bn2.running_var, dtype="float16") /* ty=Tensor[(64), float16] */;
%157 = reshape(%156, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%158 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%159 = add(%157, %158) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%160 = reshape(%155, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%161 = rsqrt(%159) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%162 = multiply(%160, %161) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%163 = nn.conv2d(%153, %154, padding=[1, 1, 1, 1], channels=64, kernel_size=[3, 3], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 200, 200, 64), float16] */;
%164 = layout_transform(%162, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 64), float16] */;
%165 = cast(%model.backbone.body.layer1.1.bn2.bias, dtype="float16") /* ty=Tensor[(64), float16] */;
%166 = cast(%model.backbone.body.layer1.1.bn2.running_mean, dtype="float16") /* ty=Tensor[(64), float16] */;
%167 = reshape(%166, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%168 = reshape(%165, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%169 = multiply(%167, %162) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%170 = subtract(%168, %169) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%171 = multiply(%163, %164) /* ty=Tensor[(1, 200, 200, 64), float16] */;
%172 = layout_transform(%170, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 64), float16] */;
%173 = add(%171, %172) /* ty=Tensor[(1, 200, 200, 64), float16] */;
%174 = cast(%model.backbone.body.layer1.1.conv3.weight, dtype="float16") /* ty=Tensor[(256, 64, 1, 1), float16] */;
%175 = nn.relu(%173) /* ty=Tensor[(1, 200, 200, 64), float16] */;
%176 = layout_transform(%174, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(1, 1, 64, 256), float16] */;
%177 = cast(%model.backbone.body.layer1.1.bn3.weight, dtype="float16") /* ty=Tensor[(256), float16] */;
%178 = cast(%model.backbone.body.layer1.1.bn3.running_var, dtype="float16") /* ty=Tensor[(256), float16] */;
%179 = reshape(%178, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%180 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%181 = add(%179, %180) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%182 = reshape(%177, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%183 = rsqrt(%181) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%184 = multiply(%182, %183) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%185 = nn.conv2d(%175, %176, padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 200, 200, 256), float16] */;
%186 = layout_transform(%184, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 256), float16] */;
%187 = cast(%model.backbone.body.layer1.1.bn3.bias, dtype="float16") /* ty=Tensor[(256), float16] */;
%188 = cast(%model.backbone.body.layer1.1.bn3.running_mean, dtype="float16") /* ty=Tensor[(256), float16] */;
%189 = reshape(%188, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%190 = reshape(%187, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%191 = multiply(%189, %184) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%192 = subtract(%190, %191) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%193 = multiply(%185, %186) /* ty=Tensor[(1, 200, 200, 256), float16] */;
%194 = layout_transform(%192, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 256), float16] */;
%195 = add(%193, %194) /* ty=Tensor[(1, 200, 200, 256), float16] */;
%196 = add(%195, %131) /* ty=Tensor[(1, 200, 200, 256), float16] */;
%197 = cast(%model.backbone.body.layer1.2.conv1.weight, dtype="float16") /* ty=Tensor[(64, 256, 1, 1), float16] */;
%198 = nn.relu(%196) /* ty=Tensor[(1, 200, 200, 256), float16] */;
%199 = layout_transform(%197, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(1, 1, 256, 64), float16] */;
%200 = cast(%model.backbone.body.layer1.2.bn1.weight, dtype="float16") /* ty=Tensor[(64), float16] */;
%201 = cast(%model.backbone.body.layer1.2.bn1.running_var, dtype="float16") /* ty=Tensor[(64), float16] */;
%202 = reshape(%201, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%203 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%204 = add(%202, %203) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%205 = reshape(%200, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%206 = rsqrt(%204) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%207 = multiply(%205, %206) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%208 = nn.conv2d(%198, %199, padding=[0, 0, 0, 0], channels=64, kernel_size=[1, 1], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 200, 200, 64), float16] */;
%209 = layout_transform(%207, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 64), float16] */;
%210 = cast(%model.backbone.body.layer1.2.bn1.bias, dtype="float16") /* ty=Tensor[(64), float16] */;
%211 = cast(%model.backbone.body.layer1.2.bn1.running_mean, dtype="float16") /* ty=Tensor[(64), float16] */;
%212 = reshape(%211, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%213 = reshape(%210, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%214 = multiply(%212, %207) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%215 = subtract(%213, %214) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%216 = multiply(%208, %209) /* ty=Tensor[(1, 200, 200, 64), float16] */;
%217 = layout_transform(%215, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 64), float16] */;
%218 = add(%216, %217) /* ty=Tensor[(1, 200, 200, 64), float16] */;
%219 = cast(%model.backbone.body.layer1.2.conv2.weight, dtype="float16") /* ty=Tensor[(64, 64, 3, 3), float16] */;
%220 = nn.relu(%218) /* ty=Tensor[(1, 200, 200, 64), float16] */;
%221 = layout_transform(%219, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(3, 3, 64, 64), float16] */;
%222 = cast(%model.backbone.body.layer1.2.bn2.weight, dtype="float16") /* ty=Tensor[(64), float16] */;
%223 = cast(%model.backbone.body.layer1.2.bn2.running_var, dtype="float16") /* ty=Tensor[(64), float16] */;
%224 = reshape(%223, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%225 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%226 = add(%224, %225) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%227 = reshape(%222, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%228 = rsqrt(%226) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%229 = multiply(%227, %228) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%230 = nn.conv2d(%220, %221, padding=[1, 1, 1, 1], channels=64, kernel_size=[3, 3], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 200, 200, 64), float16] */;
%231 = layout_transform(%229, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 64), float16] */;
%232 = cast(%model.backbone.body.layer1.2.bn2.bias, dtype="float16") /* ty=Tensor[(64), float16] */;
%233 = cast(%model.backbone.body.layer1.2.bn2.running_mean, dtype="float16") /* ty=Tensor[(64), float16] */;
%234 = reshape(%233, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%235 = reshape(%232, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%236 = multiply(%234, %229) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%237 = subtract(%235, %236) /* ty=Tensor[(1, 64, 1, 1), float16] */;
%238 = multiply(%230, %231) /* ty=Tensor[(1, 200, 200, 64), float16] */;
%239 = layout_transform(%237, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 64), float16] */;
%240 = add(%238, %239) /* ty=Tensor[(1, 200, 200, 64), float16] */;
%241 = cast(%model.backbone.body.layer1.2.conv3.weight, dtype="float16") /* ty=Tensor[(256, 64, 1, 1), float16] */;
%242 = nn.relu(%240) /* ty=Tensor[(1, 200, 200, 64), float16] */;
%243 = layout_transform(%241, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(1, 1, 64, 256), float16] */;
%244 = cast(%model.backbone.body.layer1.2.bn3.weight, dtype="float16") /* ty=Tensor[(256), float16] */;
%245 = cast(%model.backbone.body.layer1.2.bn3.running_var, dtype="float16") /* ty=Tensor[(256), float16] */;
