-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathHRTAnalyzer.cpp
303 lines (251 loc) · 7.97 KB
/
HRTAnalyzer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
#include "HRTAnalyzer.h"
#include <QDebug>
HRTAnalyzer::HRTAnalyzer() { }
HRTAnalyzer::~HRTAnalyzer() { }
void HRTAnalyzer::runModule(const ECGRs & ecgrs, const ECGWaves & waves, const QRSClass & qrsclass, const ECGInfo & ecginfo, ECGHRT & hrt_data) {
#ifdef USE_MOCKED_INTERVALS_SIGNAL
int N = 380;
QRSClass qrsclassification;
//w takim wypadku zawsze USE_MOCKED_QRS_CLASSIFICATION
IntSignal tmpSig;
tmpSig = IntSignal(new WrappedVectorInt);
tmpSig->signal = gsl_vector_int_alloc(N);
for(int i=0; i<N; i++) {
tmpSig->set(i, VENTRICULUS);
}
qrsclassification.setQrsMorphology(tmpSig);
calculateHrtParams(RRtest,qrsclassification, N, hrt_data);
#else
QRSClass qrsclassification;
#ifdef USE_MOCKED_QRS_CLASSIFICATION
int N = ecgrs.count();
int f = ecginfo.channel_one.frequecy;
RRs = new double[N];
RRs[0] = -1.0;
for(int i = 1; i<N; i++) {
RRs[i] = double(ecgrs.GetRs().get()->get(i) - ecgrs.GetRs().get()->get(i-1))*1000.0/double(f);
}
IntSignal tmpSig;
tmpSig = IntSignal(new WrappedVectorInt);
tmpSig->signal = gsl_vector_int_alloc(N);
for(int i=0; i<N; i++) {
tmpSig->set(i, VENTRICULUS);
}
qrsclassification.setQrsMorphology(tmpSig);
calculateHrtParams(RRs, qrsclassification, N, hrt_data);
#else
int N = qrsclass.GetQRS_morphology()->signal->size;
RRs = new double[N];
syncRPeaksAndWaves(RRs,ecgrs,waves,ecginfo);
calculateHrtParams(RRs, qrsclass, N, hrt_data);
#endif
delete [] RRs;
#endif
hrt_data.offset=5;
for(int i=0; i<26; i++) {
hrt_data.rr.push_back(QPointF(double(i), hrt_data.avgSignal[i]));
}
hrt_data.ts.setLine(7.0,hrt_data.straightSignal[7],25.0,hrt_data.straightSignal[25]);
}
void HRTAnalyzer::setParams(ParametersTypes ¶meterTypes) { }
//"produkcja" sygna³u z interwa³ami R zgodnego z QRSami znalezionymi przez Waves
//taka synchronizacja zosta³a wprowadzona by unikn¹æ niezgodnoœci z QRSClass, które korzysta z Waves, a nie RPeaks
//w miejsca, w który wykryty jest QRS, ale brak RPeaku wstawiana jest wartoœæ interwa³u = -1
void HRTAnalyzer::syncRPeaksAndWaves(double * signal, const ECGRs & ecgrs, const ECGWaves & waves, const ECGInfo & ecginfo) {
int Nwaves = waves.GetQRS_onset()->signal->size;
int Nrpeaks = ecgrs.GetRs()->signal->size;
int f = ecginfo.channel_one.frequecy;
signal[0] = -1.0;
int iWaves = 1;
int iRpeaks = 1;
int qrsOnset;
int qrsEnd;
int rPeak;
while(iWaves<Nwaves && iRpeaks<Nrpeaks ) {
qrsOnset = waves.GetQRS_onset()->get(iWaves);
qrsEnd = waves.GetQRS_end()->get(iWaves);
rPeak = ecgrs.GetRs().get()->get(iRpeaks);
if(rPeak > qrsOnset && rPeak < qrsEnd) {
signal[iWaves] = double(rPeak - ecgrs.GetRs().get()->get(iRpeaks-1))*1000.0/double(f);
iRpeaks++;
iWaves++;
}
else if(rPeak <= qrsOnset) {
iRpeaks++;
}
else if(rPeak >= qrsEnd) {
signal[iWaves] = -1.0;
iWaves++;
}
}
while(iWaves<Nwaves) {
signal[iWaves] = -1.0;
}
}
// G³ówna funkcja, zwraca obiekt z danymi do wizualizacji
void HRTAnalyzer::calculateHrtParams(double *signal, const QRSClass & qrsclass, int size, ECGHRT & hrt_data)
{
vector<int> vpc_list = findVpcOnsets(signal, qrsclass, size);
hrt_data.setAllSignalsSize(vpc_list.size());
hrt_data.vpcCounter = vpc_list.size();
if(vpc_list.size() < 5)
{
hrt_data.isCorrect = 0;
#ifdef DEBUG
qDebug() << "Niestety, w zarejestrowanym sygnale nie uda³o siê znaleŸæ niezbêdnych 5 przedwczesnych pobudzeñ komorowych";
#endif
}
else {
hrt_data.isCorrect = 1;
double* avgTach = calculateAvgTach(signal, vpc_list);
double to = calculateTO(signal, size, vpc_list);
calculateTS(signal, size, vpc_list, avgTach, to, hrt_data);
}
}
vector<int> HRTAnalyzer::findVpcOnsets(double *signal, const QRSClass & qrsclass, int size)
{
vector<int> vpc_list;
for(int i = 6; i < size-19; i++)
{
//Sprawdzenie czy modu³ QRS uzna³ QRS zwi¹zany z danym interwa³em RR za komorowy
if(signal[i] != -1 && qrsclass.GetQRS_morphology()->get(i) == VENTRICULUS) {
// Interwa³ referencyjny
double mean5before = (signal[i-5] + signal[i-4] + signal[i-3] + signal[i-2] + signal[i-1])/5;
// Sprawdzenie czy interwa³ mo¿e byæ kandydatem na VPC
if((0.8 * mean5before < signal[i]) || (signal[i+1] < 1.1 * mean5before) || abs(signal[i-1] - signal[i-2]) > 200)
{
continue;
}
// Sprawdzenie czy d³ugoœæ jest >300 ms i <2000 ms
int param = 0;
for(int j = i - 5; j <= i + 19; j++)
{
if(j == i - 1 || j == i || j == i+1)
{
continue;
}
if(signal[j] > 2000 || signal[j] < 300)
{
param = 1;
break;
}
}
if(param == 1)
{
continue;
}
// Sprawdzenie czy 2 s¹siednie zwyk³e interwa³y maj¹ ró¿nicê mniejsz¹ ni¿ o 200 ms
// oraz czy ka¿dy ze zwyk³ych interwa³ów ró¿ni siê o mniej ni¿ 20% od interwa³u referencyjnego.
