diff --git a/theories/xmathcomp/various.v b/theories/xmathcomp/various.v index a064fcc..fd5a9d4 100644 --- a/theories/xmathcomp/various.v +++ b/theories/xmathcomp/various.v @@ -6,260 +6,39 @@ Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. -(*********************) -(* package ssreflect *) -(*********************) - -(***********) -(* ssrbool *) -(***********) - -Lemma classicPT (P : Type) : classically P <-> ((P -> False) -> False). -Proof. -split; first by move=>/(_ false) PFF PF; suff: false by []; apply: PFF => /PF. -by move=> PFF []// Pf; suff: False by []; apply: PFF => /Pf. -Qed. - -Lemma classic_sigW T (P : T -> Prop) : - classically (exists x, P x) <-> classically (sig P). -Proof. by split; apply: classic_bind => -[x Px]; apply/classicW; exists x. Qed. - -Lemma classic_ex T (P : T -> Prop) : - ~ (forall x, ~ P x) -> classically (ex P). -Proof. -move=> NfNP; apply/classicPT => exPF; apply: NfNP => x Px. -by apply: exPF; exists x. -Qed. - -(*******) -(* seq *) -(*******) - -Lemma subset_mapP (X Y : eqType) (f : X -> Y) (s : seq X) (s' : seq Y) : - {subset s' <= map f s} <-> exists2 t, all (mem s) t & s' = map f t. -Proof. -split => [|[r /allP/= rE ->] _ /mapP[x xr ->]]; last by rewrite map_f ?rE. -elim: s' => [|x s' IHs'] subss'; first by exists [::]. -have /mapP[y ys ->] := subss' _ (mem_head _ _). -have [x' x's'|t st ->] := IHs'; first by rewrite subss'// inE x's' orbT. -by exists (y :: t); rewrite //= ys st. -Qed. -Arguments subset_mapP {X Y}. - -(*********) -(* bigop *) -(*********) - -Lemma big_rcons_idx (R : Type) (idx : R) (op : R -> R -> R) (I : Type) - (i : I) (r : seq I) (P : pred I) (F : I -> R) - (idx' := if P i then op (F i) idx else idx) : - \big[op/idx]_(j <- rcons r i | P j) F j = \big[op/idx']_(j <- r | P j) F j. -Proof. by elim: r => /= [|j r]; rewrite ?(big_nil, big_cons)// => ->. Qed. - -Lemma big_change_idx (R : Type) (idx : R) (op : Monoid.law idx) (I : Type) - (x : R) (r : seq I) (P : pred I) (F : I -> R) : - op (\big[op/idx]_(j <- r | P j) F j) x = \big[op/x]_(j <- r | P j) F j. -Proof. -elim: r => [|i r]; rewrite ?(big_nil, big_cons, Monoid.mul1m)// => <-. -by case: ifP => // Pi; rewrite Monoid.mulmA. -Qed. -Lemma big_rcons (R : Type) (idx : R) (op : Monoid.law idx) (I : Type) - i r (P : pred I) F : - \big[op/idx]_(j <- rcons r i | P j) F j = - op (\big[op/idx]_(j <- r | P j) F j) (if P i then F i else idx). -Proof. by rewrite big_rcons_idx -big_change_idx Monoid.mulm1. Qed. - -(********) -(* path *) -(********) - -Lemma sortedP T x (s : seq T) (r : rel T) : - reflect (forall i, i.+1 < size s -> r (nth x s i) (nth x s i.+1)) (sorted r s). -Proof. -elim: s => [|y [|z s]//= IHs]/=; do ?by constructor. -apply: (iffP andP) => [[ryz rzs] [|i]// /IHs->//|rS]. -by rewrite (rS 0); split=> //; apply/IHs => i /(rS i.