From fcbd61e944606efeb400f635ef754e24f5cbf84f Mon Sep 17 00:00:00 2001 From: willdumm Date: Wed, 6 Mar 2024 21:51:14 +0000 Subject: [PATCH] =?UTF-8?q?Deploying=20to=20docs=20from=20@=20matsengrp/gc?= =?UTF-8?q?tree@ff0890c7542be498d93aefb6a663020d3d31f2d5=20=F0=9F=9A=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../gctree.out.inference.abundance_rank.svg | 122 +++++++++--------- _images/newranking.tree_stats.pairplot.png | Bin 195730 -> 195730 bytes _images/rendering-demo_20_0.png | Bin 33862 -> 33749 bytes _modules/gctree/branching_processes.html | 35 ++--- _modules/gctree/isotyping.html | 10 +- _modules/gctree/mutation_model.html | 6 +- _modules/gctree/utils.html | 1 + quickstart.html | 22 +--- rendering-demo.ipynb | 82 ++++++------ searchindex.js | 2 +- 10 files changed, 134 insertions(+), 146 deletions(-) diff --git a/_images/gctree.out.inference.abundance_rank.svg b/_images/gctree.out.inference.abundance_rank.svg index d0596fc..e865750 100644 --- a/_images/gctree.out.inference.abundance_rank.svg +++ b/_images/gctree.out.inference.abundance_rank.svg @@ -6,11 +6,11 @@ - 2024-01-22T22:15:51.489880 + 2024-03-06T21:50:57.368980 image/svg+xml - Matplotlib v3.8.2, https://matplotlib.org/ + Matplotlib v3.8.3, https://matplotlib.org/ @@ -43,7 +43,7 @@ L 80.046211 307.584 L 80.046211 54.144 L 73.832727 54.144 z -" clip-path="url(#pcc28759d24)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> +" clip-path="url(#pcebb3aa58c)"/> - - + @@ -418,7 +418,7 @@ z - + @@ -448,7 +448,7 @@ z - + @@ -488,7 +488,7 @@ z - + @@ -536,7 +536,7 @@ z - + @@ -751,12 +751,12 @@ z - - + @@ -769,7 +769,7 @@ L -3.5 0 - + @@ -782,7 +782,7 @@ L -3.5 0 - + @@ -795,7 +795,7 @@ L -3.5 0 - + @@ -840,7 +840,7 @@ z - + @@ -894,7 +894,7 @@ z - + @@ -908,7 +908,7 @@ z - + @@ -922,7 +922,7 @@ z - + @@ -936,7 +936,7 @@ z - + @@ -1115,7 +1115,7 @@ L 414.72 41.472 - + diff --git a/_images/newranking.tree_stats.pairplot.png b/_images/newranking.tree_stats.pairplot.png index 095a16e9b9a3bf5a76d4770d9bf18fb0f9298ef3..e3ea9b7918e4e9f0c8935d482c5e5e178765d3c2 100644 GIT binary patch delta 49 zcmbRAlY7!n?g<`p#yScaB_##LR{Hw6i6sR&`6W4-NqYH3>H5c?MFcmdwWcv{O=Hse F0|4kP6S@EZ delta 49 zcmbRAlY7!n?g<`pMmh=^B_##LR{Hw6i6sR&`6W4-NqYH3>G}%4{~c*eYfWR^n#QE_ F2LSAs6g~g| diff --git a/_images/rendering-demo_20_0.png b/_images/rendering-demo_20_0.png index 8604e49269dba44f8bd430ddc09921bd721dd72b..1075944243d356f2caa20e6352e1582dd1e28de0 100644 GIT binary patch literal 33749 zcmd?Qg;SeN*f$yq#Vy6%rN!OdixnyER@~i-7l&dkZUu_F6Fj&SD6T0U-2DsBd)_nW zPxxleJ=w`7>zDqn-MznkQjx32~F=T=&F}LuH`e*>7>2#32hj*9y0cCO*D1s{c|{hxgt$OrZ}Khsj;(mVcke#= zo*@afuis64UtB#Ay%@Vdu45jhq^71mpsL=f=su1x^LJi@kK#rs&&E{iww_f9j*5z! zAa6g6sre;HQk*8JbPqYQEs?_g#N6;LDykH$6r8Ys;$Qi`NeSO=OY_Q+rqB+1SQ5OJA@|C4w4=&)p9;2e( z1c&niVUHT1W(wAZni>^=zw}x|8m?P16E>YFMu3hr&TEyofd7AXQjk+(i6Z$$G-n$| zmD$4Q7C)Y!#~Cra%^F9VQE#IEqu*7A0}q|f=QJ!1L3B1UooY`(X*jx}I_C0h1R(J4 z#Q5c&fS812P9=26t{u`)iu!je`Xd8+^3o#q-Ohy2iS);h(b|)iFy72Y23#+G@xB=6 zbJoY)d4h-3ON& z?Fj1X>N)~N!T(or?8+v22?ZONge2IA1C#zqrE6+#{*mboX1U5rY}UniM7g&s$z+a; zD6t%7D+p+7Lm+bBIN)X*KVbuvJo_(7R%>=M^kG6mPT8YAN@_u-T9~9BSfY-%C$4tj zM=oFYmSTiTHTBXhQF;CKb8wadY$QXS6+CrTSpdPViujk3*zUw4_GTo>lCtIo{|sVd zGf)b78@^ygMeQ*Uz=T}hQe`+I|m5@vTNiE_zniL)g%zl-Cq>l$sx&=KDp^QU2rT89Wl}rnKotUoU z3DC(^%iM0&3~H+r%?~kAifIMX(0oC($d#7HmTfJZ^@Z z6)-iIG0i?-kt|r>W2a+zlZHx8s=cS6F5tp~sbB#)wbbBEYW0T6A+LO0siz>BK{6Rj zGMRDe6H4vi*B0N6`Y0ZBbs-k&0?`E6+|;lZ%-+u2zh>0fenW`CX zaql)qo|gTcjSp1IeWe6ru)P^t7vq!2&n!IKk}aNQXn%fFb}7q;{;cO4bLoEfMh%#$ z`QBoJ0aOddZ7znahJvKCI|&_!%RB`|lcx`=`hFkG*XCabG=8UoRa_`khMAg7WeRgA zh-*}x;*n%fbAq{J#+%IDl))isB9_= zg%iOFD(jt!^goeTTA|)MZHh2*oE(0xk7gYB(6lkPQa-i8s4avCTk6+WHb{yx`vR0F zeov%-6f+;XeLU5$_L%#fjSN()2ETF|?u1}MuCq|{h}$94(T1sfRH?QZOtb$X#k2#NK0Ko~`&%h(?y~8oIhQ&h zasJdQ%SMGwuMal8AuL5qHt0pnG~)o>Vr}8GTLx6dwnS2Tw*1vNpHJT}-Ar%&RuhUd zDjuH;#>1;F%|-;Oi4WH~O%hlv&ZlDovpchrF$%>~*MShc&HW5a+uL)BaJPpSe4CGM8Y6%p&;5%Ws6A*Te9PK5UBG;d=I_+a#o%Mn!Ql7?$<->d8D_+&XMlMShXF$#s# z!oK23{D?a$%Kv)AjwvZyA5Ql?pgVGIr`IjWDB_ou9oYQ8HZ=ncgsj8AJc$EBXk&)# zRuP&lUS)^6dYeGg{AtHOs^Ep`sZ9nYLG(@+{GtmpqS>;U<(R2W!i_U~8urKd|C;PI zVe&v-{RGJ^-@J65DP%h!Svr0C4G#bqHW$K-!REO>pF~QQZOL>=izNdl_eG>mqr zz-gPgpL%LqYg7A8gZFP{HIHTN+=xi8t(F~8rAm42;+792iF%m;nAF3_%KM+y{pfiynaFS7@3fs}->3mI#+3_u z>@twXCY_|@*f4K200;!>&fp2yni-d;U)iB6i#j7vK)WbM!!)cMS z3_~MoC;01ZZ$iIAaKGV^+IM%fn#294Af*#VZ<@#M>f6hQ)yh0krKL-*E+OeXCVPR^ zo}dcQgWS3wm`TID^G`wI)Im!7_caQY#W#`GpLvj|shv8{4jgWuE{x4@a^AJ9QvW20QA>RK48Cq# zvY(x^lB&k)dF%F!koRK-qi^(21j+SEP5_S8!$QVr^;X# zCBhk`^Na0yl_eaN;b?3_+_7WCIoDJ3Ib(qM;E1jD6>)5KdY-*x;5!RA>XldM^N%Y| zw!4C;klk*O5fDr}$`HFQdUOb%N(fXl{)K~H6U|~ zMw?F~wwv66T2Sa!lg_&rz`mw2o_qzB6JNh|S~MjUt|a4_w(0z*F)sg!UK9_emeAW= zi;CZ})(voF1pQ^%BPb0a_!3Lb|5Gc#2|x{V?+Wa{@)oi%b<;FQ^Gy`VvUq_!kz;^h zXk#NbcXx0DazA~fyRfRe!jO?h42m{=PMvGf67|)YZHc&a5$dbCC+|nZ2$4VzklCv$SW9es>&ts6l1@l9&U$tL7oN|=&3m+Zz zfpq3*7*-5nUz zHtF~4e0@xPK|++sopv@CYadHEw$9-a%3li){wuW6>aEWIss)1>o&9;5{Yb_CHT-|d zT*n&OZKY;a3bkjD1r2zd^I_2$@Cx;HCjRVfXFzKnM3}E>lnpZub~eoV{}ytZAr@Sr z!0aUx%GAd1qLTlR#r!Lk{uPemj zzQ-fmsIkvefT7Tmw+;&|CH@y#^u^w`b5QbQ07@Qb>_Se#Cq&4w8C&mwuEEj=hsPUC4zF#4=_OV?v+c9*m*tG5uNba z&Yp4ee^F$W;yQse)U2BS;jNhe@YWR<=D=t8+z>T4PiCt^pu2ob);FRj80vb3WXg$_ zx>`agFx)Fq#sj~e)`?tVp&^tSJZ*zch~vV+N_JZM3T&=?U&)87={Ve*ZaFELOxLKP zmZimRVhi=iAQCf%MQKs@2>;sn_nFX$N?Syjr0C>oHy3WS0Lva52gyU@};s{B?dyEgM9yE z%FQdtDOG(H9bA*U%FHv3xlHF#mH!aB(KNDN7KtC1RsVYBD|rH5@nQja-M}S>=WI}! zC$ZrlR6%r<%&_wBIpGpG6|nG8I)M1UI@bXM>&`U}B+`q;o*&5EiQ%`~OGcnoY4kNt$^~-t9 z6q%sA@WDM`Hg4DkvIshr9-&m@(Lf`jvra$F%ZfE)eL?FWVm2!~#aSJ5-;t+O^*k3j zgo7M%b?<$#I|*KP0#(Wj2ff>y%L#h+xtk1nhT)AYwS`~y@VcV^^{=0Iq2J+M>klUL zLSTNL$QIgmn-obuBTP6WJgJD;Wr`Er7J1zznf~z_NWh-|3wBh*OFZ8&xJ5aVmR5fq zww0}%i-iXY?pbU^Ci~NdMVL$42N5>tHO@daU~v8%)$Y@}wX9SjQKX&wly$I&{>3yK zJ*iFEQ~rGJqQil6d(vlJG>uH6MhB~ZL$cOX=AS*`-u3ozu)c>wT>Y_%2zDD~ZBakW zXNpx5!W(EcppHJoAS8u+5=zw|b##=}GGwU>!9d27f&J)BEVY&~BluCS=2$5cT8Kep z%EO+3Hn8-wQyw|G_qG&Q=6ZU?LPA0UgV*UpxRDS75}GZ$nZ=9afKY~U9197S6dU?r zeu!;RypkrZHXXN4<9PY;Ny< zB4AX^Bgiu3P}YyAPgOJwpER!?-Y^7bTQZm5+JzCxIa=ePj2WBeO*+CXcW`UbICC&% z(nww2gm1^hWU8nj;pxCKNPipj{JwJ7MmEsyEw3ONr4m_i$ls5#vGV6aMxlKn&|e=O zS3C*h-4LltT8YgI?w=nDwQ-j!Rgk(^#s-@QT8DmD%aj^nDWq*CO1BhTP7QIoHa{W6 z<$WDE>b_l&UP);#Om&!HODf3nVRyWQNBqA#rSm3yuYW z+7UwlF!&TpoD((5N*w1?FH6JyZ_Ii|D-(X*a%Z!BO!%K>CbsRAR5DzNei)9dH6>)~ z<}eQkh?)6T3;)jf=$6}niweVZkgE_wkVa}S2sJm-PKl+0<0_F#Dmc$mFFMhJD50YT zH~dOglQ#;$$^EM*$F}qm#r3O|<{nH6Y1$ zxUF-i`8#|3Rb{Gs$Fqm7eFNPK{=3xKPER%PH-==)XoyX%&Fw(m4?+Tgv0d}q^#_vE zzUY7&p%rWZ4CThQxp+Tr$~X(k#FFu0V~M(>$o}%VDZT}H@tJH#ch)Q$VuxLO_bkx6b3^n+bx}+928)Vlg}sKA zVpT7XVgMRE%97LYIe2FA zS;tfBZI1t=##lybL^uevh^#T5_9EU>oesTq@H+kX7|#ACpFv#$|?Y zh;8_F^p>!2t0i4S2x2@9g;7^ct0C-j%kG8soc=wY&&u#yc|-V(H2 z=t@F@Cv;%F8ibynKt>d-lv?X~q-WqZ&NFq-pY?GHnJ{2Z{Ga~|Sx%zyl@F+Z(QF_Z zFN4o1XR`Vz76hJtFCi`uWiJYHLw@m-`LX=zQD7~-*`dEg7fFz%PKXBHJ8%?{)X`zE ze%J3g-_DgA()_R%K0J+nGi z;j7!LyAk8tz2{J23#~bmxsZ01R^r-{D%^`^f4KI&)w3mOf;5T=Nh@*5)zOQ^o!++UnIsSh{lw`u zpnDQ@8I8K~bi_y2xll4b2^+D)z+zU@eB96rspE{#8tW8S#kW^Ylm3FnY3W}!#WnD>CIV_yJH<3xiO!2x56^m!J)9Mjjb*OSNDD|< z75Z~MA7j&J_&$6$p}4HZ;@hai`YVM?2a1M51hO1kR;btfU%qr)Ov_rngThrmHlVP* zw3Iz{oEHv>=JXv!=%<|i`5kw={Bs=Dvb5u9x!HWPH=I3lT=dD#&Y`br^1{UN;>bhp zMdSfmzt9!XegK}{2Q~2ubH5-m8{Ecno;~uf5j5L(GazyLi(-*E@`;WuM8a4Mb@!{R zMDaR#B>8QRAxf|aF0bX=G7cX-Gu)0>Y2LNa-twCC-}g}SPoW)VWU}k8J_&s3_twR` zefs`9z{KXzU43%ftXh3Bw>DzC0+C7zNMRmjw6*TvK4BB&Fba5kym((cFXJgEJj7`0 z(7jy_@7M8h6sET{?F4s^0j#5(ADOROY%cWSMk)*)eL0?;!G1;ri*m!svC+N6D_+y1 zu!7aKgAXtcHNO@p)WvQM%8uzb>|LrJM^x;n3%8!oRL4LIX?11G2Ev3qA0c7j8y?M# z9EaQok1pKiImk%v`o+G7?ctf^!=i)OW=!Z0>xTDU3IqV+BQ1ZU#IL(e)oR?1#;46* zT9C*_q^Xqx`%K=(g&MOfxQ=V16Q>z5|7Lu}n=kolJ^60{Q`U`U`#H>ycaa{^gT-9h zfdOQqqoPwTi!<7+YW)Rc=(xPRS*PA=`gq66L1doO`$THlUrM^5AP$^1=2q*oAnW`fMZ*+^xace_bt2vPPPmRAQ_6Wbwe>qwZpRKJ;VKe^MhEh;rWYyRSoZkSh$$SuOu#eH zx8qL}VnEDb06H!Nv*JKbCAJ26`p_~|&t4vbU!`QP~h=!yplS)88*%!q*2(V%^8)lk3B@3cYp3?Ngte z2G@2|%LR(4%+&rRquaaHxBTgg_OrKfkUs~s>3EJbnGuqC!-tEha9(D7T_I6*E6HIF1I6B7AQQpIk@rnJbm6N9L?T9+GhZ=^=>WkcoX_yX zqqS?ICt!y@yF23^R)J0T=!FK+$wQZILl;3A|I>Ahg%(!rd~Zkp%XQ_|csJolMzhby z67qY2ftb^A^St(bzt0T@wmOpvp=Te)-?!HM`he#8g%5I1tmqC|l@eo0oO9tIW3|5z z6thtHdNH}#%TQgVNm*`AS`d|r#X;EgzjpzU(DKB6om*DD%_Hm9r&Wf-JsOcHnVdz1 z==h!k_81;@eiV+KeRS;jQD6J;)mJ=W1--SagHRF6s(?jYWRZcZJ?plE68`%=Mt5ux zl}O!WPLrDxhgQ|7u<1^sc-<1|?QscuED;Z2h8}%CDIjO!S18>rJq?nT++>zEek6|K zjn!7xzvqk`&LX*Mg@DntI`sr?s2-m~I13*|d|z>51uw0zzgUReFW*>8kJg$qXB2cQ zeB2-9Z&En{-O#$N$`B{#RDSs6NQz2~I3zX0b}W|4?HZw<92QgdMd+E6t) z#6K|$emjckEsdCZHJI#m>&g>xH;;M~`F-pVqGa2i%@BSLt|cFnI$U#K7**VaMRAuh zZa}|bJj20dJw4R-(^4HzNYiaDV$jHu%_=8}ON@GKKf8HwdtVWZ11#0WBj(>$+e(n* z#3+L4K<_5nv@SuGg6~d#u3C1iUdcr7XlH!JT6J)Rx2$HaQVxz<$2DRaSOT^{yt^JzK7 zD7KAf(R#Ezq;EF*YjbXb1nB3qWrraK64h|_dcXCe7jh*Dr-{(Q^K(?I3;mWOsAbe! z=+O7(0a8l7KON|M_+eHr6;w2xs#i{=YOgz2_yAQ1y4zJPb^2r_$n7-8r+b>t=ck(a z95_Hc+jM>EGiTLPzkdD9aaa@|FqcZ+{KM-w!lItWJLRT+0a{kpzgv80>baaEKS`sO zRs$--7IHn`6trCG^t_6@tI<)8`bLf!x3LOkS61GMfB&GOHLnSXX~e8mTLW{=HThl% zI~AvY_9opiAD#@K(Tqu)O~UTT!YG-rKgy^(N%4L_-KZ#)8VcLQ?l2%NA1Q#*+`-t~ z<{=B5ZM_(P+*Icqrb@hXb@q25h3sciXFW12)_3^XMXWxktz;I*;^9Sg)o+F2%bNBA zQkB{Z$>pD!Xxa`KA#(Aj_mAba8lH?YvKqs+HpHrb8tRe%{_&MoCf~YRZ=PPV>GS76=Gd<1` z{#>_Ys8cHlKX3HgF_U#Id-DPv?qjW>;jNh}y<_&)sz2D>GjaNgU^VzlAR6);Qp@cc z=;-MOD;Y&D1jR~8BG1a{#fa?6R`TWq!axsjuWX~o52Jxu+r}fQWx;)15&`J%cyFF7 zU84as6rQ}jPZ;Xzsk)^Q@y6YzBd;rr?xgqqV@TINc&a6M8=lqxNZEh}$k^C}c}?pi zo=?e1+{g{%Pr%D{1%w z^^nK%CbIJnM)IY=0RcQh-of^89oWI$--|l}zrHK*M0&tOXEcE=JLRN>q@I5V_1(6| z*$vtC=}P?L0pCB^JeaKW=j5@AH6FYnC!GZ}M$7moYZUpuH0S!Z>>uj9y2Rp9y%Vmt zLIU90@6O!ESQ+rQeQ)3v)BPXJ5i3?ZTKkN7GjWWoFOQWePj}prX*bdC~0b2x)01Vzyc27FDCKl{gbtOqf9(WPTJn zu`Jq8XhM!pZ0AOIDDl4QqD)05C{v7H=C$wmB*-WC-A#w40;2~qxj+5LnJKhD36^NR zc8g*yl4bPj_?U@Z34OQiIUJY5Zs}_dN9i!~X}}CFxbL`kBWWa?>-)P@krz@&K6P_* zycj-K+Zwal;Oj|vFNV&=XV<7>qo-&74|(C&H*`MMpUdXY80%-^PoghAk4q>VHtqD; zAO9es6sgt8)@dGSSCsi$!&we+!1P$|hB}*kZmQ!O{It&JA)Z`tcGTr##%4{YNUov>4s%Hhb(jGeg6t@WZzt2g zCM87=ya_&=mco5{7B^}=Vsuo{1HYyvs6knwp6&Lht*r(+}#E=Z@DV484E(ErHI@uYImsjk+Q^Ys9 zb+V!{btFby6~r@t_Qxaja422hTD{c(OrhxQK~nUWZadJ_P1!$a%PWa^Wti0hOx*oR zV+FU*+r4kuWzddvzm1Sr|B;Pg=q>$Rm6%Pw>w`}oR1~WmA<-l0Hv*l0UBk4?6L!(Y zrxabO2u6G~fO;QdcPR%W{z-3(8nXJS|BoN+2CwU?$)s{{B>1@eGa$%N3r;U+2|?SE zg|?h*DMLOi#}AXbx&t|+2PF1MO_9bR899KB{BQ@Oy)XPX@%nN@881a@c&4dM`PaR= zK5Wu&feO2nKK-QDkHY&*A4oP`W2TsHsWvg%N8|p;uAgu>;qK(SJjn7Z%_TxT_h<^S zMLns_SUU)bJA)`_=`hBfzfoVJUPq~|^ZK2#OCuo_&MiJMvDWrbA;%?}TyNzVODXNW zPmqbXIWhEV^cFM!20MEGcM)l7XIcxkdG`P2@#4f9AyLwEUVZH@mLnVLM{(fW#%8?V zsJFr%h%UNV4_dxRvEw0T&f>zkHvs06EFU=m%}bNMOgWaB|R7Idr^&S_UNZ|efd;JCF2l5JjAEt%f< zf!3a5G^y5n7-c`#ZKBss{BiIRqnDNeoo zG^XVC;3jUak~_LFzROljG@6IZpsAnSEM9?vjb=I%w6bMG>E_qpWDmY{CH{RR28i!X z@mCu|aAlZVj?BX35bipS^E!vRZn|Qyaf`sA2@{8&!r5A(et}#_5)va<5oA{@E4opb z$5w&F7&$)!s6wuMh51a$3ouaoNraGk1h*5kZB*mB-Xz^`I1WtNaC=+)6GpI0Jrof+ z=-PD>m%c0$lMcwAv*CF0nx|xxzI%M;x8tP_ZS(6w_P*~WLY`&{>Jk>*vX$OzUknUE z1Q7)agft*NIzARhak{_w`?y}Nh@L$I-so6oR#+hiuE-FJdI@eFKfUeURgv3!`yJbD zc@7z5Ay~2hBXRXvdG}X1Vq;U6G4>qakNmSjWhC@=Y#RF25V*cyG@?H5BI4Q+;Uf&A z?td%ElkbR&kj2S{-Vf$DX~4GhiFIw56y`Cf#Y|Io^5Q?2dPvFWQUe7RKi-B_8IpZ(IE_j$)Y z!(|Kq$cX9iP}q}+>BCD*^lKJ!TH6{J>Mkhk_KYqpT--TCj3dxrZ8L<~)rk4G4zWnY zOD0_-E1P))8!l8fflBIOv-9PdSa7xW=I81fx<&x6($!+3C5o0E87x!k#P3<(s!}qr z=Q8ZQyMCb>C1hbO*6}bMf&&rwX=*$4wTud>j=9IIJQ9}ihy!oIG(MIrJ+}Gf#x8fc zo1pJu!0hf(NQDq_$I&rF-~lkUh(xLQ&cK5{qaLd}Imlkc8m3AL@JJh(#;cxY9Z`Wg zfoCB&RrW21KTX$uz+X&cU3;fqv7d~6wLEb-Vz6d^&q}mDhVdE#&@q$e8s2W8^l@eX z!sm7xm%8{XES_vyZ7mMVG(ZJCCxf*Ld&2fC`~{zSf_M15rGp+Xz+du&j%`bo?WN)> zv3Z&#hZ0RZdGZIfkiS1I*oNw5;}@2o_hgpmpjro()z<2`fU_BLf|QkONQc6<#px*( zoPQ|2=6QDeFPzSUX_-Ms*RZa+nc*mu{r-iO(UUb+S}&*vN3gt2q$6rNN94ADFAkaL zHNQh4j*TIXeNpzi4fF1!x!*jDIgUJTQQ^`yj34=7+`;dEpT*T|ZJJ%uYE0 zNyt#sb35+=l+h|f$;gU|c)z2Y@?JJ<0u!b^+iCkfIa#@eN&g0WGZ!BPoY6M^^T?tGbO0i!&?wYV$yFA5d)NXtg z$R4EN=EqkAJ+P4bZJ1}+>Z@6PkZ|1O18g%gzYP^|g2glEMFd^+23QR>rn(QHgLe&cUR%w21?z@P%b$lct#!r}Y z!+$-nDfqhDafQE3CBb zOU>%&PyaLw`PrQAWzTmq7Vh(fwPBM={?3~!R*&rXqX2lYU}R*^k?F976YkTKYGOQd9&QdVIg0k$o)>dEEwyOJNv<|7e>yr@dE!chL+m)O&`sVakY1}E?R24D0Fda<8G;v8IwOL zrr!U~eD>zqIz|J+Mjor2}ahnE=)+%E3`03H-kL4Z(boq=|r(&q;_dr|0NB-{`i5j0{IN;ws ziarnWGP#c0){2(AGxJAv9kt^STzv3Wi@^35I^VH)*A2oA9lKM^1SFJFhA zoj1_Xf-5YvV@r#01zqP87Q}s7eMIuV>7n<(06C*GlVEhJA?c=3Axl2omCT!L#j4$o zkMhy5PB-sEh@tovJbz6b?A}8m5tQwJN9Wn;SjerW2%>Scmsdo}6mGBWHX7rki%`UO7Z6U+B>hPqg{txx-9`FH34F z>`A&>cuCJL1{+@j;KW7GZ|1Doc{~wv2z^+#Lfgpi@hy=DRnvvTRMEU3kUVy218$&f z-0>b*@!>&vYAfW{^maxd{o(O>kL8V)HTZ2LwUSft_|batRanV!IMlhXjS3lqw|DcjTH6o$77b=CGcuXfT&zVfk6+%=Fg$n- zzh`DfPWo`UGZ+z0Ic9z7cX##GO9ZgEAJ*CS217qkcDz|J(HoK-I1tT_NF`Y0$LBG% zxH+Ip0D+~xEqChjDtsob%HBh^j^M$qK4c#EfY7-{c((o^R8XWL)VDOv#vBf_vy=S& z&A4>$3U{s>DdD@w+0%*iw65pDvKCkZ1WO^=ebTX(w2;P@jr}NXkmY224RBsno_S46 z5WLyE(i%h{km~46MWf;-to@ftzo7=h8-S~=(h%1i)dzlL$UOsPPXfifSFuW;Vc8Kl zb4D|?BaK*^NRpjZ5Qx&#MR8(h*Ss;>saw;&f;|<8Q_gOM>iFRNKFg7ho{nMDD}B7b zh4v)6qgl(or_Mo_EVtZIElk)NHSo&Uufr{ZZnKQ!iy4&iWNVf8^34h?0mK6p@lf^b zux*eB_l9WuZ=79Lf7l)W2#2M&0LHNoaxRW^y@itOX1$dC*Ea!KMMe@QFJPIqdLSy2B}Tx@Gkme;vJzumN+0(EYNuhSZ6?aMp669nHG7QOR~55aM0X z6ABD6W6z4c@yNvTv`15kmeu(-do6b$zrFR| zLFvUicE5VXHr%}6!Ca{!2&`{!+n*hiRxo}Xd{|VT$q74O&JTYWVLBU?8Fkjx`(V_% zb}<#3{8M)2;_vH$c8L)SUi`o)V^x0$U;1Y9w=(au^e&7mLOcOLAvMzN<-N@X>x~NT@wKBP2Ol zzuR>ulXiHDODxhFI!~HRplPPH;okEeJ6?%9xF^9TcIVkLTRXR*prJ`-=ag&>ZyS`R zGgC^bW3u|qViL{^Fv#UZlo`jUc@QY?Q+0EF2OY&Q~;4sr)q~rnaxbs!N5OdKS3RPn4zz=J7 zrML=dF7sQ}&f+9t@7lw5Ef=eaY$gy2n76J%5^CEyaIlvMG~a2+h$o*}4~}A6nCOjp z3kw{~8?EZ>;nN9sUdmNWvV;J{Bhb?c5hT)FjxuurfSp+K_<6_94)D@rBgze=_UWX1 ztI4ZvRowt-n5CdH4_|=o(Yd$jE1y#DX{423ELjEDR@%Qsd2}t$IU)7GIemC7yY)_+ zr{}ggtNXoPKYWHNN_()d);&gA+nP(?fPBCY-n{8(>m|EX^%aQgkI%E-UotP-)E{jj zusic7RZGh&j{f>T<6;LtR&+f+2RG;T)#C76HA|&+l6cZ9@@7WY*IegUgud&EftxmE; z=~d9!;`y=U*AeolbFM{$oZ*vG$K-vtmE5p-yBl!?@Mmn;rU^wzFn@0gS~jL2J9NV& zmguIl`D&OtVz%Elzg9Zkn>TH;Qkqnws|pG+v9_LE?;y4oo3rnEkTI4NT~c;?MBpTb zJEob@cC=fFbXdOL?AdHKH|ljyIO|&R0I&r%=g;6dB%I{mzb^-r*Q1_3Ub(qk%(_IA zB{00-gg^as(CGcJ;i@yBQEftN#DV!u`!*+1WojdQBd+BjTSn*Vv|5mSlCf$~>g0}GHO-Q=%BDY#jjgvi=yuK~H|W=rzVWv^63}HU zj#`=}ZZq%JpU)@eN2xbRj6&VV@{wiFn6TqpbJ~`b@Y0Ix@S-plxZxxF*L^n=9ooUc z0dudo8^zD_k4Iwc=qe$B;=%|L!G$fPX-5y(!j81)QvM)e4k}jQxBP&h*h#e~2n`1{ z9UPKthq0EZ-605w&x1|1c?Lje;7RS#ti_r}Da6L#en|Y*0Q|N`P;Qh-FC#-)8T95l z%_qnxHQ*961Q9)qiWLqUVS#CM%GU%-GP2~3$KJv~J?Jt4c_l8ms&knMc#B52dACfn3ra0^LsupC z4-X^bxBl~ARbrqMLja@aK=_e^%(H*nUqKfy=lwQO91)P0I+rm$BJ5ncs@a?%b_W9-ceoBsx3B>Ue_5U8$Hz2k0t#G6h6X|R{qYj;;; zJZ?WK0(S=Z`wJx}h%mtUebz>8sLIAwVHeJC3mn_fpU7KBcLO5#F>XgMbAAYxGKf5F z&>^E-cPX3SC&=1Kp?q}JDxlp(%FzG7PJ859q>p?Ajm zBnM57VXc*whr2(KysHFf3Hhw-!{L z_k&={yOr+&)I`*J<0n$McDN%4Q2Z%!2LK^CUd*DxdmRsciev&28DRRPWdC-3Tc>el zUeC%uT=clp0BdO{K5rA|iA-U1l4b(&b2DJ>*RpyJb`Q_yoAPPo7H3;jM9fbhWsUm* z6RU$yk11|bfqqY94&?8~|jmMWbUpW~*zMjb1DFUGc_ z5Ks!x0+GrOPq&XNG#ptk(neXfF0zrFXHshA6;1;PldG++ND?+p6}+kZfWI9u*!>8b zSAS4e!U;;m$jPk)FQVY6yu49Q?W5ZQXN4LWTkdnFEywW%u0>ouq<-6VZ#}ynA@kn6 z?)DVCq{me2A2}DU?sDt+b|w3lzJv4V<6BNUhEdN9hjqBqAmR;(IZtC(bj#j+d+vfR z>junKb%;FJ#u^zQmzVEqO{4wYKiy$oKR!NEH1a;MHE^{9La%e|X7VUSo-g}9i!^~| ze4c(W)ts5QH2Zz=2ing<8cC}5YM-XdjD~!WSSkGKRCm%=yhV47Z%q!2oln5)?qgLO zZ0U?!ISE}ogI@^Tnc|z1L(I>fXBlehsjzY>j1nIIsuMQetHd}KY9YbtN$-W6#YogU zo1c%VP^&wo=sSe$<(JmOHn8bv$gZQ+Tl9Wn3z@TS?YKWJHWb&)n(r#<+mI7q{4uR$ z39qk2LDASLc=0g=E3z?O9E(q23n=qoi&S8ljq^t}DL-s5GDo&|5vk2j%8s$MJp=1H zcWMgm1PpbtEy`wk+)4QOYoJUd*C%fIzt#Ku62dlzzqFA*TQ@&=Cy;skmP2&_EVx4g zGHRg#3r|_v%LKBOn3+zPD{+XO0|X~5-7GgR1o7mI+!(%OU5_^baO(-xe}&KO3?3)3 z{JYA)6o}dQVq#0pX@Md$P{*-gsRLh88z)^E5>ftBF8fu&a$n*4)vwBTbQwIhrPOB~ zE=Kmm6EVu6pWRKq1h8T@elA#A1EkZ!UL2rB1e@vTP;(5A82#^E0D8F+Y7YL>&ZD9V zkzzdORw0n9xo8I37ef|Fb=iU|@iy(V0~RfWRw1?qeXQNyHO-ise@WIKPFamSG%~d( zg*1vXM>fuDOn!P8iyEZTBP5VuUZg!44V2e4efU8Rjn7V;zT1V|=aTWePsI^&Vcc3R z?pKEl16It63+}QjeJiGp2}q+q&##1&Xa~mA%iTErJEI*TjNR5={YnV=0ZNp&cV`s! zzev9w@1?W0K{Lpd4MT#61+|l@0XwUeA-z&HkIzER50S&|${J4kV8{h8xWcD50+A%~;n!qnFufx1c|;Jg0(nItjYUjAglo9iJ*rz1?$b=KJH$g9V~E zn(wk`bv*u~^_UV+8HZv*H8|&b{d_7nX^$JuW)x z(;oX?10g9+cqhmY`Tdh`5J}d)#Zajmx6g{`Lue+)MJGw3Z>HBMGJJ567l1rEA^#$` zJJDD)dclqDTo5L)Ot>wo(Z~RHm&7`zf5UYvHcm|-QdU0ocau4jg9^1HmBGjW%<1si zp(<^MtMF-lnOYqHrK0EF)tVRgr(I3mdj?IX?g$e6jpGJ|DLd{d)aT-SJnkvGh72*^ zcf4yYfS$Jcn{;jY8n|3gGvH-?Eg(|v^RE|*pxhq{Csf#ylvI~h;sCVIng%lSjZD{T zI$ra2hiwlU%_nWgZFALjay=n$+Y1<@g5BSQVN!+B7TpMLKRzQPOetkpOe7+RRv&Kt z`8U?;mdn+*IpLP$CYEl*9+5{$g6a35mF>D<&kyxv%@#=WdFf1@O005Ip^*%^v%gjz zBlh|r;VE=|{fMeMgWS~T2x&Vjyn}-IfW+=ARyqny=;*>mE9GU+pnuI<3c zsiT(-U-**n%PJVldB~m=yMaoCz75RXAW1VWEU$Z0L~omCzZkr!-=9J0HkynHld{1N9fh@=vR01MOzm5vWp%oRIdNV$}0%aVVKYG2Q{7RetiRRp=dukOhTPc|<52cQe4zsp{ zXG3w&bRP+%X1RcXT z->2;9hZ^yYT_@q2ChvLj#ha{4 zt(g-nnFyEuuAF!6HrL_U z$U`y_4u1@|8dF}Urpr&roSY2TmM!U>26mXOx2ct~nc&ce^oEoa7JK4Oj38Piz7K*} z`*uy>&e?YxvC1dY0DH%N=4n=^3deOBg$aZ{WC{I&a(tzN@Fe|0X0z2j748uRSN2g? zR~I>IMNQ~Djh}*(y~dXNC5EVl8TU{-cM7_8z-e3$PT_~1pG2k z%!|K;BLjU~le4tn)$3!(HE$D1#2DJ~ySGJUs>Ezq;$3lkdct1dtk&E!`}E)oj(5Nn zSN#w6-?-kY9}hClDnK zDj`{bRBo9M_gaqt_QO`P5HX;BkA9DWQZ|`331r;9!$Ff(00hbhnY&3_$evxmt zP{V6D^nG!i$(PzUs1s+STDo#m3E0K%CVbFt!)mTZWsa?7pL3Pto6Eg!NU#~z6hUoe zad@a6+1I`P)-#Vn4whUaO|*FJ;PttEKBa9~SOXp<)u9PDXQMFIaC34NJ$1c1QKDM4 z6E`mlzkiQEH#j6EKD9^>Tz1Wio0`sr>Fsg3koq*mpu+fNGl4kj`ca7Ife(M?_pc*N zG*jzt9S4i-V%LQk(wQ`Zz2BG^1k!Vhdy`G<|1r9hdHg3Bma_I-cu!Z{7MtU)bkl<=^(WV&)^W$}Uy`YaFTj_s$-uWB zJG?J4yl^JA|Cp&WK38s*8Jn<2eQ5)B9$0aNcwV^nyn(*%d951r9>WQ{m9t%|@=tWr zAuIeqc)-$v^Lk_5>!77N4gC;=(#k1`qQ5f6Uh^-S_B>Iy$a4mMAi15(74<%0qo5M<2jNR;^)jp( zKZJBFIl|w+{A^`C=aThf`lq9Q`?ryTYeOMym@}~wu?mhdu<#t{`b$)b~|U**nW`8w(fO* zDo>+c_;&0dy}6><*BD-TJ@=YjC5j=}f(W#4@;h1b?)nuH9 z;_^KJ&M)RN08%y{Z#z^8w#VAKcv}fmTa1>7kQqytrccTTUGx+A?~CEbf^J0f zbZgb6{qOk_DPPmiOT-O))G#Hp9HRpB++AI%Ks;~6ua-0TF??CmQVgcnIBk;he;Ov$ zE8s;(It(k24(#8R3z$JHJ8oi+VKk?(OOj*Dze8X3d9Z>PEp${yI2{@kjoKxXxSTkl zEpnn}!t)0)s%AsL*!~-|w1dMMZtkqHMHhD?Jtg*;VPM!P8r}v6x4FxQ{GZ&cMd%$d zURuQV7Max8`^I`AzI)}YTPa=6g;q9MW6l+7)7j+#K@vFy+jn|^w2o4c{wieYqo+~3 zG*#@LM8~?AVg&yz&us5cG84CFa|JpUx@rKRY}96HF_u^zHUV zzgE4Ka8t2gUkQ$pfrNJIMP`#NDk>ZiA5~SiepYYk(3ENidzwFFaevcMYJ29pjj0dI zzz^v-(oPbM!{FhlhoyoClB~g8Zk^P`9z}cby4MQVoSII5 zI0-6HbTp){7qffw;;6Sev%=(#-6rT~&wAS?Zd>a{v8+KGk79o0!N}oZeb&_SnlJQ* zWy?k{3WU|0+-l51QVA{&51uH{abl%oYuJo%FSM1#`}^@CLGuXwX5eZrj+<@pbE(tm z%xR%BZyoSqZ$~v_p(g28R;iYqdAr6gM5H}) zX-U;vmhDpNn+(>m-LjsQj7 z+}DlMZP_h5T&?EtIe9HWYD}q``omzg&=7tcJANAbxt~2VFxIjzr-rNB85Y*w&!yul zZl{jJ#PUnaGT<<%y}prz#<(_b{o?l;Z(-^OadyQSf75|Gyve7ERQQ5VM6TyGA+;X# zN}90Hb(w;&88L$>7|-=Kks3<3{1KsNSG7B};+inNfW!->EcZ1jCac=#rBbPcRGj_8QQ)}mwhl6eEx)KX- z)Iy*qdm8I(9D^^UQpP`-5WiaE6J@h2S*(jF<}I=8wQHpAR1#0UI`tW~f^5$HY@oJ~ z0_29llGQq4`){l892*xQ*Ij5;C!e+I?U`zQmJ-Bs`{#NSZ!fh77AqOMwaKP4}P;Ca(Z;zWD~1=Oy}=Er{nV@yD}XNs;yZLdU`nH9}wp2 za&=ne(~L~^^PAJr>K&z?*2m-d!!{nsrVS38_p+ABvbLhos`yJ1wy9|<&mKvL z_2>eUtR>9o6m80C8*OE2biqCT9X(_0m?HifOC1*ws2yQ&_T{CNDR)cBv#@YT6d4>Ne?~ei@Zk&g& zhw)!L-xom=wvM=_+7#bIEv->lg0pUAc4>qvhbyQt0|Y2}uI7l~znSlDbO>Zixmfw4 zUpD0o-Q6}Pr{%&wDw%XNx-;?gD&kJ6Eq6TG0s$YA4Pj3!ZlzzS!h1J2?R=eSxpL=2aUG+T|?L8a( zJ1f%OxqAIBhTGa2^~M>ce|JYaHgATfYvk zeKqw}&DSEg(~(o(49(tlBp0al3>={ZzroKzbyBdK*eH(@&ziJ5GL?F37lq!$#>oxT z*KYnvqFJ6--*|C!EqvA53#lc8#72Jthd9^?i>6zTM|t0GvB6qdE(OUSQgVLt3rVtAA#%+hvH(c4(b;Xo4j$Fr8iez^=AVx7nNDNV+SLR z#IH;Yk&4nF-HZLu+&;f1`wmqJx1$@CeuQrDvC& z!)yGSz0ak{p2D9<)zww6bG@Ipv}xpP`UVQ9N&>&$`R5)6puJKeFLebjRo5`ckf;|ofLWQ34K|B47!IMr?ET9vs@1V+DeTg zr*-pMPyn6_UTEGfWi4zwRyP#>_yxL;dNZ>Snu9|>tSolTVBdUBTtI0YAiB8Py6NOt zS{_BgZv{R|voO`%*LAdBCc6gcNB}^a#plR?Xdk^2g{(egYmbmzLDkq|NHE2_jUg7rf zXc9o-9Gpxl;YQbu`y^#)S#3Sm^RARah}B*29*xn(xXpFOX>|ZZ*+Lx`KlVFz;_NB% zLx!}x6#Pa4djWXDYhI(=zxY9zd*@jLujaYoE%W(ww{i{Y@q=l%?=p4Wy-zQPeT|h; zL-%sl)HR&i5SmwepO+urYieq88+T(<1NSQ3?gkIN5XU`5<>eRG=i=Yp?2x(X_c=go zYw)d;w*47i-@_B=kgZy@cP^yrUHR3m?o!J`qcOBTo!!^zU*^qt4acrnXV2TV)=l&H zUpeC;zc6ZZM-Pap+Q{f{o;r*$n;)HZ+r!Sks8%et?WrlzbBT-}raih@*fLBnm%7zK zEuVZ$-#l+}SGk(D9)gwd+vj?n%IvM;=ic3b17`OZev74`7d$tk&eyX3punGCaHUp` z*m-ke^^UoJ@Xyh^exq&0zCqrtzz!_ZF*bXNlEn1WmmBfZ}#HVHqGE*g3ox>}@}i*BgS)1~mdBaA;i zk@TI0;kT3H>?nH0hDIcPBIPoq++BN06qZYG)#jAnBL9t~|7E!dq>5 zwhQ^6eh+mg|FRU}+Y<2#l6H6LAOE@5-hPEhpz!ou^wP(`V|sVDa^7mQgR^o$iGbwh zpIptEk8!`-so$8|#@cV+vD&iHiW(SU8eGf|CYdQScCs?iU#h_cZ<~um^}(ojF$Nx`YV`%X8r&*ka3Da4qc_x_N=dae27T!@`gIL=OGIvv^`YPEX; zsEWjzC>!E<>E#x-mXF1FG%j0WY15N7^({CZz@GL&(xy{o8S35nY}{zA0X}f)XsB9i zAviTK&1Vntc)&tw?}=nMUfRW|n!7%%p>fj4yuYU!#q0?zSTp|u4#_9`$vDv?=-7lK zBF&wuPvFH@Hw(?q!&bE}dn0ZT*z2BPM?IF!W~pVkoXZI4P$Q$k;`XM1Nhq zhXP>1eM#|Z_&@)EawUUa500^nb4QZ@jK7~`-7BQ?fPC6TG(_Zn#$U<6!Z$u%+A^JY z|KPLLu7_a2@6}J2n48j0eiH&A^|U{&qy2nd7m??g>^Lj6*2BV&!#)r~UKu2u1qQ+Acw!uZd${ z)SrGh|H--#asDj0=jB*V5rv#wg+Gv8FxGn5(sScJO$>F;vEvTm)dm0VqKvT#)|dW0 z6ogJlfuegi8vSFx(<2JXBQxBWBxYY9$}2R9*d^=@b#GdFR{9rr zEq_UDhzM#%+WFJb0=I6G!PsZyBik1hZ>`-6*lVEk@qq&aYq*;%398l3Ea%7&b%T=# zcY>wm+iPbp5!S`neO~>(#=Nhlws{91_zrG_ZuH%lqKnEPGP=TCcNIVx*>ix!6%4qX4xHN` ztG8+3MjQ#nE|OBm%0ut@zd32FeYqF7d10fMcPEcESS)ThJ(!nA2OFSHiiaX++lCir zqQB?G#}`x*^3HBJqQJ=Kby<-^9HaSZLO(V~7J4%E^*aCbetBnA-ew3kq)waq>jVtJ#amrC_V=*R zfRQ+dV7%C>$zV>K9uBnFG6${UrHXgjWMA>vqA4j)OeT(;@K+zTn)&dq1?#4apKk$E zenHAtf$WhRz3VG7OA zGSQF!KNjHY(M)CjB3{x|Btl{LL^#98ao^?fwA!VZOVRt_=0jHW$q`#okwK)!mVQ*@ z8kV5!X}sJ|9JZH`#E38*2;P`XIEkf&qX`IOHPjhT*XH!vZFQDSMe_K6 z&Mnd1zMlA1aE4|h+EU5LjE}$lGW{O^^2xDdLU$N0W+l&3YyI%uipE2Lhy1!UIskZo z!=!`!d7}e_+yUJVF2O9b+VLX@?-H1<3C-GBy{9OU2v}SOc*6Z<@P?zcX3J1_kbE$x zYr2yFKN@!o*=UQrCs-*|YRJ&Gn`7C4t^J(X!=D8&{7tAVogP{es6d7yea6AVfP6dUR9kn{YOYy<0Jna#ttP00t#JuwFpZ3 z=UT`A>?d@-Nb0WD=WjmqdZRu?J)BIwdd|DNu4^x$N=G-Yf^27^@42G6Z?6mn$y;+L zTXcCWFw8HMY8jR`;&_7Gb`RW3Kagj{^=@0vxk6>vwm9`KOmnEaoqXw#*?FU#OvweXO*r zHFr(z-v%CUqYUtqkmD&7{Z-9&EO$nz8S`j=WNyXo-sQMt5?MYEc@lIP47S~Gm?x(e zGFPU@$3K=%d|UHmDb1 zKz7s_;R4-o$u!=YiN9T-uAnD%dpJy>q5^^Pj-{kFu6EuBx>+e;+Z(vztV&1>EnD~Y zWiuMnp9{M``2uAMO9_wQF`=QB#=?8CwOC?4#w2v}*JG>_;@rpDP8Gb)djM13zloT% z7bmrMC$8P)AOGztpfBaXiN&5OomrUlgVH=Jx3i1$p}Pb_cnvWH-};iCEU}o84?A|9 z0~QVsW{JUj*KyYNQ$hL4dt-2ryCk-=?{^}@w&3+CqKz*N^!_Q{ipN&Ymyfse2>PX{ zmDl=BhgLD`QIY1gOPE}P&7eSpo7tCGXDJ_HXsm(UOVHhhRZP=!K4|REpFay~eNy&q zI4oVZ@Rza@607XND~{9Mg!s|x#cG#h_vMqbT71jGsX#Hrk6O=b6QAnvovGl&BzA+@ znogI_LY46POX_YWrqhvAjw5oAy#gh`4jR=Y4$Q1YKbfsEA)8t*w_MUcK8B+NWD3RL zi#LQFe`>y-X&^!S`}Zlw8?l7&%;kZoz6RbIW zH+FEDLvYy|B8FL6dehOoAP)b?w>MMzF78WLU z*0`!hFV!_8L2hJ_9ojjQXkMc7aR$VP(fVSe%4G0m%VP9LrB8yD_}OtYlM@91)&jiG zhW$tP;fkkh8B-Y$Lq=;iszG}o)-{fjVSmMa`2Hc#M?G)KMyD};3X8wOdC1P`a?@{d zg+_Yhy-#;hcp6V!uYh%9ri-cZnkpMxO;6_~GScHifYQ%mfmT0B7&TsY>|GQ+9UawH z{i}KF&&%en+fR%2OzTAy%UW#EX&?rgH~6Xj;!N$-16Kh9q!j!U1xf3%KyI;XhgE;L2vh)qC1H~RSs(hW zz`9?3VcONq<;%gavzBjx6BBX`1;3@QAB>IXB<*%C@#b%Go5iKwjRQw7uKo8`tX|*?H0rLQP8h3Ymm^x-$0it=q@rUE?&peusYv@4e-sv-_JhC@t0b z`N^)(Nqfee?YpX|udA#pfuhxH!*7oiqWVM=?}N=VuL2MYOuv7; znrHdEr8fS1T{CBy#wb4NI|3J9QPFR-U~XD>)i2b|O&FF@DafChgh zg{F6Xy%O()PY|Ke&93674>v8+WUiv_I4RwW{`rJf!n!sy2ZIGha~j3`2hXz@ooR>$ z>QtNdk2+#$-Ow*_M1uk73W7__fOd@JNH$0A0E51;2g*=kUyO28dIuWPrL$!O?VztA zX@J2mHb=q$rQN@ANIXg=C{q2FY-|4r8{H+dg=+utWTUqelhQ1wS zv7c#q?zy=D-1hbGl9-|B5+94-h(B5K73u|A~xi`ZcD>CFtlNn`c7?I5U2E zN1DW&G(1FlAewaHLyBB#Gvx2zGbt&C53C$D?wV!U)0^JB^>u}=@zqUUI5|ebm#VY& zVz<1vmkC!y^ui^-!TMVLru@ptfwao@ohbe<8WuzFhSEYmb(%8cZbhcU!p+If?9!Vy zV}#*pFe}3It-5#DH)yyqXf* zI4ZW0NN;vBfX`jz$XiiM7qypSq)JafNSh;dL=sq=*bZJavW+Z+VKE(FEd`a;dZ5fn zZ+@@x5r$Ft^*N$N>rJ+7%jro6&|k3?SHRY^;21Q;EMxb1RRAEx`F1r5FC zul9?`+_t1BL`{}Bv?-}!xwN2d)4LP$21kh>iq#<_TM_+(MXT(o9q>Hz<$ zQ!Pj>Vq)KHX&n24vf^Mk8o4K%*2sxullfnio1o0lhtp!5N25iy@G=-(*x!*5z1I4` zQyx3D?dp@BuVW-(Un`eoxES!+y-xU2Up9&JdH5Em^(e>xF{^cvj;?q zL@a^U6Ky|lvy%~w%HUff`bp}x>*j;%w>hn3yyYC2#ARnQWk8;S@WTbDR$4f<$0{|Q z@!hS6Y`5%D^}}LcVyc@OY{ekjTh7%R)xdsxVV?tuR3)<~%r#H!4lb43_xD*obnJ~S zEF2mTo4+DO4PtWMvAkm?g$AGfLj6RMW+JU)RQXVT&pn2zg6tXy(S{=bV4)1So2bD? zXV-Q=Pji?aHa!^cPDE8)AByLAEk|msPxA>}o9!;SJ!*NnpClEM!hCOk?M`Gc^b*e_ znimFN@NtN=9@wXDB^>Ah`nLknd;0_+Z)Gdk!YL*)=oou1r9TMG-$9{qA%&yH&84<}aR3FNM zqWvr03+Hbix;p3x#*$%jdO~HgRnC~%!6JHKh?O+zZ<2o@l&KOMe9~(zZo6cc;*bUD zw?;gv_CX7h(38L=g7II)sp)IK$;Y(%iZt`auRYjmSkhffIR@5XYw0#+y`~RxOhG*x zBY>s#vjB-S@|ncHS)7?Zy-{8dG2XSQWcP!wF7DakEWaa{ACyDF-ozS})1a@P2=YeQbiQ8LuFY4@7pZRl)8zE8j5 zDlOvlyy@>8EJcZp30qk(-xbe)7x4Zp#qfTx!Te=f)Zf9#&QBV5uKpWtuzZ570Il&IoNfe}lbsTsP z=f#nq!4oHw!)>LW_!DXvW~eB?FoWxc0vo}cHkh+?c0CxGQ?!DSDeuEo)Pi_@^>n@{ zeK*?Uy4;O@*^`j=bl^nplR)J?E^@!eG`YxkNKaMY`M^U*#?DjS{L4TsWc13(Zoh{U zEEody#oh^ECGE$gPYTdpwHABr8CUKuS(V{AhN#G!@vpU%YdiwS_obZW5dRlO^9+%0U|udqidKACG>* z&W`4nHsg3S0C6d4uS5bptPGw{EKd;8R+O{nQ--0uy+- zvvL7YA)qVy5tw+Jfl&7^W-5-l(^?%TkN%^WSpNbaE)PUg>i8gQTd9GKVkt@!u-kG0 zxI`9!M&m=>Q2si&Kb>rHWA9lOpF3W>Fn8gQ_(F*=LvNe%aAxm5JY4)hFf1fQ4knO5 zWY@82%G0#c%=@);PI0JCM0e^O`@UmJD(YaDH)+77y2gQpgfR-|OQTb}<<$!dPoCT5 z5%r_(#M)9FO=a!CVCCh%U1xn|gZ6xSNjPDg?Ho7?<-|>nIzmN@>-E0Fvh|D9pZUIj zyiP#6ud$$d7$44BRdV%QxN)1>V)=Dj;|%YF-kBl^XNlS~yz?DI5k_LyNlY$vmc;WJ zy0oL#s;7=#+OMeeG~YUP#+IX5U)rO-O;D}F^Hg;Cps|J+#GS(TM|}7G#MtNIf=(=~ zKDnP}u-%ZKlZ)#yHt|n~WRl~~H|ho#9oYgFq@cH5;Z!`l3l4s`W#q)Ra@)GqwMb&#N5;!K3 zGz0_l;L(ni%B7+lo~D+x?wKD}iULU2UG<_&+_v-7UGQvirn}T4$58QU+rlYEQyo#g z++E%wfmmY#=t$woqvlJyB6WD$EVk@}5|#2}QO!2yE;Io+)*3D~h7K~9w2#!5>U~v8 z@v}}MWQ*&OXz*_ogqbpzqi^N?-UP_RQfIpDk%Us3U}d0ONLl;M0l#4-e^X>dViaF| zE=YL79c{#(m|Ff%K+Yu)pJl~rAVr} zZ<6dWNoosNZK1O*?H)!U$jcYMoauFb+^g1tT)dv9hez>o{5n#p%PHez&Vzi$abQnz z(6f362;*pY?Z>ZA8p!4$Qa4*5^!g(bv(d)Zm7{1{nh9Owezv9Tb6xk1sz!btMHZ!b z?ph-2glL=%Jzta}c7bUV@gJ2oBq>^LbOYy(-ed%suFRp!P$rpvlW!w_k56wRB;(*E zTfqECfcOqr5SOE6_%Gpw;zNGlYt*QF1Q%p-lP=-CUyt##s2;b!WS^9|W(kCNm>yxM zJMzpUuO9Bpi4r64)s=#%MYAD`(F^C5mkfQRQLoBZ3nasYggpC!4B&r!1LZOJ6?qV# zAfpc-Df9G0VBKR5Ih4Xtq^?7XPZVUl@Z<3$OA_#yg8}7#rw|7hm#1r~Dg#5QK@2om9L5Fer7_FLs`N^{t7-Zn9T;}C*J}P%fW_jBhtHe4 zaa-Jg*r#uNEw2-;>pi_A+5};NyY8Py=*JZT-I&abPPDd+H>Nk&_!jjI;AaBNR&UqN z??BZx9?Vg=zOPW%1Bi(YI;Cy=AfXnf>ZvVZK#Tlz;?@2LglDXPBk)-3-)Dwg& z*pJxC<$YHpTqMg)lb2hWt9P5glW=6Ql|yX)DD&xTvn87dZ{8l#zu3V-_VqP0dkU^I z|EICk#J|{A$}g=9=Ll^%@@x#@r=I9&_Y3^m_>Qd~>8z2GnwLa^TU}&Cs6PA-*~e>q z*Y|d$f+69NGBpv6kuLAaHp%p5tHCXm@pl84YBdcZ-NiD)cb5%kwQzs`3AsvN zw><8tcgkaNAzHFX__^Pi#hKENqM_v&$!HVE|ErhG<8uZt497Odgw9Z`NMnb|Z~y67 zIauN7fr)B|8X2+Z;GqB-8vP&H-vk-RxYfrRjB6lKoedbbqg|jr&!J?mY>8tc^Wd#3txXk_^GOX4{xp^8>m4rEIA=fHM{d_u`xz)<4C}J&c>ZI!1 z?Rxl8;mhCS!Smd4`Wkd7^^Ntt!PY}g+XTvo<7uPf)8eAx611#uAD=|1M@TWqjCxDC zqe$-2BD`in+tlOD9Zn>Vt%MUf6Km-mv$I?I)-_cLb9qVr(mrBIDccPlGdp@gY=g%P zhZLwwAewwhJ#1#R$oe%hf;SV@jz##JwElm|DLJ)8bIlJP{G@0&K&K-8%D#dh zTW#VyCI3Vn6E`4duD_i}1~y9x0)54D~@8x?_Bwpth zt_$wu#Lj=?>8qvs2=RuAVd^M-U?-=w2AKkOn2}`E*Z=r8#Kp7@-|h({r5m4`!@U~;!WTa4%4s$Ebv_S1 zUTOgAB>WFvXLKzJWV%l-=J@dsFsznlE0_{f;*%$Bmry_4)iqBdqmm5Gl}@eO{rxkm_1?&mLeGKm|#^Cl`% z{?C6PenM`e*IL}}&DsxZJ88G6D*5~i2eSZ@oiJJGF}ydHSPjHsXqN3i9@czBL#{mM zbg8y+O8zG=FRu~~)^ZRdEzgNS-jv(p>K}>gFCUR8NKHxObCs?9+{&E2>dALe+<%x| zZ*$vAeB_!CIY80>tz=eu2L|XlIHJrmJo9s$j|WnCt^ZDyXv!AQK0^8QM^0m73Ig$c z8uZ`;-7DW{{fR0iE$!+;{;v)w0%$nooycdNdzC#xLL^X;`>S;iOHB61RHp^Y$p4pW zTai;%7N_0f%Y57O?>kIr9baAlX#yibWPJSNf%#)g5;%~+CW1KX2&WcJ`TN%*CMHJU z5OS*3^1VU%XPqr9$dHun-gBp@;HewRKX}rk*GC@^Tl`Q%+?c`rnVc!l{HW3J=pAyUC`_{&DSiAMeN* zvNlm<;yxmnn3zKp)z#I4n{jF(VPW(vEG1JPV0E^}e@C-Lkeiz8dN=w7>>1DpCt4sU%h#{fzVPbv!)HqR%fNL%?k&N4Hbab?}hsJl|Q9iM=M>ZWa zh9L{r0O{{*{`n8AzRUc`uj=ZKOP=sb`(?2f#EEaeVQx^YmvrYhJ!Me_s&JrzZ^BKO`rHFzQjPl0!2f2P4ok zh+?RJRXMJy(TusN)~u>&SDWBj)^CDpG`uttkZt3j5q1gF z!2cJ1sNQkb!4`0m8UB6eagBj+7d8b(9!l29A3@yzEtSUBGejQE5{Uz%;D9~9Dh~mv zOl%x!)oZ2T$VlkBVIqh8o*n}*SEO$$=Uh}cJu7WV_y9GMcbVjFnsf}F@lu_!h~2nE zR%AK8Zink91D{iFJ-2xc?