%246 = reshape(%245, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%247 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%248 = add(%246, %247) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%249 = reshape(%244, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%250 = rsqrt(%248) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%251 = multiply(%249, %250) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%252 = nn.conv2d(%242, %243, padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 200, 200, 256), float16] */;
%253 = layout_transform(%251, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 256), float16] */;
%254 = cast(%model.backbone.body.layer1.2.bn3.bias, dtype="float16") /* ty=Tensor[(256), float16] */;
%255 = cast(%model.backbone.body.layer1.2.bn3.running_mean, dtype="float16") /* ty=Tensor[(256), float16] */;
%256 = reshape(%255, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%257 = reshape(%254, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%258 = multiply(%256, %251) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%259 = subtract(%257, %258) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%260 = multiply(%252, %253) /* ty=Tensor[(1, 200, 200, 256), float16] */;
%261 = layout_transform(%259, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 256), float16] */;
%262 = add(%260, %261) /* ty=Tensor[(1, 200, 200, 256), float16] */;
%263 = add(%262, %198) /* ty=Tensor[(1, 200, 200, 256), float16] */;
%264 = cast(%model.backbone.fpn.inner_blocks.0.weight, dtype="float16") /* ty=Tensor[(256, 256, 1, 1), float16] */;
%265 = nn.relu(%263) /* ty=Tensor[(1, 200, 200, 256), float16] */;
%266 = layout_transform(%264, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(1, 1, 256, 256), float16] */;
%267 = cast(%model.backbone.fpn.inner_blocks.0.bias, dtype="float16") /* ty=Tensor[(256), float16] */;
%268 = expand_dims(%267, axis=1, num_newaxis=2) /* ty=Tensor[(256, 1, 1), float16] */;
%269 = expand_dims(%268, axis=0) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%270 = nn.conv2d(%265, %266, padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 200, 200, 256), float16] */;
%271 = layout_transform(%269, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 256), float16] */;
%272 = cast(%model.backbone.body.layer2.0.conv1.weight, dtype="float16") /* ty=Tensor[(128, 256, 1, 1), float16] */;
%273 = layout_transform(%272, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(1, 1, 256, 128), float16] */;
%274 = cast(%model.backbone.body.layer2.0.bn1.weight, dtype="float16") /* ty=Tensor[(128), float16] */;
%275 = cast(%model.backbone.body.layer2.0.bn1.running_var, dtype="float16") /* ty=Tensor[(128), float16] */;
%276 = reshape(%275, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%277 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%278 = add(%276, %277) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%279 = reshape(%274, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%280 = rsqrt(%278) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%281 = multiply(%279, %280) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%282 = nn.conv2d(%265, %273, padding=[0, 0, 0, 0], channels=128, kernel_size=[1, 1], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 200, 200, 128), float16] */;
%283 = layout_transform(%281, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 128), float16] */;
%284 = cast(%model.backbone.body.layer2.0.bn1.bias, dtype="float16") /* ty=Tensor[(128), float16] */;
%285 = cast(%model.backbone.body.layer2.0.bn1.running_mean, dtype="float16") /* ty=Tensor[(128), float16] */;
%286 = reshape(%285, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%287 = reshape(%284, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%288 = multiply(%286, %281) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%289 = subtract(%287, %288) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%290 = multiply(%282, %283) /* ty=Tensor[(1, 200, 200, 128), float16] */;
%291 = layout_transform(%289, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 128), float16] */;
%292 = add(%290, %291) /* ty=Tensor[(1, 200, 200, 128), float16] */;
%293 = cast(%model.backbone.body.layer2.0.conv2.weight, dtype="float16") /* ty=Tensor[(128, 128, 3, 3), float16] */;
%294 = nn.relu(%292) /* ty=Tensor[(1, 200, 200, 128), float16] */;
%295 = layout_transform(%293, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(3, 3, 128, 128), float16] */;
%296 = cast(%model.backbone.body.layer2.0.bn2.weight, dtype="float16") /* ty=Tensor[(128), float16] */;
%297 = cast(%model.backbone.body.layer2.0.bn2.running_var, dtype="float16") /* ty=Tensor[(128), float16] */;
%298 = reshape(%297, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%299 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%300 = add(%298, %299) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%301 = reshape(%296, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%302 = rsqrt(%300) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%303 = multiply(%301, %302) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%304 = nn.conv2d(%294, %295, strides=[2, 2], padding=[1, 1, 1, 1], channels=128, kernel_size=[3, 3], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 100, 100, 128), float16] */;
%305 = layout_transform(%303, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 128), float16] */;
%306 = cast(%model.backbone.body.layer2.0.bn2.bias, dtype="float16") /* ty=Tensor[(128), float16] */;
%307 = cast(%model.backbone.body.layer2.0.bn2.running_mean, dtype="float16") /* ty=Tensor[(128), float16] */;
%308 = reshape(%307, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%309 = reshape(%306, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%310 = multiply(%308, %303) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%311 = subtract(%309, %310) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%312 = multiply(%304, %305) /* ty=Tensor[(1, 100, 100, 128), float16] */;
%313 = layout_transform(%311, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 128), float16] */;
%314 = add(%312, %313) /* ty=Tensor[(1, 100, 100, 128), float16] */;
%315 = cast(%model.backbone.body.layer2.0.conv3.weight, dtype="float16") /* ty=Tensor[(512, 128, 1, 1), float16] */;
%316 = nn.relu(%314) /* ty=Tensor[(1, 100, 100, 128), float16] */;
%317 = layout_transform(%315, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(1, 1, 128, 512), float16] */;
%318 = cast(%model.backbone.body.layer2.0.bn3.weight, dtype="float16") /* ty=Tensor[(512), float16] */;
%319 = cast(%model.backbone.body.layer2.0.bn3.running_var, dtype="float16") /* ty=Tensor[(512), float16] */;
%320 = reshape(%319, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%321 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%322 = add(%320, %321) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%323 = reshape(%318, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%324 = rsqrt(%322) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%325 = multiply(%323, %324) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%326 = nn.conv2d(%316, %317, padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 100, 100, 512), float16] */;
%327 = layout_transform(%325, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 512), float16] */;
%328 = cast(%model.backbone.body.layer2.0.bn3.bias, dtype="float16") /* ty=Tensor[(512), float16] */;
%329 = cast(%model.backbone.body.layer2.0.bn3.running_mean, dtype="float16") /* ty=Tensor[(512), float16] */;
%330 = reshape(%329, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%331 = reshape(%328, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%332 = multiply(%330, %325) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%333 = subtract(%331, %332) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%334 = multiply(%326, %327) /* ty=Tensor[(1, 100, 100, 512), float16] */;
%335 = layout_transform(%333, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 512), float16] */;
%336 = cast(%model.backbone.body.layer2.0.downsample.0.weight, dtype="float16") /* ty=Tensor[(512, 256, 1, 1), float16] */;
%337 = layout_transform(%336, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(1, 1, 256, 512), float16] */;