+1). -Qed. - -(*********) -(* tuple *) -(*********) - -Section tnth_shift. -Context {T : Type} {n1 n2} (t1 : n1.-tuple T) (t2 : n2.-tuple T). - -Lemma tnth_lshift i : tnth [tuple of t1 ++ t2] (lshift n2 i) = tnth t1 i. -Proof. -have x0 := tnth_default t1 i; rewrite !(tnth_nth x0). -by rewrite nth_cat size_tuple /= ltn_ord. -Qed. - -Lemma tnth_rshift j : tnth [tuple of t1 ++ t2] (rshift n1 j) = tnth t2 j. -Proof. -have x0 := tnth_default t2 j; rewrite !(tnth_nth x0). -by rewrite nth_cat size_tuple ltnNge leq_addr /= addKn. -Qed. -End tnth_shift. - -(*********) -(* prime *) -(*********) - -Lemma primeNsig (n : nat) : ~~ prime n -> (2 <= n)%N -> - { d : nat | (1 < d < n)%N & (d %| n)%N }. -Proof. -move=> primeN_n le2n; case/pdivP: {+}le2n => d /primeP[lt1d prime_d] dvd_dn. -exists d => //; rewrite lt1d /= ltn_neqAle dvdn_leq 1?andbT //; last first. - by apply: (leq_trans _ le2n). -by apply: contra primeN_n => /eqP <-; apply/primeP. -Qed. - -Lemma totient_gt1 n : (totient n > 1)%N = (n > 2)%N. -Proof. -case: n => [|[|[|[|n']]]]//=; set n := n'.+4; rewrite [RHS]isT. -have [pn2|/allPn[p]] := altP (@allP _ (eq_op^~ 2%N) (primes n)); last first. - rewrite mem_primes/=; move: p => [|[|[|p']]]//; set p := p'.+3. - move=> /andP[p_prime dvdkn]. - have [//|[|k]// cpk ->] := (@pfactor_coprime _ n p_prime). - rewrite totient_coprime ?coprimeXr 1?coprime_sym//. - rewrite totient_pfactor ?logn_gt0 ?mem_primes ?p_prime// mulnCA. - by rewrite (@leq_trans p.-1) ?leq_pmulr ?muln_gt0 ?expn_gt0 ?totient_gt0. -have pnNnil : primes n != [::]. - apply: contraTneq isT => pn0. - by have := @prod_prime_decomp n isT; rewrite prime_decompE pn0/= big_nil. -have := @prod_prime_decomp n isT; rewrite prime_decompE. -case: (primes n) pnNnil pn2 (primes_uniq n) => [|p [|p' r]]//=; last first. - move=> _ eq2; rewrite !inE [p](eqP (eq2 _ _)) ?inE ?eqxx//. - by rewrite [p'](eqP (eq2 _ _)) ?inE ?eqxx// orbT. -move=> _ /(_ _ (mem_head _ _))/eqP-> _; rewrite big_cons big_nil muln1/=. -case: (logn 2 n) => [|[|k]]// ->. -by rewrite totient_pfactor//= expnS mul1n leq_pmulr ?expn_gt0. -Qed. - (********************) (* package fingroup *) (********************) (*************) -(* gproduct? *) +(* gproduct *) (*************) -Section ExternalNDirProd. - -Variables (n : nat) (gT : 'I_n -> finGroupType). -Notation gTn := {dffun forall i, gT i}. - -Definition extnprod_mulg (x y : gTn) : gTn := [ffun i => (x i * y i)%g]. -Definition extnprod_invg (x : gTn) : gTn := [ffun i => (x i)^-1%g]. - -Lemma extnprod_mul1g : left_id [ffun=> 1%g] extnprod_mulg. -Proof. by move=> x; apply/ffunP => i; rewrite !ffunE mul1g. Qed. - -Lemma extnprod_mulVg : left_inverse [ffun=> 1%g] extnprod_invg extnprod_mulg. -Proof. by move=> x; apply/ffunP => i; rewrite !ffunE mulVg. Qed. - -Lemma extnprod_mulgA : associative