=p#9d>w$4Ci&cW%8wt$)49TYp6B_>AR_Lmh{#B;)a2yg z{aha<2;s;n&rbJKiLYNXr$H{U|K|u;m6cXz6)ZtAtbfwNqxVhbEj zO8wGi#v5%r@A%8U%?u-W8?9~~E24^56e^}aR$Bo_0u_%s;%;Q~H!Lc0{NPe~fj1dE z){IUR1iz{njYT{#HVhu74u0qoas7^RN_^D#X43rTx>e%P06uD7;$)&Ydq%*fiYaNZ z6bchORi+S6Y!q=Yf0UY|(*_bEC%nh;1twNb&AS#HPO!AsmC)jDq@0Rry0D`LBLbb9 z0^Q+=7e94wrs(G7&8P=XluC5@-@E)okT!K6Fw?^eV8ISCRp*C?s4Fgt9VKPXuI~87 z#sK${MivslZs=y_ZN5}2sFcq3j_UBY_J3wZ zNy)>MUE!$1Fi&T1G+M_GqgHTFJm=Gf2LKaU(4_tJvJqgvR)h$XA zCpnhYp5tlnGI6On(|6Lyzgt$geDzyMl708q?hmT4eb5ZXp0(e#)0-M^MM?^)+=X{1 z;Uif;v(L4Xv=%asZH4>@?_a@drLf5I5#s_yDV#uA^yjKYR+%Eaw3FcoX;JdUuazDQ zkR2euV@&h~vI7QUH}A5UqB;JobBSTu_sbW53UC;~N@=`6C#5U|EYslEf-VI;acdJj zIU4&zW!3D5X)eCMUqlYKq1s6C$k=v_NleBHH}h+?rDcn;$)!5W?7j$LfW8A3tF zBm3RZLbo&4wv#METZ`{f^G$@PD70?ay45u@GR`v{IN+TzyR933k1*&sDH7ptR8^-e zyrjMXxJNa&EgSFhy6jIL;CA%Xhj5coE;=?&17R~|?Hwt*jn~`%Rr7liBop7C#u&&C z+d0%)K4m~qKVvo5Mwqm&4Piz1e?=qFH$R@<_cm%V9q>w}ms<-=P+7Abv=ICQ01UIp zQc(&F)&N&9fCEET&s(Y8+WPe$T%K}(?*c8;nE4(2d~~}gYx!wZ!gQE)i7|T9%1UhG zibe7{%tbKP+@t;Cw1;Wcv!Cx4!jqh-yB|K}PV2V4=DcZQNJiOISgIZhjJ1Iypx1q0 z1%Fz-8x2IFZ0LTY^G^ou(rAG9MQ&ph?JCy58NoP%|N4fHVA63%;A|tyEkIdX$n7B| z=8yW$e#gbjfXoIzBJBMOIm-k|@OA1t{R0|B6^RxdjnM6~7rTI?wJ=4m_4> z*)ZCFfy?FVH8G!F9-%jdAX-GiP^UF;)STxpd6Za4&$l!R@tfW)q2-RKaS5t4n&m^W zRdflkeed2>5^lk{&1@=fO``;TYDGdyc*Et2HDqWPbnTZD6@xnXd^HSZ^uEUeA)EH~ zPuW;U`jg&eVp6VOix7s5&-kf~F=5E6?J%W%uQwI#L|sTBRsh|x13fjgvLCMf+4Bbf z3iBiO>aF0rO(3Cf&^YP{`1M!1{|Pjcq7#&w%`i%e)VLr5+wZtNG}Vx3=kppbii%d$LZhsVZ{7PdO6eFE`gVfKXi{O!Uz$0 zsNApz0KkNU3h2CH_)Nrp5UTx;*_*1=`gg3$dgb>bFjz&{nCt>raTO(}_Pn>tRmuS{}Kqm0WK{X7m#>3T_TBsqK~%hn@kT%@ZDuI z%Sz~xiIa8TjpQ?j&54RFp&!{o2}%E6wS-xUdjFnt|LG65HV3XLGIq@G5omq81uz1! z{qMphaR+|zo7gIM<33E23cTA(77E)ULoZt_hU~=-M-<;9@l!a$M|7|CjypP`1Z!7pr^Tw11 zwV(E<0h>BlT?umla&}7MAKNjl5k+2Pgd+>-%U9AvdhpRAED!lxHzQAGXbT&0-hB-E zb&J8$Fbs|3;xgt&NO&9|P|cZY0UKh4A;En7yT&2FN6;MP1RGW^kcEHZAeh-l7kC+7 z8>J_}v`3zKS5*5&ms)0QtQ)q$!ADaqJ3O<|j=w6cotVjkFgE_ofc$R?EaZrY%4ac~ z{;GDMUj|6?SqbE?$w_6^#1*ag`6BNMP>k{qn{vo;vWfkuo$=!lWd1j@d{vnsf2Dv| zT|i%?;q*YD4PDDikG~d0mnQx;tK#7;v9g7nW#RfKOsqo*6`ZgS+1OakMJw}xf*#$d zf@v5S={j871z1;3(%b6)T(-OL@gpT9mczC<3}K@h!Se`%Hu`!(@Q$`WaPQnu`kX*i z=7HS()ldP4@^isIU-xfkIqBcoaB1uBnDu7W^oV)I!8nnTu7mGl_%Jx|*iW5#tyHAN zfdn5v31RF%=RMm-9&Q>7gY^x$KX9|>A0?vq-&p3P(R+nCH?A2qmj!_0$sPXfHaisF0fpjBG zbMF`+4S5gI^85uaze!~cz7s{_&~^kR^0Oi9)#gSX(7*51pO7Rel<~uKM3_Qj>meC& zh;)d>@w?GYc!w-Kzyq}#yNC)wax*0Wkt6-$Hf7_VNltj@Grbt_a~GN4gt2#70b`L- zU-DJn|6KTAbdJxIcYC4(Dzn3j^Yorzj^uVp#iA^{eK!tA(5jdaQnJSE={HIxx;j!H z>J$9pbwftYqMEcHkToUVvK`Mle;ObHDvOrwA3Gw8}N5QVrH0%wAeKsWJ-Ib4p+4;u+`%C|RYbIvBG7rKW2#P<) zlSY*dGf6~lout<$M#?e16Y5xw$sjXTQ)K9BDE45mV=6=nk-$EmOV2Y^k?Vpa6R>iy z-uHc&KVvs!*eEKU+YIe?CNnDFha;OYi1`h5*Z~q3wv`uj>_YrqsR_gj78gnA()gFJ z#@uK;&1}}YkE7Da^aC0#f5O$9ve7v)Or3H{T=`*R<;1-czQKe9`_;8eVT$tzs(a;O z;+R{S1?N17l(E531;a+!_?*a#*ID5ykwFY*pQWU74spX;CKsMchamTY$Ys03Q^QQf z+_>a}Un9SId;mZdm|*Hf6Ezezy?!u5#54*-6vs5ek@CbrV)+$9;KBzFH)3kC%cl3+ zf@_;O8v$ZbMa0F$*$7ZOPC(`31}}B)r(Y+sc$Hh>1wP1sIY!gAaLH;wn>yh+I2^&V z^e-(p(%z;rLT&BCv<;^C35y5~D;~J(DB0jczARjq#@(kg3tgm|mEb9@x_RSm%#lHm zZ~=LH`*wjGdPy959!eQ5pyl&rea_nVQ!MiQG{Ia`^tNg(L511NcE4v66px=pUhhrK zw+6y8hc?<>%AD7|_Ss2yAnzQvi)Wf6we^3=mz?Ey)1goXvnLu$rGdJ)lvVAp&9&d=+A>vsZ@{QR`B(oZ zZKwb%BaIp=f8ykTFxf_fbXfSYh&pY(qI`;3UM>cky+ien;14w%o#VtA?VyPsWQnyJ zQM$09a_r7cN4WnkD^(5GVy{Uw98)5UUn*ZBkMYCm)xs+qFtS>)aHsTeGFzyuzF{&D zx67fDk~($`uiz2$s|VK{a~RhTZOMH_N*+N|r_thWEB5AU=P<(1PmoXZp4lCfDmHiR zyEt0oG2{MW(tU-v`|BlXUOikj=|y9r&BDr2*Qu=phe&vt?X%*~t<*2Yp%}jfYk1t0 zi2fWg*0185l;@&p?th^QFtP!O*%Cw^X=E_%cO(nxPa0^6$evL-ExE4Asia zA;g@hI?@^hKXAxAg|bKvOEm5;4-0+l93|@P96{6FG=Z%`f}AOlg6=qmj++^6n|?)F(j2AN%InI zu2_bJ05h4ot>`l*E}RaiCxSe(&P%VxPQdnkh0AbL#r$z!=H-jFnj0V@O99KaPAmvD zfx2IK2}NA<+<9Ri69>zEIZPD`hKjZm8J)ZTLydzA$PmIC$d`Q<;@2)Kgw{_tP;2|v+1rux!< zNj{5&qs=SS_4;!QIUnP5{@Nb84>P{6J6H8I$AAxy9WY0_%QtjvP`+3XIJBvL^%T@Y z$AE=8@90Lv3g2v9?166u#jvY|Z{}J6MbliZ2b$?w(qdx=!_ zVcsSBckR9MnRPV-2&(KPC?7y79ln)md_SKXFi_*k&SK3*Dwi9fiuLGQ@i^X(c2Dgf znr*-uxNt}REpG7HO<^;Y`tz9}KsnEae|UuYD0$;@d%C{I`@?DjQ6PY|D>7>XgVn4D zHsM6t`QDM~zpsG>1tD&~z;Qox&xiK7`1B3L0A0zj*IBWG1_n^ABQa5fPo@`&oNV9f z91Op{wtPd;JdqC>{2N9NO$vmK&5jLo00x4Nhl-0|J$=tmV~Kvd^uRty-bp+Str68T zu%alk;1e5Q1TIiscs9`I54oIpAXJVg=^MuJVw?@!{3^QmneuTh(?$7iJ2y`IM_LqZ zD-n7Ek=Sus#?G(cK)lw@)BOdWn*OW`L8q7V`tBaZH#alx1x*sMm=UP5Iqz&u;7+I= zj%whfPqjWrW^|H8&Cdup(d}se?@k-%jGf&3V#~HXy?LfssBA=1u?q4*gZ3Dfy#)mY zP{Kf}AYxgcU|1L?c$i@t1b^F8q+QQ6{ImY6imC$ou}=w~f&r~_j}fm=4XD+hru$qz z0Q=+Q_aAYdCM~o~*2cQe+h|6UeXV_^1K0L~*A^ZLH|lvvbe>SyjVy`%ul~dx@bcX@ zJ(aut*enXBgCrOdalug-(Scg_FB2^F7F#<5bZiXU5_+=%P7xQ;E{qrVaSj6uW)UMU ze{d1t96NRIlIqI<2^;tDEFIR+q+V__R#)l@F`WPqqkV*yy~tlrIIP4U3)9Ko`%t#P zHkc@iw4LlWQ8xl$-`BWKk6whT5vYXc*$W2I9LD;a|A+v@w)6wSog0JZNTwGN7rf;G zMr*~RnqdfcZ$z32Fb02%uNaXX-{wlK;=(*FH+tDQ{e^M~{ajlArY)++z=`_D;sH_Y z4~w5+3r;f6KHV2TrKQ<8vAY={F35rk*CRW{>~MDX;$i2>>0@zP01NT=sR(I^RtPNA>c@Cp?e%Yh zf0K!eork(y=p2dox^GlSZyw4ehiX)58sDBQ`-`>;Ly^h)z(R$q%HInKlNmp9PL+YD24_(= zg2xXpKIP7C4JR<(Q9g;WuN%Bk!>WQ9Ke$c#EonHBQ4h6lsVARERh;T_rIZ>k1Omyk zUB_pG9wmh8?qKpnV{(#-s>adDyX#@|6a(b$7};M1mJ$OSQY{YT`>tYdbc8xUmtNKS#&VCuGe zROCNR9Cbd13#lW{_hBOgI8xs=2$1M?R8_Qf5{LqNcSASG=qvly6nt455)!mj)DmnA zbe$jLd=l+ho5(;7@Oh+4(m86~3LOBIeODtZcZS@R$B;@VpOBFj{{&?WGKn0?Q=Vp1 zt6OoQ=9>N1!@Ne3k;RhEnFCFW`+ikOa=nLTBdqruP@S74r`rO4 zo7_v}H91fB+(TYPjG_0!kd6NKO5pKxWw%d|^#x;m<7>c}>3DQ*(8xyN72i!RvTgNa z-RXWAem9&J{v``*^-ywJ^V2|Q)uq2&!_GC4d*2?jxciIfiod_(bih_3wCK8tF3D>~ zBhTi(N2~0Yjj-8ii0dke|Js#vmlORl=K!B5)vW@ivb-G%NW4;RAVKHF|D@6O^8Cf8 z3t0(7fXPz7}Z3zvro!aqC2)tFVK%tH&L5$a_N3(fqr| z=Tz%{TTZ~1^bKOb#`c^{y_5*go-P;_x9_ApfKS+lyJmfRs{0AxU*3{gA{ia98(Jq} zl0_f6P7LsSm_Z?B7=Fd_z5 z^Wr^1^0V^>fqOprpq;VcEJJdH*zWUwQFso*uRWfhvTtksM1Cd5{%~-R($`Q++iu!7 zn&i}HXb4)^nRIx>RH}fVCV7NLZ?_59F{9W1T8GA6yT>wgh|X$W6F3VRx~dx0R_*%O zOh^na66_5coX$P@E}wW|aLc03U(I0dHUaVi56=I+%L)cF1c-%ns+Ls8d!2=FJGOP) zduy68>35QG$7u@P3=#5mYQv00$G+Kv5{|yzOh@2#)ck%0t=B9WsGLpqsF=#LMQ)*2{$NiOg=$95jr;q=zqd?U)5E&C+#mh)9AOI2QD`KO#VX?JwWRcO2faYMcE0;|KX@q71jUJ`CIlb$)}ilYU+P z;|^k31^eZY8w~_?E78`IAs?@es>FGA7Wsiz8lA*>KCv+jr*Ha>&bWTv{UYfIxi5orsB;V-}cFQi|-5aucM#& z`}X1oq4E2zEeiIw6%%1JYcatm$TeT!0Zm-|=fI7CsH{99jE|=QPSeX@LSPJkLz0+~ zsh`1ToEfrn0-6gZ>$U9Lf^nZq@o}65Zr52l?Ylf`E_;aehn<3L97vBANQ0R>QO`2J zQ8Tq+zSwuS&3bkoU-}B5ckec(6cm92&^l36nrTTUb#NUucuhA4uGsHyV+7(_ffQQv z&wq#*C_H{6?eL|Cq)t9!7t{c|s0z7rL%g0B>T#!{4 z$wz4wiIoJ4$#IF<0%6A#-2U0sz$Fw`$&DDngjP=AQY*}iPV2ShoBP#Wc|(<;`>ku` z2@lhHu{~H;`4Ti)rD}e>K2EFQ&WPu5#&7p%vgbV4HrJc7n(c+b^S{4?$;XzlKsNHjuN)pNU+jLb{;yp}7C98*J3iXR=Qu?LPuR*%oZ zn=h7j;~U@k7`L6;ZBDh72TS%)b7VRfPVh|YPK~Q8ct5N63lZ{4X||xw+LX{z%+YTP z=j7=T-M{J{2ZLuv+vpKa%NS;ZYMODIPJ@0^z}3>T->D~i*=l7MPx6NgCS15Ylup(G zks>`CM|y77r4cW(|7}4EXa0&q8IC;a6eeQGursZ5dZN17^0Ne~m+by4dF`V?=s7HkAB<86` z7nsiJES2=HU3j(KE&F5oS32;#O}9d;e3_7|<0|@t>ojHx1I|Nx=AzMgq1~7YD4&VV z-b0R!{B5z7GW*N=tWDPGJ|wM$#9{K$Hg7wOAS4m=C46h^s5;fFyk}?8YJ#=aYJ9rm zB~kf8Lh+j!x4MZsnH!$cuU0(w`=u0F7E7OA+}fMdF_}aP0_heL>afbj-)i5)H6jww zvfW?m7hTT$^R_?6QAz<}+jGV^jc@BcCqMQKp>Sp;>8r*iMLCJs0r4k&nncHh5UVMFql(<(9f==QCqWAsAi=9nUV-G%p>i>bqW2{as3XMI9U3SH%T1o# zUg0l9MWqkTxB>td)Y9Rqan1N#rB(&q&DDt9N`7GEnuca03+a(G7oV(}ztZK0d&Ycp zRSi1zjS{`}sy@dF`BN2Onj%6iPIRv8lZ)?jFUb-`8gcl4%mU~7OBQz8X#|~*TaA4V zWwmwB1$gjY5F#qI1`lt*SBtY|V)%5Q`IF>>yGN_P@}-T(6k{DR4-%6UpZ(y6p;qr4 z)QH(n=_bHiaPc`FmZ7O2oM!f6r*67(I)6>asZyH0SB0b9|8;Eu^0N;#Gy$|>-wQCUZ+yR*4%?Os56jR^Mo+RYy? z)9q+dq;hEI=b~4SKJwf^$5=?6cTUGC8Nk*6VL_t=QpdXy+8-`=`E^V0lIzgDj5g(r z!+k32`Wp}%)lD2iIW1n(4G+yuJ#G=GTx?z6R16VRYlC{6PGN^sP_Vv+`6F#XVYfy} z<>%&E+-T^N%0FO+{(@l%jneN&$Z%rTl0CKjD$|_I_VkpW#Vdaz^TPKhp6SX;tE*75 zD0SddnOYPW-dm!^WkyF`Ty0*r`Y@+%!6Hv7W7zMDa%5d#On z+DpQOyNPcNI6&1#J;GI*eWb0zQ$T@~v<3@J3WT{^u5@glxdj-|#o=!Z0`Tc7K`=Qu z9GJ8r-iFu1(s3Hhcz|Nm*f8lK)-ldujG&=%gRaA0AsR6yG?Vt>uAaj5))#N+CbHf< zUl(k{%c`*(29YFPsU^xjOZ{9`AWw(!8QkSv7^G5QyV3<0U~3|VD#*rwJvHw*>kP3%CWgi>+Vx54SZ3c zale{MxSNVV`t6ifp;6!8sMezEQgGeTi=uum!m1ID)05iUVhI7=2e=RLVbhZ0R~+>E zdI@5IP^KpMJDIOU=T4qk< z=M)|`fh=qf%v1O}$O=70Gio_kqG+S9$QJdAKRnd{ul*Pf2`Nz6Y%ho*HC&vMaSw{S z`M$I?-Wb|B_p9sRxhp@%89TNIK7D;zNNGZWr2|byZPSTRzsAKOA`6r^(jjc07Rq0Q zN4fO7*=ZQU=IS=XK5FE{s;?0`Z*)c2-ioj`O@f8C^W0X(;p7zjD!bY91@drerJ&_ zZnx25jt!2KrJIn5RPA2BD8i#<7E7HQqEZ`t0HZGFp&y(uX#Z&j6?u- zBKG5b$W8ZQrTX(pM8XU>s17>Z4ahOHHav4!X?7gzX9@LF2HVVj)p8ND zOY~f$rWWPFk6KicST#3g+f7T$-*DS6bXVgsQ#KOTDI~XUFk`#1e+e#fR35ty968FA zhVkdVH2Dc9O-?IP#~v9?N!95NGcZvfiS+U0>dH)B##Ij%56vH|l;wFw36U`T$`okx z^f1jx8cMTCK@A3nyH9ZQ=F`w7&+Y03d-DJC?$r zqQZ6>PdtR$pItM^b2Y?|*AjE~q{O3k>+w|9V(N4?P76t=kLuNvjlX6n5kb9YUh ziM!&SAlq!^h?<0@V#dE|9;675#gpSet{$>>8a|Uh^@&sJWv&#;0G%U>(l+<3cV_;~ z&8@xloZjU#0Zs*q9f0cO3phYO>CvCtnbu$UDEULJ7{AN-OqcM7mL_OGpl~C>B#3is z^phQkcGPHKdnRpbJ>?@HaOQh5bmksokvnsBuE6KW-Z7xn_2V^K#IlLRMn3f_|1Njr z$XfZl_LSIUJR4Zp^nM3YmdiGGepYf%Kvi?HS9SH2e@IRq|)ONp;6W zh}{OaF~~zPkp`~Bi^cY-7O68p==SedOw@x9uIQzAZ@ZzMl7riI*8_&RY}FI`YoWt6 z%a*H|Xrsv4G;WYDai#jQD=qAZl*4x)Lov$MfLk+_4sw=4>p7R0u_Jywot2rYo%{&R zSuXjb$izc85x)WT_?G_|qZje>J^i3?Yu#zw;XBNwz1I2^3bg;xw6jcQ@aO^EVk zM%~vo-ZMn}=e_aE`IeffAjSH58-efbco^O1$$cwpF&B4+%to~WNS}`zq|Zkw>}Isy zQ%3bCf5@Zp!wcQ;@gWyc(Hbvx(;#khICWqQDik(pJ8pSWeW`mHDp5$ zAvFYix9r;}n;4l0HRTPR?Ajx)Hf$zq!P^+|C9Bv7Z%9SW&Ti3}~U?cRL9wzmS2u+pE)N+>+Vs+crJS7LV z&tIzP9QUVMRkv)V^sTX?4PHu5FNW6-E!b0RH5D|zhkFCkfYd;t0&;E z{p!O$Zn>qUjJ_93G!L_lPgngWCLs!XKLJkkMQaxz=2swGT6T!x#_!i38OBaCOV2;o zwC`_`)p>Y|D(Lb5ZV<;TCi@{WFGIS&(1#*7x&Vzcfx4wRA+medxs1ZHR+^S05uyE{ zu)@0Qr2T@nuRbV}v~iMoVT!R52F+Hmwn+7{4c#jcM0Kz4+Y1@I8yW~p=M(p84zNUiXGTAN%0B8@;`5S-84RMwCS=8Ei-yMn#9a0GSUQ}ak$O>h zLU($0-;9*k-Z0%~89sNolg9>QA%A6kU`&KKTvVi-NdBlhs)4x&&+~JU0#Az_@cGSC zR{iCgBP#tzG_^#i=+zF-2&Qp1LNv&IGP3`}$U~%}x`#mXEPIS3XTId{WtHfP;ATtNpNh=^aHUudOtoV>2O&X=pu?Al|4=Q-l~JYM)UQAEw zSx#;N?T4Ur{WTzQL;pnMT>sUjSIzm6ZmqZdos#Y zIS}5&F;9 zbonj6n%3eq&@N_(A0nMlsE=JBmb^ zp%#1k!S|!WAAh7Z6}Hbp?Ro&%+vzPu04%o`P@yzMB`c^Nw}&k z+AAF*nS@AUed8G1LbEMtYa8+qcOtQyMJxAlfHMIjonU`1*2&{JHAR;#??=@Nl;jzH z{!1&Tgi$TapxR-JAK%qQNR`_mkgsh#Y$TQG^L8BFbT<)Nbq+aRQ;+x;ggfcWrQ0-~JZu-V z(w}-TfO6NpfNQeZmCibu=``0U|;7E zd06gBpvLJT0xX@)3x4?#d}GH}O=U;qc?Q0dH_JpD*kLIO^xhIbn7lA6m43qrtF1`k=mAgpOK$lB{he#u~;f zmO?$a-R=->E&1GU_el)^I7Is~YF#dq!jHIPf}MnU@}@Bs;M)#oXsZ}9JHO&@4}?X{ zjs?ASK-&ZHKR_PTpt`a!`kd@=%1gJ!F(KcE3Q)0Rl&J59H6CU|MN*U?6OFL}+#iQC zYrCH>J-8`gv-xw_zaA_-ysXi1vWd*JKI7@RqrV>j^3FEG2nB1*kA$H!Av;+3e*@UN zELZroxoWr#zIkz@Yt4~!P$QZ?j!=mddf+XN%vS%#gM)JFH--Y5SbkjS*jE2tZbtAZ zRd}{$?l|2}uqXZsyv89T#OphC5l)~-gm_iSxS|+40fCR<2lR8@ji_h*oJLB>`HF+r zR%)u4m^M*j-GX&Q?1QqcwVAlwpO8{}utvQOiLN`HkOz`q4C9!lus{Ch_+x!BYOs5E zMP8xT*y;pSTUrWisE%aID}>Iz6Wk=t1JG-W4#s!oZb%;8)4z9o^M8lJBzstKKj`ayUR zD5T&Dt*>jMZd{}j%!6wIZ^UWJ{|%GbUjbj>BWR5sEsYo*_vYtKx9AvupNv1e?7HYB zCC8=#Z&`bjLblnQ6TPd_;?M9SW?sC{tjmLbU$b7{49ZfqR-o4ce3}ykz9M?t9KEnK zF~d{Y6Nr>5Jb~qF$wc7WOKY}vNPU|-I>Q*q&XSDtv{sl8MQk3y^IF~c~wj*H*A8e%tm?@0Vd$L&a_@<-2M zb;uczYwypg0Lb4k$if$EyT;0RF8|{oeR&pqPXDp!-oC&HC$54s;d3P^2E{_cO$=Oh zHE(TxhV0|8t@B_DEgsT9(MkHfTlurU5~%FS^vM}pX2@M=ii>(K_!!)!eWQUd zuWyyrc=7WGYv1Ylsdeu7*}!80@6P#|URT=d(I?*dGiHV%5{2ID2XN!;PQR9wjvO=a zXY1XD_k#aAar2wpC;yw_G)FIAThUg8jgv76Z*dwCAI+y*knWdgP+9;|S;GF}*2QL3 zEE92M`Ol+HPyhMi!?8pyRHbn7a~J&6SaJ7nO}A47rZ3alNwqUV0zN;X13Sg^9Ncr@xwB(P+7U+nvWEId#(u={XeEj^j|>M#~ehkrHHy!+zFftbKpn2i71zHMbofR&#kf zcrWrYG1C8H86+|FcNqZRrD<+XDZdv`zu>?HEe>GCmnGUm!lOoxs)| zYt4FOi6F-P+TeaNwQti4;PrB?bk?Cd_!Fnh_Lk_RtZg95GBGYLNw@+q>nCL={{1n@ zTj=acGdGHv{4hT76~pZ>n&KBgi`U$j@|Ik`eJzyC4QXy62KYvJ^r55RL6I6eGN+->QhMx- z<4?G7P-!%1gNdVk4xvXCUqP+}n)qf{EPyAm&C|Gp(EX;+&Dr3Weux-=5l?9Cm6k=}$$| z5fjhPsLl-5b+*bY6}%`9SPqA0>Jxcfc!S$7c|n7Q`1<^$gEDs`F&O@lm&x!;y1w8w zbaZw}E<(pQmqnA|Riv^2=)dTx1Kbs^=33Y z!tNev+xHCYpWq#QUx-eY)5CDzmIF^hh7gfC`d6kVllRC!NU2JBnz7aPn!?w1ci%DJ zJGKZki1xa{ZMe@BVE_G(B2xu}?t~y%m4MdO|NG;5b46lAOK;q%99|~ISx`|i;(95( z)N~taeVThu`ovW5wi21>tQoGBhxSh%e2aqDbJC^C=*<=$a^pYda@i|hPp2Z)_D|;O znjZHwWBz<7lTUYjI(o1UrZA5a9jNS$g3}JNTgz_#&428!g6(<^?e&_TN%&y0VOGfS zLa=o4R*N3|uUj65eH>?^TRVY@4n0~|FZVVNVF^2>H38uY3q5F%2W=Qxy!EbLR7M~U zHcY={(I;j+OpDhpVr{+|($rEl9;O(9;^;Jnsj>ZFGB%-_&f$VX%!BW4H!5Ku^N~T} zX!B+)k>(>3Oc6UD4b=W;1(^Y{Qyfd81RL-WUGuCpjrD{pBYEQys};;<3}Z zzh(pa`eDDfK3R&ijg)!*Rb&>i^C(@)(_Il5@f6IA=Gd|i4nIpTcd0{x7x9b(A zDIv+*IQiV>+(IkNkDskeK**;({RQ`D9lDNdi{rl!jvnKL zNTQIDhbwLT<1H2HzC9g$dW4VI?zC|ja@+6?mML4X>!_1$v5MsC31StGmka-%S81QrXMs}PuH%@BEAA}7=D6jDNb*Nss1+eA0mt2@z)#(=9F7y18=0Y{d~)me z-5nh~d3s)tV{8Hvdi@dY@BuxtpEjMr?wmUNkspuu?s4HS0#sA+>D?y-$is6dW7e^s z`5O0x&*Wr`-|LcH2ii~E#2581!IPt(DuyG2j+zXuy+$5xay*zsZ7Lle!ZIdDD=UY~ z?;CfXt);KBC=z(NIN-;D9Up1yzh~fd^wCG(KUd}%JMJ!XlAZh>C1C1x4r;LzxU(Q2 zo^b)Ws#qF!Ih}R0A+I#|_fB<_!ASD6=sG-&jSKo#o8OVrE71k3eesRgnp<7kGF3$I zkaXwA5}3R5M2HrgN*Hy>nJ_0FHPMM?f-ymuMlo79(@7T0`*?^tYxMzc#b4%T1z4np zLZ1IjtrLF1B+&cya6y6yAR}`peZ-7mqlPCvxaQ>6iIFmT^mJXD9GznFa4| zozQ$pZJQn70kodQ41pUj6^=eePzsUfdh9NrRD~B0RmEfv_#LLrbIK0;(Oa1)`xh+W ziy#UH35Yz9R0Q$B5jtGVyBvoJWNE~k4y zy2eS+8Ge!dQ;wixpmmO2-?E2)bD=_k-`uR4#r7sMhDrY@5?drC&64{YS@dft){Dj=ulCWy!6HYSQ(|`VU;Zsc%A)GaZ=Z zhZI*=`#ab5k$yn3n&?Um;kuql(}InjIfD&ldSkc1k0}O@t=NXc82$J%YXO*GULS96 z_bBykI+rAo+WY_M?X9EQ+M#pSHp1X7QIs0xuXJdBIXBcpj>OFo9+bY6O z@={)_`WPGLi2IHEy}$wP&xXk{+#r<}Pq)d#uN#jXCsn9xhC+$qO*>hA)k8a`Q6`D@ zF4V%sMKR81%OV1JpPaZ0N8d{EQ3;wK?H1wQEkByh?WoUzkga^WPNdXPlB*5+cH~8| z52CQA`Ii0qb6Df!GqT{81J|Df#cCS-61#LJman<|&!jU?_I@Cp*~v3A2Kyc&gl=jz z?k*qIlalI?IN0UZyXz7o`v`Yen6*?am)3Jvtl^Rf)Eu=S=mwVZ*XM+qt5QFzxUTeF zdk>%8g6D38U+=b^G!=MM(&UW;hav2GN`Q9uK+w-Krw-251A+&xzVq~q!OE>1=`&!a z*2{IsyVSS3JITG<$aY^c>3M9ML1j1l>%kg}_W+Tal zZRstZ&rBqAN}AyOc#kE5VZeZTXZX?Az~-!=Q|i76HMhjw0qdU_XMba{TXl7X9XJ*Oc5@TpvmD(Bz@hoIfg^Rf z5|ma%{ufyymUsJO3O=XR>4z5WzT68(I+uz3bTE2B*Tun7n?zsG=yoi#WK=bkC@m(! zn#h8Qx}=uh2t!w0#tl=r3*osP*p5#5e=*{0KFQkZ=y2YYy*Ztm`RQO;P}Ip{&;*)D z1Gk-9aig?IoqCN7i3rK-S(*9Wsb^etJzL9_oM9tP={ON&#bt63N*iION-Sr{_ujx%!22&(w(j*;T+H(X&olz$i_nuH8O*YmPFvNp{> z+v})JrJkkH5XAI`++U2GkBp2t&DupD&IP$wv@m={2wtA4DXi6bbJB0*Q4&y=4!&7# z%Q;@$>pcBnWcdE-@a*%xgd=)ikdprTVkM;o(;JP=z|4clcz5EG0{PfxEisjuA!%g! z@%2>Zw0g}MPOgJ4!BX4qEZV2MNLo)uH05s^87Q4Q;1_tQpUkGg1yvZ~8f9ZMKTa-TkidD7NPEA~8%aTIdx^f`h*crf<@Vh{sMJAXQ1N4Tf}xatOBpXGw$I zE8tsy?gi5y{?W>G{tTgtrpxd)xbd_QW5O6sQ^3;VizftbAF^ALqOrIVs#X}qL8O~4 zLh-;iUQ&dZ|7&oCup9r_vgeo4<*$V@?b&Xax97g?buHk;yLqLJj(Wt&Vr{_9jN!MV zY~QQ71AQ?Nzk^}L*o=*Q8DC*|xCSU!IO4th<2%Fp=xbk&Im+s4$CT7nR+a~Oe(u;g z&0bVUr{FV?Za(dyqvOoRfIi>#pP_FxMQRLmJ)P^%AOc3Jm19F)I);j7p6ad5!;2of zdyYMQL<#dRxrSF)X84#~HlGy4^`la!r&@;I*v~3@_Lzp|;(o`2y~h=6FPN-WR{q34 z=5R}JLW4?cy1NSh8{Hlp9A@mLj7#Yu&J_DxtUyh{a(aDcoU!~&B7U8o?(%fH)Wf`2 z*DyMk4*XZRiwdlqL9yl`PD2HzWIo*+xh>9BzL?#nKap#D^Yf>#Fc9Mqe#t$$)?(DdBoZCp_QO4zZ zk}zNF&6u|CsZuE|7d|@l*rV4k3ad_8{!q30PwN_^3eq%Itr$L5!PsMQv^_SqQTUbv znnZ7DfLz}%^C5uf5EKP4PYl$SuAc1gIc2Ig%S0Qy9#b=f;O%UG=5Si#8e3^K%6afR zR-k3B&X21qVw_5-UTWZ{{j%wCB(k8<^yUqQAe^|Gqa*yX-!b%TTdv{Nn|5@S;}eJS z`S)#;ArJVQ7s=lBISkM$_+!edM6>&QKZr7IFXLq9=yLtAbiE}hAt~`_ z{L8`lCsS=jqmJvW8!P?M4{k-bsJnCjl3qyxsKSztm9##xO1i zI6CCn)%Lt2D_2YM^X^b6e-$~l>f}3pZ8A%I(O8_~T<2L2W`e`9P#nL3cPFIB)|Yjk zbKJ@CGXt#C$ch4n%wA9u_U&|IBg1NZ5M(R?AIBTRLPUfnw|{n-i4urd)C71ho5{NE z>7@DcNffAAd}@#a%alCeb99x$j;%i&TKbb*fvd7(qa*IW&&j!YOuAfD(*6KWP%p%f zXXPqn;H#UI-c8Ka-fjI3`*`NW0(f{N7BQ8w?u`Y#vK{zyXh1$M;c;>zFK5Uya|gFC zvGEr-%&p}u2+_WI>jL=W@YohMPm^52+PA9`& za2-!F&QQ*fO!K~TejQqFHcuz%I>;gpoPYTRs{!pOdV=?wiHW<_R_L4bI~WxLU8A}R zocTrh2_sD*UtU5cghUeZC7NFlPoI03wtZ`^V;^jzZrFjv@^IGVNKEB^((j0<@#+Z4 z*GmqZFKL_8zu5JbL}YzLxE^+3bQ`s?J#RYk3+}Ds!bQ87<@d(<-Hwqlb37=C-@) z90v{If+-I4e zlLj(+*>25R9VGMd){6wbu#qo2 zE>~po1O)IT33DB|lX={c+zod~u6H+Rt?>Bnb6a$&$N9(@YO>5MN_J-m(N6^SHo32S zyY>F5B~qhfbo`P&5me93RyBxM*$S(WD7k>C>vndK`VLj9=Gd8Nz9_ShKy$j;vsV+O z>S%Ya)A|gRxjf`EfK==0n~*3`Fx`}Uyr!-xg*8VeM7?Z9wNEB6Sjq65jIwNy?huHfS12qaJM=Wj2$hl%T zN!3OPhCRk72onl^lU~*6sH4XN=4@%3l$qHS;U;UV8=x6XN5n|wijAESFtd|8TT7Wn zt94_3>snL^K`8=u-RqlC8`qVrm)DDQ;Ih&phK7U_&<CH77$(vY|qj)@ESxe!dBWLkyBKcL7K12=Y^UQ_6%r+s~0@ zB{Mhj#l9@X!Qg4=(D6Y4IakIw$D^G5$2N6#VI9Qp}{mSQ;9V^m5(zZs~en zPSdX?38{{Km6F--$B3ubO4G87mLx+J#isgcuc@~_r;n@-rDh1mtEH1bPKHt;jC`82 zogVDN0?TbCDRS3jLqY&C62Bfd;ad>rmU-bt%Vn*O9}TIdmW+iQeE0BP-J*C^J`K zc92JgrLdz0vs|+VSWq`~&Ov0b)~wY-92j`kT3OL52?1N{(`wA_39XCcHI-5ij|tKR zu~Q;2r>$>l<+yrWdg8&^WzSn7Zod_Q(;d+P_|4N}R`#ZkvX5Sg_%wb;F679qNtf@H zyg`$vq?%f{%0Z$Y7>HK5ls}s8_nVG|coj#XS*GLeMN_smxcowCr*wI!sC~Zo_rQQ8 zG-_9C=S91KFMA5VYb|l5WdKtNT<}^#1+13 ze~NtkXHcb2#(h!KR#C3HOvI`Pz3q_D{5F8?Eb?W@? zi=GO_1T;}t>aX=Pdq{ECU}#G63`c&m31-shK;JsgtikSUNmJG;lXb^gpF8j;4IOAG zo=%x=RVJcgGckMb_wNmV9(_?k7uJB=NDY;1G`}wFFNGLfJ zA}5v#?ySNDtaF+%=NxBcIIGnqb{1vRYO#oiIJO1jb3rWnFYL7@t&hTrD&h>|>YG=p z%)wzJ)pV4`m)lFzSV?9%Baicq_UC+zkR(MrC_f|z53U$}5~%JCUzK$D;^-B9*zxXh z9k8-Y_KVQJRx61)Q|Fr=6L?m{JJ0o@I>Uymlaxh^_1F`D*NU3wXB(ZpXi6EI+~({u z6I^^ulHGVWTl!L?Bd9w^*=7OHHLiW_7jh}HC9%mx^OL5&O80B(P+ZBZh77FSGUnH> zGja`h6I@1ViN3l&0!?;vK{`~-AF=P)t_e!a!d%?r2$uXU2v2gZvl0WJQtS~dmYbqa zjE=ANlp+umLm>^f!8MhcezP95aQ}gug^*+c&57+fQm*D5f61Y{j9%HHaQ7Z(&@Qg( zp5)YSgNwGs0b7~?*VkgQ^BBnC04lBx-wk0ppUC|U^gF!uG#n0(3yyzzyeP&IMfy(Y zn_1V-isL)%paa%z9BwW_AmHpFK2&REV4tHID;Cd?8$npE|VpYai~E%3Pj7VUzf zwF;`mf8Jiu&t(^|f`hfw(jOIw`HRM=X@b7jmfWuQnlw1UM3`R?Qlud#2AB+UmfQJTP6vtM)a+4c*b^fs2;6C0fXRD1v2&QT{O{Kn^ zf1)rRon2->+2d7w>XE4CQqgx{Z3QjGd(nl%!+_=;I(cE+>N6#)e>uGOw`G2b@;63k zq3hBf=4G5XEZ26_vuu%L_5l^Xn7{YAO^3@1YXyC6 zDODx!2sK_V=(|a&ie3@C{iWH{S%s&RebKd+qU`P> ztq%+mJ>aAer=_IIwPXHU8s}8V$6Q!##l)$H6+364&5##vOVIY)cMlwA?Fx&*@H1Pk z!(R)V{d>8IJ+>V!(Ybe5Q(K|(F&gH7Ne=bG_K<%*0FHx-v)O%oQxp{$SNF9mJY@M1 zxYad7+S_1B$DXyCV0vZH#CJ(2TKTH*sw%U>yFx|wyz}WX+hwoY-TEA3je3IbufVbw7TKrVYQ87XEvR43A=f=%&A%T8 z4fX(CQ4Za1PFMOEie=1C8Uj>jF;cMh+6bmzXQk2q`%P(oh_dJ?C6-k(!Iw+dy%Y1z;HGnI-r zOJ6{C1PgoOGTUU@_2y9AO%ca}gZjJCg$&8fCUylH4%>iee9EXv8kWWBQ@X0aOGeCp zr5BGhnGuYEC>6!6ou53EG8C1~&o)55JgdO%F#RiV$WVMt{>jW?BW5NwF?&-F&h5Z^ zL4rJ|Tt?O?FbXRV^1l#%cx5B zs#aEN+EfkCB07e2vX00G9Y*MuEvthy`rY?#a8j(IdvVaYq`Qh7%!xR8f3jS8*{dKU z7kV_I9%c2zAyQ8#Q^~+g#4TnMBYEb_n)3`1%?l;{&lDIYCa?8fU@Tew>0lQt1yut= zvC^9U9St?@wzt5=PeKDx(Q;L`VG^iL+p>lCm0s}ezDki{eDvbu-kzS{zk7o4a2DyI zeDy;HGNON9|Kf{?3tvgn(LxR$*R{SRl3nO`3Krc@W17XqjDrR(g4Tom+M4d7lXhq* z7spwYa3bR(jhAk3 zLd{PHD!rPf1m@bgoszV!9>(^i4`;SKZGd%%eO?450pf^zy>^v>LFS5>Ene|>$m4EK z)?)#^n2&Js_CO49k-2n!kQ}&s(U9wY)1pFfazf(t2@=s0(sxO`_dG}XhcB_N4&NcA z(BD=JLU;g2W5bUqH&>HS$GtvUH-Z)5T2uE~s;qcdmhsr0cQki9DM>ryY!P>;MOdQ& z4R4fIqF!_R)n&y^<%4Y!skDzgQqWcIMuY1E32q4%GK9ifv6QKvm0{gFqX_QQ7jp?Yb=_cn4cuZbu zDU)ISPHmO0-y$WXB_I7ov$#!Cu%?UewsZPXU$o7-)oz4!1GP`L_N|M2qLk7g?t_!> zuRN~Wp{Ckw%?$2<)n?5#r>{zaKL+p8d|5`uh|V>>m)+w`CE;tE8%nd2UcV&&Ys~Bc$V{Op-y{?mh~ctECZ~4?aa5M?&iUL zBK>n3|JdAt4#b~z!V6j*Je{Fb;;04_@k>-2URF-gli0`HXT|du--mIm?<~y2L z*$9)M_qdagwt}g6z-yr}p7I1avXWy!zEEQZRXQS_Ka1jS8=e^P%uhtLmzke5W0$as zi(lKg_hoPUwlEQqYK(F@H8ItCh_ktqGk#xI|Ckapqyhc0IulQ}ylg8D85*hn-f3Xv z-(V~O;u5Mmu%A_~;){B!MW|X6P&Hnh^fGZ*AQcE~Oa+cK%GXjk%w)xE_(K$SwjO3_ z;ALHI&$&`Vwghrut~DigN#8>R@uC7!EB$URnw%wdK6gh7oF!{`Xdh{^7AxDEJ2*@} z!HdcxdO43ll*ILlr3~k!`YsxF`fIvSb=DIFbr&v7Ml!Enk{96 zx5W8)7Hb#1U3Bh?&aSKWMO+e^OuSlsEBIz*rv<@l7849CSxVnXNEP35G2AUVnq$e~ z@v!wJP0Q*l7KW6YK45i>`>$i_sbH_B);4&7y>J(`E9G+1en`8$NJB$Wwh+6QNpou) zgmk%#fp@~VPvK+hZM#FwagnWeadVm!w*{R$9{TIpan7r?1S`&K7Xff)f#*mGY@M!) zrhBE4<)#qDVINCNNGx|fD_IzKFj;Z4b>~2+cC))llKCu+#__P_>Ugh-4X~Pt7tpf; zSxzGg2iH2(J39u5W2Yq{VF`P^u8mXSbjYm$&15&;t#13^D`5X@`FPTKi_&aFPHt}G z2sTWRABgvurICe3Sfd+#D1@#_aB*2nU3@reRjk^hY3!6I?dl-sg|jCaOO-9NaOoD7 zqVYAsNoFbk*P$bMc6te8fPR!QBAa)on=7K?)Iwpl&Vs^?l_3$OTaL*sahSfNA`8 z^WPPRxtagnIC45{5Qcf?ejRc}z8w`B-j_@;Okg3gWTvB&|AZmLTOSypP%u+a5B}m% z)1t>-o$03wi(-LH5+%zD0;bLgUoZ!a0~95Y?NKfQb4gzgfpt;-#^o-j=2Afho?@QA z{lO7v_;Dv%RXiK`pw|2%bq1U9@IQz1PkZ0_=uT)OHrkk_%+4hosL%s%*V<#$R!>j1 z>>)dAOL%HJ$qB#)lgY2RYG3ny`T8BX%i63*QK^OaqO`74K9fh2+81?bYoDJ=VsZdC z5pJynf=J?Sf~Q)2Mao-J4P;v0&EN;4azeDD=)g8unSsU2$3u$KlPe$?=Ify_ps%)&&y3ZxBtWtSma6>D&jgCfw6v0nxs8IQ`5UgX>gMe#n(5-=D0;nvVv zI=j;3nWStCeSl%KRakVLI%&5rJv!}xD~j^ zB`GM@7nvD+a>k{Xzo=)>%qvtQmvO#$q-4tI7H780vaWy|)4*V8s!i2x8dt+G?I*YW z=$BrtL{=M{oc55=Xrx1`Ut>nIjcxs8Sw)#yZ}A>`1o0a^*0$xn_!A_Feq9Vh+{vwb z-}KWv3a*Io_t2-;(qgQx!pPMmj_@zfX?a3AF^hSpbftlGsA;h7c*>vOkFy`fu5*OD?d!IA z@VN<`anKC8g3MKJrAcPm2Ldx7EKcw`iqiI?fRtxGEecKaX=yK~A)XSFJ9D{w$cU)z zlap~t=&-{Z`?F9-Lc%8?V45&--=it z!0Lszw;y+SuGxGu)tlp*$N7j%SU~2MVx$SIDAG}_`t?SEWt?5^hHfHPV+b#_xNr6a zt)qIwQBt-qL__UwL18myA{7RWRty7&DBnkVsorrj;~Bbs-dvHen&6>kYEK!NLVDLo zY06g;o4(R^5n=wOC2Ce$T`H>!$rT5@I^&lhJ&Nl81^#|)P%X28jJoYxXn3J10l z6iF|8*Q5OX`_25-Ix^GZ!F?_=Cl{wJurpnwxx{5mJu%2I8FDspsZKE8EZ#cfrG+PA zLWE~cxi2hNHTU`Q%ns=n5+QpY@RT2LS^4g7k@}hX}&MZO`|uG!ko9h{>7fG&B=8+U9Qf zA-$O_Y!14XI)+tYU27wsKT|hav(V8cLoJPzE|MF+wvPRyumcN`mui6=_5ay|vM%<% zSY*FWYt*-? zIgI48F?vfRr=k!kzZCNVNgw@A$M@1+tbw>$Zxf{q%)S6F_0s7XK6gKXsE(hQ#skNq zTced*EmJrg_P=CJlyaV(=SW4rvHwCQSL$uiU|BT1&chSvCZ%F*l~pGsPY_iHo?#>; z6sZnuH5tk8qHat7V@m{!0)4MG5kR!ormJmf3eoznN^N3fxq7|y_qQP9FO->_wC~cp(<0QO?fuSh!NF!iS!RascSAmZR%n|C6|bv8py_ zq0(iYo+UMWSBr(~E>?_BYP--K|2y&^Gwh?iw=-DVi*>)3p6NB5rEPZf*y#@ujXA7r zHn3$9NZnL^!r&C<%Mclh`~8?YjPMRY4_W5PlfMJ)Ynv_N`ToQVMCF8!KY=1WJDqLx z-Ta`D&cS@5A7M(70G-H}{i!IcFuUE-*DPBcsW-sd*pM+MI~psNvh3RSizZ7{RIYW{ z^TToT3>*w47Qfmj{VZOe?4`wo?=8;hF0vYH*dwpZ#N&+3V`AnTc@Y-IY24kcoXSDn zHLu}4Fv7;jB$!w-sOwe8!0V+?%cMfne{^by&I-(PT7D)}wF;xoI-T>F_Nz;2jixgt zD)_-({`$KEsa!69a71y8@hrnKI-$em&zarNh0bJVXm!3R<<(iQj2PWd@YIBac>3w( zIyoe5bR{h|J)3Whw%ba-Gir=utCu;|)Qh+CJw^>~_w=(aCbQsd-2CSzZ5VzIBLVx@DDT9p^W&9f((N| z=7A)CD$kR5fJbLuVU>ffQN^Iy$~wbO~07)lGJHU@40-#DdNBm z&y^f3P6IrN5qOjYsMJ+KugE8Lb^apK*ZqctapE7|LsB)9(q`KQ`m^6&Zv+&oNdiBS zXe7>lzZJ^DkD%_4pT$HDQnE!5)LBrOQtR7+Lm2sYmuF~hX4`$qP*91I|eeg=(cW$2L%T?dj=*WGYk4SUk zaC3pB1T=k{)<)037-1u$^xc*^X(@ns4gN|pPcyl3z1%7-r^&+!f$p79P#A0wYaY#> z81eeAGUcF9#P&E#?(&guwrB@~3&2b4GDKu0k`>jnA|S zX!%-SmU-VFR=`9ZbGBA1I5Hm6ytS)P6$cZogpB@ZkYP4YFH ztK4{zR*GqTL_iow ze0|!<8gS>{HaH#D^rYyF{6{1!K1IQ(eFzRZ=c|I$3h=vKH!{GiKdTa832-nRzj$= zD}d1*K9+82EX;71G7M@-xpnbfb;=x0?}(f%B6$6JsiPuPzRS(M^=}a!%J?dTSpT9F z;)$#(Emu*z(fn*UqGwdmeSmCdf{}va25h6I9k+rz8LsBO*VJ6^aH$mo{Pkv;SZ(Dz z?aQn!8>3moi;vY=6iC>(X!BwtQl*^x$fCD3{eaYI?`srLE#+4MYt(+T z^aNcqFLx0$A^1R*p3b?py7dnlbO2IhyIG!pnpakxYF_H@(#O)x9zpu1a>PJYGuEFk z$Gb++W4$d!-x)0&RsDj^r$!{Gnl-A=MT27*G`NyQvf6^6=a$dAgX9S_j$ObReUn{@jofU5RN!Z5}PFxRkBN#~Wc4*L#l zu8N8m43`khN`qDTyid5*npeFeOhd^K9J7$GENO=1KEt^Y6LElvr<8{ z<{!apm5h{pj?H>BW3rTx4?tirqpPiva+l0;nk!sEY}A$=0_)bw1k+B2oclH0q7*@> ziB7P5z<$!mu+6AI_XCb&ud-Jzj37%)q(K`gy;Nia z)VtOAXfb0kS?jvPjr<=^bLt_@gL;NkZ8Le*su?pznAQq-nkZAS|H5OgJPw|<|A~Za zUV7S)QZ_`;x%#$c=Jl+sOjr`I&*^C6)|ZK5s!BRN0DIQdQ7c-|Mf6AJ#Rs8p-8=<* zMfQB7A|k9`)S{kq88i*;(X2MLbmZ4MifNdu@LhH@FFK}?`v@s%9jryGhvBdqSO;~- zz}Nk+ZMku6qN?A(>PF#dQdDD{kT9t`YZ|4F#Rp_*MG-^hILZ|*TOz-|9B-^&-rmAZ zW&=;99sw9%5h_{M;$c#>u~S<6NmGhsALemXKL8`nB-hh(>z+20<^&54uOM)b$#2XQ z{^_eh{XyQWqHKk4nf*6Qxf)hoo1H`r8Z-Qh0w#C5fOzvJL{H=_x#MWuXZfiY0Ds2= zi2EHTrOG%d)VU$Om~=>nY{D{;R1#@ z+2ys`pt0y;wnl&r2qcA_cUp|&n37>L;~!xDCc3-L@hDOeVn$sGwHrQ*4-^J#<>X@q zYv0J-_0_-#){Sn0nH9SOC0({GPN9<}z1}5>B?!koKxj?tADX`%lx7p&CSj$q+-0a}I z18rj#=&<<&&%fpcP;3t4>H9H+w}V*BkH>e-*|PFsCoQUfz@8gNhN+_~aWpgwe3#H~ zIF(sD7ap-OxNri<*b2;{y*R%e2zuMt?&_cyE4rmV0u|UqW&U|;|Ml+nE` zU-{7;3QA03`I0Q?+TCn8d?~djgS(mQ7WL=?7hSb`2BZPLX8mSR850+~a@N9yX*^Z3 z_;3wUifZf|f`Ga*4c9Ru;^daX8W?twT_3X1vY6~1vOhmnDR1h<} z?dT`A#~;P}qV&64#Cq@YZB}?tpNsuRlFgPG^^_XSue+^_$p}L=mCgVp6*)~8TSrSU z%|I1~-CXj)ndQb-W#48AGfU^i`9h|kcO2kSprZzI1#au1UUr*Eky@_ z!6~zZc(nVvl63fjCHLGnt8I`%$snUSA94S)hZt+9?|f*>8ZwDjDINOmawkrc!GT?h zl}Knz6ES8`NeR`{NWtr5^|xVsYa#Qn+e*+EH(sG!}jN$>8W&z-NNNK-z>4XWcA znN&S3eP}V^fmzE&*r8~cTV{>6s2g{w;Qni&j=;1Zk4tQJx5p)7t9E>aoqYT!aEf(K zDn$PQMqd23VW@HI9P-1#@gcxO&g#tn&ZJ^|_?Qteq@$)SL&ft%#kPvR>s|Wo#gNz( zE;`}E(g*0^H@o&h*ho>Lc(s@4FOwDBD{|(uZD=E>M8va$H1MK-%PPAjqJMSI30h;S zM>5yD*&`dG{!v{`*IAqh`@(eh2pvr`yB_mYF{6{87<^54wg* zrapzs4zJP*ix_^b9EdgEB@oOua)cpf{FL5K?{2N9!#XftiI@wkTP!JG$Me%Pmb#3t z;7mlpw2)oXDKGzOO|C2np}R8rmTi|SSF;T$cPMCj@!s{h^g5Y|GC+AS)yes|>#h*J zDRm4`8b9&kBBttFl=#r``zdfdKsImp;-z8yDxlUg+4FstzRmNcii-SkAb5%uC)E}n zCk5-DylX2Nsj-pQ1Hw>Ye(v~tg637O^TwLxFeO7jkt&|m&ze(76B0R2^eApmV3NXI zm&kAaIZ9))^gn(m#v1A5)#~6svjR@kP#^6sB|Sc`!1Hmu7C<|6z?qFA?Y`#kSf`TA z@4RgvYXwx$sZ&yPWaoYQY>E73Hal}2U~@*#B1I5 z;R7m;fy!2|r!$6PDZh>|@f=G^oZqm|%UF9(djI$_`_5#XiIuG;BbSI|cjcN=ZL6A% zi58g!(0idhl@bKewQ1uiC?!Us+{`}njfwlXEnKM3<4Yp zVYFFcuyrOexY+U2X@1(V*_Ov&ISoR2ooCHwsln)@6)fe94R84Sdzma88y!toiF4wj zY1R-HpT-~Gb%Q5~wNMB17Ehp^*F5xX{p{aHLC+r?zKZ$tYP12_P+s=CF05c7= zIQK5~PW+mjXPoe}mQna32+FU5+x`0hOhir8slbf41#utV-*&x68;{C@&DIR6+=|!D z{i9^~yy=f1@&{w>Wly1XtHYo~|7npHMuX%ZE3nqbz9|>Sb;p`>KAhLrWsoAP=k#@+42mJLDWIrV^e~zyox&pCc zI{J6yJk>(o-!^c7$3$1r-;TuKA&|>D>1}m$FU=i)#V8{boIgb~b|w-Pkc(6U%E87g zcfKB1v#f3nt?Nv<6%%+e@!35k;nxRXw(xmuR>dxeT z;(zl%d2c+f^9hAN(190Jb{Ot=Tex%u-8WBPQWK3DxMzVBJ~`W6p$colpCBD>dP71^ zW}aAT-#ekh!|yV*ETv8^r+Rwj>e=4g**zK)_p8$o8Q|Ft;;UeMUFN&a^;$fTK&@qZ zEgHaH=4Mjg>f(I_JmOAYwWpIKpRI<4b@si^PJ8N~P4bt-c7@e+HCG~pg!$sPvnj3! z8uv$&sRb&CZI30f14TM&oIay>a`*ylf*(7YtZxMDmfwv;s_^fN|49^|ARI*TRTf#+ z_T>WodPLf7mv1(L>7N1J;t=sUnR>PXuRxDSHM>&w)$Vi{dw8iGcEGdf6Ms6Aj{3}{b5gLLupY{DbC^jsQ^$NKfn31v{{Y~zaYV%- zarqlDW_BCOo~l9%l&#2#gyr_`~wz%ioRoR>2 zjVQ@?SAzZo=~L!CA))Hy+G>^Ck5u=UAmrAVWUx9*`C?XJ7S=R?Vw}IjPjjN*OMU1U zzd6cnxLb}JDw#wUGVCz`(w2#Rl&d%8A+CzPgi2xak`h*a z{t^Wcilx~{wfk2L@cX4bwZH#N!1w@U4&To-29P0lKP3aAz`=k4NZJ&vp0RJglZK;Kms13Q<0o zggE{D*%K1x=9+Qesp`0=2dXQZ0(+Os^MKoD<^#f6K*GwlnG8AKd^WsTo4(Qi9z-P+ zJ0uso{ag7S!!J_A^KXaEGO|#+wmwFmqK6KU*R5WVsQp1j8r>U42Z#Co)*&vaaG+-- zfMb80bqqM(xp^_`bpLMlllH7lf-g4&5K4j4MG`0~P@F^MzvKA(Lq2uksNbfBa|tW# zY(8sH@%|!;573JV6Y7DR!8wLiiHqj<9s`|EgEgg^|Hf^?!)sHX9=uZ5HW(S&n_fFl z^XqlWq{%UA3tgMnjpDs8BlPdnU)qQJ^9uVi)*8#|W4YWBfN^&}1GO<=>L?YiyxL|F^={%!x46y#Ga zYJzEHYv0eIu zPfbH>R*j)wh;A{_*U&O{eRFeRCB-+lR+3Nn{G_cEpT;%{cX?f4zvAUjj;m}8%t1O) zr#A!L>*uNLl}5FBmZqH?vJNWRSXsHEw`KG5@e^NsyPO+iay%3%hukT}=3$8;^`*Z5iLz|NOQPlX9 zx7Xm!pUf2?H7;W7AYz?4_Jy|0@9F9L99+zj;(^E4qFzuaUz0nR>cLE0m9;f>cF{es zeSqJ#=z}U+Z3M4EQta_3%5B*z+i#xjgE_7wKSkQwD#S+bZ}Zz@ib z%DlW^iJ2h3&g#OAqklO`_#+|8-;@rV^n5LUEC2DnNIja)+Dv7*SD)x6=H?U?OFR&_ z0v-!A9S@r%Xtvs06055zqCWjw6>F!}Zb<8}XyF?`%Vn{fY+#-L=Dd*4#izlJnUkw# zZcayug=I~dbUtf@mp#^cf^GbL#y8`jrW%)b#$N!^ZXXP3ZKwMAW zi)#bb2Eerk93oqDUT2Ec{Kkl-fz-bLIvj0B)OXfxQDgCR-XiG9Itoy}?%@~m)x=PZ zM-^_6DFrez_HjFZ;ZicaCr}`U@IO-4;f|i18>DY^eX+Oe4+K$xw^?-*`=~{1jDb~j zxbh#K@zsT^JwA4Yd-YYOu%_nVPO2uiHM9{}jfxc!74zjhX+}FW`5xwb%bEXVCGyTt zLB`|#NoUERUF1`tkDB$AUyqL^UJ`@8{cmY`b@@Ni@;?p^0?1x!SLft+_sMK4OQu6= z>py-=8MJLblx9qn#deq`CcTftP@@ub5%(-F+?9!gWFBKr=u6dpOLmz~P1r)Kv#DwK z&yuoYc|~zExeJqt!hk{oHL;1S|Jnnq;x$T@C;7?6z;>l->>TAxJUrKrzfXZnwJQ4{ z7q9Qh!kIyMYb+O`9zZb+1jQ>6@9r_)c>jwU4aCoYb2f5Bl0$BG>aW8+ix z16wEl8E?AWyqD`ksVo29mCpjwsqaz!e-L4@Pd7-}F)%Ru6=dFit}=tt5Zh+PrT&M6 zJWls#w|kLHXDY%${cks(eBF}v9!lj{a2b<`rVxmnoz?#I>67q5?WA_I>rXXc4LmH= zgp332c{(nSd5(RLwM<}w+1;Jzc79lzkOK{$#qdfr-)LT0S+vlyPZE)uc!JQ9M^F@3 z`)u)7AVZVJtS?$*ql!pXxO2Yj-w_JbKcP5?lR~E<*P%&SSqnanh^4k@GM>QT;77c? zyt;U`_Ao(g0-E8PG0CB`86(=+|NY!V0^g|cdOYw-yCasAb0xDSyw5*qX~EV1ndBcB z7|8$eqksNiDJdhG(7lAK^ZB!kkB>Njs3cbFK|Sofl2U=~OvUK|3+w*#-xaqKY??*|=+BwXjfgLDa z4!jMiSp7)p67t2Y2_Mo!L(kq#aOcJ1HW;{~_q2e5j3 z%sjmYkRSA3G7|2vXUtd$@$)-Q>sVHO8F(RibM($)IBoSz77GjO%a<>X3r^64w6w?f zwQIo0P9CYTpEwMo;_$pw4<~eK-556Mn=Yv;bG;i(QKu6 z?=Z(CQDy(by^8or=TTx(ez#{cKENsEwYCW{TG~}fAk}w#u(`SEb3DMDoSgieh^YH? zXR--(*pkj`u88r8^d7w@hK3Cn|FXPSource code for gctree.branching_processes
 import matplotlib.pyplot as plt
 from typing import Tuple, Dict, List, Union, Set, Callable, Mapping, Sequence, Optional
 from decimal import Decimal
+import math
 