%338 = cast(%model.backbone.body.layer2.0.downsample.1.weight, dtype="float16") /* ty=Tensor[(512), float16] */;
%339 = cast(%model.backbone.body.layer2.0.downsample.1.running_var, dtype="float16") /* ty=Tensor[(512), float16] */;
%340 = reshape(%339, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%341 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%342 = add(%340, %341) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%343 = reshape(%338, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%344 = rsqrt(%342) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%345 = multiply(%343, %344) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%346 = nn.conv2d(%265, %337, strides=[2, 2], padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 100, 100, 512), float16] */;
%347 = layout_transform(%345, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 512), float16] */;
%348 = cast(%model.backbone.body.layer2.0.downsample.1.bias, dtype="float16") /* ty=Tensor[(512), float16] */;
%349 = cast(%model.backbone.body.layer2.0.downsample.1.running_mean, dtype="float16") /* ty=Tensor[(512), float16] */;
%350 = reshape(%349, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%351 = reshape(%348, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%352 = multiply(%350, %345) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%353 = subtract(%351, %352) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%354 = multiply(%346, %347) /* ty=Tensor[(1, 100, 100, 512), float16] */;
%355 = layout_transform(%353, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 512), float16] */;
%356 = add(%334, %335) /* ty=Tensor[(1, 100, 100, 512), float16] */;
%357 = add(%354, %355) /* ty=Tensor[(1, 100, 100, 512), float16] */;
%358 = add(%356, %357) /* ty=Tensor[(1, 100, 100, 512), float16] */;
%359 = cast(%model.backbone.body.layer2.1.conv1.weight, dtype="float16") /* ty=Tensor[(128, 512, 1, 1), float16] */;
%360 = nn.relu(%358) /* ty=Tensor[(1, 100, 100, 512), float16] */;
%361 = layout_transform(%359, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(1, 1, 512, 128), float16] */;
%362 = cast(%model.backbone.body.layer2.1.bn1.weight, dtype="float16") /* ty=Tensor[(128), float16] */;
%363 = cast(%model.backbone.body.layer2.1.bn1.running_var, dtype="float16") /* ty=Tensor[(128), float16] */;
%364 = reshape(%363, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%365 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%366 = add(%364, %365) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%367 = reshape(%362, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%368 = rsqrt(%366) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%369 = multiply(%367, %368) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%370 = nn.conv2d(%360, %361, padding=[0, 0, 0, 0], channels=128, kernel_size=[1, 1], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 100, 100, 128), float16] */;
%371 = layout_transform(%369, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 128), float16] */;
%372 = cast(%model.backbone.body.layer2.1.bn1.bias, dtype="float16") /* ty=Tensor[(128), float16] */;
%373 = cast(%model.backbone.body.layer2.1.bn1.running_mean, dtype="float16") /* ty=Tensor[(128), float16] */;
%374 = reshape(%373, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%375 = reshape(%372, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%376 = multiply(%374, %369) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%377 = subtract(%375, %376) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%378 = multiply(%370, %371) /* ty=Tensor[(1, 100, 100, 128), float16] */;
%379 = layout_transform(%377, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 128), float16] */;
%380 = add(%378, %379) /* ty=Tensor[(1, 100, 100, 128), float16] */;
%381 = cast(%model.backbone.body.layer2.1.conv2.weight, dtype="float16") /* ty=Tensor[(128, 128, 3, 3), float16] */;
%382 = nn.relu(%380) /* ty=Tensor[(1, 100, 100, 128), float16] */;
%383 = layout_transform(%381, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(3, 3, 128, 128), float16] */;
%384 = cast(%model.backbone.body.layer2.1.bn2.weight, dtype="float16") /* ty=Tensor[(128), float16] */;
%385 = cast(%model.backbone.body.layer2.1.bn2.running_var, dtype="float16") /* ty=Tensor[(128), float16] */;
%386 = reshape(%385, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%387 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%388 = add(%386, %387) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%389 = reshape(%384, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%390 = rsqrt(%388) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%391 = multiply(%389, %390) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%392 = nn.conv2d(%382, %383, padding=[1, 1, 1, 1], channels=128, kernel_size=[3, 3], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 100, 100, 128), float16] */;
%393 = layout_transform(%391, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 128), float16] */;
%394 = cast(%model.backbone.body.layer2.1.bn2.bias, dtype="float16") /* ty=Tensor[(128), float16] */;
%395 = cast(%model.backbone.body.layer2.1.bn2.running_mean, dtype="float16") /* ty=Tensor[(128), float16] */;
%396 = reshape(%395, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%397 = reshape(%394, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%398 = multiply(%396, %391) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%399 = subtract(%397, %398) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%400 = multiply(%392, %393) /* ty=Tensor[(1, 100, 100, 128), float16] */;
%401 = layout_transform(%399, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 128), float16] */;
%402 = add(%400, %401) /* ty=Tensor[(1, 100, 100, 128), float16] */;
%403 = cast(%model.backbone.body.layer2.1.conv3.weight, dtype="float16") /* ty=Tensor[(512, 128, 1, 1), float16] */;
%404 = nn.relu(%402) /* ty=Tensor[(1, 100, 100, 128), float16] */;
%405 = layout_transform(%403, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(1, 1, 128, 512), float16] */;
%406 = cast(%model.backbone.body.layer2.1.bn3.weight, dtype="float16") /* ty=Tensor[(512), float16] */;
%407 = cast(%model.backbone.body.layer2.1.bn3.running_var, dtype="float16") /* ty=Tensor[(512), float16] */;
%408 = reshape(%407, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%409 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%410 = add(%408, %409) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%411 = reshape(%406, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%412 = rsqrt(%410) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%413 = multiply(%411, %412) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%414 = nn.conv2d(%404, %405, padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 100, 100, 512), float16] */;
%415 = layout_transform(%413, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 512), float16] */;
%416 = cast(%model.backbone.body.layer2.1.bn3.bias, dtype="float16") /* ty=Tensor[(512), float16] */;
%417 = cast(%model.backbone.body.layer2.1.bn3.running_mean, dtype="float16") /* ty=Tensor[(512), float16] */;
%418 = reshape(%417, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%419 = reshape(%416, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%420 = multiply(%418, %413) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%421 = subtract(%419, %420) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%422 = multiply(%414, %415) /* ty=Tensor[(1, 100, 100, 512), float16] */;
%423 = layout_transform(%421, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 512), float16] */;
%424 = add(%422, %423) /* ty=Tensor[(1, 100, 100, 512), float16] */;
%425 = add(%424, %360) /* ty=Tensor[(1, 100, 100, 512), float16] */;
%426 = cast(%model.backbone.body.layer2.2.conv1.weight, dtype="float16") /* ty=Tensor[(128, 512, 1, 1), float16] */;
%427 = nn.relu(%425) /* ty=Tensor[(1, 100, 100, 512), float16] */;
%428 = layout_transform(%426, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(1, 1, 512, 128), float16] */;
%429 = cast(%model.backbone.body.layer2.2.bn1.weight, dtype="float16") /* ty=Tensor[(128), float16] */;