extnprod_mulg. -Proof. by move=> x y z; apply/ffunP => i; rewrite !ffunE mulgA. Qed. - -HB.instance Definition _ := isMulGroup.Build gTn - extnprod_mulgA extnprod_mul1g extnprod_mulVg. - -End ExternalNDirProd. - -Definition setXn n (fT : 'I_n -> finType) (A : forall i, {set fT i}) : - {set {dffun forall i, fT i}} := - [set x : {dffun forall i, fT i} | [forall i : 'I_n, x i \in A i]]. - -Lemma setXn_group_set n (gT : 'I_n -> finGroupType) (G : forall i, {group gT i}) : - group_set (setXn G). -Proof. -apply/andP => /=; split. - by rewrite inE; apply/forallP => i; rewrite ffunE group1. -apply/subsetP => x /mulsgP[u v]; rewrite !inE => /forallP uG /forallP vG {x}->. -by apply/forallP => x; rewrite ffunE groupM ?uG ?vG. -Qed. - -Canonical setXn_group n (gT : 'I_n -> finGroupType) (G : forall i, {group gT i}) := - Group (setXn_group_set G). - -Lemma setX0 (gT : 'I_0 -> finGroupType) (G : forall i, {group gT i}) : - setXn G = 1%g. -Proof. -apply/setP => x; rewrite !inE; apply/forallP/idP => [_|? []//]. -by apply/eqP/ffunP => -[]. -Qed. - -(********) -(* perm *) -(********) - -Lemma tpermJt (X : finType) (x y z : X) : x != z -> y != z -> - (tperm x z ^ tperm x y)%g = tperm y z. -Proof. -by move=> neq_xz neq_yz; rewrite tpermJ tpermL [tperm _ _ z]tpermD. -Qed. - -Lemma gen_tperm (X : finType) x : - <<[set tperm x y | y in X]>>%g = [set: {perm X}]. -Proof. -apply/eqP; rewrite eqEsubset subsetT/=; apply/subsetP => s _. -have [ts -> _] := prod_tpermP s; rewrite group_prod// => -[/= y z] _. -have [<-|Nyz] := eqVneq y z; first by rewrite tperm1 group1. -have [<-|Nxz] := eqVneq x z; first by rewrite tpermC mem_gen ?imset_f. -by rewrite -(tpermJt Nxz Nyz) groupJ ?mem_gen ?imset_f. -Qed. - -Lemma prime_orbit (X : finType) x c : - prime #|X| -> #[c]%g = #|X| -> orbit 'P <[c]> x = [set: X]. -Proof. -move=> X_prime ord_c; have dvd_orbit y : (#|orbit 'P <[c]> y| %| #|X|)%N. - by rewrite (dvdn_trans (dvdn_orbit _ _ _))// [#|<[_]>%g|]ord_c. -have [] := boolP [forall y, #|orbit 'P <[c]> y| == 1%N]. - move=> /'forall_eqP-/(_ _)/card_orbit1 orbit1; suff c_eq_1 : c = 1%g. - by rewrite c_eq_1 ?order1 in ord_c; rewrite -ord_c in X_prime. - apply/permP => y; rewrite perm1. - suff: c y \in orbit 'P <[c]> y by rewrite orbit1 inE => /eqP->. - by apply/orbitP; exists c => //; rewrite mem_gen ?inE. -move=> /forallPn[y orbit_y_neq0]; have orbit_y : orbit 'P <[c]> y = [set: X]. - apply/eqP; rewrite eqEcard subsetT cardsT. - by have /(prime_nt_dvdP X_prime orbit_y_neq0)<-/= := dvd_orbit y. -by have /orbit_in_eqP-> : x \in orbit 'P <[c]> y; rewrite ?subsetT ?orbit_y. -Qed. - -Lemma prime_astab (X : finType) (x : X) (c : {perm X}) : - prime #|X| -> #[c]%g = #|X| -> 'C_<[c]>[x | 'P]%g = 1%g. -Proof. -move=> X_prime ord_c; have /= := card_orbit_stab 'P [group of <[c]>%g] x. -rewrite prime_orbit// cardsT [#|<[_]>%g|]ord_c -[RHS]muln1 => /eqP. -by rewrite eqn_mul2l gtn_eqF ?prime_gt0//= -trivg_card1 => /eqP. -Qed. +Definition setX0 := groupX0. +#[deprecated(since="mathcomp 2.3",note="Use groupX0 instead.")] (*******************) (* package algebra *) (*******************) -Import GRing.Theory. -Local Open Scope ring_scope. -Notation has_char0 L := ([char L] =i pred0). - -(**********) -(* ssralg *) -(**********) +(********) +(* poly *) +(********) -Lemma iter_addr (V : zmodType) n x y : iter n (+%R x) y = x *+ n + y :> V. -Proof. by elim: n => [|n ih]; rewrite ?add0r //= ih mulrS addrA. Qed. +Local Notation "p ^^ f" := (map_poly f p) + (at level 30, f at level 30, format "p ^^ f"). -Lemma prodrMl {R : comRingType} {I : finType} (A : pred I) (x : R) F : - \prod_(i in A) (x * F i) = x ^+ #|A| * \prod_(i in A) F i. -Proof. -rewrite -sum1_card; elim/big_rec3: _; first by rewrite expr0 mulr1. -by move=> i y p z iA ->; rewrite mulrACA exprS. -Qed. +#[deprecated(since="mathcomp 2.2.0",note="Use polyOverXsubC instead.")] +Lemma poly_XsubC_over {R : ringType} c (S : subringClosed R) : + c \in S -> 'X - c%:P \is a polyOver S. +Proof. by move=> cS; rewrite rpredB ?polyOverC ?polyOverX. Qed. -Lemma expr_sum {R : ringType} {T : Type} (x : R) (F : T -> nat) P s : - x ^+ (\sum_(i <- s | P i) F i) = \prod_(i <- s | P i) x ^+ (F i). -Proof. by apply: big_morph; [exact: exprD | exact: expr0]. Qed. +#[deprecated(since="mathcomp 2.2.0",note="Use polyOverXnsubC instead.")] +Lemma poly_XnsubC_over {R : ringType} n c (S : subringClosed R) : + c \in S -> 'X^n - c%:P \is a polyOver S. +Proof. by move=> cS; rewrite rpredB ?rpredX ?polyOverX ?polyOverC. Qed. +#[deprecated(since="mathcomp 2.2.0",note="Use prim_root_natf_eq0 instead.")] Lemma prim_root_natf_neq0 (F : fieldType) n (w : F) : n.-primitive_root w -> (n%:R != 0 :> F). Proof. @@ -278,207 +57,7 @@ rewrite pfactor_dvdn// ltn_geF// -[k]muln1 logn_Gauss ?logn1//. by rewrite logn_gt0 mem_primes p_prime dvdpn n_gt0. Qed. -(**********) -(* ssrnum *) -(**********) - -Section ssrnum. -Import Num.Theory. - -Lemma CrealJ (C : numClosedFieldType) : - {mono (@Num.conj_op C) : x / x \is Num.real}. -Proof. -suff realK : {homo (@Num.conj_op C) : x / x \is Num.real}. - by move=> x; apply/idP/idP => /realK//; rewrite conjCK. -by move=> x xreal; rewrite conj_Creal. -Qed. -End ssrnum. - -(**********) -(* ssrint *) -(**********) - -Lemma dvdz_charf (R : ringType) (p : nat) : - p \in [char R] -> forall n : int, (p %| n)%Z = (n%:~R == 0 :> R). -Proof. -move=> charRp [] n; rewrite [LHS](dvdn_charf charRp)//. -by rewrite NegzE abszN rmorphN// oppr_eq0. -Qed. - -(********) -(* poly *) -(********) - -Local Notation "p ^^ f" := (map_poly f p) - (at level 30, f at level 30, format "p ^^ f"). - -Lemma irredp_XaddC (F : fieldType) (x : F) : irreducible_poly ('X + x%:P). -Proof. by rewrite -[x]opprK rmorphN; apply: irredp_XsubC. Qed. - -Lemma lead_coef_XnsubC {R : ringType} n (c : R) : (0 < n)%N -> - lead_coef ('X^n - c%:P) = 1. -Proof. -move=> gt0_n; rewrite lead_coefDl ?lead_coefXn //. -by rewrite size_opp size_polyC size_polyXn ltnS (leq_trans (leq_b1 _)). -Qed. - -Lemma lead_coef_XsubC {R : ringType} (c : R) : - lead_coef ('X - c%:P) = 1. -Proof. by apply: (@lead_coef_XnsubC _ 1%N). Qed. - -Lemma monic_XsubC {R : ringType} (c : R) : 'X - c%:P \is monic. -Proof. by rewrite monicE lead_coef_XsubC. Qed. - -Lemma monic_XnsubC {R : ringType} n (c : R) : (0 < n)%N -> 'X^n - c%:P \is monic. -Proof. by move=> gt0_n; rewrite monicE lead_coef_XnsubC. Qed. - -Lemma size_XnsubC {R : ringType} n (c : R) : (0 < n)%N -> size ('X^n - c%:P) = n.+1. -Proof. -move=> gt0_n; rewrite size_addl ?size_polyXn //. -by rewrite size_opp size_polyC; case: (c =P 0). -Qed. - -Lemma map_polyXsubC (aR rR : ringType) (f : {rmorphism aR -> rR}) x : - map_poly f ('X - x%:P) = 'X - (f x)%:P. -Proof. by rewrite rmorphB/= map_polyX map_polyC. Qed. - -Lemma poly_XsubC_over {R : ringType} c (S : subringClosed R) : - c \in S -> 'X - c%:P \is a polyOver S. -Proof. by move=> cS; rewrite rpredB ?polyOverC ?polyOverX. Qed. - -Lemma poly_XnsubC_over {R : ringType} n c (S : subringClosed R) : - c \in S -> 'X^n - c%:P \is a polyOver S. -Proof. by move=> cS; rewrite rpredB ?rpredX ?polyOverX ?polyOverC. Qed. - -Lemma lead_coef_prod {R : idomainType} (ps : seq {poly R}) : - lead_coef (\prod_(p <- ps) p) = \prod_(p <- ps) lead_coef p. -Proof. by apply/big_morph/lead_coef1; apply: lead_coefM. Qed. - -Lemma lead_coef_prod_XsubC {R : idomainType} (cs : seq R) : - lead_coef (\prod_(c <- cs) ('X - c%:P)) = 1. -Proof. -rewrite -(big_map (fun c : R => 'X - c%:P) xpredT idfun) /=. -rewrite lead_coef_prod big_seq (eq_bigr (fun=> 1)) ?big1 //=. -by move=> i /mapP[c _ ->]; apply: lead_coef_XsubC. -Qed. - -Lemma coef0M {R : ringType} (p q : {poly R}) : (p * q)`_0 = p`_0 * q`_0. -Proof. by rewrite coefM big_ord1. Qed. - -Lemma coef0_prod {R : ringType} {T : Type} (ps : seq T) (F : T -> {poly R}) P : - (\prod_(p <- ps | P p) F p)`_0 = \prod_(p <- ps | P p) (F p)`_0. -Proof. -by apply: (big_morph (fun p : {poly R} => p`_0)); - [apply: coef0M | rewrite coefC eqxx]. -Qed. - -Lemma map_prod_XsubC (aR rR : ringType) (f : {rmorphism aR -> rR}) rs : - map_poly f (\prod_(x <- rs) ('X - x%:P)) = - \prod_(x <- map f rs) ('X - x%:P). -Proof. -by rewrite rmorph_prod big_map; apply/eq_bigr => x /=; rewrite map_polyXsubC. -Qed. - -Lemma eq_in_map_poly_id0 (aR rR : ringType) (f g : aR -> rR) - (S : addrClosed aR) : - f 0 = 0 -> g 0 = 0 -> - {in S, f =1 g} -> {in polyOver S, map_poly f =1 map_poly g}. -Proof. -move=> f0 g0 eq_fg p pP; apply/polyP => i. -by rewrite !coef_map_id0// eq_fg// (polyOverP _). -Qed. - -Lemma eq_in_map_poly (aR rR : ringType) (f g : {additive aR -> rR}) - (S : addrClosed aR) : - {in S, f =1 g} -> {in polyOver S, map_poly f =1 map_poly g}. -Proof. by move=> /eq_in_map_poly_id0; apply; rewrite //?raddf0. Qed. - -Lemma mapf_root (F : fieldType) (R : ringType) (f : {rmorphism F -> R}) - (p : {poly F}) (x : F) : - root (p ^^ f) (f x) = root p x. -Proof. by rewrite !rootE horner_map fmorph_eq0. Qed. - -Section multiplicity. -Variable (L : fieldType). - -Definition mup (x : L) (p : {poly L}) := - [arg max_(n > (0 : 'I_(size p).+1) | ('X - x%:P) ^+ n %| p) n] : nat. - -Lemma mup_geq x q n : q != 0 -> (n <= mup x q)%N = (('X - x%:P) ^+ n %| q). -Proof. -move=> q_neq0; rewrite /mup; symmetry. -case: arg_maxnP; rewrite ?expr0 ?dvd1p//= => i i_dvd gti. -case: ltnP => [|/dvdp_exp2l/dvdp_trans]; last exact. -apply: contraTF => dvdq; rewrite -leqNgt. -suff n_small : (n < (size q).+1)%N by exact: (gti (Ordinal n_small)). -by rewrite ltnS ltnW// -(size_exp_XsubC _ x) dvdp_leq. -Qed. - -Lemma mup_leq x q n : q != 0 -> (mup x q <= n)%N = ~~ (('X - x%:P) ^+ n.+1 %| q). -Proof. by move=> qN0; rewrite leqNgt mup_geq. Qed. - -Lemma mup_ltn x q n : q != 0 -> (mup x q < n)%N = ~~ (('X - x%:P) ^+ n %| q). -Proof. by move=> qN0; rewrite ltnNge mup_geq. Qed. - -Lemma XsubC_dvd x q : q != 0 -> ('X - x%:P %| q) = (0 < mup x q)%N. -Proof. by move=> /mup_geq-/(_ _ 1%N)/esym; apply. Qed. - -Lemma mup_XsubCX n (x y : L) : - mup x (('X - y%:P) ^+ n) = (if (y == x) then n else 0)%N. -Proof. -have Xxn0 : ('X - y%:P) ^+ n != 0 by rewrite ?expf_neq0 ?polyXsubC_eq0. -apply/eqP; rewrite eqn_leq mup_leq ?mup_geq//. -have [->|Nxy] := eqVneq x y. - by rewrite /= dvdpp ?dvdp_Pexp2l ?size_XsubC ?ltnn. -by rewrite dvd1p dvdp_XsubCl /root !hornerE ?horner_exp ?hornerE expf_neq0// subr_eq0. -(* FIXME: remove ?horner_exp ?hornerE when requiring MC >= 1.16.0 *) -Qed. - -Lemma mupNroot (x : L) q : ~~ root q x -> mup x q = 0%N. -Proof. -move=> qNx; have qN0 : q != 0 by apply: contraNneq qNx => ->; rewrite root0. -by move: qNx; rewrite -dvdp_XsubCl XsubC_dvd// lt0n negbK => /eqP. -Qed. - -Lemma mupMl x q1 q2 : ~~ root q1 x -> mup x (q1 * q2) = mup x q2. -Proof. -move=> q1Nx; have q1N0 : q1 != 0 by apply: contraNneq q1Nx => ->; rewrite root0. -have [->|q2N0] := eqVneq q2 0; first by rewrite mulr0. -apply/esym/eqP; rewrite eqn_leq mup_geq ?mulf_neq0// dvdp_mull -?mup_geq//=. -rewrite mup_leq ?mulf_neq0// Gauss_dvdpr -?mup_ltn//. -by rewrite coprimep_expl// coprimep_sym coprimep_XsubC. -Qed. - -Lemma mupM x q1 q2 : q1 != 0 -> q2 != 0 -> - mup x (q1 * q2) = (mup x q1 + mup x q2)%N. -Proof. -move=> q1N0 q2N0; apply/eqP; rewrite eqn_leq mup_leq ?mulf_neq0//. -rewrite mup_geq ?mulf_neq0// exprD ?dvdp_mul; do ?by rewrite -mup_geq. -have [m1 [r1]] := multiplicity_XsubC q1 x; rewrite q1N0 /= => r1Nx ->. -have [m2 [r2]] := multiplicity_XsubC q2 x; rewrite q2N0 /= => r2Nx ->. -rewrite !mupMl// ?mup_XsubCX eqxx/= mulrACA exprS exprD. -rewrite dvdp_mul2r ?mulf_neq0 ?expf_neq0 ?polyXsubC_eq0//. -by rewrite dvdp_XsubCl rootM negb_or r1Nx r2Nx. -Qed. - -Lemma mu_prod_XsubC (x : L) (s : seq L) : - mup x (\prod_(x <- s) ('X - x%:P)) = count_mem x s. -Proof. -elim: s => [|y s IHs]; rewrite (big_cons, big_nil)/=. - by rewrite mupNroot// root1. -rewrite mupM ?polyXsubC_eq0// ?monic_neq0 ?monic_prod_XsubC//. -by rewrite IHs (@mup_XsubCX 1). -Qed. - -Lemma prod_XsubC_eq (s t : seq L) : - \prod_(x <- s) ('X - x%:P) = \prod_(x <- t) ('X - x%:P) -> perm_eq s t. -Proof. -move=> eq_prod; apply/allP => x _ /=; apply/eqP. -by have /(congr1 (mup x)) := eq_prod; rewrite !mu_prod_XsubC. -Qed. - -End multiplicity. - +#[deprecated(since="mathcomp 2.2.0",note="Use prim_root_eq0 instead.")] Lemma primitive_root_eq0 (F : fieldType) n (w : F) : n.-primitive_root w -> (w == 0) = (n == 0%N). Proof. @@ -488,98 +67,6 @@ move=> /prim_expr_order/esym/eqP. by rewrite expr0n; case: (n =P 0%N); rewrite ?oner_eq0. Qed. -Lemma dvdp_exp_XsubC (R : idomainType) (p : {poly R}) (c : R) n : - reflect (exists2 k, (k <= n)%N & p %= ('X - c%:P) ^+ k) - (p %| ('X - c%:P) ^+ n). -Proof. -apply: (iffP idP) => [|[k lkn /eqp_dvdl->]]; last by rewrite dvdp_exp2l. -move=> /Pdiv.WeakIdomain.dvdpP[[/= a q] a_neq0]. -have [m [r]] := multiplicity_XsubC p c; have [->|pN0]/= := eqVneq p 0. - rewrite mulr0 => _ _ /eqP; rewrite scale_poly_eq0 (negPf a_neq0)/=. - by rewrite expf_eq0/= andbC polyXsubC_eq0. -move=> rNc ->; rewrite mulrA => eq_qrm; exists m. - have: ('X - c%:P) ^+ m %| a *: ('X - c%:P) ^+ n by rewrite eq_qrm dvdp_mull. - by rewrite (eqp_dvdr _ (eqp_scale _ _))// dvdp_Pexp2l// size_XsubC. -suff /eqP : size r = 1%N. - by rewrite size_poly_eq1 => /eqp_mulr/eqp_trans->//; rewrite mul1r eqpxx. -have : r %| a *: ('X - c%:P) ^+ n by rewrite eq_qrm mulrAC dvdp_mull. -rewrite (eqp_dvdr _ (eqp_scale _ _))//. -move: rNc; rewrite -coprimep_XsubC => /(coprimep_expr n) /coprimepP. -by move=> /(_ _ (dvdpp _)); rewrite -size_poly_eq1 => /(_ _)/eqP. -Qed. - -Lemma eisenstein (p : nat) (q : {poly int}) : prime p -> (size q != 1)%N -> - (~~ (p %| lead_coef q))%Z -> (~~ ((p : int) ^+ 2 %| q`_0))%Z -> - (forall i, (i < (size q).-1)%N -> p %| q`_i)%Z -> - irreducible_poly (map_poly (intr : int -> rat) q). -Proof. -move=> p_prime qN1 Ndvd_pql Ndvd_pq0 dvd_pq. -have qN0 : q != 0 by rewrite -lead_coef_eq0; apply: contraNneq Ndvd_pql => ->. -split. - rewrite size_map_poly_id0 ?intr_eq0 ?lead_coef_eq0//. - by rewrite ltn_neqAle eq_sym qN1 size_poly_gt0. -move=> f' +/dvdpP_rat_int[f [d dN0 feq]]; rewrite {f'}feq size_scale// => fN1. -move=> /= [g q_eq]; rewrite q_eq (eqp_trans (eqp_scale _ _))//. -have fN0 : f != 0 by apply: contra_neq qN0; rewrite q_eq => ->; rewrite mul0r. -have gN0 : g != 0 by apply: contra_neq qN0; rewrite q_eq => ->; rewrite mulr0. -rewrite size_map_poly_id0 ?intr_eq0 ?lead_coef_eq0// in fN1. -have [/eqP/size_poly1P[c cN0 ->]|gN1] := eqVneq (size g) 1%N. - by rewrite mulrC mul_polyC map_polyZ/= eqp_sym eqp_scale// intr_eq0. -have c_neq0 : (lead_coef q)%:~R != 0 :> 'F_p - by rewrite -(dvdz_charf (char_Fp _)). -have : map_poly (intr : int -> 'F_p) q = (lead_coef q)%:~R *: 'X^(size q).-1. - apply/val_inj/(@eq_from_nth _ 0) => [|i]; rewrite size_map_poly_id0//. - by rewrite size_scale// size_polyXn -polySpred. - move=> i_small; rewrite coef_poly i_small coefZ coefXn lead_coefE. - move: i_small; rewrite polySpred// ltnS/=. - case: ltngtP => // [i_lt|->]; rewrite (mulr1, mulr0)//= => _. - by apply/eqP; rewrite -(dvdz_charf (char_Fp _))// dvd_pq. -rewrite [in LHS]q_eq rmorphM/=. -set c := (X in X *: _); set n := (_.-1). -set pf := map_poly _ f; set pg := map_poly _ g => pfMpg. -have dvdXn (r : {poly _}) : size r != 1%N -> r %| c *: 'X^n -> r`_0 = 0. - move=> rN1; rewrite (eqp_dvdr _ (eqp_scale _ _))//. - rewrite -['X]subr0; move=> /dvdp_exp_XsubC[k lekn]; rewrite subr0. - move=> /eqpP[u /andP[u1N0 u2N0]]; have [->|k_gt0] := posnP k. - move=> /(congr1 (size \o val))/eqP. - by rewrite /= !size_scale// size_polyXn (negPf rN1). - move=> /(congr1 (fun p : {poly _} => p`_0))/eqP. - by rewrite !coefZ coefXn ltn_eqF// mulr0 mulf_eq0 (negPf u1N0) => /eqP. -suff : ((p : int) ^+ 2 %| q`_0)%Z by rewrite (negPf Ndvd_pq0). -have := c_neq0; rewrite q_eq coefM big_ord1. -rewrite lead_coefM rmorphM mulf_eq0 negb_or => /andP[lpfN0 qfN0]. -have pfN1 : size pf != 1%N by rewrite size_map_poly_id0. -have pgN1 : size pg != 1%N by rewrite size_map_poly_id0. -have /(dvdXn _ pgN1) /eqP : pg %| c *: 'X^n by rewrite -pfMpg dvdp_mull. -have /(dvdXn _ pfN1) /eqP : pf %| c *: 'X^n by rewrite -pfMpg dvdp_mulr. -by rewrite !coef_map// -!(dvdz_charf (char_Fp _))//; apply: dvdz_mul. -Qed. - -(***********) -(* polydiv *) -(***********) - -Lemma eqpW (R : idomainType) (p q : {poly R}) : p = q -> p %= q. -Proof. by move->; rewrite eqpxx. Qed. - -Lemma horner_mod (R : fieldType) (p q : {poly R}) x : root q x -> - (p %% q).[x] = p.[x]. -Proof. -by move=> /eqP qx0; rewrite [p in RHS](divp_eq p q) !hornerE qx0 mulr0 add0r. -Qed. - -Lemma root_dvdp (F : idomainType) (p q : {poly F}) (x : F) : - root p x -> p %| q -> root q x. -Proof. rewrite -!dvdp_XsubCl; exact: dvdp_trans. Qed. - -(**********) -(* vector *) -(**********) - -Lemma SubvsE (F0 : fieldType) (L : vectType F0) (k : {vspace L}) x (xk : x \in k) : - Subvs xk = vsproj k x. -Proof. by apply/val_inj; rewrite /= vsprojK. Qed. - (*****************) (* package field *) (*****************)