 sequence_resolutions = hdag.parsimony_utils.standard_nt_ambiguity_map_gap_as_char.get_sequence_resolution_func(
     "sequence"
@@ -601,9 +602,11 @@ 

Source code for gctree.branching_processes

                     C = ete3.CircleFace(
                         radius=node_size2,
                         color=circle_color,
-                        label={"text": str(node.abundance), "color": text_color}
-                        if node.abundance > 0
-                        else None,
+                        label=(
+                            {"text": str(node.abundance), "color": text_color}
+                            if node.abundance > 0
+                            else None
+                        ),
                     )
                     C.rotation = -90
                     C.hz_align = 1
@@ -720,9 +723,11 @@ 

Source code for gctree.branching_processes

                                     node.add_face(
                                         T,
                                         0,
-                                        position="branch-bottom"
-                                        if start == 0
-                                        else "branch-top",
+                                        position=(
+                                            "branch-bottom"
+                                            if start == 0
+                                            else "branch-top"
+                                        ),
                                     )
                                 if "*" in aa:
                                     nstyle["hz_line_color"] = "red"
@@ -1020,9 +1025,9 @@ 

Source code for gctree.branching_processes

         for node in self.tree.traverse(strategy="postorder"):
             if node.is_leaf():
                 node.LB_down = {
-                    node: node.abundance * clone_contribution
-                    if node.abundance > 1
-                    else 0
+                    node: (
+                        node.abundance * clone_contribution if node.abundance > 1 else 0
+                    )
                 }
             else:
                 node.LB_down = {node: node.abundance * clone_contribution}
@@ -1241,9 +1246,11 @@ 

Source code for gctree.branching_processes

                     )
                 grad_l.append(grad_ls[i_prime, j] + res)
             # count_ls shouldn't have any zeros in it...
-            return (-np.log(count_ls.sum()) + scs.logsumexp(ls, b=count_ls)), np.array(
-                grad_l
-            )
+            # using math.log instead of np.log is essential because np.log
+            # doesn't work on large integers > 2**64 :eyeroll:
+            return (
+                -math.log(count_ls.sum()) + scs.logsumexp(ls, b=count_ls)
+            ), np.array(grad_l)
         else:
             return (ls * count_ls).sum(), np.array(
                 [(grad_ls[:, 0] * count_ls).sum(), (grad_ls[:, 1] * count_ls).sum()]
@@ -1933,9 +1940,7 @@ 

Source code for gctree.branching_processes

                 "original_ids": (
                     n.original_ids
                     if "original_ids" in n.features
-                    else {n.name}
-                    if n.is_leaf()
-                    else set()
+                    else {n.name} if n.is_leaf() else set()
                 ),
                 "isotype": frozendict(),
             },
diff --git a/_modules/gctree/isotyping.html b/_modules/gctree/isotyping.html
index bb7f180..69d4600 100644
--- a/_modules/gctree/isotyping.html
+++ b/_modules/gctree/isotyping.html
@@ -151,11 +151,11 @@ 

Source code for gctree.isotyping

         if weight_matrix is None:
             weight_matrix = [
                 [
-                    0.0
-                    if target == origin
-                    else 1.0
-                    if target > origin
-                    else float("inf")
+                    (
+                        0.0
+                        if target == origin
+                        else 1.0 if target > origin else float("inf")
+                    )
                     for target in range(n)
                 ]
                 for origin in range(n)
diff --git a/_modules/gctree/mutation_model.html b/_modules/gctree/mutation_model.html
index 369d7a1..5744bb6 100644
--- a/_modules/gctree/mutation_model.html
+++ b/_modules/gctree/mutation_model.html
@@ -343,9 +343,9 @@ 

Source code for gctree.mutation_model

                         + str(trials)
                         + " consecutive attempts"
                     )
-                sequence_list[
-                    mut_pos
-                ] = original_base  # <-- we only get here if we are retrying
+                sequence_list[mut_pos] = (
+                    original_base  # <-- we only get here if we are retrying
+                )
 
         return sequence
diff --git a/_modules/gctree/utils.html b/_modules/gctree/utils.html index 0ecd6e6..63e7702 100644 --- a/_modules/gctree/utils.html +++ b/_modules/gctree/utils.html @@ -94,6 +94,7 @@

Source code for gctree.utils

 r"""Utility functions."""
+
 from functools import wraps, reduce
 import Bio.Data.IUPACData
 import operator
diff --git a/quickstart.html b/quickstart.html
index 320cd32..645c7d9 100644
--- a/quickstart.html
+++ b/quickstart.html
@@ -265,24 +265,6 @@ 

gctree< according to a linear combination of likelihood, isotype parsimony, mutabilities, and alleles:

$ gctree infer gctree.out.inference.parsimony_forest.p --frame 1 --idmap idmap.txt --isotype_mapfile ../example/isotypemap.txt --mutability ../HS5F_Mutability.csv --substitution ../HS5F_Substitution.csv --ranking_coeffs 1 0.1 0 --outbase newranking --summarize_forest --tree_stats --verbose
-/usr/share/miniconda/envs/gctree/lib/python3.9/site-packages/seaborn/_base.py:949: FutureWarning: When grouping with a length-1 list-like, you will need to pass a length-1 tuple to get_group in a future version of pandas. Pass `(name,)` instead of `name` to silence this warning.
-  data_subset = grouped_data.get_group(pd_key)
-/usr/share/miniconda/envs/gctree/lib/python3.9/site-packages/seaborn/_base.py:949: FutureWarning: When grouping with a length-1 list-like, you will need to pass a length-1 tuple to get_group in a future version of pandas. Pass `(name,)` instead of `name` to silence this warning.
-  data_subset = grouped_data.get_group(pd_key)
-/usr/share/miniconda/envs/gctree/lib/python3.9/site-packages/seaborn/_base.py:949: FutureWarning: When grouping with a length-1 list-like, you will need to pass a length-1 tuple to get_group in a future version of pandas. Pass `(name,)` instead of `name` to silence this warning.
-  data_subset = grouped_data.get_group(pd_key)
-/usr/share/miniconda/envs/gctree/lib/python3.9/site-packages/seaborn/_base.py:949: FutureWarning: When grouping with a length-1 list-like, you will need to pass a length-1 tuple to get_group in a future version of pandas. Pass `(name,)` instead of `name` to silence this warning.
-  data_subset = grouped_data.get_group(pd_key)
-/usr/share/miniconda/envs/gctree/lib/python3.9/site-packages/seaborn/_base.py:949: FutureWarning: When grouping with a length-1 list-like, you will need to pass a length-1 tuple to get_group in a future version of pandas. Pass `(name,)` instead of `name` to silence this warning.
-  data_subset = grouped_data.get_group(pd_key)
-/usr/share/miniconda/envs/gctree/lib/python3.9/site-packages/seaborn/_base.py:949: FutureWarning: When grouping with a length-1 list-like, you will need to pass a length-1 tuple to get_group in a future version of pandas. Pass `(name,)` instead of `name` to silence this warning.
-  data_subset = grouped_data.get_group(pd_key)
-/usr/share/miniconda/envs/gctree/lib/python3.9/site-packages/seaborn/_base.py:949: FutureWarning: When grouping with a length-1 list-like, you will need to pass a length-1 tuple to get_group in a future version of pandas. Pass `(name,)` instead of `name` to silence this warning.
-  data_subset = grouped_data.get_group(pd_key)
-/usr/share/miniconda/envs/gctree/lib/python3.9/site-packages/seaborn/_base.py:949: FutureWarning: When grouping with a length-1 list-like, you will need to pass a length-1 tuple to get_group in a future version of pandas. Pass `(name,)` instead of `name` to silence this warning.
-  data_subset = grouped_data.get_group(pd_key)
-/usr/share/miniconda/envs/gctree/lib/python3.9/site-packages/seaborn/_base.py:949: FutureWarning: When grouping with a length-1 list-like, you will need to pass a length-1 tuple to get_group in a future version of pandas. Pass `(name,)` instead of `name` to silence this warning.
-  data_subset = grouped_data.get_group(pd_key)
 Loading provided parsimony forest. If forest has fit parameters, parameter fitting will be skipped.
 Isotype parsimony will be used as a ranking criterion
 Mutation model parsimony will be used as a ranking criterion
@@ -309,7 +291,7 @@ 

gctree< Among trees with max Log Likelihood of: -78.00393661 Isotype Pars. range: 28 to 28 - Mut. Pars. range: 66.45251202776497 to 68.93267315487162 + Mut. Pars. range: 66.45251202776495 to 68.93267315487162 Alleles range: 48 to 48 Among trees with min Isotype Pars. of: 23 @@ -335,7 +317,7 @@