%430 = cast(%model.backbone.body.layer2.2.bn1.running_var, dtype="float16") /* ty=Tensor[(128), float16] */;
%431 = reshape(%430, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%432 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%433 = add(%431, %432) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%434 = reshape(%429, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%435 = rsqrt(%433) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%436 = multiply(%434, %435) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%437 = nn.conv2d(%427, %428, padding=[0, 0, 0, 0], channels=128, kernel_size=[1, 1], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 100, 100, 128), float16] */;
%438 = layout_transform(%436, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 128), float16] */;
%439 = cast(%model.backbone.body.layer2.2.bn1.bias, dtype="float16") /* ty=Tensor[(128), float16] */;
%440 = cast(%model.backbone.body.layer2.2.bn1.running_mean, dtype="float16") /* ty=Tensor[(128), float16] */;
%441 = reshape(%440, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%442 = reshape(%439, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%443 = multiply(%441, %436) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%444 = subtract(%442, %443) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%445 = multiply(%437, %438) /* ty=Tensor[(1, 100, 100, 128), float16] */;
%446 = layout_transform(%444, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 128), float16] */;
%447 = add(%445, %446) /* ty=Tensor[(1, 100, 100, 128), float16] */;
%448 = cast(%model.backbone.body.layer2.2.conv2.weight, dtype="float16") /* ty=Tensor[(128, 128, 3, 3), float16] */;
%449 = nn.relu(%447) /* ty=Tensor[(1, 100, 100, 128), float16] */;
%450 = layout_transform(%448, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(3, 3, 128, 128), float16] */;
%451 = cast(%model.backbone.body.layer2.2.bn2.weight, dtype="float16") /* ty=Tensor[(128), float16] */;
%452 = cast(%model.backbone.body.layer2.2.bn2.running_var, dtype="float16") /* ty=Tensor[(128), float16] */;
%453 = reshape(%452, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%454 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%455 = add(%453, %454) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%456 = reshape(%451, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%457 = rsqrt(%455) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%458 = multiply(%456, %457) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%459 = nn.conv2d(%449, %450, padding=[1, 1, 1, 1], channels=128, kernel_size=[3, 3], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 100, 100, 128), float16] */;
%460 = layout_transform(%458, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 128), float16] */;
%461 = cast(%model.backbone.body.layer2.2.bn2.bias, dtype="float16") /* ty=Tensor[(128), float16] */;
%462 = cast(%model.backbone.body.layer2.2.bn2.running_mean, dtype="float16") /* ty=Tensor[(128), float16] */;
%463 = reshape(%462, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%464 = reshape(%461, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%465 = multiply(%463, %458) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%466 = subtract(%464, %465) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%467 = multiply(%459, %460) /* ty=Tensor[(1, 100, 100, 128), float16] */;
%468 = layout_transform(%466, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 128), float16] */;
%469 = add(%467, %468) /* ty=Tensor[(1, 100, 100, 128), float16] */;
%470 = cast(%model.backbone.body.layer2.2.conv3.weight, dtype="float16") /* ty=Tensor[(512, 128, 1, 1), float16] */;
%471 = nn.relu(%469) /* ty=Tensor[(1, 100, 100, 128), float16] */;
%472 = layout_transform(%470, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(1, 1, 128, 512), float16] */;
%473 = cast(%model.backbone.body.layer2.2.bn3.weight, dtype="float16") /* ty=Tensor[(512), float16] */;
%474 = cast(%model.backbone.body.layer2.2.bn3.running_var, dtype="float16") /* ty=Tensor[(512), float16] */;
%475 = reshape(%474, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%476 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%477 = add(%475, %476) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%478 = reshape(%473, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%479 = rsqrt(%477) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%480 = multiply(%478, %479) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%481 = nn.conv2d(%471, %472, padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 100, 100, 512), float16] */;
%482 = layout_transform(%480, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 512), float16] */;
%483 = cast(%model.backbone.body.layer2.2.bn3.bias, dtype="float16") /* ty=Tensor[(512), float16] */;
%484 = cast(%model.backbone.body.layer2.2.bn3.running_mean, dtype="float16") /* ty=Tensor[(512), float16] */;
%485 = reshape(%484, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%486 = reshape(%483, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%487 = multiply(%485, %480) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%488 = subtract(%486, %487) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%489 = multiply(%481, %482) /* ty=Tensor[(1, 100, 100, 512), float16] */;
%490 = layout_transform(%488, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 512), float16] */;
%491 = add(%489, %490) /* ty=Tensor[(1, 100, 100, 512), float16] */;
%492 = add(%491, %427) /* ty=Tensor[(1, 100, 100, 512), float16] */;
%493 = cast(%model.backbone.body.layer2.3.conv1.weight, dtype="float16") /* ty=Tensor[(128, 512, 1, 1), float16] */;
%494 = nn.relu(%492) /* ty=Tensor[(1, 100, 100, 512), float16] */;
%495 = layout_transform(%493, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(1, 1, 512, 128), float16] */;
%496 = cast(%model.backbone.body.layer2.3.bn1.weight, dtype="float16") /* ty=Tensor[(128), float16] */;
%497 = cast(%model.backbone.body.layer2.3.bn1.running_var, dtype="float16") /* ty=Tensor[(128), float16] */;
%498 = reshape(%497, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%499 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%500 = add(%498, %499) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%501 = reshape(%496, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%502 = rsqrt(%500) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%503 = multiply(%501, %502) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%504 = nn.conv2d(%494, %495, padding=[0, 0, 0, 0], channels=128, kernel_size=[1, 1], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 100, 100, 128), float16] */;
%505 = layout_transform(%503, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 128), float16] */;
%506 = cast(%model.backbone.body.layer2.3.bn1.bias, dtype="float16") /* ty=Tensor[(128), float16] */;
%507 = cast(%model.backbone.body.layer2.3.bn1.running_mean, dtype="float16") /* ty=Tensor[(128), float16] */;
%508 = reshape(%507, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%509 = reshape(%506, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%510 = multiply(%508, %503) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%511 = subtract(%509, %510) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%512 = multiply(%504, %505) /* ty=Tensor[(1, 100, 100, 128), float16] */;
%513 = layout_transform(%511, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 128), float16] */;
%514 = add(%512, %513) /* ty=Tensor[(1, 100, 100, 128), float16] */;
%515 = cast(%model.backbone.body.layer2.3.conv2.weight, dtype="float16") /* ty=Tensor[(128, 128, 3, 3), float16] */;
%516 = nn.relu(%514) /* ty=Tensor[(1, 100, 100, 128), float16] */;
%517 = layout_transform(%515, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(3, 3, 128, 128), float16] */;
%518 = cast(%model.backbone.body.layer2.3.bn2.weight, dtype="float16") /* ty=Tensor[(128), float16] */;
%519 = cast(%model.backbone.body.layer2.3.bn2.running_var, dtype="float16") /* ty=Tensor[(128), float16] */;