for(int j = i-5; j <= i + 19; j++)
{
if(j == i-1 || j == i || j == i+1)
{
continue;
}
if(abs(signal[j] - signal[j+1]) > 200 || (abs(signal[j] - mean5before) > 0.2 * mean5before))
{
param = 1;
break;
}
}
if(param == 1)
{
continue;
}
vpc_list.push_back(i-5);
}
}
return vpc_list;
}
double* HRTAnalyzer::calculateAvgTach(double *signal, vector<int> vpc_list) {
double *avgTach= new double[26];
for(int i = 0; i < 26; i++)
{
avgTach[i] = 0.0;
}
/* Obliczanie uœrednionego tachogramu */
for(int j = 0; j < vpc_list.size(); j++)
{
for(int i=0; i < 26; i++)
{
avgTach[i] = avgTach[i] + signal[vpc_list[j] + i];
}
}
for(int i = 0; i < 26; i++)
{
avgTach[i] = avgTach[i]/vpc_list.size();
}
return avgTach;
}
// wyliczenie TO
// Wzi¹³em nadal tê metodê, w której najpierw liczy siê wszystkie TO, a nastêpnie ich œredni¹
double HRTAnalyzer::calculateTO(double * signal, int size, vector<int> vpc_list)
{
double to = 0.0;
double sumto = 0.0;
for(int i = 0; i < vpc_list.size(); i++)
{
to = 100*((signal[vpc_list[i] + 7] + signal[vpc_list[i] + 8]) - (signal[vpc_list[i] + 3] + signal[vpc_list[i] + 4])) / (signal[vpc_list[i] + 3] + signal[vpc_list[i] + 4]);
sumto += to;
}
to = sumto/vpc_list.size();
return to;
}
/*
double HRTAnalyzer::calculateTO_2(double * signal, int size, double* avgTach)
{
double to = 0.0;
to = 100*((avgTach[7] + avgTach[8]) - (avgTach[3] + avgTach[4])) / (avgTach[3] + avgTach[4]);
return to;
}
*/
void HRTAnalyzer::calculateTS(double * signal, int size, vector<int> vpc_list, double* avgTach, double to, ECGHRT & hrt_data)
{
vector<double> A;
vector<double> B;
for (int i = 0; i < 15; i++)
{
double *x = new double[5];
for(int k = 0; k < 5; k++)
x[k] = k + i + 7;
Parameters res = Matrix::getLinearEquationParameters(x, avgTach+i+7 , 5);
A.push_back(res.A);
B.push_back(res.B);
}
// Wybór najwiêkszego A
double maxA = A[0];
for(int i = 1; i < A.size(); i++)
{
if(maxA < A[i]) maxA = A[i];
}
double parB = B[0];
for(int i = 0; i < A.size(); i++)
{
if(A[i] == maxA)
{
parB = B[i];
}
}
hrt_data.TO = to;
//====================USTAWIANIE OBIEKTU Z DANYMI DO WYŒWIETLENIA=======================
// Ustawienie œredniego sygna³u tachogramu oraz
// Ustawienie parametrów prostej ilustrujacej Turbulence Slope
for(int i = 0; i < hrt_data.SLENGTH; i++)
{
hrt_data.avgSignal[i] = avgTach[i];
hrt_data.straightSignal[i] = i*maxA + parB;
}
// Ustawienie wszystkich mo¿liwych sygna³ów
for(int i = 0; i < hrt_data.ALL_SIGNALS_LENGTH; i++)
{
for(int j = 0; j < hrt_data.SLENGTH; j++)
{
double a = vpc_list[i];
hrt_data.allSignals[i][j] = signal[vpc_list[i] + j];
}
}
hrt_data.y1_to = hrt_data.avgSignal[7];
hrt_data.length_to = hrt_data.avgSignal[7]*hrt_data.TO/100;
hrt_data.TS=maxA;
delete [] avgTach;
}