gctree< Among trees with min Alleles of: 48 Log Likelihood range: -82.14344157 to -78.00393661 Isotype Pars. range: 26 to 28 - Mut. Pars. range: 66.45251202776497 to 74.06179332885715 + Mut. Pars. range: 66.45251202776495 to 74.06179332885715 Among trees with max Alleles of: 53 Log Likelihood range: -92.15528744 to -90.28220403 diff --git a/rendering-demo.ipynb b/rendering-demo.ipynb index 0710068..61cba09 100644 --- a/rendering-demo.ipynb +++ b/rendering-demo.ipynb @@ -27,10 +27,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-22T22:15:59.889325Z", - "iopub.status.busy": "2024-01-22T22:15:59.889151Z", - "iopub.status.idle": "2024-01-22T22:16:00.883068Z", - "shell.execute_reply": "2024-01-22T22:16:00.882467Z" + "iopub.execute_input": "2024-03-06T21:51:06.493483Z", + "iopub.status.busy": "2024-03-06T21:51:06.493287Z", + "iopub.status.idle": "2024-03-06T21:51:07.556452Z", + "shell.execute_reply": "2024-03-06T21:51:07.555786Z" }, "id": "89WfPX7sgPqo" }, @@ -73,10 +73,10 @@ } }, "execution": { - "iopub.execute_input": "2024-01-22T22:16:00.885754Z", - "iopub.status.busy": "2024-01-22T22:16:00.885520Z", - "iopub.status.idle": "2024-01-22T22:16:00.888733Z", - "shell.execute_reply": "2024-01-22T22:16:00.888281Z" + "iopub.execute_input": "2024-03-06T21:51:07.559326Z", + "iopub.status.busy": "2024-03-06T21:51:07.559050Z", + "iopub.status.idle": "2024-03-06T21:51:07.562379Z", + "shell.execute_reply": "2024-03-06T21:51:07.561805Z" }, "id": "Evd3oqJYgiNU", "outputId": "5e66a34c-fcb8-41ec-c4b0-bf2bf3b0e9e2" @@ -104,10 +104,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-22T22:16:00.890698Z", - "iopub.status.busy": "2024-01-22T22:16:00.890527Z", - "iopub.status.idle": "2024-01-22T22:16:00.942420Z", - "shell.execute_reply": "2024-01-22T22:16:00.941828Z" + "iopub.execute_input": "2024-03-06T21:51:07.564613Z", + "iopub.status.busy": "2024-03-06T21:51:07.564274Z", + "iopub.status.idle": "2024-03-06T21:51:07.617609Z", + "shell.execute_reply": "2024-03-06T21:51:07.617031Z" }, "id": "2vnHb87bjp1L" }, @@ -149,10 +149,10 @@ "height": 680 }, "execution": { - "iopub.execute_input": "2024-01-22T22:16:00.970742Z", - "iopub.status.busy": "2024-01-22T22:16:00.970499Z", - "iopub.status.idle": "2024-01-22T22:16:01.010981Z", - "shell.execute_reply": "2024-01-22T22:16:01.010444Z" + "iopub.execute_input": "2024-03-06T21:51:07.648033Z", + "iopub.status.busy": "2024-03-06T21:51:07.647609Z", + "iopub.status.idle": "2024-03-06T21:51:07.689770Z", + "shell.execute_reply": "2024-03-06T21:51:07.689093Z" }, "id": "DIfd348HjtFj", "outputId": "6775b36b-1ccc-4f68-a59c-02203c6bf847" @@ -192,10 +192,10 @@ "height": 680 }, "execution": { - "iopub.execute_input": "2024-01-22T22:16:01.013067Z", - "iopub.status.busy": "2024-01-22T22:16:01.012884Z", - "iopub.status.idle": "2024-01-22T22:16:01.043093Z", - "shell.execute_reply": "2024-01-22T22:16:01.042615Z" + "iopub.execute_input": "2024-03-06T21:51:07.692262Z", + "iopub.status.busy": "2024-03-06T21:51:07.691905Z", + "iopub.status.idle": "2024-03-06T21:51:07.724867Z", + "shell.execute_reply": "2024-03-06T21:51:07.724232Z" }, "id": "Zarbo5ijkBct", "outputId": "d8297884-b57e-4ca9-b185-8faaf77878c6" @@ -235,10 +235,10 @@ "height": 279 }, "execution": { - "iopub.execute_input": "2024-01-22T22:16:01.045074Z", - "iopub.status.busy": "2024-01-22T22:16:01.044893Z", - "iopub.status.idle": "2024-01-22T22:16:01.072106Z", - "shell.execute_reply": "2024-01-22T22:16:01.071629Z" + "iopub.execute_input": "2024-03-06T21:51:07.727272Z", + "iopub.status.busy": "2024-03-06T21:51:07.726909Z", + "iopub.status.idle": "2024-03-06T21:51:07.755848Z", + "shell.execute_reply": "2024-03-06T21:51:07.755223Z" }, "id": "PKCHvdJlkcr-", "outputId": "e2885de2-b6d0-46bb-da2c-965c9a9acfed" @@ -278,10 +278,10 @@ "height": 249 }, "execution": { - "iopub.execute_input": "2024-01-22T22:16:01.074137Z", - "iopub.status.busy": "2024-01-22T22:16:01.073957Z", - "iopub.status.idle": "2024-01-22T22:16:01.098025Z", - "shell.execute_reply": "2024-01-22T22:16:01.097554Z" + "iopub.execute_input": "2024-03-06T21:51:07.758394Z", + "iopub.status.busy": "2024-03-06T21:51:07.757970Z", + "iopub.status.idle": "2024-03-06T21:51:07.784628Z", + "shell.execute_reply": "2024-03-06T21:51:07.784001Z" }, "id": "LVQvMp8DkiYq", "outputId": "7299a98e-7047-4b91-8c12-c5012e6c9334" @@ -326,10 +326,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-22T22:16:01.099992Z", - "iopub.status.busy": "2024-01-22T22:16:01.099813Z", - "iopub.status.idle": "2024-01-22T22:16:01.140510Z", - "shell.execute_reply": "2024-01-22T22:16:01.139923Z" + "iopub.execute_input": "2024-03-06T21:51:07.787142Z", + "iopub.status.busy": "2024-03-06T21:51:07.786737Z", + "iopub.status.idle": "2024-03-06T21:51:07.828498Z", + "shell.execute_reply": "2024-03-06T21:51:07.827907Z" } }, "outputs": [ @@ -370,10 +370,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-22T22:16:01.142656Z", - "iopub.status.busy": "2024-01-22T22:16:01.142470Z", - "iopub.status.idle": "2024-01-22T22:16:01.196832Z", - "shell.execute_reply": "2024-01-22T22:16:01.196299Z" + "iopub.execute_input": "2024-03-06T21:51:07.831106Z", + "iopub.status.busy": "2024-03-06T21:51:07.830718Z", + "iopub.status.idle": "2024-03-06T21:51:07.884180Z", + "shell.execute_reply": "2024-03-06T21:51:07.883451Z" } }, "outputs": [ @@ -411,16 +411,16 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-22T22:16:01.199093Z", - "iopub.status.busy": "2024-01-22T22:16:01.198899Z", - "iopub.status.idle": "2024-01-22T22:16:01.241724Z", - "shell.execute_reply": "2024-01-22T22:16:01.241132Z" + "iopub.execute_input": "2024-03-06T21:51:07.886719Z", + "iopub.status.busy": "2024-03-06T21:51:07.886364Z", + "iopub.status.idle": "2024-03-06T21:51:07.928847Z", + "shell.execute_reply": "2024-03-06T21:51:07.928163Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtoAAAGJCAYAAAC0HJT3AAAACXBIWXMAAA3XAAAN1wFCKJt4AAAgAElEQVR4nOzdeXwU5f0H8M/MXrkTkpCDK1wh3CACKgqCBygqPw9UWlDrra1Wi/WsVqutttZWrba2nkVFBBXFKoog932HnITc933uvTszvz8i4UrC7mYmk8Dn/Xrx4pXs7He+88zu5rvPPPM8gqIoCoiIiIi6yTt5y5DWnIMXxz2KMGOI3ukQaUbUOwEiIiI6exxqysL2+gMoc1Th0peu1TsdIk2x0CYiIqJuMz5yFC6MnYz+IfHY8NQqvdMh0pTAoSNERETU3SZPmYx9e/eBZQidydijTURERN1OgIA9e/bonQaRplhoExERERFpgIU2EREREZEGWGgTEREREWmAhTYRERERkQZYaBMRERERaYCFNhERERGRBlhoExERERFpgIU2EREREZEGWGgTEREREWmAhTYRERERkQZYaBMRERERaYCFNhERERGRBlhoExERERFpgIU2EREREZEGWGgTEREREWmAhTYRERERkQZYaBMRERERaYCFNhERERGRBlhoExERERFpgIU2EREREZEGWGgTEREREWmAhTYRERERkQZYaBMRERERaYCFNhERERGRBlhoExERERFpgIU2EREREZEGWGgTEREREWmAhTYRERERkQZYaBMRERERaYCFNhERERGRBlhoExERERFpgIU2EREREZEGWGgTEREREWmAhTYRERERkQZYaBMRERERaYCFNhERERGRBlhoExERUfczsAShMx9f5URERNStXj28EiEPnwub7NI7FSJNsdAmIiKibrO37gg2VqVC6BuCf+Z9q3c6RJoSFEVR9E6CiIgC98Ybb6C+vl7vNIh8ljPUiYYoLyalhsIkCXqnQ+SXRYsWYdiwYT5ty0KbiKgXW7p0KV577TVcddVVeqdC5BdZAERWINTLlJWVYc+ePTh48KBP2xs1zoeIiDSWkpKC5557Tu80iIjOeLt27UJaWprP23OMNhERERGRBlhoExERERFpgIU2EREREZEGWGgTEREREWmAhTYRERERkQZYaBMRERERaYCFNhERERGRBlhoExERERFpgIU2EREREZEGWGgTEREREWmAhTYRERERkQZYaBMRERERaYCFNhERERGRBlhoExERERFpgIU2EREREZEGWGgTEREREWmAhTYRUS8mQ9Y7BSIi6oBR7wSIiKhjedYyFNmqUGyvxpGWUrhkN4ps1XDJbrhkD4LiDbDeEYerNz8Bi8GMWEsUQgwWJIf3x+DQBAwKjsPYqKF6HwYR0VmJhTYRUQ+zozYDayp3Y299DkKNwXBITjgkF2RFOWVbq0ECADgkNxySG41uKwDgUGMegkQLLAYjmjw2jIkcgjmJU3Bx3wkIMwZ36/EQEZ2tWGgTEenMLrmwpSYV35TtQFZzMQyCCK9ytIB2BRzXKbvglFufn9FUgMymQrx++HPEB0VjdsJkXBZ/LhKDY1Q5BiIiOhULbSIineRby/HfwjXYVZsJAG3F9dH/1aZAgaQoKHfUYknhGiwrXo8hIYm4cdBMzIyboMk+iYjOZiy0iYi6WZ27GX/OXIrM5mI4u9Bj3RWKosAluZHdUoRXspfh3bxv8EjKTTgnOlmXfIiIzkQstImIuomiKHgh80Nsq0nXrNc6EK3ju+vwZNo7GBgSh6dHL0JSaILeaRER9XostImIusEH+d/h4+K1wKn3M/YYHtmLfGs57tv7KqZEp2DxyJsQZQrTOy0iol6L82gTEWmo0WPFPXtewYqSDT26yD6eW/Zge10G7t/7KrbUHtI7HSKiXouFNhGRRnbXZ+Fn259HnrUcbtmrdzp+URQF1c4GvJy5DG/lrtI7HSKiXolDR4iINPBu/rdYWbKl1xXYJ7NLLnxVtgWZTYV449yH9E6HiKhXYY82EZHKnjz0Dj4r3giX7NY7FVV4ZRmZzUW4YevvueQ7EZEfWGgTEano1l0vYW9ddo+aVUQtjR4rZm94FMX2ar1TISLqFVhoExGp5M7dL6PMXgO5t9z1GAAFCh468AYqnfV6p0JE1OOx0CYiUsGinX9Coa1S7zS6RbPbhl/sfAnNHrveqRAR9WgstImIuujx1P+cdT28HkXCz3e8oHcaREQ9GgttIqIueCt3FQ405kJRztzhIh1xSC7cvuvPeqdBRNRjsdAmIgrQtto0fF22HZJ85t346KsSew1eyvxY7zSIiHokFtpERAGoczfjjxkfwS179E5FVwoUbKlJxzflO/ROhYiox2GhTUQUgEcO/KvXL0ajFpfsxodFPyDXWqp3KkREPQoLbSIiP/0rdxUqHHV6p9Gj1Dmb8ELGR3qnQUSkKX9vxxGUs/EOHiKiANklF67b8jt4Fa6QeDKzwYRHU27GJfGT9E6FiEgVsqxgTephbMosQEZpFZparGhotmFi8mCcnzwIU4YPwNThAzt8PgttIiI//O7Qu9hZl6l3Gj1WmDEIq6a/qHcaRERdtvZQLp5d8QPcHgku76lDBQUBiA4PxZC+ffDBL29sNwaHjhAR+ajMUYt9DYf1TqNHs3md+KToR73TICLqkl+++xWeWLoaLQ5Xu0U20DqMpK7Zhr15pRj321exKavglG1YaBMR+ejPWZ/AcxZP5ecLBcCSgu/1ToOIKGC3/+tzbMsqhNvrx+e9Ajz20WpszS484dcstImIfJDRVIACW4XeafQKChT8J+9/eqdBROS33336Aw4UlEKG/yOr7S43Hnx/Feqt9rbfsdAmIvLBksI1cHhdeqfRK0iKjI1VB+CU3XqnQkTks/TiSqw5eBiSHPjti15Jxm1vrmj7mYU2EdFp1Lgakd5YqHcavUqjx4r1lfv1ToOIyGfPf/4jXJ6ur49Q3WzDZzvSAADGLkcjIjrDra/aD6/CxWn84Za9WF2xE3P7na93KkREp1XR0IL86vbXR2gpyEJjxh7YK4rgaWlA3/MuQ/yFczuMZXe58e2+LNx4wTj2aBMRnc73lXsgcd5sv2U3l0AJYJwjEVF3SyuugMfb/ud8S34mXPVVCBucAsFg8CledkUNAPZoExF1yiG5UGqv0TuNXkrAxuoDmBXHBWyIqGfbm1cKuYOlZfpdcn3rpNkAmrJ9GxLn8UhosDnYo01E1JlNNan+r7lLAAAFMlaX79Y7DSKi06ptcXT84E9Ftj8iQoJwpKKWhTYRUWfWlO8OaJonapXWlK93CkREp9U3MkTVeE12J1L69WWhTUTUmbSmU1f6It+ZBANSG/P0ToOIqFOThw4IpOO6QxaTEZEhQSy0iYg6cqD+CKLN4Xqn0as5ZDcONuTqnQYRUafGDUqA2ajerYsp/foC4DzaREQdKrBXwuq1n35D6pCiKDjYyEKbiHq2hKhwDI2PUSVWqMWMqyePBMBCm4ioQwXWcrhkzp/dVaUOztpCRD3fc/Mvg8Xk2/R9nYmLDMP888YBYKFNRNShPGu53imcEepdzXqnQER0WqMHxmHuOSNhEAMfrG0QRXz04E1tP3MebSKiDnC2EXXEB0Wh1F6DASF99U6FiKhTz988G2X1zdibXwpZbv0b4GlugKOyGACgKDJc9dVozkmFYDQifOiYtueGWEx49RfzEBkS3PY7FtpERB0oslXqun/J5UXB+9vRlFmBlpwqyB4Js9Y+BMFw4sXI9Ze82u7zBUHAzDW/hmDU9+KlzeuETXLqmgMRka/eu38+HnhvFbbnFMHjlWAtyUXZmmVtjzcfOYTmI4dgCArFqF++AAAQBQF/u/UqTBsx6IRYLLSJiDrgUSRd9y/ZXKj4PgMRoxIQMToRjaml7W439tmrT/ldzuvrETokRvciGwAUCHBKLr3TICLy2Zt3/h82pOfj98vXwDLhAvQZM+WUbQQBiA4LwfD4GLx7//x247DQJiJqh1v2QoQAScfhI+Y+oZj+1f2AABSv2NdhoR13cfIJP9uK6uFutGPopRd2R5qnpSgKHJJb7zSIiPwya+xQbBp9H9alHcHmrEJklFTB5nLB7ZUwuG80zh8xEJOHDcDkoQM6jMFCm4ioHXavE33M4ah1NemXRID341T9mA3RaEDcjOTTb9wNRFGAh7O3EFEvJIoCZk8YgdkTRgAAZEWB6MfKNvpfUyQi6oHMohGNHpveaQSkasNhRJ83GMYwi96pAEDbDUVERL2dP0U2wEKbiKhdwQYLvErv64Vtzq6Eo6wRCZeO1DuVNoIgINjQM4p+IqLuxEKbiKgdgiDAKHR94YLuVvVjNgzBJsReMFTvVE4QwkKbiM5CLLSJiDoQagg+/UY9iKIoqNqYg74XDYdo6Tm34Ijs0SaisxQLbSKiDvS2XtjGAyVw19kQ34OGjQCAU3Ij1hKpdxpERN2OhTYRUQcGhyXonYJfqtYfhikyGNHnDjr9xt3IKBgQbgrROw0iom7Xc64tEhH1MMPD+mNXbRZkyLrlULe7EJLDA2t+LQCgZksuIAgIT+6L4H5RbdvJXgnVm48g/pKRp6wcqbf4oD56p0BEpAsW2kREHUgKjUeQwQy7jsuHH371Rzirmtt+Tn/+WwDAiF/PwoBrJ7b9vn5XIbxWF+IvTen2HE9nSGii3ikQEelCUBSFE5wSEbWj2tWAO3e9DDuXDw+YWTTioRHzcUXiVL1TISLqdj3r+iIRUQ8SZ+mDMCPHFneFAmBa7Bi90yAi0gULbSKiTkyPG6d3Cr1aX0sUIkyheqdBRKQLFtpERJ2YkzAVJrH3LVzTU1wcN0HvFIiIdMNCm4ioE8PC+sEkmvROo1cyCQaOzSaisxoLbSKi07gghmOMAxFmCsGA4L56p0FEpBsW2kREp3FVv/MQ1MtWidSbAAEzOWyEiM5yLLSJiE5jQtRwRHJlQ79EmkNxecIUvdMgItIVC20iIh9cmTgVRpFrfPkq1hKJlPCBeqdBRKQrFtpERD64ZfAcGCDonUavYBFNeHTkAr3TICLSHQttIiIf3TXsahgEfmyezoiIgRge1l/vNIiIdMe/GEREPrp+wHSEGoL1TqNHM4ginh51i95pEBH1CCy0iYj88PDI+TBzrHaHpseMR2xQpN5pEBH1CCy0iYj8cHHfCUgMjtU7jR5JhIAnxyzUOw0ioh6DhTYRkZ9+O/JmRJvD9U6jRwkyWHDbkDkwClyunojoKBbaRER+Gh2RhCsTz4eFS7O36R8cg0WDZ+udBhFRj8JCm4goAHcMvRKjIwdD4JR/CDKY8faU3+qdBhFRj8NCm4goQK9MvB99zGF6p6Ero2DAkvOf1DsNIqIeiYU2EVEXLJ/27Fnbp20WjXh6zC2INXOWESKi9rDQJiLqAlEQ8faUR2ExmPVOpVtZRBNuGnQJpvcdr3cqREQ9FgttIqIuGhqWiCdH/RwhRoveqXQLo2DAzPiJuH3IFXqnQkTUowmKoih6J0FEdCY40HAEz6S9D4fk0jsVzVhEEy5PmIzfpNyodypERD0eC20iIhUdaszDIwffgqzIeqeiOrNowg0DZuCuYVfpnQoRUa/AQpuISGV2rxM373gedq9T71RUYxAMeHL0zzEr7hy9UyEi6jVYaBMRaeT+vX9Hvq0SXtmrdypdYjGY8N+pTyAuqI/eqRAR9SostImINPTa4c+wueYQmjw2vVPxm1k0YUBwLN6Z+qjeqRAR9UostImINLax6iBeObwcbtkDqZeM3TYKIm5OugR3DJmrdypERL0WC20iom7yfsFqLC1cp3canTIJBkyOHomnxixCiOHsmK6QiEgrLLSJiLrZi5kfY1NNKryypHcqbSyiCYNCEvDUmJ9jUEi83ukQEZ0RWGgTEemg0W3FX7M/RZ61AnXuRsg6fRRHmcMQZgzGb1NuxrioobrkQER0pmKhTUSko0JbJX6o3Iv1VfvR4LF2ywwlRsEAs2jEBbFjMCdxKs7tM0LzfRIRnY1YaBMR9RDVzgasrtiFTdUHUeaohUEQ4Vah8DYIIoyCAaHGYJwXMwrX9JuGlIiBKmRMRESd6RWFts3W+6bFIiLqCqfkxs7GLKQ1FSDDWohadxMAAaFiEFyKG7KitP4TZAgQYIAIQRBgFER4FAkuyYMYczgGBcdjYuQwXNBnNOItnAebiM4+QUFBMBgMuuzbqMte/bB27VrMmzdPtwY6E0lS6w1YZ3Obsg3O7Dbo6ccWaH6mqGBY4iNgDLfAEGyCIcQECAIEQYDkcEOyeyDZPbCXNcBZ0wKjUZuPeEVR4PV6YTKZGI/xGI/xeny822+/HW+++aYq8QJJoEd77rnnlGeffVbvNM4obFO2gaKc2W3Q049N6/w+/vhjZeHChZrF37lzp3LeeecxHuMxHuOddfH8JepT3hMRERERndlYaBMRERERaYCFNhERERGRBlhoExERERFpgIU2EREREZEGWGgTEREREWmAhTYRERERkQZYaBMRERERaYCFNhERERGRBlhoExERERFpgIU2EREREZEGWGgTEREREWmAhTYRERERkQZYaBMRERERaYCFNhERERGRBlhoExERERFpgIU2EREREZEGjHoncDKX5EVqTSWq7FZU2a1IDTPCAOB/+dlICA3HhNgEmA0GvdPsVdimgFv2Iqu5BLWuZtS4mlDQ3wNRAX6sSkVfSwRGRQyESexxbwfNuCUJ6aIZoySX3qmozi1JSIsSMbpR0juVUxRZ65DRWIHMvgpC3a0/J4XFqBK74HAFSvKqUV/djPQdVXCUh2H9qv2I6xeFsVOGqrIPm7cRFc5cFJq2I2lmECocuUgMHh5wvMbaFhw5VIKt6zJhscXhSFoJkscNVCVXNbikejS5MmAPXY9Jl3rR5MpEpGV0wPHq3TZkNZVivfMI5Mn9kdVUhlGR/VXMuGdpcFtxuKUUGz3ZMExNxOGWUqSED9A7rTZ1ThvS6iuxtrEIjnGDkV5fibHRCXqn1abZ04ICWyH2IxWRF0ajwFaEIaFJeqfVpr7FjqzCKqxPLYMcMwxZRVUYlRQfeDybHemlVfjxSBk8/Ycho6wKY/oHHq+n6BGVRbPLhS9zM/BlbiYO1VYh1GSCorQWiO5IM0RZQdaWHyAIgM3rxvjYRFw/fDSuTx6NMJNF7/R7pGa3C18eSceXeT+1qdkERVHgkiS4o0wQFQVZ276HIIiweVytbTpsNK5PHnPGtKnV68Ca8v1YU3UAh5tLEWywQIEMjyTBPdgLQVbwctbnEBQRdtmFUREDMCdhEuYknotQ45nRBu2RFQW3Lv0MqYYgFLhlPKcoEAVB77RUISsKfrZuKfbHGJFr8vaIY/PKEh7dtxLrKw5DEABFUeDpBwiKgv/b8BagKLgkcSRemTzf71wbalrwxbubsO6rfTAaRTjtbnjcEtwuDwQhDP/8/UoEhwWhucGGyRePxA13zsCYyUP8PoYN1Uuwv341PHLrFzPJ4sX4hWH4sPBReGUPBoaMwmUJ96BfcLJP8d5/6Wus/ng7XA4PBAHwur0IEYbgt9e+BrfbizFThuCeZ6/HiAmD/M5VDVl1r6Kw5XPIihOAADnEgytuB7aW3wpZcSM66ByMiXkUUZaxPsV74/AafFG8B07JBQgivLIXuHIk7tj5NtyyFxP7JGHxyLkYE9VzitCu+E/uaqwq2wGn7IGgAB5FhuGaYfjVnn/CrXgxLmowHkieh1ER+nyp+svBDfgkbz+cXi+A1vcoZo3D/HVL4JYkTO47AE+fcznGxyTqkt/y4s+xvnoT3LIbgAAvvIib3w8vZL4Ej+xFcvhwLEpagKGhg3XJ742VW/DF5jQ4XV5AALySBPSbjDteXgG3x4uJw/tj8U0zMGawb19a/rZmC1bsSYPD5YUgAh6vBIycjIVvr4Db68WkpP54fO4MjBvQc74E+UP3QvvF3RuxKi8LTS4XHF4PgNYi8XiyKKDFc+x3B6rLkV1fjTcP7sL1yaPxxJQZ3ZpzT/fino1YlZeJJrcbDo8bQOuXmePJgoAWt7vt59Y2rcGbqTtx/fCxvb5N/3VkNdZWHUCLxwGn1HqcVq/jhG0UUYDNe6xdMpqKkWetxIcFP+KKfpNx3/AruzXnQNlsNr+fYxEMMBtEjEtJgcNuD2i/oaGhAT2vI4EcR3uCBAMsBgPGJQd+bO0J5HiXF+7B86mroSjKKY8pggC31PqH/vuyDKwpz8BzE6/BjUnn+hT7zWdXYt3KvfC4JciSfGp8RYDd5oLd1voa37E2HVn7CzFgaBx+89KN6Dc49rT7qHWV4KOCJ+CUbZAV74kPioBXbv3MLrFn4ePCJzAq4kJc039xh/GKcyvx+I1vwtZkh8dz0hUHBXC7W/eRsacAj9/4Bi66agIeeXXRafNUS4u7ANsrbodXbj7leAURkJXWz5J65wFsr7gDiSGX45y4P3UYr8Bajbt3vwerxwGP/NPxKj+dK7H1ShsAHGwowj2738NlCWPxh/E3qH9g3aTIVoUH9/8bVo8DXuWk8ysKcP/UpmmNhXho378xM348nhp9c7fll9dUiwU/fowWrwtu6aT8BKHtd3trSrFg/UeYO3AUXjn/mm7Lr8xRjhczX4FdssPbzvvN89Pr5UhLLl7MfBlToifj3mF3dFt+BRX1uPtvK2C1u+DxnvSZIwBuz0+v59wy3PPK57js3GT84fY5HcbLr67Hbe+tQLPDBc/Rz7Djwrp/+iK0v6gMv3jvc8wem4yXbug4Xk+lW6G9Ki8LizethlEU275V+sPh9cLhbcEH6fvwbtpevDZrLq4eMlKDTHuPVXlZWLz5WxgFEU4pkDb1wOH14IPMvXg3fQ9em3lVr2vTdVUH8UL6pzCKIlwBtIFTcsMpubGieAuWF2/GM2N+hkvix2uQqTrWrl2LefPmweDv0B9BQPCEc/FZ6j58dt+pReDpSJKEVatWYfbs2X4/tz0BH0d7BAGGUUn4PD0fX4r3dD0eAjvev6avwSf5e9otstujKMCfUlejuKUej4y9vMPtaioa8djP30JdZTM8Hv9e4411VjTWWfHkbe/g1ofn4NLrJnW4bZE9HcsLfw+P4u5wm+N5ZBfSGjeizJGDe4e/BQEn9s6n787D0wvfgsvp8Sme0+HGjyv3IvtAMd5e/yQEUdsrE3XOfdhVcR8kxbfhVJLsRKntWzSUpmHWgK8gnHTL04H6Qjyw9wOfP4udkhuryw4gvbEEn01/SPcrMf462JCPR1PfhUvy8fzKbqyp3IfMxkJ8eMFjmh/vnpoi3LZhBZy+5uf14quCdBysK8MPc+/VPL/DzUfw8uFXf+rFPj2X7Mb2uh3Is+XjL+NfOOX9prYDR0rxwGtfwunjZ47T7cHqnVlIL6jEZ3+49ZT221dYirs++BIuH+s/h9uD/x3IwqGSSvzvoVPj9WS63Az5/M4N+MOO9fDKckBF9vGckhceWcLvt63Dn3ZtVCfBXuj5Xevxh10/trZpAAXm8Zzen9p0+zr8afdGdRLsBm8c+R9eO7wKkiIHVGQfzy23tsHfs7/CmznfqJSh+rZv347HH38cVqvVv38tLajZuhHWlhb/n2u14oknnsD27dv1P44Ojm3xVTfi8cceUydeAMf7Utp3+Dh/N1yyf69Dtyzhw/xd+Ev6mnYfrypvwD2z/4rKknq/i+zjVZfV499//Aqrl+1s9/FSexaWFz7rc5F9lAIZda5S/OfI/Sf8PnNvAZ5e9G+fi+y2eLKC0rwq3HPJi349z1/1zgPYVflLn4vsNooMm7sQG0uuPeHXBxuK8ODeJX5/FstQUGirwY1bXvMvD52lNxbisYPv+VxkH6UoCoodtbh15ysaZdZqX20Zbtuw3Oci+ygZCvKb6zF79dsaZdbqSEseXs72vcg+SlYUVDgq8UTqMxpl1upgXgUefN33IvsoWVFQWFmPG3+/5ITfHyiqwN1LfC+yj49XUFOPa15bcvqNe5BuL7Qf27IGnx5ORZ1TvUu6AFDndGBpdiqe2vqDqnF7g8e2fo9PDx9CnUPtNrVjafZBPLWt57fpn7M+x9elu9HoVmf4wVGNHiu+Lt+Fv2avVDUunblymiqxvGDvsaECfvLIXnySvxt5zdUn/L4gqxwPXP0qnA7//hh3xNrkwDsv/Q/L31p/ymPLip6Bx9+i8zj1ngpsrPqw7eenF70FVxfyLi+sxZKXtfvCu6vyfkiy4/QbdsDmLUF2/T/afn5wz3/hkAI/3mJbHf6Zszbg53e3R1LfhdPPIvF4pY5avJ33nYoZnegXG5Z1qQOqqLkBrxzaqF5CJ3k5+1W4/fxSe7wKVxU+K/lSxYxO9ODrK+FwB95+xdVN+OdX29p+vvu/K+HsQryiuia8vnbb6TfsIbq10L577Vf44kg6bB7/vlX6yuZxY3lOGu778StN4vdEd6/7El/kZMDmUeeP78l6Q5s+mboE31fshUOjGTTsXhe+LduDpw99pEl8OrPcteNjuAMsso/yyBLu3P5x289ej4QH/u81WJsDLwbb47S78cW7m7B9bXrb774pew3uLhTZAKAoEnbVfYkWbz3+vngpnPaufT7JkoyVb29EXVVTl+K052DNM10qsoHW481v+hBOqQbPHfoCDrlrf+NkKFhasA01ruYuxekOL2WtgNPbxfOryFhRvBm1Ghzvozu/gcPPnuyTSZDxXvYuVDmsKmV1zNt578PV5febgu8qf0CDu1GlrI557oM1cLi6+HpWZCxdux81jVY89cUaOLtYA8qKjP9u24/qZvXPhxa6rdD+296t2F5RDK986k07avLKMjaXFuP1/epd1u6p/rZvK7aXF51604nKvLKEzeWFPbJN3837AfsacrV/XSkSdtfn4IP83tPLRN3vx4osOLzqfOGzepzYVHUYAPDkrW9Dlv0fS++LliY7/vH053A63ZBkNzKbt7QOGO8ir+LB+ool2PS/gz6PU++M2+XBh39d3eU4x5MUN8qsa6Cg6/lJihuZdf/ADxWHVDlel+zBWznruhxHS27Zg/VVB1RpP7fsxXt536uQ1TEuScK3JVmQ1TgfkoRX0zapkNUxHtmDnfLYfaAAACAASURBVHW+38dxulifl6rbIeb2SPhhb446r2ePF29+tQ3fHcpR53x4vPjHuh1djtMduuVmyPXF+ViecwhWd/fM2WvzuLA0+yAmxffD9P6Du2Wf3W19ST6WHzkEq0Y92Sezud1YerhntemO2mx8W74HdpUKm9Oxe11YVbYbYyKTMDVmRLfsk3qX7TX5sHnb762p/3YXbPty4ThSCsnqxKDnbkHohI7nt7ZLbmypzIUl3YuC7AqtUgYAtDQ58K/ff4mbnxsPGe1/cc/ZUoMDX5Wg5FAjGiscmHnPcFz265RO4+Y3HoAitz+7SY2zCGW2TDS6K+GUWjAsYgqSIy7oNN7BbTm+HZCPml2ZOGGag+Ps29SCH79owOEDdtSUe3DTr+KwaHHnc/pW2XdAwYXt72tvHurWHoItuwzummYkLLgQ/W69uNN4u+vyfDoOveS0lKGj738NuwtQtSYdzVkVcFU3Y+DC8zH49os6jbevIVfV/NIbKiF30AnjOJiDls374cotgbe2EVHXzkSfmzq+CRkAtlUWqppfob2owy8p5TtKkfdNDmozamCrtGLsLyZi4n2dz0iU2Zylan5ZxdUdFtnNJVmoy9kDW3UR3NYGJJxzGfpNnttpvB0ZRVBC2o9nzctC06E9cJQVwdPcgNgLL0PfizuPtzOv2LcD0Vm39Gj/dvP3qLKrO3b2dKrsNizepG7vR0/y282rUWXr3ssmVXYrFm/uOW36YuZy1LjUv5TcmVpXE/6UsaJb90m9x4G6kg4fa/rxICSHC6ETh/ker6EUy9/aAFuLukNGTiZ7ZRzalY+0/AOQOriB8/CmKlTnWzF8WiwMJt/+dNjFBnjc7RfuNc4CWL31iA0aBFHwbbaZmvIGn7bzVZ1jX9uUfSfbs74FJUdcOGd6OIwm32Y48Mo1bVP2naxpdy6cxbWImDQUgtG34610dO/nm79SGwrappw7Wd3OPNiL6tBncpLPx1vlVHfow+7q4g6HcdkPZMNTVo3gccN9zq/cpu7QluzmnFOn8ftJ6dZiNBU2InFqf4g+vt/qXHVqpof9R0rh9rbffk3FmXA2VCFiQAoE0bf2q2uydxjPmpsJV20VQoemQPBx9qmKphafttOb5j3a/83YD1cXx6sFyubxYGn2QSwcOVGX/Wvlv5n7uzyrRqBsHnePaNMvSrb7PaODWhyyC1+V7sS1A87XZf/UMylQUNFJYTTkb/cAggBnbjmat2b4FLO0pR5Cnro3OXekvroJO77PhrmD6eOvfmpM2xR7h1aX+xbUbUToMBdseacuADUq6uK2Kckq7L71VIeEWZCfUYqhY9RZ2KXB3fF5uPfZfhB+qm82/8+3AlBSzEiwNKPSFXHKYwPvnw38NCVZ/Sbfzn+o0Yyc5gqMiNBn4ZTTyWruuEdx+IOXth1vzfpsn+KFGIOQ21KG4eHqrJZ5qL7j12nML65py8+6/ZBP8UJNZmQ1VGJUH3UWTsm3Fnb42JRHLmh7vxWu9e3KRpAhGEW2YiSFqrPQU2ZBVYePDZx2/bHXc+5+n+IZjSJErwS5ncozYfaxeM0ZvsULM5uRXVGNkYlxPm2vF817tD/KPAiru3uGN5zM5nHjg4wDuuxbSx9l7e+2ISMns3nc+CDTtzeBlr4s295tQ0ZOZve68EVJ77njmbqHAAFSZ2MPA5j31e3xwunono4Kj0fCkR86/lwJaB5rQYHibf95gcz7K3tlGEzq9Q91loEQyF9HQYasdBA1gPMvKwoMPvYW6kHorJECOl4JBlHN89tJDgGeD6OK50PoJIdA3m+yIsOoYvt1/gbxPz9F6WQ0fwDxJEWGUY21FzSmaaG9tawINU597wqtsrVgZ0XHl3N7m63lRajp5mE4J6uyWbGzQr+xUXvrj6DOqe8loxpXMw409Ozxk9T9kkKjVY0X0mSA1MGl1uO5JTty67dhe+lHWFvwOjYW/QeHqlfD6fXv89fTZEAXJ0w5kUmCvcisWjiXy4ukEeotwxwdpO6VOQMkVLvDVYvnlL0YFtZze+vGRiWpGs8tezEktPNx8P6YFKtOz/hRLsmD5Mi+qsVLDvd9GJkvPIoX/YP7qRZvwjB1r6TIsgJFxe8BLq8Xw+Ni1AuoEU0L7a/zs09ZTr27tbjd+DpP3RsE9PR1fhaaderNPqrF48TXeb5dCtTCusqDsHqduu0fAGxeB9ZVpeqaA/U858aoc8n2KHOeb73ZDc5yFDXtR3TQAIyJvRyDIs9Brb0AO8uWwuvH/MYeuwKlMTjQdE8RqsTCZFbvL2vCAHW/yEQHnQNRUO+LgFGMh1nFHsV+wX1Ui6WF8ZGDYVLxeBOC1D3eKXGDYFaxB3pAaJRqsQBgRHgyTIJ67dfXrO77Y+LwATD7OH7dF32jwlSN169PpGqxtKRpob23slSNWaK6RIGCXVVl+iahor1VpapMtdMVigLsqtLvKsGhxkJVppPqCgVAakO+rjlQzzMtbigiTEGqxAo3BsGQ7ltHRVRQIi5OuhcjY2ehX/hoDI2aionx8+D0tqDK5vtMHUajEd4GdfIHgBF9psIcZFIt3uSZI1WLBQAR5pEQBfWOt3/oDFgM6hVO0/omqxZLC8PD+sOiYqE9NbbzWWz8NToqDkEG9V5/Fyeq2wOdFDIQJoN6X/TGRY1VLRYApAyMhUXFL8ozxg+BxahevOnJg1WLpSXNboZ0eD0oavH/DmJHejZa1myGp6wSssMJQ3QkQqdMRMTcSyCYA3vD5DfWwyNLMPXgsW6+cHg9KGoOoE3TDqNlzSZ4yqqOtenUiYiYOyvwNm3Sp02dkgflTv/vrG7YXYCyz3bDXlgLyeaCuW8E+s4aiQE/Ow+iJbA2KLHXnBGvK1LPjPgRiDQHo9nT9Ssu0UGhCCu2w4rT92pbDKGn/K5PUOtlc7fk+4wlBqOAYcFTUIZ1UDqY9s5XomDA5Ym3o/Sm77Dq/U1dngfcYBRx+1P/16UYJxMFEwaFz0NB8zIoXVyPQIABY2IX45r+G/Bp0fYuzxVsEET8OmVOl2JozSQacGW/KVhZsrXz+xN8YBBE3D/sKpUya2USDbhh6Dh8mLMPktK117NREPHYxFkqZXY0phEzYqfhh8r1kLv6foMBCwbNVymzViajAddcMAafbjjQ9fevQcTD82dA+NGIpdsPdP31Iop4ZE7n00X2FJr1aFfarAgK4JuLt6oWhj6RiLj6UkTfOh/B40ah+fuNqP/w84BzCTIaUNnNU+FpodJuRVAAvSXe6loYoqMQcfUliL7tBgSPH4Xm7zai/sMvAs4lyGjUpU1rXU0wif4Xxs6yBlj6hmPgwgswbPEcRJ83FKXLdyH31cCXlzeLJtR28/SC1PN9cNFtMPk4XV1HjIIBSy66DUZT4HEaXa1zb4eb25/Huj1ul4Q5oxYi2NC1ccaiYMCsuF/AJAbhnmevQ0SfU78I+MNgMuD2J65BUIh6vX9HjYl5DCbx1FlC/CEKBoyKfhgGIRiPjJqLSFNIl+IZBAMeTJmNYBV7O7XyYPI8hJu6eH4FA+4dNhdBGhzvM5MuR6S5a1ctjIKIRyfMQohRvd7xoxYmLUCYsavtJ+LmpOthEU+d3aerHrn5YkSGdq39DKKIB6+7CMEWE56YezEiQ7p4PgwifjP7IgQH2FHY3TQrtKvsVogB3FUefulFiLnjZoRfciFCL5iEPgvmIfyyi2DfewiKN7Dp3AyCiCp77y+0A2/TCxFzx00Iv/Rom16D8MsuhH1P72vTWldzQG2QeN0kJD82F4nXTkLcZWMw5JeXoN9156J2UzZkT2A9WaIgarJkMPVu/YKjcE/K9IDH6ppFA3418mLEBUUgJj6wMYiKIiO7dgPCzLGICRns8/NkSUZ0XAQWDX4Rpi780U4IGobzY69r+/nPKx6EJeAhJAKGj+6PG+69JOB8Tmda4vswCIEfb4R5FIZF3db289vn3QVLAB0CQOtEDyMjEnHLkOkB59PdXp90XxeOV0ByeCIWJHW+eE9XLLt0YZeGkIyOjsfdo85TMaMTPTn6UZjFwL9kJIUMwtwE7a5+vP3IjQEPIREEYOSgONwy+9hiO/+960YEdWH2oFGJcbhjeueL9/QkmhXado9HtWlwDJERUGQ54GWBTQYRNp1vIFSD3e2G0aDOKTNE/dSmAV4OMokibJ7uv9HV7nV1ubfwKHNMGBSpC20AI+xS739dkfp+NXImfj3qkhOuQDlzy9G8PRO2tAIAgD2zGM3bM+HIKW3bJshgwuLRl+HelBkAgNGTkgKa5iujdi2snjpMiL/Kr2n0+vQNh9liQt+gJNw55DWIx92o1VjuQMYPFcj4oQKyrKCmwIqMHyqQvfHYXLuiYMDAkNG4fejfT4ibNCIB//j2URiPuxHKIbWg0pGLSkcuFMiwehpQ6chFtbOgbRuD0YDRk4fgtW8e8bsN/BFuHobpA5ZDxLFirLrMg23fNWHbd02QJQWleS5s+64Ju3889uVaEAzoE3QOpvf/5IR4Q8PisPTCX54wrMxd3YTGrdlo3JoNyAqcJXVo3JqNpl1H2rYxCCLG9xmED6fdr+HRqm9IaDzenfIQjMd9NruqmlG7OQe1m3OgyAocxfWo3ZyD+h3HZmsyCCLGRg3G21Me0jS/5Mi+WDXnDpjEY38/vbWNsO1Kh21XOiDL8JTXwLYrHfb9x270NwoGnNt3IL6afbum+Q0I7ofnxz59wlSOtkoritcXoHh9ARRJQXNRI4rXF6B067EZvwyCASPCh+MPY5/WNL+h/WKw9KmFMB03lZ7b2oDGglQ0FqQCigxnYzUaC1LRVHxsjniDQcT4Yf3w4VM/OyHe8LgYfPbLhSdMzedpakBzdiqas1OhKDJcddVozk6F9cixeEZRxDmD+mH5/SfG6+k0G6PdNyS0wxWjfKG43FAkCe7icrSs24Kwi6ZCMAX2jdTtlREX0rVLMz1Ba5sGPo7rhDZduxVh06cEPEbbLcmICwkLOJdAxVjC4enCWErJ6YHilWDLrUb5yn2Iv3I8REtgbwMPPIgxqzeVF51Z7kiehiFh0Xh4z2eQZAn1q3ejacOxmWpqV2wCAIRfMAqDHl8Ak2jA36fMx8yEYzeEzbzmHKxftR+2Ft/HfB+p34aylgycm3A9ws2+T0UmGkRcfNWEtp9jggbi4ZSPsCT/t2jy1CB/dylWPn0s/4y1lchYW4mQKDOe2no5jKIZU6Ln4ZL4X7Qbf9CIeHyy/wUsvu411JQ3oqy2FGkNa9ser3LkosqRC5MYhEv73QOTxYhr77gYdzw1z+dj6Ipw01BcPvhHbCu7FQ5vJdJ2NuD1x459Cdr+fRO2f9+E8CgDlu4bDVEwY2jkIoyKfrjdeEPC4vD9rCdw5863UeFsRF1qEYpe/abt8cZt2Wjclg1jRDDGf/obWEQjFgye1uPHZXckKSweX07/PX6175+odjag6mAxcv76fdvjtVtyULslB6aIYJy/8lcwi0bMHzgd9w3vfJlttSRHxmDntQ/hxrUfotzejNrMfNT8+9jwSdvuDNh2Z0AMC0HS27+D2WDA7SlT8PgE7a6kHK9/cD+8ec7f8XzGS6h116NyXwV2vLC57fHiDYUo3lAIS6QFN65ZBJNowuyES7FgoLrjsjsypF80vn/lbtz55xWoaGhGXXkuijYta3u8seAQGgsOwRgUivG3vACLyYAFl5yDX9/Q/pWZYXHR2PzE3Vj49gpUNjajqSgX5d8ci9eSfQgt2YdgCA7FiN+8ALPRgFumnYNH5vSeKz1HaVZox4eEwduForD0keehuFp7C0MmjUOfhdcGHMsrS7oUhWrrcpsufuFYm57bO9s01hIBbxduatlz4z8hOVtvLouZPgLDHrw84FgeRUKspWtjO+nMNitxJFLnPYMXUr/F94+Govmh62EURChQIECAV5ERaQ7CnP5j8Mz4U28EG33uYMTER/pcaBc3HUBeww6Mj5uLWD+GjABAdFw4Lrpy/Am/CzaE477k/2BP3f8QdtMqTLp2IIyCEQpaL/krkCEKBgwJnYg5ifcjwtT5ePDwPqF4Z+Pv8PX7m7Hy3XAMKBkNU5ABity6eIcsyzAaDThnegp++cf5iE1Udzq10zGLUZg18GvkNy2FZcHHuPSGPhAFc9s1AQUyBJjQN+Q8jIv5HYKMnc/5HGUOwRczHsanhdvxiTkMMZdP+Gm6OaX1eBUFBsGA82OH4rHR8xAf5N9QocbqJuTszcOW1bthqg7DkX35SD53aGAHD6DOZkd6eRXWFZbBNWgYMiqqMCbR93mtI00h+Pj8R/FF6VZ8dm044ueMg1k0/PR6aV2wRBQNmBo9Ag+nXIu+lu6dnq2PJRjrrr4XSw7vwXtBoQibMQkW0QhFaM1PlhUYDSIuih+KP0yejYQQ/zpS6lvsyCyqwoa0Msixw5BVXIVRg3xvvzBjKF6e8EesqVyHNddHYPhVI2AUjVCU1iEYsqLAKIgYEzkGtw3+OaLN/k2HWGe3I62iCj8WlcE1ZBjSK6swNsH3/KJCg/HFC7fh03UH8ElEKGJSprRN1yeg9f1rMIg4f3QSHvvZJYjv03mNEBUSjG8fvg0fbz+AD8NCETlhCiwGw0/HK0BWWuNNG5qEZ+ZdgvjI3lnHaVZoxwaHIMxsgSPAMcBxv7kbitsNd1EZmlevR937yxF7988DihVpCUJ0UNduTukJYoNDEWYyw+ENbKW4uMV3QXEdbdMNqHtvBWLvCewSTKRZnzbtYw5HqMEMV4BDNsb85SZITg+sRypRumwXjry8GiOeujqgWGHGYESae//rirT3zISr8MyEq2DzupDRWIGvv1+NV555HnVHihBq7Hxs8NWLpuGDl1fDYe98qFaFNRuZtT8iJeZi9Asf7XeO/Qf3RfLY9pc2nxJzDabEXAMAqHTmodKZjxBDOBKDkhFu8n/BiHl3zMC8O1qHx+SmlSI/qwzhUSEYMX4QYhL0nxt3aORCDI1cCABocmWhyX0YZjESUZYxCDL6v4DMgsHTsGDwNABAdnM5DjdXINIUgtGR/REX5P+X9XcfX4pv31kLp90FQRDgdXkQLPbBQxc9DY/Lg7EXjsT9f/8FRkzxbTq6V9Zvwad70+D0eCEIgMcrAWMmY8H7K+CWvJg0sD+emjMD4/r5tljQDQMuwg0DWmeEyGkpQ661HBHGEKREDOj24ro9t6VMwW0pUwAA6Q2VyGqoRpQ5CONiEpEQ7P9Vyn98uQVfbE2D09Xafm6vBAycjNv/ugJurxcTh/fHI/NnYEySb+03J+EyzEm4DABQaCtCsb0EYcYwDAlNQh8/i2sA+OuGLVh28Nj5dUsSMH4ybv7o2Pn93SUzMD7Rt/wWXHYOFlx2DgAgu7gah0tqEBkahNGD4xEX5X8xvGjaOVg0rTVeZnk1DlfUIDIkCGP6xyM+oncW18fTrNAWBQFxwWEBr2JoGda64lTQqGQY+kSi7t1lcM+5GOZB/q/0FB8aFsDtcz2PKAiICwlDjaOLbTo6GYboKNS9swzuOTNgTgqgTcP0aVNREBBriUC9O7AbMcNHt66aFTUpCZa+Ech56Rv0u3EKwpL9X40szhIZ0DLSavHIXuT38yCpXLO3ca9T2NiAtKpqpJnNCJVlFDY2YHBU4ItgFNU1IqO8CpmKGaGKjKK6RiTFBN7LGmq0YGrsYHyXV4MnbrvvtEU2AFyzaBo+eWNtp4V2k6sCadXfIdKSgGBjJCqtx+bODjX3Oe0QkqBgMx5+6UafjiEhaBgSgtSbT3j4uAEYPq79Ar8niLSMQqRllGrxRkb0w8iIwFbvK84qxSOznoO10Qav+6ROLBnwuFo7YdK3ZWPxrGcxff75ePy/D3QYL7+2HguXrECL0wWPdNKVQgFwS6372F9ShkVLPseVo5Lx52v9G9oyIrw/RoSru0Kjmsb2ScDYPoGtNlpQUY+7X12BFocLHu+pV1rdP3U0Hswtw91//xyXT0rGH27zr/0GhyZhcGhgK3Dm1dVj4Scr0OzL+f3kc1yRkoyXr/Yvv5GD4jBykHqrl47uF4fR/XruaqiB0PQv9PXDRyO3qQ6uAHu1jzpaCHpr6v0utC0GI24YPqZL++9Jrh8+BrmNdXBJKrVpbb3fhbbFaMQNw/Rr0zkJ56LQXt32IRGoo8W1q6LR70LbbDDhygT97nqWFQW/2vs2jiR5URrqhKwoEIUz4euk/7yyjN989x1+yMttHc6gyPAEWSAqCq748CMACmYPH4bXrrzKpzbySjIe/fw7/JiV13a51isFQVAUzHvzQ0ABLh01HK/cdGW3tfmL/70bv/35W7B3MISkxVULWZHQ5KrEwaqvT3gsKXISRsV2PM40JNSC6++8WPVVF0ldaZuz8cSVL8Dt8O1qnsvuwvqPN+Pw7ly8l/7qKTfV7i0qxR1Lv/T577PT48FXaVlILa/Et/ffetZ+3hy1/0gpfvXGl3B5fGw/twff7MpCekElPntW+/bbW1KK25d/CaeP59fh8eCrjCwcqqjE6rt4ftWk6cqQVwxOhkHwcxftjEF2ZrT2zhhj/e+ZMggC5gzu2atr+UO1Nk0/DAAwxvr/x9UAAXMGj/D7eWqZETcWRj/bQGlnZpGGva2zG1gCGAdqUARMj1d3Fa6T2Wy2Dv857HZYYIJRNGJM8kg47PZOt7fZArsK0tMtTU1Fyj9ex7c5h+GRJLglb9sNw7IgwC154ZYkfHM4B8mvvYpP0w51Gm/57lSM/8M/8H16Tms8rwTvTz1BiiDA7ZXgliR8l34YY3//GlbsTdP8GAFgyKh+uPd31yAktP0e8AER43DFsN+2+6+zIttoFDHuvGFY+OvA71Ug7WVsy8ZTc//oc5F9lCwrKMkuwx1jfnPC7/eXVuDOT3wvso9SFAX5tfW46q0lfj3vTHMwvwIPvul7kX2UoigoqKrH/Oe1bb99ZRW4c4XvRfZRiqIgr64eV75zdp9ftWnaoz0gPBJjY+Oxu8L35bqr/vpvmJMGwJQYBwgC3AXFsO3Yj+CxI2FO8v/y4oS+iUgMPXNmhhgQFomxsXHYXVl6+o1/UvXyf2BO6t/apqIAd35Ja5uOSwlo2IjebZoY3AfJ4f2Q2lDo83PSFy9D6Ih4hAyKAQQB1uwKVK/LQJ+pQwIaNjIycgDiNBxruHbtWsybNw8GQydTGQoCoi8fjf1rM/C+0v7MB0dJkoRVq1Zh9uzZKmeqnxc3b8LHqalQfJz2UwHwhw0bUdjYiCemzzjl8b98vxnLdvkX78VvNqCovhGPztb+TvjZ86eiT1wE/vLwJ7A1+77aY0csQWbMuGYCFr90kwrZkZaenPsnOE8zRr8z5bkVeP93y3DHn1rvybnr45Vw+lkkHq+orgl/37ANi2ddGHCM3uyBf6yE4+ShO34oqW7Cm6u24YH/06b97ly+EvYunN/Cxib8fdM2LL747Dy/atO0RxsAXrrwcoSZfJ+IPXjCaLiOFKDx82/R+Nk3cBeVIvL6KxH7q1v93neYyYyXLjpzCoujXrpwjn9tOnE0XLmFaPx8NRpXfNvapjdc0YU21X/6qUdHzvdpfOtR0RcMR0t6GQrf2YTCtzfCmlOFpDtnYORz153+yScJNljw+Chtp1Tavn07Hn/8cVit1o7/tbSgeOUuWFs62eanf0888QS2b9+uac7d6fmNG7DkwEG/e2xckhcfHDiAFzdtOuH3L63eiKU7D/jdw+eSJHy0/QD+8t2m02+sgikzRuLhP81HbIAL2RwVFR2GS6+bxCK7F/jrHf+E09q1NQtkScYXr/4PdeUNeOLrNXC4A7uh/ihJkfHfHftR3dL7F4Lz17MfqtB+soyP1+1HTZP67ff4t2vg8HQtP1mW8f6e/ai2nn3nVwua30U1PCoGswYOxeqCwz6tbR9xxUxEXDGzy/sVBQGXJQ3DkMjAb4TqqVrbdBhWF2T72KYXI+KKrq+6JYoiLhs0DEMi9G/TwaFxOD9mFDZUpULG6dug/81T0f/mqV3erwgB0/uOwYAQ35e1JnVl19RgWdoheOTA5lP3SBKWpB7ETWPHYnhMDHIqarBsT9qpNwv5EW/p7lTMnzQWw+L9n4HDXxddOR7DRvfHiw9+iPKSBthbfO/dDg4xQzQacP9z12LG3AmnfwLpyu30YOPy7T5fZTldrPeeWYbvhks+fWaejsvrxWsbd+DFa86eYUduj4Qf9uaocz68Xvxr1Q48e6t67eeSJKzOzIGsQn4urxevbt6Bl+aePedXK90yXcGbl1yDUUvyYO/ityx/hBhNeH1mYNO29QZvzroGo0pyu7dNDUa8PvOabtvf6fxh3M+xrTYTzm5cnTHIYMHvxy7otv3RqW5b+QVc3sAXLQJai+NbVn6BHXffg7s+XAlPF2/Y9ngl3LFkJTY9dneX4vgqMSkGb3z9G+zZmIUV/9mA7IPFCAoywdrOzZLmIBNEUUR4ZDCuv2MGrr299y34cLY6sj+/dQXfdtShEuVKIZpQDyfsGIJRGCZ0fpP63rWpkIe2v43tSBaaD+6Bo6QI3qYGRM+4DLGXdr6YzM6C4k4fP9NkFVd3WMQ2F2eh/vAe2KqK4LY2IGHSZUic2nn77T6sbvtlVFZ3+CXKfjgLzfv3wFlcBG9jA/rMugwxszvPb0fh2XV+tdJt84JtvuluXLT8HTgDnAPaHxaDEVsW3KP5fvS2+cZ7cNGKt7uvTW++V/P9+Gv5hY/jpq1/hkvWvg3MohErLnpc8/1Qx37Iy4Vdpdd7i8uFVzdth93VtSL7KKvLhU2HC3BxyhBV4vliysxRmDJzFBw2F3ZtyEJeRhkqS+rg9cqQJRkJA6MxOCUB50xLRsJA7XvbSV1pm7Pg6eD1WaNUwIZmxCAeFSjyKV5jWUPrHMrtsOVkwl1dhdDhKWg+uMeneOVNLT5td6bYn1vaOsd4O5qKMuFoqEL4wBTUH/at/Srr1W2/PSWlHZ/f7Ey4crYmQQAAIABJREFUq6oQkpyClv0+nt+Ws+v8aqXbCu2+waH47rpbcN3Xy9Do6vqNPB2JCgrGqmt+jmhLsGb76Cn6Bofiu2tvxXXffIJGp9ZturBHtmmMORwfnPcw7tv7TzR77JrtJ8Icgv+c+wCiTKGa7YNOb2tREWwdjI9s3rIF9qxsuIqKIDscSLjvXgSP6Hh2HLvHg7X5ubB52r8i0rBnC6y5WXCWFUFyOjBw4X0IHdJJPLcHm48UdmuhfVRwqAUzr56ImVdP7PZ9k3YO783t8LEUYWLbPP6Vim8TDojBJpgqbfAknPo5Fjf3+tblBwG0pO33KV6oxYzsymqMTDiz5j3uSEZhVYePDbzoWPs1HPGx/YLNyCmpxoiB6rRfannH+fWddyw/a6pv+YWZzciqqsao+LPj/GpF85shjzc0MgbLr7oZJrGTmRS6wCiK+Pyqn2Fw5NkzH+zQyBgsv3KBtm0692cYHNFz23RQaF+8ce69MAratcG/zr0fA0M5Lltv+8rLO3ysZfceKE4nglNSfI5X1NzY4WNNB3dDdjkROtT3eAeKO86PyG+dzGUcyGJZiiwDYgfPC2DeZFmSO58Z6QzTaRMF2n5G9dqvo1MLIKD8JFmG8Sw6v1rp1kIbAEZG90XqLQ9gcGQULCoVhxaDAUMi+yD91l8juc/Zd3l0ZHRfpC56EIMj+sCi0pvCYjC2tuktDyG5T88vMIeFJWL1zOcwMKQvzKI6F2rMohEDQ2Lx/cUvYHCo/1MAkroUABWdXMrsv/g3SPz1g4icNdPnmC7Ji47qlcF3LUbSL36N6Atm+RyvvLEZKtyHRAQAGHuByusVeGR44kJUC+fyepHc9+z5mzthaKKq8ZxeL4Ylqtd+k/qrm5/L60Vy7NlzfrXS7YU2AISazNh04924dewkmEQRhgBXIBIFESbRgF+MORcbb7wLwUaTypn2Hm1tOvpomwZ2ao+16SRsnH93r2rTEIMFy6Y9iusHToNJNPq9qM1RBkGEURAxf9CFWDbtMQQZek8bnMkEAFI7Cw8d2yCAHj4I6HAChkB6qBQ5kKcRtWvMRSNhtqj3+RM9MAZmFXso+0dpt5ZATzRx+ACYVeyB7hejbvudO3CAap1twNl3frWiS6F91NNTZ+LgLQ9iwcgJMIgiIs2+zYscYbbAKIpYOHI8Um95AE9N7frUdWeKp6fOwsFFv8aCkeNhEAX/2lQQsTBlPFIXPYinpszUNlENPfD/7d13mFTl2cfx75mZ7b1Qll06iLSlNxEQlWBv0Rh716gYTaKJJTGWvElMNcaGGntHFBUbCqgoSO9NysL23vuU8/6xsIDuLLM7Z9hZ+H2uiythzsy995x5XO55znOee+BZzJ96P2eljsdu2Ih2+La2PNoRgcOwc07qBD456SFuGXBmgDOVtuqT0PYunq2JtFt7m0rvpOBdYiWdz4CRfQmNsK7QnnT6KMJDrBvzUwf0sSxWZzAoLZkwC8/f5KF9LIsFMKRrMmEO6/Kb1q+PZbGOZW36RGbPnh2QJHoDvyOaXS4XWwgh2+amDpN6TOKxUY6HcAyiMEg17Qypt9PPDINNu3l10+6A5ARw000ds8uGFee56ZzGssvpYothkm1zHTinpo1yY985NQ1ScTCkzkE/Mxw2ZfDqpgz/3wTWn7+2npcY4FL6khtZS0a0g6LwehrsbhptHqKdIVSHuAj1GIS77XSpD6dPVTQ96iJhZyEvf/VCm/PrqPFyLBmbmsrGAu83/LRV//gEthcXWRZvbJ+2d1oV8cYR6uAnV01n3uOf4GnnPu/72R02bvzbldR88x0vr1yLp7WrQ77EM2zceeqJfsXobEIcds4+YShvLV7b+tU1H9jtNn55nrXnL8Ru54LhQ3l5jQWfr83GXScdW59voPhcaP/zn//knXfeYcQIa5ocbNiwAdM0fxQvbd+f/RocdsJ+sJ1OBbDWx3j+5FdVVcWdd95pSTxfWX2ewbdzumTDBr4O4vPn73mJpOnLx37rNm/EcHk47qB4Bfv+tEdHjZdjzZRevZm7eQuVDT/eL7qtYsJCmTFgALnZlVTV+9d5DyA6IowT+vfyO47IwW7+99UsfP0bKooq2h3DEWLn2v+7lPCoMO6ZOY0PNm2ltKb9O1U5bDZ+fcqJRIQce8vq7rxwGp+u2EppGxpF/ZDDZmPWuScSYeGyoP3uO3UaH27ZSkmtH/nZbfxm6rH5+QaCz4V2dXU1M2fO5IEHHrDkBz/44IOYphnU8ao7oP2o1efZV8F+/jrD+OuI8XKsOalvXxIiwi0ptJMjo7h18kTeX7HVkkI7OSqSKQP7+B1H5If+sfiPzBp3Nw117WvO1X9kXy6685zmv79y5UX89NnXqW9no6bBKV25btKYdr32aDD7VxdxxV9ep97Z9vNnAIN6duXKGYE7f69eehHnvfg6De34fA1gcNeuXD/h2P18rdaha7RFRNrq1QsvIsTm368uh83G6xf9DIAXr7mQELuf8ew2XrrmIr9iiHjTZ0hPnlz5NxyhB250q6eWQrIpJBsTkxoqKSSbIvKan2MPsTNs8vE8vvwvh8Qb0CWJuTddhuOgnb+c5WVUbVlP1Zb1mB4PjcWFVG1ZT832zc3PcdhsjO7Zg3euuySA7zb49U9J4rV7LiPkoBsPG6vKKN+9nvLd68H0UF9eSPnu9VTsPXD+7DYbI/r34JW7A3v+BiQnMe+aQ/NzlZdRvWk91ZuaPl9nUSHVm9ZTs/UHn29aD9696tj+fK2mQltEOpXUmBhumTCBsHbeyBhqt3P7pIl0i2pq2tEjPoYbp00grJ27CYQ57Nw6fRJdY9XMSAKn15BU3s55jp6DehAWGUYphWwwv2OD+R0e3BSSwwbzO7aYTV3/QsNDuPCOs/j3kodbjDcgKZFvf3MDfZMSiQhxUJexk7y3XiLvrZcwXS6qt2wg762XyJ/3JtA0zq+ZNJo3rrn4iL3nYNY3JZHPHrmB3t0SCQ91UJ27k4wFL5Gx4CU8bhfluzeQseAlMhfvO38hdq44dTTP33lkzt+ApES+nXUD/fZ9vrW7dpL/2kvkv7bv8920gfzXXqLwnX352e1cO240b16uz9dqR6wzpIiIVW6fOIlIRwj/XraM+n0t2RuysnCVluEqKQGgfncGnrp6HPFxhPVuWqEf7nBw1+TJXDP60Muis6ZPJCLEweMLlzVfTq/Py8JZXkpjeVO8uszdeOrrcMTGE5HaFC/M4eDXMyZz5Qmjj8j7ltbVu8sobdhKecRihp8MpQ3bSAw7vqPTskxMUjTPb/0P8x77mLn/+YjUjL6EhIdgekwMG3g8Jo4QO6NPSWfW49fRJa31PZDjIyL49NareGXFWl6MjiJ21DjCHHZMmhrieDweHHYbJ/Trzf2nn0z32Ogj80a9KKmpZVNuAQv35NDYqz+b8woYmtJxPQ7ioyJ474GreGPxWl6PjSLx+HFN2/+ZYBj7zp/Dxvjje3P3xSfTLeHInr+EiAg+u+EqXl61lhcjo4gd84PP1/TgsNmY3Lc3f5xxMt1jOvbztVppVS1bMgtYtCkHd5f+bM0sYHCvIz9eVGiLSKd0w9ix9E2IZ9ZHH+H2eKj85luqV65sPl6+YAEAUenpdL/2akING4+feRYn9+vXYrzrThxL36QE7njrI1ymh7KV31Cx4UC84iVN8WKOT6fnz64lxGbw6M/P5KRBLceTI2dd8ePsrHwPl1kPpoEn0sm0q+Hz7Otxm066RIxgdPIdJIUN6ehULXHeL8/gvF+eAcCONbvZtX4vsYnRHDe2P8mpbd9i8orxo7hi/CgANucVsi2/iPjIcIb16Ea3ICi+/rFwCW+t2ki904UBNLrdGEPGcsn/3qbR7WJ0r1TumTmV4T26d0h+l0wfxSXTm87ftsxCtmcXERcVzpDe3ega3/Hn78qxo7hy7L7PN7+QrYVFxEeEM7x7cHy+VvvP+0uYu2Qj9Y1NDclcbjf0HMtV/3wbp8vFqP6p/OanUxna+8iMFxXaIuKznMwSdmzNJed7k9BIk5zMElJ7dVznsFP7D2DbL2/n/oUL+ejacCovu5QQw4bHNLEZBk7TQ1xYGGcOOo4Hp59y2HgnD+7Phgd+yUPzF/Jp+LVUnncZDpuBaZgYpoHLYxIbEcbpwwbxh7N87xgpgVHRuIeFOTfT6KnCYzoPOWazgXvfY0V161mYfTM9o09mUrc/dkSqATNwdD8Gjrbuy97QlK4MTelqWTx/7C4u5fIX36aqvgHnD7Y3NA1odDddfVqTmcMVL77DaUMG8tfzZnZEqs2O79WV43sFx/lrydDuXRnaPXjz80dGXinX/+dtqmp/PF4wwLnvauXaXTlc/+g7zBg1kIeuDPx4UaEtIq1yudw8cu9cln65HcMA02PicpkYBtx00ZNgmkyaPph7/3Ihhq1j2iI+dMopPHTKKdQ0NrKxsICM0jL6JiYwvGs3okJD2xzv/rNO4f6zTqGmoZHNuYVkFJfSNzmRoT26EhXW9nhivaK6tSzKvR236duOMS6znj3Vn1Jcv4mzer+FoVuUgtqqvdlc9+p7Pu+cUe908sGGrWzIyWf+LVdiU4vWY8qandnc8sR7NDT6OF4anXy0YiubMvJ55/7Ajhf9phE5ipU25rKl8itsg3Ox9SqhtDG3Ta+fP2clZ49/mK8/34zL6cLZ6MK1bw920wRnowun083XCzZx2tgH+Pjd1YF4Gz6LCg1lYlpPLklPZ2Jaz3YV2YfECwtlfN80Lh6Xzvi+aSqyg0RR/XoW59zhc5G9n2l6qHJm8lHmzwOUmVhhTXYe17/me5G9n8c02V1cyllPvhSgzCQYrdudx6w2FNn7eUyTjMJSfvpwYMeLZrRFjjIe08X7OX9nR9UyDAxMTBzDXOA2+N+umzGBgTGTOC/tdxh4/xb/zL8+48O3V+AxfewwZsJTj3xEXlYp190+w5o3I9KCxbl34KL9e6lXObNZX/IUI5JutjArscoNr7zbrj2q99tTWsG/F33Lr06ebGFWEqxmPf4udW0ssg+WWVjB4x98y6xzAjNeNKMtchRZW/YRj2w9j22VS3CbLlymE7e57xeQ3dz3dyfbKr/mr1vOZF3ZJy3Geervn/D+m8tpbGjbL6/GRjfvvbaM2f/6zN+3ItKi7woewuVpf9c7ANN0s638depcxRZlJVa55/3PqHU6D//EVng8Hl5ctobCKjURO9r98ZXPqG30c7yYHl5ZuIaiisCMFxXaIkeJRQXP8kX+s4DnsM/d7/P8p1lc8Pwhj2XsyGf+OytxOd3tysPpdPPhm8vZu7uwXa8X8cZtNpJZ/QXg41WWw8TaUPq0/0mJZRrcbj7Z/D2mr1fRWovlcvGfxcssyEqCVaPTzWdrrBkvjS4XT84PzHjR0hGRo8AX+bNZU/7RgdlrH7lMJytK52Hi4eRu1wNw782v4GpsX5G9n9Pp5t6bX+G1z37jVxyRg5U1bMPj5Yvk+q8q+PrdInasq6Ykt5HzbunBRb9KazVefu3KVo/LkbUlrxC3p+WiqWbHVirWraQ+ey/OijKSpp5K8slntBpvWUZmINKUILE1qxCPl/FSmbmV0m0rqc3fS2N1Gd3GnErKhNbHy/LtgRkvmtEW6eQK6zNYU/Yxbk/71qh5TBerSj+guCGTpV9upa620ZK8qqvrWbFkuyWxRAAK69b+aBu//dYuLiN7Zx3pJ8bhCPFtB4Ead4GV6YmfVu3Nxulu+Ut+9fdbaCwqILL/IAy7b11c8yqqrExPgsyandk4XS2Pl8o9W6gvLSCm1yAMm2/jJb80MONFM9oindybmb9v3i+4vdymizf23gfLfk5dXcuFdmbRCoqrdlJRk43TXc+Y/peTFON9/9762kZWfruT8VMG+ZWbyH4lDVu8Hrvq/j4Y+6aOln5Y4lO8ECOKsoYdJIQNtCI98dOGHO9ffLqdcQHs24KtatMan+JFhYWyLb+Q44/SfaOPdZv3eh8vaVMOjJeyHT6Ol/BQtmcXMijN2vGiGW2RTuz7qmU4Pe3ffeFgjZ4a9tR5v5SeU7oOl7uBpJj+Psfcsl6XbsVK3v/JMtrxr5mJG5vh22yXBF6r2/C3Y59jt9uDw8fZbznKtGO8eDyBGS8qtEU6sT01a2n0sgPD0lf38uJNq3h40hfcO/QTdi5rfZav0VOPmZLt9fjEQTcwfuA19Ok6yef8CvIqLLlRRQQgOXy4pfHcnkbiQq3rqij+GZWWYmm8RpeLAV06rnOtBNbIftaOl3qni/4p1o8XFdoinVh2rfdL6avfy6a+2sXAyck+x4vqV+n1WGt7bnvj8ZgY6tAmFukaMQK7YV3ToOgQa/+hFv+M7p1GqIUziqnxcZbFkuAzsn8aoQ4Lx0tSYMaL1miLdFomFU7vW+jNmnMChs0gZ3MFGz7J8ylieJeGpjbrFk1Cp/bSbJJYJyH0OGxGKG7Tmht2UyJ9vzojgTe4WzLhIQ4avdwQ2VZTBvaxJI4Ep0FpyYSFOmj0ckNkW00a0seSOD/UaQttl6ecyoaVlNctobphA5POycbjMdhd6iE+YiqxYeNw2Hz/dlJVWceGDVmsWrGb77flkp3rwMDkP//6lHHj+5M+oifRMeEBfEewuTyHT44zmXgElrVWldewaekOVi/azPdr95CTU4BhGDxe/RpjThnK8EnHER0f6XO8alcNWyp3sq58K7uq95IzqQTDY/DM7jcZFT+EwbEDiHb4Hs9ynnJM5ypo+AacG7nhpzl4PAZmJRA2BSNkLLRhvASHpq6PXo+2uuCxZXaHzbIiG2D46N7WBZNjns0IoV/s2Xxf8Ram6ft+8S0xDDsjk261KDOxQojdzvkjh/Lq8rW4/fxFZDds3HnqiRZlJsEoxGHnnIlDeePLtV63+fOV3WbjjvMCM146ZaGdX/USuZXP0+guwmM23QgWnbj/2KsUVb+Dw55MatwNdI++4rDx3pu7krlzVlJWXE3DIR2GDD6ct5oFn6wnISGan10ykXPOHxOAdwRu08Mvl79NZQQs6WviNj3Y23N3jw/ef2YR8576nJKCChrrD92tYv7zX/L560uJ7xrLhbf9hLOvm37YeB/nf8n83IWUNVbS6NkXL7rpfz7L/5rFRcuId8RybuoMTus+1eq3c1hm7SuYNS+Apxj2jZfuyfuPvQ5172LakjCibsCIvPSI5+ePhJAU8t07LYsXQzeiY8KprvL/Bsuo6DBGT9D6V7HWmOQ72Fv1KfXusnbHsGEnPelWHLYICzMTK9wzcxofbtxKaU37u3/abTZ+c+qJRISEWJiZBKM7fzqNT1ZupbSq/ePFYbdx2zknEhEamPHSyQptD+vzzqHW+T1mK4053GY9blc2GSV/oqD6HUZ0nwctrC81PSY33/A8ezKKcLVy6aGhwUV+fjlPPr6ATz5ex5PPXNeeG1qZPXt2q8eHRhhURBtMro/nuWeePWy8m266qU0/3/SYzJr+MHu35bba9a+hvpGCzGJm3/sWC177lscW3tfiOlsTk9+u/yuZtbm4TO/xGt1OCt0lvJAxh0UF3/LIiLvbtd637TyYxedjunYCrWx/Z9aDOwez6k9Q+w5G8lxaGi/BqGfkMPLrrSu0j+82llVx1ZYU2glJ0YydrG3TxHqn9HiST3Ouxu1paMerDRLCBzEk/jLL8xJrvHzVRVz4zOvUu9reG8AAhqR05dpJgZkUk+DzzO0XcfnfXqe+sR29JAwYlNaVK08N3HjpNIW2aTpZk3MyDe4c31+Dk5qGjazOmcro1C8xOLBo3uV0c9WlT1FQUOFzPJfTw47t+Vx+8eO8/MYt2O2+zzj/85//5J133mHEiBGtPi891EZDYx5rDxNvw4YNVFVVceedd/r0812NLq4ddx+FWaU+Ztx0jnas28vVI+/h+dV/xu448H5dpotZax6gqKEN8Uw3u2qyuHn1H3hi9EMBm7EHwHTiKfoJeHwfL5guTNcmzKJTsHX5HAj+baH6Ro9iQ8XnNLhr/I4VbkTRN2oUjzzbn2vOeazdLdgBHA47f3v2ar9zEmlJXFg/Tkt7iU8yL8dD0z+uxTkN7N7Y9N+BxwO5u+pZ8WkpjlAbo0+OB8Bm2EkKG8aMtGc6LHc5vAFdknjnF5dx3pOv4vI0/R5ylpdRn9u0rtL0eGgsLqRqy3oMu4PoQUMBcNhspKd25/VrL+6w3OXI65+SxGu/u4yf//nV5oZHjVVl1BbuW4fr8dBQXkj5rvXY7A5i+xwYL8P6dOeF3wR2vHSaQntd3lltKrIP1uDKYX3eWYxM+aT5sZuue65NRfbBCvIr+MV1/+PZF2/w+TXV1dXMnDmTBx54oF0/84cefPBBqqurfX7+LdMealORfbCCrBJmnfQwT33zx+bHfrPuL20qsg9W1FDKXev/zL9G/r5dr/eFWXJu24rsg7mzMYvPw0j+0NqkAqB/9DgibbGWFNoRIfH0ix4D0fDza6fy9gtLaGzHDEFoqINLbphGUpdYv3MS8SYutC/n9/uYz7NuoNaVz5blxcz+3e7m4ys+K2XFZ6VExzuYvXI0diOU4+IvZlTSrA7MWnw1ICmRb+68gUv+9zZ5FZVU7NlJ/rw3mo9XbdlA1ZYN2COjGPDbhwlz2LliwijuPHVKB2YtHaVf90QW/OUGrv7n2+SXVVKas5PMRQfGS/muDZTv2oAjPIph1zaNl0umj+L28wI/XjpFoZ1d8RT1rgy/YtQ17iSn8hlSY2/kjdeWkp3lW+cwbzL3FvH2G9/xs0sm+hXnSHj70U/J3ulfq+G923N55/HPuHDWTN7NXkBevX/xsuvyeT/nc85NneFXnJaY1bMx3f6NF9O1E2r+hxF1nUVZBc6lff/K0zuuw93KcqrDsRl2Lu/zSPPfr/jFSURGhvDSU4toqG+KW1mbS11jOXWN5QCU12TictcTHhJLXFQaAGFhIVxz2ymcf5l2c2hJTl0RO6uzyOlVT1i9QU5dEakRXTo6rU4rzBbHWb3fZnv5W4T97E2mXpCM3QjFxMTAwMSDDQfdI8cztstdRDrUIbAziY+I4JNZV/HK8rW8FBNF3MhxhDrsmCbYDAOPx4PdbuOEfr25/4yT6R4b3dEpSweKj4pg3v1X8fritbweE0Xi4HGE2e37tgwwME0PDruNCcf35u6LT6Zb/JEZL0FfaDe6CsmvernVNdm+MHGTV/kCjsaZzJu7CrfbvztU3W6TuXNWMOO04SQkRPkVK5BK8st4/9lFeNz+3aHvcXt478kvGHPBUD7J/xK3n3f8u00P8/MWcVKXicSFxvgV6xCeQqh9FVpZM+4bN9S8ABHngS24t6iLdXRhUvLFfFf8Nq52tGJ32ByckHQp0Y7EQx7/6ZWT6dErif/73du4XR4yi1eSW7q++fiu/K8B6BY/mFExP8fhMLjvbxcxYaparh/MZbr5+7ZXWFq8AcMwME0TV383eODm1X8FEyYlD+fuwVcdoXsXjj6D4i9mUHzT5d/Shu2UNewgzB5LYthgIh36ItPZXTFhFFdMGAXAlrxCtuYXER8ZzrAe3egWo+JaDnXp9FFcOr1pvGzNKuT77CLiosIZ0qsbXY9QcX2woC+0y+oW4/S0b4nCDzndJWzaPpeK8vbcQPNjFeW1LF+2k9POaH3ddUdatWAz5cXem5C0RUVJNR+8/wUVI6usieesZnX5Rk7ueoIl8QDM+q8wPf5drWiOZZZB/ZcYkT+1JF4gTelyGSFGBEuKX8G17waxnM0VlOXUUZpVC8Ce1aXUVzmJ6xZOzxFNa1ZDjFCmdbmKcUnntxh30knHM3/5/fz3L/OJWRBBVdX5OPZtAWgY4HJ5iIkNZ9pPhnHr3We2Oe+cXQXsWJtBzndlhMY5yNlVQGr/bu08C8Hno7xveXLHHDz7t2E8+Pu9DZyepgmEr4vW8nXRWn553MWc3t26/x6ORYlhg0gM05e9o9WQlK4MSdGVCfHN4J5dGdyzY8dL8Bfa9YswvczSzXmhku++rGXzugaqKjw8+mp3xp3ofbsmExdVzi9xuSa0eDwrdxklpd9TUZWNy1XHqOHXkBjf32s8l8vNsqXBXWh/t2A9bi83te1t2EyxM4sKVxFOs4Gx0aeTFJLqNZbL6WLVgs24R7Qcb9ecjeR/l0np5gKcVQ2c+OjZdB2X5jWe23SzqmyTpYU2DYuBlq9+/Pe5cj5ZVMOKNfWUVXhY8FYqp0xtZW9v0wkNi6ATFNoAE5MvICmsB/Oy/4zb9LDstb2sef/AOvVFTzXtTjJsRncuf3QsNsPOeT3vZUD0+MPGvu2es7jtnrOoq2lgx9Y8sveWkNY7iYGDU4iICmtTni6nm0eufYql89c2N8dxOV0YNrhpwb0ATDp7NPe+cEu79gIPFs/smsf8vCUHimwfPLXzXXLririu77kBzExERI6UoC+0axu3ez320ZwqwiNsjJ8SwcL5vt0MFh6bDbRcaOflr8FmDyEpYQAFRRt9ipexM9+n53WUjC3ebwjMafgeu+EgKSSV/MbdXp93sPId1YR6uby956NtOMIddBvfk+yFvm05t7emnTcsemG6vI+XF9+sJDLSYMZJUbz9vm+z8qZre6e6mD8wZiJ3Df6Az/KeIOKRaC76czV2m6N5zarb4yLCHsPguCn8pPstbY4fERVG+tg+pI/t06785v9vEU/86uUWmwuYHnDuu/ny67kr+PrdFdz+2DWccc1J7fpZHenpXe/ycd43OD1tW8Lk9DiZl/01HtPDDf1avsogIiKdR5AX2marne+en5+KzQbbNjT4XGhjmBiGiWn+uHwaN/oWDAwqq3N8LrRNaL6MHmxM02y1l/ak2POa3q+72OdCuymm0eI20yc/fyGGzaBsW5HPhbZpms1FoP9anzlcuaAXNhusWl/vc6G97xOms+yrvd/MlFuZmXIrjZ468ut2UNyQQ3JYKt0jBhLaQU06nrnnTT58dqHvHbyqsKXNAAAgAElEQVRMeOquV8nbVcB1f+o823Vl1OTwce63ONt5n4DLdPFBzjfM7D6RXpEpFmcnIiJHUgA3MraCgUmj16O2dmRvs7tbLLKbflrbiymX0xOURTaAYRjNM4QtHm/H+zWdeK0523OZ34XbwhvADDCtHS9N8YL0A/ZBqC2CXlHpjE48nV5R6R1WZD/129d4f/bnNNZ7/3xa0ljv5L0nP2P2PW8c/slB4r6NT+H08+Ztl+ni3g1PWZSRiIh0lCAvtCEyZICl8eoqulsar1fvZEvjWa3XoB6Wxovua22hlhZh7edhOLyvqW9fPHU29FfGpkzmP7cYV3u6dgHORjcfzv6CvdusXWYUCMtK1tPgbtuXCW9q3fWsKN1sSSwREekYQV9ox4efZN26DMNGmOcEbBbdYGUzDCZMsraws9q4U4ZZdkOZYbORfvJAy2agDWyMSRhqSaxmYVOxbljbIGyaRbGOXfee+w9cjW3fdvBgzkYX9579N4syCpw1ZTuodbe8q9HeuetZddf7LDxrNp9Oe4yS1VmtxqpzN7CqdGsg0hQRkSMk6AvtuPDxhNqsmfUMs3Wjd4+TSUq2pmNdUnIMI0f3tiRWoKRPGURy9wRLYiV1j2PqKeNJDI23JF5iWBzDYo+zJNZ+RugEsFu0PZy9K0ZYyzfOim+WfriaumprttOsrqxjxafrLIkVKFsqvd/rkPPxFly1jSSP8/13xtYK/xoviYhIxwr6QjsqdDjx4ZMtiGQQHzGFwQOnMnpMb0vmZMdO6Ee/IN/zd0B6L0ZOG+z3RQEDg7GnDGXK2LGkxw+yZFZ7VPwQekd53/6vXUKGYoRa0ZXQwAidAo7jLYh17Fq9eDN1NfUtHst0bmVN/UIW177JgpqXKXHntRqrvqaBlQt8u0m5I5iYFNaXeT0+6dmfM/GJi+jz89E+x8xvKG31hnAREQluQV9oAwxI/hsOm3+z0A5bLP2T/grAXfecTWR02/b+/aGY2HB+89u2N+joCL954mqiYlvZL9oHUfGR3PGfqwCYNeBKIhzhfsWLdkRyc//L/IrhjRH3VzD87DZpi8WI+z9rEjqGbf1uh9djOa5duGgkye77fQRblnuP19GaWn57L4rbs4TLuh15RESkI3SKQhsgPeV9QmyJh39iCxz2RNJTPjjksaeeu57YuPbd2BcXF8FTz17frtd2lP8u+j2xSe1rPRqTFMXji39/yGN/T7+bmJB2xnNE8/f0u9v1Wl/Zkt8DWzuXzBjx2JLetTahY5BpmhRmee/SOTHiTMaHn06fEN/X6RdkFjdtMRmkeoRbe3N0aoTah4uIdGadptAOd/RmeMpc7MaBmdltGxpY/HENq5c2XZpev7KexR/XsHntgTWhNiOS9O7vEe7oeUi8Hj3i+e/T1xAeHtL8WGV1DoXFmykrb1pnWV6xh8LizVRUHbhpKSIilMdnX0v3lLiAvM9ASenbhUc/u5fwyNDmxyrdxRQ0ZlDizAWgzJVPQWMG5a7C5udERIXx2Oe/p/sPdlfpHt6Fvwy/izD7gSsDZduKyFm8i6LV2QCUrM8jZ/EuSjcXND8n3BbGI+m/pavFBcmP2HthS5oDxoEvU6vW1zN3fjWLv6kDYMnyOubOr+a71QctbbBFYUueC/aeP4wobWQYRqt7ZrdnptbjMTGCdT9NYGictTdHD4u1dtclERE5soK8Yc2hwh29mdBrE9uLbqWyYTXvvLSZT+ZWNx9/4T/lAJx0ehR/f2YYMWHjGdTlMa/xUlMTmL/gtzx8/7ts2pjNlu+/I69gbfPxjMzFAHRNHsq0KTeQnt6L3z/Qebu19ejXhXnZT/B/18xmy4qdbNz5FbmNBy7F76pveu/dQvtyctoFDD/hOO557kav8VLCu/D6hH/zj+3Psb1yN6vfWcTeTw50Ztz6wioAUk/qx+l//xmDYwbw60HXBejdtcDeC1u39Zjlv8RsXMsTz2/g5bcrmw8//K9SAC44M5o5z4/ACB2HEf/vI5ffMaBH/27sWGPdDX2pA4L7nojRCcfxecFyalx1fseKcoQzOlHbS4qIdGZHrNCurK5j/eZcVqzdzbZdBeTkRGAY8M+nP2fC6H6MGJJKTLRv634HdXmCyoYVPPnsF1Q8tpR6VyYOezwudznhjl7ER0wmMXIGMWFjfYr3h4cuYMO6TJYtHcLaVXvJzSslJjaSqspaeqQkMnpcHyZNHsjw9F7+nIKgcd8LN7Hh2x2c9Nl41n61lbyMImITo6gsrSGlbxdGnzSEiaeNYNgk3/6Rv3PQ9Wyp3MGUJ8eyoWIb+fXFRDsiqXbV0j08mfT44xmXmM7gmI6ZnTPiH8NoXMGLzy3mxSeWYnoywUgAswzD1gvCJmOEnQyhvo0XgMqaetbszGHZ1r1s2ZNPdnEUNgP+8uYiThjch1EDU4mN9O8+gKPBsEkDLS20h08O7ptTxyUOJTYkypJCOz40ljEJQyzISkREOsoRKbTnfrSGtz5cTWl5NQ0N+9sSN61amffZej5ZvJnE+CguOW8s558+yqeYsWHjiQ0bD/uW4TZ6igm1tX85QvrIXqSPPFBIl5ZWk5jYvjXInUH65IGkTz5QSJcWVZLYpf03nA6JHciQ2APxyhsriQ+1ZhtFS4SOxwgdDzH7+jx6iqGd4+WtL9fx6sLVFFfU0uDc34TFDsCcr9bzwbLNJMVEctWMsVw0bYQl6XdWY04ZxuevfUN1ea3fsaLiIhl9cvAXno8Mn8W1qx7G5WlfC3YAh83OI8NnWZiViIh0hIAW2h7T5PrfvEJGVjEul8fr8xoaXeQVVvDY818yf+Emnvv7FW3ejs6fIrsl/hbZlVV1bNiSw4o1GWzblU9udjgY8K+nPmf8mLbN4B8J/hTZLQmqIrsl7RgvHtPksr+8zq7cYlzu1sdzbkklf3/nK+Yt3cyrd19qWc+lzmbcT0YQmxhtSaGd0CWWsaemW5BVYHUJT+Dinj9hTtbnNHra3g0zxObgkl4zSQrrXPeBiIjIjwWs0Ha63Fx6y3PkF1X5/BqXy833uwr42S+e4c0nr8du7zT3ah5i7kermfP+GorLqmlsbju9bwb/03V8smgTCfFRXHLBOJ9n8KVjOV1uzn/gBXJL2jaet2YWcNbvn+ODh6/Fbuuc49lfj3x0N9eMuAtXox8zvCEO/vZJYHeqsdLlvU8jwh7GK3s+psHT1JK9YnshdXmV1OVVAFC2PgdnVQPhXaOJH9LUlCvUFsLVfc/k/NTpHZa7iIhYJ2D/8l/765fbVGQfLL+wkmt//YrFGQWexzS57lcv8cT/viK3oPygIvtQDY0u8gsrePzZRdzw65cJ4t3KZJ9L/vxam4rsg+WVVnHJn1+zOKPOo2vPJH5+5zmEhoUc/sktCA0L4bJ7ziUpxZoOp0fKT9Omc/fgK3HYHNgxyHx3Pev++DHbn/4WgJ0vrWDdHz8m4801OAw7obYQ7htytYpsEZGjSEBmtF99dwVZOaV+xdiTU8wb763ikvN9v0GtIzldbi79xXMUFFUe/sn7X+P2sH1XARff+AxvPN15Z/CPdi98tpK9Bd47/vkiI6+Elz9fzZUzxliUVedyxb3nERkdxksPv0tDXdMMb6WnhDpPNXVm085B5e4CXGYj4bZI4mxN+0eHhYdyzUMXcv4tMzssd39MTBrOhyf+kyd2ziH6/kiq7v0JDsOOxwSbAS7TTYwjiinJo7h14IUdna6IiFjM8kK7uKSadz9eg7uV/XN94XGbzJm/itOmDyEh3r+uhkfCdXe81KYi+2D5hRVc96uXefGxq61NSvxWVF7NW1+uw+3xvibbF26PyWuL1nDmhMEk+dmls7P66S9Pp0f/bvzfFU/g9phk1mwj17Wr+fgu5wYAujl6MypyOo4QO/e9eisTThvZUSlb5tYBF3HrgIuoczewoyqL7LpC0iK6MjCmJxF27U4jInK0srzQ/m7tbkor/N/aCqCsspZlq3dzxinDLIkXKK/NXU5Wjn8znnuzSnjjvZVccv44i7ISK3yzOYOyKovGc1Ut327K4JwTfO+EeLSZdOZo5pf+j//+6mVi3o2gqrwWR4gd0/RgGDZcTjcx8VFM++l4bv3XlR2druUi7GGkxw8gPV6NaEREjgWWF9pLV+7G7Wr5pqfcXd9QVriNqtJMXM46hk2+kfgu3vdqdrk8fLtqV1AX2sUl1cydv8aCGU8Pcz7YP4MfZVF24q8lGzNwulsez0Ubl1CZuZWawr24G+oYcNYviEk7zmssl9vDV5t2H9OF9n63/ftKbvv3ldRV17Nj7R6yd+aSNqAHA0f1ISKIduMRERHxh+WLgnftLfJ6rCBzJW5nA/FdvRcjP4q3x3u8YPDdmt2UV/q/dRlAeWUdy1bttiSWWGNHTrHXYyXbV+B21hObNsj3eNmtj+ec7FIWL9pC1l4bRYU2crL9u9ch2EVEh5M+5XjOuOZk0qccryJbRESOKpbOaB9u94xRJ90BhkF1eTbFOet9i4mJaRK0+xAvXbnL6x7hubu/obRwO1VlTTP4wyfdcJgZfDdLV+3ijFOHBypdaYPDjefjf/prMAxqi7Io27XO55g/HM8ul4c//2keS7/dARiYponLZQdMrrvmOcBk8uTj+P3952HYgvQ/BBEREfkRS2e0DQMavSwbaX5CGzmd7qAtsgF27/U+45mftQq3q56ENszg7wzyGfxjSUDGs/vQ8fzh+2s4/Sd/5asvt+F0unE6Xbiaf6aB0+nC6XTz5ZdbOfWUv/DRfN8KehEREel4lq/R7pOWRHFJtXXxeiZZFstqh5vxHD319uYZ/CIfZ/BpYcZTOk6/7okUlVs3nvulHBjPTz+5kPffX43Py/tNePyxBeRkl3LjL062LCcREREJDMvXaE8c1RebRZe3bTaDiaP7WRIrEAwDGp2ttFhuz4ynK7hn8I81k4f2wWbRB2IYBicO7QPAE//9nHnvraaxoW0tuhsbXbz7zkqeenKhJTmJiIhI4FheaI8c1pPkxGhLYiUnRjEmvZclsQKlT1qypfF6pyVaGk/8M2ZQGl3irRnPXeKiGXdcT3bvKuTDD9fgbO1LWiucLjfz3lvF3j3ely2JiIhIx7O80B7Uvxtj0nv7PStrAONH9aV/7y6W5BUoE0b3sWwG3zAMJo3tb0ksscbgnt0Yf3xP/P6EDZg8tDcD07rw27vexNnYytpvH7icbu668w1/sxIREZEACkjP73tvO42oCP+6nUVHh/O7TtB2eeTwXpbO4I8eHtwz+MeiB6+c6fd4jo0M5w+Xz+Dbb76nob7Rkrxqa+pZ/t2uwz9RREREOkRACm2A//3zCuJi2rcnblxMBP/7xxUWZxQYg/p3Y8yI3pbEmjC6L/37BPcM/rHq9XsuIyEqol2vjY+O4PW7LwNg1ard1Na2XGhn5yxj/caX+PrbP7Hoq/soLWu9iK6rc7Liu53tyklEREQCL2CFdo/u8cx+5DLCw0KaH6suz6Y4dwPlRU3FQWVJBsW5G6gq3dv8nIjwUJ7522WkdIsLVGqWu+eXpxMd5V+jjdjocH476zSLMhKrpXWJ48Xf/ZyIg8ZzbVEW5bvXU5WzA4DqvN2U715PTcGB8RwZHsIrv7uEHsmxAGzZlO31Z+Tmr8blqicpwff23Js2e48nIiIiHcvy7f0OlpqSwOdv3s79f/+Ajdty+X7NtxRmrmo+nrntcwCSewxn8sybGTkkjQfuPDuQKQXMc/+6gpvuepWKyro2vzYuNoJnOskM/rGsZ5d4vn10Fr99dj7rd+WyavE3lG5f2Xw8f/UCAOL7pTP+Z7MYPSCVv1x3RvNx04SCwkqv8ceNuRUDg6qqHAqKNvqUU0FBhbaDFBERCVJeC+2qqjo2bMxhxerdfP99Pjm5oQD8+78LGD+2HyOGpxHtY7vkh+46h3Wbs1g6dTCrNuwhN7+CmKgIqmrq6NE9jrHpfThxfH/SB6dZ8646QI/u8Tz9t8u45vaXqG9wAk0z+PW1ZdTXlgBQUZqBy1lPWEQcMQlNa7EjwkOZ/ffLO9UM/pFQ3lDHyqJsvsrbzaaSPLJ6OrBh4Fr5GSf16Me4Lj2JC+2Ydt1/u+EsVu/I4etxx7NiWxbZxeXERYVTUVNPWnI8Ewb3Yurw/owe2OOQ1xkGmG7vm68b7bjl0vSYKrJFRESCVIuF9rvvr+add1dRUlZ90D6/TatMPpi/ls8WbCQhMYqfXziec88e7dMPGjm0JyOH9gSmAVBaXktifKTfbyCYpKYksODtO7j/kQ/YuC2H79d+S0HW6ubjmdu/ACA5ZThTZt5M+pA0Hrirc87gB9KL21fxwtaVFNRX0+DeN/7Cmsbfa9+v4Z1dG+kaHsUNQ8ZzxXFjOiTHMQNTGTMwtfnvxZW1JMcefjynpiay/fs8y/JI1XaQIiIiQeuQQts0TW689UX27CnG5fberq6h0UV+fgWPP72Ijz/byNP/varNs2pHW5F9sId+dw7rNmWxdNpgVq3bS15+ObEx4VRW1ZPSPZ5xI/sweXx/0od03hn8QPCYJmd/8gI7Kopxerxvf9fgdpJVU87Dqxfy9q4NfHD6Nf5vv+cnX4psgKHpaZYW2ulBvs+8iIjIsay50Ha53Fx+7bMUFFT4/GKXy833O/K59MqnefXFG7HbA3ZvZaczclhPRg7r2fz30vJqEi1qfHI0cnrcTP9gNjk1vo8/p8fNptJ8psx7kq/O/QV2I/jH39ix/Vjw6Uaqq+v9jhUVFcbosX0tyEpEREQCobkyueHmF9tUZB8sv7CCG2950aqcjkoqslt3xsfPt6nIPlhOTQVnfvy8xRkFxoSJ/YmLbd82gT+UkBDF+PH9LIklIiIi1rMBvP7WMrKyS/0KtDerhLfmLLckKTm2PLV5GRmVJX7F2FlRzDNbOsf4+8ejl+Fw2P2K4bDb+Nd/LrcoIxEREQkEW0lJFe+9vxa3x/uabF+43R7eeW81ZWU1FqUmx4LC2ipe3r4at+l9Nw5fuE2T57evoLg++Mdf166xXHb5CYSEtm93zdBQO1dePYWkJF0lERERCWa25St3U15hTXFSXl7Ddyt3WxJLjg2L83ZR3FBrSayS+lq+zO0cLcmvvHoK1147lbDwAw1wqqpyKCzaRGl503uoqNhDYdEmKiuzmp8TFurg+htP5rIrJh/xnEVERKRtHEuX78Llank2OzvzW0qLt1NZkYXLWceIMdeTkOS9a53L7WHZdzs5/SfDA5WvHGUWZe/C5WWHkcrPllK3/nsadmXhqamj293XEjGslfHn8fBF9k4u7JceqHQt9bOfTyQ1LZGHH5yH2+MmO+c78grWNB/P2LsIgC5dhjJy2GXYHXb+8OAFTJrke+dIERER6TiOjIwirwfzc1Zjt4eQmDSQwvwNPgXctdt7PJEf2lbufbxUf70aIzSEiOEDqfnOt/G3razAqtSOiMknHsenn/+W/zz6GTHREVRXX4jdbsc0TQzDwO12Ex0TwUknDeaXd8zs6HRFRESkDRxmK2tjx0y8DcMwqKrM9rnQNvGoJbT4xKRpvHjT40+zwDBoyMjxudA29/3pbMPv9jtmcvsdM6mtbWTH93lkZZbQs1cSA49LITIytKPTExERkXZwOJ3eG4MY7aiWnU6PimzxiQE0ttIYqT0DqdHj7nRF9sEiI0MZMbI3I0b27uhURERExE+23r2SLQ3Yp3eSpfHk6DYw3trxMjDO2vEsIiIi0l62CeP6YVVDPcNmMHFcf2uCyTFhWkp/bBZdArEZBtN7aPyJiIhIcLCNTO9JclKMJcGSE6MZObKXJbHk2DChWy+6RVqzH3TXiGgmdtOSCxEREQkOtoEDuzN6VB+/17UawLhxfenft6sVeckxYnhidyZ383/8AUzr0Y/BCRp/IiIiEhxsAHf/5gwio8P8ChQdE85dd5xuSVJybPn7pLOICfFv/MWFhfPXCWdYlJGIiIiI/5pXZz/z+NXExUa2K0hsbATPPH61VTnJMeiDM64lIax94y8hPIIPT7vW4oxERERE/NNcaPdIieeJ/1xOxMEtoSuzKSrYSFnpvpbQ5RkUFWyksiKz+TkREaE8/diVdO8edwTTlqNN7+h43jvtSiIdB8ZfQ0YONSs2Ub+5afw1bN9DzYpNNOw80JI80hHK+zOvpme0xp+IiIgEF8NsoWPNA3+ax+YtOXzz1Qvk567+0Yu6dBvGtOm/YHh6T+6/55wjkqgc6sEHH8Q0TR544IGOTsVyt3zzHqsLs9ny6ItUL1nzo+OR44Yx/O6bGNe1J/898dwOyFBERETk8BwtPfjA789j/YYslk0fwuq1e8jNqyA2JozKqgZ6pMQxZlRfTpg0gPRhaUc6XzkGPHni+awozOSLPkP5Nn8PmdVlxIWGU9FYT6/oBE7s3pcZaQMY27VnR6cqIiIi4lWLhTbAiPSejEg/UMg8/PCfuf/++2itZbuIVcZ37cX4rge2iiyuryY53JptAEVERESOBJ9b1Xg8Tv74xz8GMhcRr1Rki4iISGdjUU9IERERERE5mAptEREREZEAUKEtIiIiIhIAKrRFRERERAJAhbaIiIiISACo0BYRERERCQAV2iIiIiIiAaBCW0REREQkAFRoi4iIiIgEgAptEREREZEAUKEtIiIiIhIAKrRFRERERAJAhbaIiIiISACo0BYRERERCQAV2iIiIiIiAaBCW0REREQkAFRoi4iIiIgEgAptEREREZEAUKEtIiIiIhIAjo5OQHxTXlfPytwcluzZw8b8ArIjozAAz8KFTO3Tl3GpqcSFh3V0miIiIiKyjwrtTuDlNev439rVFFfXUO9yNT1oa7oY8dq69czdtJnkyEhuHDeOy0aO6MBMRURERGQ/FdpBzGOanPvqa3xfUozL7fH6vHqXi+zKSh5a/CVvb9rIvMsvxziCeYqIiIjIj2mNdpByut2c9Oz/2FJY2GqRfTCXx82mgkKmPfscbo9vrxERERGRwFChHaTOfuVVcqoq2/XanMpKzn7lVYszEhEREZG2UKEdhJ5esZLdZaV+xdhZUsqzq1ZZlJGIiIiItJUK7SBTWF3Ny+vW4vaYfsVxmx6eX72G4tpaizITERERkbZQoR1kvszIoKTGmuK4rLaOL3fvtiSWiIiIiLSNdh0JMot3Z+DyciNjxTdLqNu2jfq9e/HU1ZFy001EDDzOayynx83C3RlcOGxYoNIVERERES80ox1kthUVeT1WtWIlnvp6IgcNakO8QivSEhEREZE20ox2EDH3/fEm7Ve/AsOgISuL6nXrfItpNsXUvtoiIiIiR5ZmtIOIATS2tme20fZy2el2q8gWERER6QAqtIPMgKQEa+MlJ1kaT0RERER8o0I7yEzr0xebRVPQBgbT+/a1JpiIiIiItIkK7SAzoWca3aJjLInVLSaaCT17WhJLRERERNpGhXaQGdatGyf06mXJuuqpffowuEsXCyKJiIiISFup0A5CfzttJtFhYX7FiAsP5y8/mWFRRiIiIiLSViq0g9T7V1xOQkR4u16bEBHO+5dfbnFGIiIiItIWhmmaLW7dXFVVx4aN2axcuZvvd+STnZOLgcn0k8Ywfnx/0oenER3dvkJQfLO3vJyzXn6FWqcTgIasLFxlZThLSij9aD4JM35CaEoKjrg4wnr3BiAyNJSPr7iCnvFxHZm6iIiIyDGvxUL7vXmrmPPuKspKamhodP7oRaGhDpISovjZzyZw7jmjj0iix7JZH37I6tw8Nj/3HFWrVv7oeFR6OsNvvpVxaak8dtaZHZChiIiIiPzQIYW2aZrcdMuL7NlTjMvlPuyLHQ4b/fp25aknrm5PLxVpgxVZ2SzcvZulmZnsLS8nPjyC8vo6esfHM7l3L07t14+xaWkdnaaIiIiI7NNcaLtcbq68ajb5hZVtDtKtayyvvvwL7HYt+T5SimtrSY6M7Og0RERERMSL5sr4xl+80K4iG6CgsJKbbn7BsqTk8FRki4iIiAQ3G8Abby4jM7vUr0B795bw1pzlliQlIiIiItLZ2UpKqnjv/TV43B6/Ark9Hua+u5KyshqLUhMRERER6bxsy1fuptyi4risrI7lK3ZZEktEREREpDNzfLdsJy4vs9nZWUspKd5OZWUWLmcdI0dfR0LiAK/B3G43S5ft5LSZ6YHKV0RERESkU7DtzijyejAvdxVuVwOJiQN9Drgro9CKvEREREREOjVHi20h9xk7/jYMw6CqMpvCgg2+RTTBNNG+2iIiIiJyTLM5nd4b0xjtqJZdTreKbBERERE55tl69UqyNGDv3smWxhMRERER6YxsE8b1w2azZgraZoMJ4/tbEktEREREpDOzjRzRi6TkGEuCJSXGMHJkL0tiiYiIiIh0ZraBA7szelRv/yMZMG5cX/r36+p/LBERERGRTs4G8Ls7zyQqOsyvQDHR4dz56zMsSUpEREREpLOz7f8/s5+8hrjYiHYFiYuNZPaT11iWlIiIiIhIZ9dcaPdIiefx/15JRHhI88GqymyKCjdRVrYbgPLyPRQVbqKyIrP5ORERoTz5+JV07x53BNMWEREREQluhmmaP+pZ88DD89i8KZtvlrxAft6aH72oS9dhTDvpJtLTe/KH+849IomKiIiIiHQmLRbaAOs3ZLHsu52sWbOH3LxyYmLDqaqsp0dKPGNG92HSpIGkD0870vmKiIiIiHQKxqpVq0zTNBk7dmyrTywtrSYxMfoIpdV2q1evxpf3ISIiIiJyJDjmz5/vU4EazEU2gK/vQ0RERETkSLAd/ikiIiIiItJWKrRFRERERAJAhbaIiIiISAA4cnNzyc3NZfbs2R2di19WrVpFjx49OjoNEREREREAHNXV1eTl5bF27dqOzsUv+fn5xMTEdHQaIiIiIiIAOI477jgGDhzIAw880NG5+OXBBx/Ey5bgIiIiIiJHnNZoi4iIiIgEgAptEREREZEAUKEtIiIiIhIAjgrkFywAAAPISURBVLFjxx4Va5uPlvchIiIiIkcHw1R1KiIiIiJiOS0dEREREREJgOZCe8uWLdxzzz2MGjWK2NhYUlJSOO2001i6dKlPgbZt24ZhGC3+efTRRwP2BkREREREgpFj//956KGHmDdvHjNmzOCMM86grKyMN998kxNPPJE33niDiy++2KeA5513HmPGjDnksRNOOMHarEVEREREglzzGu2PP/6Y8ePHk5yc3Hxw7969jBgxgoSEBDIyMloNtG3bNgYPHsyzzz7L9ddfH9isRURERESCXPPSkTPOOOOQIhugd+/eTJ8+nT179lBXV+dTQNM0ycnJoaioyNpMRUREREQ6kcPeDFlUVER8fDwRERE+BbzttttIS0uja9eu9O3bl+eff97vJEVEREREOhtHaweXLFnC0qVLue222w4byGazceKJJ3LmmWeSmprK3r17efrpp7nuuuuoqqri9ttvtyxpEREREZFg53Uf7by8PMaNG0doaChr164lLi6uzcHLysoYNmwYVVVV5OXlERUV5XfCIiIiIiKdQYtLR8rKypg5cyYNDQ18/PHH7SqyARISErj55pupqqpi5cqVfiUqIiIiItKZ/GjpSFVVFaeddhqZmZksWrSI448/3q8f0KtXLwBKS0v9iiMiIiIi0pkcUmjX1tZy5plnsmnTJhYsWMDo0aP9/gHbtm0DoFu3bn7HEhERERHpLJrXaDc0NHDWWWexZMkSPvzwQ2bMmOH1RQUFBWRkZHDccceRmJgIwPbt2xk4cCA224HVKNu3b2f8+PGEhYWRlZVFWFhYgN+OiIiIiEhwaJ7RnjVrFl988QVTp05l+fLlLF++/JAn3nbbbc1rtefMmcNtt93GnDlzuPDCCwG47777WLduHVOnTiUlJYXMzEzmzp1LQ0MDzz77rIpsERERETmmNBfa+zs/fv3113z99dc/euLll1/e6k2RF1xwAeXl5XzyySeUlJQQExPD9OnTufvuu5kyZUoAUhcRERERCV5et/cTEREREZH2O2xnSBERERERaTsV2iIiIiIiAaBCW0REREQkAFRoi4iIiIgEgAptEREREZEAUKEtIiIiIhIAKrRFRERERAJAhbaIiIiISACo0BYRERERCQAV2iIiIiIiAaBCW0REREQkAFRoi4iIiIgEgAptEREREZEAUKEtIiIiIhIAKrRFRERERAJAhbaIiIiISACo0BYRERERCQAV2iIiIiIiAaBCW0REREQkAFRoi4iIiIgEgAptEREREZEAUKEtIiIiIhIAKrRFRERERALg/wEGMn79P69KXQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtoAAAGJCAYAAAC0HJT3AAAACXBIWXMAAA3XAAAN1wFCKJt4AAAgAElEQVR4nOzdd3wUZf4H8M9sTe8khBBaCBCqVAtSRMTe9aynxymWs54N77xi+XnneZ7lznLnnQVFUUQFFRSQ3gklpAdSSE82Pdm+OzO/PwKhZcPuZjaTwOf9evEHO7vf+c6T2d3vPvPM8wiyLMsgIiIi6iGv5qzA7oZifHDeA4g0BKudDlHAaNROgIiIiM4eu+uLsKY6G6WWOkz64+1qp0MUUCy0iYiIqMdMi0vBvMTxGBLSDxn/t0TtdIgCSuDQESIiIuppU6ZOwd49e8EyhM5k7NEmIiKiHidAQHp6utppEAUUC20iIiIiogBgoU1EREREFAAstImIiIiIAoCFNhERERFRALDQJiIiIiIKABbaREREREQBwEKbiIiIiCgAWGgTEREREQUAC20iIiIiogBgoU1EREREFAAstImIiIiIAoCFNhERERFRALDQJiIiIiIKABbaREREREQBwEKbiIiIiCgAWGgTEREREQUAC20iIiIiogBgoU1EREREFAAstImIiIiIAoCFNhERERFRALDQJiIiIiIKABbaREREREQBwEKbiIiIiCgAWGgTEREREQUAC20iIiIiogBgoU1EREREFAAstImIiIiIAoCFNhERERFRALDQJiIiIiIKABbaREREREQBwEKbiIiIiCgAWGgTEREREQUAC20iIiIiogBgoU1EREREFAAstImIiIiIAoCFNhERERFRALDQJiIiop6nZQlCZz6e5URERNSj/rh7NZrumIs2t1PtVIgCioU2ERER9ZhtNSVYVZYPMToMLx1Yr3Y6RAElyLIsq50EERH571//+hcaGxvVToPIa7vjtKgK1uKKSicMktrZEPnmzjvvREpKilfPZaFNRNSHffbZZ3jzzTdx5ZVXqp0KkU8kAdCwAqE+prKyEunp6cjIyPDq+boA50NERAE2cuRIPP/882qnQUR0xtu1axeysrK8fj7HaBMRERERBQALbSIiIiKiAGChTUREREQUACy0iYiIiIgCgIU2EREREVEAsNAmIiIiIgoAFtpERERERAHAQpuIiIiIKABYaBMRERERBQALbSIiIiKiAGChTUREREQUACy0iYiIiIgCgIU2EREREVEAsNAmIiIiIgoAFtpERERERAHAQpuIiIiIKABYaBMR9WmS2gkQEZEHOrUTICIiz0z2IjQ4ytHgLEetrRAu2Y4GRwXckh1u2QmMMWLcBAveyL8eeo0R4bo4GLQhSDCmIC5oMGIMyRgYMkbtwyAiOiux0CYi6mUKzbuQ3bwWh9v2wqgNg0O2wiXaIXfWe21wQwDgkuxwSXZY3S0AgHJLFvRCEHQaPWxiG5JCRmNc5FyMjJgJoza0Zw+IiOgsxUKbiEhlTsmGgtatONC0CtX2AmighSi727e57X7Hdcl2uMT211dac1Fly8fqmrcRpU/AmMi5GB05B1GG/oocAxERnYqFNhGRSursJdhavxhFbbsgQOgorkW4A7I/WW7vEW9yVmNr3WLsaliKOONgTIu5ESMjZwZkn0REZzMW2kREPczibsTKyr+j0pYPl+R/j3X3yHBJDlTbDmJV9RvYaPoQlw94HINCz1EpHyKiMw8LbSKiHiJDxveVr+Bg6zZIsqh2Oh1ckh0tkh1flf0JscaBuHrgs4g1DFI7LSKiPo+FNhFRD9hi+gQ76peonUaXRNkFk70Ei4oewdCwybh0wGMI0UaqnRYRUZ/FQpuIKIBsYgu+KP09mpwVaqfiNbfsxKG2nagtKsSc/vdjRMR0tVMiIuqTuGANEVGAFLel492Dv0SdvRhuyal2Oj6S0equw6rq17Gh9n21kyEi6pPYo01EFACbTR9jb+NyiLJL7VS6xSlasbfxe1Ra83Dn0DfUToeIqE9hjzYRkcKWlf0RuxuWwSU51E5FEZLsRpUtH28X3Aou+U5E5D0W2kRECvpv4T0oMe/rVbOKKMUqtuDV3KvQ4ChXOxUioj6BhTYRkUI+LHoATc6qzpdKP2PI+PzwU2h11aqdCBFRr8dCm4hIAe8Xzke9o1TtNHqETWzFfwvvhU1sUzsVIqJejYU2EVE3LS19Dq0uk9pp9ChRduPfh+5SOw0iol6NhTYRUTdsqH0fZdYDkOQzebhI51ySHR8U3ad2GkREvRYLbSIiPxW27cD+xlVn5I2P3mp0VuKHylfVToOIqFdioU1E5AeLuxErKv4Kt3xmTOHnL1mWcKhtBzKaVqmdChFRr8NCm4jID0sOL+zzi9EoxSXZsaP+c5jsRWqnQkTUq7DQJiLy0fra99HiqlE7jV6lzdWAFRWvqJ0GEVFAybJvzxdk2deXEBGdvZySDf8suPmsHpftiVYw4Iqk3yItYrbaqRARKUKSZGzYnIedu4qRf6garS0WtLS2YeyYoZg8cTDOGT8IEycM9vh6FtpERD74uvx5FLXtUjuNXsuoDcVjI5epnQYRUbdt3laAv7/xE5xONxxOd6fPiYkKxaBBsXjz1ds63c5Cm4jIS83OKnxQ9ADHZndBgIAZ8XfjvLhb1E6FiMhvz/7xK+zNKIXL5eXVSwH46/M34fxzU054mGO0iYi89EPlayyyT0OGjG11i9VOg4jIb489vQS79pZ4X2QDgAy89MoK7NpTcsLDLLSJiLxQZctFneOw2mn0CTJkbKz9QO00iIh89sprK5GdWwFZ8n3Ah9XmwnN/XoamZmvHYyy0iYi8sMW0GC7JpnYafYIki8hr3QS3ZFc7FSIir+UXVGP95nyIov8r/bpFCY8++VnH/1loExGdRpurDpW2PLXT6FNs7hbktmxUOw0iIq/945+r4fRw06Mv6hva8P2qAwAAXbejERGd4fJbN0GUnGqn0ae4ZScONP+E8dGXqZ0KEdFp1ZpaUVbe0Om2xvoC1FTuRWtzGRz2ZgwaNgdDU+d5jGWzu7B2fTauvmICe7SJiE4ns3kNZPh/KfFsVW07CIATWxFR75dXUOXx5seGunxYzbWIiUuFoNF6Fa+ouA4Ae7SJiLrklGxoclapnUafJADIa92MtIhZaqdCRNSlA5nlkDzMeJ066hpAEAAApuoDXsVzOt1oabWxR5uIqCv5rVt8X3OXALTPPpLVvFrtNIiITqux2eJ545Ei2xcRkcEoLjax0CYi6kp288+QOGzEb+WWbLVTICI6rdjoMEXjtbZYkZKSwEKbiKgrlbYctVPo07SCDuXWLLXTICLq0oRxyRA0vvdce2Iw6hARHsRCm4jIk1JLBkK1UWqn0ae5JDtKzd6NaSQiUkvaqETodd7d6OiNlKEJADiPNhGRR/WOUthFs9pp9GkyZJTbWGgTUe8W3y8Cg5PjFIkVHGzAvLljAbDQJiLyqM5eArfM+bO7q8lRqXYKRESn9fTjl8Fg6H6vdr+4MFx12XgALLSJiDwyOYrVTuGMYHY3qZ0CEdFpjUhNwMWzx0Cr9X+stlarwdv/uLPj/yy0iYg84bR+igjX9UOTk73aRNT7LXzicowfkwzNcVP62W1NqKvNQl1tFmRZgs1iQl1tFhrq8k54bXCwAX976WZERAR3PMYFa4iIPKh3lKm6f5ddxOp/HkLZgWZU5rbC7ZTw18xLoTmpt2XhmJ86fb2gEfDy/nnQ6pS7k94fTtkCh2hVNQciIm+98ept+P3zX2P3nhK43SKaG4tRkP1Vx/a62mzU1WZDrw/BBXP+BKD98/b5567FlElDTojFQpuIyAO37FJ1/3azG3uXVyJ5XCQGTYhCcXpjp8+7841zTnls+Uu5SEgNV73IbifAKdnUToKIyGt/ef5GbNt5CH/7x4/QDz0X/ZMmn/okAYiODMHQIf3w+iu3dhqHhTYRUSfcshMaaCBBVC2HsFgj/rTtYggCsPmjEo+F9rh5/U/4v6nYDHOjE5ddmdgTaZ6WDMDFQpuI+pjp56Vi+ZfDsWVbAXbsKkLBoRpYbU44XSIGJcVg8sQhmDA+GRPGJXuMwUKbiKgTTsmKEF0UzO4G1XLwY9VfAEDGympo9RqMnZegbEJ+EmQBItxqp0FE5DONRsCsGaMwa8YoAIAkyyeM3z7t6wOVGBFRX6YTDLCKLWqn4ZeMVdUYOSMOweF6tVMBAMiC2N6tTUTUx/lSZAMstImIOqXXBEOW+14vbHlWCxrKrJh45QC1UzmOAIMm+PRPIyI6w7DQJiLqhAABGqHvja7LWFkFQ4gWabP7qZ1KB0EWYNCy0Caisw8LbSIiDwyaULVT8IksyTjwUw3GXJwAfVD3VzdTjMAebSI6O7HQJiLywNjHemGLdjeirc6Bib1ktpGj3JITYbpYtdMgIupxLLSJiDyINQ5WOwWfZKyqRmi0AakXxKmdygm0ghZB2nC10yAi6nF9bwAiEVEPSTCmoNicDlmWVMuhYEsdnDYRNYfMAIDstbUQNMCAtAjEJod0PE90ScheU4sJVyaesnKk2iL18WqnQESkChbaREQexAYNgkEIgkNWb/nwb1/MRVPVscVePnsyAwBw7XOjccHtgzoeL9hSD1ubq9cNGwGAOOMQtVMgIlKFIMsyZzclIupEm8uED4sehENSr9Du63SCAfMGPIyxkZeonQoRUY/jGG0iIg/C9fEwavvWzCO9jQwZKWHnqp0GEZEqWGgTEXVhRPiFaqfQp0Xo+yFYG6F2GkREqmChTUTUhbFRc6EVesdS5n3RyAj+UCGisxcLbSKiLsQHDWOh7SetoMe4qHlqp0FEpBoW2kREp5ESzjHG/gjShiHakKR2GkREqmGhTUR0GhOiLoNBE6R2Gn2MgFERM9ROgohIVSy0iYhOY1DoeK5s6KMQXQRGR16sdhpERKpioU1E5IVxUZdCC47V9la4rh8Sg0eonQYRkapYaBMReWF6vzsgCL1rafPeSqcx4vIBj6udBhGR6lhoExF5aVbCr6GBVu00er3EoFTEB6WonQYRkepYaBMReWlyzLUwakPUTqNX0wg6XDVwodppEBH1Ciy0iYh8MC/xEWg1BrXT6LVGhF+AcF2c2mkQEfUKLLSJiHwwMmIGovUJaqfRKwnQ4Kqkp9VOg4io12ChTUTko8sTn0CILlrtNHoVvcaI6f3ugEbQqZ0KEVGvwUKbiMhHiSGjMCHqUug1RrVT6TWiDUm4oN/taqdBRNSrsNAmIvLDjPi7MSA4DQCn/NNrgvCrYe+onQYRUa/DQpuIyE+3DP4rQnWRaqehKg20WDD8f2qnQUTUK7HQJiLqht+M+OysXchGpzHgmoHPIkwXq3YqRES9EgttIqJuEKDBr4a9A51wdo3X1glGTI29ESMiLlQ7FSKiXouFNhFRN/UzDsVVA5+CUXN2LGajEXRIi5yJGf3uUjsVIqJeTZBlWVY7CSKiM0GpNQPflr0Ip2RTO5WA0WkMGBNxMS4d8KjaqRAR9XostImIFFRuycKXZc9CkiW1U1GcVjBgaux1mBk/X+1UiIj6BBbaREQKc4hW/LvwTjjEM6dnWyPocFXSUxgVMUvtVIiI+gwW2kREAfJJ8aOoc5RAlN1qp9ItOo0R96a8jwh9vNqpEBH1KSy0iYgCaE31v3CwdSusYqvaqfhMJxgRbUjE/JT31E6FiKhPYqFNRBRg+a2b8VPVm3DLTkiyqHY6XtEIWpwbezNmxN+tdipERH0WC20ioh6yxfQxdtR/qXYaXdIKOgwJm4Srk56FQROsdjpERH0aC20ioh72fcXfcLBtG0TZpXYqHXQaA+IMg3Bl0jOINSarnQ4R0RmBhTYRkQqs7mb8WPUG6hwlaHM1QIY60wGGaCNh1Ibj8gGPY2DIGFVyICI6U7HQJiJSUb3jMHJa1iG3ZSOs7pYe6eXWCnpoBB2Gh52LcdHzMCR0YsD3SUR0NmKhTUTUS7S6TMhqXoP81s1oclZBI2jhlpzdjitAC62ghVEbipTwaZgQfQUSg0YokDEREXWlTxTaFotF7RSIiHqUS7KjxLYbFfZsVDvy0OZugAABRm0IXJIdsixDggQZIgRooYEGgiBAgBYSXHDLToRqYhCjT0Zy8HgMCzkPETrOg01EZ5+goCBotVpV9q1TZa8+WLt2La655hrVGuhMJIrt04udzW3KNjiz26C3H5u/+YXG6BGdFITgCD0MIVoYQ7XtxbUGcFjEI//caCizornGBp0uMB/xsizD7XZDr9czHuMxHuP1+njz58/H22+/rUg8fxLo1Z5//nn5z3/+s9ppnFHYpmwDWT6z26C3H1ug81u8eLF8xx13BCz+zp075XPPPZfxGI/xGO+si+crjTrlPRERERHRmY2FNhERERFRALDQJiIiIiIKABbaREREREQBwEKbiIiIiCgAWGgTEREREQUAC20iIiIiogBgoU1EREREFAAstImIiIiIAoCFNhERERFRALDQJiIiIiIKABbaREREREQBwEKbiIiIiCgAWGgTEREREQUAC20iIiIiogBgoU1EREREFAAstImIiIiIAkCndgInc4huHKivgclqRq3VjAMROuhk4IeSfCSEhmNCbH8YtFq10+xTnE438gprUN9oRkOjGYdrdNBogHVb89EvJhxpqf2h15/Zbepwu5FVWQtTmxm1bWbkyEZoIWNVdgESwsMxLikBBt2Z3QbHc8suuFLroSuMUTsVxblcIorrDRgc41A7lVMcbm5CVl0tsoINCBVFHG5uwpCoaEViF5mrUW6tRYOjDRlhNTCPC8Xamr1ICIrC+KgURfbR3GRBQUENNm8qhV47BAcLajBiZP9uxTuYX40tGw9DLwzGoYJqpI5MVCRXJTRYrciqrsW60ko4hqQgu6YWY/sn+B/PYUFWYzXWtR2GY8JgZDdVY2x07zlepTU6LchtqcQGWyGkyQOR11KFtMgBaqfVobm+DYcyy7B1TQ6MlngcyixH6vhktdPq0GC1Iqu2FmsrK2FLSUF2bS3GJvh//imtyWlGfmsFNjoLIEwdgILWSoyMSPI7XoPDguymKvzcdhiOcwYhp7kaY6L6/vujVxTarU4Hvi3MxrfFuciqr0WoXg9JluGQRLii9NDIMnK3/QSNoIHF7cD42ETckDIa1w8fgzC9Ue30eyWzxYHVG3OwZlMuCopqERykhywDDqcbbrcBgIy/v7sGggBYbU6MGp6Iyy4ajXmzRiM05Mxo01abA99l5uG7zDzkVJsQatBDkgGnW4QTRmgg49D366ARAIvTibEDEnDt+DRcMyENYcYzow06I0PGfwqfh2tMLawx9ZAhQ4CgdlqKkGQZj7y4FIX1RlQ2iJBkGRpB3WNzSxIeX7MSa0qKIECALMtwhRggyDIuXfIJABmXDBuOf8670udcG51t+LJ0I9bU7oFO0MDmdsElu+AMdwOTQ/Hmwa8Rqg1Ci8uCabFp+MWgmRgXOcznY/jf+xvww4p9sDvcEAC43SKMunF4/OFFcDpFjB03EA8+dAlGpnn3pfi/dzdg5Yq9sNtdEIT2eMHasXjs/kVwudwYOz4ZDz56CUakqVOU/X3DFizZnwW7yw1BAJyiCIyfgls+WQqn6MakpCQ8d8lMjE/07kfG37M2YEnRXthF17F4c8bilvWL4JTcmBSXjOcmXILxMb2nCO2Of+avxtdl6ceOV5KAK0Zi/o7/wCmJOCd6EJ5MuxJjovwvyrrjw5dXYNXibXDYjpx/ThEhGISnrnsdTocbY6YOw33P34gR5wxSJb+/bdmCz7MyYXe7AQBuUQSmTMJNS7+A0y1iStIA/GHmbIzv7/+P3O54t/BHrKjY2f73hQC3JEJ79XDcn/4OXJKI8VFD8OiIq5EWOdCreK9lr8cXJXs64rkkN3DJGNy68UM4JRGT4pLx+3GXYlx033x/qF5o/3XPRqwoykWL0wmb2wmgvfA+niQIMLucHf/fX1eF/KY6vJ25EzekjMXCKTN7NOfe7r2PN2Lt5jy0WRywO1wA2gvvEwmwWI89lnuwCsWlJnzy1S5cetFoPPDLvt2mf1+7GSszC9DisMPmbP+warWfdF5BgNlx7LEDFTU4aGrAe1vScd2ENDw598IezdlfFovF59foYIAWOqSkjILVYvVrv6GhoX69zhN/jqMzBoMWWo0WY9NGwGb179g648/xfpZ9AH/ctA6yLJ+yTRYEOMX2c3PloQKsOlSAv1x0CW4dM96r2G8WfI3V1elwSSJESKc+QSPA6nbA6m4/x7fWZSG7pQSDQxLw9KhfICkk7rT7KCutxxOPLobF7IDLLZ60VYDT2f5YdlYFnnz8U8yYlYaFv7/ac7zD9Xjy4U9gNjvgdp0az+Vqb4/szHI88dCnmHFRGhb+8ZrT5qmUovpG3PH5UrTaHHBJJ7WpgI6/177KStz52TJcNioVr151qed4rfW4Y9MnaHU64JJOOl6NAKd0JF59Oe7c+CkuS07Dq1N77niVVmI2YcGuD9HmtMMltx8bjp76ggDnkTbIaCrDgl3/wyX9x+KFCTf2WH5lhTVYeONbsLTa4HJ2cj472nPOSS/GwpvexIVXTcSTb/6yx/IramzArUu/QpvD3v7j5OT8jrwH91RW4dZlX+GK1BF47VLP55/SDltq8fCe92F22eCST2o/Qeg4xzObD+Ohvf/GRfHj8cexv/AYr7i1HndsWYQ2l/3U98dx58u++nLcuXkRLk9KwytTrlP0mHqCaoX2iuI8PLllJbSCBo4jH16+sLldsLld+DB3D/6Xk443Zl2Jq4aMCkCmfcfPm/Pwf2+tglargdPpe5vaHW7YHW1Y9v1eLF2xB3/47RWYM71vtenKrHws/HY1tBoNHG4/ziunCzanC5/s3I+PduzF36+/DJePHRmATJWxdu1aXHPNNdD6OJxK0AgYfdVA5Hz/HZ6QX/V5v6IoYsWKFZg3b57Pr+2Mv8fRKUFASOwwpH9zCP97RZnbUPw53pe3bcSnWQc6LbI7IwN4fssGHG5txrPne/6ha3I047f73oXJ0Qz3yV9Op9HsNKPZacZTGf/B/KGXYl7iFI/PzTpQioVPL4XzyI/107Hb3Vi3NhsFeZX4YNH9EDQn9s5nZZTi2Se+8Dqew+HC+jVZ7fEWP3BKPKXtKa3A/K++hd3l3eeGzeXC8uw8ZFbVYNWCu065GrGnrhTzt3wBu+jd8dpEF5YfzkJmYyVWzXtA9SsxvtrXeBgPpX/s9fe5XXThh6oMZDeX46uZjwX8eLN3FeEPt78Dh93L89nmwrqv05G/vwzvb/h9wM+/9IoK3P3tNx292KfNz+XC8rxcZNRUY81ddwe8/TKaivHEvg/hkLx8/4ourKnZh7zWciw+/4lT3x/1pfj1ts98Ol+Wl2fhQFMVVs59sE+9P1S5GfKl3evxwu51cEuSX0X28RyiGy5JxJ92/IyX0zcqk2Af9K8PN+CtD9ZDFCW/iuzjOZxuuNwi3nz/Z7zz0UZlEuwBr/y0CS//uKn9vPKjyD6ew+2GW5Tw0qqN+NuazQplqLzt27dj4cKFMJvNPv1ra23Drs/zYG7z7XVH/z377LPYvn276sfR6b+2Njw0/wYsXPiMMvH8ON4Xt2zAJwcyfD4PHW43PszYh5e3bex0e62tCXfv/BuqbA0+F9nHq7E34l+Fy/Fd5Y5Ot+dkV+J3z3zpdVF8lCTJKCtrxK/vfv/EeFkV+P2T/sUrL23Ar+/4t0+v89Xeymrc40ORfZQsyyhqaMTl7y86MV59Be7Z+qXXRXZHPMgoam3A5asDe7xKy2gqwyO7F/n8fS7LMkos9bhp81sByqxdbnox/nDHe14X2UfJkoyKwhrcd9HLAcqs3d7qKtz97bdeF9lHSbKM4sZGzFu06PRP7oas5lI8ue8jr4vsoyRZRqnFhDt2/OOEx/c1VOCebZ/7db4Ut9Xjyp/f8+l1auvxQvvZbT/hi4OZaLQpd0kXABrtVnxekIHntq9RNG5f8Ld3VuOHtQfQ3KJsmza12LBi9QG89l7vb9M/fLcWS/dnoVHBoQIA0Gi1YumeLPz5h3WKxqUzV359HT7LPtBx2dNXLlHEoswMFDY2nPB4UVsV7k1/HXbR6eGVvjG7bHiv8Dt8Vnrquf3sU0tgt/v/Y7Wyogkf/ndjx/9/99vPYbf7n3dVRSM+/M/G0z7PX/d88Q2sPhbZxzvc1ILXN207Fm/r57C6/T/ew+ZGvJ610e/X97SHd38Mm49F2PHKrY14u2Ctghmd6A93vAuHzf+bo6tKTFj0yvcKZnSiX33zDexu/9uvtKUJr23bdvon+um3+z+AXfL/fK6wNuA/hT91/P/ebYt9/hF6vNK2Bryeu8Hv1/e0Hi2071v3LZYV5sDiUuaL4mQWlxNfHsrCg+uXByR+b/T7vy7HjxuyYbX5f9J2xWZ3YuW6LPzhb723TR/64jssz8iF1cfeMm9ZnE58vS8bj375Q0Di05nlru+Wtd/s1g0uUcSdK5Z1/N8tibhvz+swu5X9IWkXnfiydAO21md3PPbqKz/A7mPP38kkScKypbvQUG/G31/+XoF4Mr7+Yica6tu6FaczC1euhs3ZzfxkCR/u2geT2YyF6d/D5upuPBkfHtoJk03541XanzO/hq2bV6ZFWcLiw9tQZ1f+eF9/fDHstu7VHJIo45v3N6ChtkWhrI55evVq2LpZE4mSjA/27UWt2axQVse8nPMV7N340Qi0vz++KN2Cekcrnt3zHWzd7CwQIePjgztgCsD5Egg9Vmj/Y/9W7Kgu7dblTm+4JRFbqg7jrQzlLmv3Vv/7fCv2ZZVBdHdyI5SC3G4J6Rll+OjL3temb63fjl0l5XCfcuOIstyShG3FpXhn486A7of6tjUlhd3qGT1em9OBDaUlAICnMv4Dycux3j7vx23Da/lfwS454XSK2LQ+z+tx5V1xOkV88N8N2LguV6F4bnz0303djnM8hyhiVe5BSOh+fg7Rjdc2bMOq8lzF4r2Ro+zxKs0pubCmKgtyZzfj+hpLdOPdQz8rkNVxMR0ubPp+P2RJgfPP4cInr65UIKtjHKKIlQ8xGLYAACAASURBVAcLoEB6cLjdeGOHst/RTsmFdbUHICtwPjslN/596Cf8WJmjzPFKbryZs7H7gXpAj9wMub68GEsPZqItQD3ZJzO7nPi8IAOT+g3AjKQhPbLPnrZzbzFWrss8YeaQQLLaHPjupwyMGTUA0yYM6ZF9ns6mgyX4JiMHZkfPnFcWhxNL92binOT+mJ4ypEf2SX3LlrJSj1fsWjdthS03H47DpZCsNiQ8fD+CR6Z6jGV1ubDxcAkMIRYUmasClTIAwOyy4q2Cb3CVOAOShx+tDY0HUV27Dy2t5bA7mjFk0GykDLmky7h7dpd4LHIamg6iqm4/WtrKYXe0YOjAWUgZNLfLeBl7Srw7IC/l1Jg8/oCxHsxD69502MtL4W5uQvRFcxF7yRVdxttaWgop0UO8/QfRunE/7IfK4a5vQfQNsxB7a9fHu8Ok7PEqLa+lymOJ3bqnCI0/H4AlvxLOulb0v2U6Eu+a3WW83fVFiuZXmFUO2cP5XOcoRaU1D83OWtjFNqSET0Fq+HldxsvYWqBoftkmEyS58/xsefloS0+Ho7QU7qYmRM2di+grLu8y3rayMkXzK2irhOTh/duUXoy6Ndloy6uCw9SKgbefj0G/mtFlvF0NByHJnd/EaNl3CK0bMmA72P7+iLlxJuJuv7jLeDvrevf746ge6dF+eusq1FqVv6TRlVqrGU9sWdWj++xJf/nnT6hvUGY6NG/VN1nwlzd7T5v+fsUa1Lb28HnVZsGz3/b+Meukjn3VlR63mXfuhmSzI3iU97PY7KmpxOel62F225RIzyNRlrC/qRA7cvLhOmXavXb1jfmwWE2IiR4OjeDd7DBNTeaOKftOVtdUAIu1DrFR3scz1bZ69TxvpZdVeBzmY8nPhdNUi5DUkRC8nA2nzmztmLLvlHj7CuCsqEPIhOEQvFwcq8qi7PEqbV9jafucx51o2X0ItrJ6hE8a5vXx1tiUHZqRvbMILg+TA9TZD8PsakKcMdnr86+uqknJ9LC7ohxOsfNC25qbC1dtDYJHjvD6/KtqU3YoRUZTybFpGk/StLMI1tJ6RE0e4vXft9HZ5vHeFcveg3BWmBB6jg/vD6vyQ3kCIeA92oty98HezfFb/rK5nfisIAN3jDxHlf0Hytcr98HRzTGF/rLaXVixOgPXXqpumy7eneHzDAFKsTpd+GJPJm6d4t18x3R2kNH1F92AZ34LCAIcZeWw7MvwKmZFSzMES61CGXat0dmGna25HrePGH51x8JGtXWZXsXUarXtQ9s66RQbOeyqjng19VlexQsJNaDoUA1SUpVZqONAtee27Xf1DcCRKcTMB/Z5FU+nFeB2aADjqcVTv19fdSzeVu+ON0xvQF5zDdKi1FmY5HRyWio8bkt+8NKO423alONVvFCdEQdbqzEiQpnVAA9mlHrclhY5s+P8q7Yd8ipeSKgRxTkVGDbGu4VYTiez1vP5F3vD9cfOl337vYoXajAgz2RCWny8IvnldfH3Hfbw3I786jfkeRVPK2ih1UgQpVP7eOPvvaIjXtsW794foXoj8ltqMCqyd74/jgp4j/bign0Bu/nxdMwuJxblevcB2Zd8+2MGrN28ucNfNpsTX6/07k0fSEvSD8DiVKcNLE4nFu/2rlCis4eA9pt0PD/B93lfHbLo85Ra/nJJbtT0N3nc7s/qobIsd1pk+xtPEmVovezt8kaXX4B+/L1kWYbHw/IjnijL0GmUO16ldfk39ON4JVmCVsHj7Wrua7/OP0nZ80/x9pMk6JRYi+BoCgrn174KsXLxJFmE1surEWoKaKG9taoUJlvPDm84WY3VjJ01yo5bUtOeA6VobO7Z4RInq2tow/7sctX2v724DPVt6p5Xta1m7D7s+dc+nZ2GREQrGi/UCLhPXoGtE85mKw5/vB17H1iMLVf9Cztu/S/yXvkJjnrfPiukYAnQKHdjsRI3QR7P6XRhyNB+isWbNFCZntOjZAmAQbn2c4gupEYod7xKmxCt7BLldsmNlDBlemMBIG3KUMViAYDD7sLgkcqdM5MSlT3/HG43UmNjFYs3LmqwYrGA9s8Ddye92f5yiO5e/f44KqCF9vcleWhVqdfxKLPTju+K81XNQUnrtubDbO6ZGyA9sVidWLfFu0tFgbAyqwBtDnXbwOxwYFW2sjfGUN83dUCSovH0wd6NzW7NqULFt/sROX4gRjw+F0nXnYPG3SXY9/ASuK3efwZLOhG6KOV6iGJjw2AwKDdCMaG/sj9kJicPhFHBHsD48FAYtcodb1KIssertHNiBsOgYA/0AIWPd8zUYdAb9YrF658co1gsAJg6MAkGBc+XgZGRisUCgPHRQxT9+8YFRSoaLyk0SrFYgRTQQntPbYXiPRq+kgCk16rX+6q0zNwKBSba6R5ZlpGR6/mmr0DbX16pyPRA3SHLQDp7tOkkMwYNQoTBqEisCKMRulDv5s2OSEvE+UsWYPhvZiNhbhoG3ToVY/58FRx1bajf4t34UwDQCVro45Rb2vi8C1JhMCpXSEw9d5hisQBgdHwcjDrl8rt4+DBFC+1Zicoer9JGhifCqFWukJ0e53kWHn+kjE2GQcFCe8rs0YrFAoDRcf0QpOBQlFlDhigWCwBSwwbAqDEoFu/CuFEIUvB8mZkwXLFYgRSwmyFtbhdK25p9f11WAVp/2gRXZS0kqx3amEiEnnsOIq+8CILBvz9QUUsjXJIIfS8e6+YNu8OFqhrf27SpNh+VhZthaauB6LLDEByJfknnIHnEHGj8POkrKhvhcovQK/gh4Q27y43SRt/vNLYU5qFx+0Y4TNWQ7HboI6MQPnYiYi68GBq9fx8kJQ3NcIki9Ar2iFHfNnvwMEQHB6PV2f0rLrHBIQiNkGD24p5fQ0zoKY9FjmnvXXe1eD9jiVarweTzh2FrYbHHaf58iXX/by6GQafB8q/2dD+eRoN7H+p6ui9f6bVa3DB+DD7Zs7/b85RrNRosnDMT+lwRnxza43HaNl/iPT1O2eNVml6jxdVJk/Bl6U6I3T1eQYNHR81TKLN2Or0W8245Fys+2OhxmjpvaXUazH/uWoUya6fXanHjmDH4ZH9Gt9tPp9HgmQu7nl7PV3qNFlckTcZXZdu6/f7QCBo8POJKuFwb8ElRugLvDwFPjel6eszeImA92jVWM4L8+GXvrq2HNjoKkVfNQeyvbkTwhDS0rtqIho+/9juXIJ0ONRZ1xzUrob7B7NdlWJulHobgSCSPuBjDz7kJMQlpqCjciEMZy07/Yg8MBi3qG3q+TWtbzQjS+17YOhvqoYuIROzMS9D/ml8gNHU0GreuR+33X/mdS5Be1+PTC1Lv99n1v4Be072PVp1GgyXX3wKdxv++kNb8GgBA6NA4r1/jFEUsuO1ihEcE+b1foL3Ivve+ixAUpMeDj87rdjydVoN7fjMHQUHK9YYd9dzcWYgO7mZ+Gg2emn0hgvV6PDdhHqINCsQbOwfBOuWPV2lPjb4CkfrgbsXQaTR4ZOQ8BGuV6z096r7nb0BE9Kk/RH2h1Wkx/3fXIChE+fz+OGs2IoO6e74IePrCGQjRK3++PDriakTou9l+gga/GX45grQG/G78pYgydP98eXL03D7x/gACWGibrGYIftxFGj53OuLu/QXC505H6AWTEHPb1Qi/ZDqs6ZmQ3f5N56aFBrW2vl8Q1TeZofGjTQcMuxAjJt2CAcOmIz55EoaNuwYDhl2I+qpMSB7mQD0djUaD+saeb1NTmxkawffTNvrcGUi87nZET5uBiPFTEH/ZdYg+bybacjIg+zn9pFYDmFS+KZN6n6SwcDw05Ty/x/4atVo8Nu18JISGop/RvzGXsltC4bsbETokFtGTvb+hSZZFxBoj8I8374DRz0vuAoDhIxJw863ndjz22tu/hLEbQ0hSRvTHzbd1vZhIdyy+/WYY9f7lJwBIS4jHvedOPhZv9i/9HkIiAEiL7I97RwbueJX2n/PuQZDG3/NFwMjwRNw17EKFszrmlWWPwejvjzRBwPAxA3HjA4G7urDk5psR1I0hTKPjE7Bg8uTTP9FPb0++rxtDhASMiEjCbUNmdjzy6Yy7/OqIPSotMhH3jDjf79f3tIAV2haXE3qtMuG1URHtqzv5eelHr9XA4lL35jklWG0u6BQaqmEIOtKmfl4O0uk0qkwxaHU6oetmb+FRuvButoFGA6tDnfnMqXd7bNr5ePK86Sf0uDjKymHJyIT9YGH7/4uKYcnIhOPwsbl+g3Q6PHP+DDw8pb3IGhM5xK9pyA6+tQ7WsgakPXdFl1OcnSzKEAGDRo8hQ/vhvf/+Gjrdsfea3d4MU302TPXZkGUJVmsdTPXZqG84drO5TqfF6HHJeOff80+IO2RoP7z70YIT4zmaYWrIgakhB7IswWKrh6khB3WNx+JpdRqMHZeMt//3a5/bwBfD+8Vi+fw7ThgG5m5ugjn7AMzZByBLElx1JpizD8CSf2xOaJ1Gg0kDB+CbX912YryIflh+8YITrmy465ph3pkD886c9niV9TDvzIFl73HtJ2gwKS4Z38wN7PEqLSUsHp9d+OAJwzOdphY0b81D89Y8QJJhr2hA89Y8tOw6ds+AVqPBhOhkfDr9wYDmN3hEf/zzx2egO+5qqE1sQ42tEDW2QsiQYHY1ocZWCJP92GqDWp0Wo6cMwZurngpofqmxsVhxx50nnn9NTbAcyITlQCYgSXCZTLAcyIQ158Tzb/KAJCy/7faA5jc0LAEfTXvkhKkmHbWtaNhSgIYtBZAlGbbyBjRsKUDjzsJj+QkajIsajP9Ne/iEeMMj+uHri+6H7rhOM1ddM9p25KJtRy5kSYKzsh5tO3Jh2VNwQrxJsclYdtE9ATxa5QVsjHa/kFC43P6PwZEdTshuEc7yKrSt3YqwmVP9HqPtFCXEB4f5nUtvERsdCpefvfoAIIpOyJIIS0sVqoq2oP/gaX6P0Xa7JMR2Mi400OLCQuHqxlhPyeWELIpw1FSiaedmRE46F4Kfl59cooS48BC/c6Ez24KJUzEkKhoP//QDXLKEts3bYN61p2N7849rAQAh54xH/wV3Qy9o8c5lV2POkGM3wF2cMBFra/bB4sPKkCUfb0fNmhyMe/l6hA3zfuorjaDBnIRjC1ENGhyLpd88hsce/gS1plZU1xYjt+DYED5TfQ5M9TnQ60Mw8/znYDBocf2NU7HggTmdxh80OBZLv/stHnvgY5hqW1FlKkFu4TfH4h0puvW6EMya9jsYDDpcf/M03PubzuMpbXhsDLY9sgC3froU1S2tqC0uhGnZko7t5uxMmLMzoQ0JxdA/vASjVou7p07E0xd1Pi52eGQstl31W9y64WNUW1tRm1MC07vHjte8KwfmXTnQhodg6Ae/g1Gjw90jpuHpcT1zvEobGhaP1XMWYv6O/6LW3ozGzFKUvvF9x/bmbflo3pYPXXgwxn3xBIwaLW4bcgEeHXVpj+Q3aER/fL7/ZTxx7Ruoq2pCZUMFsprXdWyvtReh1l4EvSYIF/e/F3qjDtfdMxu/VnhctiepMTHYueA+3Lz0S1S1tqK+sBB1S77o2G7JzIQlMxOa0FAMfulFGLQ6zJ84EQtnKDsu25PBYQn4bsYf8ED6u6h1NMN0oAyFrx1bKbphy0E0bDkIXUQwpi17BAatDjcnX4jfpHa+bPzwiFhsu/JJ3LrpQ9RYW9GaXYKat5d3bDfvzIV5Zy604SFI+XghjFod7ko5F0+N7d33LXQmYIV2QnAY3N0Y7F7++EuQHe09piGTxyHmzuv8juWSRCSE9P1COy4mDG4Py7V6Y/ePL0IU29s0bsA4pIzvRpu6RcTF9HybxoeHwe1hyWRvFP39T5COLKAUnjYeCVfe6HcslyQiPrzvn1cUOJcMHY6CBx/Hnzatww8LgtB61+3QCRrIggxBFuCWJUQajbgqdSRemHnqF8jYyKHoZ4zwutCuXJ6B0sU7kfbs5YiZ4tscuLGGCFwUP+GExyIig/HRp/fj26/T8fVXoUhMmNR+n4gMQGhfwEOn02DSlGF45PF56NcvvMt9hEcG48MlD2L5st34+otQJMVPhN6ghXyk374j3tShePiJy9AvPsKnY+iu6OBgrL7vbnySvh8fh4UiYtJUGHVatK9DI0CCBJ1Gg+lDB+PP8+ag/2ne/9HGYKy+7EF8cmg3Pg4KRcTsiTBqtZDlI8cLuT1e/FD8edJl6B/s2/E2WKzIrqrFuqJKOJNTkFNVizEDEvw+/sY2K3LLarE+pxJifApyy2sxOtn7eFGGEHw76zEsKdmOzw1hiJk7AQatFpAAQQNIsgydoMW0uBQ8O+ZqJAT17N83PDoU/938B3z3wSZ8879wDCwbDb1RB1mWIQhC+/mn12DijFH4zcs3Iy7Rt+njGuwWZDXWYG1rKezjhiC7sQZjY7xftTA6OBg/3/0rLNq/Hx+EhiBs6tT28wXt67lIUvv5cuHgwXhhzhz0D+v6/XYyUaqH03kAYeFrMHeeGU5nJgwG71c4jjSEYMn0p7CsbBu+uDYc8fPGtf99AUA+8vfVaDA1dgSeGHkt4oO6HvoWZQjGT5c8hE8Ld+PjoDBEXDQRRo3u6MdL+/tN0OKC+GH40zmX+/z+6C0CVmjHBYciTG+Aze3fpfWEp+6F7HDCebgSLSs3oOF/SxF3/22nf2EnIg1BiA7q+z2P0VEhCA02wuHwr1d77AULIIpOmJsrUXFoPQ7u/xIjJ/t3ySksLAiRKvTmxoaFIMxo9Hv59YF3PQDZ6YS9ugINW35GzbdLkHjjnX7FijAGITqkezd10NnhxVkX48VZF8PidCKrrhYrVq3C6y+8gMbiwwg1dH2D1bUDL8R/Cr+HXex6qJZpYwEOvb0eKffNRMLcNJ9zHBgSh9TwzpeWvv7Gqbj+xqkAgEMHa1BYaEJkRBBGjEpEXJxvX/YAcN1N03DdTdPa4xXUoKiwBhERIe3xTlOs94S7pk7EXVMnAgByakzIM9UhKjgI4/onIMGPH9d3pU7DXantx5vTVIO8lhpEGUIwLjoRCcG+H+9ra7fgy71ZsLvcENB+E6swZgpu+3ApnG43JiUn4XeXzcS4JO+KvLdWbMGybVkdn6tuUYQ8aAp+9Xp7vHOGJeGpG2di7CDv4t029ALcNvQCAEB+SxUKWmsQaQjG6MgkxPdwcd2Za+6ZhWvumQUAKMwqR3FuJcKjQjBiwiDE9vd9buZXD2zA50X7YHe7IQhH/h5zxuHmdYvgFEVM6TcQz51zCcbHerdAzd0TJ+Luie3nX7bJhLw6E6KCgjEuIQH9w3w//5qaX0ab9RPIkg0QBIRGuPDre4Hquqshy04EGaYhJuoFGAznnD4YgJsGTcdNg6YDAApaK1HYVo0IQwhGRST5dV/JL4dPwy+HH3l/NFcj/8j7Y2zUAL/eH71NwAptjSAgPiQMdX6uDGlMae+NCRqdCm1MFOrfX4KIy2bCMNj3BSH6h4b5Mcqx99EIAuJiwtDY7F+bhse0t2lUv1QYgyNRsHcJkobPQlik720aHxfmz4qp3aYRBPQLD0W92b82CB44BAAQMmwEdBFRqP5mMaIvmI2gxM4LjK4kRIar0gZHOUUR2TAgDX3//gOlVNtMKLKUwzTYCr1dg2qbCYnB/q80V9rQjJzKWuSKBoRCQmlDMwbH+r9IQqjBgPOSkrG6qga/u/e+0xbZAHBd0gVYVLK6y0K7Nb8G+X/9CeEjEhDUPwJ1mw92bAtOikZYStdDSIK1Bjw96havjiF1RH+kjvC+l+608Ub2R+pI5eIpbUz/eIzpr9xqhWOi+2NMtH/HW2xqxJ2LlqLN7oDrpKubMgDnkaGF+8or8ctFy3BZWipeud7z0IySmkbc89ZStNocp14tFY7FyyiuxII3l+GSial48Ze+DfUYFTkAoyIH+PSanjR8XDKGj0v267VFLfW4bf1itLkccEonXmmVBQHOI1df99RV4PYNn+LygWn4+3lX+7SPsfHxGBvv3/nndB1Ebf2NkKRWyPKRz48jtyRpNOh4zO7cjer6GxAadDXiYt7yaR8jI5IwMkK5hbrGRCViTJSyK2aqLWCFNgBcnzIGRc0NsPs5q8NRR4trd12jz4V2kE6HG1LGdGv/vcm8WaNRWtEAh7N7bRoW1d6Odkujz4W2waDDZbPVa9Nrx6ehuL4BDpf/Q0gAdBTXrqYGnwtto06La8f73muoFEmWcdfir3BAG4QSu4TnZdmvGWnOBKIs4vWCj7G7MRMQ2hdUElNFQJLxaMbLEGRgWsx4PDnq117dWOgWJTy99Eeszy2CAECGDJcYBEGWce2bnwAA5owejtduvbzH2vy1Cffjsf3vwOK2d7rdUlwHyS2iraAWOS/8cMK2gTdMwvCHZnuMHawz4pbk2UgMVnbVO1LWnsMVuOezb+Hw8mqe3enCd5l5yKyowQ8P33XKubq3qAK/ecf7eDaXC9+n5yGzrAbf/P7UeGeb9LpS/GrjUthF767a29xufFuajYzGSqy+/P6At5/DsRM19bdDlr0bdiZLNpity+Bw7kNS/00I8HqGZ5WAFtqXDU7F6/u2+vYiSWr/qXUc+5GlrnVxvn8RaCDg0sEjfH5dbzXr/FR8sGSbT6+RZQnCSVPiNZnae7yC/FjyViMImHmesit4+eKStOH454btAHwotOUjgwSPYylqv9tfHx3rcw4aQcAlaYFdlcpi6brX3qjRwqDRYNyokbBZT7+CYGhoz9+8Gmg/1WzB+0VfQj7aTXP8BDIaAe4j01dua9iHbdv24cHht2NewnSP8b7cdQAvfreh0xVtj++h+imrAKuzCvD89XNx89Rxih2PJynhA/BQ6rV4++ByWMVTr2AkXjEOiVf4nodO0OCcqOG4e6iyC4WQsvaVVePez70vio+SZBnFDY246p1FWPXwrzoezyiuxkPv+R5PlmUcrmnEjS8vwrd/+NVpn3+m2ltfifkbv/S5E1GWZRS3NuLSVe9j7ZX3Byg7wO5Ih6n+Dq+L7GMkuNyFqKydhaSELQHJ7WwU0EJ7YFgkxsbFY3eN90tV1/ztPzAMToJ+QDwEQYCjuByW7fsQPG4kDEN8vzwxIS4RiaF9f4zPUf3jIzEiJQEHcrxfVj5r678RFjUQIeHxAAS0NZXBVLEP0QmjEBbl+5CJtBGJ6BerXpsmRUUgrX8C9pZ5f16VffQOggYMhCEuARAE2CvL0HpgD0KHp/k1bGRcUn/0jwjcjZBr167FNddcA21XczELAoInTMZXB/biqwe6nqJQFEWsWLEC8+adOQXVR4e/wU/Vm48V2V74oPgr1NhMuGvI9ads+/vKzfh814FOi+zOyABe/n4Dyuqb8eTlgb/z//LEaYgxhuP/sj+D2YdZSDwJ0hhwUcIEPJN2qwLZUSAt+Owb2LtxFfNwYwveWLcNv724/UfmQ+9+A7uf9/oAQJmpBf/6fhseudrzj9Yz2fyNS2DrxpX6w+Ym/CNzI54cP1u5pI5jqr8Nknz6zhdP3K4SNLX8FdGRv1Mwq7NXwK8N/OX8SxHmxTjEo0LOGQ3HocNoXroKTV+uhPNwBaJuugz9HrnL532H6Q34y/SemTqoJz394CUICfa+TWP6j0ZrQwlKclaiJOcHmFsqMCTtcqRN871Ng4MNeOZB9Yu1F6++GGFG79sgbOQY2MpKULf2e9St+Q72qnLEzb0SSbfOP/2LTxJi1OOlqy/x+XW+2L59OxYuXAiz2ez5X1sb6rZuhLmtrevnmc149tlnsX379oDm3JM+KF6GVdUb4ZR8u9naKbnwfdVGfFRy4kqzf/1hIxbv3A+Hj9NnOt0iPtmxH39bucmn1/nr3Jg0PJX2C78XsjkqWh+GuYmTWWT3Ab9bvhpWZ/fm65ckCR/v2AdTmxl/Wtz9eKIs4dMN+1DX0vcXgvPVM7t+gM3L4SKeSLKEDwp2BWQhvfrGxyD53JN9IhkiWs3vQxRrFMrq7BbQHm0AGB4Vi9lJKVh1OB+SFz1FEZfPQsTls7q9X62gwdzkFAyN8H1oRG83eGAszps8DBu3F0DyYhGfgamzMTB1drf3q9EIuHBqCgYOUL9NU/rFYGbqUPyUc9Cr8ypm+hzETO/+/LQaCJgzcli3boij7jlsqcDq2q1wS/6N0XfLbqyq2Yy5CRcgOSQRB6vr8OXurFNuLvOWyy3i850HcNOUsUhJ8H0Ykq9m9RuP4WFJeCF7EaptDTB7GLfdmSCtATpBi0dH3IDZCRNO/wJSlcMl4secg15fZekyltuNN37ehvX7lYnndLnx9sodeOH2wHY69CYOUcTK8jyvvnO8ifVG1ia8Mu1KBTJrJ8t2mG3fAfB/GuDjYzW1voq46Ne7n9hZLuCFNgC8PftqjF5cCKur51bRC9bp8OYs3+7u7UteeOpqXHJrEez2nmvToCA9/vTEVT22v9N5/aYrsPFgcbd7Z3wRbNTjtRuu6LH90aleyHkHLh97sk/mltx4Pudf+GDqX3Dvx990zK7gL5co4p6PvsHGZxd0K463koJj8f7UJ7CzIQ+fH16P/NZSGLX6Totuo1YHAVpE6ILxi0GzcGPyzE4iUm+UW22C6KGosxTmoSUjHfaKUrhamhA7Yy7i5nT92bSlsNRj50xbaR4a89JhrS2Fs60JCVPmov95XcdLLyjz7kDOEDlNNRA9rA9izTiItk374Cgsh7u+GVHXz0bML7r+EbK95rCi+TldWRBkqdPBdBs3OLDsKxv273OhqlLEw4+E4clnuh7+aLf7eI8ddapHCm0A2HTjfZix7H3Y/ZxX2xdGrQ6bbw7cjQa9xRfvLcAt9/8Xjh4oNA16Hb78930B34+v1jzya1z8zw98vqnHHwadFj8/2reWfj3T7G7MgEPqej5pb1lFGz448DNs3Rirejyz3YFN+SWYNWqoIvG8cV5sGs6LTYNVdGBnfS4OtVWi2t4AlyRCkiUkBsdiWFgiMcnKXgAAIABJREFUJkenIjE48L3tpKw9pRVwuTu/cmM+mAtnXS1CUkai9UC6V/HqLVYEuTsvtFsP58LeVIuw5JFoKvAuXnVTm1fPO1Okm8rg8rBgmnVfPlyVJgSPGw7zlv1exauytiqZHuyOnZDR+efj+p8dOHTQjRkzDfhm2emvgskA3GKlovmdrXqs0O4XHIpV19yFG1d+jiZH92/k8STKGIzlV92BGOOZv5BIbHQoPnzzl/jNwiVoaQtcm0aEB+M/f7sdURG9r03jwkOw/P47cPuHX6LJ6v0ldF9FhQThy3tuRXRoUMD2Qae3v7kANrHzv3PRV5kw7SxDY24tXG0OTH/zGvSb4vlGV7voxK76TFicnU+z1bhnCyxFebBVlUK02zDotgcQOsTzDEZWpwtbDh7u0UL7qBCtEXMSJmJOwsQe3zcFTmZVrcdtCZffgKMT+bdl7fMqnk7QQNaKEDqpFZNmHovXfMi7eKFGAwoqTBg5ULl5xnuzjKYqj9vi5l/d0X7m7ZlexQvVG5DXVIM0P+dVP5nDmeFx2/MvRXRM6Pb9itN/VwoANEIYHK5sGPVjFcnvbNWjEyUOi4zFkstuhV7TxUwK3aDTaLDsitswJOLsmQ920IBYvPXSLdDpAtSmWg3e+cttGDig97bp0LgYfHz3TdB3NUNHN2g1Gnw2/xcYHKv+2PSzXUFrscdtZavy4bI6ET/N+8Un6uRqj9taMndDdNoROnSk1/H2l3n+IibyVZdf