%520 = reshape(%519, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%521 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%522 = add(%520, %521) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%523 = reshape(%518, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%524 = rsqrt(%522) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%525 = multiply(%523, %524) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%526 = nn.conv2d(%516, %517, padding=[1, 1, 1, 1], channels=128, kernel_size=[3, 3], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 100, 100, 128), float16] */;
%527 = layout_transform(%525, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 128), float16] */;
%528 = cast(%model.backbone.body.layer2.3.bn2.bias, dtype="float16") /* ty=Tensor[(128), float16] */;
%529 = cast(%model.backbone.body.layer2.3.bn2.running_mean, dtype="float16") /* ty=Tensor[(128), float16] */;
%530 = reshape(%529, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%531 = reshape(%528, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%532 = multiply(%530, %525) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%533 = subtract(%531, %532) /* ty=Tensor[(1, 128, 1, 1), float16] */;
%534 = multiply(%526, %527) /* ty=Tensor[(1, 100, 100, 128), float16] */;
%535 = layout_transform(%533, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 128), float16] */;
%536 = add(%534, %535) /* ty=Tensor[(1, 100, 100, 128), float16] */;
%537 = cast(%model.backbone.body.layer2.3.conv3.weight, dtype="float16") /* ty=Tensor[(512, 128, 1, 1), float16] */;
%538 = nn.relu(%536) /* ty=Tensor[(1, 100, 100, 128), float16] */;
%539 = layout_transform(%537, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(1, 1, 128, 512), float16] */;
%540 = cast(%model.backbone.body.layer2.3.bn3.weight, dtype="float16") /* ty=Tensor[(512), float16] */;
%541 = cast(%model.backbone.body.layer2.3.bn3.running_var, dtype="float16") /* ty=Tensor[(512), float16] */;
%542 = reshape(%541, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%543 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%544 = add(%542, %543) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%545 = reshape(%540, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%546 = rsqrt(%544) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%547 = multiply(%545, %546) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%548 = nn.conv2d(%538, %539, padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 100, 100, 512), float16] */;
%549 = layout_transform(%547, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 512), float16] */;
%550 = cast(%model.backbone.body.layer2.3.bn3.bias, dtype="float16") /* ty=Tensor[(512), float16] */;
%551 = cast(%model.backbone.body.layer2.3.bn3.running_mean, dtype="float16") /* ty=Tensor[(512), float16] */;
%552 = reshape(%551, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%553 = reshape(%550, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%554 = multiply(%552, %547) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%555 = subtract(%553, %554) /* ty=Tensor[(1, 512, 1, 1), float16] */;
%556 = multiply(%548, %549) /* ty=Tensor[(1, 100, 100, 512), float16] */;
%557 = layout_transform(%555, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 512), float16] */;
%558 = add(%556, %557) /* ty=Tensor[(1, 100, 100, 512), float16] */;
%559 = add(%558, %494) /* ty=Tensor[(1, 100, 100, 512), float16] */;
%560 = cast(%model.backbone.fpn.inner_blocks.1.weight, dtype="float16") /* ty=Tensor[(256, 512, 1, 1), float16] */;
%561 = nn.relu(%559) /* ty=Tensor[(1, 100, 100, 512), float16] */;
%562 = layout_transform(%560, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(1, 1, 512, 256), float16] */;
%563 = cast(%model.backbone.fpn.inner_blocks.1.bias, dtype="float16") /* ty=Tensor[(256), float16] */;
%564 = expand_dims(%563, axis=1, num_newaxis=2) /* ty=Tensor[(256, 1, 1), float16] */;
%565 = expand_dims(%564, axis=0) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%566 = nn.conv2d(%561, %562, padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 100, 100, 256), float16] */;
%567 = layout_transform(%565, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 256), float16] */;
%568 = cast(%model.backbone.body.layer3.0.conv1.weight, dtype="float16") /* ty=Tensor[(256, 512, 1, 1), float16] */;
%569 = layout_transform(%568, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(1, 1, 512, 256), float16] */;
%570 = cast(%model.backbone.body.layer3.0.bn1.weight, dtype="float16") /* ty=Tensor[(256), float16] */;
%571 = cast(%model.backbone.body.layer3.0.bn1.running_var, dtype="float16") /* ty=Tensor[(256), float16] */;
%572 = reshape(%571, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%573 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%574 = add(%572, %573) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%575 = reshape(%570, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%576 = rsqrt(%574) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%577 = multiply(%575, %576) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%578 = nn.conv2d(%561, %569, padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 100, 100, 256), float16] */;
%579 = layout_transform(%577, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 256), float16] */;
%580 = cast(%model.backbone.body.layer3.0.bn1.bias, dtype="float16") /* ty=Tensor[(256), float16] */;
%581 = cast(%model.backbone.body.layer3.0.bn1.running_mean, dtype="float16") /* ty=Tensor[(256), float16] */;
%582 = reshape(%581, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%583 = reshape(%580, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%584 = multiply(%582, %577) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%585 = subtract(%583, %584) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%586 = multiply(%578, %579) /* ty=Tensor[(1, 100, 100, 256), float16] */;
%587 = layout_transform(%585, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 256), float16] */;
%588 = add(%586, %587) /* ty=Tensor[(1, 100, 100, 256), float16] */;
%589 = cast(%model.backbone.body.layer3.0.conv2.weight, dtype="float16") /* ty=Tensor[(256, 256, 3, 3), float16] */;
%590 = nn.relu(%588) /* ty=Tensor[(1, 100, 100, 256), float16] */;
%591 = layout_transform(%589, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(3, 3, 256, 256), float16] */;
%592 = cast(%model.backbone.body.layer3.0.bn2.weight, dtype="float16") /* ty=Tensor[(256), float16] */;
%593 = cast(%model.backbone.body.layer3.0.bn2.running_var, dtype="float16") /* ty=Tensor[(256), float16] */;
%594 = reshape(%593, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%595 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%596 = add(%594, %595) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%597 = reshape(%592, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%598 = rsqrt(%596) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%599 = multiply(%597, %598) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%600 = nn.conv2d(%590, %591, strides=[2, 2], padding=[1, 1, 1, 1], channels=256, kernel_size=[3, 3], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 50, 50, 256), float16] */;
%601 = layout_transform(%599, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 256), float16] */;
%602 = cast(%model.backbone.body.layer3.0.bn2.bias, dtype="float16") /* ty=Tensor[(256), float16] */;
%603 = cast(%model.backbone.body.layer3.0.bn2.running_mean, dtype="float16") /* ty=Tensor[(256), float16] */;
%604 = reshape(%603, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%605 = reshape(%602, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%606 = multiply(%604, %599) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%607 = subtract(%605, %606) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%608 = multiply(%600, %601) /* ty=Tensor[(1, 50, 50, 256), float16] */;
%609 = layout_transform(%607, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 256), float16] */;
%610 = add(%608, %609) /* ty=Tensor[(1, 50, 50, 256), float16] */;
%611 = cast(%model.backbone.body.layer3.0.conv3.weight, dtype="float16") /* ty=Tensor[(1024, 256, 1, 1), float16] */;
%612 = nn.relu(%610) /* ty=Tensor[(1, 50, 50, 256), float16] */;
