-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrealistic_model.py
43 lines (34 loc) · 1.31 KB
/
realistic_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import tensorflow as tf
import keras
def create_model(input_globalvars,input_cpf,input_npf,input_sv,nlabels):
cpf = input_cpf
for nfilters in [32,32,8]:
cpf = keras.layers.Conv1D(nfilters,1,padding='same',activation='selu')(cpf)
cpf = keras.layers.Dropout(0.1)(cpf)
cpf = keras.layers.Flatten()(cpf)
npf = input_npf
for nfilters in [16,16,4]:
npf = keras.layers.Conv1D(nfilters,1,padding='same',activation='selu')(npf)
npf = keras.layers.Dropout(0.1)(npf)
npf = keras.layers.Flatten()(npf)
sv = input_sv
for nfilters in [32,32,8]:
sv = keras.layers.Conv1D(nfilters,1,padding='same',activation='selu')(sv)
sv = keras.layers.Dropout(0.1)(sv)
sv = keras.layers.Flatten()(sv)
globalvars = input_globalvars
features = keras.layers.Concatenate(axis=1)([cpf,npf,sv,globalvars])
for nnodes in [200,100,100]:
features = keras.layers.Dense(nnodes,activation='selu')(features)
features = keras.layers.Dropout(0.1)(features)
predicted_labels = keras.layers.Dense(nlabels)(features)
model = keras.models.Model(
inputs=[
input_globalvars,
input_cpf,
input_npf,
input_sv
],
outputs=[predicted_labels]
)
return model