0H7MwywLXYwt9iOeKEvQBehztzfSdDUPvx/t175kuXLtJ3Rxxmj8qPZkQYQG+m5kRIAKM5KPiumHjNsfwdDIaBgUeoMatDoMiYhG1h2PYXhUnCIx+5KUIf2w8tOHkZwYBb1eoTbVa5E8IBo/fv4ohiT3/kvOIxP6YeczD2BwbBQMCv3oMOi0GBwThb2/ewgp/Xp/G5zpZMioczR53D77g5sx870bkHqbd8sIA4CkdwAeio+h85/AkF8+ithzL/I6XnVTKxS4T4oIADBxkLIr5Mmy3Glvtr8cLjdSEs+ez8ZJscqtgAgADtGF1MiuV231hdE4RbFYACBLduj13nc0UOdUWfonVG/AhhsW4O60SdBrNNAK/qWhFTTQa7SYP3oSNt64AMG6s/eXV0iwAZ+/twD/3959h0dVpv8ff5+ZSe8hEEIgIfSuQAALVVRcRde1K/beWHfXsuu6+1O377ruutWva0fBggW7oiiIgHQChA4hhCSk9zrl/P4IBNBMmGTOkAQ+r+vi0uTMuXOfM8PhznOecz+XXjCGoCAbDnv7Vp1y2Gw47HYunTmWef+9ldCQrnNOI0KC+Wz2TcwadypBdjv29vwKT9MItsNu47rxo/nsxzcRGnTcZlhJKwwMPF4eRAIwbO34zJsmmF72a8cIlcv0tGc3kRaN6dPbsoEDgB5RkQRbNBgDkBzvX5vJria9RwrBFo5A946wtntVSPB4DCPEsnhBjvYtTS9H69A1Nh8ZN4311/yYqwaPwm4ziA727QMSFRyCw7BxzeBRbLhmNg+nTw1sol3IPTdO5YOXZzPz7FOw221ERvh4TsNDcNhtzJwxio/n3svdN/jfYrGj/HzGZFY8dCeXjRmO3WYjOtTHcxDadA6uHDuSVT+/mwfPDfwiJNI2SaHWjf4A2J3hlsbr247Va0W8GZqUQKjDul/0pw1KI8TCgYMzhvW1LFZXMCy2B6F26wafpiT1tywWQHDQCAysK7RDQ32/myfetelv3DPPPBOQJFKAh4hmj81FpmGSa3NRZ5jUYxJj2qgwPIRiEG4aJJsOhtc4SDNDYWMWr27MCkhOAHfc0TGdS6w4z5E2uPrcSPKKXOzND6KozE2D06TRaRIRZqOmzkNwkEFosEFCrJ2+vez0SggB9jDnZe/zYNvC6vPX1vPSC/hxYih7G9xsMxzkOz3UuU0aTJNou0GlxyQEg3A7JAXZGRIGqSGhsH8nr7y4s835ddTn5WQyNKY/u2usaymWaEtmG9bdSx+XZu2tZTm5Bdnt/OjU4by6aj1uH9ZMaI3dZuOhcycT3ujg9cXrvbYNbEu8n/xwol8xupogm51L00by8s61rd5d84XDZuPBU6wtZA0jiMiIq6iqeQ7Tz/zAQXzMryzJ62Tnc6H95JNP8tZbb3HKKdYscrBx40ZM0/xevN4H/xzS4LAT8p32RuXAd5vneIvnT35VVVU88MADlsTzldXnGSAMSIk+/LXbY8cec8Q5dcPnH3Xu8+fveUk8+OeQ9Zs2EefxHBWv9OCf9uioz8vJ5tTYIXxVuJIaV/uXFz4kwhHG6T1Gsj5sK5V1DX7HiwoN4bT+KX7HETnSw+dN4YNNWymtaX9nKbvdxv1nTSQsOIgHL5nCx6u3UlbtX7z7LmyKd7L51ZhzeC87k9KG9l+D7DYbD46aRngAprvGxz5OTd3buN0l7Y5h4CA25pcYhrV3/E5WPhfa1dXVzJgxg8cee8ySH/z4449jmmanjlddffyXl7X6PPuqs5+/rvD564jPy8lmbNwIohwRlhTaMUFRXD9yGnM/22tJoR0fGc6kQX39jiPyXXNuuJzLnp1HfTvWCzAMGJbYg5vPHNv8vefuu5xZf2l/vCG9e3D99LHHfvEJat70WVz82UvUt2MpdgMYHpvIrUMmWJ/YQYnd3yG/YAam2Z6WtwbBwSOIibrL8rxOVh06R1tEpK1+M+LHOAz/5pk6DBu/HfETAF689TKC7P5dCh02Gy/ferlfMUS8GdCjG2/dNuuoVnrOijKqtmRQtSUD0/TQWFxI1ZYMqndkNr/GYbMxuk8v5t9+9VHx+vfsxryHZh3VErWxqoyKXRlU7MrA9HioLyukYlcGlVmH49ntNk7p24u5Dxwd72QzMLo7C869maAjHrh3FZdTs3IzNSs3g8eDM7eImpWbqV23rfk1DpudMQl9ePfcmwKaX7BjEL0SPwPj8Ih57n43n3xUzycf1eN2w+7dLj75qJ5Fnx85yGAnJDidpB6fBDS/k40KbRHpUrqHxHNZ73MJsrWv2HbYHFyZcgHxwU0dE3rFRnH7tAnt7u4Q7LBzz/TT6REd0a79RXwxoEc839x/G2kJ8YQGOajN2kXe/JfJm/8ypstF1daN5M1/mQMLXgcgxGHnxjPGMO/mK1uM169nPJ///jb6JsYTGuygev8u9n76Mns/fRnT7aJi90b2fvoyOYua4gU77Fw/bQwv/azleCebgTHdWPHD++gX1Y1QexB1mXsoeOo1Cp56DdPpomZVJgVPvUbR028DEGy3c8vgcbx59nXHJb8gxyBSkjIIcgzAMMJYsaKRu+8s5+47y2loMPnk43ruvrOcB++vAMAwQoiJuoukHu8fl/xOJupbJiJdzpUpFxDqCGVe9oc0HlySvXxbIbX5VdTkNS1rXJKRh7OqgdAekcQPb5qhH2wP5rqUC5nZ66yj4t1z1mmEBTn49xcrmm+n1+fn0FhRirO8aa5jbc4e3PV1BEXFEpacCkBokIOfnHsm15855rgct7SupLaWTfkFLMrOpSGtP5sPFDCiZ+Kxd+wiYsPD+OTeG3jl2/W8HBFBzOhxBNvtmDQtpuIxPdjtNs5IS+X/XXAWPaMjW48XEcaCX93AvCXrmRsVQfywcYQ47E294I2meEE2GxOGpPLw5WeRGNt6vEAraahhU2k+X1TupX5UKpvL8hkRZ22v8baICwnj8wvu4OUdq3khNIKoKWMIsTkwjaYpIm7TJMhm48ye/Xh8zLn0DI86rvnZbHEk91xKRfXzXH31/7js8n1NXUkMAAMTN4YRRFjIJOJj/4jD3nHnMhBKamvZdKCAz/fnUt+vP5sLChiRePyvByq0RaRL+mGv6SSFduev25/H4/Gw5+1N7Ptke/P2bS+uAaDX1P6c9vsf4MDOg4NuJj1+ZIvxbp6UTlq3OH7y2ke4TQ+la7+hYtPq5u3F3ywEIGrwKFIuu5kgm8Hfrr6AqUP6BfAoxRdPfLWU1zZsot7pwjCg0e2GUelc+cqbNLpdjOmTzCNnTWZUkjVLXXe0604bzXWnjQZgS34hWw8UERsWyoheiSQeo7huyTVTRnPNlKZ4W3MK2Z5bRGx4KMNSEunRwcU1wBObvmLerrXUu5wYBjg9bpg+gisWvUyjx8XYhD48cuo5jIrv1SH53TBoHDcMGgdAZtkBtpQVEhcSysj4JBLDjm9x3ZKYyFuIibwFgEbnJhoaM7HbYgkJPhW7/cT4O3GkvyxZyryNG6l3uTBouh4Yo8dw+bzXaXS7SU/uxSPTpjKq5/E5dhXaIuKzrMoyNpccICPaQZTLQ1ZlGWnRHbc0/fj4Ubx5+j/43543CH8snJpf1eIwbJimgWGYuEwPkY5wzkwYy+39rjhmvGnD+pPx2x/z2/cX8WnozVReNAuH3WhaUc8wcLlNYsJCmDFyML++SD1mO9ruklJmzXuTyvoGnO7vtDMzoNHddHdiXU4u1857i/MGD+QvM2d0QKaBMyypB8OSelgWb2ifHgztY108f+yuLOaaxXOoamyg0XOwU9ahroSGQaOn6f1dW5zDrK9e4bzeQ3liwkUdk+xBw+N6Mjyu8xavwUEjCQ5qebChq9tdUsLVb8ynqqGexu9cD0zDaPoFHFiTm8c1r8/nB4MH8cQPAn89UKEtIq1yeTzc9/UHLMzehc0AjwnO2CAMj8l5C17AY8KM1IH8c8qF2DpoWcTb+13J7f2upM5dz+7qHHLrC0gOTaR/ZB/C7KFtjvfri6bz64umU9PQSGZuIVklpaR1i2d4cg8iQoIDcATSVmty9nPTG+9S7/Ktc0ad08mCzK1szD/Ax7de32GfVfHN6qJsbvr6dZ87e9S5nby3bxMZZbl8OuNOvb8nmdX793PjW+/4fj1wOXl36xY25Ofz2U03BPTzoochRU5g+wrKWLhqO7uqgsmrDWJfQVmb9p+7bQMD5/yVj7K24/S4aXC7m27bAqbNaP76w6xt9H/pCV7bnhGIw/BZmD2UETEDmZE4kRExA9tVZB8pIiSY8f16c+W4UYzv11tFdiexNjefW970vcg+xDRNdpeU8oNnXw5QZmKFtcX7uXnpG21un+cxTfZUlnDep/8XoMykM1qbl8dNb7fjeuAx2VNayowXA3s90Ii2yAnG5fbwyLOfsGT9LmyGgcfjweUOwcDkqkdfwTRNpo7uz+/vuKDV3+J/v/or5mxdj68LyJnAYysXsbeqjIfTp1pyLCItueWNd6htRw/oQ/aWV/C3Jcv42ZQzLcxKrHLz1/OoczW2e//s6lKe3LSY+0dOtS4p6bRumv8Odc629zQ/ZG9ZGU8uXcb9kwJzPdCItsgJ5K2vMjj9jn+waPV2XC43jU4XroNz1UwMGp0unC43n6/ewYRb/867Sza2GOfxlYt4ecs6GtxtK2Ya3C5eyFzL71d/5fexiLTk5x995tc/qgAej4cXVq+jUItMdToPrfqAunYsBHMkt2ny/I5vKayrsigr6awe+uQzv34pg6Y7Ic+vXUtBgK4HKrRFThB/f2MJf39zCaaPQ9Am8MRri/nn/K+P+v620iLmbt9w+OGjNnJ63Ly0ZR27yovbtb+INw1uNx9v2YHH19ssrcVyufj71yssyEqs0uB283HOFkve30a3i79vXmJBVtJZNbjdfLR9Ox7/Py5N14Nly/0P1AJNHRE5ATz52le8tXgjTlfbiuNGp4vXPl+P2zT56RVTALju8zebn85uL6fHzbWfvcm3V97tVxyRI2UeKMRDy/+q1m7fSuW61dTvy8ZVXkbctLPpdu75rcZbsXdfINKUdsosz/daZNdu2EHV4vXU78zBVVxB3CVTiL/y7FbjLS/MCkSa0klkFhTiNj0tbqvdto2qNatpyG66HsROP5v4837Qarzl2YG5HmhEW6SL25lTxNvtKLIPcbrdvPnFBrLySli4bye1ft6WP6TK2ciX+/dYEksEYHXOfq+/BNZs20JjQQHhAwdj2H1b5TOvSlMLOpPVRfuaW/Z9V+3a7TTuLyJ81AAMH1dxzauptDI96WRW5+R8v63nQbVbt+AsOEDY4EEdfj3QiLZIF3fv39+msZ1F9iFOt5u7//Y26ZemUeNseb5b1RfLqNu0nYY9+/DU1JH4wK2EDhvoNWaNs5HF+3dzVm8t6CLWyMgr8Lqt+0WXwMGHe6sz1vkULzI4mK0FhQxN7Bx9o092GaV5Xrcl3Dzz8Pu7bJNP8SKDg9lafoChsZ23r7W034YC79eDhIt/dPjzsn69T/EigoLZWljI0B7WXg80oi3ShS1Zt4vaemtGoGtqG1ixaa/X7dXfrMFTV0/Y8EE+x1xbmGtBZiJNbK21um1HH1y3x4PDx9EuCTyDVt7D9ry/bhOHoff3RGUzrf28ePDgsFn/edGItkgX9u3WbOoaWi60C7cspWL/NmqKsnE31DHwvDuI7uW9SK5tcFKd64a+LW9PevTHTaux7d1PzSrf+mXnVldiQmv/fIr4bExyEp9t32lZvAaXi4EJ3SyLJ/4Z0y2Zz/ZvtSxeg8fJwJjulsWTzmVMchKf7txhWbwGZ2CuBxrRFunCMnZ5v9VasmM1nsZ6onsN9jmeUdHK49vtGSEwTRXZYpmxfXoTYuEIdHJsjGWxxH/p3VMIsVs3/tc7Is6yWNL5pPdOJtjKz0tMYK4HGtEW6aJMEw6UeH94Y+gPfwqGQW1xDmVZG3yKaWsAK4eg+0brHzqxzrAeCYQ4HDT42RXnkCn9+loSR6wxLDaRELujzf37vZmcpOdDTmTDuncnNMhOo0WflylpfS2J811dttAur69ndW4uS7P3svFAAfsjIjAAz5eLmNw3jXHJycSEhPger6GOVfl5fJ29h01FBeyPC8MwwbXkc6ak9mN8UjIxIf4t53wsmwsK+CAqkjNrawP6cwDK6+pZk5PLN7uz2ZR3gFxb0/njky+ZNKAv6X2SiQn1/fxV1NWzdncuy7Zns2X/AfbXRmCYYH/7SyYO6cvYfslEh/kez2oVtfWs3ZPLsm0H86tuOl77W0fkF95x+bWHYYCntQai7RiBtmOzdJ7HhJ4p1gWTk16Q3c4lI4czZ9361j/7PrDbbDw4daJFmYkVgmx2Luk7ild2rvHats1XdpuNh0ZOtygz6YyC7HYuHT6cl9dvwOPx7/PisNl4cPIkizL7TuyARA2wlzds4IW1aymqrTm8tr29aRbMqxkZvJWZSUJ4OLelj+O6U045ZryXNq3j+Yy1FNVUU39opMRxMF5mBm9tz6R7WAS3jU7n+hGjA3JMbtPkro8/oNRu8GVEKG6PB7stMDN7Xlm9gRdXrqW4uvbw+Tv4wMi8tRm8k5FJt4hwbjs9nWvSj33+5i3bwCtL1lJcVUt987LITfHeXJHB+2sy6RYVzo1T07nqjGPHs9q8pRt45eu1FFcccbyH8luewfurD+Y3LZ2rzjz++fmjT2IsW/d6f/K6rZK6R1EbDJWNDX7Hig4J4cxeqRZkJXLYI2dP4YMtWymprWt3DIfdxv2TJxIWFGRhZmKFX516Lu9nb6a0of0DTg7DxgMjzyLMoff3RPeraVN5b+s2Sv0YoLTbDB6cPInwAF0PulSh7TFNLpo3lx3Fxbha+e2l3uVif2Ulv1uymLcyN7HgmmtbHKTzmCYXvvUK20uOHS+nqoLffrOYN7du5oPLr2vXoN8zzzzT6vaRbhcVho3JoSE89+yzx4x3xx13tOnne0yTHz0/j12FxTiPcby5FZX87vMlvLUhk7dvvcbr+bvyqXnsOlDcvMx3i/GcLnJLK/nLe0t4d1Umr993TXsGW9vMY5pc+bc25LdgCe+uzOT1nx6f/Kxw6sBkSwvtySP6U2rbbkmh3S00gqnJaRZkJXK0V6+5nItfmkeDq+23jA1gaI8e3DphrPWJiSXmTruOH33+PPXtnBIwLK4ntw4+zeKspLOad8XlXDx37hEDfb4zgOGJidyaHrjrQZcptJ1uN2e9+CK5Vb43oHe63WwqKGTyc8+x+OabjxohdnrcTHv1OfZX+96g3Olxs7mogImv/o8l19yKow0jzk8++SRvvfUWpxxjhD3d4cDlcnGsro8bN26kqqqKBx54wKef73S7Ofe/L5Jb4fvxutxuNh8oYPq/n+Pzu79z/txuZv7pRfLK2nD+3G627C/gvD88x8cP3xywEfvm/P74Inml7cjv98/x8S8Dm59VJgxL5cNlW6iqrfc7VkRYMBOGpXJF2himvvVMq7+MHYvDZuf1867yOyeRlgxI6MaCm2Zx0Quv4jx4F9JVXkb9/qaV3UyPB2dRIdWbMzDsDiKGDgeabg+f0qsnr197ZYflLsc2MLo7C86+jQs/P3wdchWVU7+7qV2o6fHQmFtM9beZGEF2IsYOAZre31Pjk3n9rBs6LHc5/gYmdGPBdddy4cuvHL4elJXRkJPT9AKPB2dhITUbN2I47IQPO+J60DOJN68J7PWgyxTaM+e+2qYi+0i5VZXMnPsqn1x3ffP3zn9jTpuK7KPiVVZywfxX+OxK3/8yV1dXM2PGDB577LF2/czvevzxx6murvb59T98dm6biuwj7S+v4uLn5vLB7dc1f+/yv81tU5F9pLyyKq74+1zevv+6Y7+4nS5/cm6biuwj5ZVWccWTc3n7wcDlZ5WJo9KIiQi1pNDuFh3BGSP6AnDPKWfw9MZv2/VQUrDdwexTTiMxPNLvnES8GdAtnmX33sZVr75JfmUlBbt3UfjWa83bqzdvpHrzRuzhEaT9+reE2O3ckD6aB6cFZh6mWGtATDeWX/hTrvzqJfJqKinKzKLw6Xeat9eszKRmZSb2qHAinnuYYJuDGweN56FRZ3Vg1tJRBsbHs+LO27li3hvkVVdStHsXRW+83ry9ZtNGajY1XQ9SH/8NwQ4HN40ZzUMBmpd9pC5RaD+9ejVZZaV+xdhVUsr/1q7h9rHpPL1uFXvK/YxXVswz69dwx+h0v+IcD88sW01WaZlfMXYVl/D8irXccvpYnv9yNXuL/Iu3u6CElxav5cap1t+ueX7RavYWWpDfV2u5cVrnv738fw9ezo9++TxOV/tHoO12G/976Irmr39y6hmEO+z8ff1y6lxNfbob9+7HVVyGq6jp7079jr14auuxx8UQ0r/pocdQu4OHxk7m5uGd/+9Fh3DvxXRmcsaYzZRXRIJ7L9j7dnRWXVZcWBif3XYDc9as56XwCKLHjiPEYT/YOMfAY3pw2GycmZbKo+ecRc8o/fLXlcSFhLHwvLuYs3MVL4ZFEDV1NCF2O+bBpW3cpkmQzcaZiWk8NuY8eoZFd3TK0oHiwsL4/JYbeXndel4IDycq/eD1wGzqDeD2HPy8pKby+Nln0TMq6rjk1ekL7cLqauZsWI/LzyfM3aaHF9etY3JqX17etA636Wc8j8kLG9dwyeBhdA8P9ytWIBVWVfPqmg24/Xwi1+0xeXHlOiampTLvG2vivfL1Oi4cO5RuUdadv8KKauvyW7KOC9OtzS8QenaL4qYLJvDSR6tpbMec1WCHnVsunEBCbMRR3799xATSYuK558v3cWFStWg51cvWNm+veP8LAMLHjiTx3usIstn577Qfclaf/v4d0AnHhafiZ1C3iKYZgSbTxzlxuw08RTObXhJ6NrbYv6GlDdrn+vTRXJ/e9KB65oFCthYWERsWysieiSSquO7yrh84nusHjgcgs+wAWysOEBsUzsj4JBLDjk+xJF3HDWNGc8OYg9eDgkK2FBUSFxrWdD2IPP7Xg05faH+VlUVpnTXt7kpq63hhwxqK69r/tPqRSutrWbxvD5cPGWFJvEBYsivLr6fzj1RWW8vLK9ZSWmPR+aupZem2LC4eN9ySeADfbMuitMrC/LZmcfF46/ILlNsvOp2w4CCeeW8F9Y1NI9C1xTk0VJfRUFUCQPWBLNyN9QSHxxDRo6kbSEiwg3suOZNrzml55P6cPgPZccP9/HrF53x0Twjlt15FkM2GBxMbBk6Ph9jgUGb2G8xvTjunzXnvqylhS0UeO5JMwupN9tWUkBJx4qzUZ9a9jlnxKE3NyY9mt5tAY9MX9R/jOfAJRsxvMMI0f9gfw3v2YHjPHh2dhgTI8LieDI/r2dFpSBcxPLEHwxM79nrQ6QvtL7OycHrpGFG5dCm1W7fRkJ2Np66OnnfeQdgg70tMuzxuluzNxuVpebGDqsXfUJe5jYa9+/DU1pE4+3ZChwz0Gs/p9rAoa3enLrS/2pWFy8viDuUrllKzcyv1+5vOX/KNdxLe3/v5c3o8LN2T7TVeybqlVGVtpe5ANu76OvpedieRqa28H24Pi7fssbTQXrIly+v7W7J+KVV7j8jv0juJTPEhvy5QaANcd146KT1jefjpj3C7PRRuXUbJztXN2/M3LAQgru8oBp59I3a7jT/dOZNJpxx7UYffnn4Ovz39HGqcjWwqOcCeilL6xcQzsltPIoKC25Sny3Tzy/Vv8VXBVg6N8DqT3Rgek0u//jdgclbiUP44+gpsXaX9SwvMqj9h1sylpSLbyx6Ylb8D116MqJ8HMjURETlOOn2hvb24yOu2qlWrsQUFETZ4MDUbfFv5rqy21utRV69YjREcTNjQQdSszfAp3tZS7/l1BtsLir1uq1y/CiMoiIgBg6na5Nv5K62v83pzuyxzFTZHEJGpg6nY7lu8HXnWnr8ded6PtyxzFbagjs0v0KacOoDlz9zHn15dxKLIUCpqrsFht2EenNXocnuIDg/h3PGDeGhW2xdziAgK5rSeKZzWzoVo5mev4g+bP8Rsofg0bQZOT9PUl8/yN7PwwGZ+NeKHXJrS9eZ7m5W/x6x9jeYRa593bMCsmQOYGFG/CERqIiJyHHXqQtuk9bGg5J81LTHdkJPjc6HdWrykX/wEDIPGfft9LrQ9pmnlitWWMqHVxFLu+hkYBvW5OT4X2hyK2cKJHHBtU7y6ghyfC1kTmh/N3xWAAAAgAElEQVRU8Nexpt0PmNWO/Ezr8juefnHtdH5x7XRq6xvZml1Adn4ZqUlxDE1NJDy0bSPQVvnblk95Y9/KFovslpgm/GXLh+TUlvKTIecGODsLubZj1rWjyG7mxKx9BSPscnBovruISFfWqQttA2hsZaGR9lQ/rRZj7Yjn9Lg7ZZENB8+fq+VpFE0vaHvmHtPE5u0ctuf8udyWFbGGYf3xWplfRwgPDWbs4D6MHdynQ/P4S+bHzM9Z1dzj1FcNbjdzs5bj9ri5f9gPApSdtTylN4HZ3iL7INOJp/QGbD2+sSYpERHpEJ3+EfcB8XGWxosOCbE03sC4zv3gVv+EeEvjRQdbe/76J1p7/volWnu8/Xt27ve3K9hZlc/8favbXGQf4vS4eT17FXuqrVsBM1DM+i/AtOZhXMwazIbF1sQSEZEO0ekL7al90ywbUbQZBum9ky17wMowDM5KOfaDZB1pcv++lh2v5efPZjBpSF9LYh0ycYh1x2sYBpOG9rUk1snszpVzmudet5fT4+LOlS9blFEANS4Ds6bFTf96rpzzr8klYchu7Ek7WfT1MbopmTXQsCQASYqIyPHS6Qvt8b170zPSmj6ZiZGRzBw0mJ4R1vRR7BkewWm92/dQ2PEyIbW3ZX0je0RGcsGoQSTGWBQvKpJxA6yd0jBuYG/r8ou2Pr+TzZeFW6h1NVgSq8rZwNKi7ZbECpjGtV43vfR6JVXVHs6ZGuH1Nd/jXG9BUiIi0lE6faE9MjGRM/v4X8wawKTUvlw0aAhn9k61JN7klDSGduvud6xAGp6UyOlp/heLBjCpfyrnjxjC+IEWFJ8GnDkklcG9rD1/w5ITGT/ImuL4zKHW53eyWVm4hzq3s8Vtxe+vZs+jr7H5qr+SMfN3VG3IajVWnbuRbwp3BiJNi5iY7nyvW1cvTGHp+324/65Y3yO6cvG9PaCIiHQ2nb7QBvjLjBl+z62ODg3lT+c0LajxxFnn+T3XODo0lD9Pm+FXjOPlTxfNICrU/+P9/cym8/e7K2cQFeZnvLBQHr+87Quc+OJ3V1mQX3goj18RmPxOJhvKsr1uK/1iA57aBqJG+z79KqN0nxVpBYgBhveHt23tudoaHjpnTyMREfFFlyi0Ad6bdS3xYaHt2jc+LJT3Z1171Pc+uOK69scLDePDy69r174d5d1bZhEXHtaufWPDwnjn1llHfe/N+/yIFxHGmz+ZdewX+uHNn84iLsKP/H4a2PxOBiYmB+oqvG4f9I9bGfDEjXS/5HSfY+bXlfvcHrAjGHb/75YdHa+vpfFEROT46jKFdmpMDG9fdQ3hQUHN32vIyaEmYyP1O3cBUL8ni5qMjTRkHx5FCw8K5t2rZ9EnOvroeNGxvHPJLMIdh+M17ttP7fqN1G8/GG93FrXrN9KQdTheRHAwCy6bRZ+omIAcZ6CkxMUw/8arCDvi/NXn5lCdmUHdnqbb8XXZe6jOzKA+58jjDeLtm6+mT+zR5693Qgxzf3wVYcGH49UV5FC5I4OafU3xanP3ULkjg9r8I96P4CBeu+9qkuOPjme13gkxzL2vhfx2ZlCTc0R+O7+TX0gQr/3kapK7BTa/k4GBgae1fprtbC9pdOYR3qCWl7Jvt+Bx1sYTEZHjqlP30f6u1NhYNt87m3s+/IC1eflkfrOM6tWHl5guX9i0xHTEqFGMuPcexicn88/zL/Aar29MHFtuv4+7P3uftQfy2LJkGdXfrmneXvHx5wCEnzqSET+5i/FJvfnXuRcG6OgCLyU+loyf38uP3/mQ9Tl5bFz5DZXrD5+/0q+azl/k8FGcctu9jOuTzN8vOd9rvD4Jsaz6w73cP+dDNuzNY92n31CeeThe4YqmeNEDRzH22nsZ2y+ZJ671Hs9qfRJiWfWne7n/5YP5ffYN5VuOyO/bI/K75l7G9k/mieuOX34ng94R3dhakWtZvJTIzt1u0QieiFn/DniqLAgWjRF0hv9xRESkwxy3QrvOXcX+2s3sqVlHfu1OHOfkYngMPjvwH/pFjKVP+AhC7b51i/jPzAtZlbufL4YMYXnOPvaVlxMbGkZ5fR0psbGcmZLCOf37kd6rt0/x/jvjIlbm5/DFwKEsz9lLdmVFc7zU6BjO7NOXs9P6Mz7Jt3id3T8vmcmq7Fy+Gj6E5Vk57CsrJy4slLK6elLiYjkzLYWzBvUnPaWXT/GevH4ma/bksmTMEL7dkUNOSTmxEaGU19TTp1sspw9KYcrw/oxN8y2e1Z68YSZrdh3Mb3sL+Q1OYcqw/ozt73t+VaXVbFq6ldULN7BzzW5y9+WC3eAfRc8yfsapjJw0lMg4a7qfdGVj4lItLbTHxPe1LFZAhE6BqjjAgkLbHg+hk/2PIyIiHea4FNprSt9ndekCql1luDxNrb5sBx+8X1f6EZvKPyfCHsv4hMsYGzfTp5jjk3szPvlw4VtcW0tCeHi7c5yQ1IcJSX2AKQAU1dbS3Y94nd341GTGpyY3f11cXUtCZPuPN71fMun9johXWUtCdOc5f+kDkkkfkAwHb0j4k9+Cf33CO//4kJL8chrrjl4B8MOnF7LwpcXEJcZyxQMXcdHdXeOB2UA5rXt/3s9dR5Wz3u9YUUFhnJbQ+Zckt8XPwVN8Dpgtd1vxjQNb/CuW5SQiIh0joIW2icmLWbMprt+H2/S+YIXT00i5p5BF+f9jY9lCbur3D9r6pL0/RXZL/C2yqyrq2Lw2i7Xf7GJHZi65uU4MA/5te5+xkwYycmxfIqPb97BeIPhTZLcYrxMV2S1pT36mx+TucT9nb+Y+XI3eVzlsrGukYG8hT//sJT598Uv+s+pPGF15HXc/TOoxiNigcEsK7fjgCM7sPtCCrALM3gsj4k7M6v8B7ekhHowReQ/YEq3OTEREjrOAFdpu08Uzu26lwlno+z64OFC/i//uvJk7BzyHzbAHKr2Aem/uCha8vJyS4ioaG44e1frwjZV8vmAtsQlRXHbTJC68ekIHZSlt4Wp0ccPg2RRmF7dpn51r93Btv3uYs/Nf2B1d8/Psr2dPu4kLFz+F09O+JdgBHDY7z512k4VZBZYRORsIw6z5J5hNv2SsyagnO8fFnuyma8LSlXWUV3pITnJw2tiDHZCMUIzI+zEibuigzEVExEoB6zrywp7ZbSqyj1ThLOCFPbMtzijwTI/JPZf+h2ef+IT83NLvFdmHNDS4KMgt45k/f8Tsy/+D2VpnBukU7hzzUJuK7CMVZhdx19iHLM6o6+gZFsvN/acQYm/f7/XBhoM7B06je2jX6gRjRN6KEft3MIIBO/95oYIrbsvnF79r+hz99m+lXHFbPk8+XQbYwQjBFvMPFdkiIieQgBTaK0rmU9KQ41eM4oZ9rCx926KMAs/ldHPDjL+ye1seLqdvI3cup5udW/K48dy/4nZ7X+hCOtbrf3qX/Tvy/IqRvXU/8//6vkUZdT13DZrG3YOmE2o7XGzX7synYtlWqjfuBaAmcx8Vy7ZSu+3ww5Mhdgf3DT2HWwdMOd4pW8IImY4tcTOEX8mL/xyKO38IrgMjcB8Y3vTf/CHMf2EYhF+JLXEThE7r6JRFRMRClk8dqXKVsLb0fUz8KxxNPKwqXsCI6LOIcMRZlF3g3H3pvyjMK2/XvgV55dx76X94ekHXG8U/0ZXklfLefz7F7Wr/tAcAj8vDO099xNnXTyGuR9fqwW6VG/pNJDWiGw+tewOXaVLy4WpKF21s3l7w2lIAYs4cQr9fXoHDZuOJ0VcxOXFwR6VsGVv0YxD9GJg1mM7NGO49mPZ+GEEjwIjo6PRERCRALC+0d1etodblfTW4tqh1lbO7eg2jYjv3UthvPvs1+/eW+BUjO6uQt15YymU3T7IoK7HC6o83UFZozee5rKiCVR+tY8ZNJ++o5dTEoaz6wWP8YfOHLPx5KFU/uxiHzYZpGhiGicvjIToojHOTRvDwCN86EHUpRgRG8ARgQmdedkdERCxifaFdvcprh5Hlr2azY2kRORvLqat0cvNz4xlwuvcFKDy42VW1slMX2iWFlbw3bwUeP6d+eFwe3p2zjOk/HE1cN/Vf7ixWfLwWt5epQDnsotg8QCWlOGlkjDGZeHp4jeV2ulnx4ZqTutA+5JcjZvLLETOpcTWwtSKP7JpiUiMSGBrTiwhHSEenJyIiYgnL52gX1Wd53bb23f3UV7sYeGaCz/EKWonXGaxZuoPy0hpLYlWU17L66+2WxBJrZG3M9rotz9yLCyfx+N6GrbV4ANlF5XyyfjvbG4LJcQaRXdS+6UhdRYQjhPRuaVyaMo70bmkqskVE5IRi8Yh26zOz751/BobNIDezgo2f5Pscs+lP57zR+u3i7V7n72aXrqa4ejcVdXk43fWkp15Nt4g0r7FcTjcrF2/j3B+NDVS60gamaUIrHWHGG9MxMKikjALTt4d/TdPENM2j+mq73B5+/uonfLV5N4bR9BqnOxQDk0uemAPAtBED+Mt1P8B2kvbjFhER6YosHtE28OB9NTTD1vYiwY2LzlpkA2TtPOB1W275RlyeRrpF9PM53p7t3uPJ8WUYBs5G7wstGe34XDob3UcV2W+uyGDMQ/9kYcYOnG43jS43zoPTkEwMGl1N3/tsw3ZOvf8p5n+7qe0HIiIiIh3C8jna3YL7UOX078HAIyUEp1gWy2rHGvE8vd/NTSOedfkcqNziW0y+P+IpHSdlaG+Kc0sti5c69PAy9X99/2te/ybD5z7qJvDnd78ip6icn12oh2ZFREQ6O8vnaPePSsewKKyBjf5R6ZbECoSmEU/vbd/aM+LpavSoyO5Exp03Gls77sS0xGYzGH9+07SgP7+7mLnfrKfB5X3EvCUNTjevfr2ev76/xJKcREREJHAsL7RTwkcRGRRvSazIoHhSw0+xJFagpPT33mWiXfEGdLc0nvjnlKnDSejlvTNOW8T3iufUqcPZkVfEm8s34XK1r1ON0+1m3tIM9hyw7s6RiIiIWM/yQrtn6AD6hp+K//OqDfpFjKVHqPeHBzuDcRMHtWvueUsMm8H4SV1/cY4TycAxaYw+ewT+fp4NYNx5p9LvlFTu+N87NLrbNpL9XU63m9ueecevGCIiIhJYAVmCfWbyzwixh/sVI9Qewfm97rMoo8AZNa4vCRat9NetezSnjO/cv1icjB544R4iY/37PEfGR/Cz/93Jl5t2U9vgX5F9SHV9A19v6dztL0VERE5mASm0AW7u90/C7e0rQMPs0dzc718WZxQYA4Ync+pp/SwYv4f0iQNJG5xkRVpisf+u/jPRCVHt2jc6IYr/rv4LAMt3ZFPb0Nji60rWL2Xvu/9j69OPsPnvP6N6345W49Y2OPlm69525SQiIiKBF7BCOzYoievTniTIFtr8vdzMCjYvPMDub5vmlu5dW8rmhQfIyTi8KEewLYwb054iJsj3RUA62v2/v5SIqNBjv7AVETFh/OQ3P7IoI7FaUv9E/rX8D4RGHH6fKymjkP2UUQhAuVlMIfup4HCXkrDIUP797R/pmdY0l39DVp7Xn1GWuQpPYz2Rqb5PH9qw13s8ERER6ViWt/c7UlxwLx4Y8g7v7v8D+2u3smLuRta9l9u8/cundwEw4pye3PHv6fQJH8EPe/8ikCkFzL/evJv7rnmGyrK2rxIZFRfOv16/KwBZiZV6DejJB1Wv8NsrnmTz8h1k5q4mn8MrPe5hC5jQg2Sm9jqfUZOH8shrP23ebppwoLzKa/wBs34GhkFdQQ4V2zf4lFNeWSWmCWpUIyIi0vl4LbQrnXWsL8vi2+KdbK3IZf9IJ4bH5M9b3uP0hEGcGteX6KAwn37Ij3r/kn21mxn+zBT2/i2DssY8Qu3R1LsriQvuRVrEqQyIOo0+4cMtO7DjLSmlG0/Nu4O7L/k39XVNUwMq6/Kpc1ZQ62wasS+rzcHlbiAkKIrYsKZ+ymHhIfzz9bvo2duaTi0nDE85pnMNZsNSTOcmbr10P26PgafSxAiZjBGUDjZr5sa31a/fvJ+NS7bw7YcTWbdoI/m7C4iOj6KytIqk/omMOXsUp1+YzshJQ4/azzDAY7bSaaQd1bLH9KjIFhER6aRaLLTf3LeC1/Yuo7i+igbPwZUeDz4L9va+lXyYu5b44CiuT5vMpSkTfPpBKeEjSAkf0fx1tauUSMeJVVz2SunGgjWP8vufvsaWDfvYtOED8soPr+S3u+gbABKjh3DWmBsYObYvD//1qo5Kt9Py1M7BrHkR01MIZgMAiQmHts2FurcwbAnYIm7HCJ/VITmOmjKMUVOGNX9dWlBOfGLsMffrkxDHlpwCy/JISTix/g6JiIicSI4qtD2myfXL/8Oe6gJcpveFWBrcLvLrynhy24e8v38NL51xd5sXZznRiuwjPfL3q9m4Joupi0exfsVu8nNKiY4Jo7KijqQ+8Yw5YwCnTR3CiLF9OzrVTsaDu/hiTNdOwOn9ZWYDpjsXd9XvMGrnY094F//bSfrHlyIbYGxasqWFdnr/5GO/SERERDpEc6Ht9Li59OsnOVBf3trrj+LyuNlamcvFS57gnckPYDcC9mxllzMqPY1R6Ydb9ZUWVxOfENmBGXVyphN30dmYntxjv/aIfUzXZlxFU3F0/xKwByw9q5w+OIUFqzOpqmvwO1ZUaAinDUqxICsREREJhObK+Nrl/2pTkX2k/Lpyrlv2b8uSOhGpyG6dq+SithXZR3Ln4iq+yNqEAmTS0DRiw317tuFYukWFM3FIX0tiiYiIiPVsAHP2LCG7ptivQFk1hbya9bUlScnJxVP9f+D2c+EV1y48Nc9Zk1CAvXD3ZTjs/t39cdhtvHD35RZlJCIiIoFgK66v5I3sFa13Q/CB2/Tw2t7llDRWW5SanBQ8hXhqXwXT39US3XhqXgRPiSVpBVLPuChuO3sCIUHtm+oSEmTnrnNPp3tMhMWZiYiIiJVsy4p3UGZRcVzWWMPyou2WxJKTg6d+MXj8u5vSzCzBrF9sTawAu3vGadx73hmEBh9+HrmuIIfKnRnU5OwEoDZ3D5U7M6jNP9yrOyTIwU/On8jt54w/7jmLiIhI2ziWFW7D5WU0u+C9NVSs2U3Ntjxc1fUM/sPVRI/u6zWYy3SztHArFyaPDVC6csJp+ApoeTT7389V8OmXtaxaV09ZhYdP3+jF9MmtzG82XZgNizDCLw1Mrha7cVo6qd3juH/OR7jdHko2fEP5ltXN2wu/XQhA9MBRpF10Mw67wZM3XMCUYf06KmURERFpA8fO6nyvG4sXbsQWGkT0mDRKv97qU8BdVQesyk1OAqZrm9dtL71eRXi4wTlTw3nzPd/uurQWrzOaNqI/6/7yY37/9iI+i7iZyh/MwmE3MDExMHC5TaLDQphx6mAeuXRaR6crIiIibeAwTe/9h4f/+yYwDGp25vtcaJsmzUWCSOvMVreuWtgbmw3WZjT4XGg3xTTp6L7abfXIpdN55NLp1DQ0siWnkL1FpfTtHs+wPj2ICAnu6PRERESkHRzO1h5Ca8fazk6PW0W2+MgA0/vCNLb2NOYwnXS1IvtIESHBjBvQm3EDend0KiIiIuInW1pED0sDpkV1tzSenNgMR/9OHU9ERESkvWxndB+EDWtWdLRhcEb3IZbEkpNEyBSsG4G2QYjmMYuIiEjnYBsTn0b30ChLgiWERpMen3bsF4ocZAueAPZEa4LZe2ALmWBNLBERERE/2YZEJ5Perb8F86oNTk8YyMCoJEsSk5NE0HBswWdaEMjAFjwJHEMtiCUiIiLiPxvAoyMvIyIoxK9A0UGhPDLiEkuSkpOLLebPGIZ/d1UMWzS2mD9alJGIiIiI/5onZ79y+j3EBoW3K0hMUARzzrjHsqTk5GNLWAC2uPbtbMRh77bA2oRERERE/NS8/nNyeDdeOP0uZi37F3XuRgBqdubTWFBBfX45AFWbc3DX1BOUEEXkkGQAwh0hvHTGXfQKi++A9OVEYdhTsXd7C3fxhWDWAk39s/fmOMnKbmpB+c3KOsor3fROcjBhbGjTjrZwHN3eAXufjkpdREREpEWGaZrfWzXk4fWvsbE8m1V/mEfxF5u+t1PcxMGc/tsbOTU2ld+fevXxyFO+4/HHH8c0TR577LGOTsVynvLZeBrXccvsTcx5s+p72y+5III3XhiFLXg8ttinOiBDERERkWNrsdAGWFeWxdKCbawu2cX+ulJigsOpaKyld1g84xMGMLnHUE6N63uc05VDTuRCG8BsXIXZ8CWehmXg2QdGHJhlYEvBFjIRI2Q6RnB6R6cpIiIi4pXD24YxcWmMiTvcqu83f/kDj/78MbzU5SKWMoLHYwSPx3boGUlPMdgSOjQnERERkbbweaUas87Jo48+GshcRLxTkS0iIiJdjDVLQoqIiIiIyFFUaIuIiIiIBIAKbRERERGRAFChLSIiIiISACq0RUREREQCQIW2iIiIiEgAqNAWEREREQkAFdoiIiIiIgGgQltEREREJABUaIuIiIiIBIAKbRERERGRAFChLSIiIiISACq0RUREREQCQIW2iIiIiEgAqNAWEREREQkAFdoiIiIiIgGgQltEREREJABUaIuIiIiIBIAKbRERERGRAHB0dALimxpXDdurt5NZkUlWTRZ5E/MwTINXsl9hRMwIBkcNJtwe3tFpioiIiMhBKrS7gEWFi/jswGdUOCto9DQ2fTO66T9fFn7J0uKlxAbFMiNxBtMTp3dcoiIiIiLSTIV2J2Zi8ljmY+TW5eI23V5f5/Q4KWoo4vX9r7O0eCmPDn8UA+M4ZioiIiIi36U52p2Uy3TxYMaD7Kvd12qRfdQ+HhfZtdk8mPEgHtMT4AxFREREpDUqtDupRzMfpaSxpF37ljSW8GjmoxZnJCIiIiJtoUK7E/oo7yMK6gv8ipFXn8en+Z9alJGIiIiItJUK7U6mrLGML4q+8Hm6iDce08PCgoVUuiotykxERERE2kKFdiezqWITVc4qS2JVuirJKM+wJJaIiIiItI26jnQyGeUZXkezt76xlf3L91O0uYjGqkbO/fe59Brfy2sst+lmQ/kGJiVMClS6IiIiIuKFRrQ7mZy6HK/bdn6wE2eNk+TTkn2Ot792vxVpiYiIiEgbaUS7EzExW91+4ZwLMWwGxVuLyfo8y+eYJqb6aouIiIgcZxrR7kQMDFymy/t2W9uLZZfpUpEtIiIi0gFUaHcySaFJlsZLDvN9momIiIiIWEeFdiczKmaUZSPQBgajYkZZEktERERE2kaFdiczJHoIccFxlsSKC45jcNRgS2KJiIiISNuo0O5kUsNTGRY9zO84BgYjokeQEp5iQVYiIiIi0lYqtDuhW9JuIdwe7leMcEc4N6XdZFFGIiIiItJWKrQ7qUeHPUqkI7Jd+0Y5onh02KMWZyQiIiIibeG1j3Z5Yx2ri3JYemAPm0rz2J/mwDBNPGs/ZXJSf8Z170NMUOjxzPWk0iO0B78e+mv+X+b/o8HTAEDx1mKq86qpzqsGoGBDAY1VjUQkRtB9RHcAQuwh/HrYr+ke0r3DchcRERERMEzT/N4qKXN2rub5Hasprqum3u383k6hdgcJoZHcPuQ0Zg0Ye1wSPZn9Z9d/2FW9iw9/9SG7Ptr1ve2pZ6Xyoyd/xKCoQdzV/64OyFBEREREvuuoQttjmvzw8xfYUVGEy+M+5s4Om40hMT1YcO4tWhIlwLZXbWdD+Qa2VG6hsKGQCHsENe4aeoT0YHj0cEbHjmZg1MCOTlNEREREDmoutJ0eN9M/fprcmoo2B0mOiOGrC+7GbmjK9/FS6aok2hHd0WmIiIiIiBfNlfGFnz3XriIbILemggsXPm9ZUnJsKrJFREREOjcbwP9tW86eqhK/Au2qKOLZ7d9akpSIiIiISFdnK6yrYs6ONbi//0xkm7hNkxd2rKK4vsai1EREREREui7b4vzdlDRYUxyX1deyOP/7XTFERERERE42jq/yd+HyeFrcWPHpCurW76B+1348NXUkPXITYSP7ew3m9LhZlLeLy9JOCVS+IiIiIiJdgm1beYHXjVWL1+GpayB81ACfA24rO2BFXiIiIiIiXZqjtanZvf94NxgGDXtyqV6xyaeA5sE/6qstIiIiIiczW6PZysI0RtvLZafHoyJbRERERE56tgFRCZYGHBBjbTwRERERka7INiWpP7Z2jFy3xDAMpiV5f1hSRERERORkYZvQI4XEMGtWGUwMi2JCj1RLYomIiIiIdGW2EXFJnJGYasm86sk9+zE0NtGCSCIiIiIiXZsN4C/jLyQyOMSvQDHBofxx3AWWJCUiIiIi0tXZDv3Pe+fcSlxIWLuCxAWH8d65t1qWlIiIiIhIV9dcaKdGxvL22TcR7ghq3tiwJ5ealZnUbd4DQP22vdSszKRhZ07za8KDgnn33JvpExFzHNMWEREREencDNP8/pI19y5/h7XF+8n820tULVn/vZ0iJgxn5C9vY1z3FP55+o+OS6IiIiIiIl1Ji4U2wKrCfSzK28Hywmyyq0qJDQmnvKGW1Kh4zuzRl7N7DSS9R8rxzldEREREpEsw1qxZY5qmSXp6eqsvLK6vJiE08jil1XZr167Fl+MQERERETkeHB9++KFPBWpnLrIBfD0OEREREZHjwXbsl4iIiIiISFup0BYRERERCQAV2iIiIiIiAeDIy8sjLy+PZ555pqNz8cuaNWvo1atXR6chIiIiIgKAo7q6mvz8fNav/36/7K7kwIEDREVFdXQaIiIiIiIAOAYNGsTAgQN57LHHOjoXvzz++ON4aQkuIiIiInLcaY62iIiIiEgAqNAWEREREQkAFdoiIiIiIgHgSE9PPyHmNp8oxyEiIiIiJwbDVHUqIiIiImI5TR0REREREQmA5kJ7y5YtPPzww4wePZro6GiSkpI477zzWL58uU+Btm3bhmEYLf556qmnAnYAIiIiIiKdkePQ//zmN79hwYIFnHPOOZx//vmUlZXx+mG5ngYAAANXSURBVOuvM3HiRF577TWuvPJKnwJefPHFjB079qjvnXHGGdZmLSIiIiLSyTXP0f74448ZP348CQkJzRuzs7M55ZRTiIuLIysrq9VA27ZtY+jQoTz77LPceuutgc1aRERERKSTa546cv755x9VZAOkpqYybdo09u7dS11dnU8BTdMkNzeXoqIiazMVEREREelCjvkwZFFREbGxsYSFhfkUcPbs2fTu3ZsePXqQlpbGCy+84HeSIiIiIiJdjaO1jUuXLmX58uXMnj37mIFsNhsTJ07kggsuIDk5mezsbP7v//6PW265haqqKu677z7LkhYRERER6ey89tHOz89n3LhxBAcHs379emJiYtocvKysjBEjRlBVVUV+fj4RERF+JywiIiIi0hW0OHWkrKyMGTNm0NDQwMcff9yuIhsgLi6Ou+66i6qqKlavXu1XoiIiIiIiXcn3po5UVVVx3nnnsW/fPr788kuGDBni1w9ISUkBoLS01K84IiIiIiJdyVGFdm1tLRdccAGbN29m4cKFjBkzxu8fsG3bNgASExP9jiUiIiIi0lU0z9FuaGhg5syZLF26lA8++IBzzjnH604FBQVkZWUxaNAg4uPjAdi+fTsDBw7EZjs8G2X79u2MHz+ekJAQcnJyCAkJCfDhiIiIiIh0Ds0j2vfeey9ffPEFkydPZuXKlaxcufKoF86ePbt5rvb8+fOZPXs28+fP57LLLgPgkUceYcOGDUyePJmkpCT27dvH22+/TUNDA88++6yKbBERERE5qTQX2odWfvz666/5+uuvv/fCa6+9ttWHIi+55BLKy8v55JNPKCkpISoqimnTpvGLX/yCSZMmBSB1EREREZHOy2t7PxERERERab9jrgwpIiIiIiJtp0JbRERERCQAVGiLiIiIiASACm0RERERkQBQoS0iIiIiEgAqtEVEREREAkCFtoiIiIhIAKjQFhEREREJABXaIiIiIiIBoEJbRERERCQAVGiLiIiIiASACm0RERERkQBQoS0iIiIiEgAqtEVEREREAkCFtoiIiIhIAKjQFhEREREJABXaIiIiIiIBoEJbRERERCQAVGiLiIiIiASACm0RERERkQBQoS0iIiIiEgAqtEVEREREAkCFtoiIiIhIAPx/jkodJawYJWEAAAAASUVORK5CYII=", "text/plain": [ "" ] diff --git a/searchindex.js b/searchindex.js index a94d0d9..69bdcee 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["api", "cite", "cli", "developer", "index", "install", "quickstart", "rendering-demo", "stubs/gctree.CollapsedForest", "stubs/gctree.CollapsedTree", "stubs/gctree.branching_processes", "stubs/gctree.branching_processes.CollapsedForest", "stubs/gctree.branching_processes.CollapsedTree", "stubs/gctree.isotyping", "stubs/gctree.isotyping.Isotype", "stubs/gctree.isotyping.IsotypeTemplate", "stubs/gctree.isotyping.explode_idmap", "stubs/gctree.isotyping.isotype_distance", "stubs/gctree.isotyping.isotype_parsimony", "stubs/gctree.isotyping.isotype_tree", "stubs/gctree.mutation_model", "stubs/gctree.mutation_model.MutationModel", "stubs/gctree.utils", "stubs/gctree.utils.hamming_distance", "stubs/gctree.utils.product"], "filenames": ["api.rst", "cite.rst", "cli.rst", "developer.rst", "index.rst", "install.rst", "quickstart.rst", "rendering-demo.ipynb", "stubs/gctree.CollapsedForest.rst", "stubs/gctree.CollapsedTree.rst", "stubs/gctree.branching_processes.rst", "stubs/gctree.branching_processes.CollapsedForest.rst", "stubs/gctree.branching_processes.CollapsedTree.rst", "stubs/gctree.isotyping.rst", "stubs/gctree.isotyping.Isotype.rst", "stubs/gctree.isotyping.IsotypeTemplate.rst", "stubs/gctree.isotyping.explode_idmap.rst", "stubs/gctree.isotyping.isotype_distance.rst", "stubs/gctree.isotyping.isotype_parsimony.rst", "stubs/gctree.isotyping.isotype_tree.rst", "stubs/gctree.mutation_model.rst", "stubs/gctree.mutation_model.MutationModel.rst", "stubs/gctree.utils.rst", "stubs/gctree.utils.hamming_distance.rst", "stubs/gctree.utils.product.rst"], "titles": ["Classes", "Citing gctree", "gctree", "Open source code repository", "gctree documentation", "Installation", "Quickstart", "Custom tree visualization", "gctree.CollapsedForest", "gctree.CollapsedTree", "gctree.branching_processes", "gctree.branching_processes.CollapsedForest", "gctree.branching_processes.CollapsedTree", "gctree.isotyping", "gctree.isotyping.Isotype", "gctree.isotyping.IsotypeTemplate", "gctree.isotyping.explode_idmap", "gctree.isotyping.isotype_distance", "gctree.isotyping.isotype_parsimony", "gctree.isotyping.isotype_tree", "gctree.mutation_model", "gctree.mutation_model.MutationModel", "gctree.utils", "gctree.utils.hamming_distance", "gctree.utils.product"], "terms": {"python": [0, 4, 5, 6, 7], "api": [0, 6, 7], "gctree": [0, 3, 5, 7], "packag": [0, 3, 4, 5, 6, 7], "top": [0, 6], "level": [0, 2], "promot": 0, "from": [0, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 17], "branching_process": [0, 4], "us": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 20, 21], "genotyp": [1, 2, 5, 6, 8, 9, 10, 11, 12, 13, 19], "abund": [1, 2, 4, 5, 7, 8, 9, 10, 11, 12, 13, 19], "improv": [1, 6], "phylogenet": [1, 4], "infer": [1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 19], "william": 1, "": [1, 5, 6, 13, 15, 20, 21], "dewitt": 1, "iii": 1, "luka": 1, "mesin": 1, "gabriel": 1, "d": 1, "victora": 1, "vladimir": 1, "n": [1, 2, 5, 8, 10, 11, 20, 21], "minin": 1, "frederick": 1, "A": [1, 2, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 21], "matsen": 1, "iv": 1, "molecular": 1, "biologi": 1, "evolut": [1, 2, 5], "volum": 1, "35": 1, "issu": [1, 6], "5": [1, 2, 6, 7], "mai": [1, 3, 5, 6, 7, 9, 10, 12], "2018": 1, "page": [1, 3, 4, 6, 7], "1253": 1, "1265": 1, "http": [1, 3, 5, 6, 20, 21], "doi": 1, "org": [1, 6, 20, 21], "10": [1, 2, 5, 7], "1093": 1, "molbev": 1, "msy020": 1, "articl": 1, "author": 1, "titl": 1, "journal": 1, "number": [1, 2, 6, 8, 10, 11, 13, 18, 20, 21], "year": 1, "month": 1, "02": 1, "abstract": 1, "modern": 1, "biolog": 1, "techniqu": 1, "enabl": 1, "veri": [1, 2], "dens": 1, "genet": [1, 5], "sampl": [1, 2, 5, 6, 8, 10, 11, 20, 21], "unfold": 1, "evolutionari": 1, "histori": [1, 2, 6], "thu": 1, "frequent": 1, "some": [1, 6], "multipl": [1, 6, 20, 21], "time": [1, 2, 20, 21], "thi": [1, 2, 5, 6, 7, 9, 10, 12, 13, 14, 15, 17, 18, 19], "motiv": 1, "strategi": 1, "incorpor": [1, 13], "inform": [1, 2, 4, 5, 6, 8, 10, 11, 13, 14], "In": [1, 6, 7], "we": [1, 2, 3, 6, 7, 8, 9, 10, 11, 12], "synthes": 1, "stochast": 1, "process": [1, 2, 6, 8, 9, 10, 11, 12, 20, 21], "model": [1, 2, 6, 8, 9, 10, 11, 12, 20, 21], "standard": 1, "sequenc": [1, 2, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 23], "base": [1, 2, 6, 7, 8, 9, 10, 11, 12, 14, 15, 20, 21], "optim": [1, 6, 8, 10, 11], "show": [1, 6, 7], "tree": [1, 2, 4, 5, 8, 9, 10, 11, 12, 13, 18, 19], "estim": [1, 7, 8, 9, 10, 11, 12], "i": [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 17, 18, 19], "substanti": 1, "do": [1, 6], "so": [1, 6, 8, 9, 10, 11, 12, 13, 17], "our": [1, 6, 7], "method": [1, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 19, 21], "valid": [1, 6], "extens": 1, "simul": [1, 8, 9, 10, 11, 12, 20, 21], "an": [1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 19, 20, 21], "experiment": [1, 6], "singl": [1, 2, 20, 21], "cell": [1, 2, 6, 13, 19], "lineag": 1, "trace": 1, "studi": 1, "germin": [1, 6], "center": [1, 6], "b": [1, 6], "receptor": 1, "affin": [1, 6, 7], "matur": [1, 6], "issn": 1, "0737": 1, "4038": 1, "url": 1, "eprint": 1, "academ": 1, "oup": 1, "com": [1, 3, 5], "mbe": 1, "pdf": 1, "25091561": 1, "The": [2, 5, 6, 8, 10, 11], "primari": 2, "collaps": [2, 6, 8, 9, 10, 11, 12, 13, 19], "usag": 2, "h": 2, "run": [2, 3, 5, 6, 8, 9, 10, 11, 12], "librari": 2, "function": [2, 13, 17, 18, 20, 21, 22, 24], "outbas": [2, 6, 8, 10, 11], "img_typ": [2, 8, 10, 11], "verbos": [2, 6, 8, 10, 11, 20, 21], "output": [2, 6, 7, 13, 19], "file": [2, 6, 7, 8, 9, 10, 11, 12, 20, 21], "imag": [2, 5, 6, 9, 10, 12], "type": [2, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24], "flag": [2, 6, 9, 10, 12], "messag": [2, 20, 21], "likelihood": [2, 6, 8, 9, 10, 11, 12], "rank": [2, 5, 6, 8, 10, 11], "root": [2, 6, 7, 9, 10, 12, 20, 21], "colormapfil": 2, "chain_split": [2, 8, 9, 10, 11, 12], "frame2": [2, 9, 10, 12], "1": [2, 6, 7, 8, 9, 10, 11, 12, 13, 15, 20, 21, 22, 23, 24], "2": [2, 6, 7, 22, 23], "3": [2, 5, 6, 7], "positionmapfil": 2, "positionmapfile2": 2, "idmapfil": [2, 6], "isotype_mapfil": [2, 6], "isotype_nam": [2, 8, 10, 11, 13, 14, 15, 19], "mutabl": [2, 6, 8, 10, 11, 20, 21], "substitut": [2, 6, 8, 9, 10, 11, 12, 20, 21], "ranking_coeff": [2, 6, 8, 10, 11], "summarize_forest": [2, 6, 8, 10, 11], "tree_stat": [2, 6, 8, 10, 11], "frame": [2, 6, 9, 10, 12, 20, 21], "idlabel": [2, 6, 9, 10, 12], "infil": 2, "input": 2, "If": [2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 18, 19], "two": [2, 6, 9, 10, 12, 20, 21, 22, 23], "filenam": [2, 6, 7], "ar": [2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 19], "pass": [2, 6, 8, 9, 10, 11, 12, 13, 14], "first": [2, 6, 7, 13, 14, 20, 21], "shall": [2, 13, 14, 20, 21], "dnapar": [2, 6], "outfil": [2, 6, 9, 10, 12], "each": [2, 6, 7, 8, 9, 10, 11, 12, 13, 18, 19, 20, 21], "site": [2, 6, 20, 21], "second": [2, 13, 14, 20, 21], "contain": [2, 6, 8, 10, 11, 13, 14, 15, 19, 20, 21], "allel": [2, 6, 8, 10, 11], "frequenc": [2, 9, 10, 12], "count": [2, 6, 8, 9, 10, 11, 12], "format": [2, 3, 6, 8, 10, 11, 20, 21], "seqid": 2, "nob": 2, "pickl": [2, 6, 7, 9, 10, 12], "dag": [2, 6, 8, 10, 11], "object": [2, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 21], "creat": [2, 5, 6, 7], "new": [2, 6, 9, 10, 12, 13, 14, 15, 19], "forest": [2, 6, 8, 10, 11], "onli": [2, 6], "annot": [2, 6, 8, 9, 10, 11, 12, 13, 19], "ad": [2, 6, 8, 10, 11], "outgroup": [2, 6], "default": [2, 5, 6, 8, 9, 10, 11, 12, 13, 15], "color": [2, 6, 9, 10, 12], "map": [2, 6, 7, 9, 10, 12, 13, 16, 19], "tab": 2, "separ": [2, 5, 9, 10, 12], "when": [2, 6, 7, 8, 9, 10, 11, 12], "concaten": [2, 8, 9, 10, 11, 12], "heavi": [2, 6], "light": 2, "chain": [2, 6], "0": [2, 6, 7, 8, 9, 10, 11, 12, 20, 21], "index": [2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14], "which": [2, 3, 6, 7, 8, 9, 10, 11, 12], "2nd": [2, 9, 10, 12], "begin": 2, "need": [2, 5, 6], "determin": [2, 6], "code": [2, 4, 6, 9, 10, 12, 20, 21], "both": [2, 6], "also": [2, 3, 5, 6, 9, 10, 12, 13, 19], "correctli": 2, "calcul": [2, 8, 9, 10, 11, 12], "possibl": [2, 6, 13, 14], "choic": [2, 6], "codon": 2, "option": [2, 6, 7, 8, 9, 10, 11, 12, 13, 15, 20, 21], "list": [2, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 19, 20, 21], "e": [2, 6, 7, 9, 10, 12], "g": [2, 6, 7, 9, 10, 12, 20, 21], "imgt": 2, "correspond": [2, 6, 8, 10, 11], "indic": [2, 6, 9, 10, 12], "csv": [2, 6, 20, 21], "origin": [2, 5, 6, 13, 14, 16, 19], "id": [2, 6, 9, 10, 12, 13, 16, 19], "For": [2, 5, 6, 7, 20, 21], "Such": 2, "can": [2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 20, 21], "produc": 2, "provid": [2, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 18], "observ": [2, 6, 13, 16, 19], "exampl": [2, 5, 6, 7, 20, 21], "line": [2, 3, 4, 6], "should": [2, 6, 9, 10, 12, 13, 19], "have": [2, 6, 7, 9, 10, 12, 13, 19], "somesequence_id": 2, "some_isotyp": 2, "order": [2, 8, 10, 11, 13, 14, 15, 19, 20, 21], "most": [2, 6], "naiv": [2, 6, 20, 21], "differenti": 2, "equival": 2, "igm": 2, "igd": 2, "igg3": 2, "igg1": 2, "igg2": 2, "ig": 2, "iga": 2, "path": 2, "thei": [2, 6], "after": [2, 9, 10, 12], "filewith": 2, "column": [2, 20, 21], "fivem": [2, 20, 21], "score": [2, 6, 8, 10, 11, 20, 21], "see": [2, 3, 5, 6, 7], "excerpt": 2, "document": [2, 3, 6], "mutation_model": [2, 4], "mutationmodel": [2, 20], "next": [2, 20, 21], "fourcolumn": 2, "target": [2, 20, 21], "probabl": [2, 6, 8, 9, 10, 11, 12, 20, 21], "c": [2, 5, 20, 21], "t": [2, 5, 8, 9, 10, 11, 12, 13, 17, 20, 21], "respect": [2, 6, 20, 21], "coeffici": [2, 6, 8, 10, 11], "linear": [2, 6, 8, 9, 10, 11, 12], "combin": [2, 6, 8, 10, 11], "trait": [2, 8, 10, 11], "mutat": [2, 6, 8, 9, 10, 11, 12, 20, 21], "appli": [2, 8, 10, 11], "branch": [2, 3, 6, 8, 9, 10, 11, 12, 20, 21], "lexicograph": [2, 6, 8, 10, 11], "write": [2, 6, 8, 9, 10, 11, 12], "forest_summari": [2, 6, 8, 10, 11], "log": [2, 6, 7, 8, 9, 10, 11, 12], "summari": [2, 6, 8, 10, 11], "stat": [2, 6, 8, 10, 11], "all": [2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "larg": [2, 6], "slow": 2, "memori": 2, "intens": 2, "label": [2, 6, 8, 9, 10, 11, 12], "node": [2, 8, 9, 10, 11, 12, 13, 19], "fasta": [2, 6, 9, 10, 12], "align": [2, 6], "those": [2, 3, 6], "easiest": 2, "wai": [2, 5, 6, 13, 19], "access": 2, "ancestr": [2, 8, 10, 11, 13, 19], "neutral": [2, 20, 21], "select": 2, "sequence2": 2, "lambda": [2, 20, 21], "lambda_": 2, "lambda0": [2, 20, 21], "seed": 2, "target_dist": 2, "plotaa": 2, "nucleotid": [2, 20, 21], "co": 2, "poisson": 2, "paramet": [2, 6, 8, 9, 10, 11, 12, 13, 15, 16, 19, 20, 21, 22, 23], "one": [2, 6, 8, 9, 10, 11, 12], "element": 2, "baselin": [2, 20, 21], "rate": [2, 20, 21], "space": 2, "valu": [2, 6, 7, 9, 10, 12, 13, 18], "belong": 2, "downsampl": 2, "size": [2, 7, 9, 10, 12, 20, 21], "none": [2, 8, 9, 10, 11, 12, 13, 15, 19, 20, 21], "until": 2, "termin": 2, "take": [2, 6], "leav": [2, 10], "integ": [2, 6], "random": [2, 7, 8, 10, 11], "non": [2, 8, 10, 11], "synonym": 2, "awai": 2, "plot": [2, 6, 8, 10, 11], "amino": [2, 6, 9, 10, 12], "acid": [2, 6, 9, 10, 12], "addit": [2, 6, 9, 10, 12], "uiliti": 2, "data": [2, 5, 7, 8, 10, 11, 20, 21], "phylip": [2, 6], "prep": 2, "analysi": 2, "stdout": [2, 6], "few": 2, "other": [2, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 19], "header": 2, "must": [2, 6, 9, 10, 12, 13, 19], "uniqu": [2, 6, 13, 16, 19], "less": [2, 6], "than": [2, 6], "equal": [2, 6, 22, 23], "ascii": 2, "charact": 2, "repres": [2, 6], "includ": [2, 6, 7, 8, 10, 11], "even": [2, 6], "more": [2, 6, 7, 20, 21], "ident": [2, 6, 9, 10, 12, 20, 21, 24], "abundance_fil": [2, 6], "id_abund": [2, 6], "colorfil": 2, "colormap": [2, 7, 9, 10, 12], "becaus": [2, 6], "intern": [2, 8, 10, 11, 13, 19], "includeat": 2, "least": [2, 6, 8, 10, 11], "unless": 2, "seq": [2, 9, 10, 12], "interpret": [2, 6], "ani": [2, 6, 7, 9, 10, 12, 24], "match": 2, "read": [2, 20, 21], "appropri": [2, 13, 19], "config": [2, 6], "doesn": 2, "plai": 2, "well": [2, 6], "pipelin": [2, 5], "It": [2, 6], "prompt": 2, "user": 2, "configur": 2, "respons": 2, "stdin": 2, "gener": [2, 3, 6, 8, 9, 10, 11, 12, 13, 19, 20, 21], "script": [2, 5], "meant": 2, "mimic": 2, "expect": 2, "typic": 2, "phy": 2, "cfg": [2, 6], "quick": 2, "jumbl": 2, "bootstrap": [2, 9, 10, 12], "treeprog": 2, "dnaml": 2, "seqboot": 2, "quicker": 2, "thourough": 2, "search": [2, 4], "mani": [2, 6, 8, 10, 11], "permut": 2, "given": [2, 6, 8, 9, 10, 11, 12], "outputfil": 2, "tool": [2, 4, 6], "collapsedforest": [2, 4, 6, 10], "phylip_outfil": 2, "referenc": 2, "add": [2, 6, 8, 9, 10, 11, 12, 13, 19], "same": [2, 6, 8, 9, 10, 11, 12, 13, 19, 20, 21], "differ": [2, 6, 9, 10, 12, 13, 19], "explod": [2, 13, 16, 19], "prepend": [2, 6, 13, 19], "its": [2, 8, 9, 10, 11, 12, 13, 17, 19], "idmap": [2, 6, 8, 10, 11, 13, 16, 19], "written": [2, 6, 13, 19], "directori": [2, 13, 19], "resolv": [2, 13, 19], "unobserv": [2, 6, 13, 19], "minim": [2, 6, 8, 10, 11, 13, 19], "switch": [2, 13, 14, 15, 19], "obei": [2, 13, 19], "children": [2, 13, 19], "violat": [2, 13, 19], "replac": [2, 9, 10, 12, 13, 19], "place": [2, 13, 19], "child": [2, 13, 19], "leaf": [2, 6, 9, 10, 12, 13, 19], "procedur": [2, 13, 19], "alwai": [2, 13, 19], "allow": [2, 6, 7, 13, 14, 15, 19, 20, 21], "conflict": [2, 13, 19], "usual": [2, 9, 10, 12, 13, 19], "increas": [2, 13, 19], "transit": [2, 13, 14, 15, 17, 18, 19], "requir": [2, 6, 9, 10, 12, 13, 19], "result": [2, 5, 6, 13, 19], "render": [2, 6, 9, 10, 12], "reflect": 2, "newick": [2, 6, 9, 10, 12], "just": 2, "like": [2, 5, 6, 9, 10, 12], "print": [2, 8, 10, 11, 20, 21], "how": [2, 6, 7], "along": [2, 8, 9, 10, 11, 12, 13, 18, 20, 21], "edg": [2, 13, 18], "chang": 2, "either": 2, "had": [2, 6], "expand": [2, 7], "make": [2, 3, 6, 7], "judgement": 2, "about": [2, 8, 10, 11, 13, 14], "best": [2, 6], "befor": 2, "left": [2, 8, 10, 11], "out_directori": [2, 6], "work": [2, 3, 5, 6], "freeli": 3, "avail": [3, 7, 9, 10, 12], "github": [3, 5], "matsengrp": [3, 5], "instal": [3, 4, 6], "you": [3, 5, 6, 7], "re": [3, 6], "arm": 3, "mac": 3, "troubl": 3, "pyqt5": 3, "depend": 3, "historydag": 3, "via": [3, 6], "pip": 3, "As": [3, 6], "workaround": 3, "recommend": [3, 6, 9, 10, 12], "comment": 3, "out": [3, 6, 7, 8, 10, 11], "ete3": [3, 8, 9, 10, 11, 12, 13, 19, 20, 21], "setup": 3, "py": [3, 6], "conda": [3, 5], "test": [3, 5], "lint": 3, "build": [3, 