%613 = layout_transform(%611, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(1, 1, 256, 1024), float16] */;
%614 = cast(%model.backbone.body.layer3.0.bn3.weight, dtype="float16") /* ty=Tensor[(1024), float16] */;
%615 = cast(%model.backbone.body.layer3.0.bn3.running_var, dtype="float16") /* ty=Tensor[(1024), float16] */;
%616 = reshape(%615, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%617 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%618 = add(%616, %617) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%619 = reshape(%614, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%620 = rsqrt(%618) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%621 = multiply(%619, %620) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%622 = nn.conv2d(%612, %613, padding=[0, 0, 0, 0], channels=1024, kernel_size=[1, 1], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 50, 50, 1024), float16] */;
%623 = layout_transform(%621, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 1024), float16] */;
%624 = cast(%model.backbone.body.layer3.0.bn3.bias, dtype="float16") /* ty=Tensor[(1024), float16] */;
%625 = cast(%model.backbone.body.layer3.0.bn3.running_mean, dtype="float16") /* ty=Tensor[(1024), float16] */;
%626 = reshape(%625, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%627 = reshape(%624, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%628 = multiply(%626, %621) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%629 = subtract(%627, %628) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%630 = multiply(%622, %623) /* ty=Tensor[(1, 50, 50, 1024), float16] */;
%631 = layout_transform(%629, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 1024), float16] */;
%632 = cast(%model.backbone.body.layer3.0.downsample.0.weight, dtype="float16") /* ty=Tensor[(1024, 512, 1, 1), float16] */;
%633 = layout_transform(%632, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(1, 1, 512, 1024), float16] */;
%634 = cast(%model.backbone.body.layer3.0.downsample.1.weight, dtype="float16") /* ty=Tensor[(1024), float16] */;
%635 = cast(%model.backbone.body.layer3.0.downsample.1.running_var, dtype="float16") /* ty=Tensor[(1024), float16] */;
%636 = reshape(%635, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%637 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%638 = add(%636, %637) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%639 = reshape(%634, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%640 = rsqrt(%638) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%641 = multiply(%639, %640) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%642 = nn.conv2d(%561, %633, strides=[2, 2], padding=[0, 0, 0, 0], channels=1024, kernel_size=[1, 1], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 50, 50, 1024), float16] */;
%643 = layout_transform(%641, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 1024), float16] */;
%644 = cast(%model.backbone.body.layer3.0.downsample.1.bias, dtype="float16") /* ty=Tensor[(1024), float16] */;
%645 = cast(%model.backbone.body.layer3.0.downsample.1.running_mean, dtype="float16") /* ty=Tensor[(1024), float16] */;
%646 = reshape(%645, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%647 = reshape(%644, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%648 = multiply(%646, %641) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%649 = subtract(%647, %648) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%650 = multiply(%642, %643) /* ty=Tensor[(1, 50, 50, 1024), float16] */;
%651 = layout_transform(%649, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 1024), float16] */;
%652 = add(%630, %631) /* ty=Tensor[(1, 50, 50, 1024), float16] */;
%653 = add(%650, %651) /* ty=Tensor[(1, 50, 50, 1024), float16] */;
%654 = add(%652, %653) /* ty=Tensor[(1, 50, 50, 1024), float16] */;
%655 = cast(%model.backbone.body.layer3.1.conv1.weight, dtype="float16") /* ty=Tensor[(256, 1024, 1, 1), float16] */;
%656 = nn.relu(%654) /* ty=Tensor[(1, 50, 50, 1024), float16] */;
%657 = layout_transform(%655, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(1, 1, 1024, 256), float16] */;
%658 = cast(%model.backbone.body.layer3.1.bn1.weight, dtype="float16") /* ty=Tensor[(256), float16] */;
%659 = cast(%model.backbone.body.layer3.1.bn1.running_var, dtype="float16") /* ty=Tensor[(256), float16] */;
%660 = reshape(%659, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%661 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%662 = add(%660, %661) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%663 = reshape(%658, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%664 = rsqrt(%662) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%665 = multiply(%663, %664) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%666 = nn.conv2d(%656, %657, padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 50, 50, 256), float16] */;
%667 = layout_transform(%665, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 256), float16] */;
%668 = cast(%model.backbone.body.layer3.1.bn1.bias, dtype="float16") /* ty=Tensor[(256), float16] */;
%669 = cast(%model.backbone.body.layer3.1.bn1.running_mean, dtype="float16") /* ty=Tensor[(256), float16] */;
%670 = reshape(%669, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%671 = reshape(%668, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%672 = multiply(%670, %665) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%673 = subtract(%671, %672) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%674 = multiply(%666, %667) /* ty=Tensor[(1, 50, 50, 256), float16] */;
%675 = layout_transform(%673, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 256), float16] */;
%676 = add(%674, %675) /* ty=Tensor[(1, 50, 50, 256), float16] */;
%677 = cast(%model.backbone.body.layer3.1.conv2.weight, dtype="float16") /* ty=Tensor[(256, 256, 3, 3), float16] */;
%678 = nn.relu(%676) /* ty=Tensor[(1, 50, 50, 256), float16] */;
%679 = layout_transform(%677, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(3, 3, 256, 256), float16] */;
%680 = cast(%model.backbone.body.layer3.1.bn2.weight, dtype="float16") /* ty=Tensor[(256), float16] */;
%681 = cast(%model.backbone.body.layer3.1.bn2.running_var, dtype="float16") /* ty=Tensor[(256), float16] */;
%682 = reshape(%681, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%683 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%684 = add(%682, %683) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%685 = reshape(%680, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%686 = rsqrt(%684) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%687 = multiply(%685, %686) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%688 = nn.conv2d(%678, %679, padding=[1, 1, 1, 1], channels=256, kernel_size=[3, 3], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 50, 50, 256), float16] */;
%689 = layout_transform(%687, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 256), float16] */;
%690 = cast(%model.backbone.body.layer3.1.bn2.bias, dtype="float16") /* ty=Tensor[(256), float16] */;
%691 = cast(%model.backbone.body.layer3.1.bn2.running_mean, dtype="float16") /* ty=Tensor[(256), float16] */;
%692 = reshape(%691, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%693 = reshape(%690, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%694 = multiply(%692, %687) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%695 = subtract(%693, %694) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%696 = multiply(%688, %689) /* ty=Tensor[(1, 50, 50, 256), float16] */;
%697 = layout_transform(%695, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 256), float16] */;
%698 = add(%696, %697) /* ty=Tensor[(1, 50, 50, 256), float16] */;
%699 = cast(%model.backbone.body.layer3.1.conv3.weight, dtype="float16") /* ty=Tensor[(1024, 256, 1, 1), float16] */;
%700 = nn.relu(%698) /* ty=Tensor[(1, 50, 50, 256), float16] */;
%701 = layout_transform(%699, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(1, 1, 256, 1024), float16] */;
%702 = cast(%model.backbone.body.layer3.1.bn3.weight, dtype="float16") /* ty=Tensor[(1024), float16] */;
%703 = cast(%model.backbone.body.layer3.1.bn3.running_var, dtype="float16") /* ty=Tensor[(1024), float16] */;
%704 = reshape(%703, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%705 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%706 = add(%704, %705) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%707 = reshape(%702, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%708 = rsqrt(%706) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%709 = multiply(%707, %708) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%710 = nn.conv2d(%700, %701, padding=[0, 0, 0, 0], channels=1024, kernel_size=[1, 1], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 50, 50, 1024), float16] */;
%711 = layout_transform(%709, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 1024), float16] */;
%712 = cast(%model.backbone.body.layer3.1.bn3.bias, dtype="float16") /* ty=Tensor[(1024), float16] */;
%713 = cast(%model.backbone.body.layer3.1.bn3.running_mean, dtype="float16") /* ty=Tensor[(1024), float16] */;
%714 = reshape(%713, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%715 = reshape(%712, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%716 = multiply(%714, %709) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%717 = subtract(%715, %716) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%718 = multiply(%710, %711) /* ty=Tensor[(1, 50, 50, 1024), float16] */;
%719 = layout_transform(%717, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 1024), float16] */;
%720 = add(%718, %719) /* ty=Tensor[(1, 50, 50, 1024), float16] */;
%721 = add(%720, %656) /* ty=Tensor[(1, 50, 50, 1024), float16] */;
%722 = cast(%model.backbone.body.layer3.2.conv1.weight, dtype="float16") /* ty=Tensor[(256, 1024, 1, 1), float16] */;
%723 = nn.relu(%721) /* ty=Tensor[(1, 50, 50, 1024), float16] */;
%724 = layout_transform(%722, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(1, 1, 1024, 256), float16] */;
%725 = cast(%model.backbone.body.layer3.2.bn1.weight, dtype="float16") /* ty=Tensor[(256), float16] */;
%726 = cast(%model.backbone.body.layer3.2.bn1.running_var, dtype="float16") /* ty=Tensor[(256), float16] */;
%727 = reshape(%726, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%728 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%729 = add(%727, %728) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%730 = reshape(%725, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%731 = rsqrt(%729) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%732 = multiply(%730, %731) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%733 = nn.conv2d(%723, %724, padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 50, 50, 256), float16] */;
%734 = layout_transform(%732, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 256), float16] */;
%735 = cast(%model.backbone.body.layer3.2.bn1.bias, dtype="float16") /* ty=Tensor[(256), float16] */;
%736 = cast(%model.backbone.body.layer3.2.bn1.running_mean, dtype="float16") /* ty=Tensor[(256), float16] */;
%737 = reshape(%736, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%738 = reshape(%735, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%739 = multiply(%737, %732) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%740 = subtract(%738, %739) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%741 = multiply(%733, %734) /* ty=Tensor[(1, 50, 50, 256), float16] */;
%742 = layout_transform(%740, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 256), float16] */;
%743 = add(%741, %742) /* ty=Tensor[(1, 50, 50, 256), float16] */;
%744 = cast(%model.backbone.body.layer3.2.conv2.weight, dtype="float16") /* ty=Tensor[(256, 256, 3, 3), float16] */;
%745 = nn.relu(%743) /* ty=Tensor[(1, 50, 50, 256), float16] */;
%746 = layout_transform(%744, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(3, 3, 256, 256), float16] */;
%747 = cast(%model.backbone.body.layer3.2.bn2.weight, dtype="float16") /* ty=Tensor[(256), float16] */;
%748 = cast(%model.backbone.body.layer3.2.bn2.running_var, dtype="float16") /* ty=Tensor[(256), float16] */;
%749 = reshape(%748, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%750 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%751 = add(%749, %750) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%752 = reshape(%747, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%753 = rsqrt(%751) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%754 = multiply(%752, %753) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%755 = nn.conv2d(%745, %746, padding=[1, 1, 1, 1], channels=256, kernel_size=[3, 3], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 50, 50, 256), float16] */;
%756 = layout_transform(%754, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 256), float16] */;
%757 = cast(%model.backbone.body.layer3.2.bn2.bias, dtype="float16") /* ty=Tensor[(256), float16] */;
%758 = cast(%model.backbone.body.layer3.2.bn2.running_mean, dtype="float16") /* ty=Tensor[(256), float16] */;
%759 = reshape(%758, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%760 = reshape(%757, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%761 = multiply(%759, %754) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%762 = subtract(%760, %761) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%763 = multiply(%755, %756) /* ty=Tensor[(1, 50, 50, 256), float16] */;
%764 = layout_transform(%762, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 256), float16] */;
%765 = add(%763, %764) /* ty=Tensor[(1, 50, 50, 256), float16] */;
%766 = cast(%model.backbone.body.layer3.2.conv3.weight, dtype="float16") /* ty=Tensor[(1024, 256, 1, 1), float16] */;
%767 = nn.relu(%765) /* ty=Tensor[(1, 50, 50, 256), float16] */;
%768 = layout_transform(%766, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(1, 1, 256, 1024), float16] */;
%769 = cast(%model.backbone.body.layer3.2.bn3.weight, dtype="float16") /* ty=Tensor[(1024), float16] */;
%770 = cast(%model.backbone.body.layer3.2.bn3.running_var, dtype="float16") /* ty=Tensor[(1024), float16] */;
%771 = reshape(%770, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%772 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%773 = add(%771, %772) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%774 = reshape(%769, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%775 = rsqrt(%773) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%776 = multiply(%774, %775) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%777 = nn.conv2d(%767, %768, padding=[0, 0, 0, 0], channels=1024, kernel_size=[1, 1], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 50, 50, 1024), float16] */;
%778 = layout_transform(%776, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 1024), float16] */;
%779 = cast(%model.backbone.body.layer3.2.bn3.bias, dtype="float16") /* ty=Tensor[(1024), float16] */;
%780 = cast(%model.backbone.body.layer3.2.bn3.running_mean, dtype="float16") /* ty=Tensor[(1024), float16] */;
%781 = reshape(%780, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%782 = reshape(%779, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%783 = multiply(%781, %776) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%784 = subtract(%782, %783) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%785 = multiply(%777, %778) /* ty=Tensor[(1, 50, 50, 1024), float16] */;
%786 = layout_transform(%784, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 1024), float16] */;
%787 = add(%785, %786) /* ty=Tensor[(1, 50, 50, 1024), float16] */;
%788 = add(%787, %723) /* ty=Tensor[(1, 50, 50, 1024), float16] */;
%789 = cast(%model.backbone.body.layer3.3.conv1.weight, dtype="float16") /* ty=Tensor[(256, 1024, 1, 1), float16] */;
%790 = nn.relu(%788) /* ty=Tensor[(1, 50, 50, 1024), float16] */;
%791 = layout_transform(%789, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(1, 1, 1024, 256), float16] */;
%792 = cast(%model.backbone.body.layer3.3.bn1.weight, dtype="float16") /* ty=Tensor[(256), float16] */;
%793 = cast(%model.backbone.body.layer3.3.bn1.running_var, dtype="float16") /* ty=Tensor[(256), float16] */;