6], "doc": [3, 6, 7], "local": [3, 9, 10, 12], "_build": 3, "html": [3, 5], "automat": [3, 6, 9, 10, 12], "deploi": 3, "workflow": 3, "push": 3, "main": 3, "command": [4, 6], "util": [4, 13, 19], "cite": 4, "quickstart": 4, "custom": 4, "visual": [4, 6], "sub": 4, "parsimoni": [4, 5, 8, 9, 10, 11, 12], "dedupl": 4, "mkconfig": [4, 6], "phylip_pars": 4, "isotyp": [4, 8, 10, 11], "posit": [4, 7, 9, 10, 12, 20, 21], "argument": [4, 6, 8, 9, 10, 11, 12, 13, 17], "name": [4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19], "class": [4, 8, 9, 10, 11, 12, 13, 14, 15, 20, 21], "collapsedtre": [4, 6, 7, 8, 10, 11], "modul": [4, 10, 13], "open": [4, 7], "sourc": [4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], "repositori": 4, "todo": 4, "prefer": 5, "activ": 5, "forg": 5, "want": [5, 6, 7], "below": [5, 6, 9, 10, 12], "instead": [5, 6, 7], "howev": [5, 6], "find": [5, 6], "dockerfil": 5, "sh": 5, "git": 5, "clone": 5, "To": [5, 7], "verifi": 5, "wa": [5, 13, 18], "built": [5, 24], "successfulli": 5, "Or": 5, "interact": [5, 6], "bash": 5, "case": [5, 6], "degener": [5, 6, 9, 10, 12], "maximum": [5, 6, 8, 9, 10, 11, 12, 20, 21], "joe": 5, "felsenstein": 5, "washington": 5, "edu": 5, "environ": [5, 6], "bioconda": 5, "program": 6, "cli": [6, 7], "complet": 6, "here": [6, 7], "were": 6, "publish": 6, "ta": 6, "et": [6, 7, 9, 10, 12], "al": [6, 7, 9, 10, 12], "2016": 6, "antibodi": 6, "scienc": 6, "351": 6, "6277": 6, "shown": [6, 7], "fig": 6, "4": [6, 7], "lymph": 6, "start": [6, 9, 10, 12, 20, 21], "150228_clone_3": 6, "8": [6, 7], "v": [6, 9, 10, 12], "gene": [6, 9, 10, 12, 20, 21], "sort": [6, 8, 10, 11], "brainbow": 6, "mous": 6, "multicolor": 6, "fate": 6, "tail": 6, "30": 6, "vibm1s4hbj": 6, "ggacctagcctcgtgaaaccttctcagactctgtccctcacctgttctgtcactggcgac": 6, "tccatcaccagtggttactggaactggatccggaagttcccagggaatagacttgagtac": 6, "atggggtacataagcttcagtggtagcacttactacaatccatctctcaaaagtcgaatc": 6, "tccatcactcgagacacatccaagaaccagtactacctgcagttgaattctgtgactact": 6, "gaggacacagccacatattactgt": 6, "vibm1s4hkj": 6, "vibm1s4hdj": 6, "vibm1s4hcj": 6, "gl": 6, "tccatcaccagtggttactggaactggatccggaaattcccagggaataaacttgagtac": 6, "atggggtacataagctacagtggtagcacttactacaatccatctctcaaaagtcgaatc": 6, "germlin": 6, "doe": 6, "refer": 6, "duplic": 6, "convert": 6, "redirect": 6, "interepret": 6, "specifi": [6, 7, 8, 10, 11], "u": 6, "txt": 6, "now": 6, "head": 6, "43": 6, "264": 6, "ggacctagcc": 6, "tcgtgaaacc": 6, "ttctcagact": 6, "ctgtccctca": 6, "cctgttctgt": 6, "seq1": [6, 22, 23], "seq2": [6, 22, 23], "seq3": 6, "seq4": 6, "seq5": 6, "seq6": 6, "seq7": 6, "tcgtgaaatc": 6, "seq8": 6, "seq9": 6, "set": [6, 7, 9, 10, 12, 13, 16], "feed": 6, "outtre": 6, "rerun": 6, "abov": [6, 9, 10, 12], "delet": 6, "readi": 6, "headless": 6, "xvfb": 6, "x": 6, "server": 6, "altern": 6, "success": 6, "follow": [6, 8, 10, 11], "variabl": 6, "export": 6, "qt_qpa_platform": 6, "offscreen": 6, "xdg_runtime_dir": 6, "tmp": 6, "runtim": 6, "runner": 6, "tell": 6, "matplotlib": [6, 9, 10, 12], "backend": 6, "mplbackend": 6, "agg": 6, "length": [6, 9, 10, 12, 22, 23], "703": 6, "49618320692429585": 6, "36445206621349757": 6, "78": 6, "00393661": 6, "48": 6, "criteria": [6, 8, 10, 11], "trim": [6, 8, 10, 11], "topologi": [6, 8, 9, 10, 11, 12], "randomli": 6, "basenam": 6, "svg": [6, 7, 8, 9, 10, 11, 12], "abundance_rank": 6, "distribut": 6, "Then": 6, "nk": [6, 9, 10, 12], "up": 6, "ten": 6, "arbitrarili": 6, "p": [6, 7, 8, 9, 10, 11, 12], "load": [6, 7], "manipul": 6, "variou": 6, "found": [6, 20, 21], "save": [6, 8, 10, 11], "parsimony_forest": 6, "although": 6, "describ": 6, "ha": [6, 8, 9, 10, 11, 12], "yet": 6, "been": [6, 8, 10, 11], "care": 6, "break": 6, "ti": 6, "between": [6, 13, 14, 15, 22, 23], "accord": [6, 8, 9, 10, 11, 12], "context": [6, 20, 21], "sensit": [6, 20, 21], "By": [6, 8, 10, 11], "maxim": 6, "prioriti": 6, "adjust": 6, "isotypemap": [6, 8, 10, 11], "hs5f_mutabl": [6, 20, 21], "hs5f_substitut": [6, 20, 21], "newrank": 6, "usr": 6, "share": 6, "miniconda": 6, "env": 6, "lib": 6, "python3": 6, "9": [6, 7], "seaborn": 6, "_base": 6, "949": 6, "futurewarn": 6, "group": 6, "tupl": [6, 8, 9, 10, 11, 12, 20, 21], "get_group": 6, "futur": 6, "version": 6, "panda": 6, "silenc": 6, "warn": 6, "data_subset": 6, "grouped_data": 6, "pd_kei": 6, "fit": [6, 7, 8, 10, 11], "skip": 6, "criterion": 6, "par": 6, "mut": 6, "treescor": 6, "28": 6, "66": 6, "45251203": 6, "112": 6, "6491878": 6, "download": 6, "shazam": [6, 20, 21], "project": 6, "bitbucket": [6, 20, 21], "kleinstein": [6, 20, 21], "src": [6, 20, 21], "master": [6, 20, 21], "raw": [6, 20, 21], "_": 6, "detail": [6, 7], "pairplot": 6, "compar": [6, 9, 10, 12], "highest": 6, "sometim": 6, "too": 6, "numer": [6, 7], "would": [6, 7], "resourc": 6, "collect": [6, 8, 10, 11], "importantli": 6, "summar": 6, "much": 6, "being": [6, 9, 10, 12], "cat": 6, "among": 6, "min": 6, "92": 6, "15528744": 6, "rang": [6, 7, 20, 21], "24": 6, "71": 6, "58051182819214": 6, "53": 6, "max": 6, "45251202776497": 6, "68": 6, "93267315487162": 6, "23": 6, "90": 6, "94295234": 6, "87": 6, "98896459": 6, "67": 6, "70153148437015": 6, "72": 6, "04836178891952": 6, "51": 6, "52": 6, "83": 6, "8653921": 6, "65": [6, 20, 21], "83694196549037": 6, "02357794154058": 6, "50": [6, 7], "63": 6, "94500901769653": 6, "80": 6, "46148748": 6, "27": 6, "49": 6, "76": 6, "08641625036459": 6, "85": 6, "28172209": 6, "25": 6, "82": 6, "14344157": 6, "26": 6, "74": 6, "06179332885715": 6, "28220403": 6, "97479724064682": 6, "loss": 6, "50750301": 6, "revis": 6, "associ": [6, 7, 13, 14], "chosen": 6, "guarante": 6, "biject": 6, "occur": 6, "possess": 6, "handl": 6, "That": 6, "implement": 6, "underli": 6, "good": 6, "idea": 6, "guidelin": 6, "sure": 6, "unambigu": 6, "choos": 6, "arbitrari": 6, "meaning": 6, "understand": 6, "disambigu": 6, "anoth": [6, 9, 10, 12], "exist": [6, 8, 9, 10, 11, 12], "better": 6, "appear": 6, "accept": 6, "merg": 6, "final": [6, 7], "retain": 6, "original_id": 6, "attribut": [6, 7, 8, 9, 10, 11, 12, 13, 19], "bit": 6, "discuss": 6, "trust": 6, "why": 6, "mention": 6, "could": 6, "mistakenli": 6, "allud": 6, "particular": 6, "though": 6, "plausibl": 6, "irl": 6, "placement": 6, "account": 6, "known": 6, "mean": [6, 20, 21], "fill": 6, "close": 6, "relat": 6, "possibli": 6, "influenc": 6, "demonstr": 7, "develop": 7, "jupyt": 7, "notebook": 7, "import": 7, "numpi": 7, "np": [7, 9, 10, 12], "rb": 7, "f": [7, 24], "note": [7, 20, 21], "special": 7, "inlin": 7, "suppli": 7, "tree1": 7, "scale": [7, 9, 10, 12], "taller": 7, "branch_margin": [7, 9, 10, 12], "compress": 7, "neg": 7, "width": [7, 9, 10, 12], "fix": 7, "node_s": [7, 9, 10, 12], "6": 7, "disappear": 7, "consist": 7, "tip": 7, "height": 7, "7": 7, "dictionari": [7, 9, 10, 12, 13, 16], "kei": 7, "rgb": 7, "hex": [7, 9, 10, 12], "viridi": [7, 9, 10, 12], "palett": [7, 9, 10, 12], "obtain": 7, "feature_colormap": [7, 9, 10, 12], "might": 7, "comput": [7, 8, 9, 10, 11, 12, 13, 18], "lbi": [7, 9, 10, 12], "neher": [7, 9, 10, 12], "2014": [7, 9, 10, 12], "measur": 7, "bushi": 7, "local_branch": [7, 9, 10, 12], "assign": 7, "them": 7, "artifici": 7, "With": 7, "real": 7, "travers": 7, "add_featur": 7, "randn": 7, "intial": [8, 10, 11], "instanc": [8, 10, 11], "later": [8, 9, 10, 11, 12], "n_tree": [8, 10, 11], "mle": [8, 9, 10, 11, 12], "otherwis": [8, 10, 11, 13, 14], "union": [8, 9, 10, 11, 12], "treenod": [8, 9, 10, 11, 12, 13, 19, 20, 21], "q": [8, 9, 10, 11, 12], "overwrit": [8, 9, 10, 11, 12], "float64": [8, 9, 10, 11, 12, 20, 21], "int": [8, 9, 10, 11, 12, 20, 21, 22, 23], "ll": [8, 9, 10, 11, 12], "margin": [8, 9, 10, 11, 12], "fals": [8, 9, 10, 11, 12, 20, 21], "t_1": [8, 10, 11], "dot": [8, 10, 11], "t_n": [8, 10, 11], "vector": [8, 10, 11], "a_1": [8, 10, 11], "a_n": [8, 10, 11], "joint": [8, 10, 11], "ell": [8, 9, 10, 11, 12], "sum_": [8, 10, 11], "mathbb": [8, 9, 10, 11, 12], "t_i": [8, 10, 11], "a_i": [8, 10, 11], "mid": [8, 9, 10, 11, 12], "right": [8, 10, 11], "bool": [8, 9, 10, 11, 12, 20, 21], "over": [8, 9, 10, 11, 12, 20, 21], "return": [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], "ndarrai": [8, 9, 10, 11, 12], "gradient": [8, 9, 10, 11, 12], "nabla": [8, 9, 10, 11, 12], "kwarg": [8, 9, 10, 11, 12], "arg": [8, 9, 10, 11, 12], "max_": [8, 9, 10, 11, 12], "keyword": [8, 9, 10, 11, 12], "filter_tre": [8, 10, 11], "mutability_fil": [8, 10, 11, 20, 21], "substitution_fil": [8, 10, 11, 20, 21], "ignore_isotyp": [8, 10, 11], "filter": [8, 9, 10, 11, 12], "float": [8, 9, 10, 11, 12, 13, 15, 17, 18], "priorit": [8, 10, 11], "weight": [8, 9, 10, 11, 12, 13, 14, 15, 17, 18], "str": [8, 9, 10, 11, 12, 13, 15, 16, 19, 20, 21, 22, 23], "ignor": [8, 10, 11], "meth": [8, 10, 11], "add_isotyp": [8, 10, 11], "adjac": [8, 10, 11], "stem": [8, 10, 11], "whether": [8, 10, 11, 20, 21], "likelihood_rankplot": [8, 10, 11], "likelihood_rank": [8, 10, 11], "n_topologi": [8, 10, 11], "iter_topology_class": [8, 10, 11], "yield": [8, 10, 11], "revers": [8, 10, 11], "isotypemap_fil": [8, 10, 11], "idmap_fil": [8, 10, 11], "store": [8, 10, 11], "sample_tre": [8, 10, 11], "allow_repeat": [9, 10, 12], "infinit": [9, 10, 12], "galton": [9, 10, 12], "watson": [9, 10, 12], "extinct": [9, 10, 12], "featur": [9, 10, 12], "uncollaps": [9, 10, 12], "ommit": [9, 10, 12], "initializaion": [9, 10, 12], "preserv": [9, 10, 12], "toler": [9, 10, 12], "sister": [9, 10, 12], "clade": [9, 10, 12], "true": [9, 10, 12, 13, 17, 20, 21], "extint": [9, 10, 12], "updat": [9, 10, 12], "position_map": [9, 10, 12], "position_map2": [9, 10, 12], "show_support": [9, 10, 12], "filetyp": [9, 10, 12], "suffix": [9, 10, 12], "pixel": [9, 10, 12], "dict": [9, 10, 12, 13, 16, 19], "support": [9, 10, 12], "cmap": [9, 10, 12], "vmin": [9, 10, 12], "vmax": [9, 10, 12], "continu": [9, 10, 12], "minimum": [9, 10, 12], "symlog": [9, 10, 12], "linthresh": [9, 10, 12], "transform": [9, 10, 12], "string": [9, 10, 12], "file_nam": [9, 10, 12], "serial": [9, 10, 12], "tree2": [9, 10, 12], "comparison": [9, 10, 12], "mrca": [9, 10, 12], "rf": [9, 10, 12], "bootstrap_trees_list": [9, 10, 12], "compat": [9, 10, 12], "attibut": [9, 10, 12], "perhap": [9, 10, 12], "don": [9, 10, 12], "disconfirm": [9, 10, 12], "split": [9, 10, 12], "tau": [9, 10, 12], "tau0": [9, 10, 12], "infinite_root_branch": [9, 10, 12], "nan_root_lbr": [9, 10, 12], "statist": [9, 10, 12], "execut": [9, 10, 12], "lbr": [9, 10, 12], "ratio": [9, 10, 12], "decai": [9, 10, 12], "timescal": [9, 10, 12], "exponenti": [9, 10, 12], "effect": [9, 10, 12], "zero": [9, 10, 12], "assum": [9, 10, 12], "nan": [9, 10, 12], "binari": [10, 20, 21], "clonal": 10, "__init__": [10, 13, 20], "isotypetempl": [13, 14], "isotype_ord": [13, 15], "weight_matrix": [13, 14, 15, 19], "templat": [13, 15], "constructor": [13, 15], "matrix": [13, 15, 18], "self": [13, 14], "instanti": [13, 14], "resolut": [13, 14], "ambigu": [13, 14, 20, 21], "copi": [13, 14], "isotype_tre": 13, "newidmap": [13, 19], "explode_idmap": [13, 19], "correct": [13, 19], "whose": [13, 19], "isotype_dist": [13, 18], "t1": [13, 17], "t2": [13, 17], "symmetr": [13, 17], "isn": [13, 17], "distanc": [13, 17, 22, 23], "isotype_parsimoni": 13, "sum": [13, 18], "dure": [13, 18], "isotype_map": [13, 16], "mutation_ord": [20, 21], "with_replac": [20, 21], "s5f": [20, 21], "bias": [20, 21], "manner": [20, 21], "where": [20, 21], "matter": [20, 21], "tcggg": [20, 21], "03542": [20, 21], "gccgg": [20, 21], "02241675": [20, 21], "gccgc": [20, 21], "06789": [20, 21], "four": [20, 21], "aaaaa": [20, 21], "33": [20, 21], "34": [20, 21], "aaaac": [20, 21], "5000": [20, 21], "2500": [20, 21], "aaaag": [20, 21], "15": [20, 21], "20": [20, 21], "kmer": [20, 21], "central": [20, 21], "k": [20, 21], "mer": [20, 21], "bia": [20, 21], "averag": [20, 21], "lamdba0": [20, 21], "cannot": [20, 21], "postit": [20, 21], "seq_bound": [20, 21], "fitness_funct": [20, 21], "n_init": [20, 21], "subsequ": [20, 21], "parallel": [20, 21], "callabl": [20, 21], "offspr": [20, 21], "initi": [20, 21], "abundnac": [20, 21], "popul": [20, 21], "hamming_dist": 22, "ham": [22, 23], "factor": 24, "mul": 24}, "objects": {"gctree": [[8, 0, 1, "", "CollapsedForest"], [9, 0, 1, "", "CollapsedTree"], [10, 3, 0, "-", "branching_processes"], [13, 3, 0, "-", "isotyping"], [20, 3, 0, "-", "mutation_model"], [22, 3, 0, "-", "utils"]], "gctree.CollapsedForest": [[8, 1, 1, "", "add_isotypes"], [8, 1, 1, "", "filter_trees"], [8, 1, 1, "", "iter_topology_classes"], [8, 1, 1, "", "likelihood_rankplot"], [8, 1, 1, "", "ll"], [8, 1, 1, "", "mle"], [8, 1, 1, "", "n_topologies"], [8, 2, 1, "", "n_trees"], [8, 2, 1, "", "parameters"], [8, 1, 1, "", "sample_tree"], [8, 1, 1, "", "simulate"]], "gctree.CollapsedTree": [[9, 1, 1, "", "compare"], [9, 1, 1, "", "feature_colormap"], [9, 1, 1, "", "ll"], [9, 1, 1, "", "local_branching"], [9, 1, 1, "", "mle"], [9, 1, 1, "", "newick"], [9, 1, 1, "", "render"], [9, 1, 1, "", "simulate"], [9, 1, 1, "", "support"], [9, 2, 1, "", "tree"], [9, 1, 1, "", "write"]], "gctree.branching_processes": [[11, 0, 1, "", "CollapsedForest"], [12, 0, 1, "", "CollapsedTree"]], "gctree.branching_processes.CollapsedForest": [[10, 1, 1, "", "__init__"], [11, 1, 1, "", "add_isotypes"], [11, 1, 1, "", "filter_trees"], [11, 1, 1, "", "iter_topology_classes"], [11, 1, 1, "", "likelihood_rankplot"], [11, 1, 1, "", "ll"], [11, 1, 1, "", "mle"], [11, 1, 1, "", "n_topologies"], [11, 2, 1, "", "n_trees"], [11, 2, 1, "", "parameters"], [11, 1, 1, "", "sample_tree"], [11, 1, 1, "", "simulate"]], "gctree.branching_processes.CollapsedTree": [[10, 1, 1, "", "__init__"], [12, 1, 1, "", "compare"], [12, 1, 1, "", "feature_colormap"], [12, 1, 1, "", "ll"], [12, 1, 1, "", "local_branching"], [12, 1, 1, "", "mle"], [12, 1, 1, "", "newick"], [12, 1, 1, "", "render"], [12, 1, 1, "", "simulate"], [12, 1, 1, "", "support"], [12, 2, 1, "", "tree"], [12, 1, 1, "", "write"]], "gctree.isotyping": [[14, 0, 1, "", "Isotype"], [15, 0, 1, "", "IsotypeTemplate"], [16, 4, 1, "", "explode_idmap"], [17, 4, 1, "", "isotype_distance"], [18, 4, 1, "", "isotype_parsimony"], [19, 4, 1, "", "isotype_tree"]], "gctree.isotyping.Isotype": [[13, 1, 1, "", "__init__"], [14, 2, 1, "", "isotype"], [14, 2, 1, "", "order"], [14, 1, 1, "", "resolutions"], [14, 2, 1, "", "weight_matrix"]], "gctree.isotyping.IsotypeTemplate": [[13, 1, 1, "", "__init__"], [15, 1, 1, "", "new"]], "gctree.mutation_model": [[21, 0, 1, "", "MutationModel"]], "gctree.mutation_model.MutationModel": [[20, 1, 1, "", "__init__"], [21, 1, 1, "", "mutabilities"], [21, 1, 1, "", "mutability"], [21, 1, 1, "", "mutate"], [21, 1, 1, "", "simulate"]], "gctree.utils": [[23, 4, 1, "", "hamming_distance"], [24, 4, 1, "", "product"]]}, "objtypes": {"0": "py:class", "1": "py:method", "2": "py:attribute", "3": "py:module", "4": "py:function"}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "method", "Python method"], "2": ["py", "attribute", "Python attribute"], "3": ["py", "module", "Python module"], "4": ["py", "function", "Python function"]}, "titleterms": {"class": 0, "modul": 0, "cite": 1, "gctree": [1, 2, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], "sub": 2, "command": 2, "test": 2, "name": [2, 6], "argument": [2, 7], "infer": 2, "posit": 2, "simul": 2, "parsimoni": [2, 6], "util": [2, 22, 23, 24], "dedupl": [2, 6], "mkconfig": 2, "phylip_pars": 2, "isotyp": [2, 6, 13, 14, 15, 16, 17, 18, 19], "open": 3, "sourc": 3, "code": 3, "repositori": 3, "develop": [3, 4], "tool": 3, "todo": 3, "list": 3, "document": 4, "user": 4, "guid": 4, "cli": 4, "api": 4, "indic": 4, "tabl": 4, "instal": 5, "anaconda": 5, "pip": 5, "docker": 5, "build": 5, "phylip": 5, "quickstart": 6, "input": 6, "data": 6, "sequenc": 6, "abund": 6, "tree": [6, 7], "A": 6, "note": 6, "about": 6, "node": [6, 7], "ambigu": 6, "custom": 7, "visual": 7, "The": 7, "default": 7, "render": 7, "color": 7, "local": 7, "branch": 7, "statist": 7, "featur": 7, "collapsedforest": [8, 11], "collapsedtre": [9, 12], "branching_process": [10, 11, 12], "isotypetempl": 15, "explode_idmap": 16, "isotype_dist": 17, "isotype_parsimoni": 18, "isotype_tre": 19, "mutation_model": [20, 21], "mutationmodel": 21, "hamming_dist": 23, "product": 24}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"Classes": [[0, "classes"]], "Modules": [[0, "modules"]], "Citing gctree": [[1, "citing-gctree"]], "gctree": [[2, "gctree"], [6, "gctree"]], "Sub-commands": [[2, "Sub-commands"]], "test": [[2, "test"]], "Named Arguments": [[2, "named-arguments"], [2, "named-arguments_repeat1"], [2, "named-arguments_repeat2"], [2, "named-arguments"], [2, "named-arguments"], [2, "named-arguments"], [2, "named-arguments"]], "infer": [[2, "infer"]], "Positional Arguments": [[2, "positional-arguments"], [2, "positional-arguments_repeat1"], [2, "positional-arguments"], [2, "positional-arguments"], [2, "positional-arguments"], [2, "positional-arguments"]], "simulate": [[2, "simulate"]], "Parsimony utilities": [[2, "parsimony-utilities"]], "deduplicate": [[2, "deduplicate"]], "mkconfig": [[2, "mkconfig"]], "phylip_parse": [[2, "phylip-parse"]], "isotype": [[2, "isotype"], [6, "isotype"]], "Open source code repository": [[3, "open-source-code-repository"]], "Developer tools": [[3, "developer-tools"]], "Todo list": [[3, "todo-list"]], "gctree documentation": [[4, "gctree-documentation"]], "User Guide": [[4, null]], "CLI Documentation": [[4, null]], "API Documentation": [[4, null]], "Developer Documentation": [[4, null]], "Indices and tables": [[4, "indices-and-tables"]], "Installation": [[5, "installation"]], "Anaconda install": [[5, "anaconda-install"]], "Pip install": [[5, "pip-install"]], "Docker build": [[5, "docker-build"]], "PHYLIP Installation": [[5, "phylip-installation"]], "Quickstart": [[6, "quickstart"]], "Input data": [[6, "input-data"]], "Deduplication and sequence abundances": [[6, "deduplication-and-sequence-abundances"]], "Parsimony trees": [[6, "parsimony-trees"]], "A note about node names": [[6, "a-note-about-node-names"]], "A note about ambiguous sequence data": [[6, "a-note-about-ambiguous-sequence-data"]], "Custom tree visualization": [[7, "Custom-tree-visualization"]], "The default tree rendering": [[7, "The-default-tree-rendering"]], "Rendering arguments": [[7, "Rendering-arguments"]], "Coloring nodes": [[7, "Coloring-nodes"]], "Local branching statistics": [[7, "Local-branching-statistics"]], "Custom node features": [[7, "Custom-node-features"]], "gctree.CollapsedForest": [[8, "gctree-collapsedforest"]], "gctree.CollapsedTree": [[9, "gctree-collapsedtree"]], "gctree.branching_processes": [[10, "module-gctree.branching_processes"]], "gctree.branching_processes.CollapsedForest": [[11, "gctree-branching-processes-collapsedforest"]], "gctree.branching_processes.CollapsedTree": [[12, "gctree-branching-processes-collapsedtree"]], "gctree.isotyping": [[13, "module-gctree.isotyping"]], "gctree.isotyping.Isotype": [[14, "gctree-isotyping-isotype"]], "gctree.isotyping.IsotypeTemplate": [[15, "gctree-isotyping-isotypetemplate"]], "gctree.isotyping.explode_idmap": [[16, "gctree-isotyping-explode-idmap"]], "gctree.isotyping.isotype_distance": [[17, "gctree-isotyping-isotype-distance"]], "gctree.isotyping.isotype_parsimony": [[18, "gctree-isotyping-isotype-parsimony"]], "gctree.isotyping.isotype_tree": [[19, "gctree-isotyping-isotype-tree"]], "gctree.mutation_model": [[20, "module-gctree.mutation_model"]], "gctree.mutation_model.MutationModel": [[21, "gctree-mutation-model-mutationmodel"]], "gctree.utils": [[22, "module-gctree.utils"]], "gctree.utils.hamming_distance": [[23, "gctree-utils-hamming-distance"]], "gctree.utils.product": [[24, "gctree-utils-product"]]}, "indexentries": {"collapsedforest (class in gctree)": [[8, "gctree.CollapsedForest"]], "add_isotypes() (gctree.collapsedforest method)": [[8, "gctree.CollapsedForest.add_isotypes"]], "filter_trees() (gctree.collapsedforest method)": [[8, "gctree.CollapsedForest.filter_trees"]], "iter_topology_classes() (gctree.collapsedforest method)": [[8, "gctree.CollapsedForest.iter_topology_classes"]], "likelihood_rankplot() (gctree.collapsedforest method)": [[8, "gctree.CollapsedForest.likelihood_rankplot"]], "ll() (gctree.collapsedforest method)": [[8, "gctree.CollapsedForest.ll"]], "mle() (gctree.collapsedforest method)": [[8, "gctree.CollapsedForest.mle"]], "n_topologies() (gctree.collapsedforest method)": [[8, "gctree.CollapsedForest.n_topologies"]], "n_trees (gctree.collapsedforest attribute)": [[8, "gctree.CollapsedForest.n_trees"]], "parameters (gctree.collapsedforest attribute)": [[8, "gctree.CollapsedForest.parameters"]], "sample_tree() (gctree.collapsedforest method)": [[8, "gctree.CollapsedForest.sample_tree"]], "simulate() (gctree.collapsedforest method)": [[8, "gctree.CollapsedForest.simulate"]], "collapsedtree (class in gctree)": [[9, "gctree.CollapsedTree"]], "compare() (gctree.collapsedtree method)": [[9, "gctree.CollapsedTree.compare"]], "feature_colormap() (gctree.collapsedtree method)": [[9, "gctree.CollapsedTree.feature_colormap"]], "ll() (gctree.collapsedtree method)": [[9, "gctree.CollapsedTree.ll"]], "local_branching() (gctree.collapsedtree method)": [[9, "gctree.CollapsedTree.local_branching"]], "mle() (gctree.collapsedtree method)": [[9, "gctree.CollapsedTree.mle"]], "newick() (gctree.collapsedtree method)": [[9, "gctree.CollapsedTree.newick"]], "render() (gctree.collapsedtree method)": [[9, "gctree.CollapsedTree.render"]], "simulate() (gctree.collapsedtree method)": [[9, "gctree.CollapsedTree.simulate"]], "support() (gctree.collapsedtree method)": [[9, "gctree.CollapsedTree.support"]], "tree (gctree.collapsedtree attribute)": [[9, "gctree.CollapsedTree.tree"]], "write() (gctree.collapsedtree method)": [[9, "gctree.CollapsedTree.write"]], "collapsedforest (class in gctree.branching_processes)": [[10, "gctree.branching_processes.CollapsedForest"], [11, "gctree.branching_processes.CollapsedForest"]], "collapsedtree (class in gctree.branching_processes)": [[10, "gctree.branching_processes.CollapsedTree"], [12, "gctree.branching_processes.CollapsedTree"]], "__init__() (gctree.branching_processes.collapsedforest method)": [[10, "gctree.branching_processes.CollapsedForest.__init__"]], "__init__() (gctree.branching_processes.collapsedtree method)": [[10, "gctree.branching_processes.CollapsedTree.__init__"]], "add_isotypes() (gctree.branching_processes.collapsedforest method)": [[10, "gctree.branching_processes.CollapsedForest.add_isotypes"], [11, "gctree.branching_processes.CollapsedForest.add_isotypes"]], "compare() (gctree.branching_processes.collapsedtree method)": [[10, "gctree.branching_processes.CollapsedTree.compare"], [12, "gctree.branching_processes.CollapsedTree.compare"]], "feature_colormap() (gctree.branching_processes.collapsedtree method)": [[10, "gctree.branching_processes.CollapsedTree.feature_colormap"], [12, "gctree.branching_processes.CollapsedTree.feature_colormap"]], "filter_trees() (gctree.branching_processes.collapsedforest method)": [[10, "gctree.branching_processes.CollapsedForest.filter_trees"], [11, "gctree.branching_processes.CollapsedForest.filter_trees"]], "gctree.branching_processes": [[10, "module-gctree.branching_processes"]], "iter_topology_classes() (gctree.branching_processes.collapsedforest method)": [[10, "gctree.branching_processes.CollapsedForest.iter_topology_classes"], [11, "gctree.branching_processes.CollapsedForest.iter_topology_classes"]], "likelihood_rankplot() (gctree.branching_processes.collapsedforest method)": [[10, "gctree.branching_processes.CollapsedForest.likelihood_rankplot"], [11, "gctree.branching_processes.CollapsedForest.likelihood_rankplot"]], "ll() (gctree.branching_processes.collapsedforest method)": [[10, "gctree.branching_processes.CollapsedForest.ll"], [11, "gctree.branching_processes.CollapsedForest.ll"]], "ll() (gctree.branching_processes.collapsedtree method)": [[10, "gctree.branching_processes.CollapsedTree.ll"], [12, "gctree.branching_processes.CollapsedTree.ll"]], "local_branching() (gctree.branching_processes.collapsedtree method)": [[10, "gctree.branching_processes.CollapsedTree.local_branching"], [12, "gctree.branching_processes.CollapsedTree.local_branching"]], "mle() (gctree.branching_processes.collapsedforest method)": [[10, "gctree.branching_processes.CollapsedForest.mle"], [11, "gctree.branching_processes.CollapsedForest.mle"]], "mle() (gctree.branching_processes.collapsedtree method)": [[10, "gctree.branching_processes.CollapsedTree.mle"], [12, "gctree.branching_processes.CollapsedTree.mle"]], "module": [[10, "module-gctree.branching_processes"], [13, "module-gctree.isotyping"], [20, "module-gctree.mutation_model"], [22, "module-gctree.utils"]], "n_topologies() (gctree.branching_processes.collapsedforest method)": [[10, "gctree.branching_processes.CollapsedForest.n_topologies"], [11, "gctree.branching_processes.CollapsedForest.n_topologies"]], "n_trees (gctree.branching_processes.collapsedforest attribute)": [[10, "gctree.branching_processes.CollapsedForest.n_trees"], [11, "gctree.branching_processes.CollapsedForest.n_trees"]], "newick() (gctree.branching_processes.collapsedtree method)": [[10, "gctree.branching_processes.CollapsedTree.newick"], [12, "gctree.branching_processes.CollapsedTree.newick"]], "parameters (gctree.branching_processes.collapsedforest attribute)": [[10, "gctree.branching_processes.CollapsedForest.parameters"], [11, "gctree.branching_processes.CollapsedForest.parameters"]], "render() (gctree.branching_processes.collapsedtree method)": [[10, "gctree.branching_processes.CollapsedTree.render"], [12, "gctree.branching_processes.CollapsedTree.render"]], "sample_tree() (gctree.branching_processes.collapsedforest method)": [[10, "gctree.branching_processes.CollapsedForest.sample_tree"], [11, "gctree.branching_processes.CollapsedForest.sample_tree"]], "simulate() (gctree.branching_processes.collapsedforest method)": [[10, "gctree.branching_processes.CollapsedForest.simulate"], [11, "gctree.branching_processes.CollapsedForest.simulate"]], "simulate() (gctree.branching_processes.collapsedtree method)": [[10, "gctree.branching_processes.CollapsedTree.simulate"], [12, "gctree.branching_processes.CollapsedTree.simulate"]], "support() (gctree.branching_processes.collapsedtree method)": [[10, "gctree.branching_processes.CollapsedTree.support"], [12, "gctree.branching_processes.CollapsedTree.support"]], "tree (gctree.branching_processes.collapsedtree attribute)": [[10, "gctree.branching_processes.CollapsedTree.tree"], [12, "gctree.branching_processes.CollapsedTree.tree"]], "write() (gctree.branching_processes.collapsedtree method)": [[10, "gctree.branching_processes.CollapsedTree.write"], [12, "gctree.branching_processes.CollapsedTree.write"]], "isotype (class in gctree.isotyping)": [[13, "gctree.isotyping.Isotype"], [14, "gctree.isotyping.Isotype"]], "isotypetemplate (class in gctree.isotyping)": [[13, "gctree.isotyping.IsotypeTemplate"], [15, "gctree.isotyping.IsotypeTemplate"]], "__init__() (gctree.isotyping.isotype method)": [[13, "gctree.isotyping.Isotype.__init__"]], "__init__() (gctree.isotyping.isotypetemplate method)": [[13, "gctree.isotyping.IsotypeTemplate.__init__"]], "explode_idmap() (in module gctree.isotyping)": [[13, "gctree.isotyping.explode_idmap"], [16, "gctree.isotyping.explode_idmap"]], "gctree.isotyping": [[13, "module-gctree.isotyping"]], "isotype (gctree.isotyping.isotype attribute)": [[13, "gctree.isotyping.Isotype.isotype"], [14, "gctree.isotyping.Isotype.isotype"]], "isotype_distance() (in module gctree.isotyping)": [[13, "gctree.isotyping.isotype_distance"], [17, "gctree.isotyping.isotype_distance"]], "isotype_parsimony() (in module gctree.isotyping)": [[13, "gctree.isotyping.isotype_parsimony"], [18, "gctree.isotyping.isotype_parsimony"]], "isotype_tree() (in module gctree.isotyping)": [[13, "gctree.isotyping.isotype_tree"], [19, "gctree.isotyping.isotype_tree"]], "new() (gctree.isotyping.isotypetemplate method)": [[13, "gctree.isotyping.IsotypeTemplate.new"], [15, "gctree.isotyping.IsotypeTemplate.new"]], "order (gctree.isotyping.isotype attribute)": [[13, "gctree.isotyping.Isotype.order"], [14, "gctree.isotyping.Isotype.order"]], "resolutions() (gctree.isotyping.isotype method)": [[13, "gctree.isotyping.Isotype.resolutions"], [14, "gctree.isotyping.Isotype.resolutions"]], "weight_matrix (gctree.isotyping.isotype attribute)": [[13, "gctree.isotyping.Isotype.weight_matrix"], [14, "gctree.isotyping.Isotype.weight_matrix"]], "mutationmodel (class in gctree.mutation_model)": [[20, "gctree.mutation_model.MutationModel"], [21, "gctree.mutation_model.MutationModel"]], "__init__() (gctree.mutation_model.mutationmodel method)": [[20, "gctree.mutation_model.MutationModel.__init__"]], "gctree.mutation_model": [[20, "module-gctree.mutation_model"]], "mutabilities() (gctree.mutation_model.mutationmodel method)": [[20, "gctree.mutation_model.MutationModel.mutabilities"], [21, "gctree.mutation_model.MutationModel.mutabilities"]], "mutability() (gctree.mutation_model.mutationmodel method)": [[20, "gctree.mutation_model.MutationModel.mutability"], [21, "gctree.mutation_model.MutationModel.mutability"]], "mutate() (gctree.mutation_model.mutationmodel method)": [[20, "gctree.mutation_model.MutationModel.mutate"], [21, "gctree.mutation_model.MutationModel.mutate"]], "simulate() (gctree.mutation_model.mutationmodel method)": [[20, "gctree.mutation_model.MutationModel.simulate"], [21, "gctree.mutation_model.MutationModel.simulate"]], "gctree.utils": [[22, "module-gctree.utils"]], "hamming_distance() (in module gctree.utils)": [[22, "gctree.utils.hamming_distance"], [23, "gctree.utils.hamming_distance"]], "product() (in module gctree.utils)": [[24, "gctree.utils.product"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["api", "cite", "cli", "developer", "index", "install", "quickstart", "rendering-demo", "stubs/gctree.CollapsedForest", "stubs/gctree.CollapsedTree", "stubs/gctree.branching_processes", "stubs/gctree.branching_processes.CollapsedForest", "stubs/gctree.branching_processes.CollapsedTree", "stubs/gctree.isotyping", "stubs/gctree.isotyping.Isotype", "stubs/gctree.isotyping.IsotypeTemplate", "stubs/gctree.isotyping.explode_idmap", "stubs/gctree.isotyping.isotype_distance", "stubs/gctree.isotyping.isotype_parsimony", "stubs/gctree.isotyping.isotype_tree", "stubs/gctree.mutation_model", "stubs/gctree.mutation_model.MutationModel", "stubs/gctree.utils", "stubs/gctree.utils.hamming_distance", "stubs/gctree.utils.product"], "filenames": ["api.rst", "cite.rst", "cli.rst", "developer.rst", "index.rst", "install.rst", "quickstart.rst", "rendering-demo.ipynb", "stubs/gctree.CollapsedForest.rst", "stubs/gctree.CollapsedTree.rst", "stubs/gctree.branching_processes.rst", "stubs/gctree.branching_processes.CollapsedForest.rst", "stubs/gctree.branching_processes.CollapsedTree.rst", "stubs/gctree.isotyping.rst", "stubs/gctree.isotyping.Isotype.rst", "stubs/gctree.isotyping.IsotypeTemplate.rst", "stubs/gctree.isotyping.explode_idmap.rst", "stubs/gctree.isotyping.isotype_distance.rst", "stubs/gctree.isotyping.isotype_parsimony.rst", "stubs/gctree.isotyping.isotype_tree.rst", "stubs/gctree.mutation_model.rst", "stubs/gctree.mutation_model.MutationModel.rst", "stubs/gctree.utils.rst", "stubs/gctree.utils.hamming_distance.rst", "stubs/gctree.utils.product.rst"], "titles": ["Classes", "Citing gctree", "gctree", "Open source code repository", "gctree documentation", "Installation", "Quickstart", "Custom tree visualization", "gctree.CollapsedForest", "gctree.CollapsedTree", "gctree.branching_processes", "gctree.branching_processes.CollapsedForest", "gctree.branching_processes.CollapsedTree", "gctree.isotyping", "gctree.isotyping.Isotype", "gctree.isotyping.IsotypeTemplate", "gctree.isotyping.explode_idmap", "gctree.isotyping.isotype_distance", "gctree.isotyping.isotype_parsimony", "gctree.isotyping.isotype_tree", "gctree.mutation_model", "gctree.mutation_model.MutationModel", "gctree.utils", "gctree.utils.hamming_distance", "gctree.utils.product"], "terms": {"python": [0, 4, 5, 6, 7], "api": [0, 6, 7], "gctree": [0, 3, 5, 7], "packag": [0, 3, 4, 5, 7], "top": [0, 6], "level": [0, 2], "promot": 0, "from": [0, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 17], "branching_process": [0, 4], "us": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 20, 21], "genotyp": [1, 2, 5, 6, 8, 9, 10, 11, 12, 13, 19], "abund": [1, 2, 4, 5, 7, 8, 9, 10, 11, 12, 13, 19], "improv": [1, 6], "phylogenet": [1, 4], "infer": [1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 19], "william": 1, "": [1, 5, 6, 13, 15, 20, 21], "dewitt": 1, "iii": 1, "luka": 1, "mesin": 1, "gabriel": 1, "d": 1, "victora": 1, "vladimir": 1, "n": [1, 2, 5, 8, 10, 11, 20, 21], "minin": 1, "frederick": 1, "A": [1, 2, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 21], "matsen": 1, "iv": 1, "molecular": 1, "biologi": 1, "evolut": [1, 2, 5], "volum": 1, "35": 1, "issu": [1, 6], "5": [1, 2, 6, 7], "mai": [1, 3, 5, 6, 7, 9, 10, 12], "2018": 1, "page": [1, 3, 4, 6, 7], "1253": 1, "1265": 1, "http": [1, 3, 5, 6, 20, 21], "doi": 1, "org": [1, 6, 20, 21], "10": [1, 2, 5, 7], "1093": 1, "molbev": 1, "msy020": 1, "articl": 1, "author": 1, "titl": 1, "journal": 1, "number": [1, 2, 6, 8, 10, 11, 13, 18, 20, 21], "year": 1, "month": 1, "02": 1, "abstract": 1, "modern": 1, "biolog": 1, "techniqu": 1, "enabl": 1, "veri": [1, 2], "dens": 1, "genet": [1, 5], "sampl": [1, 2, 5, 6, 8, 10, 11, 20, 21], "unfold": 1, "evolutionari": 1, "histori": [1, 2, 6], "thu": 1, "frequent": 1, "some": [1, 6], "multipl": [1, 6, 20, 21], "time": [1, 2, 20, 21], "thi": [1, 2, 5, 6, 7, 9, 10, 12, 13, 14, 15, 17, 18, 19], "motiv": 1, "strategi": 1, "incorpor": [1, 13], "inform": [1, 2, 4, 5, 6, 8, 10, 11, 13, 14], "In": [1, 6, 7], "we": [1, 2, 3, 6, 7, 8, 9, 10, 11, 12], "synthes": 1, "stochast": 1, "process": [1, 2, 6, 8, 9, 10, 11, 12, 20, 21], "model": [1, 2, 6, 8, 9, 10, 11, 12, 20, 21], "standard": 1, "sequenc": [1, 2, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 23], "base": [1, 2, 6, 7, 8, 9, 10, 11, 12, 14, 15, 20, 21], "optim": [1, 6, 8, 10, 11], "show": [1, 6, 7], "tree": [1, 2, 4, 5, 8, 9, 10, 11, 12, 13, 18, 19], "estim": [1, 7, 8, 9, 10, 11, 12], "i": [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 17, 18, 19], "substanti": 1, "do": [1, 6], "so": [1, 6, 8, 9, 10, 11, 12, 13, 17], "our": [1, 6, 7], "method": [1, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 19, 21], "valid": [1, 6], "extens": 1, "simul": [1, 8, 9, 10, 11, 12, 20, 21], "an": [1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 19, 20, 21], "experiment": [1, 6], "singl": [1, 2, 20, 21], "cell": [1, 2, 6, 13, 19], "lineag": 1, "trace": 1, "studi": 1, "germin": [1, 6], "center": [1, 6], "b": [1, 6], "receptor": 1, "affin": [1, 6, 7], "matur": [1, 6], "issn": 1, "0737": 1, "4038": 1, "url": 1, "eprint": 1, "academ": 1, "oup": 1, "com": [1, 3, 5], "mbe": 1, "pdf": 1, "25091561": 1, "The": [2, 5, 6, 8, 10, 11], "primari": 2, "collaps": [2, 6, 8, 9, 10, 11, 12, 13, 19], "usag": 2, "h": 2, "run": [2, 3, 5, 6, 8, 9, 10, 11, 12], "librari": 2, "function": [2, 13, 17, 18, 20, 21, 22, 24], "outbas": [2, 6, 8, 10, 11], "img_typ": [2, 8, 10, 11], "verbos": [2, 6, 8, 10, 11, 20, 21], "output": [2, 6, 7, 13, 19], "file": [2, 6, 7, 8, 9, 10, 11, 12, 20, 21], "imag": [2, 5, 6, 9, 10, 12], "type": [2, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24], "flag": [2, 6, 9, 10, 12], "messag": [2, 20, 21], "likelihood": [2, 6, 8, 9, 10, 11, 12], "rank": [2, 5, 6, 8, 10, 11], "root": [2, 6, 7, 9, 10, 12, 20, 21], "colormapfil": 2, "chain_split": [2, 8, 9, 10, 11, 12], "frame2": [2, 9, 10, 12], "1": [2, 6, 7, 8, 9, 10, 11, 12, 13, 15, 20, 21, 22, 23, 24], "2": [2, 6, 7, 22, 23], "3": [2, 5, 6, 7], "positionmapfil": 2, "positionmapfile2": 2, "idmapfil": [2, 6], "isotype_mapfil": [2, 6], "isotype_nam": [2, 8, 10, 11, 13, 14, 15, 19], "mutabl": [2, 6, 8, 10, 11, 20, 21], "substitut": [2, 6, 8, 9, 10, 11, 12, 20, 21], "ranking_coeff": [2, 6, 8, 10, 11], "summarize_forest": [2, 6, 8, 10, 11], "tree_stat": [2, 6, 8, 10, 11], "frame": [2, 6, 9, 10, 12, 20, 21], "idlabel": [2, 6, 9, 10, 12], "infil": 2, "input": 2, "If": [2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 18, 19], "two": [2, 6, 9, 10, 12, 20, 21, 22, 23], "filenam": [2, 6, 7], "ar": [2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 19], "pass": [2, 6, 8, 9, 10, 11, 12, 13, 14], "first": [2, 6, 7, 13, 14, 20, 21], "shall": [2, 13, 14, 20, 21], "dnapar": [2, 6], "outfil": [2, 6, 9, 10, 12], "each": [2, 6, 7, 8, 9, 10, 11, 12, 13, 18, 19, 20, 21], "site": [2, 6, 20, 21], "second": [2, 13, 14, 20, 21], "contain": [2, 6, 8, 10, 11, 13, 14, 15, 19, 20, 21], "allel": [2, 6, 8, 10, 11], "frequenc": [2, 9, 10, 12], "count": [2, 6, 8, 9, 10, 11, 12], "format": [2, 