%794 = reshape(%793, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%795 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%796 = add(%794, %795) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%797 = reshape(%792, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%798 = rsqrt(%796) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%799 = multiply(%797, %798) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%800 = nn.conv2d(%790, %791, padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 50, 50, 256), float16] */;
%801 = layout_transform(%799, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 256), float16] */;
%802 = cast(%model.backbone.body.layer3.3.bn1.bias, dtype="float16") /* ty=Tensor[(256), float16] */;
%803 = cast(%model.backbone.body.layer3.3.bn1.running_mean, dtype="float16") /* ty=Tensor[(256), float16] */;
%804 = reshape(%803, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%805 = reshape(%802, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%806 = multiply(%804, %799) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%807 = subtract(%805, %806) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%808 = multiply(%800, %801) /* ty=Tensor[(1, 50, 50, 256), float16] */;
%809 = layout_transform(%807, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 256), float16] */;
%810 = add(%808, %809) /* ty=Tensor[(1, 50, 50, 256), float16] */;
%811 = cast(%model.backbone.body.layer3.3.conv2.weight, dtype="float16") /* ty=Tensor[(256, 256, 3, 3), float16] */;
%812 = nn.relu(%810) /* ty=Tensor[(1, 50, 50, 256), float16] */;
%813 = layout_transform(%811, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(3, 3, 256, 256), float16] */;
%814 = cast(%model.backbone.body.layer3.3.bn2.weight, dtype="float16") /* ty=Tensor[(256), float16] */;
%815 = cast(%model.backbone.body.layer3.3.bn2.running_var, dtype="float16") /* ty=Tensor[(256), float16] */;
%816 = reshape(%815, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%817 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%818 = add(%816, %817) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%819 = reshape(%814, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%820 = rsqrt(%818) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%821 = multiply(%819, %820) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%822 = nn.conv2d(%812, %813, padding=[1, 1, 1, 1], channels=256, kernel_size=[3, 3], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 50, 50, 256), float16] */;
%823 = layout_transform(%821, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 256), float16] */;
%824 = cast(%model.backbone.body.layer3.3.bn2.bias, dtype="float16") /* ty=Tensor[(256), float16] */;
%825 = cast(%model.backbone.body.layer3.3.bn2.running_mean, dtype="float16") /* ty=Tensor[(256), float16] */;
%826 = reshape(%825, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%827 = reshape(%824, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%828 = multiply(%826, %821) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%829 = subtract(%827, %828) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%830 = multiply(%822, %823) /* ty=Tensor[(1, 50, 50, 256), float16] */;
%831 = layout_transform(%829, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 256), float16] */;
%832 = add(%830, %831) /* ty=Tensor[(1, 50, 50, 256), float16] */;
%833 = cast(%model.backbone.body.layer3.3.conv3.weight, dtype="float16") /* ty=Tensor[(1024, 256, 1, 1), float16] */;
%834 = nn.relu(%832) /* ty=Tensor[(1, 50, 50, 256), float16] */;
%835 = layout_transform(%833, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(1, 1, 256, 1024), float16] */;
%836 = cast(%model.backbone.body.layer3.3.bn3.weight, dtype="float16") /* ty=Tensor[(1024), float16] */;
%837 = cast(%model.backbone.body.layer3.3.bn3.running_var, dtype="float16") /* ty=Tensor[(1024), float16] */;
%838 = reshape(%837, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%839 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%840 = add(%838, %839) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%841 = reshape(%836, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%842 = rsqrt(%840) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%843 = multiply(%841, %842) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%844 = nn.conv2d(%834, %835, padding=[0, 0, 0, 0], channels=1024, kernel_size=[1, 1], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 50, 50, 1024), float16] */;
%845 = layout_transform(%843, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 1024), float16] */;
%846 = cast(%model.backbone.body.layer3.3.bn3.bias, dtype="float16") /* ty=Tensor[(1024), float16] */;
%847 = cast(%model.backbone.body.layer3.3.bn3.running_mean, dtype="float16") /* ty=Tensor[(1024), float16] */;
%848 = reshape(%847, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%849 = reshape(%846, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%850 = multiply(%848, %843) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%851 = subtract(%849, %850) /* ty=Tensor[(1, 1024, 1, 1), float16] */;
%852 = multiply(%844, %845) /* ty=Tensor[(1, 50, 50, 1024), float16] */;
%853 = layout_transform(%851, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 1024), float16] */;
%854 = add(%852, %853) /* ty=Tensor[(1, 50, 50, 1024), float16] */;
%855 = add(%854, %790) /* ty=Tensor[(1, 50, 50, 1024), float16] */;
%856 = cast(%model.backbone.body.layer3.4.conv1.weight, dtype="float16") /* ty=Tensor[(256, 1024, 1, 1), float16] */;
%857 = nn.relu(%855) /* ty=Tensor[(1, 50, 50, 1024), float16] */;
%858 = layout_transform(%856, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(1, 1, 1024, 256), float16] */;
%859 = cast(%model.backbone.body.layer3.4.bn1.weight, dtype="float16") /* ty=Tensor[(256), float16] */;
%860 = cast(%model.backbone.body.layer3.4.bn1.running_var, dtype="float16") /* ty=Tensor[(256), float16] */;
%861 = reshape(%860, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%862 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%863 = add(%861, %862) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%864 = reshape(%859, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%865 = rsqrt(%863) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%866 = multiply(%864, %865) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%867 = nn.conv2d(%857, %858, padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1], data_layout="NHWC", kernel_layout="HWIO", out_dtype="float16") /* ty=Tensor[(1, 50, 50, 256), float16] */;
%868 = layout_transform(%866, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 256), float16] */;
%869 = cast(%model.backbone.body.layer3.4.bn1.bias, dtype="float16") /* ty=Tensor[(256), float16] */;
%870 = cast(%model.backbone.body.layer3.4.bn1.running_mean, dtype="float16") /* ty=Tensor[(256), float16] */;
%871 = reshape(%870, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%872 = reshape(%869, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%873 = multiply(%871, %866) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%874 = subtract(%872, %873) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%875 = multiply(%867, %868) /* ty=Tensor[(1, 50, 50, 256), float16] */;
%876 = layout_transform(%874, src_layout="NCHW", dst_layout="NHWC") /* ty=Tensor[(1, 1, 1, 256), float16] */;
%877 = add(%875, %876) /* ty=Tensor[(1, 50, 50, 256), float16] */;
%878 = cast(%model.backbone.body.layer3.4.conv2.weight, dtype="float16") /* ty=Tensor[(256, 256, 3, 3), float16] */;
%879 = nn.relu(%877) /* ty=Tensor[(1, 50, 50, 256), float16] */;
%880 = layout_transform(%878, src_layout="OIHW", dst_layout="HWIO") /* ty=Tensor[(3, 3, 256, 256), float16] */;
%881 = cast(%model.backbone.body.layer3.4.bn2.weight, dtype="float16") /* ty=Tensor[(256), float16] */;
%882 = cast(%model.backbone.body.layer3.4.bn2.running_var, dtype="float16") /* ty=Tensor[(256), float16] */;
%883 = reshape(%882, newshape=[1, -1, 1, 1]) /* ty=Tensor[(1, 256, 1, 1), float16] */;
%884 = cast(0f /* ty=float32 */, dtype="float16") /* ty=float16 */;
%885 = add(%883, %884) /* ty=Tensor[(1, 256, 1, 1), float16] */;