3, 6, 8, 10, 11, 20, 21], "seqid": 2, "nob": 2, "pickl": [2, 6, 7, 9, 10, 12], "dag": [2, 6, 8, 10, 11], "object": [2, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 21], "creat": [2, 5, 6, 7], "new": [2, 6, 9, 10, 12, 13, 14, 15, 19], "forest": [2, 6, 8, 10, 11], "onli": [2, 6], "annot": [2, 6, 8, 9, 10, 11, 12, 13, 19], "ad": [2, 6, 8, 10, 11], "outgroup": [2, 6], "default": [2, 5, 6, 8, 9, 10, 11, 12, 13, 15], "color": [2, 6, 9, 10, 12], "map": [2, 6, 7, 9, 10, 12, 13, 16, 19], "tab": 2, "separ": [2, 5, 9, 10, 12], "when": [2, 7, 8, 9, 10, 11, 12], "concaten": [2, 8, 9, 10, 11, 12], "heavi": [2, 6], "light": 2, "chain": [2, 6], "0": [2, 6, 7, 8, 9, 10, 11, 12, 20, 21], "index": [2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14], "which": [2, 3, 6, 7, 8, 9, 10, 11, 12], "2nd": [2, 9, 10, 12], "begin": 2, "need": [2, 5], "determin": [2, 6], "code": [2, 4, 6, 9, 10, 12, 20, 21], "both": [2, 6], "also": [2, 3, 5, 6, 9, 10, 12, 13, 19], "correctli": 2, "calcul": [2, 8, 9, 10, 11, 12], "possibl": [2, 6, 13, 14], "choic": [2, 6], "codon": 2, "option": [2, 6, 7, 8, 9, 10, 11, 12, 13, 15, 20, 21], "list": [2, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 19, 20, 21], "e": [2, 6, 7, 9, 10, 12], "g": [2, 6, 7, 9, 10, 12, 20, 21], "imgt": 2, "correspond": [2, 6, 8, 10, 11], "indic": [2, 6, 9, 10, 12], "csv": [2, 6, 20, 21], "origin": [2, 5, 6, 13, 14, 16, 19], "id": [2, 6, 9, 10, 12, 13, 16, 19], "For": [2, 5, 6, 7, 20, 21], "Such": 2, "can": [2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 20, 21], "produc": 2, "provid": [2, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 18], "observ": [2, 6, 13, 16, 19], "exampl": [2, 5, 6, 7, 20, 21], "line": [2, 3, 4, 6], "should": [2, 6, 9, 10, 12, 13, 19], "have": [2, 6, 7, 9, 10, 12, 13, 19], "somesequence_id": 2, "some_isotyp": 2, "order": [2, 8, 10, 11, 13, 14, 15, 19, 20, 21], "most": [2, 6], "naiv": [2, 6, 20, 21], "differenti": 2, "equival": 2, "igm": 2, "igd": 2, "igg3": 2, "igg1": 2, "igg2": 2, "ig": 2, "iga": 2, "path": 2, "thei": [2, 6], "after": [2, 9, 10, 12], "filewith": 2, "column": [2, 20, 21], "fivem": [2, 20, 21], "score": [2, 6, 8, 10, 11, 20, 21], "see": [2, 3, 5, 6, 7], "excerpt": 2, "document": [2, 3, 6], "mutation_model": [2, 4], "mutationmodel": [2, 20], "next": [2, 20, 21], "fourcolumn": 2, "target": [2, 20, 21], "probabl": [2, 6, 8, 9, 10, 11, 12, 20, 21], "c": [2, 5, 20, 21], "t": [2, 5, 8, 9, 10, 11, 12, 13, 17, 20, 21], "respect": [2, 6, 20, 21], "coeffici": [2, 6, 8, 10, 11], "linear": [2, 6, 8, 9, 10, 11, 12], "combin": [2, 6, 8, 10, 11], "trait": [2, 8, 10, 11], "mutat": [2, 6, 8, 9, 10, 11, 12, 20, 21], "appli": [2, 8, 10, 11], "branch": [2, 3, 6, 8, 9, 10, 11, 12, 20, 21], "lexicograph": [2, 6, 8, 10, 11], "write": [2, 6, 8, 9, 10, 11, 12], "forest_summari": [2, 6, 8, 10, 11], "log": [2, 6, 7, 8, 9, 10, 11, 12], "summari": [2, 6, 8, 10, 11], "stat": [2, 6, 8, 10, 11], "all": [2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], "larg": [2, 6], "slow": 2, "memori": 2, "intens": 2, "label": [2, 6, 8, 9, 10, 11, 12], "node": [2, 8, 9, 10, 11, 12, 13, 19], "fasta": [2, 6, 9, 10, 12], "align": [2, 6], "those": [2, 3, 6], "easiest": 2, "wai": [2, 5, 6, 13, 19], "access": 2, "ancestr": [2, 8, 10, 11, 13, 19], "neutral": [2, 20, 21], "select": 2, "sequence2": 2, "lambda": [2, 20, 21], "lambda_": 2, "lambda0": [2, 20, 21], "seed": 2, "target_dist": 2, "plotaa": 2, "nucleotid": [2, 20, 21], "co": 2, "poisson": 2, "paramet": [2, 6, 8, 9, 10, 11, 12, 13, 15, 16, 19, 20, 21, 22, 23], "one": [2, 6, 8, 9, 10, 11, 12], "element": 2, "baselin": [2, 20, 21], "rate": [2, 20, 21], "space": 2, "valu": [2, 6, 7, 9, 10, 12, 13, 18], "belong": 2, "downsampl": 2, "size": [2, 7, 9, 10, 12, 20, 21], "none": [2, 8, 9, 10, 11, 12, 13, 15, 19, 20, 21], "until": 2, "termin": 2, "take": [2, 6], "leav": [2, 10], "integ": [2, 6], "random": [2, 7, 8, 10, 11], "non": [2, 8, 10, 11], "synonym": 2, "awai": 2, "plot": [2, 6, 8, 10, 11], "amino": [2, 6, 9, 10, 12], "acid": [2, 6, 9, 10, 12], "addit": [2, 6, 9, 10, 12], "uiliti": 2, "data": [2, 5, 7, 8, 10, 11, 20, 21], "phylip": [2, 6], "prep": 2, "analysi": 2, "stdout": [2, 6], "few": 2, "other": [2, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 19], "header": 2, "must": [2, 6, 9, 10, 12, 13, 19], "uniqu": [2, 6, 13, 16, 19], "less": [2, 6], "than": [2, 6], "equal": [2, 6, 22, 23], "ascii": 2, "charact": 2, "repres": [2, 6], "includ": [2, 6, 7, 8, 10, 11], "even": [2, 6], "more": [2, 6, 7, 20, 21], "ident": [2, 6, 9, 10, 12, 20, 21, 24], "abundance_fil": [2, 6], "id_abund": [2, 6], "colorfil": 2, "colormap": [2, 7, 9, 10, 12], "becaus": [2, 6], "intern": [2, 8, 10, 11, 13, 19], "includeat": 2, "least": [2, 6, 8, 10, 11], "unless": 2, "seq": [2, 9, 10, 12], "interpret": [2, 6], "ani": [2, 6, 7, 9, 10, 12, 24], "match": 2, "read": [2, 20, 21], "appropri": [2, 13, 19], "config": [2, 6], "doesn": 2, "plai": 2, "well": [2, 6], "pipelin": [2, 5], "It": [2, 6], "prompt": 2, "user": 2, "configur": 2, "respons": 2, "stdin": 2, "gener": [2, 3, 6, 8, 9, 10, 11, 12, 13, 19, 20, 21], "script": [2, 5], "meant": 2, "mimic": 2, "expect": 2, "typic": 2, "phy": 2, "cfg": [2, 6], "quick": 2, "jumbl": 2, "bootstrap": [2, 9, 10, 12], "treeprog": 2, "dnaml": 2, "seqboot": 2, "quicker": 2, "thourough": 2, "search": [2, 4], "mani": [2, 6, 8, 10, 11], "permut": 2, "given": [2, 6, 8, 9, 10, 11, 12], "outputfil": 2, "tool": [2, 4, 6], "collapsedforest": [2, 4, 6, 10], "phylip_outfil": 2, "referenc": 2, "add": [2, 6, 8, 9, 10, 11, 12, 13, 19], "same": [2, 6, 8, 9, 10, 11, 12, 13, 19, 20, 21], "differ": [2, 6, 9, 10, 12, 13, 19], "explod": [2, 13, 16, 19], "prepend": [2, 6, 13, 19], "its": [2, 8, 9, 10, 11, 12, 13, 17, 19], "idmap": [2, 6, 8, 10, 11, 13, 16, 19], "written": [2, 6, 13, 19], "directori": [2, 13, 19], "resolv": [2, 13, 19], "unobserv": [2, 6, 13, 19], "minim": [2, 6, 8, 10, 11, 13, 19], "switch": [2, 13, 14, 15, 19], "obei": [2, 13, 19], "children": [2, 13, 19], "violat": [2, 13, 19], "replac": [2, 9, 10, 12, 13, 19], "place": [2, 13, 19], "child": [2, 13, 19], "leaf": [2, 6, 9, 10, 12, 13, 19], "procedur": [2, 13, 19], "alwai": [2, 13, 19], "allow": [2, 6, 7, 13, 14, 15, 19, 20, 21], "conflict": [2, 13, 19], "usual": [2, 9, 10, 12, 13, 19], "increas": [2, 13, 19], "transit": [2, 13, 14, 15, 17, 18, 19], "requir": [2, 6, 9, 10, 12, 13, 19], "result": [2, 5, 6, 13, 19], "render": [2, 6, 9, 10, 12], "reflect": 2, "newick": [2, 6, 9, 10, 12], "just": 2, "like": [2, 5, 6, 9, 10, 12], "print": [2, 8, 10, 11, 20, 21], "how": [2, 6, 7], "along": [2, 8, 9, 10, 11, 12, 13, 18, 20, 21], "edg": [2, 13, 18], "chang": 2, "either": 2, "had": [2, 6], "expand": [2, 7], "make": [2, 3, 6, 7], "judgement": 2, "about": [2, 8, 10, 11, 13, 14], "best": [2, 6], "befor": 2, "left": [2, 8, 10, 11], "out_directori": [2, 6], "work": [2, 3, 5, 6], "freeli": 3, "avail": [3, 7, 9, 10, 12], "github": [3, 5], "matsengrp": [3, 5], "instal": [3, 4, 6], "you": [3, 5, 6, 7], "re": [3, 6], "arm": 3, "mac": 3, "troubl": 3, "pyqt5": 3, "depend": 3, "historydag": 3, "via": [3, 6], "pip": 3, "As": [3, 6], "workaround": 3, "recommend": [3, 6, 9, 10, 12], "comment": 3, "out": [3, 6, 7, 8, 10, 11], "ete3": [3, 8, 9, 10, 11, 12, 13, 19, 20, 21], "setup": 3, "py": 3, "conda": [3, 5], "test": [3, 5], "lint": 3, "build": [3, 6], "doc": [3, 6, 7], "local": [3, 9, 10, 12], "_build": 3, "html": [3, 5], "automat": [3, 6, 9, 10, 12], "deploi": 3, "workflow": 3, "push": 3, "main": 3, "command": [4, 6], "util": [4, 13, 19], "cite": 4, "quickstart": 4, "custom": 4, "visual": [4, 6], "sub": 4, "parsimoni": [4, 5, 8, 9, 10, 11, 12], "dedupl": 4, "mkconfig": [4, 6], "phylip_pars": 4, "isotyp": [4, 8, 10, 11], "posit": [4, 7, 9, 10, 12, 20, 21], "argument": [4, 6, 8, 9, 10, 11, 12, 13, 17], "name": [4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19], "class": [4, 8, 9, 10, 11, 12, 13, 14, 15, 20, 21], "collapsedtre": [4, 6, 7, 8, 10, 11], "modul": [4, 10, 13], "open": [4, 7], "sourc": [4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], "repositori": 4, "todo": 4, "prefer": 5, "activ": 5, "forg": 5, "want": [5, 6, 7], "below": [5, 6, 9, 10, 12], "instead": [5, 6, 7], "howev": [5, 6], "find": [5, 6], "dockerfil": 5, "sh": 5, "git": 5, "clone": 5, "To": [5, 7], "verifi": 5, "wa": [5, 13, 18], "built": [5, 24], "successfulli": 5, "Or": 5, "interact": [5, 6], "bash": 5, "case": [5, 6], "degener": [5, 6, 9, 10, 12], "maximum": [5, 6, 8, 9, 10, 11, 12, 20, 21], "joe": 5, "felsenstein": 5, "washington": 5, "edu": 5, "environ": [5, 6], "bioconda": 5, "program": 6, "cli": [6, 7], "complet": 6, "here": [6, 7], "were": 6, "publish": 6, "ta": 6, "et": [6, 7, 9, 10, 12], "al": [6, 7, 9, 10, 12], "2016": 6, "antibodi": 6, "scienc": 6, "351": 6, "6277": 6, "shown": [6, 7], "fig": 6, "4": [6, 7], "lymph": 6, "start": [6, 9, 10, 12, 20, 21], "150228_clone_3": 6, "8": [6, 7], "v": [6, 9, 10, 12], "gene": [6, 9, 10, 12, 20, 21], "sort": [6, 8, 10, 11], "brainbow": 6, "mous": 6, "multicolor": 6, "fate": 6, "tail": 6, "30": 6, "vibm1s4hbj": 6, "ggacctagcctcgtgaaaccttctcagactctgtccctcacctgttctgtcactggcgac": 6, "tccatcaccagtggttactggaactggatccggaagttcccagggaatagacttgagtac": 6, "atggggtacataagcttcagtggtagcacttactacaatccatctctcaaaagtcgaatc": 6, "tccatcactcgagacacatccaagaaccagtactacctgcagttgaattctgtgactact": 6, "gaggacacagccacatattactgt": 6, "vibm1s4hkj": 6, "vibm1s4hdj": 6, "vibm1s4hcj": 6, "gl": 6, "tccatcaccagtggttactggaactggatccggaaattcccagggaataaacttgagtac": 6, "atggggtacataagctacagtggtagcacttactacaatccatctctcaaaagtcgaatc": 6, "germlin": 6, "doe": 6, "refer": 6, "duplic": 6, "convert": 6, "redirect": 6, "interepret": 6, "specifi": [6, 7, 8, 10, 11], "u": 6, "txt": 6, "now": 6, "head": 6, "43": 6, "264": 6, "ggacctagcc": 6, "tcgtgaaacc": 6, "ttctcagact": 6, "ctgtccctca": 6, "cctgttctgt": 6, "seq1": [6, 22, 23], "seq2": [6, 22, 23], "seq3": 6, "seq4": 6, "seq5": 6, "seq6": 6, "seq7": 6, "tcgtgaaatc": 6, "seq8": 6, "seq9": 6, "set": [6, 7, 9, 10, 12, 13, 16], "feed": 6, "outtre": 6, "rerun": 6, "abov": [6, 9, 10, 12], "delet": 6, "readi": 6, "headless": 6, "xvfb": 6, "x": 6, "server": 6, "altern": 6, "success": 6, "follow": [6, 8, 10, 11], "variabl": 6, "export": 6, "qt_qpa_platform": 6, "offscreen": 6, "xdg_runtime_dir": 6, "tmp": 6, "runtim": 6, "runner": 6, "tell": 6, "matplotlib": [6, 9, 10, 12], "backend": 6, "mplbackend": 6, "agg": 6, "length": [6, 9, 10, 12, 22, 23], "703": 6, "49618320692429585": 6, "36445206621349757": 6, "78": 6, "00393661": 6, "48": 6, "criteria": [6, 8, 10, 11], "trim": [6, 8, 10, 11], "topologi": [6, 8, 9, 10, 11, 12], "randomli": 6, "basenam": 6, "svg": [6, 7, 8, 9, 10, 11, 12], "abundance_rank": 6, "distribut": 6, "Then": 6, "nk": [6, 9, 10, 12], "up": 6, "ten": 6, "arbitrarili": 6, "p": [6, 7, 8, 9, 10, 11, 12], "load": [6, 7], "manipul": 6, "variou": 6, "found": [6, 20, 21], "save": [6, 8, 10, 11], "parsimony_forest": 6, "although": 6, "describ": 6, "ha": [6, 8, 9, 10, 11, 12], "yet": 6, "been": [6, 8, 10, 11], "care": 6, "break": 6, "ti": 6, "between": [6, 13, 14, 15, 22, 23], "accord": [6, 8, 9, 10, 11, 12], "context": [6, 20, 21], "sensit": [6, 20, 21], "By": [6, 8, 10, 11], "maxim": 6, "prioriti": 6, "adjust": 6, "isotypemap": [6, 8, 10, 11], "hs5f_mutabl": [6, 20, 21], "hs5f_substitut": [6, 20, 21], "newrank": 6, "fit": [6, 7, 8, 10, 11], "skip": 6, "criterion": 6, "par": 6, "mut": 6, "treescor": 6, "28": 6, "66": 6, "45251203": 6, "112": 6, "6491878": 6, "download": 6, "shazam": [6, 20, 21], "project": 6, "bitbucket": [6, 20, 21], "kleinstein": [6, 20, 21], "src": [6, 20, 21], "master": [6, 20, 21], "raw": [6, 20, 21], "_": 6, "detail": [6, 7], "pairplot": 6, "compar": [6, 9, 10, 12], "highest": 6, "sometim": 6, "too": 6, "numer": [6, 7], "would": [6, 7], "resourc": 6, "collect": [6, 8, 10, 11], "importantli": 6, "summar": 6, "much": 6, "being": [6, 9, 10, 12], "cat": 6, "among": 6, "min": 6, "92": 6, "15528744": 6, "rang": [6, 7, 20, 21], "24": 6, "71": 6, "58051182819214": 6, "53": 6, "max": 6, "45251202776495": 6, "68": 6, "93267315487162": 6, "23": 6, "90": 6, "94295234": 6, "87": 6, "98896459": 6, "67": 6, "70153148437015": 6, "72": 6, "04836178891952": 6, "51": 6, "52": 6, "83": 6, "8653921": 6, "65": [6, 20, 21], "83694196549037": 6, "02357794154058": 6, "50": [6, 7], "63": 6, "94500901769653": 6, "80": 6, "46148748": 6, "27": 6, "49": 6, "76": 6, "08641625036459": 6, "85": 6, "28172209": 6, "25": 6, "82": 6, "14344157": 6, "26": 6, "74": 6, "06179332885715": 6, "28220403": 6, "97479724064682": 6, "loss": 6, "50750301": 6, "revis": 6, "associ": [6, 7, 13, 14], "chosen": 6, "guarante": 6, "biject": 6, "share": 6, "occur": 6, "possess": 6, "handl": 6, "That": 6, "implement": 6, "underli": 6, "good": 6, "idea": 6, "guidelin": 6, "sure": 6, "unambigu": 6, "choos": 6, "arbitrari": 6, "meaning": 6, "understand": 6, "disambigu": 6, "anoth": [6, 9, 10, 12], "exist": [6, 8, 9, 10, 11, 12], "better": 6, "appear": 6, "accept": 6, "merg": 6, "final": [6, 7], "retain": 6, "original_id": 6, "attribut": [6, 7, 8, 9, 10, 11, 12, 13, 19], "bit": 6, "discuss": 6, "trust": 6, "why": 6, "mention": 6, "could": 6, "mistakenli": 6, "allud": 6, "particular": 6, "though": 6, "plausibl": 6, "irl": 6, "placement": 6, "account": 6, "known": 6, "mean": [6, 20, 21], "fill": 6, "close": 6, "relat": 6, "possibli": 6, "influenc": 6, "demonstr": 7, "develop": 7, "jupyt": 7, "notebook": 7, "import": 7, "numpi": 7, "np": [7, 9, 10, 12], "rb": 7, "f": [7, 24], "note": [7, 20, 21], "special": 7, "inlin": 7, "suppli": 7, "tree1": 7, "scale": [7, 9, 10, 12], "taller": 7, "branch_margin": [7, 9, 10, 12], "compress": 7, "neg": 7, "width": [7, 9, 10, 12], "fix": 7, "node_s": [7, 9, 10, 12], "6": 7, "disappear": 7, "consist": 7, "tip": 7, "height": 7, "7": 7, "dictionari": [7, 9, 10, 12, 13, 16], "kei": 7, "rgb": 7, "hex": [7, 9, 10, 12], "viridi": [7, 9, 10, 12], "palett": [7, 9, 10, 12], "obtain": 7, "feature_colormap": [7, 9, 10, 12], "might": 7, "comput": [7, 8, 9, 10, 11, 12, 13, 18], "lbi": [7, 9, 10, 12], "neher": [7, 9, 10, 12], "2014": [7, 9, 10, 12], "measur": 7, "bushi": 7, "local_branch": [7, 9, 10, 12], "assign": 7, "them": 7, "9": 7, "artifici": 7, "With": 7, "real": 7, "travers": 7, "add_featur": 7, "randn": 7, "intial": [8, 10, 11], "instanc": [8, 10, 11], "later": [8, 9, 10, 11, 12], "n_tree": [8, 10, 11], "mle": [8, 9, 10, 11, 12], "otherwis": [8, 10, 11, 13, 14], "union": [8, 9, 10, 11, 12], "treenod": [8, 9, 10, 11, 12, 13, 19, 20, 21], "q": [8, 9, 10, 11, 12], "overwrit": [8, 9, 10, 11, 12], "float64": [8, 9, 10, 11, 12, 20, 21], "int": [8, 9, 10, 11, 12, 20, 21, 22, 23], "ll": [8, 9, 10, 11, 12], "margin": [8, 9, 10, 11, 12], "fals": [8, 9, 10, 11, 12, 20, 21], "t_1": [8, 10, 11], "dot": [8, 10, 11], "t_n": [8, 10, 11], "vector": [8, 10, 11], "a_1": [8, 10, 11], "a_n": [8, 10, 11], "joint": [8, 10, 11], "ell": [8, 9, 10, 11, 12], "sum_": [8, 10, 11], "mathbb": [8, 9, 10, 11, 12], "t_i": [8, 10, 11], "a_i": [8, 10, 11], "mid": [8, 9, 10, 11, 12], "right": [8, 10, 11], "bool": [8, 9, 10, 11, 12, 20, 21], "over": [8, 9, 10, 11, 12, 20, 21], "return": [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], "tupl": [8, 9, 10, 11, 12, 20, 21], "ndarrai": [8, 9, 10, 11, 12], "gradient": [8, 9, 10, 11, 12], "nabla": [8, 9, 10, 11, 12], "kwarg": [8, 9, 10, 11, 12], "arg": [8, 9, 10, 11, 12], "max_": [8, 9, 10, 11, 12], "keyword": [8, 9, 10, 11, 12], "filter_tre": [8, 10, 11], "mutability_fil": [8, 10, 11, 20, 21], "substitution_fil": [8, 10, 11, 20, 21], "ignore_isotyp": [8, 10, 11], "filter": [8, 9, 10, 11, 12], "float": [8, 9, 10, 11, 12, 13, 15, 17, 18], "priorit": [8, 10, 11], "weight": [8, 9, 10, 11, 12, 13, 14, 15, 17, 18], "str": [8, 9, 10, 11, 12, 13, 15, 16, 19, 20, 21, 22, 23], "ignor": [8, 10, 11], "meth": [8, 10, 11], "add_isotyp": [8, 10, 11], "adjac": [8, 10, 11], "stem": [8, 10, 11], "whether": [8, 10, 11, 20, 21], "likelihood_rankplot": [8, 10, 11], "likelihood_rank": [8, 10, 11], "n_topologi": [8, 10, 11], "iter_topology_class": [8, 10, 11], "yield": [8, 10, 11], "revers": [8, 10, 11], "isotypemap_fil": [8, 10, 11], "idmap_fil": [8, 10, 11], "store": [8, 10, 11], "sample_tre": [8, 10, 11], "allow_repeat": [9, 10, 12], "infinit": [9, 10, 12], "galton": [9, 10, 12], "watson": [9, 10, 12], "extinct": [9, 10, 12], "featur": [9, 10, 12], "uncollaps": [9, 10, 12], "ommit": [9, 10, 12], "initializaion": [9, 10, 12], "preserv": [9, 10, 12], "toler": [9, 10, 12], "sister": [9, 10, 12], "clade": [9, 10, 12], "true": [9, 10, 12, 13, 17, 20, 21], "extint": [9, 10, 12], "updat": [9, 10, 12], "position_map": [9, 10, 12], "position_map2": [9, 10, 12], "show_support": [9, 10, 12], "filetyp": [9, 10, 12], "suffix": [9, 10, 12], "pixel": [9, 10, 12], "dict": [9, 10, 12, 13, 16, 19], "support": [9, 10, 12], "cmap": [9, 10, 12], "vmin": [9, 10, 12], "vmax": [9, 10, 12], "continu": [9, 10, 12], "minimum": [9, 10, 12], "symlog": [9, 10, 12], "linthresh": [9, 10, 12], "transform": [9, 10, 12], "string": [9, 10, 12], "file_nam": [9, 10, 12], "serial": [9, 10, 12], "tree2": [9, 10, 12], "comparison": [9, 10, 12], "mrca": [9, 10, 12], "rf": [9, 10, 12], "bootstrap_trees_list": [9, 10, 12], "compat": [9, 10, 12], "attibut": [9, 10, 12], "perhap": [9, 10, 12], "don": [9, 10, 12], "disconfirm": [9, 10, 12], "split": [9, 10, 12], "tau": [9, 10, 12], "tau0": [9, 10, 12], "infinite_root_branch": [9, 10, 12], "nan_root_lbr": [9, 10, 12], "statist": [9, 10, 12], "execut": [9, 10, 12], "lbr": [9, 10, 12], "ratio": [9, 10, 12], "decai": [9, 10, 12], "timescal": [9, 10, 12], "exponenti": [9, 10, 12], "effect": [9, 10, 12], "zero": [9, 10, 12], "assum": [9, 10, 12], "nan": [9, 10, 12], "binari": [10, 20, 21], "clonal": 10, "__init__": [10, 13, 20], "isotypetempl": [13, 14], "isotype_ord": [13, 15], "weight_matrix": [13, 14, 15, 19], "templat": [13, 15], "constructor": [13, 15], "matrix": [13, 15, 18], "self": [13, 14], "instanti": [13, 14], "resolut": [13, 14], "ambigu": [13, 14, 20, 21], "copi": [13, 14], "isotype_tre": 13, "newidmap": [13, 19], "explode_idmap": [13, 19], "correct": [13, 19], "whose": [13, 19], "isotype_dist": [13, 18], "t1": [13, 17], "t2": [13, 17], "symmetr": [13, 17], "isn": [13, 17], "distanc": [13, 17, 22, 23], "isotype_parsimoni": 13, "sum": [13, 18], "dure": [13, 18], "isotype_map": [13, 16], "mutation_ord": [20, 21], "with_replac": [20, 21], "s5f": [20, 21], "bias": [20, 21], "manner": [20, 21], "where": [20, 21], "matter": [20, 21], "tcggg": [20, 21], "03542": [20, 21], "gccgg": [20, 21], "02241675": [20, 21], "gccgc": [20, 21], "06789": [20, 21], "four": [20, 21], "aaaaa": [20, 21], "33": [20, 21], "34": [20, 21], "aaaac": [20, 21], "5000": [20, 21], "2500": [20, 21], "aaaag": [20, 21], "15": [20, 21], "20": [20, 21], "kmer": [20, 21], "central": [20, 21], "k": [20, 21], "mer": [20, 21], "bia": [20, 21], "averag": [20, 21], "lamdba0": [20, 21], "cannot": [20, 21], "postit": [20, 21], "seq_bound": [20, 21], "fitness_funct": [20, 21], "n_init": [20, 21], "subsequ": [20, 21], "parallel": [20, 21], "callabl": [20, 21], "offspr": [20, 21], "initi": [20, 21], "abundnac": [20, 21], "popul": [20, 21], "hamming_dist": 22, "ham": [22, 23], "factor": 24, "mul": 24}, "objects": {"gctree": [[8, 0, 1, "", "CollapsedForest"], [9, 0, 1, "", "CollapsedTree"], [10, 3, 0, "-", "branching_processes"], [13, 3, 0, "-", "isotyping"], [20, 3, 0, "-", "mutation_model"], [22, 3, 0, "-", "utils"]], "gctree.CollapsedForest": [[8, 1, 1, "", "add_isotypes"], [8, 1, 1, "", "filter_trees"], [8, 1, 1, "", "iter_topology_classes"], [8, 1, 1, "", "likelihood_rankplot"], [8, 1, 1, "", "ll"], [8, 1, 1, "", "mle"], [8, 1, 1, "", "n_topologies"], [8, 2, 1, "", "n_trees"], [8, 2, 1, "", "parameters"], [8, 1, 1, "", "sample_tree"], [8, 1, 1, "", "simulate"]], "gctree.CollapsedTree": [[9, 1, 1, "", "compare"], [9, 1, 1, "", "feature_colormap"], [9, 1, 1, "", "ll"], [9, 1, 1, "", "local_branching"], [9, 1, 1, "", "mle"], [9, 1, 1, "", "newick"], [9, 1, 1, "", "render"], [9, 1, 1, "", "simulate"], [9, 1, 1, "", "support"], [9, 2, 1, "", "tree"], [9, 1, 1, "", "write"]], "gctree.branching_processes": [[11, 0, 1, "", "CollapsedForest"], [12, 0, 1, "", "CollapsedTree"]], "gctree.branching_processes.CollapsedForest": [[10, 1, 1, "", "__init__"], [11, 1, 1, "", "add_isotypes"], [11, 1, 1, "", "filter_trees"], [11, 1, 1, "", "iter_topology_classes"], [11, 1, 1, "", "likelihood_rankplot"], [11, 1, 1, "", "ll"], [11, 1, 1, "", "mle"], [11, 1, 1, "", "n_topologies"], [11, 2, 1, "", "n_trees"], [11, 2, 1, "", "parameters"], [11, 1, 1, "", "sample_tree"], [11, 1, 1, "", "simulate"]], "gctree.branching_processes.CollapsedTree": [[10, 1, 1, "", "__init__"], [12, 1, 1, "", "compare"], [12, 1, 1, "", "feature_colormap"], [12, 1, 1, "", "ll"], [12, 1, 1, "", "local_branching"], [12, 1, 1, "", "mle"], [12, 1, 1, "", "newick"], [12, 1, 1, "", "render"], [12, 1, 1, "", "simulate"], [12, 1, 1, "", "support"], [12, 2, 1, "", "tree"], [12, 1, 1, "", "write"]], "gctree.isotyping": [[14, 0, 1, "", "Isotype"], [15, 0, 1, "", "IsotypeTemplate"], [16, 4, 1, "", "explode_idmap"], [17, 4, 1, "", "isotype_distance"], [18, 4, 1, "", "isotype_parsimony"], [19, 4, 1, "", "isotype_tree"]], "gctree.isotyping.Isotype": [[13, 1, 1, "", "__init__"], [14, 2, 1, "", "isotype"], [14, 2, 1, "", "order"], [14, 1, 1, "", "resolutions"], [14, 2, 1, "", "weight_matrix"]], "gctree.isotyping.IsotypeTemplate": [[13, 1, 1, "", "__init__"], [15, 1, 1, "", "new"]], "gctree.mutation_model": [[21, 0, 1, "", "MutationModel"]], "gctree.mutation_model.MutationModel": [[20, 1, 1, "", "__init__"], [21, 1, 1, "", "mutabilities"], [21, 1, 1, "", "mutability"], [21, 1, 1, "", "mutate"], [21, 1, 1, "", "simulate"]], "gctree.utils": [[23, 4, 1, "", "hamming_distance"], [24, 4, 1, "", "product"]]}, "objtypes": {"0": "py:class", "1": "py:method", "2": "py:attribute", "3": "py:module", "4": "py:function"}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "method", "Python method"], "2": ["py", "attribute", "Python attribute"], "3": ["py", "module", "Python module"], "4": ["py", "function", "Python function"]}, "titleterms": {"class": 0, "modul": 0, "cite": 1, "gctree": [1, 2, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], "sub": 2, "command": 2, "test": 2, "name": [2, 6], "argument": [2, 7], "infer": 2, "posit": 2, "simul": 2, "parsimoni": [2, 6], "util": [2, 22, 23, 24], "dedupl": [2, 6], "mkconfig": 2, "phylip_pars": 2, "isotyp": [2, 6, 13, 14, 15, 16, 17, 18, 19], "open": 3, "sourc": 3, "code": 3, "repositori": 3, "develop": [3, 4], "tool": 3, "todo": 3, "list": 3, "document": 4, "user": 4, "guid": 4, "cli": 4, "api": 4, "indic": 4, "tabl": 4, "instal": 5, "anaconda": 5, "pip": 5, "docker": 5, "build": 5, "phylip": 5, "quickstart": 6, "input": 6, "data": 6, "sequenc": 6, "abund": 6, "tree": [6, 7], "A": 6, "note": 6, "about": 6, "node": [6, 7], "ambigu": 6, "custom": 7, "visual": 7, "The": 7, "default": 7, "render": 7, "color": 7, "local": 7, "branch": 7, "statist": 7, "featur": 7, "collapsedforest": [8, 11], "collapsedtre": [9, 12], "branching_process": [10, 11, 12], "isotypetempl": 15, "explode_idmap": 16, "isotype_dist": 17, "isotype_parsimoni": 18, "isotype_tre": 19, "mutation_model": [20, 21], "mutationmodel": 21, "hamming_dist": 23, "product": 24}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"Classes": [[0, "classes"]], "Modules": [[0, "modules"]], "Citing gctree": [[1, "citing-gctree"]], "gctree": [[2, "gctree"], [6, "gctree"]], "Sub-commands": [[2, "Sub-commands"]], "test": [[2, "test"]], "Named Arguments": [[2, "named-arguments"], [2, "named-arguments_repeat1"], [2, "named-arguments_repeat2"], [2, "named-arguments"], [2, "named-arguments"], [2, "named-arguments"], [2, "named-arguments"]], "infer": [[2, "infer"]], "Positional Arguments": [[2, "positional-arguments"], [2, "positional-arguments_repeat1"], [2, "positional-arguments"], [2, "positional-arguments"], [2, "positional-arguments"], [2, "positional-arguments"]], "simulate": [[2, "simulate"]], "Parsimony utilities": [[2, "parsimony-utilities"]], "deduplicate": [[2, "deduplicate"]], "mkconfig": [[2, "mkconfig"]], "phylip_parse": [[2, "phylip-parse"]], "isotype": [[2, "isotype"], [6, "isotype"]], "Open source code repository": [[3, "open-source-code-repository"]], "Developer tools": [[3, "developer-tools"]], "Todo list": [[3, "todo-list"]], "gctree documentation": [[4, "gctree-documentation"]], "User Guide": [[4, null]], "CLI Documentation": [[4, null]], "API Documentation": [[4, null]], "Developer Documentation": [[4, null]], "Indices and tables": [[4, "indices-and-tables"]], "Installation": [[5, "installation"]], "Anaconda install": [[5, "anaconda-install"]], "Pip install": [[5, "pip-install"]], "Docker build": [[5, "docker-build"]], "PHYLIP Installation": [[5, "phylip-installation"]], "Quickstart": [[6, "quickstart"]], "Input data": [[6, "input-data"]], "Deduplication and sequence abundances": [[6, "deduplication-and-sequence-abundances"]], "Parsimony trees": [[6, "parsimony-trees"]], "A note about node names": [[6, "a-note-about-node-names"]], "A note about ambiguous sequence data": [[6, "a-note-about-ambiguous-sequence-data"]], "Custom tree visualization": [[7, "Custom-tree-visualization"]], "The default tree rendering": [[7, "The-default-tree-rendering"]], "Rendering arguments": [[7, "Rendering-arguments"]], "Coloring nodes": [[7, "Coloring-nodes"]], "Local branching statistics": [[7, "Local-branching-statistics"]], "Custom node features": [[7, "Custom-node-features"]], "gctree.CollapsedForest": [[8, "gctree-collapsedforest"]], "gctree.CollapsedTree": [[9, "gctree-collapsedtree"]], "gctree.branching_processes": [[10, "module-gctree.branching_processes"]], "gctree.branching_processes.CollapsedForest": [[11, "gctree-branching-processes-collapsedforest"]], "gctree.branching_processes.CollapsedTree": [[12, "gctree-branching-processes-collapsedtree"]], "gctree.isotyping": [[13, "module-gctree.isotyping"]], "gctree.isotyping.Isotype": [[14, "gctree-isotyping-isotype"]], "gctree.isotyping.IsotypeTemplate": [[15, "gctree-isotyping-isotypetemplate"]], "gctree.isotyping.explode_idmap": [[16, "gctree-isotyping-explode-idmap"]], "gctree.isotyping.isotype_distance": [[17, "gctree-isotyping-isotype-distance"]], "gctree.isotyping.isotype_parsimony": [[18, "gctree-isotyping-isotype-parsimony"]], "gctree.isotyping.isotype_tree": [[19, "gctree-isotyping-isotype-tree"]], "gctree.mutation_model": [[20, "module-gctree.mutation_model"]], "gctree.mutation_model.MutationModel": [[21, "gctree-mutation-model-mutationmodel"]], "gctree.utils": [[22, "module-gctree.utils"]], "gctree.utils.hamming_distance": [[23, "gctree-utils-hamming-distance"]], "gctree.utils.product": [[24, "gctree-utils-product"]]}, "indexentries": {"collapsedforest (class in gctree)": [[8, "gctree.CollapsedForest"]], "add_isotypes() (gctree.collapsedforest method)": [[8, "gctree.CollapsedForest.add_isotypes"]], "filter_trees() (gctree.collapsedforest method)": [[8, "gctree.CollapsedForest.filter_trees"]], "iter_topology_classes() (gctree.collapsedforest method)": [[8, "gctree.CollapsedForest.iter_topology_classes"]], "likelihood_rankplot() (gctree.collapsedforest method)": [[8, "gctree.CollapsedForest.likelihood_rankplot"]], "ll() (gctree.collapsedforest method)": [[8, "gctree.CollapsedForest.ll"]], "mle() (gctree.collapsedforest method)": [[8, "gctree.CollapsedForest.mle"]], "n_topologies() (gctree.collapsedforest method)": [[8, "gctree.CollapsedForest.n_topologies"]], "n_trees (gctree.collapsedforest attribute)": [[8, "gctree.CollapsedForest.n_trees"]], "parameters (gctree.collapsedforest attribute)": [[8, "gctree.CollapsedForest.parameters"]], "sample_tree() (gctree.collapsedforest method)": [[8, "gctree.CollapsedForest.sample_tree"]], "simulate() (gctree.collapsedforest method)": [[8, "gctree.CollapsedForest.simulate"]], "collapsedtree (class in gctree)": [[9, "gctree.CollapsedTree"]], "compare() (gctree.collapsedtree method)": [[9, "gctree.CollapsedTree.compare"]], "feature_colormap() (gctree.collapsedtree method)": [[9, "gctree.CollapsedTree.feature_colormap"]], "ll() (gctree.collapsedtree method)": [[9, "gctree.CollapsedTree.ll"]], "local_branching() (gctree.collapsedtree method)": [[9, "gctree.CollapsedTree.local_branching"]], "mle() (gctree.collapsedtree method)": [[9, "gctree.CollapsedTree.mle"]], "newick() (gctree.collapsedtree method)": [[9, "gctree.CollapsedTree.newick"]], "render() (gctree.collapsedtree method)": [[9, "gctree.CollapsedTree.render"]], "simulate() (gctree.collapsedtree method)": [[9, "gctree.CollapsedTree.simulate"]], "support() (gctree.collapsedtree method)": [[9, "gctree.CollapsedTree.support"]], "tree (gctree.collapsedtree attribute)": [[9, "gctree.CollapsedTree.tree"]], "write() (gctree.collapsedtree method)": [[9, "gctree.CollapsedTree.write"]], "collapsedforest (class in gctree.branching_processes)": [[10, "gctree.branching_processes.CollapsedForest"], [11, "gctree.branching_processes.CollapsedForest"]], "collapsedtree (class in gctree.branching_processes)": [[10, "gctree.branching_processes.CollapsedTree"], [12, "gctree.branching_processes.CollapsedTree"]], "__init__() (gctree.branching_processes.collapsedforest method)": [[10, "gctree.branching_processes.CollapsedForest.__init__"]], "__init__() (gctree.branching_processes.collapsedtree method)": [[10, "gctree.branching_processes.CollapsedTree.__init__"]], "add_isotypes() (gctree.branching_processes.collapsedforest method)": [[10, "gctree.branching_processes.CollapsedForest.add_isotypes"], [11, "gctree.branching_processes.CollapsedForest.add_isotypes"]], "compare() (gctree.branching_processes.collapsedtree method)": [[10, "gctree.branching_processes.CollapsedTree.compare"], [12, "gctree.branching_processes.CollapsedTree.compare"]], "feature_colormap() (gctree.branching_processes.collapsedtree method)": [[10, "gctree.branching_processes.CollapsedTree.feature_colormap"], [12, "gctree.branching_processes.CollapsedTree.feature_colormap"]], "filter_trees() (gctree.branching_processes.collapsedforest method)": [[10, "gctree.branching_processes.CollapsedForest.filter_trees"], [11, "gctree.branching_processes.CollapsedForest.filter_trees"]], "gctree.branching_processes": [[10, "module-gctree.branching_processes"]], "iter_topology_classes() (gctree.branching_processes.collapsedforest method)": [[10, "gctree.branching_processes.CollapsedForest.iter_topology_classes"], [11, "gctree.branching_processes.CollapsedForest.iter_topology_classes"]], "likelihood_rankplot() (gctree.branching_processes.collapsedforest method)": [[10, "gctree.branching_processes.CollapsedForest.likelihood_rankplot"], [11, "gctree.branching_processes.CollapsedForest.likelihood_rankplot"]], "ll() (gctree.branching_processes.collapsedforest method)": [[10, "gctree.branching_processes.CollapsedForest.ll"], [11, "gctree.branching_processes.CollapsedForest.ll"]], "ll() (gctree.branching_processes.collapsedtree method)": [[10, "gctree.branching_processes.CollapsedTree.ll"], [12, "gctree.branching_processes.CollapsedTree.ll"]], "local_branching() (gctree.branching_processes.collapsedtree method)": [[10, "gctree.branching_processes.CollapsedTree.local_branching"], [12, "gctree.branching_processes.CollapsedTree.local_branching"]], "mle() (gctree.branching_processes.collapsedforest method)": [[10, "gctree.branching_processes.CollapsedForest.mle"], [11, "gctree.branching_processes.CollapsedForest.mle"]], "mle() (gctree.branching_processes.collapsedtree method)": [[10, "gctree.branching_processes.CollapsedTree.mle"], [12, "gctree.branching_processes.CollapsedTree.mle"]], "module": [[10, "module-gctree.branching_processes"], [13, "module-gctree.isotyping"], [20, "module-gctree.mutation_model"], [22, "module-gctree.utils"]], "n_topologies() (gctree.branching_processes.collapsedforest method)": [[10, "gctree.branching_processes.CollapsedForest.n_topologies"], [11, "gctree.branching_processes.CollapsedForest.n_topologies"]], "n_trees (gctree.branching_processes.collapsedforest attribute)": [[10, "gctree.branching_processes.CollapsedForest.n_trees"], [11, "gctree.branching_processes.CollapsedForest.n_trees"]], "newick() (gctree.branching_processes.collapsedtree method)": [[10, "gctree.branching_processes.CollapsedTree.newick"], [12, "gctree.branching_processes.CollapsedTree.newick"]], "parameters (gctree.branching_processes.collapsedforest attribute)": [[10, "gctree.branching_processes.CollapsedForest.parameters"], [11, "gctree.branching_processes.CollapsedForest.parameters"]], "render() (gctree.branching_processes.collapsedtree method)": [[10, "gctree.branching_processes.CollapsedTree.render"], [12, "gctree.branching_processes.CollapsedTree.render"]], "sample_tree() (gctree.branching_processes.collapsedforest method)": [[10, "gctree.branching_processes.CollapsedForest.sample_tree"], [11, "gctree.branching_processes.CollapsedForest.sample_tree"]], "simulate() (gctree.branching_processes.collapsedforest method)": [[10, "gctree.branching_processes.CollapsedForest.simulate"], [11, "gctree.branching_processes.CollapsedForest.simulate"]], "simulate() (gctree.branching_processes.collapsedtree method)": [[10, "gctree.branching_processes.CollapsedTree.simulate"], [12, "gctree.branching_processes.CollapsedTree.simulate"]], "support() (gctree.branching_processes.collapsedtree method)": [[10, "gctree.branching_processes.CollapsedTree.support"], [12, "gctree.branching_processes.CollapsedTree.support"]], "tree (gctree.branching_processes.collapsedtree attribute)": [[10, "gctree.branching_processes.CollapsedTree.tree"], [12, "gctree.branching_processes.CollapsedTree.tree"]], "write() (gctree.branching_processes.collapsedtree method)": [[10, "gctree.branching_processes.CollapsedTree.write"], [12, "gctree.branching_processes.CollapsedTree.write"]], "isotype (class in gctree.isotyping)": [[13, "gctree.isotyping.Isotype"], [14, "gctree.isotyping.Isotype"]], "isotypetemplate (class in gctree.isotyping)": [[13, "gctree.isotyping.IsotypeTemplate"], [15, "gctree.isotyping.IsotypeTemplate"]], "__init__() (gctree.isotyping.isotype method)": [[13, "gctree.isotyping.Isotype.__init__"]], "__init__() (gctree.isotyping.isotypetemplate method)": [[13, "gctree.isotyping.IsotypeTemplate.__init__"]], "explode_idmap() (in module gctree.isotyping)": [[13, "gctree.isotyping.explode_idmap"], [16, "gctree.isotyping.explode_idmap"]], "gctree.isotyping": [[13, "module-gctree.isotyping"]], "isotype (gctree.isotyping.isotype attribute)": [[13, "gctree.isotyping.Isotype.isotype"], [14, "gctree.isotyping.Isotype.isotype"]], "isotype_distance() (in module gctree.isotyping)": [[13, "gctree.isotyping.isotype_distance"], [17, "gctree.isotyping.isotype_distance"]], "isotype_parsimony() (in module gctree.isotyping)": [[13, "gctree.isotyping.isotype_parsimony"], [18, "gctree.isotyping.isotype_parsimony"]], "isotype_tree() (in module gctree.isotyping)": [[13, "gctree.isotyping.isotype_tree"], [19, "gctree.isotyping.isotype_tree"]], "new() (gctree.isotyping.isotypetemplate method)": [[13, "gctree.isotyping.IsotypeTemplate.new"], [15, "gctree.isotyping.IsotypeTemplate.new"]], "order (gctree.isotyping.isotype attribute)": [[13, "gctree.isotyping.Isotype.order"], [14, "gctree.isotyping.Isotype.order"]], "resolutions() (gctree.isotyping.isotype method)": [[13, "gctree.isotyping.Isotype.resolutions"], [14, "gctree.isotyping.Isotype.resolutions"]], "weight_matrix (gctree.isotyping.isotype attribute)": [[13, "gctree.isotyping.Isotype.weight_matrix"], [14, "gctree.isotyping.Isotype.weight_matrix"]], "mutationmodel (class in gctree.mutation_model)": [[20, "gctree.mutation_model.MutationModel"], [21, "gctree.mutation_model.MutationModel"]], "__init__() (gctree.mutation_model.mutationmodel method)": [[20, "gctree.mutation_model.MutationModel.__init__"]], "gctree.mutation_model": [[20, "module-gctree.mutation_model"]], "mutabilities() (gctree.mutation_model.mutationmodel method)": [[20, "gctree.mutation_model.MutationModel.mutabilities"], [21, "gctree.mutation_model.MutationModel.mutabilities"]], "mutability() (gctree.mutation_model.mutationmodel method)": [[20, "gctree.mutation_model.MutationModel.mutability"], [21, "gctree.mutation_model.MutationModel.mutability"]], "mutate() (gctree.mutation_model.mutationmodel method)": [[20, "gctree.mutation_model.MutationModel.mutate"], [21, "gctree.mutation_model.MutationModel.mutate"]], "simulate() (gctree.mutation_model.mutationmodel method)": [[20, "gctree.mutation_model.MutationModel.simulate"], [21, "gctree.mutation_model.MutationModel.simulate"]], "gctree.utils": [[22, "module-gctree.utils"]], "hamming_distance() (in module gctree.utils)": [[22, "gctree.utils.hamming_distance"], [23, "gctree.utils.hamming_distance"]], "product() (in module gctree.utils)": [[24, "gctree.utils.product"]]}}) \ No newline at end of file